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Abstract

A new estimator for estimating the size of an elusive target population is

presented using frequency counts from capture-recapture sampling. The pro-

posed estimator is developed by extending the idea of Chao’s estimator using

monotonicity of ratios of neighbouring frequency counts under a specific Pois-

son mixture sampling framework, the Poisson-Gamma mixture or negative

binomial. The new estimator is achieved using a simple linear model on the

basis of the log-ratio of neighbouring frequency counts as dependent variable

which is valid under the Poisson-Gamma mixture. A simulation study is

provided to study the performance of the proposed estimator under a variety

of heterogeneous Poisson capture probabilities. Confidence interval estima-

tion is done by means of an approximating normal approach and a modified

bootstrap method, and was found to perform well. A variety of real data sets

were also examined in order to illustrate the use of the proposed method.
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1. Introduction

Estimation of the size of an elusive target population is of considerable

interest in several fields. For example, ecologists commonly consider how

to estimate the number of species in a wildlife population. In social sci-

ences, there is major concern about certain social problems and determin-

ing its amount in a target population such as illicit drug users, violators of

a law or the number of illegal immigrants. In medicine, there is wide in-

terest in estimating the hidden disease occurrence, the unobserved part of

the disease iceberg (Woodward, 1999). In public health and epidemiology,

there is the frequent problem of determining the completeness of a disease

registry (e.g. Corrao et al., 2000; Gallay et al., 2000; Hook and Regal, 1995;

Nardone et al., 2003).

Capture-recapture models have been ordinarily used to estimate animal

abundance or population size in the ecological sciences (see, for a review,

Chao and Bunge, 2002; Darroch, 1958; Eberhardt, 1969; Edwards and Eberhardt,

1967; McDonald and Palanacki, 1989; North, 1981; Pollock, 2000). The ori-

gin of capture-recapture modelling goes back to Petersen and Lincoln (Seber,

2002), who used the independent information of two identifying sources or

lists to construct an estimator of population size.

Capture-recapture models currently tend to be generally applied in a va-

riety of applications including estimation of the size of a human target popu-
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lation, usually defined by a specific disease experiencing potential severe un-

dercount (e.g. Böhning et al., 2004; Corrao et al., 2000; Gallay et al., 2000;

Hay et al., 2009; Hook and Regal, 1995; Nardone et al., 2003; Smit et al.,

2002; van Hest et al., 2008), as well as estimation of an elusive target pop-

ulation in the social sciences such as illegal gun owners or car drivers with-

out license (e.g. Carothers, 1973; Chang et al., 1999; Hay, 1997; Hope et al.,

2005; van der Heijden et al., 2003a,b).

Several estimators have been proposed to estimate the size of a target

population when several identifications of the same unit are available. These

include maximum likelihood methods, Zelterman’s estimator (Zelterman,

1988), and Chao’s lower bound estimators (Chao, 1987). However, several

aspects of these estimators are critical. The maximum likelihood estimator

is usually efficient only under Poisson homogeneity, whereas Chao’s lower

bound estimator - although developed under Poisson heterogeneity - uses

only part of the available information and, hence, suffers under a lack of effi-

ciency. To be more precise, let f1 denote the frequencies of individuals which

have been identified exactly once in the capture-recapture study, f2 the num-

ber of individuals with exactly two identifications, and so forth, with m being

the largest number of re-identifications. Then, n = f1+f2+...+fm is the size

of the observed sample. Chao’s estimator is given as N̂ = n + f 2
1 /(2f2) and

it is clear from it’s form that it uses only part of the available information,

namely the proportion (f1 + f2)/n.

In this paper we propose a modification of this estimator, namely N̂ =

n + (3f1f3)/(2f
2
2 )× f 2

1 /(2f2) which extends the estimator of Chao by incor-

porating the adjustment factor γ̂ = (3f1f3)/(2f
2
2 ). The central point of the
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paper is to show that this adjustment improves bias and efficiency of Chao’s

estimator under a wide class of models allowing heterogeneity.

2. The Proposed Estimator

The purpose of a capture-recapture model is to provide an estimator of

the population size N or, equivalently, of the frequency of unobserved indi-

viduals f0. From the individual capture-recapture history we can determine

the count X of repeated identifications per individual. Let f1, f2, f3, ..., fm

denote the frequencies of distinct individuals identified exactly 1, 2, 3, ...,m

times during the period of study, and f0 is the frequency of individuals that

were never identified in the study period and hence remain unobserved.

Consequently, the total number of population size N can be written as

N = f0 + f1 + f2 + ... + fm = f0 + n, where n =
∑m

j=1 fj is the total number

of distinct individuals observed. Furthermore, let p0 be the probability that

an individual remains unobserved, so that E(f0) = Np0. Therefore, we can

also write the expected population size as N = Np0 + N(1 − p0). Estimat-

ing N(1 − p0) with n leads to N̂ = n
1−p0

, the Horvitz-Thompson estimator

(Horvitz and Thompson, 1952). The key issue is to estimate p0.

Let pj denote the probability for identifying an individual exactly j times,

j = 0, 1, 2, ...,m. Under the Poisson distribution these probabilities are given

as p0 = e−λ, p1 = e−λλ, p2 = e−λλ2

2!
, ..., pm = e−λλm

m!
and p1

p0
= 2p2

p1
. Replacing

the unknown Poisson probabilities by observed frequencies provides f1/f0 =

2f2/f1 as an estimating equation for f0 and Chao’s estimator f̂0 = f 2
1 /(2f2)

follows. However, Poisson homogeneity is rarely met in practice and it is

more appropriate to incorporate heterogeneity of the identifying probability
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it is more reasonable to assume that the actual target population may consist

of a variety of subgroups. This leads to a Poisson mixture model of the form

pj =

∫ ∞

0

e−λλj

j!
f(λ)dλ, (1)

where f(λ) represents the heterogeneity distribution of the model parameter

in the population. A prominent example for f(λ) is the Gamma-distribution

f(λ) = θ′λk−1 exp(−λ/θ′)/Γ(k) with parameters θ′, k > 0, so that pj is

Poisson-Gamma mixture, or if the marginal is worked out, the Negative Bi-

nomial distribution. Let rj =
jpj

pj−1
, where pj = Γ(k+j)

Γ(j+1)Γ(k)
θk(1 − θ)j with

θ′ = (1− θ)/θ, then we achieve rj = (k + j − 1)(1− θ). This clearly implies

that there is a linear relationship rj = (k − 1)(1 − θ) + (1 − θ) j between

rj and j. Plotting rj against j leads to the ratio plot (see Figure 1 for an

illustration), and specific patterns indicate a certain distribution, such as

linearity indicates a negative binomial, a horizontal line means the presence

of a Poisson distribution and a line passing through the origin indicates a

geometric distribution.

Please insert Figure 1 here

To derive our estimator we consider a Taylor expansion of log rj around

(k − 1) so that

log rj = log(k + j− 1)+ log(1− θ) ≈ log(1− θ) + log(k − 1)︸ ︷︷ ︸
α

+

β︷ ︸︸ ︷
1

k − 1
j. (2)

The motivation for the approximation (2) is as follows. Using a logarithmic

transformation will guarantee that our population size estimate is feasible

5



(which is not necessarily so when working on the rj scale). Now, for j = 2

or j = 3 in (2) we get log(r2) = log(2f2

f1
) = α + 2β and log(r3) = log(3f3

f2
) =

α + 3β. Solving these equations in α and β can easily be achieved as α̂ =

3 log(2f2

f1
) − 2 log(3f3

f2
) and β̂ = log(3f3

f2
) − log(2f2

f1
). Then, plugging α̂ and β̂

into (2) and using j = 1, (2) provides log(r1) = log(f1

f0
) = α + β, or

log(
f1

f0

) = 3 log(
2f2

f1

)−2 log(
3f3

f2

)+log(
3f3

f2

)−log(
2f2

f1

) = 2 log(
2f2

f1

)−log(
3f3

f2

).

Finally, we achieve that log(f0) = log(f1) − log(
4f2

2

f2
1

) + log(3f3

f2
) = log(

3f3
1 f3

4f3
2

).

Hence, our estimator for f0 and N , respectively, is

f̂0New =
3f 3

1 f3

4f 3
2

and N̂New = n +
3f 3

1 f3

4f 3
2

. (3)

3. Properties of the Proposed Estimator

In this section we summarize some properties of the new estimator. Firstly,

it should be noted that (3) is closely associated with Chao’s estimator N̂Chao =

n +
f2
1

2f2
(Chao, 1987) in that we can think of (3) as an adjusted Chao esti-

mator of the form N̂New = n +
f2
1

2f2
γ̂; where γ̂ = 3f1f3

2f2
2

. Hence, we investigate

the effect of this adjustment factor.

Theorem 1. Under arbitrary mixing in (1) we have that

lim
N→∞

E(N̂New)

N
≥ lim

N→∞

E(N̂Chao)

N

and

lim
N→∞

E(γ̂) = lim
N→∞

E

(
3f1f3

2f 2
2

)
=

3p1p3

2p2
2

≥ 1.
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Proof.

As a consequence of the Cauchy-Schwarz inequality we have for arbitrary

mixing that the ratios of neighbouring count probabilities experience a mono-

tonicity property as follows (see Chao, 1987)

p1

p0

≤ 2p2

p1

≤ 3p3

p2

≤ 4p4

p3

≤ ...,

so that in particular 2p2

p1
≤ 3p3

p2
. Now, E(f̂0New)/N = E(

3f3
1 f3

4f3
2

)/N → 3
4
(

p3
1p3

p3
2

) =

3
2
(p1p3

p2
2

)(
p2
1

2p2
) and E(f̂0Chao)/N → p2

1

2p2
for N → ∞ . It remains to show that

3
2

p1p3

p2
2
≥ 1. The latter follows from 2p2

p1
≤ 3p3

p2
which also implies the second

part of the theorem, and this ends the proof.

Chao’s estimator is a lower bound estimator in the sense that E(N̂Chao)/N ≤

1 for N → ∞ using that p1

p0
≤ 2p2

p1
. Hence typically Chao’s estimator will

underestimate the population size. The property in Theorem 1 is remarkable

since it guarantees that the asymptotically expected value of (3) is larger

than that of Chao’s estimator – under fairly general conditions. Next we

show that (3) is asymptotically unbiased under Poisson homogeneity – as is

Chao’s estimator.

Theorem 2. Under Poisson homogeneity pj = e−λλj/j! we have that

lim
N→∞

E(N̂New)

N
→ 1.

Proof.

E(fj/N) converges with N → ∞ to pj. Hence, E( f̂0New

N
) = E(3(f1/N)3(f3/N)

4(f2/N)3
)

converges to
3p3

1p3

4p3
2

= e−λ. Finally, E(N̂New/N) = E(n + f̂0New)/N converges

to (1− e−λ) + e−λ = 1 and ends the proof.

The next result compares the asymptotic biases for the new and Chao’s

estimator.

7



Theorem 3. Under Poisson heterogeneity according to a Gamma distribu-

tion, e.g. (1) is the negative binomial pj = Γ(k+j)
Γ(j+1)Γ(k)

θk(1 − θ)j for j =

0, 1, 2, ... we have that

lim
N→∞

E(N̂New)

N
= 1− θk

(k + 1)2

and

lim
N→∞

E(N̂Chao)

N
= 1− θk

k + 1
,

with 1− 1
k+1

≤ 1− 1
(k+1)2

≤ 1.

Proof.

We have for N →∞ that

E(f̂0New)/N = E(
3f 3

1 f3

4f 3
2

)/N

→ 3

4
(

k!3

(k−1)!3
θ3k(1− θ)3 (k+2)!3

3!(k−1)!
θk(1− θ)3

(k+1)!3

2!3(k−1)!3
θ3k(1− θ)6

)

=
k(k + 2)

(k + 1)2
θk,

so that E(N̂New)/N → (1−θk)+k(k+2)
(k+1)2

θk = (1−θk+k(k+2)
(k+1)2

θk) = 1−θk/(k+1)2.

On the other hand,

E(f̂0Chao)/N = E(
f 2

1

2f2

)/N

→ 1

2
(

k!2

(k−1)!2
θ2k(1− θ)2

(k+1)!
2!(k−1)!

θk(1− θ)2
)

=
k

k + 1
θk.

and N̂Chao/N → (1− θk) + k
k+1

θk = (1− θk + k
k+1

θk) = 1− θk/(k + 1).
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The result in Theorem 3 indicates the large potential of reducing bias

with the new estimator. To explore this a bit further we consider exponential

mixing in (1).

Corollary 1. Let the mixing density f(λ) in (1) be the exponential, k = 1,

so that the marginal (1) is the geometric. Then:

lim
N→∞

E(N̂New)

N
= 1− θ

4
and lim

N→∞

E(N̂Chao)

N
= 1− θ

2
.

The condition in corollary 1 might appear difficult to be checked. How-

ever, exponential mixing means that the shape parameter k equals one which

implies that the line in the ratio plot passes through the origin. This can be

simply diagnosed and formally tested. An asymptotic unbiased Chao-type

estimator for this case (k = 1) is provided as n + f 2
1 /f2 and an asymptotic

unbiased estimator incorporating the first three capture frequency counts is

also available as n + f 3
1 f3/f

3
2 .

Note that (3) is only well-defined as long as f2 is positive. Therefore, we

suggest to use a modification of (3) which allows f2 = 0, as follows

N̂NewMo
= n +

3

4

f1(f1 − 1)(f1 − 2)f3

(f2 + 1)(f2 + 2)(f2 + 3)
. (4)

In addition, we consider the following truncated version of N̂New to im-

prove its variance. It can be seen from Theorem 3 (and by replacing fj by

their theoretical value pj) that the expected value of γ̂ = 3f1f3

2f2
2

approaches

3Γ(k + 1)Γ(k + 3)Γ(3)2Γ(k)3

2Γ(2)Γ(k)Γ(4)Γ(k)Γ(k + 2)2
=

k + 2

k + 1
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for N becoming large assuming the negative binomial distribution for the

count probabilities pj, j = 0, ...,m. Note that

1 ≤ k + 2

k + 1
≤ 2

for 0 ≤ k ≤ ∞. Hence, truncation at the upper and lower bound of the

asymptotically expected value of the multiplier γ̂ appears reasonably and

leads to an adjusted form N̂New as follows:

N̂NewAdj =


n +

f2
1

2f2
, if 3f1f3

2f2
2
≤ 1

n +
f2
1

2f2
(3f1f3

2f2
2

), if 1 < 3f1f3

2f2
2

< 2

n +
f2
1

f2
, if 3f1f3

2f2
2
≥ 2.

(5)

The adjusted form (5) can be expected to show an improved performance in

terms of reducing the variance while retaining the reduction in bias, which

will be seen in the simulation study section.

4. Variance Estimator and Confidence interval

4.1. Variance Estimator

In order to investigate the variance of the proposed estimator we simply

derive it by conditioning. It can be noted that the variation of N̂New =

n +
3f3

1 f3

4f3
2

is arising from two sources, the random variation of sampling n

individuals from N and the random variation with respect to estimation of

λ̂0 where λ̂0 =
3f3

1 f3

4f3
2

. Böhning (2008) provided a simple formula for variance

computation of population size which can be also applied to derived the

variance approximation of the new proposed estimator as follows:

V arλ̂0|n(n + λ̂0) = En{V arλ̂0|n(n + λ̂0)}︸ ︷︷ ︸
[1]

+ V arn{Eλ̂0|n(n + λ̂0)}︸ ︷︷ ︸
[2]

, (6)
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where En and V arn refer to the marginal distribution of n and λ̂0 = 3
4

f3
1 f3

f3
2

.

Assuming that Eλ̂0|n(n + λ̂0) in the second term [2] of (6) can be estimated

by n + λ̂0 we have that

V arn{Eλ̂0|n(n + λ̂0)} = V̂ arn{n + λ̂0} = V arn{n} = Np0(1− p0). (7)

Since p̂0 = f̂0

n+f̂0
and ̂N(1− p0) = n, (7) can be estimated by

V̂ arn{Eλ̂0|n(n + λ̂0)} =
3n
4

f 3
1 f3

nf 3
2 + 3

4
f 3

1 f3

. (8)

Now, consider the first term in (6), En{V arλ̂0|n(n + λ̂0)}, and assume again

that En{V arλ̂0|n(n+λ̂0)} can be estimated by V arλ̂0|n(n+λ̂0) = V arλ̂0|n(3
4

f3
1 f3

f3
2

).

Using the multivariate delta-method (see Bishop et al., 1975) we are able to

achieve that

V arλ̂0|n = ∇g


f1

f2

f3


T

Cov


f1

f2

f3

∇g


f1

f2

f3

 , (9)

where g(f1, f2, f3) = 3
4

f3
1 f3

f3
2

and ∇ig(f1, f2, f3) = ∂
∂fi

g(f1, f2, f3). It is easy to

see that

∇g


f1

f2

f3

 =
(

9
4

f2
1 f3

f3
2

−9
4

f3
1 f3

f4
2

3
4

f3
1

f3
2

)T

. (10)

Recall that the covariance matrix of the multinomial vector (f1, f2, f3)
T is

estimated by

ˆCov


f1

f2

f3

 =


f1(1− f1

n
) −f1f2

n
−f1f3

n

−f1f2

n
f2(1− f2

n
) −f2f3

n

−f1f3

n
−f2f3

n
f3(1− f3

n
)

 . (11)
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Hence (9) becomes ultimately

V arλ̂0|n(
3

4

f 3
1 f3

f 3
2

) = (
9

4
)2f 5

1 f 2
3

f 6
2

{f1

f2

+ 1}+ (
3

4
)2f 6

1 f3

f 6
2

{1− f3

n
}. (12)

Substituting (8) and (12) into (6), we finally have that

V arλ̂0|n(n+
3

4

f 3
1 f3

f 3
2

) = (
9

4
)2f 5

1 f 2
3

f 6
2

{f1

f2

+1}+(
3

4
)2f 6

1 f3

f 6
2

{1− f3

n
}+

3n
4

f 3
1 f3

nf 3
2 + 3

4
f 3

1 f3

.

(13)

It is seen from (13) that the first term (9
4
)2 f5

1 f2
3

f6
2
{f1

f2
+ 1}+ (3

4
)2 f6

1 f3

f6
2
{1− f3

n
} is

estimating the random variation stemming from sampling n units from the

target population and the second term
3n
4

f3
1 f3

nf3
2 + 3

4
f3
1 f3

is the approximating the

random variation due to estimating the number of unobserved cases f0.

4.2. Confidence interval

Once we have provided an estimator of the variance of the estimator of

interest, a confidence interval of the population size N can be constructed

using the normal approximation as N̂ ± 1.96Se(N̂) , where Se(N̂) is the

estimated standard error of N̂ . Alternatively, we can also investigate the

confidence interval by using the bootstrap method. The main benefit of

using bootstrap method is that it does not require a formula for a variance

estimator and might be preferable for small sizes. We focus here on the the

percentile bootstrap method. The procedure for constructing 95% confidence

intervals using the percentile bootstrap method is as follows:

1) A sample of size N̂ is drawn with replacement from the data set which

contains both observed individuals (n counts of 1, 2, 3, ...,m with as-

sociated frequencies f1, f2, ..., fm) and estimated unobserved frequency

f̂0 of individuals with zero-counts. N̂ is determined according to the
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estimator under investigation. We do not only bootstrap from the ob-

served sample of size n because the variance of estimating N arises

from two sources, the random variation due to drawing n individuals

from the target population of size N and the random variation from

estimating the parameter of interest from the observed n units, as just

mentioned in subsection 4.1 (see, for a review, van der Heijden et al.,

2003a; Böhning, 2008).

2) Then, the resampled zero counts of individuals never identified are

omitted. Then, using only the new sample of size n∗ a new estimate

N̂∗ is calculated.

3) Step 1) and 2) are repeated B times. This provides N̂∗
1 , N̂∗

2 , N̂∗
3 , . . . , N̂∗

B.

4) The lower and upper bound of the 95% confidence interval are calcu-

lated from P2.5 and P97.5, the 2.5th and 97.5th percentile of the data set

obtained in 3), respectively.

5) The standard error of estimate is now found from the sample N̂∗
1 , N̂∗

2 , N̂∗
3 ,

. . . , N̂∗
B.

5. Real Data Examples and Empirical Applications

There exist a variety of published studies applying the ideas of capture-

recapture to the estimation of the total number (adjusted for hidden cases)

of patients with infectious diseases such as tuberculosis, HIV/AIDS, legion-

naires disease, or malaria (e.g. Gallay et al., 2000; Nardone et al., 2003; van Hest et al.,

2008). However, most studies use frequency data from multiple sources with
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problems of matching and potentially different target areas. Here, we illus-

trate the use of our proposed estimator in particular data sets with repeated

identifications from only one source which is the underlying assumption to

apply the model in (1). To achieve a better judgment of the proposed esti-

mator we include the following estimators in the comparison:

• Chao: N̂Chao = n + f 2
1 /(2f2),

̂V ar(N̂Chao) = 1
4

f4
1

f3
2

+
f3
1

f2
2

+ 1
2

f2
1

f2
− 1

4

f4
1

nf2
2
− 1

2

f4
1

f2(2nf2+f2
1 )

• MLE: N̂MLE = n

1−exp(−λ̂)
where λ̂ is the maximum likelihood estimator

under Poisson homogeneity,

̂V ar(N̂MLE) = N̂

(exp(

P
jfj

N̂
)−

P
jfj

N̂
−1)

• Zel: N̂Zel = n
1−exp(−2f2/f1)

,

̂V ar(N̂Zel) = n(
exp(− 2f2

f1
)

(1−exp(− 2f2
f1

))2
){1 + n(

exp(− 2f2
f1

)

(1−exp(− 2f2
f1

))2
)(2f2

f1
)2( 1

f1
+ 1

f2
)}

the latter being suggested by Zelterman (1988). We apply these estimators

to studies from illicit drug use and biodiversity. We have also computed con-

fidence intervals according to both, the approximate normal and Bootstrap

method, outlined in the previous section.

5.1. Drug Use

5.1.1. Scottish Drug Users

Hay and Smit (2003) provide data on drug user contact to a Scottish

needle exchange programme in 1997. As the authors say

Data were collated on individuals who have visited a Scottish nee-

dle exchange in the year 1997. We prefer not to explicitly state
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the needle exchange from which we obtained these data; however

the data were collated during a programme of drug misuse preva-

lence research in Scotland and was the only one operating in that

area at that time. The needle exchange assigns a unique identifier

number to each individual accessing the service, thus enabling it

to produce statistics on the number of people who had contacted

the service over a given period.

The system provided a record of the number of individuals accessing the

service over the time period from January to December 1997. The number

of visited drug users over this 12 months was 647 and the frequency count

of contacting this treatment center is shown in Table 1, with a maximum

number of contacts of 105. Here, only the frequency count up to 28 is shown.

We are able to compute all estimators of the total estimate of drug users for

this data set. The result is shown in Table 2.

Please insert Table 1-2 here

5.1.2. Bangkok Heroin Users

We are interested in estimating the total number of heroin users in Bangkok

(Thailand) in 2002. The data was collected by the Office of the Narcotics

Control Board (ONCB), Ministry of the Prime Minister, in cooperation with

the Drug Abuse Prevention and Treatment Division, Health Department and

Medical Service Department, Bangkok Metropolitan Administration. The

database recorded all replicated treatment contacts of drug users from the

61 health treatment centers in Bangkok metropolis. The treatment episodes

for heroin users are shown in Table 3 (Source: Viwatwongkasem et al., 2008).
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We use this frequency table as basis for all estimators considered as provided

in Table 4.

Please insert Table 3-4 here

As can be seen in Table 4, the estimated number of heroin users from

our method is between the estimators obtained using Chao’s and Zelter-

man’s methods. However, similar to the previous application, the proposed

estimator shows larger variation.

5.2. Butterfly Data

The Malayan butterfly data go back to Fisher et al. (1943) (see Chao and Bunge,

2002) and have been frequently serving as test data for estimators under de-

velopment. The frequency count of identifying distinct species is shown in

Table 5. There are in 620 observed distinct species. Table 6 shows the result

of estimated numbers of Malayan butterfly species.

Please insert Table 5-6 here

In this example, the overall impression is that all estimators show similar

results in terms of estimated numbers of species for both point and interval

estimations. As expected, the MLE provides not only the smallest estimate

(underestimation bias), but also gives the least variation. In contrast, our

proposed estimator and Zelterman’s method yields a larger estimate and

variation. In addition, the new estimator provides a similar estimate for this

data as the Poisson-Gamma-based estimator suggested by Chao and Bunge

(2002) who also used the Malayan butterfly data to illustrate their estimator.
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6. Simulation Study

6.1. Simulation Scenarios

A simulation experiment is undertaken to study the performance of the

proposed estimator and some competitors such as maximum likelihood, Zel-

terman’s and Chao’s estimator. The scope of study covers a variety of situ-

ations of heterogeneity in the capture probabilities. Counts have been sam-

pled from the following distributions: Negative Binomial(k, θ); k = 2, 3, θ =

0.4, 0.5, 0.6 and k = 4, 5, θ = 0.6, 0.7, 0.8, Geometric(θ); θ = 0.3, 0.4, 0.5, 0.6

and two-component Poisson Mixture; 0.5Poi(λ) + 0.5Poi(µ), λ = 0.5, 1, µ =

2, 3, 4, 5, 6. We used a population size of 100, 1,000, 10,000 and 100,000,

respectively, and each scenario is repeated 10,000 times. To evaluate perfor-

mance of estimation, we look at relative bias (RBias = E(N̂)−N
N

) and relative

mean square error (RMSE = E(N̂−N)2

N2 ). Furthermore, both simulated ap-

proximation variance of the new proposed estimator and bootstrap percentile

method (using a resample size of 1,000) is investigated.

6.2. Simulation Results

We start with an illustration and show the results of estimating popula-

tion size from one sample from a population with a known capture probabil-

ity and a known population size. The artificial data set of frequency counts

of identifications of distinct individuals was generated from fj = E(fj) =

Npj. We assume that N = 1, 000 and pj corresponds to a Negative Bi-

nomial NB(4, θ = 0.6, 0.7, 0.8), a Geometric Geo(θ = 0.3, 0.4, 0.5) and a

two-component Poisson mixture 0.5Poi(0.5) + 0.5Poi(µ; µ = 1, 2, 3). To il-

lustrate the behaviour of the estimators a sample was generated from each
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of the above three scenarios, for example, for N = 1, 000 and NB(4, 0.7), we

got f0 = 240, f1 = 288, f2 = 216, f3 = 130, f4 = 68, f5 = 33, f6 = 15, f7 =

6, f8 = 3 and f9 = 1. Then, f0 was omitted and only the remaining zero-

truncated frequencies f1, f2, ..., fm with n =
∑m

j=1 fj were used to estimate

f0 and N . The results for all estimators are shown in Table 7. It is clear that

if heterogeneity becomes more pronounced our proposed estimator notice-

ably provides the most accurate results. However, these are the results from

only one simulated sample. We now undertake a more profound simulation

investigation.

Please insert Table 7 here

6.2.1. Heterogeneity in Identification

As a summary result it can be said that under a Negative-Binomial the

MLE and Chao’s estimator show a clear underestimation of population size,

whereas Zelterman, the new estimator and the adjusted form tend to over-

estimate for a small population size, see Table 8. It also can be seen from

Table 8– 9 that the proposed estimator and it’s adjusted form perform sim-

ilarly in cases of large population size. In addition, the adjusted form also

significantly reduces the variance if compared with it’s original form, in par-

ticular for small size. Furthermore, the proposed estimators show a good

performance for estimating population size as does Chao’s and Zelterman’s

estimator, in particular they provide smallest RBias and RMSE for the larger

sample size. In summary, it is reasonable to state that the proposed estima-

tors (in particular the adjusted versions) are suitable under the Negative

Binomial distributional model.

18



Please insert Table 8-9 here

For the case that the identification probabilities arise from the Geometric

distribution, the new estimator generally shows a good performance in terms

of accuracy as it gives on average the smallest RBias in almost all cases, see

Table 10. According to RMSE, although the new estimator seems to be of

lack of precision for the small population size, it shows excellent performance

against the other methods for larger size, see Table 11.

Please insert Table 10-11 here

Similar to the results under a Negative Binomial distribution, Zelterman

and the new estimator seem to provide overestimation of population size, in

contrast to the MLE and Chao’s estimator which always show underestima-

tion for all two-component Poisson Mixture scenarios, see Table 12. If large

population sizes are considered under a discrete Poisson mixture, our pro-

posed estimators not only shows high performance in terms of accuracy, but

it also performs similar to the other methods in terms of precision. However,

the new proposed estimator is less satisfactory for smaller size as well as it

shows high variance, see Table 12-13.

Please insert Table 12-13 here

6.2.2. Variance Approximation

This section presents the results on variance approximation of the new

estimator. We compared the variance approximation of the new estimator in

equation (13) with estimating variance using the bootstrap and simulation

methods. To define the investigated statistics in Table 14-16, Se(N̂) denotes
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standard error of the new estimator computing based 10,000 repeated simula-

tion samples, whereas Mean(Ŝe(N̂)) and Mean( ̂Se(N̂)Bt) represent an aver-

age estimated standard error from equation (13) and the bootstrap percentile

method, respectively. It is seen from Table 14-16 that, Se(N̂), Mean(Ŝe(N̂))

and Mean( ̂Se(N̂)Bt) are quite similar in their values. Mean(Ŝe(N̂)) is

slightly smaller than Se(N̂) and Mean( ̂Se(N̂)Bt). As a result, it is rea-

sonable to state that the variance approximation of the new estimator in

equation (13) can be utilized to represent the true variance.

Please insert Table 14-16 here

7. Conclusions and Discussion

A diversity of estimators in the capture-recapture field exists such as the

estimators of Chao (1987) and Zelterman (1988), being widely applied in

many areas of interest, especially in public health and social sciences. Here,

we have introduced a new method of estimating the population size under a

specific form of heterogeneity for the identification probability of distinct in-

dividuals. We have also been able to see how accurate and precise the method

is performing when it is compared to other frequently used estimators. Over-

all, the proposed estimator is more accurate as well as providing small bias

in the homogeneous Poisson case which asymptotically disappears. It is also

found that the new estimator compares well with Chao’s estimator since it’s

expected value is equal or greater than the one of Chao’s estimator. Hence,

it improves Chao’s estimator which is known to provide a lower bound. In a

simulation study, the new estimator tended to overestimate, whereas all the
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other methods under consideration provided the known underestimation phe-

nomenon in almost all scenarios of heterogeneous identification probabilities.

However, although the proposed estimator showed superior performance in

terms of accuracy, it evidently gave also the largest variation. Hence, the

new method has lack of precision; nonetheless, the variation of the new es-

timators considerably decreased for large population size (1,000 and more)

which is typically the case for situations of interest in surveillance and public

health. In addition, the adjusted forms of the new estimator can be uti-

lized for sample sizes below 1, 000 which significantly reduces the variance.

We also provided a formula of variance approximation of the new estimator.

This variance formula is not only useful to determine the efficiency of esti-

mating, but it can be also used to construct confidence intervals. In short,

the new estimator can be an alternative form of population size estimation

especially for large populations and heterogeneous capturing probabilities.
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Böhning D., 2008. A simple variance formula for population size estimators

by conditioning. Statistical Methodology 5, 410-423.
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Figure 1: rj as a function of j; pj ∼ NB(4, 0.7), Geo(0.7), and Poi(2)
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Table 1: The frequency of individual contacts at Scottish needle exchange, in 1997; n = 647

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14

fj 175 85 50 47 37 38 32 16 17 17 15 11 9 12

j 15 16 17 18 19 20 21 22 23 24 25 26 27 28+

fj 13 7 6 2 3 5 8 2 6 1 2 3 3 25
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Table 2: Estimated total number of Scottish drug injectors in 1997

Method N̂ Ŝe(N̂) 95% CI Se(N̂)BT 95% CI

(Approximate Normal) (Bootstrap Percentile)

MLE 648 0.67 645 - 649 1.00 646 - 649

Chao 828 34.85 759 - 896 36.91 763 - 907

New 975 137.99 704 - 1,245 150.94 788 - 1,379

NewAdj 975 - - 103.76 779 - 1,169

NewMo 948 - - 145.78 774 - 1,326

Zel 1,042 85.25 874 - 1,209 87.44 909 - 1,246
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Table 3: The frequency count of times that heroin users contacted health treatment centers

in Bangkok, Thailand in 2002; n = 9, 302

j 1 2 3 4 5 6 7 8 9 10 11

fj 2,176 1,600 1,278 976 748 570 455 368 281 254 188

j 12 13 14 15 16 17 18 19 20 21

fj 138 99 67 44 34 17 3 3 2 1
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Table 4: Estimated total number of heroin users in Bangkok, Thailand 2000

Method N̂ Ŝe(N̂) 95% CI Se(N̂)BT 95% CI

(Approximate Normal) (Bootstrap Percentile)

MLE 9,454 12.84 9,430 - 9,479 13.40 9,518 - 9,573

Chao 10,782 80.21 10,625 - 10,940 85.71 10,625 - 10,945

New 11,714 250.16 11,224 - 12,205 265.07 11,256 - 12,279

NewAdj 11,714 - - 249.39 11,257 - 12,241

NewMo 11,701 - - 255.71 11,250 - 12,216

Zel 12,078 184.54 11,717 - 12,440 188.45 11,728 - 12,476
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Table 5: Malayan butterfly data (Fisher et al., 1943)

j 1 2 3 4 5 6 7 8 9 10 11 12 13

fj 118 74 44 24 29 22 20 19 20 15 12 14 6

j 14 15 16 17 18 19 20 21 22 23 24 24+ n

fj 12 6 9 9 6 10 10 11 5 3 3 119 620
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Table 6: Estimated total number of Malayan butterfly species

Method N̂ Ŝe(N̂) 95% CI Se(N̂)BT 95% CI

(Approximate Normal) (Bootstrap Percentile)

MLE 624 1.80 604 - 645 2.23 616 - 624

Chao 715 22.07 671 - 756 24.78 672 - 766

New 754 63.49 630 - 879 85.33 659 - 1,017

NewAdj 754 - - 66.17 670 - 919

NewMo 741 - - 62.80 664 - 898

Zel 868 67.04 736 - 999 64.61 711 - 973
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Table 7: Estimated population size based upon one sample and four different estimators,

true N = 1, 000

Capture Probability(pj) MLE Chao New NewAdj NewMo Zel

NB(4, 0.6) 921 973 994 994 989 1,005

NB(4, 0.7) 892 953 993 993 984 980

NB(4, 0.8) 860 919 987 987 970 935

Geo(0.3) 732 850 926 926 914 930

Geo(0.4) 675 800 899 899 883 859

Geo(0.5) 635 750 878 878 857 791

0.5Poi(0.5) + 0.5Poi(1.0) 923 948 993 993 967 953

0.5Poi(0.5) + 0.5Poi(2.0) 796 869 963 963 948 900

0.5Poi(0.5) + 0.5Poi(3.0) 743 842 974 974 959 914

0.5Poi(0.5) + 0.5Poi(4.0) 719 847 1066 1006 1041 992
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Table 8: RBias of population size estimators for counts drawn from NB(k, θ)

pj MLE Chao New NewAdj NewMo Zel

N = 100

NB(2, 0.4) -0.1261 -0.0349 0.1023 0.0324 -0.0113 0.0459

NB(2, 0.5) -0.1685 -0.0591 0.1328 0.0433 -0.0167 0.0053

NB(2, 0.6) -0.2058 -0.0892 0.1886 0.0560 -0.0344 -0.0417

NB(3, 0.4) -0.0510 -0.0014 0.0817 0.0317 0.0031 0.0758

NB(3, 0.5) -0.0851 -0.0154 0.0823 0.0389 -0.0027 0.0468

NB(3, 0.6) -0.1203 -0.0335 0.1073 0.0559 -0.0084 0.0161

NB(4, 0.6) -0.0716 -0.0092 0.0814 0.0463 0.0020 0.0396

NB(4, 0.7) -0.1013 -0.0270 0.1157 0.0696 -0.0061 0.0094

NB(4, 0.8) -0.1220 -0.0445 0.2471 0.1232 -0.0233 -0.0219

NB(5, 0.6) -0.0426 0.0014 0.0612 0.0372 0.0034 0.0479

NB(5, 0.7) -0.0700 -0.0108 0.0837 0.0569 -0.0009 0.0256

NB(5, 0.8) -0.0917 -0.0219 0.1871 0.1132 0.0018 0.0034

N = 1, 000

NB(2, 0.4) -0.1321 -0.0519 -0.0106 -0.0106 -0.0180 0.0093

NB(2, 0.5) -0.1776 -0.0815 -0.0167 -0.0167 -0.0268 -0.0310

NB(2, 0.6) -0.2164 -0.1173 -0.0249 -0.0248 -0.0398 -0.0806

NB(3, 0.4) -0.0554 -0.0147 0.0009 0.0013 -0.0034 0.0335

NB(3, 0.5) -0.0911 -0.0301 -0.0026 -0.0020 -0.0084 0.0144

NB(3, 0.6) -0.1269 -0.0515 -0.0032 -0.0024 -0.0117 -0.0136

NB(4, 0.6) -0.0779 -0.0241 0.0014 0.0024 -0.0042 0.0100

NB(4, 0.7) -0.1093 -0.0455 -0.0001 0.0019 -0.0091 -0.0184

NB(4, 0.8) -0.1407 -0.0790 0.0014 0.0066 -0.0172 -0.0625

NB(5, 0.6) -0.0486 -0.0116 0.0023 0.0033 -0.0017 0.0173

NB(5, 0.7) -0.0770 -0.0264 0.0020 0.0038 -0.0045 -0.0006

NB(5, 0.8) -0.1068 -0.0522 0.0037 0.0083 -0.0093 -0.0348
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Table 8(con.): RBias of population size estimators for counts drawn from NB(k, θ)

pj MLE Chao New NewAdj NewMo Zel

N = 10, 000

NB(2, 0.4) -0.1327 -0.0531 -0.0169 -0.0169 -0.0177 0.0068

NB(2, 0.5) -0.1777 -0.0832 -0.0269 -0.0269 -0.0278 -0.0343

NB(2, 0.6) -0.2176 -0.1197 -0.0386 -0.0386 -0.0401 -0.0838

NB(3, 0.4) -0.0559 -0.0159 -0.0035 -0.0035 -0.0039 0.0299

NB(3, 0.5) -0.0915 -0.0310 -0.0070 -0.0070 -0.0076 0.0124

NB(3, 0.6) -0.1279 -0.0537 -0.0125 -0.0125 -0.0133 -0.0173

NB(4, 0.6) -0.0785 -0.0258 -0.0047 -0.0047 -0.0052 0.0069

NB(4, 0.7) -0.1105 -0.0477 -0.0087 -0.0087 -0.0096 -0.0214

NB(4, 0.8) -0.1420 -0.0815 -0.0147 -0.0147 -0.0165 -0.0656

NB(5, 0.6) -0.0491 -0.0128 -0.0018 -0.0017 -0.0021 0.0145

NB(5, 0.7) -0.0777 -0.0278 -0.0040 -0.0040 -0.0046 -0.0030

NB(5, 0.8) -0.1080 -0.0544 -0.0081 -0.0081 -0.0094 -0.0377

N = 100, 000

NB(2, 0.4) -0.1327 -0.0533 -0.0177 -0.0177 -0.0178 0.0064

NB(2, 0.5) -0.1778 -0.0833 -0.0277 -0.0277 -0.0278 -0.0346

NB(2, 0.6) -0.2177 -0.1200 -0.0398 -0.0398 -0.0399 -0.0841

NB(3, 0.4) -0.0560 -0.0160 -0.0040 -0.0040 -0.0040 0.0294

NB(3, 0.5) -0.0915 -0.0312 -0.0077 -0.0077 -0.0077 0.0120

NB(3, 0.6) -0.1280 -0.0540 -0.0134 -0.0134 -0.0135 -0.0176

NB(4, 0.6) -0.0786 -0.0259 -0.0051 -0.0051 -0.0052 0.0067

NB(4, 0.7) -0.1107 -0.0480 -0.0095 -0.0095 -0.0096 -0.0218

NB(4, 0.8) -0.1423 -0.0818 -0.0162 -0.0162 -0.0163 -0.0659

NB(5, 0.6) -0.0492 -0.0129 -0.0021 -0.0021 -0.0021 0.0143

NB(5, 0.7) -0.0777 -0.0280 -0.0046 -0.0046 -0.0046 -0.0033

NB(5, 0.8) -0.1080 -0.0546 -0.0090 -0.0090 -0.0091 -0.0379
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Table 9: RMSE of population size estimators for counts drawn from NB(k, θ)

pj MLE Chao New NewAdj NewMo Zel

N = 100

NB(2, 0.4) 0.017436 0.007103 0.322176 0.023931 0.055283 0.026119

NB(2, 0.5) 0.031113 0.014611 0.444714 0.049028 0.103335 0.027807

NB(2, 0.6) 0.047743 0.027054 0.738501 0.088966 0.169868 0.036023

NB(3, 0.4) 0.003222 0.002308 0.220680 0.009114 0.017575 0.026815

NB(3, 0.5) 0.008521 0.004579 0.152294 0.018016 0.031767 0.019818

NB(3, 0.6) 0.017133 0.010355 0.187029 0.041730 0.058681 0.021858

NB(4, 0.6) 0.006593 0.004972 0.131836 0.020873 0.032070 0.017851

NB(4, 0.7) 0.013899 0.011858 0.239724 0.052637 0.076174 0.022364

NB(4, 0.8) 0.026576 0.032748 1.084269 0.157403 0.242154 0.044130

NB(5, 0.6) 0.002662 0.002600 0.052894 0.010521 0.012551 0.014369

NB(5, 0.7) 0.007154 0.006949 0.108087 0.030457 0.037630 0.017049

NB(5, 0.8) 0.015763 0.021379 0.540063 0.107888 0.156400 0.032862

N = 1, 000

NB(2, 0.4) 0.017599 0.003176 0.002812 0.002621 0.002759 0.001757

NB(2, 0.5) 0.031791 0.007479 0.005924 0.005529 0.005857 0.002936

NB(2, 0.6) 0.047332 0.015324 0.012544 0.011473 0.012379 0.009179

NB(3, 0.4) 0.003133 0.000381 0.000728 0.000671 0.000650 0.002206

NB(3, 0.5) 0.008418 0.001267 0.001744 0.001646 0.001649 0.001445

NB(3, 0.6) 0.016367 0.003402 0.004228 0.003998 0.004013 0.001853

NB(4, 0.6) 0.006209 0.000977 0.001817 0.001702 0.001683 0.001245

NB(4, 0.7) 0.012299 0.003003 0.005032 0.004666 0.004726 0.002101

NB(4, 0.8) 0.020837 0.008663 0.017714 0.015629 0.016264 0.007297

NB(5, 0.6) 0.002441 0.000346 0.000809 0.000753 0.000733 0.001098

NB(5, 0.7) 0.006148 0.001275 0.002629 0.002418 0.002449 0.001296

NB(5, 0.8) 0.012102 0.004395 0.010177 0.009095 0.009400 0.003764
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Table9(con.): RMSE of population size estimators for counts drawn from NB(k, θ)

pj MLE Chao New NewAdj NewMo Zel

N = 10, 000

NB(2, 0.4) 0.017620 0.002869 0.000518 0.000518 0.000541 0.000205

NB(2, 0.5) 0.031610 0.006997 0.001197 0.001197 0.001246 0.001365

NB(2, 0.6) 0.047396 0.014489 0.002517 0.002517 0.002622 0.007285

NB(3, 0.4) 0.003133 0.000268 0.000073 0.000073 0.000076 0.000994

NB(3, 0.5) 0.008385 0.000999 0.000207 0.000207 0.000213 0.000278

NB(3, 0.6) 0.016390 0.002965 0.000543 0.000543 0.000561 0.000467

NB(4, 0.6) 0.006177 0.000703 0.000181 0.000181 0.000185 0.000160

NB(4, 0.7) 0.012236 0.002363 0.000524 0.000524 0.000537 0.000631

NB(4, 0.8) 0.020280 0.006889 0.001799 0.001795 0.001840 0.004636

NB(5, 0.6) 0.002419 0.000185 0.000075 0.000075 0.000076 0.000289

NB(5, 0.7) 0.006060 0.000830 0.000250 0.000249 0.000253 0.000133

NB(5, 0.8) 0.011729 0.003126 0.000952 0.000949 0.000967 0.001665

N = 100, 000

NB(2, 0.4) 0.017610 0.002846 0.000336 0.000336 0.000338 0.000057

NB(2, 0.5) 0.031612 0.006950 0.000813 0.000813 0.000818 0.001213

NB(2, 0.6) 0.047401 0.014404 0.001682 0.001682 0.001694 0.007096

NB(3, 0.4) 0.003133 0.000268 0.000073 0.000073 0.000076 0.000994

NB(3, 0.5) 0.008385 0.000999 0.000207 0.000207 0.000213 0.000278

NB(3, 0.6) 0.016390 0.002965 0.000543 0.000543 0.000561 0.000467

NB(4, 0.6) 0.006176 0.000674 0.000042 0.000042 0.000042 0.000055

NB(4, 0.7) 0.012264 0.002312 0.000135 0.000135 0.000137 0.000493

NB(4, 0.8) 0.020251 0.006720 0.000414 0.000414 0.000420 0.004376

NB(5, 0.6) 0.002424 0.000170 0.000012 0.000012 0.000012 0.000212

NB(5, 0.7) 0.006047 0.000788 0.000045 0.000045 0.000045 0.000023

NB(5, 0.8) 0.011672 0.002996 0.000169 0.000169 0.000171 0.001459
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Table 10: RBias of population size estimators for counts drawn from Geo(θ)

pj MLE Chao New NewAdj NewMo Zel

N = 100

Geo(0.3) -0.2622 -0.1244 0.1640 -0.0172 -0.0677 -0.0231

Geo(0.4) -0.3172 -0.1704 0.1695 -0.0331 -0.1032 -0.0970

Geo(0.5) -0.3581 -0.2112 0.3865 -0.0365 -0.1242 -0.1575

Geo(0.6) -0.3811 -0.2395 0.7796 -0.0182 -0.1585 -0.2017

N = 1, 000

Geo(0.3) -0.2692 -0.1475 -0.0610 -0.0642 -0.0739 -0.0663

Geo(0.4) -0.3271 -0.1980 -0.0844 -0.0889 -0.1013 -0.1382

Geo(0.5) -0.3710 -0.2467 -0.1021 -0.1096 -0.1256 -0.2047

Geo(0.6) -0.4060 -0.2947 -0.1117 -0.1272 -0.1479 -0.2672

N = 10, 000

Geo(0.3) -0.2701 -0.1497 -0.0733 -0.0733 -0.0745 -0.0703

Geo(0.4) -0.3277 -0.1996 -0.0984 -0.0984 -0.1000 -0.1409

Geo(0.5) -0.3724 -0.2497 -0.1229 -0.1229 -0.1251 -0.2086

Geo(0.6) -0.4078 -0.2993 -0.1457 -0.1457 -0.1491 -0.2728

N = 100, 000

Geo(0.3) -0.2702 -0.1500 -0.0749 -0.0749 -0.0750 -0.0709

Geo(0.4) -0.3278 -0.2000 -0.1000 -0.1000 -0.1001 -0.1414

Geo(0.5) -0.3725 -0.2500 -0.1249 -0.1249 -0.1251 -0.2090

Geo(0.6) -0.4081 -0.3000 -0.1496 -0.1496 -0.1500 -0.2736

38



Table 11: RMSE of population size estimators for counts drawn from Geo(θ)

pj MLE Chao New NewAdj NewMo Zel

N = 100

Geo(0.3) 0.0712 0.0270 6.3955 0.0469 0.2105 0.0385

Geo(0.4) 0.1044 0.0460 1.8536 0.0736 0.2393 0.0468

Geo(0.5) 0.1347 0.0744 59.5715 0.1324 0.5010 0.0761

Geo(0.6) 0.1577 0.1091 81.3850 0.2317 0.7598 0.1149

N = 1, 000

Geo(0.3) 0.0727 0.0226 0.0110 0.0100 0.0119 0.0070

Geo(0.4) 0.1074 0.0405 0.0197 0.0178 0.0214 0.0219

Geo(0.5) 0.1383 0.0628 0.0322 0.0279 0.0347 0.0451

Geo(0.6) 0.1659 0.0900 0.0557 0.0432 0.0580 0.0757

N = 10, 000

Geo(0.3) 0.0730 0.0225 0.0060 0.0060 0.0062 0.0052

Geo(0.4) 0.1074 0.0400 0.0107 0.0107 0.0110 0.0201

Geo(0.5) 0.1388 0.0625 0.0169 0.0169 0.0175 0.0438

Geo(0.6) 0.1664 0.0899 0.0246 0.0246 0.0255 0.0748

N = 100, 000

Geo(0.3) 0.0730 0.0225 0.0057 0.0057 0.0057 0.0050

Geo(0.4) 0.1075 0.0400 0.0101 0.0101 0.0101 0.0200

Geo(0.5) 0.1388 0.0625 0.0158 0.0158 0.0158 0.0437

Geo(0.6) 0.1665 0.0900 0.0227 0.0227 0.0228 0.0749
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Table 12: RBias of population size estimators for pj ∼ 0.5Poi(λ) + 0.5Poi(µ)

λ µ MLE Chao New NewAdj NewMo Zel

N = 100

0.5 2.0 -0.1947 -0.1048 0.1884 0.0423 -0.0395 -0.0644

0.5 3.0 -0.2501 -0.1310 0.2557 0.0081 -0.0190 -0.0394

0.5 4.0 -0.2737 -0.1187 0.6396 0.0393 0.0654 0.0664

0.5 5.0 -0.2858 -0.0829 2.1944 0.1110 0.2091 0.2540

1.0 2.0 -0.0517 -0.0035 0.1331 0.0963 0.0077 0.0187

1.0 3.0 -0.1084 -0.0230 0.1473 0.0739 0.0174 0.0331

1.0 4.0 -0.1407 -0.0226 0.2229 0.0850 0.0405 0.0852

1.0 5.0 -0.1578 -0.0096 0.3462 0.1102 0.0693 0.1643

N = 1, 000

0.5 2.0 -0.2058 -0.1309 -0.0264 -0.0276 -0.0417 -0.0994

0.5 3.0 -0.2573 -0.1547 -0.0047 -0.0214 -0.0217 -0.0803

0.5 4.0 -0.2803 -0.1496 0.0983 0.0062 0.0700 -0.0003

0.5 5.0 -0.2912 -0.1247 0.2858 0.0548 0.2319 0.1419

1.0 2.0 -0.0610 -0.0250 0.0094 0.0143 0.0002 -0.0111

1.0 3.0 -0.1165 -0.0430 0.0186 0.0188 0.0094 0.0001

1.0 4.0 -0.1472 -0.0439 0.0483 0.0447 0.0364 0.0433

1.0 5.0 -0.1636 -0.0345 0.0831 0.0721 0.0672 0.1081
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Table12(con.): RBias of population size estimators for

pj ∼ 0.5Poi(λ) + 0.5Poi(µ)

λ µ MLE Chao New NewAdj NewMo Zel

N = 10, 000

0.5 2.0 -0.2068 -0.1329 -0.0400 -0.0400 -0.0415 -0.1021

0.5 3.0 -0.2580 -0.1572 -0.0213 -0.0217 -0.0229 -0.0846

0.5 4.0 -0.2810 -0.1529 0.0687 0.0066 0.0661 -0.0075

0.5 5.0 -0.2921 -0.1289 0.2346 0.0488 0.2296 0.1318

1.0 2.0 -0.0620 -0.0272 0.0004 0.0005 -0.0005 -0.0140

1.0 3.0 -0.1171 -0.0448 0.0099 0.0099 0.0090 -0.0028

1.0 4.0 -0.1477 -0.0457 0.0370 0.0370 0.0359 0.0396

1.0 5.0 -0.1642 -0.0368 0.0680 0.0680 0.0665 0.1030

N = 100, 000

0.5 2.0 -0.2069 -0.1332 -0.0416 -0.0416 -0.0417 -0.1025

0.5 3.0 -0.2579 -0.1573 -0.0227 -0.0227 -0.0228 -0.0848

0.5 4.0 -0.2810 -0.1530 0.0667 0.0064 0.0664 -0.0078

0.5 5.0 -0.2921 -0.1293 0.2291 0.0480 0.2286 0.1306

1.0 2.0 -0.0621 -0.0273 -0.0002 -0.0002 -0.0003 -0.0142

1.0 3.0 -0.1172 -0.0449 0.0094 0.0094 0.0093 -0.0029

1.0 4.0 -0.1478 -0.0459 0.0359 0.0359 0.0358 0.0392

1.0 5.0 -0.1642 -0.0370 0.0668 0.0668 0.0666 0.1027

41



Table 13: RMSE of population size estimators for pj ∼ 0.5Poi(λ) + 0.5Poi(µ)

λ µ MLE Chao New NewAdj NewMo Zel

N = 100

0.5 2.0 0.0436 0.0294 1.2641 0.0848 0.2344 0.0364

0.5 3.0 0.0656 0.0310 1.4570 0.0573 0.2156 0.0397

0.5 4.0 0.0774 0.0302 9.0444 0.0656 0.4079 0.0806

0.5 5.0 0.0839 0.0374 375.7771 0.1352 2.1824 0.3013

1.0 2.0 0.0077 0.0136 0.2933 0.0367 0.1752 0.0957

1.0 3.0 0.0143 0.0100 0.3123 0.0233 0.1694 0.0829

1.0 4.0 0.0217 0.0095 0.6376 0.0222 0.2736 0.1088

1.0 5.0 0.0266 0.0115 1.8505 0.0297 0.5621 0.1796

N = 1, 000

0.5 2.0 0.0429 0.0186 0.0135 0.0121 0.0134 0.0124

0.5 3.0 0.0665 0.0250 0.0123 0.0073 0.0114 0.0090

0.5 4.0 0.0788 0.0235 0.0362 0.0046 0.0275 0.0045

0.5 5.0 0.0850 0.0171 0.1565 0.0086 0.1134 0.0299

1.0 2.0 0.0042 0.0017 0.0057 0.0045 0.0055 0.0052

1.0 3.0 0.0138 0.0026 0.0054 0.0032 0.0051 0.0047

1.0 4.0 0.0219 0.0026 0.0088 0.0026 0.0082 0.0072

1.0 5.0 0.0269 0.0020 0.0165 0.0034 0.0150 0.0129
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Table13(con.): RMSE of population size estimators for

pj ∼ 0.5Poi(λ) + 0.5Poi(µ)

λ µ MLE Chao New NewAdj NewMo Zel

N = 10, 000

0.5 2.0 0.0428 0.0178 0.0027 0.0027 0.0028 0.0107

0.5 3.0 0.0666 0.0248 0.0015 0.0015 0.0016 0.0074

0.5 4.0 0.0790 0.0235 0.0068 0.0004 0.0064 0.0005

0.5 5.0 0.0853 0.0168 0.0604 0.0029 0.0579 0.0183

1.0 2.0 0.0039 0.0009 0.0005 0.0005 0.0005 0.0005

1.0 3.0 0.0137 0.0021 0.0005 0.0005 0.0005 0.0005

1.0 4.0 0.0218 0.0022 0.0019 0.0009 0.0019 0.0018

1.0 5.0 0.0270 0.0014 0.0055 0.0016 0.0054 0.0052

N = 100, 000

0.5 2.0 0.0428 0.0177 0.0018 0.0018 0.0019 0.0105

0.5 3.0 0.0665 0.0248 0.0006 0.0006 0.0006 0.0072

0.5 4.0 0.0790 0.0234 0.0047 0.0001 0.0046 0.0001

0.5 5.0 0.0853 0.0167 0.0530 0.0024 0.0528 0.0172

1.0 2.0 0.0039 0.0008 0.0001 0.0001 0.0001 0.0001

1.0 3.0 0.0137 0.0020 0.0001 0.0001 0.0001 0.0001

1.0 4.0 0.0218 0.0021 0.0013 0.0008 0.0013 0.0013

1.0 5.0 0.0270 0.0014 0.0045 0.0015 0.0045 0.0045
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Table 14: Estimated standard error of estimating population size of the proposed estimator

for pj ∼ NB(k, θ)

pj Se(N̂) Mean Mean Se(N̂) Mean Mean

Ŝe(N̂) ̂Se(N̂)Bt Ŝe(N̂) ̂Se(N̂)Bt

N = 1, 000 N = 10, 000

NB(2, 0.4) 50.30 49.06 53.72 150.52 149.70 151.58

NB(2, 0.5) 72.56 71.36 77.69 217.81 216.52 220.56

NB(2, 0.6) 105.72 103.88 113.78 316.97 313.04 317.81

NB(3, 0.4) 25.84 26.03 29.07 78.98 77.41 78.28

NB(3, 0.5) 42.62 40.91 44.51 123.43 122.79 124.85

NB(3, 0.6) 64.61 63.82 69.09 195.33 190.23 193.38

NB(4, 0.6) 42.44 40.66 43.96 126.03 124.10 126.32

NB(4, 0.7) 69.43 69.50 74.99 210.53 210.49 215.11

NB(4, 0.8) 142.34 132.55 146.22 396.69 390.72 398.01

NB(5, 0.6) 30.30 27.84 30.29 85.05 84.33 85.33

NB(5, 0.7) 52.03 50.93 54.79 160.10 152.19 154.35

NB(5, 0.8) 100.13 96.98 105.49 310.10 293.28 299.67
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Table 15: Estimated standard error of estimating population size of the proposed estimator

for pj ∼ Geo(θ)

pj Se(N̂) Mean Mean Se(N̂) Mean Mean

Ŝe(N̂) ̂Se(N̂)Bt Ŝe(N̂) ̂Se(N̂)Bt

N = 1, 000 N = 10, 000

Geo(0.3) 85.50 82.66 91.82 250.67 243.54 248.26

Geo(0.4) 110.63 103.79 115.74 310.10 319.81 324.46

Geo(0.5) 154.84 141.98 160.69 420.39 422.33 431.44

Geo(0.6) 201.55 192.32 225.04 576.47 567.02 576.62

Table 16: Estimated standard error of estimating population size of the proposed estimator

for pj ∼ 0.5Poi(λ) + 0.5Poi(µ)

λ µ Se(N̂) Mean Mean Se(N̂) Mean Mean

Ŝe(N̂) ̂Se(N̂)Bt Ŝe(N̂) ̂Se(N̂)Bt

N = 1, 000 N = 10, 000

0.5 2 110.08 105.71 115.84 332.84 320.88 326.83

0.5 3 119.28 107.60 119.29 331.09 320.18 327.13

0.5 4 162.09 150.91 172.62 459.62 449.79 456.78

0.5 5 270.54 254.87 307.85 740.94 726.54 738.81

1.0 2 74.82 71.95 77.48 227.56 222.43 227.57

1.0 3 70.91 68.29 73.80 200.07 205.28 208.55

1.0 4 77.88 76.74 84.36 233.39 236.98 239.65

1.0 5 97.34 94.79 106.12 291.49 284.27 289.72
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