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Abstract

This note discusses population size estimation on the basis of a fre-
quency distribution of zero-truncated counts and is motivated by a study
on the geographical distribution of hidden scrapie in Great Britain. Ag-
gregation of scrapie cases is considered at the county level and results in
sparse zero-truncated count distributions which make the application of
conventional capture-recapture procedures for estimating the hidden part
of the scrapie affected population difficult. We suggest a smoothed gen-
eralization of Zelterman’s estimator of population size which overcomes
the overestimation bias of the conventional Zelterman estimator and in-
stead produces a lower bound, typically larger than Chao’s lower bound
estimator. The estimator uses an empirical Bayes approach with vari-
ous choices for the prior distribution including a parametric choice of the
Gamma distribution as well as various non-parametric ones. A simulation
study investigates the performance of the new estimators, also in compar-
ison to conventional estimators. The empirical Bayes estimator with a
nonparametric mixture model as prior performs well and the boundary
problem of the conventional nonparametric discrete mixture model esti-
mator leading to spurious population size is avoided. In the application on
hidden scrapie in Great Britain the new estimators lead to scrapie maps of
observed–hidden ratios as well as completeness of the current surveillance
system.

Some key words: capture-recapture, empirical Bayes, nonparametric
mixture model, geographical analysis
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1 Introduction

For integer N , we consider a sample of counts x1, x2, ..., xN ∈ {0, 1, 2, ..., }

arising from a count random variable X having a mixture probability density

function

px =
∫ ∞

0

p(x|λ)q(λ)dλ (1)

with unspecified mixing density q(λ) and a mixture kernel p(x|λ) which needs

to be specified. In this paper, a typical choice for the mixture kernel is the

Poisson p(x|λ) = Po(x|λ) = exp (−λ)λx/x! though other choices are possible

as well. Whenever xi = 0 unit i remains unobserved, so that only a zero-

truncated sample of size n =
∑m

j=1 fj is observed, where fj is the frequency of

counts with value x = j and m is the largest observed count. Hence, f0 and

consequently N are unknown. The purpose is to find an estimate of the size N .

Since frequently the count variable X represents repeated identifications of an

individual in an observational period, the problem at hand is a special form of

the capture-recapture problem (see Bunge and Fitzpatrick (1993) for a review

on the topic).

The sample of counts x1, x2, ..., xN can occur in several ways. A target

population which might be difficult to count consists out of N units. This

population might be a wildlife population, a population of homeless people,

drug addicts, software errors or animals with a specific disease. Furthermore,

let an identification device (a trap, a register, a screening test) be available that

identifies unit i at occasion t where t = 1, .., T . Let the binary result be xit

where xit = 1 means that unit i has been identified at occasion t and xit = 0

means that unit i has not been identified at occasion t. The indicators xit might

be observed or not, but it is assumed that xi =
∑T

t=1 xit is observed if at least

one xit > 0 for t = 1, ..., T . Only if xi1 = xi2 = ... = xiT = 0 and, consequently

xi = 0, the unit i remains unobserved. In this kind of situation the clustering
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occurs by repeated identifications of the same unit.

In another setting, which is also the basis for this work, the clustering occurs

by means of a grouping variable such as herds, holdings, households, or villages.

In this case, xit denotes if the t−th element in cluster i is identified (xit = 1) or

not (xit = 0). In the example given in the next section the clusters are holdings

of sheep and xit informs about the disease status of the t−th animal in holding

i. Note that xi =
∑

t xit is observed only if it is positive. In other examples the

cluster corresponds to villages or households, one of the earliest applications of

this kind is the cholera-outbreak in a community in India studied by McKendrick

(1926) in which the cluster corresponds to households in a village. A more recent

example involves cholera occurrence in rural East Pakistan where the cluster

structure consists of villages (see also Mosley et al. (1972)).

The paper is organized as follows. The next section 2 introduces the data

on scrapie in Great Britain. In section 3 we review some of the existing ap-

proaches in the capture-recapture methodology for the setting of interest. Sec-

tion 4 describes the development of a new set of empirical Bayes estimators

which are then further evaluated by means of a simulation study. The appli-

cation of the empirical Bayes estimator to the spatial data on scrapie in Great

Britain, including the development of maps at county level of completeness and

observed–hidden ratio, ends the paper in section 5.

2 The data of scrapie in Great Britain

We now consider as a specific case study the spatial distribution of scrapie in

Great Britain. Classical scrapie, a neurological fatal disease of small ruminants

is endemic in Great Britain (see Del Rio Vilas et al. (2006) for more details).

There is ample evidence to support the occurrence of under-reporting affecting

the clinical notification of scrapie cases (Hoinville et al. (2000), Del Rio Vilas
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et al. (2005), Böhning et al. (2008)). Although not established to date, there

is reason to believe that, reflecting population and surveillance related hetero-

geneities, under–reporting presents an uneven distribution across Great Britain.

The spatial analysis presented in the following uses county-specific disease data

from the Scrapie Notifications Database (SND) (see Vilas et al. (2006) for more

details), more specifically the number of confirmed clinical cases. Table 1 shows

the frequency distribution fx of the count of confirmed clinical cases X for

x = 1, 2, 3, ... by county. Evidently, there is a considerable range in the number

of scrapie-affected holdings per county, ranging from counties with only 1 af-

fected holding to counties with a large number of affected holdings, the largest

number occurring in county 37 with 75 affected holdings.

Our main interest in the following analysis is to investigate the performance

of the SND surveillance stream as measured in the observed–hidden ratio (the

larger the ratio the better the system) as well as in the completeness rate,

defined as the proportion of observed affected holdings among observed and

hidden scrapie affected holdings. If the case count per holding is collapsed over

all counties we find the distribution as given at the bottom of Table 1. With

f1 = 298, f2 = 89 and f3 = 42 most of the distribution is concentrated on

counts of ones, twos and threes with the largest count occurring at 29.

3 Background on capture-recapture estimation

Before we go into the details of the suggested novel approach we give a brief

review of the existing capture-recapture methodology for the setting of interest.

3.1 Heterogeneity

The importance of the mixture px =
∫∞
0

p(x|λ)q(λ)dλ can be seen in the fact

that it is a natural model for the population heterogeneity. There appears to be
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consensus (see for example Pledger [24] for the discrete mixture model approach

and Dorazio and Royle (2005)for the continuous mixture model approach) that

a simple model p(x|λ) is not flexible enough to capture the variation in the

re-capture probability for the different members of most real life populations.

There has also been recently a debate on the identifiability of the binomial

mixture model (see Link (2003, 2006) and Holzmann et al. (2006). Furthermore,

using the nonparmatric maximum likelihood estimate (NPMLE) q̂(λ) of the

mixing density q(λ) in constructing an estimate of the population size N̂ =

n/[1−
∫∞
0

exp(−λ)q̂(λ)dλ] leads to the boundary problem. This results in often

unrealistic high values for the estimate of the population size (Wang and Lindsay

(2005), Wang and Lindsay (2008)). Hence, a renewed interest has re–emerged

in the lower bound approach for population size estimation suggested by Chao

(1987).In this approach there is neither need to specify a mixing distribution,

nor is there need to estimate it. In this sense it is completely non-parametric.

To give some details of the lower bound approach consider the Poisson mixture

kernel exp (−λ)λx/x!. It follows from the Cauchy-Schwarz inequality that(∫ ∞

0

exp (−λ)λq(λ)dλ

)2

≤
∫ ∞

0

exp (−λ)q(λ)dλ

∫ ∞

0

exp (−λ)λ2q(λ)dλ,

or equivalently, p2
1 ≤ p0(2p2). Replacing the theoretical probabilities pj by their

sample estimates fj/N for j = 0, 1, 2, the Chao lower bound estimate f2
1 /(2f2)

for f0 follows (see Chao [7], [8]) since the unknown denominator N cancels

out. The estimate for the population size N is N̂C = n + f2
1 /(2f2). Since

the Chao estimator uses only frequencies with counts of 1 and 2, a truncated

sample consisting only of counts of ones and twos might be considered. This

truncated sample leads to a binomial log-likelihood f1 log(p1)+f2 log(p2) which

is uniquely maximized for p̂2 = 1 − p̂1 = f2/(f1 + f2). Since p2 = λ/(λ + 2)

and p1 = 2/(λ + 2) in a Poisson that truncates all counts except ones and twos,

the estimate λ̂ = 2f2/f1 for the Poisson parameter λ suggested by Zelterman
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(1988) arises. In the approach of Zelterman the homogeneous Poisson serves

only as a working model and it was suggested by Zelterman that the estimate

N̂Z = n
1−p̂0

= n
1−exp(−λ̂)

is more robust against misspecifications of the Poisson

model than the usual maximum likelihood estimate.

3.2 A re-analysis of Zelterman estimation

We are interested in developing a generalization of the Zelterman estimator.Consider

the Horvitz-Thompson-type estimate of the population size suggested by Zel-

terman (1988):

N̂Z =
n

1− exp(−2f2
f1

)
. (2)

Although the estimator (2) is popular among practitioners there are two disad-

vantages of the estimator:

• it uses only the frequencies f1 and f2 and ignores f3 to fm.

• it can experience severe overestimation bias.

The first issue is evident and results in large variance. The second issue is less

evident but becomes clear with the following theorem.

Theorem 1 Let px = qp(x|λ)+(1−q)p(x|µ) a discrete, two-component mixture

with p(x|θ) = Po(x|θ) being the Poisson kernel and 0 < q < 1. Then,

E(N̂Z) ≈ N
1− [q exp(−λ) + (1− q) exp(−µ)]

1− exp
(
− q exp(−λ)λ2+(1−q) exp(−µ)µ2

q exp(−λ)λ+(1−q) exp(−µ)µ

)
→µ→∞ N

1− q exp(−λ)
1− exp(−λ)

≥ N

Proof. The theorem is proved by replacing sample frequencies by their the-

oretical values. 2

Note that the biasing factor 1−q exp(−λ)
1−exp(−λ) can become arbitrarily large since

it is a monotone decreasing function of q and λ. But even for realistic values
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of p and λ the factor can be considerably larger than 1. For example if q =

0.5 and λ ≤ 0.4 the factor is larger than 2, so that the Zelterman estimate

would overestimate severely. The question arises as to what is the source of

this overestimation bias. We approach this question in the next theorem which

states that the Zelterman estimator uses the wrong expected value in predicting

f0.

Theorem 2 i) Let log L(λ) = f1 log(p1) + f2 log(p2) with p1 = e−λλ/(e−λλ +

e−λλ2/2) = 2/(λ + 2) and p2 = e−λλ2/2/(e−λλ + e−λλ2/2) = λ/(λ + 2) being

the Poisson probabilities truncated to counts of ones and twos. Then log L(λ) is

maximized for

λ̂ = 2f2/f1.

ii)

E(f0|f1, f2; λ̂) = f2
1 /(2f2), for λ̂ = 2f2/f1.

Proof. For the first part, it is clear that f1 log(p1) + f2 log(p2) is maximal

for p̂1 = f1/(f1 + f2), which is attained for λ̂ = 2f2/f1. For the second part, we

see that with ex = E(fx|f1, f2;λ) = Po(x|λ)N :

ex = Po(x|λ)N = Po(x|λ)N = Po(x|λ)(e0 + f1 + f2 +
∞∑

j=3

ej)

so that

e0 + e+
3 = [1− Po(1|λ)− Po(2|λ)](e0 + e+

3 ) + [1− Po(1|λ)− Po(2|λ)](f1 + f2)

with e+
3 =

∑∞
j=3 ex. Hence

e0 + e+
3 =

1− Po(1|λ)− Po(2|λ)
Po(1|λ) + Po(2|λ)

(f1 + f2)

and

e0 = Po(0|λ)(f1 + f2 + e0 + e+
3 ) = Po(0|λ)(f1 + f2) + Po(0|λ)

= 1−Po(1|λ)−Po(2|λ)
Po(1|λ)+Po(2|λ) (f1 + f2)
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=
Po(0|λ)

Po(1|λ) + Po(2|λ)
(f1 + f2) =

f1 + f2

λ + λ2/2
.

Plugging in the maximum likelihood estimate λ̂ = 2f2/f1 for λ yields the desired

result. 2

Theorem 2 establishes a close connection between the approach by Zelter-

man and Chao’s estimator. It shows that Zelterman’s estimator of the Poisson

parameter λ arises when all counts are truncated except counts of ones and twos

and when the resulting likelihood is maximized. If the correct prediction for f0

is used, namely the conditional expectation for the truncated Poisson model,

the Chao estimator arises. Hence the strong overestimation of the original Zel-

terman estimator stems from using a wrong conditional expectation.

3.3 Comparing some conventional estimators in a simula-
tion

Before we continue developing the generalized, adjusted version of the Zelter-

man estimator, we consider the performance of Chao and Zelterman estimators

in a small simulation study. In the case of a homogeneous Poisson the maxi-

mum likelihood estimate is found by maximizing the likelihood of zero-truncated

Poisson observations in λ:

m∏
j=1

(
pj

1− p0

)fj

=
m∏

j=1

(
1

1− exp(−λ)
exp(−λ)λj/j!

)fj

,

or equivalently, in solving the following equation in N̂hom:

N̂hom = n

(
1− exp(− S

N̂hom
)

)−1

.

We have to maximize the zero-truncated Poisson mixture likelihood in Q to find

the nonparametric maximum likelihood of the mixing distribution

L(Q) =
m∏

j=1

(
pj

1− p0

)fj

=
m∏

j=1

(
k∑

`=1

Po(j|λ`)q`

1−
∑

i exp(−λi)qi

)fj
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where Q is the discrete mixing distribution giving k weights qj to Poisson pa-

rameters λj :

Q =
(

λ1 λ2 ... λk

q1 q2 ... qk

)
.

Note that we have to maximize L(Q) in terms of λ1, ..., λk and q1, ..., qk but

also in k to find the NPMLE. This is typically done in a step-wise manner by

fixing k to be 1,2,3,..., and conditionally upon k using the EM algorithm for

finding the MLE. Alternatively, using results from convex optimization a direct,

gradient-function based algorithm might be employed. For details see Böhning

and Kuhnert (2006). Occasionally, we might be interested in comparing mixture

models with different number of components k by means of BIC-based selection

criteria.After the NPMLE Q̂ of Q has been identified, we can define

N̂NPMLE =
n

1−
∑k

j=1 exp(−λ̂j)q̂j

. (3)

If the number of components k in the mixture model has been identified using

the Bayesian Information Criterion we will denote the associated population

size estimate by N̂BIC.

To illustrate the performance of these estimators we consider the following

simulation experiments. Samples of counts X1, ...XN were drawn from a two-

component mixture of Poisson densities: X ∼ 0.5Po(1) + 0.5Po(λ), evidently

with equal weights q1 = q2 = 0.5. The population size was set to N = 100

and 10, 000 replications used. Ignoring zero counts the estimators of Chao and

Zelterman were determined as well as the maximum likelihood estimator under

homogeneity and the nonparametric maximum likelihood estimator under het-

erogeneity. The results can be found in Table 2. When heterogeneity increases

the Zelterman estimator overestimates whereas the MLE under homogeneity

underestimates – both as expected. The Chao lower bound estimator does well

under heterogeneity – again as expected. Most dominant in Table 2 is the

drastic failure of the NPMLE which leads to spurious overestimating values.
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4 A new empirical Bayes estimator of popula-
tion size

Although it is clear that 2f2/f1 estimates the Poisson parameter in the case

that px = Po(x|λ), it is not clear what it estimates when there is a mixing dis-

tribution present instead of Poisson homogeneity. Here, a Bayesian perspective

is helpful. We think of the mixing distribution q(λ) as a prior distribution on λ

so that

E(λ|x) =
∫ ∞

0

λ
Po(x|λ)q(λ)∫∞

0
Po(x|θ)q(θ)dθ

dλ (4)

is the posterior mean w.r.t the prior q(λ) and Poisson likelihood for observation

x. Note that (4) can be further simplified to

λx = E(λ|x) =

∫∞
0

λPo(x|λ)q(λ)dλ∫∞
0

Po(x|λ)q(λ)dλ

= (x + 1)

∫∞
0

Po(x + 1|λ)q(λ)dλ∫∞
0

Po(x|λ)q(λ)dλ
= (x + 1)

px+1

px
,

where px is the marginal density (1). Before we continue on the ways to estimate

the ratio of marginals we point out an important monotonicity property.

Theorem 3

λ1 ≤ λ2 ≤ · · · ≤ λm.

Proof. Consider

pj =
∫ ∞

0

exp(−λ)λj/j!q(λ)dλ

with unknown q(λ) for λ > 0. Then, by means of the Cauchy-Schwarz inequality

for random variables X and Y :

[E(XY )]2 ≤ E(X2)E(Y 2)

we have that ∫ ∞

0

X︷ ︸︸ ︷√
exp(−λ)λ(j−1)/2

Y︷ ︸︸ ︷√
exp(−λ)λ(j+1)/2 dλ


2
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≤
∫ ∞

0

X2︷ ︸︸ ︷
exp(−λ)λ(j−1) dλ

∫ ∞

0

Y 2︷ ︸︸ ︷
exp(−λ)λ(j+1) dλ

or,

(j! pj)2 ≤ (j − 1)! pj−1(j + 1)! pj+1,

or, finally jpj

pj−1
≤ (j+1)pj+1

pj
. 2

Theorem 3 has an important application. Since under heterogeneity we have

that λ1 ≤ λ2 ≤ ... ≤ λm, we expect that the graph x → λ̂x = (x + 1)fx+1/fx

shows a monotone increasing pattern if heterogeneity is present. Hence we

can develop a diagnostic device for the presence of heterogeneity by plotting

(x + 1)fx+1/fx against x, which we call the ratio plot. The ratio plot for the

SND data of the years 2002–2006 is presented in Figure 1. There is a clear

evidence for a monotone increasing trend, hence a mixture model coping with

the presence of heterogeneity appears appropriate.

Since 1/(1−exp(−λ)) is monotone non-increasing in λ we have the following

corollary which we state without further proof.

Corollary 1

m∑
x=1

fx

1− exp(−λx)
≤

∑m
x=1 fx

1− exp(−λ1)
=

n

1− exp(−2p2/p1)
. (5)

Note that the Zelterman estimator occurs on the right-hand side of (5) if p2/p1

is replaced by its sample version f2/f1. Hence we expect that the overestimation

bias of the Zelterman estimate is reduced if λx on the left-hand side of (5) is

appropriately estimated. Furthermore, if f1
1−exp(−λ1)

= f1+ f1
exp(λ1)−1 is replaced

by its first-order Taylor expansion f1 + f1
λ1

and again λ1 = 2p2/p1 estimated by

2f2/f1, we find that
f1

λ̂1

= f1 +
f2
1

2f2
,

the lower bound estimator of Chao (1987, 1989). Hence we expect that the left-

hand side of (5) provides an improved lower bound estimator if λx is estimated
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appropriately since
m∑

x=2

fx

1− exp(−λx)
≥

m∑
x=2

fx.

We are now considering ways of doing so.

The marginal density px can be estimated by the relative, empirical fre-

quency fx/N so that

Ê(λ|x) = λ̂x = (x + 1)
fx+1

fx

provides an estimate of the posterior mean E(λ|x) = λx using the fact that the

unknown denominators N cancel out. Hence, the Zelterman estimate occurs as

a special case of the nonparametric, empirical Bayes estimator for observation

x (Robbins (1955), Carlin and Louis (1997)).

The understanding of Zelterman’s original estimator of λ as λ̂1 = 2f2/f1

as empirical Bayes estimator for observation x = 1 is useful, since it helps to

find ways to eliminate the overestimation bias. We need to define a Horvitz-

Thompson estimator that takes into account the different counts x = 1, 2, ..

separately. This can be accomplished by defining

N̂∗ =
f1

1− exp(−λ̂1)
+

f2

1− exp(−λ̂2)
+ ... +

fm

1− exp(−λ̂m)
. (6)

The question arises as to which way the estimator λ̂x should be constructed. A

naive estimator would follow the Robbins-type estimation to arrive at

N̂R =
f1

1− exp(−2f2/f1)
+

f2

1− exp(−3f3/f2)
+...+

fm−1

1− exp(−mfm/fm−1)
+fm,

(7)

where we define

fj

1− exp(−(j + 1)fj+1/fj)
=

{
0, if fj = 0;
fj , if fj+1 = 0.

Although the estimator (7) is intuitively attractive, it has some considerable

difficulties. Not only is it unclear what to do with the largest count m (in (7) it

is not up-weighted), but also various counts could have frequencies zero which
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would leave some of the frequencies fx unweighted. More importantly, most of

the observed count data will lie on the lower counts resulting in highly unstable

estimates for larger counts.

It is more attractive to consider a smoothed version of the Bayes estima-

tor. This can be accomplished by constructing an estimate of the marginal

distribution px =
∫∞
0

p(x|λ)q(λ)dλ using a discrete, finite mixture

px =
k∑

j=1

Po(x|λj)qj ,

where λj > 0 and the non-negative weights qj sum up to 1. Estimates can

be constructed by means of the EM algorithm or using some gradient-type

algorithm. For details see Böhning and Kuhnert (2006). Some attention needs

to be given to the question of the number of components k. Two strategies will

be looked at:

• The number of components is determined by the nonparametric maximum

likelihood estimator (NPMLE).

• The mixture model is chosen on the basis of the Bayesian Information

Criterion (BIC) defined as − log L(Q) + (2k − 1) log(n).

In both cases we arrive at some estimate of the marginal distribution

p̂x =
k∑

j=1

Po(x|λ̂j)q̂j (8)

leading to smoothed estimates of the population size

N̂ =
m∑

`=1

f`

1− exp(−(` + 1) p̂`+1)

p̂`
)
, (9)

where we attach a subscript NPMLE to the population size estimate NNPMLE

in (9) if the first strategy is used and we use the notation NBIC if the second

strategy is used.
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We will also consider two further ways of estimating the mixing distribution

q(λ) in
∫∞
0

Po(x|λ)q(λ)dλ. The first estimator is based upon the idea of using

the empirical distribution itself as an estimator of the mixing distribution. To

accomplish this task we have to consider the appropriate transformation of

the observed frequencies. Let q̃i = fi/n denote the relative frequencies of the

observed, zero-truncated sample. According to Böhning and Kuhnert [1] the

associated relative proportions of the zero-truncated mixture are given as

q̂i =
q̃i/[1− Po(0|xi)]∑n

`=1 q̃i/[1− Po(0|x`)]
,

so that p̂x =
∑m

j=1 Po(x|xj)q̂j and

N̂EDF =
m∑

`=1

f`

1− exp(−(` + 1) p̂`+1)

p̂`
)
,

where the index EDF associates with the empirical distribution function. The

benefit of this approach is that the estimate of the mixing distribution is readily

available without any computational effort. The second additional estimator is

building upon the Γ-distribution for q(λ) in px =
∫∞
0

Po(x|λ)q(λ)dλ, namely

q(λ) = θrλr−1e−θλ/Γ(r) with shape parameter r > 0 and rate parameter θ > 0.

The parameters r and θ can be estimated by a weighted least squares estima-

tor as suggested in Rocchetti et al. (2010). The associated population size

estimator is denoted by N̂G.

In the following we continue the simulation study and provide evidence that

the suggested empirical Bayes estimator performs better than the convention-

ally used estimators N̂C and, in particular, N̂Z . Besides these conventional two

estimators we will consider the nonparametric estimator N̂R and the smoothed

mixture model version N̂BIC. More details are available in supplementary ma-

terial which also studies the estimators N̂EDF and N̂G which we have excluded

here since their performance is less satisfactory than N̂R and N̂BIC. The

design of the simulation corresponds to the one used previously. Samples of
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counts X1, ...XN were drawn from a two-component mixture of Poisson densi-

ties: X ∼ 0.5Po(1)+0.5Po(λ), evidently with equal weights q1 = q2 = 0.5. The

population size was set to N = 100 and 1, 000 replications used. Here, we will

concentrate on the main findings. More details are available in the supplemen-

tary material Böhning et al. (2010). We see from Table 2 that both empirical

Bayes estimators perform better with respect to their standard error and root

mean square error than the other estimators adjusting for heterogeneity. If we

compare the two empirical Bayes estimators it appears that the one based upon

the nonparametric mixture model as smaller variance which is reflected also in

a better mean squared error.

5 Application to spatial analysis of scrapie in
Great Britain

Following the results of the previous section we will concentrate on using the

NPMLE of the mixing distribution as the smoothed empirical Bayes estimate

of the prior distribution for further analysis, in particular

p̂x =
k∑

j=1

Po(x|λ̂j)q̂j , (10)

as derived in (8). In a first step, this will be done using the entire SND data,

unstratified by county. Once an estimate for the mixing distribution has been

achieved, a smoothed county-specific estimate of the population size can be

developed as follows:

N̂NPMLE,i =
m∑

`=1

f`,i

1− exp(−(` + 1) p̂`+1)

p̂`
)
, (11)

where f`,i is the frequency of holdings with ` cases in the i−th county and p̂` is

taken from (10).
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5.1 Determining the NPMLE for the SND data

We have seen in section 4 using the ratio plot that there is strong evidence

for heterogeneity captured by a mixing distribution. We consider the marginal

distribution over all counties as available from Table 1: f1 = 298, f2 = 89, f3 =

42,..., f29 = 2. We are using this (truncated) count distribution to determine the

maximum likelihood estimators for the various possible mixture models. The

results are provided in Table 3. For each number of components k, starting with

the homogeneous case k = 1, the estimated mixture model Q̂ is provided, the

Poisson parameters λ̂j and associated component weights q̂j . This is followed by

the log-likelihood log L(Q̂) and the BIC-value −2 log L(Q̂)+(2k−1) log(n). Note

that there are two estimates of the population size of scrapie-affected holdings

given. One is based upon the direct computation using the mixture model

estimated as provided in (3), the other is the empirical Bayes estimate using the

estimated mixture as prior distribution (10). It is evident from columns 6 and

and 7 in Table 3, that the empirical Bayes estimate of the population size is less

sensitive to the choice of the number of components. Furthermore, the empirical

Bayes estimates is not prone to spurious estimates as is the conventional mixture

model based estimator. We have already mentioned that Figure 1 supports that

there is considerable evidence for a monotone increasing pattern. In addition,

the estimate of the posterior mean based upon the estimated mixture model with

4 components (this is what the BIC suggests) shows that this monotone pattern

is met. Note that columns 6 and and 7 in Table 3 contain also (in brackets) an

estimate of the standard error of the repsective population size estimate. This

was achieved by applying the nonparametric bootstrap as adapted to capture–

recapture situations by van der Heijden et al. (2003) and Böhning (2008). It is

evident from columns 7 in Table 3 that the conventional mixture model based

estimator is prone to extreme variance inflation when the number of components
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become large.

5.2 Estimating the number of hidden scrapie-affected hold-
ings per county

We now apply these results to the individual counties using (11). Note that

we are using the same mixture distribution in (11) estimated from the entire

SND data. This is necessary since the county specific case distributions are

frequently very sparse. Take for example county 1 in Table 1: we find f1,1 = 2,

f2,1 = 1, f3,1 = 1, so n1 = 4. It is clear that a reliable estimation of a mixing

distribution is not possible from this count distribution. Hence we use the

mixing distribution estimated from the entire data set and assume that the

heterogeneity found for the entire data set is also valid in each county. Then

we compute the predicted number of scrapie-affected holdings by applying the

weight (1 − exp[−(` + 1) p̂`+1)

p̂`
])−1 to the frequency f`,i of count ` in the i−th

county and summing up over all observed frequencies f`,i leading to

N̂i =
m∑

`=1

f`,i

1− exp(−(` + 1) p̂`+1)

p̂`
)
.

This process is very similar to indirect standardization used in epidemiologic

methodology (see Waller and Gotway (2004, p. 17). The results are provided in

Table 4. In addition, two further measures are computed. The observed–hidden

ratio defined as ni/(N̂i − ni) and the completeness measure defined as ni/N̂i,

provided as columns 4 and 5 in Table 4. The completeness ranges between 48%

and 99%. Figure 2 shows a scatterplot of the completeness against the observed

count (on log-scale) of scrapie-affected holdings. There is no evidence for a

specific pattern, though the variation of completeness seems to decrease with

increasing observed count of scrapie-affected holdings. Median observed–hidden

ratio is 1.29 with 95% nonparametric CI (1.11, 1.43) and completeness is 56.36

with 95% nonparametric CI (52.62%, 58.83%).
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Figure 3 shows the geographical distribution of county–specific completeness

and observed–hidden ratios. Completeness is fairly stable with most counties in

the 50-59% category and fewer counties in the upper completeness categories.

Note that as well as providing completeness and observed/hidden ratios, we can

also estimate adjusted measures of disease occurrence for each county. However,

for our particular case, this would not have a clear biological interpretation as

annual data was pooled to increase the power of our analyses.

6 Discussion

As described in section four and five, providing theoretical evidence and empiri-

cal support respectively, N̂i = N̂BIC,i represents a lower bound of the population

size in each county i. Hence, the estimated completeness ni/N̂i in county i will

be an upper bound for ni/Ni, so that the estimated values for completeness will

be too large on average. Consequently, since the observed values already have

an upper limit of almost 100%, it is expected that only the observed minimum

for completeness of 48% will be in fact a bit lower. Similarly, we expect that

the observed-hidden ratios are overestimated. Typically, we have seen in the

simulation study that N is underestimated by 5 – 10%, never more than 20%.

The maps are based upon an estimated size of the scrapie population in

county i, given as

N̂i =
m∑

`=1

f`,i

1− exp(−(` + 1) p̂`+1)

p̂`
)

=
m∑

`=1

ŵ`f`,i,

where p̂` is found from (10) with an estimated BIC-selected nonparametric mix-

ing distribution. Since the estimated weights ŵ` = 1/[1 − exp(−(` + 1) p̂`+1)

p̂`
)]

do not depend on the county index i we have that

∑
N̂i =

∑
i

m∑
`=1

ŵ`f`,i =
m∑

`=1

ŵ`

∑
i

f̂`,i =
m∑

`=1

ŵ`f` = N̂ ,
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where f` =
∑

i f`,i, so that the margin (over counties) of the county-specific

estimates of the size of the scrapie population and the estimate of the size of

the scrapie population, unstratified by county, coincide.

Finally, note that it is also possible to derive estimates for the standard

errors of N̂i =
∑m

`=1 ŵ`f`,i = ŵT fi. The variance conditional upon ŵ is sim-

ply ŵT Cov(fi)ŵ with Cov(fi) = Λfi − fifT
i /ni, where ni =

∑m
`=1 f`,i and Λfi

the diagonal matrix with elements f`,i. ` = 1, ...,m, on the diagonal. This

variance estimate is dependent on the vector fi and will be different for each

county, but it is conditional upon ŵ` = 1

1−exp(−(`+1)
p̂`+1)

p̂`
)

for ` = 1, ...,m which

is identical for each county. Although a conditional variance estimate seems

appropriate for comparison of variation within the county strata, it might be

sometimes desirable to provide an unconditional variance estimate. This can

be achieved by adding an additional variance component due to the random

error involved in the estimate ŵ (for more details on variance computations in

the capture–recapture setting see Böhning (2008)), so that the unconditional

variance estimate becomes

̂V ar(N̂i) = ŵT Cov(fi)ŵ + fT
i Cov(ŵ)f̂i,

where Cov(ŵ) is the covariance matrix for the vector w. This needs to be

determined only once for the entire data set, but will depend on the estimator

used to estimate p̂` in ŵ` = 1

1−exp(−(`+1)
p̂`+1)

p̂`
)

and it is best done using the

nonparametric bootstrap mentioned in section 4.

In conclusion, we would like to point out that the technique developed here

to estimate county-specific population sizes of scrapie can be used for any strat-

ified situation where there is interest in providing stratum-specific estimates of

population size and the data per stratum are potentially sparse. Examples of

such strata could be the laboratories involved in determining the disease or par-

ticular time windows of interest. Hence the suggested techniques has a general
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characteristic and is by no means limited to geographical applications.
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Figure 1: Ratio plot for SND data 2002-2006, unstratified by county, for Rob-
bins estimate of posterior mean as well as the discrete mixture (4 components)
based empirical Bayes estimate of the posterior mean

25



e**4e**3e**2e**1e**0

100

90

80

70

60

50

log(n)

co
m

pl
et

en
es

s

Figure 2: Scatterplot of completeness of surveillance stream per county against
observed count of scrapie affected holdings per county
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Figure 3: Map of estimated completeness on county level for SND data 2002-
2006
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Table 1: Distribution of confirmed scrapie–affected holdings from the SND
database 2002–2006 by county

county f1 f2 f3 f4 f5 f6 f7 f8 f9 f10+ n
1 2 1 1 0 0 0 0 0 0 0 4
2 1 1 1 0 1 0 0 0 0 0 4
3 1 0 0 0 0 0 0 0 0 0 1
4 1 0 0 0 0 0 0 0 0 0 1
5 2 0 0 0 1 0 0 1 0 3 7
6 4 1 0 1 0 1 0 1 0 3 11
7 12 1 0 2 3 0 0 0 0 1 19
8 7 2 2 0 0 0 0 0 0 0 11
9 25 8 5 1 1 1 2 0 0 2 45
10 4 1 0 0 0 0 0 0 0 0 5
11 1 0 0 0 0 0 0 0 0 0 1
12 0 0 1 0 0 0 0 0 0 0 1
13 2 0 0 1 0 0 0 0 0 0 3
14 1 2 0 0 0 0 0 0 0 0 3
15 0 1 0 0 0 0 0 0 0 0 1
16 5 2 1 1 0 0 0 1 0 0 10
17 1 0 0 0 0 0 0 0 0 0 1
18 5 0 0 0 0 0 0 0 0 0 5
19 1 1 0 0 0 0 0 0 0 0 2
20 1 0 0 0 0 0 0 0 0 0 1
21 2 1 1 0 0 0 0 0 0 0 4
22 3 3 0 0 1 0 1 0 1 0 9
23 5 0 1 0 0 0 0 0 0 1 7
24 2 0 0 0 0 0 0 0 0 0 2
25 1 1 0 0 0 0 0 0 1 0 3
26 6 2 0 0 0 0 0 0 0 0 8
27 5 1 0 0 1 0 0 0 0 0 7
28 1 0 0 0 0 0 0 0 0 2 3
29 2 0 1 0 1 0 0 0 0 0 4
30 1 0 0 0 0 0 0 0 0 0 1
31 2 1 0 0 0 0 0 0 0 0 3
32 1 0 0 0 0 0 0 0 0 0 1
33 1 0 1 0 0 0 0 0 0 0 2
34 14 10 3 1 3 0 2 1 0 3 37
35 2 0 0 0 0 0 0 0 0 0 2

... continued on next page ...
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... continued from previous page ...
county f1 f2 f3 f4 f5 f6 f7 f8 f9 f10+ n

36 2 0 0 0 0 0 0 0 0 0 2
37 51 11 5 5 0 1 1 1 0 0 75
38 6 3 1 0 0 0 0 0 1 0 11
39 24 9 1 1 3 1 2 1 0 2 44
40 6 4 4 1 2 1 2 1 0 4 25
41 3 5 2 0 1 0 0 0 0 0 11
42 6 1 3 1 0 0 0 0 0 0 11
43 1 1 0 0 0 0 0 0 0 0 2
44 4 0 1 0 0 1 0 0 0 1 7
45 1 0 0 0 0 0 0 0 0 0 1
46 3 0 0 0 0 0 0 0 0 0 3
47 1 0 0 0 1 0 0 0 0 0 2
48 0 0 1 0 0 0 0 0 0 0 1
49 1 0 0 0 0 0 0 0 0 0 1
50 2 0 0 0 0 0 0 0 0 0 2
51 1 0 0 0 0 0 0 0 0 0 1
52 13 2 1 0 0 0 1 0 0 0 17
53 0 0 0 0 1 0 0 0 0 0 1
54 1 0 0 0 0 0 0 0 0 0 1
55 47 10 5 2 0 1 0 0 0 0 65
56 1 3 0 0 0 0 0 0 0 0 4
All 298 89 42 17 20 7 11 7 3 22 516
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Table 2: Simulation using X ∼ 0.5Po(1) + 0.5Po(λ) and N = 100; provided
are estimates of E(N̂), V ar(N̂)1/2 and [E(N̂−N)2]1/2 as mean, SD and RMSE

λ estimator mean SD RMSE
1 MLE-hom 102 13 13

NPMLE 484 12,098 20,028
Chao 104 19 19

Zelterman 105 21 22
EB-NPMLE 105 15 15
EB-Robbins 108 21 22

2 MLE-hom 94 7 9
NPMLE 4599 35 21,328

Chao 99 12 12
Zelterman 101 16 16

EB-NPMLE 98 8 9
EB-Robbins 102 12 12

3 MLE-hom 88 5 13
NPMLE 12,517 52,425 23,955

Chao 97 10 11
Zelterman 102 15 16

EB-NPMLE 93 7 10
EB-Robbins 96 9 10

4 MLE-hom 85 4 16
NPMLE 11,715 54,501 23,114

Chao 97 10 10
Zelterman 108 20 20

EB-NPMLE 92 7 11
EB-Robbins 95 9 10

5 MLE-hom 84 4 17
NPMLE 4,657 33,069 17,373

Chao 98 10 1017
Zelterman 115 23 27

EB-NPMLE 92 8 11
EB-Robbins 95 9 10
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Table 3: Estimated mixture models for 1, 2, 3 , 4 and 5 (NPMLE) num-
ber of components with associated estimator of the size of the scrapie–affected
population of holding from the unstratified SND database 2002–2006

discrete mixture model based
k λ̂j q̂j log L(Q̂) BIC N̂NPMLE (10), N̂NPMLE (3),

(SE) (SE)

1 2.33 1.00 -1,279.0 2,561.4 572 (9.4) 572 (9.4)

2 0.97 0.88 -865.4 1,740.8 776 (32.4) 793 (34.6)
9.80 0.12

3 0.67 0.80 -807.8 1,632.4 869 (44.8) 946 (65.8)
5.46 0.17
19.10 0.03

4 0.56 0.75 -802.3 1,628.2 896 (48.0) 1,036 (60,102)
4.03 0.19
10.35 0.05
23.58 0.01

5 0.01 0.27 -801.2 1,632.7 916 (25.5) 528,694 (419,663)
1.08 0.54
5.13 0.14
11.76 0.03
23.98 0.01
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Table 4: Observed and hidden scrapie-affected counts of holdings by county,
observed–hidden ratio and completeness of surveillance stream

county n N̂ o/h completeness
1 4 7 1.4 59
2 4 6 2.3 70
3 1 2 0.9 48
4 1 2 0.9 48
5 7 9 3.1 76
6 11 16 2.2 69
7 19 33 1.4 58
8 11 20 1.2 55
9 45 77 1.4 58
10 5 10 1.0 50
11 1 2 0.9 48
12 1 1 11.8 92
13 3 5 1.3 57
14 3 5 1.4 59
15 1 2 2.0 66
16 10 17 1.5 60
17 1 2 0.9 48
18 5 11 0.9 48
19 2 4 1.2 55
20 1 2 0.9 48
21 4 7 1.4 59
22 9 14 1.9 65
23 7 13 1.2 56
24 2 4 0.9 48
25 3 5 1.9 65
26 8 16 1.0 51
27 7 13 1.2 54
28 3 4 2.7 73
29 4 6 1.7 63
30 1 2 0.9 48
31 3 6 1.1 52
32 1 2 0.9 48
33 2 3 1.7 63
34 37 58 1.8 64
35 2 4 0.9 48
36 2 4 0.9 48

... continued on next page ...
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county n N̂ o/h completeness
... continued from previous page ...
37 75 137 1.2 55
38 11 19 1.3 57
39 44 75 1.4 58
40 25 34 2.8 73
41 11 17 1.8 65
42 11 18 1.5 60
43 2 4 1.2 55
44 7 12 1.6 61
45 1 2 0.9 48
46 3 6 0.9 48
47 2 3 1.8 64
48 1 1 11.8 92
49 1 2 0.9 48
50 2 4 0.9 48
51 1 2 0.9 48
52 17 32 1.1 52
53 1 1 71.6 99
54 1 2 0.9 48
55 65 122 1.1 53
56 4 7 1.5 60
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