
 
 

 

School of Mathematical 
and Physical Sciences 
 

 
Department of Mathematics and Statistics 

 
Preprint MPS_2010-29 

31 August 2010 
 
 

Wave trapping in a two-dimensional 
sound-soft acoustic waveguide of slowly-

varying width 
 

by 
 

Nicholas R.T. Biggs 
 

 
 



Wave trapping in a two-dimensional sound-soft acoustic waveguide of
slowly-varying width

Nicholas R. T. Biggs

Department of Mathematics and Statistics, University of Reading,
P. O. Box 220, Whiteknights, Reading, RG6 7AX, U.K.

Received ?

Abstract

In this paper we derive novel approximations to trapped waves in a two-dimensional Dirichlet acoustic waveg-
uide whose walls vary slowly along the guide. The guide contains a single smoothly bulging region, but is
otherwise straight, and the modes are trapped within this localised increase in width.

A WKBJ-type expansion yields an approximate expression for the modes which can be present. Crucially,
these modes can display either propagating or evanescent behaviour. Using matched asymptotic expansions,
connection formulae are determined which bridge the gap across the cut-off between propagating and evanes-
cent solutions in a tapering region of the waveguide. A uniform expansion is then derived, and it is shown
that appropriate zeros of this expansion correspond to trapped mode wavenumbers. Numerical results are
then compared to results of the full linear problem calculated using a spectral method, and the two are shown
to be in excellent agreement.

Keywords: slowly-varying width; waveguide; quasi-modes; perturbation methods; turning point; WKBJ.

1. Introduction

It is well-established that vibrational energy can become trapped within waveguides by local changes in the
guide’s width (e.g., [1-2]) or curvature (e.g. [2-5]), resulting in what are termed trapped modes: localised
solutions of the homogeneous time-harmonic boundary-value problem. In this paper, we focus on the trapping
that can occur within a straight two-dimensional acoustic waveguide with a localised increase in width (i.e., a
bulge). Physically, this geometry is capable of trapping waves since a particular mode may be evanescent in
the narrower uniform region to either side of the bulge, but propagating in a uniform guide of width equal to
the bulge width. Thus there may be a solution which is oscillatory within the bulge, and evanescent outside it,
i.e., a trapped wave, the trapped mode frequency then lying between the cut-off frequencies associated with
the width of the bulge and the width of the surrounding straight region.

Analytical determination of trapped wave frequencies and the associated modal structure is generally difficult,
but if the width of the waveguide is slowly-varying, in the sense that the length-scale ε−1 over which the width
changes satisfies 0 < ε � 1, then this small parameter can be used to develop an asymptotic scheme. In a
recent series of papers ([1-2]), an asymptotic procedure is developed which allows calculation of the trapped
wave frequencies (or, more precisely, theO(ε) correction away from the cut-off frequencies) as solutions of a
simple ODE eigenvalue problem, given the additional geometrical constraint that the amplitude of the bulge
is O(ε2). This ODE eigenvalue problem is then accurately and efficiently solved using a spectral method.

A complementary problem to determining trapped modes within a slowly-varying waveguide is to instead
determine an approximation to the types of propagating modes which can exist therein. This is commonly-
achieved using variations on the general WKBJ ansatz φ = AeiP/ε (see [6-8] for examples of using the
approximation in problems in which the curvature rather than the width varies slowly). The approximation
was used in [9] to model surface gravity water waves above a slowly-varying bed, and modified in [10] to
include an expansion of the phase P in powers of ε. In [6-8], A and P are expanded in powers of ε and
are functions of both longitudinal and lateral coordinates, which allows A and P to be identified as the
real amplitude and phase, respectively. The expressions derived are referred to as quasi-modes in [6-8], are
uncoupled, and to first order coincide with the adiabatic approximation in which gradients in waveguide width
are ignored, and the modes are given locally by the separable solutions which exist in a uniform guide of the
same local width.

In this paper, we use an expansion similar to that which yields the quasi-mode expressions to instead examine
the trapping problem. We first derive a version of quasi-modes which allows both propagating and evanescent
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behaviour, depending on if the wavenumber is greater or less than the local cut-off. These expressions stem
from a WKBJ-type ansatz φ = AeP , with A and P both functions of longitudinal and lateral coordinates,
and A = A0 + εA1 + . . . and P = ε−1P−1 + εP1 + . . .. The “phase” P is allowed to be real or imaginary
to produce either propagating or evanescent behaviour. This asymptotic scheme is inconsistent in that two
unknowns,A and P , replace the original single unknown φ, and there are insufficient equations to determine
all unknowns. Thus only the first few terms in the expansions for A and P can be determined before this
inconsistency hinders calculation of the higher order terms, and in particular means that the expressions are
not as accurate as the (purely propagating) quasi-modes of [6-8] (the final approximations to the trapped wave
frequencies still prove extremely accurate, however).

Now, a mode trapped within a bulge is oscillatory in nature within the centre of the bulge, and then changes
in character to an evanescent wave as the narrower portion of the guide is reached, the point at which this
character change occurs being an example of a turning point (see, for example [11]), at which in particular
the expressions derived for the quasi-modes are not valid. However, formulae which connect the propagat-
ing and evanescent waves across the turning point can be obtained via the method of matched asymptotic
expansions (in a fashion similar to that used in [12]). Motivated by the solution appropriate in the vicinity
of the turning point, a uniformly valid expansion is then derived which includes the two quasi-mode forms
as limiting behaviour. The form of this uniform expansion is very similar to that determined via the Langer
transformation for ODEs (see [11]). Determining appropriate zeros of this uniform expansion via a standard
iterative procedure then furnishes highly accurate approximations to the trapped wave frequencies and modal
structures.

The paper proceeds as follows. In section 2 we derive the new quasi-mode expressions which allow both
propagating and evanescent behaviour. Then we consider the reflection of one such propagating quasi-mode at
a taper in a waveguide, first using a matched asymptotics procedure to connect the propagating and evanescent
expansions, and then via a uniform expansion.

In section 3, we show how the uniform approximation to the taper problem can be used to derive approxi-
mations to the corresponding eigenvalue problem, and then compare a selection of these results to numerical
approximations to solution of the full linear problem, calculated using a spectral method. Finally, in section
4 we conclude and offer some suggestions for further work.

2. Waves in a two-dimensional acoustic waveguide of slowly-varying width

2.1. Preliminaries

We wish to determine the values of k̄ giving a non-trivial solution to the homogeneous Dirichlet boundary-
value problem

φ̄x̄x̄ + φ̄ȳȳ + k̄2φ̄ = 0 (−∞ < x̄ <∞, − h̄−(x̄) < ȳ < h̄+(x̄)) (2.1)

φ̄ = 0 (−∞ < x̄ <∞, y = ±h̄±(x̄)) (2.2)

φ̄ → 0 as x̄→ ±∞. (2.3)

Here k̄ = ω/c is the wavenumber, with ω the prescribed wave frequency, and c the sound speed. The time-
dependence e−iωt is implied but omitted throughout.

The duct walls h̄±(x̄) are slowly-varying in the sense that

h̄±(x̄) = h0h±(x) (2.4)

for some positive h0, where x = εx̄/h0 (with 0 < ε � 1) is a slow variable, and the functions h̄±(x̄) are
continuous and differentiable. The walls straighten at infinity, so that h±(x) → 1 as x → ±∞. Near x = 0
they bulge outwards, so that h±(0) > 1, and they are symmetric about x = 0, so that h±(x) = h±(−x) for
all x ≥ 0, and in particular h′±(0) = 0.

We non-dimensionalise by writing φ̄(x̄, ȳ) = φ(x, y), where y = ȳ/h0, so that we have

ε2φxx + φyy + k2φ = 0 (−∞ < x <∞, − h− < y < h+) (2.5)

φ = 0 (−∞ < x <∞, y = ±h±(x)) (2.6)

φ→ 0 as x → ±∞ (2.7)
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where k = k̄h0 is the dimensionless wavenumber.

We first investigate what type of modes exist as solutions to the boundary-value problem consisting of just
(2.5) and (2.6), the quasi-modes, and consider the reflection of one of these quasimodes at a taper in a duct.

2.2. Quasi-modes

We use the WKBJ-type ansatz
φ = AeP (2.8)

where
A = A0(x, y) + εA1(x, y) + ε2A2(x, y) + · · · (2.9)

and
P = ε−1P−1(x, y) + εP1(x, y) + ε2P2(x, y) + · · · (2.10)

An O(ε0) term is not included in the expansion for P since it can be subsumed into A0. Note that P is
allowed to be complex-valued to ensure that (2.8) can include both propagating (P imaginary) and evanescent
(Re(P ) 6= 0) modes. The replacement of a single unknown, φ, by two unknowns, A and P , clearly leads to
an under-determined scheme since we now have twice as many unknowns as equations. However, it turns out
that the first few terms in the series (2.9) and (2.10) can be calculated before this inconsistency halts further
progress.

The expressions (2.8), (2.9) and (2.10) are substituted into (2.5), and terms at each order are equated. At
O(ε−2), we have

A0P−1
2
y = 0

whose solution we write as
P−1 = f(x), (2.11)

where f is to be determined. The O(ε−1) equation is then trivially satisfied, and at O(ε0) we have

A0yy + (k2 + f ′2)A0 = 0. (2.12)

The appropriate solution of this equation is

A0 = a0(x)S(x, y), S = (2/w)1/2 sin[α(y + h−)], (2.13)

where
w(x) = h+(x) + h−(x) (2.14)

is the duct width,
α2(x) = k2 + f ′2(x), (2.15)

and we must choose
α(x) ≡ αn(x) =

nπ

w(x)
(2.16)

for n ∈ N to ensure that the boundary conditions (2.6) are satisfied.

To solve (2.15) for f , we must be careful to distinguish cases for which α2
n(x) − k2 ≥ 0 and for which

α2
n(x) − k2 ≤ 0. Thus

f(x) ≡ fn(x) =











±i

∫ x
(

k2 − α2
n(x0)

)1/2
dx0, k ≥ αn(x),

±

∫ x
(

α2
n(x0) − k2

)1/2
dx0, k ≤ αn(x).

(2.17)

If k is larger than the local cut-off αn(x) the mode is thus propagating; if k is smaller, the mode is evanescent.

Returning to the equation hierarchy, the O(ε) equation is

A1yy + α2
nA1 = −(f ′′

n + P1yy)A0 − 2P1yA0y − 2f ′

nA0x. (2.18)

Multiplying this expression by A0 and then integrating from y = −h− to y = h+ leads to the solvability
condition

∫ h+

−h−

A0

{

(f ′′

n + P1yy)A0 + 2P1yA0y + 2f ′

nA0x

}

dy = 0, (2.19)
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which is used to determine a0. Because A0 = 0 on y = ±h±, this condition reduces to

0 =

∫ h+

−h−

d

dx

(

f ′

nA
2
0

)

dy =
d

dx

(

∫ h+

−h−

f ′

nA
2
0 dy

)

=
d

dx

(

f ′

na
2
0

)

, (2.20)

from which
a0 = c|f ′|−1/2 (2.21)

for constant c. This gives the quasi-modes

φ ≡ φn = cn|f
′

n|
−1/2eε−1fnSn(x, y) +O(ε) (2.22)

for each n ∈ N, where the cn are constants,

Sn(x, y) = (2/w)1/2 sin[αn(y + h−)] (2.23)

in which αn is found from (2.16), fn is given by (2.17), and

|f ′

n| = |k2 − α2
n|

1/2. (2.24)

2.3. Wave reflection in a tapering duct

We now consider what happens when one of the propagating quasi-modes, given by (2.22) with fn by the
first of (2.17), reaches a monotonically tapering section of waveguide, and in particular reaches a region in
which it can no longer propagate, and is reflected. We fix n ∈ N, and for clarity suppress its appearance in
the notation, writing α for αn, S for Sn, and so on.

2.3.1. Matched asymptotics

Suppose there is an x∗ such that α(x∗) = k, and that w′(x∗) < 0 in a neighbourhood of x = x∗. The n-th
mode φ(x, y) is then propagating in x < x∗ but evanescent in x > x∗, so we write

φ = φ(±)(x)S(x, y) in x ≷ x∗

where

φ(−) =

I exp

{

−iε−1

∫ x∗

x

(

k2 − α2(x0)
)1/2

dx0

}

+R exp

{

iε−1

∫ x∗

x

(

k2 − α2(x0)
)1/2

dx0

}

(k2 − α2(x))
1/4

(2.25)

and

φ(+) =

T exp

{

−ε−1

∫ x

x∗

(

α2(x0) − k2
)1/2

dx0

}

(α2(x) − k2)
1/4

. (2.26)

Here I is the prescribed amplitude of an incoming wave φ from x < x∗, and R and T are the unknown
reflection and transmission coefficients, respectively. Energy conservation considerations dictate that |R| =
|I |.

This representation is not valid in a small neighbourhood of x = x∗. To see this, note that

k2 − α2(x) = −∆(x− x∗) +O
(

(x − x∗)
2
)

,

where ∆ = −2k3w′(x∗)/(nπ) > 0. Thus in the limit x→ x−∗ ,

exp

{

iε−1

∫ x∗

x

(

k2 − α2(x0)
)1/2

dx0

}

∼ exp

{

iε−1∆1/2

∫ x∗

x

(x∗ − x0)
1/2 dx0

}

= exp

{

i
2

3
ε−1∆1/2(x∗ − x)3/2

}

(2.27)
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so that there is a nonuniformity when (x∗ −x)3/2 = O(ε) i.e., when (x∗ − x) = O(ε2/3). A similar analysis
can be carried out for the evanescent exponential term in (2.26), and we see that in the limit x→ x+

∗ ,

exp

{

−ε−1

∫ x

x∗

(

α2(x0) − k2
)1/2

dx0

}

∼ exp

{

−
2

3
ε−1∆1/2(x− x∗)

3/2

}

. (2.28)

Having determined the size of the nonuniformity, we now return to the governing equation (2.5), and write
φ(x, y) = χ(ξ)S(x, y) where the stretched variable ξ = ε−2/3(x−x∗) is O(1) in the region of interest. This
substitution yields the equation

ε2/3 (χ′′ − ∆ξχ)S = −ε4/3(ξχ′′ + 2χ′ − ∆ξ2χ)
∂S

∂x
(x∗, y) +O(ε2),

so to leading order χ ≈ χ0, where
χ′′

0 − ∆ξχ0 = 0. (2.29)

This has bounded solution
χ0 = FAi(∆1/3ξ), (2.30)

for constant F , where Ai denotes Airy’s function of the first kind.

Finally, we determine R, T and F by matching the appropriate expansions of the representations (2.25),
(2.26) and (2.30) across the boundary layer centred at x = x∗. Using the standard large argument form of the
Airy function Ai, we have from (2.30) that

φ ∼ Fπ−1/2∆−1/12(−ξ)−1/4 sin

(

π

4
+

2

3
∆1/2(−ξ)3/2

)

as ξ → −∞,

which agrees with the expansion

φ(−) ∼

I exp

{

−i
2

3
∆1/2(−ξ)3/2

}

+R exp

{

i
2

3
∆1/2(−ξ)3/2

}

∆1/4ε1/6(−ξ)1/4
as x → x−∗ ,

of (2.25) provided
R = e−iπ/2I (2.31)

and

F =
2e−iπ/4π1/2

∆1/6ε1/6
I. (2.32)

Similarly,

φ ∼
1

2
Fπ−1/2∆−1/12ξ−1/4 exp

(

−
2

3
∆1/2ξ3/2

)

as ξ → ∞,

which agrees with the expansion

φ(+) ∼

T exp

(

−
2

3
∆1/2ξ3/2

)

∆1/4ε1/6ξ1/4
as x→ x+

∗

of (2.26), provided

T =
1

2
Fπ−1/2∆1/6ε1/6 = e−iπ/4I. (2.33)

To summarise, the solution is given by (2.25) for x . x∗ with R found from (2.31), by (2.26) for x & x∗
with T found from (2.33), and in the boundary layer region by

φ ∼ FAi(ε−2/3∆1/3(x− x∗))S(x, y), (2.34)

from (2.30), with F given by (2.32).

Composite expansions valid for x . x∗ and x & x∗ are readily constructed, but to derive a uniformly valid
expansion we now adopt a different approach.
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2.3.2. A uniform expansion

Bearing in mind the form of the boundary layer solution (2.34), we propose an expansion of the form

φ(x, y) = B(x, y)Ai(ε−2/3g(x)) + C(x, y)Ai′(ε−2/3g(x)), (2.35)

where

B = B0 + ε2/3B1 + ε4/3B2 + . . .

C = ε2/3C1 + ε4/3C2 + . . .

g = g0 + ε2/3g1 + ε4/3g2 + . . . , (2.36)

and g is real-valued. An O(ε0) term is not included in the expansion of C since we know from equation
(2.34) that only the Airy function Ai, and not its derivative Ai′, appears in the boundary layer expansion at
leading order.

Substituting the ansatz (2.35) into equation (2.5) we find that
[

ε2Bxx + (k2 + gg′
2
)B +Byy + ε2/3(g′

2
C + gg′′C + 2gg′Cx)

]

Ai(ε−2/3g)

+
[

ε2Cxx + (k2 + gg′
2
)C + Cyy + ε4/3(g′′B + 2g′Bx)

]

Ai′(ε−2/3g) = 0, (2.37)

and now equating the coefficients of Ai(ε−2/3g) and Ai′(ε−2/3g) to zero yields the pair of equations

ε2Bxx + (k2 + gg′
2
)B +Byy + ε2/3(g′

2
C + gg′′C + 2gg′Cx) = 0 (2.38)

and
ε2Cxx + (k2 + gg′

2
)C + Cyy + ε4/3(g′′B + 2g′Bx) = 0. (2.39)

The expansions (2.36) are substituted into this pair of equations, yielding a hiearchy of differential equations
for the functions Bj , Cj and gj . (Clearly, the scheme (2.35) is inconsistent since there are two sets of
equations (2.38) and (2.39) from which to determine the three sets of functions, Bj , Cj and gj . However,
in common with the inconsistent scheme described in section 2.2, it turns out that the first few terms can be
calculated, and they are all we require.)

The O(ε0) coefficient of Ai is
B0yy + (k2 + g0g

′

0
2
)B0 = 0,

which has solution
B0 = b0(x)S(x, y), (2.40)

with S(x, y) = (2/w)1/2 sin[α(y + h−)], and where as before α(x) and S(x) are shorthand for αn(x) and
Sn(x). Here we’ve chosen

k2 + g0g
′

0
2

= α2 (2.41)

in order to satisfy the boundary conditions (2.6).

Now, the solution of (2.41) will clearly be related to the solution of (2.15). Indeed, if we assume again that
there is an x∗ such that α(x∗) = k, and thatw′(x) < 0 in a neighbourhood of x = x∗, then if x ≥ x∗ we have
α(x) ≥ k, and we can write g0 = (3f/2)2/3 where f satisfies (2.15). Similarly, if x ≤ x∗ then α(x) ≤ k,
and now if we write g0 = −(3if/2)2/3, then f again satisfies (2.15). Recalling that we seek a real-valued
function g, the appropriate solution is thus

g0(x) =



















−

(

3

2

∫ x∗

x

(

k2 − α2(x0)
)1/2

dx0

)2/3

x ≤ x∗,

(

3

2

∫ x

x∗

(

α2(x0) − k2
)1/2

dx0

)2/3

x ≥ x∗.

(2.42)

Returning to the hierarchy of equations, the O(ε2/3) coefficient of Ai′ is

C1yy + α2C1 = 0,
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which is solved by
C1 = c1(x)S(x, y). (2.43)

The O(ε2/3) coefficient of Ai is then the equation

B1yy + α2B1 = −g′0(g
′

0g1 + 2g0g
′

1)B0. (2.44)

Multiplying (2.44) by B0 and integrating from y = −h− to y = h+ shows that the solvability condition
g′0g1 +2g0g

′
1 = 0 must be satisfied, from which g1 = G1g

−1/2
0 for constantG1; the solution of (2.44) is then

B1 = b1(x)S(x, y).

Finally, the O(ε4/3) coefficient of Ai′ is

C2yy + α2C2 = −2g′0B0x − g′′0B0. (2.45)

Again, multiplying (2.45) by B0 and integrating from y = −h− to y = h+ shows that we require

∫ h+

−h−

(2g′0B0x + g′′0B0)B0 dy = 0,

which reduces to
d

dx

(

b20g
′

0

)

= 0.

This has solution
b0 = G|g′0|

−1/2 (2.46)

for constant G, and where from (2.41),

|g′0| = |k2 − α2|1/2|g0|
−1/2.

To leading order, the uniform approximation to the n-th quasi-mode reflection/transmission problem is thus

φ(x, y) ∼
G|g0(x)|

1/4Ai(ε−2/3g0(x))S(x, y)

|k2 − α2(x)|1/4
(2.47)

where g0 is given from (2.42). The form of this expression bears an obvious similarity to the corresponding
ODE expansion derived via the Langer transformation (see [11]).

It only remains to determine the constant G, which we do by ensuring that as x → −∞, this representation
of φ agrees with (2.25), where R is now again regarded as unknown. Now, as x → −∞, k > α∗(x) and
g0(x) < 0, so that

Ai(ε−2/3g0(x)) ∼ π−1/2ε1/6(−g0(x))
−1/4 sin

(

π

4
+ ε−1

∫ x∗

x

(

k2 − α2(x0)
)

dx0

)

,

and thus

φ/S ∼ G|k2 − α2(x)|−1/4π−1/2ε1/6 sin

(

π

4
+ ε−1

∫ x∗

x

(

k2 − α2(x0)
)

dx0

)

= −
i

2
G|k2 − α2(x)|−1/4π−1/2ε1/6

{

exp

(

πi

4
+ iε−1

∫ x∗

x

(

k2 − α2(x0)
)

dx0

)

− exp

(

−
πi

4
− iε−1

∫ x∗

x

(

k2 − α2(x0)
)

dx0

)}

.

This agrees with (2.25) provided
G = 2π1/2ε−1/6e−iπ/4I (2.48)

and also

R = −
1

2
iGπ−1/2ε1/6eiπ/4

so that
R = e−iπ/2I,

as already determined in (2.31) via the matched asymptotic expansions approach.
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3. Trapping of waves in a symmetric duct

In this section, we revive the subscript notation denoting dependence on n ∈ N, writing αn(x) for α(x),
Sn(x, y) for S(x, y), and so on.

Now, the uniformly-valid approximation to the reflection/transmission process in a tapering duct, equation
(2.47), behaves as a decaying wave in x > x

(n)
∗ > 0, and as a propagating wave in 0 < x < x

(n)
∗ , where

x
(n)
∗ is the root of αn(x

(n)
∗ ) = k. In particular, if the duct narrows monotonically from its maximum width

at x = 0, and k lies in (αn(0), nπ/2) (where nπ/2 = limx→∞ αn(x)), then the n-th quasi-mode (2.47) will

behave as a propagating wave for x ∈ [0, x
(n)
∗ ), and as a decaying wave in (x

(n)
∗ ,∞). Furthermore, if we

now choose k so that in addition φn(0, y) = 0 for y ∈ (−h(0), h(0)), then, by extending the solution
antisymmetrically via the identification φn(x, y) = −φn(−x, y) for x < 0, this solution represents an
antisymmetric trapped mode. Similarly, if we choose k so that φnx(0, y) = 0 for y ∈ (−h(0), h(0), then
by extending the solution symmetrically via φn(x, y) = φn(−x, y) for x < 0, this solution represents a
symmetric trapped mode.

Since h′±(0) = 0 implies that w′(0) = 0 and α′
n(0) = 0, we thus seek roots of

Ai(ε−2/3g0,n(0; k)) = 0 (antisymmetric modes), (3.1)

and
Ai′(ε−2/3g0,n(0; k)) = 0 (symmetric modes), (3.2)

where, in a notation slightly modified from (2.42),

g0,n(0; k) =



























−

(

3

2

∫ x(n)
∗

(k)

0

(

k2 − α2
n(x0)

)1/2
dx0

)2/3

x
(n)
∗ (k) ≥ 0,

(

3

2

∫ 0

x
(n)
∗

(k)

(

α2
n(x0) − k2

)1/2
dx0

)2/3

x
(n)
∗ (k) ≤ 0,

(3.3)

and x(n)
∗ (k) is the unique positive root of αn(x

(n)
∗ (k)) = k. Note that in practice only the first line of (3.3) is

used, since it is clear that x(n)
∗ (k) > 0.

Rather than searching for the multiple roots of (3.2) and (3.1), it is more efficient to fix roots of Ai′(z) = 0 or
Ai(z) = 0 and then solve for ε−2/3g0,n(0; k) equal to these values. Denoting them-th roots of Ai′(z) = 0 and
Ai(z) = 0 by z′m and zm (m ∈ N) respectively (ordered so that 0 > z′1 > z′2 > . . . and 0 > z1 > z2 > . . .),
the symmetric wavenumbers can then be found from

ε−2/3g0,n(0; k) = z′m (m,n ∈ N) (3.4)

and the antisymmetric wavenumbers from

ε−2/3g0,n(0; k) = zm (m,n ∈ N). (3.5)

We denote solutions of (3.4) and (3.5), by ks
m,n and ka

m,n (m,n ∈ N) respectively.

Once the wavenumbers are determined, the corresponding trapped mode is found from (2.47). The structure
of the Airy function Ai(z) for z < 0 implies that the wavenumber ks

m,n corresponds to a trapped mode with
m − 1/2 oscillations in the x-direction and n/2 oscillations in the y-direction. Similarly, the wavenumber
ka

m,n corresponds to a trapped mode with m oscillations in the x-direction and again n/2 oscillations in the
y-direction.

3.1. Numerical results

To verify the efficacy of our asymptotic method, we also solve the full linear problem (2.5)–(2.7) using a
Chebyshev-Laguerre spectral method, as advocated in [1-2] and described in detail in [13]. The application
of the boundary conditions is made easier by transforming the equations onto the uniform width semi-infinite
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Figure 1: Wavenumbers for the symmetric (solid line) and antisymmetric (dashed line) trapped modes for the duct profile (3.6), plotted
as a function of the bulge half-width h1. Here, ε = 0.1. Symbols denote solutions of the full problem determined via the spectral
method.

rectangular domain R = {(x, η) : x > 0, − 1 < η < 1}, where η = −1 + 2(y + h−)/w. Then
ψ(x, η) = φ(x, y) satisfies

ε2(ψxx + η2
xψηη + 2ηxψxη + ηxxψη) + η2

yψηη + k2ψ = 0

in R, together with the boundary conditions ψ(x,±1) = 0 for x > 0 and ψ → 0 as x→ ∞ for −1 < y < 1.
Here ηx = w−1(2h′− − (η + 1)w′), ηxx = w−1(2h′′− − (η + 1)w′′ − ηxw

′) − w−2(2h′− − (η + 1)w′), and
ηy = 2w−1.

A Chebyshev expansion is used in the η-direction, with Dirichlet conditions imposed at η = ±1, and a
Laguerre expansion is used in the x-direction, with either a Neumann or Dirichlet condition imposed at x = 0
to determine either the symmetric or antisymmetric modes. The required decay as x → ∞ is automatically
accommodated by the Laguerre expansion. Using 15 points in the η-direction and 25 in the x-direction is
sufficient to ensure 5 decimal places of accuracy for all numerical results presented here.

The symmetric duct wall profiles
h±(x) = 1 + (h1 − 1)sechx (3.6)

are chosen for illustrative purposes. This duct widens from a uniform width of w = 2 in the limit x → ∞ to
a symmetric bulge centred on x = 0 of total width 2h1.

Figure 1 displays the trapped symmetric and antisymmetric wavenumbers (solid and dashed lines respec-
tively) for a fixed value of ε = 0.1, with n = 1, and as the bulge half-width h1 is increased. These results
are obtained by solving (3.4) and (3.5) using a Newton-Raphson iterative scheme. The lowest solid line cor-
responds to m = 1 in (3.4), the next to m = 2, and so on; similarly for the dashed lines and values of m
in (3.5). Numerical results using the spectral method are also shown (symbols), with which the approximate
results are clearly in excellent agreement.

As the bulge half-width h1 increases from unity, all trapped mode wavenumbers originate at the (non-
dimensional) cut-off wavenumber π/2 and then decrease in magnitude. The number of trapped modes which
can exist is a rapidly increasing function of the bulge half-width h1, because the slowly-varying nature of
the duct ensures that if the width of the bulge increases, then the length of the bulge must also increase, and
this means that more along-duct oscillations can be “fitted in”. A similar picture emerges if a higher value
of n is taken, but instead the trapped mode wavenumbers originate at the cut-off wavenumber nπ/2 and then
decrease in magnitude.

Figure 2 shows how the accuracy of the approximation varies as the slowness parameter ε is increased to unity.
The approximations are surprisingly good: the least accurate approximation is that to the first (fundamental)
symmetric mode ks

1,1, but even for this mode the relative error averages 0.7% across the range of ε, with
a maximum of 0.9% for ε = 1. Thus the approximation appears to be of some use outside its asymptotic
regime 0 < ε� 1.
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Figure 2: Trapped mode wavenumbers for the duct profile (3.6) with h1 = 1.5, plotted as a function of ε. Solid lines denote solutions
of (3.4) and (3.5), as labelled; symbols denote solutions of the full problem determined via the spectral method.

Finally, we make use of the fact that once the trapped wavenumbers are determined, the modal structure is
immediately available from the uniform expansion (2.47). We display in figure 3 the eigensolutions corre-
sponding to the first eight eigenvalues for a particular example of the wall profiles (3.6). The oscillations in
the x- and y-directions are clearly seen.

4. Conclusions and further work

In this paper, we have derived a new method for determining the wave frequencies and eigenmode structures
for waves trapped within a bulging Dirichlet waveguide whose walls vary slowly along the guide.

The method presented here has three key strengths. First, there is no restriction placed on the amplitude of
the wall bulge. Second, the trapped wave frequencies are ultimately found as solutions of a simple nonlinear
algebraic equation, which can readily be solved approximately using standard iterative methods. Third,
once the trapped wave frequencies are determined, an explicit expression for the corresponding approximate
trapped mode structure is available.

The method can clearly be applied to many trapped wave problems in which the trapping mechanism is a
slowly-varying property change. This change in property is the width of the waveguide in the present paper,
but another example is that of a bent waveguide with slowly-varying curvature. Trapping within bulging
three-dimensional waveguides can also be examined using the current technique, and this work is in progress.

Acknowledgements The author thanks Tahnia Appasawmy for pointing out some typographical errors in the
text.
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