
 
 

 

School of Mathematical 
and Physical Sciences 
 

 
Department of Mathematics and Statistics 

 
Preprint MPS_2010-28 

10 September 2010 
 
 

Initial Distribution Spread: A density 
forecasting approach 

 
by 

 
R.L. Machete and I.M. Moroz 

 
 

 
 



Initial Distribution Spread: A density forecasting approach

R. L. Machete
a,1

and I. M. Moroz
b

a. Dept. of Mathematics and Statistics, P. O. Box 220, Reading, RG6 6AX, UK

b. Mathematical Institute, 24-29 St Giles’, Oxford, OX1 3LB

Abstract

Ensemble forecasting of nonlinear systems involves the use of a model to run
forward a discrete ensemble (or set) of initial states. Data assimilation techniques
tend to focus on estimating the true state of the system, even though model error
limits the value of such efforts. This paper argues for choosing the initial ensemble
in order to optimise forecasting performance rather than estimate the true state of
the system. Density forecasting and choosing the initial ensemble are treated as
one problem. Forecasting performance can be quantified by some scoring rule. In
the case of the logarithmic scoring rule, theoretical arguments and empirical results
are presented. It turns out that, if the underlying noise spread of the time series
exceeds the spread of one step forecast errors, we can diagnose the underlying noise
spread regardless of the noise distribution.

Keywords: data assimilation; density forecast; ensemble forecasting; uncertainty

1 Introduction

Given an initial state of some chaotic dynamical system − examples of which include
the population of an animal species in a game reserve, daily weather for Botswana or
day to day electricity demands for London − we could perform a point forecast from the
single state. Observational uncertainty and/or model error could limit the value of such a
forecast. One can go over these hurdles by generating a discrete set of initial states in the
neighbourhood of the current state and then forecasting from it. The set of initial states
is called an initial ensemble. Forecasting from an initial ensemble is called ensemble

forecasting [1]. The time ahead at which forecasts are made from any member of the
initial ensemble is called lead time. Ensemble forecasting is performed mainly to account
for uncertainty in the initial conditions, although it can also be used to mitigate model
error. A lot of attention has been paid to generating initial ensembles (e.g see [1, 2]).
Here, we present a novel approach to selecting the spread of the distribution from which
an initial ensemble is drawn. The distribution from which an initial ensemble is drawn
shall be called the initial distribution. Its covariance matrix will be taken to be diagonal
and uniform over all the initial conditions considered, in tune with common practice
in data assimilation and ensemble forecasting [1, 3, 4]. Note, however, that we do not
assume that the initial distribution is the underlying noise distribution.

1Corresponding author: r.l.machete@reading.ac.uk, tel: +44(0)118 378 5016
Abbreviations: Initial Distribution Spread (IDS), Perfect Model Scenario (PMS), Imperfect

Model Scenario (IMS), Moore-Spiegel (M-S), European Centre for Medium-Range Weather Fore-
casts (ECMWF)
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Ideally, the initial ensemble should be drawn from the underlying invariant measure,
in which case we have a perfect initial ensemble. A perfect initial ensemble is especially
useful in the scenario when our forecasting model is isomorphic to the model that gen-
erated the data, which scenario is called the perfect model scenario (PMS) [2, 5]. When
there is no isomorphism between the forecasting model and the model that generated
the data, then we are in the imperfect model scenario (IMS). A perfect model with a
perfect initial ensemble would give us a perfect forecast [6]. If either our model or initial
ensemble is not perfect, then we have no reason to expect perfect forecasts.

In all realistic situations, we have neither a perfect model nor a perfect initial ensem-
ble, yet we may be required to issue a meaningful forecast probability density function
(pdf). Roulston and Smith [7] proposed a methodology for making forecast distributions
that are consistent with historical observations from ensembles. This is necessary be-
cause the forecast ensembles are not drawn from the underlying invariant measure due
to either imperfect initial ensembles or model error. Their methodology was extended
by Broecker and Smith [8] to employ continuous density estimation techniques [9, 10]
and blend the ensemble pdfs with the empirical distribution of historical data, which is
referred to as climatology. The resulting pdf is what will be taken as the forecast pdf in
this paper.

The quality of the forecast pdfs can be assessed using the logarithmic scoring rule
proposed by Good [11] and termed ignorance by Roulston and Smith [12], borrowed from
information theory [13, 14]. Here, we discuss a way of choosing the initial distribution
spread (IDS) to enhance the quality of the forecast pdfs. The point is that if the spread
is too small our forecasts may be over confident and if it is too large our forecasts
may have low information content. Our goal is to choose an IDS that yields the most
informative forecast pdfs and determine, for instance, if this varies with the lead time of
interest. As is commonly done in data assimilation and ensemble forecasting (e. g. see
[1, 15]), we only consider Gaussian initial distributions. In traditional data assimilation
and ensemble forecasting techniques, estimation of the initial distribution is divorced
from forecasting: this is the main point of departure in our approach. We revisit this
later in the discussion of the results in § 5.

Our numerical forecasting experiments were performed on the Moore-Spiegel (M-
S) [16] system and an electronic circuit motivated by the M-S system. Indeed electronic
circuits have been studied to enhance our understanding of chaotic systems and Chua
circuits [17] are among famous examples. Recently, Gorlov and Strogonov [18] applied
ARIMA models to forecast the time to failure of Integrated Circuits. Hence, electronic
circuits have not only been studied to enhance our understanding of chaotic systems
and the forecasting of real systems, but also to understand the circuits themselves and
to address practical design questions.

This paper is organised as follows: § 2 introduces the technical framework for dis-
cussing probabilistic forecasting of deterministic systems. The theoretical and empirical
scores for probabilistic forecasts are presented in §3. Computations of the initial ensem-
ble spread are discussed in § 4 for the PMS and IMS. In the PMS, the M-S system [16]
is considered. For the IMS, the M-S system and an electronic circuit are modelled using
radial basis function (rbf) models. The circuit was constructed in a physics laboratory
using state of the art equipment to mimic the M-S system. A theoretical argument in
support of the numerical results is also presented. Implications and practical relevance
of the results are discussed in § 5 and concluding remarks are given in § 6.
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2 Forecasting

Consider a deterministic dynamical system,

ẋ = F (x(t),λ), (1)

with the initial condition x(0) = x0, where x,F ∈ R
m, λ ∈ R

d is a vector of parameters,
F is a Lipschitz continuous (in x), nonlinear vector field and t is time. By Picard’s
theorem [19], (1) will have a unique solution, say ϕt(x0;λ). If ∇.F < 0, this system
might have an attractor [20], which if it exists we denote by A. In particular, we are
interested in the case when the flow on this attractor is chaotic.

2.1 Forecast Density

For any point in state space, x, and positive real number ǫ, let Bx(ǫ) denote an ǫ-ball
centred at x. Suppose that ̺ is some invariant measure (see appendix A) associated
with the attractor A. For any x0 ∈ A, we define a new probability measure associated
with Bx0

(ǫ) by

̺0(E) = lim
T→∞

1

T̺(Bx0
(ǫ))

∫ T

0
1E∩Bx0

(ǫ)(x(t))dt, (2)

where 1 is an indicator function. This measure induces some probability density func-
tion, p0(x,x0, ǫ). We will call a set of points drawn from p0(x;x0, ǫ) a perfect initial

ensemble. At any time t, the forecast of the perfect initial ensemble using the flow ϕt will
be distributed according to some pdf pt(x;x0, ǫ). The pdf pt(x;x0, ǫ) will be referred
to as a perfect forecast density at lead time t.

2.2 Imperfect Forecasts

Operationally, we never get perfect forecasts since our initial ensemble is never drawn
from p0(x,x0, ǫ) and our model, ϕt(x), is always some approximation of the system,
ϕ̄t(x), which possibly lives in a different state space. In that case, our forecast pdf would
be ft(x;x0, ǫ) rather than the perfect forecast pt(x;x0, ǫ). Henceforth we suppress the
ǫ dependence.

3 Scoring Probabilistic Forecasts

The next question would be: how close is ft(x;x0) to pt(x;x0)? In a general sense, we
consider the score of a forecast ft(x;xτ ) and denote it by S(ft(x;xτ ),X) [21], where
X is the random variable of which x is a particular realisation. If X is distributed
according to pt(x;xτ ), the expected score of ft is

E[S(ft(x;xτ ),X)] =

∫

S(ft(x;xτ ),z)pt(z;xτ )dz. (3)

At lead time, t, the overall forecast score on the attractor is

E[S(t)] = lim
T→∞

1

T

∫ T

0
E[S(ft(x;xτ ),X

(τ))]dτ, (4)
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where X(τ) is the random variable being forecast from the initial distribution corre-
sponding to xτ . Provided the underlying attractor is ergodic, we can rewrite (4) as

E[S(t)] = lim
T→∞

1

T

∫ T

0
S(ft(x;xτ ),X

(τ))dτ. (5)

For each forecast, the underlying system can only furnish one verification of X and
not the distribution pt(x;x0). Therefore, we use (5) to score forecasts rather than (4).
Discretise time according to τi = (i − 1)τs, for i = 1, 2, .., N , where τs is the sampling
time. This gives a sequence of forecast pdfs, {ft(x;xi)}N

i=1, corresponding to verifications
{X(i)}N

i=1 and score S. We can thus discretise (5) to obtain the following empirical score
to value the t-ahead forecast system:

〈S〉(t) =
1

N

N
∑

i=1

S(ft(x;xi),X
(i)). (6)

This is the same score proposed by Broecker and Smith [21].
In this paper, we shall use the score:

S(ft,X) = ign(ft,X), (7)

where ign(ft,X) = − log ft(X) is “the information deficit or Ignorance that a forecaster
in possession of the pdf has before making the observation X” [12]. An important
property of this score is that it is strictly proper. A strictly proper score is one for
which (3) assumes its minimum if and only if ft = pt [22]. Another property of the
Ignorance score, although less persuasive, is locality. A score is local if it only requires
the value of the forecast pdf at the verification to be evaluated [21].

4 Initial Distribution Spread

The primary concern is to determine optimal initial distribution spreads for the fore-
casting problem. Each initial ensemble is drawn from a Gaussian distribution centred
at the initial observation. The problem is then reduced to finding the optimal spread of
the Gaussian distribution. An optimal spread is one that minimises the average score at
the lead time of interest. In the theoretical setup this score would be the one given by
equation (4) and in an operational setup we would use the empirical score given by (6).
In the numerical examples considered in this section, we use continuous forecast pdfs
obtained from discrete forecasts as discussed in [8].

The cases considered are the PMS and the IMS. In the PMS, numerical experiments
are performed on the M-S system [16] at classical parameter values. In the IMS, the M-S
system and circuit are considered and the models are constructed from data using cubic
rbf’s (see [23, 24] for details). We shall denote the spread of the underlying Gaussian
distribution of the initial ensemble by σe and that of observational noise by δ. For a
given observational noise level, we vary σe logarithmically between 10−3 and 1. δ = 0
will represent the noise-free case. In the multivariate case, we set σe to be the spread
of the perturbation of the ith coordinate and then set the standard deviation of the
perturbation of the jth coordinate to be

σ(j)
e = σe

σj

σi
, (8)

where σj is the standard deviation of the jth variable.
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Figure 1: The graph of the M-S attractor at parameter values T = 36 and R = 100.

4.1 Perfect Model Scenario

We consider the M-S system [16], which is given by:

ẋ = y,
ẏ = −y + Rx − T (x + z) − Rxz2,
ż = x,

(9)

with classical parameters T ∈ [0, 50] and R = 100. This system was integrated for
T = 36 and R = 100 using a 4-th order Runge-Kutta method to generate some data,
which we will call M-S data. Transients were discarded to ensure that all the data
collected were on the attractor, which is shown in figure 1. From any initial point on
the M-S data, an initial ensemble is generated by perturbing the observation with some
random variable drawn from a Gaussian distribution and the M-S system in (9) used as
the model to forecast this ensemble.

4.1.1 Clean Data

For the case δ = 0, the graphs of average Ignorance, 〈ign(σe)〉 , versus the IDS, σe, are
shown in figure 2. The different colours correspond to the different lead times of up
to 32 time steps. Notice that the graphs generally yield straight lines except at higher
lead times and IDS. In particular, the magenta lines (corresponding to lead times of 32)
saturate at higher values of σe. As the IDS increases, we would expect the forecast pdfs
at low lead times to be approximately flattened Gaussians. That is why all the red lines
(lead times 1 and 2) grow linearly without saturating. Notice that the lead times of, say
31 and 32, score less than the 20 lead times when σe > 10−1. When higher lead time
forecasts score less than lower lead times, we say we have return of skill. Linear graphs
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Figure 2: The graphs of average Ignorance versus initial distribution spread, σe, using a perfect
M-S model with 512 ensembles for various lead times (according to the right colour bar), each
ensemble containing 32 members. The M-S data was noise-free.

such as those in figure 2 suggest that the underlying model is perfect and the data is
noise-free.

4.1.2 Noisy Data

We next consider the case when the data has observational noise of standard deviation,
δ = 5 × 10−2. The corresponding graphs of average Ignorance versus the IDS, σe, are
shown in figure 3. At low IDS, all the graphs are almost flat since the initial distribution
spreads are drowned by the noise. As the IDS increases, the higher lead time graphs
begin to dip. This is because the forecast pdfs at higher lead times spread out, and in
the process, the verifications which were initially at the tails of the distributions, tend to
be encapsulated by the ensembles as we gain skill (see figure 4). At low lead times, the
verifications are generally at the centre of the ensembles. As the distributions spread
out and flatten, average Ignorance increases. That is why at low lead times, the graphs,
initially flat then begin to increase linearly. This occurs when σe ≈ δ: the same value
of σe at which graphs of the higher lead times attain their minima.

To address whether the above results could have been influenced by using too few
ensemble members, we considered the graphs of the kernel width, σk, versus the IDS,
σe. For the average Ignorance graphs shown in figure 3, the corresponding graphs of σk

versus σe are shown on the right hand side. Since these were obtained with 32 ensemble
members per forecast, we increased the number of ensemble members per forecast to
256 and then plotted the associated graphs shown in figure 5. In both cases, the graphs
of σk versus σe are essentially the same, confirming that the results obtained with 32
ensemble members were not biased by the number of ensemble members.

6



10
−3

10
−2

10
−1

10
0

−1.5

−1

−0.5

0

0.5

1

1.5

2

σ
e

〈 
ig

n
〉(

σ
e
)

5

10

15

20

25

30

10
−3

10
−2

10
−1

10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

σ
e

σ
k (

K
e

rn
e

l w
id

th
)

5

10

15

20

25

30

Figure 3: (left) The graph of ignorance versus initial distribution spread, σe, for the perfect M-S
model with 512 ensembles for various lead times (according to the right colour bar), each ensem-
ble containing 32 members. Observational noise of standard deviation 5 × 10−2. (right) Graph
of kernel width versus initial distribution spread. The vertical and horizontal thick dash-dotted
lines correspond to the noise spread.

4.2 Imperfect Model Scenario

We now carry over the ideas of the preceding subsections to the IMS, considering models
of the form

xn = φ(xn−1), (10)

where xn−1 is a delay vector. The deterministic model, φ, was built from data using
cubic radial basis functions.

4.2.1 The M-S system

Let us first consider M-S data with observational noise, δ = 10−2 and 10−1. The graphs
of average Ignorance versus IDS, σe, for various lead times are shown in figure 6. We
notice that the low lead time graphs begin to rise at σe ≈ δ. At a slightly larger value of
σe, graphs for the higher lead times reach their minima. This is very much reminiscent
to the PMS, and suggests a way of using nonlinear prediction to detect noise level.

Suppose the noise of the underlying system is not Gaussian but is uniformly dis-
tributed with standard deviation δ. We consider this case and the noise distribution
to be U [−b, b], in which case δ2 = b2/3. We have plotted graphs of average Ignorance
versus IDS in figure 7 with δ = 10−1. Again we see graphs dipping at σe ≈ δ.

When the data is noise free, we have the results shown in figure 8. They are quali-
tatively similar to the PMS and IMS with noisy data. This case also presents striking
differences from the previous noisy data scenarios. The optimal spread varies with lead
time as highlighted by the black solid line on the figure. In this case, one may select the
IDS that yields good forecasting performance at higher lead times.

The foregoing discussions can be summarised as follows: Whereas there is similarity
in the graphs of average Ignorance for the PMS with observational noise and the IMS,
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Figure 4: A series of ensemble pdfs at a lead time of 16 time-steps from the initial condition.
The magenta dots are the actual ensemble members. Notice that as the initial distribution
spread, σe, increases, the value of ft(x

∗) (indicated by the black vertical line) increases and then
decreases, where x∗ is the verification.

there is a clear difference with the PMS on clean data shown in figure 2. In the two former
cases, the average Ignorance curves do not show a linear rise. This furnishes us with a
simple, heuristic test of whether or not we are in the PMS with clean data. If the noise
level dominates model error, we may be in a position to detect that level. Otherwise, in
general, we cannot be sure if the problem is due to model error or observational noise.

4.2.2 The Circuit

Before concluding this section, we consider the circuit. The main question we wish to
answer for the circuit is: what IDS should we use for a given model? This question is
addressed using average Ignorance as we have explained in the preceding paragraphs. A
graph of average Ignorance versus IDS for the circuit is shown in figure 9. Notice that
the graph of the first lead time begins to rise at σe ≈ 10−3, which is quite small. This
suggests that the underlying noise level is very low. This is comparable to the standard
deviation of the one-step errors of the model (not shown). The graphs look much
like those obtained with M-S data without observational noise, but with an imperfect
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Figure 5: (left) The graph of ignorance versus initial distribution spread, σe, for the perfect
M-S model with 512 ensembles for three lead times, each ensemble containing 256 members.
Observational noise had standard deviation 5 × 10−2. (right) Graph of kernel width versus
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Figure 6: Graphs of average Ignorance versus logarithmically initial distribution spread, σe,
with observational error of standard deviation δ = 10−2 (left) and 10−1 (right) on M-S data
with an imperfect model. 128 initial conditions with a time step of 64 between them were used.
Each initial ensemble containing 32 members was iterated forward up to 64 time steps. The
multiple lines correspond to different lead times. The lowest lines correspond to the lowest lead
times but there is a mixing up of higher lead times at the top of each graph. The vertical thick
dash-dotted lines correspond to the noise spread.

model (see figure 8), albeit without dipping to such an extent.
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Figure 7: Graphs of Ignorance versus logarithmically varying initial distribution spread, σe,
of ensemble perturbations with uniformly distributed observational error of standard deviation
δ = 10−1 on M-S data with an imperfect model. 128 initial conditions with a time step 64
between them were used. 32 initial ensembles were generated in each and iterated forward up
to 64 time steps. The multiple lines correspond to different lead times according to the colour
bar on the right. The vertical thick dash-dotted line corresponds to the noise spread.

4.3 Theoretical Considerations

To explain the previous observations, we consider two pdfs of the perfect forecast and
the imperfect forecasts: pt(x;σp, µp) and ft(x;σf , µf ), where σp (or σf ) and µp (or µf )
are the standard deviation and mean respectively of pt (or ft), assuming that

σp(t) = hp(σe, t) and σf (t) = hf (σe, t).

Suppose our forecast, ft, is Gaussian 2, so that

ft(x;σf , µf ) =
1

σf

√
2π

e−(x−µf )2/2σ2

f .

Then the expected skill of ft is

E[ign(ft,X)] = −
∫

∞

−∞

pt(x;σ2
p , µp) log ft(x;σ2

f , µf )dx

=
1

2
log(2πσ2

f ) +
σ2

p

2σ2
f

+
1

2σ2
f

(µp − µf )2. (11)

We assume that the standard deviations, σp and σf , are monotonic increasing functions
of σe. If σp = σf then (11) reduces to

E[ign(ft,X)] =
1

2
log(2πeσ2

f ) +
1

2σ2
f

(µp − µf )2 (12)

2Operationally, this may not be the case.
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Figure 8: The graphs of average Ignorance versus initial distribution spread with 512 ensembles,
each ensemble containing 32 members and using a cubic rbf model on noise free M-S data. The
colour bar on the right shows the lead times for the different graphs of Ignorance. The solid
black line indicates where the global minimum occurs for each graph. Notice how the optimum
spread varies with lead time.

and the expected skill is minimised by

σf = |µp − µf |. (13)

If, in addition, µp = µf , then

E[ign(ft,X)] =
1

2
log(2πeσ2

f ), (14)

which is a monotonically increasing function of σf . This may explain why straight
line graphs were obtained in the noise free PMS. They arise when the perfect and the
imperfect forecast ensembles have equal means and variances.

If µp 6= µf , then the expected skill has a global minimum given by

min
σf >0

E[ign(ft,X)] =
1

2
log

[

2πe2(µp − µf )2
]

. (15)

In particular,

min
σe>0

E[ign(f0,X)] =
1

2
log

[

2πe2ξ2
0

]

, (16)

where ξ0 = µp − µf ∼ N(0, δ2). Here, µp is the mean of the initial distribution from
which the initial condition, x0, was drawn and µf is the mean of the forecast pdf. The
initial condition lies on the attractor. For a more general case, at lead time t, we define
ξt = µp(t) − µf (t). If σe > ξ0, then the minimum in (16) will not be attained by
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Figure 9: Graphs of average Ignorance versus logarithmically varying initial distribution spread,
σe, on circuit data. 512 initial conditions with a time step of 64 between them were used. Each
initial ensemble containing 32 members was iterated forward up to 32 time steps. The multiple
lines correspond to different lead times according to the colour bar on the right.

increasing σe because it can only be attained when σf = σe = |ξ0|. However, over a
window of time series, the average may be constant for a while as witnessed in figure 3.
We assume that for t close to zero, the distribution of ξt is approximately that of ξ0.
For higher lead times, the minima of the average skill are attained at σe = δ.

5 Discussion

The computational results presented in this paper demonstrated a way to select the
spread of the distribution from which to sample an initial ensemble of points. The
goal was to obtain an initial ensemble that would minimise uncertainty in the forecast
distributions. The forecasting model need not be perfect for the method to be applied.
Information theoretic approaches were used to obtain the computational results and
justify them. The methodology is a departure from traditional data assimilation and
ensemble forecasting techniques in a number of ways. We recognise that the ultimate
goal of any method that estimates an initial distribution is to obtain more accurate
forecasts.

Data assimilation techniques either focus on estimating the true state of the system or
a set of such estimates. To this end, a model trajectory may be sought that is consistent
with observations [2, 25]. It is believed that forecasts made from an ensemble that lies
along such trajectories would provide good forecasts. An ensemble of trajectories is
obtained by making perturbations of some initial observation. When there is model
error, there is no model trajectory that is consistent with observations. Therefore,
Judd and Smith [5] talk of pseudo-orbits instead. Notwithstanding these difficulties,
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the method presented here could be used to determine the spread of this distribution,
regardless of the data assimilation technique. For a given structure of the correlation
matrix, we would seek the scalar multiple that yields the most informative forecast
distributions.

Other techniques for producing the initial ensemble aim at selectively sampling those
points that are dynamically the most relevant. In particular, the ECMWF ensemble
prediction system seeks perturbations of the initial state based on the leading singular
vectors of the linear propagator [1]. This approach can lead to over-confidence when
there is model error. One falls into the trap of confusing the dynamics of the model
with those of the underlying system as highlighted in [26]. To safeguard this problem,
our methodology may be used to select the IDS.

The results also suggest that the method may be useful in nonlinear noise reduction.
For nonlinear noise reduction, the quality of the model would have to be very good,
at least in the sense of forecasting. However, the primary value of the method is to
find the spread of the initial distribution. It is also interesting that even when there is
no observational noise, sampling the initial distribution could still help mitigate model
inadequacy.

Finally, possible areas of application go beyond meteorology and the Geo-sciences.
For instance, evidences of nonlinear dynamics have already been reported in economics
and finance [27]. In some cases these dynamics are fairly low dimensional (e.g. [28]), thus
reducing the computational costs that may arise from generating an initial ensemble. We
envision the method being of great value in these disciplines to tackle density forecasting.

6 Conclusions

This paper argued for combining the task of choosing the initial ensemble with density
forecasting. The point is that, when faced with model error, a knowledge of the true
state of the system is irrelevant because it cannot provide one with a perfect forecast.
Moreover, using the true state with an imperfect model can provide forecasts that are
further from the truth than forecasts obtained with imperfect initial states. Therefore,
it has been argued that the task of the forecaster should be to choose initial distri-
butions that yield the most informative forecast distributions. Whereas this approach
may be incorporated into traditional ensemble forecasting techniques, it can also stand
independently as a forecasting method.

To recap, it was demonstrated that the logarithmic scoring rule can be used to
estimate an optimum IDS for a given system and model. At the optimal spread, higher
lead time graphs of the logarithmic scoring rule versus IDS tend to dip. Although it
is critical that we use Gaussian initial distributions, the distribution of the underlying
observational uncertainty or model error seems not to play a crucial role. It turns
out that we can also diagnose the fictitious case of a perfect model with perfect initial
states. A theoretical explanation for the empirical observations regarding the dipping of
the graphs has been presented. Also, by appealing to ergodicity, the theoretical score has
also been related to the empirical score. It is noteworthy that Bernardo’s theorem [29]
states that the logarithmic score is the only proper, local scoring rule. This point should
dispel concern about the generality of the results.
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A Invariant Density

Associated with the attractor A is some invariant measure [30], ̺, such that

̺[ϕ
−t(E)] = ̺(E), (17)

where E ⊂ R
m is a measurable set and ϕ

−t(E) is the set obtained by evolving each
point in E backwards in time. A probability measure on E may be defined as [30]

̺(E) = lim
T→∞

1

T

∫ T

0
1E(ϕt(x0))dt, (18)

where 1E is an indicator function 3. Provided the attractor A is ergodic 4,

̺(E) =

∫

E
̺(dx). (19)

Associated with ̺ is some probability density function, ρ, such that (19) may be rewrit-
ten as

̺(E) =

∫

E
ρ(x)dx. (20)

We call ρ(x) the invariant density of the attractor A or the flow ϕt(x0). This invariant
density is indeed the climatology 5 mentioned in the introduction.

3An indicator is defined by

1E(x) =



1 if x ∈ E,

0 if x 6∈ E.

4In an ergodic attractor, state space averages are equal to time averages [30].
5Including its marginal densities.
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