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Abstract

We present a family of flow-dependent balance conditions for varia-
tional data assimilation (VAR). In the context of shallow water theory,
the conditions are based upon using either relative vorticity or potential
vorticity as the balanced variable, and incorporate both rotational and
divergent components of the horizontal wind field. From this wind field
we obtain a balanced height field, which can be used as a control vari-
able in VAR. The balance conditions are defined using nonlinear Monge
Ampère equations, which are required to be elliptic. A linear, incremental
scheme is derived, and the ellipticity criterion becomes a condition on the
linearization state. The schemes are tested using Rossby-Haurwitz waves
for a range of Burger numbers, thereby enabling flow-dependency to be
analyzed.

Keywords: Ellipticity; Monge-Ampère Equations; Linearisation; Rossby-
Haurwitz Waves

1 Introduction

The importance of projecting information onto balanced states in the assimila-
tion scheme of any numerical weather prediction (NWP) model is fundamental,
and generating spurious interia-gravity waves is to be avoided. As pointed out
by Lorenc (2003, §3(b)), physical arguments are frequently used to select a set
of variables (so-called ‘control variables’ in NWP) for use in the assimilation
schemes, which decompose states into balanced and unbalanced components.
This strategy enables the background error covariances to be more readily ap-
plied than would be the case if, for example, the model variables such as horizon-
tal momentum and pressure were used. The essence of the algorithms followed
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by many centres (see Lorenc op. cit and references therein) is to choose one new
variable to represent the slowly-evolving, or balanced (Rossby wave) component
of the flow, and two other variables to represent the unbalanced component of
the flow (i.e. the gravity waves). Three such variables are sufficient to spec-
ify the initial conditions for a model based on the dry hydrostatic primitive
equations.

Naturally, there are many possible choices of variables that we can employ;
for example (see Section 2.1), vorticity (or stream function), divergence (or
velocity potential) and an unbalanced pressure (obtained as a residual from
a linear balance equation). In this decomposition the vorticity is considered
as representing the balanced component of the flow, while the divergence and
unbalanced pressure are considered to span the portion of phase space populated
by high-frequency motions. A shortcoming of this choice of variables is that they
correspond to a purely kinematic decomposition of the state, with all divergent
motion being treated as unbalanced.

Representing the balanced component of the flow by the vorticity is certainly
a reasonable first approximation for most global and mesoscale models, but it
ignores the fact that a portion of the balanced flow may reside in the divergence.
This may be especially important when attempting to relate increments in the
horizontal momentum to increments in the vertical motion and vice-versa, which
is an important coupling when moisture is considered.

In this paper, we introduce a method for deriving a set of variables for use in
data assimilation in which the balanced divergence is incorporated into the single
variable representing the slowly-evolving components of the flow. Our method
involves elliptic partial differential equations (pdes) of Monge-Ampère type,
and we investigate the conditions under which they are amenable to solution.
An advantage of our scheme is that these pdes have variable coefficients, and
consequently our method incorporates some elements of flow-dependency into
the data assimilation.

In Section 2 we give a brief review of the current method for decomposing the
flow into a balanced variable and an unbalanced variable as set out by Lorenc
et al (2000). Following this review we provide a clear explanation of the Hamil-
tonian framework and the balanced relationships that arise from this approach
(McIntyre and Roulstone (1996) and (2002), MR96 and MR02 hereafter). We
conclude this section with an outline of the non-linear balance equations that
arise from the Hamiltonian approach and derive the sets of ‘control variables’
that are naturally associated with these balance conditions.

Section 3 sets out the non-linear balance equations in terms of spherical
geometry. We introduce the condition for the non-linear pdes to be elliptic
(Courant and Hilbert 1962), and show that this condition gives rise to flow-
dependency. One of the motivations for this work is to introduce higher order
balance conditions into an incremental variational data assimilation scheme,
VAR. The incremental version of VAR uses linear equations for small incre-
ments to the state variables of the model under consideration. In most of the
operational numerical weather prediction centres a version of incremental varia-
tional data assimilation is used (Rawlins et al., 2007), and so with this in mind
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in Section 4 we introduce an increment to our balanced variable and re-derive
the balanced equations in terms of a small increment. We then have to consider
the ellipticity condition for linear pdes, which is also presented in Section 4, and
show an interesting result linking the linear pdes’ ellipticity condition to that
of the non-linear’s pdes’ conditions.

In Section 5 we perform a scale analysis for both the ellipticity condition
and the terms in the linear pdes to explore the impact of the flow dependency
with different Rossby-Haurwitz waves (Williamson et al., 1992) which are pa-
rameterised by the Burger number. The values come from the Met Office’s
2D shallow water equations model in a non-inertial framework on the sphere
(Malcolm 1996).

2 Balance and Decompositions into Balanced and
Unbalanced Variables

The aim of this section is to give an overview firstly of the current method
for decomposing the horizontal wind fields into two new uncorrelated variables,
Section 2.1, and secondly to provide an outline of the theory which enables
us to define an alternative form for the balanced variable and the associated
decomposition, Section 2.2, which comes from MR96 and MR02. The final
subsection, Section 2.3, gives a brief outline of the alternative balanced wind
field and the non-linear decomposition in coordinate free vector form.

2.1 A Decomposition Based on the Kinematics of Vortic-
ity and Divergence

The current method in use at the Met Office is outlined in Lorenc et al. (2000).
There they describe how the ‘control variables’ (that is, the variables used in
the assimilation scheme as opposed to the variables used in the NWP model)
are defined in terms of a Helmholtz decomposition of the horizontal momentum
together with a linear balance condition. Their basic strategy is to define a
(projective) transformation (u, v, p, ρ) 7→ (ψ, χ,Ap), where the variables on the
left are the two horizontal components of the wind field, the pressure, and the
density, and the three variables on the right are a stream function, a velocity
potential and an ‘unbalanced’ pressure. Then the horizontal wind field, u, is
decomposed into a balanced and an ‘unbalanced’ variable through the pair of
Poisson equations

ξ ≡ k · ∇ × u = ∇2ψ, (1a)

δ ≡ ∇ · u = ∇2χ, (1b)

where k is the local unit vertical vector, ξ is the relative vorticity, δ is the
divergence and ∇ is the gradient operator in the horizontal.
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The unbalanced pressure, Ap, is defined by subtracting the pressure, p, cal-
culated by solving the linear balance equation

∇ · (fk× u) +∇ · (γ∇p) = 0 (2)

for p given u and γ, from the total pressure. In (2), γ = ρ−1 is the specific
volume, which is usually approximated by γ = γ(z) so that (2) is a constant-
coefficient equation on each level, and f is the Coriolis parameter, defined as
f = 2Ω sin θ, where Ω is the Earth’s rotation rate and θ is the angle of latitude

such that θ ∈
[
−π
2
,
π

2

]
. The inverse transformation involves the Helmholtz

decomposition on each level

u ≡ k×∇ψ +∇χ ≡ ur + ud, (3)

where ur is the ‘balanced’ rotational part of the wind field and ud is the ‘unbal-
anced’ divergent part, and then a ‘balanced’ pressure is again calculated from
(2), and added to the unbalanced control variable Ap.

2.2 Balance Relations

In McIntyre and Roulstone (1996, 2002) an alternative Hamiltonian framework
is derived for studying balanced models in atmosphere and ocean dynamics. One
of their motivations is to study conservation laws and, in particular, models that
conserve potential vorticity. They find that a simple balance relation, which can
be thought of as a generalisation of geostrophic balance, can be defined and,
using this definition, it is then easy to see how a hierarchy of conservation
laws for potential vorticity for three different balanced models are related to
one another. In the context of shallow water theory (see, for example, Rossby
1940), the potential vorticity, q, is defined in terms of the depth, h(x, t) and
fluid velocity, u(x, t), as

q =
1

h
(f +∇× u) . (4)

McIntyre and Roulstone noted that if we work on an f -plane and define a vector
wind, which we shall write in the form

ub = ug −
α

f
(ug · ∇) (k× ug) , (5)

where ug = (g/f)k×∇h is the geostrophic wind, then substituting ub for u in
(4) yields the following expression for the potential vorticity

qb =
1

h

(
f +

g

f
∇2h+

ag2

f3
Hess(h)

)
. (6)

The term Hess(h) is the determinant of the Hessian which is the matrix of the
second order derivatives of h.

In (5), α is a real number, and is related to a in (6) by a = −2α. If
α = 0, then a = 0 and the potential vorticity, qb, involves the leading order
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contributions from the planetary rotation and from geostrophy. If α = −1
2 , then

a = 1, and qb is the expression for the potential vorticity for the semi-geostrophic
equations for shallow water flow. If α = 1 then a = −2 and the expression for
the potential vorticity corresponds to Charney-Bolin, or nonlinear, balance.

Therefore, the generalisation of geostrophy defined by (5), can be used to
define a balanced wind field that has a definite interpretation in terms of a
potential vorticity. McIntyre and Roulstone interpreted ub as a so-called con-
straint in their Hamiltonian models, and the reader is referred to their papers
for more details on this topic. It is sufficient for our purposes to interpret this
vector field in the way we have illustrated above.

2.3 Alternative Decompositions into Balanced and Unbal-
anced Variables

In this section we present non-linear balance relations derived from the balanced
wind field, ub, for the height field given either a relative vorticity, RV hereafter,
or a potential vorticity, PV hereafter. The reason for choosing these two vari-
ables is that it is known that the RV is a balanced variable in the atmosphere.
The RV is also used in the current decomposition to define the balanced stream
function. See Wlasak (2002), Wlasak et al. (2006), for discussion of PV as a
control variable.

We firstly consider the RV approach, (1a), but instead of inserting the full
wind field, u, we substitute the balanced wind field, ub. The result is

ξb ≡ k · ∇ × ub = k · ∇ ×
(
ug −

α

f
(ug · ∇) (k× ug)

)
, (7)

where ξb is the balanced RV associated with this balanced wind field.
If we consider the PV approach, we use the definition given in Section 2.2

for qb,

qb ≡ f + ξb

h
=

f + k · ∇ ×
(
ug −

α

f
(ug · ∇) (k× ug)

)
h

. (8)

Solutions of equations (7) or (8) can be used to represent the balanced ‘con-
trol variable’, but we still have to determine the two unbalanced components.
One way would be to evaluate (5) with the balanced height field that arises
from inverting either (7) or (8). Given the balanced wind field, ub, we can then
calculate the residual unbalanced component of the wind field, us, as indicated
in MR96, MR02, by

us = u− ub. (9)

From this residual we apply a Helmholtz decomposition, similar to that currently
done, to find the balanced and unbalanced variables to calculate a form of
unbalanced stream function, ψs, and an unbalanced velocity potential, χs. This
pair of equations would be

ξs ≡ k · ∇ × us = ∇2ψs, (10)

δs ≡ ∇ · us = ∇2χs, (11)
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where ξs is the residual vorticity and δs is the residual divergence.

3 Balance equations in spherical geometry

The main aim of this section is to address how (7) and (8) appear in spherical
coordinates if we are to consider these new balance equations for an operational
data assimilation system. In the next subsection we briefly summarise the com-
ponent form of the vector differential operators in spherical coordinates. From
these definitions we expand ug = (g/f)k×∇h into spherical coordinates along
with ub and hence (7) and (8). The resulting non-linear balance equations in
spherical coordinates are elliptic non-linear pdes and therefore there is a condi-
tion for a solution to exisit. In Section 3.3 we outline the theory for the solutions
to exist and derive this associated condition.

3.1 Vector Operators

The operators we require are as follows:

∇h =

(
1

a cos θ

∂h

∂λ
,

1

a

∂h

∂θ

)T

,

∇ · u ≡
(

1

a cos θ

∂u

∂λ
− 1

a

∂ cos θv

∂θ

)
,

and

∇2h =
1

a2 cos2 θ

∂2h

∂λ2
+

1

a2
∂2h

∂θ2
− 1

a2
tan θ

∂h

∂θ
.

The kth component of the curl is defined by

k · ∇ × u ≡ 1

a cos θ

(
∂v

∂λ
− ∂

∂θ
(cos θu)

)
.

In all of the definitions a is the radius of the Earth, 6371220m and λ is the angle
of longitude, λ ∈ [0, 2π ).

An important difference between the Cartesian coordinates and the spherical
counterparts is the differentiation of the directional unit vectors with respect to
the spherical coordinates (Bachelor 1967). The two we require are

∂i

∂λ
= sin θj,

∂j

∂λ
= − sin θi. (12)
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3.2 Higher order balance equations

The two components of the geostrophic wind are thus

ug = − g

af

∂h

∂θ
, and vg =

g

af cos θ

∂h

∂λ
. (13)

Recalling the definition for ub,

ub ≡ ug −
α

f
(ug · ∇) (k× ug) ,

and expanding using the operators defined earlier gives

ub ≡ ug −
α

f

(
ug

a cos θ

∂vg
∂λ

+
vg
a

∂vg
∂θ

+
tan θ

a
u2g

)
, (14)

vb ≡ vg +
α

f

(
ug

a cos θ

∂ug
∂λ

+
vg
a

∂ug
∂θ

− tan θ

a
ugvg

)
, (15)

where the terms involving tan θ occur as a result of the metric terms, (12).
We now expand the geostrophic wind components in (14) and (15) using

(13), to give

ub = − g

af

∂h

∂θ
− g2α

a3f3 cos2 θ

(
∂h

∂λ

∂2h

∂θ∂λ
− ∂h

∂θ

∂2h

∂λ2

+ tan θ

((
∂h

∂λ

)2

+ cos2 θ

(
∂h

∂θ

)2
)

− β

f

(
∂h

∂λ

)2
)
, (16)

vb =
g

af cos θ

∂h

∂λ
+

g2α

a3f3 cos θ

(
∂h

∂θ

∂2h

∂θ∂λ

− ∂h

∂λ

∂2h

∂θ2
+ tan θ

∂h

∂θ

∂h

∂λ
+
β

f

∂h

∂λ

∂h

∂θ

)
, (17)

where

β ≡ df

dθ
. (18)

The final step to arrive at the non-linear pdes depends on which variable
we choose for the balanced component. If we use the RV then we obtain the
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following Monge-Ampère equation for h

ξb =
g

f
∇2h+

gβ

f2a2
∂h

∂θ
+

2g2α

f3a4 cos2 θ

((
∂2h

∂θ∂λ

)2

− ∂2h

∂λ2
∂2h

∂θ2
+ 2 tan θ

∂h

∂λ

∂2h

∂θ∂λ
+ tan2 θ

(
∂h

∂λ

)2

+ sin θ cos θ
∂h

∂θ

∂2h

∂θ2

+
1

2

((
∂h

∂λ

)2

+ cos2 θ

(
∂h

∂θ

)2
)

+
β

f

(
2
∂h

∂θ

∂2h

∂λ2
− 2

∂h

∂λ

∂2h

∂λ∂θ
− 2 tan θ

(
∂h

∂λ

)2

+ 2
β

f

(
∂h

∂λ

)2

− 3

2
sin θ cos θ

(
∂h

∂θ

)2
)

− 1

2f

∂β

∂θ

(
∂h

∂λ

)2
)
. (19)

An important feature of (19) is that all higher order derivatives of h – which
enter when differentiating the balanced wind fields (14) and (15) – cancel above
second order. Equation (19) is the full version of the pde at the heart of our
scheme; in Section 5 we shall perform a scale analysis to see when it is possible
to remove certain terms.

If we consider that the balanced component of the flow is determined by
the PV instead of the relative vorticity, then we obtain another Monge-Ampère
equation of the form

qb =
1

h

(
f + ξb

)
(20)

Both equations (19) and (20) are non-linear elliptic pdes and as such there
are certain conditions for their solutions to exist. In the following subsection we
introduce the conditions for the solutions to (19) and (20) to exist, and show
that these conditions are flow dependent.

3.3 Ellipticity Theory: Part I

The condition that we use here comes from Houghton (1968), which is for spher-
ical coordinates. The Cartesian version can be found in Courant and Hilbert
(1962). To derive the spherical version of this solvability condition we use the
change of variable as set out in Houghton (1968).

The general definition of a Monge-Ampère equation is

A+Bρ+ 2Cν +Dµ+ E
(
ρµ− ν2

)
= 0, (21)
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where

ρ =
∂2h

∂λ2
, µ =

∂2h

∂θ2
, ν =

∂2h

∂λ∂θ
. (22)

The coefficients A, B, C, D and E in (21) are given functions of (λ, θ, h, p, q),
where p = ∂h/∂λ, q = ∂h/∂θ.

The classification of (19) and (20) is determined by transforming the pde
into its canonical form. This then determines the characteristics of the pde. For
elliptic problems we require the characteristics to be complex and therefore

BD − C2 −AE > 0. (23)

The above condition is the ellipticity condition, (Courant and Hilbert 1962).
As in Houghton (1968), we let x = λ and y = θ and then for equation (19)

we have

A = −ξb − tan θg

a2f

∂h

∂θ
+

2g2α

f3a4 cos2 θ
tan2 θ

(
∂h

∂λ

)2

+
g2α

f3a4 cos2 θ

((
∂h

∂λ

)2

+ cos2 θ

(
∂h

∂θ

)2
)

+
4β2αg2

f5a4 cos2 θ

(
∂h

∂λ

)2

− 4βαg2 tan θ

f4a4 cos2 θ

(
∂h

∂λ

)2

− 3βαg2 tan θ

f4a4 cos2 θ

(
∂h

∂θ

)2

− ∂β

∂θ

αg2

f4a4 cos2 θ

(
∂h

∂λ

)2

,

+
gβ

f2a2
∂h

∂θ

B =
g

fa2 cos2 θ
+

4βαg2

f4a4 cos2 θ

∂h

∂θ
,

C =
2g2α tan θ

f3a4 cos2 θ

∂h

∂λ
− 2βg2α

f4a4 cos2 θ

∂h

∂λ
,

D =
g

fa2
+

2g2α

f3a4
tan θ

∂h

∂θ
,

E = − 2g2α

f3a4 cos2 θ
.

Recalling the definition of the geostrophic winds, (13), the ellipticity condition
is

f

2
+

α2

fa2
(
v2g + u2g

)
− 3βα

fa
ug +

βα2 tan θ

f2a2
u2g

+

(
2β2α

f3a2
− ∂β

∂θ

2α2

f2a2

)
v2g > αξb. (24)

The condition in (24) is true for all choices of α as at no point have we divided
by α. It is clear to see that for the geostrophic case, α = 0, the ellipticity
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condition is that for a Poisson equation, which is always satisfied since 1 > 0,
and therefore (20) with α = 0 is robustly elliptic.

For the PV balance equation, (20), the coefficients are similar to those for
(19), with a small modification to A. As a consequence of the additional terms
in A, the ellipticity condition for (20) becomes

(1 + 2α) f

2
+

α2

fa2
(
v2g + u2g

)
− 3βα

fa
ug +

βα2 tan θ

f2a2
u2g

+

(
2β2α

f3a2
− ∂β

∂θ

2α2

f2a2

)
v2g > αhqb = α

(
f + ξb

)
.

Due to the αf terms being present on both sides of the equation we therefore
have the same condition for the PV as we had for the RV approach.

We also require boundary conditions to ensure that the elliptic equations
have a solution. For these problems on the sphere we have periodicity of h in
the λ direction, whilst in the θ direction there is a choice of conditions. The
first is that because the λ direction is not defined at the poles, we cannot have
any change in h in the direction of λ, that is, ∂h/∂λ = 0. An alternative is to
assume periodicity of h with respect to θ across the poles. Given these boundary
conditions it follows that as long as the ellipticity condition (24) is satisfied, then
there exist solutions to equations (19) and (20).

Most operational weather prediction centres use an incremental variational
data assimilation scheme, such as the one developed at the Met Office (Rawlins
et al., 2007). For the higher order balance conditions, (19) and (20), to be of use
in an incremental VAR scheme we require linear equations for perturbations. In
the next section we address how to linearise all of the non-linear relations that
we have used to derive (19) and (20), and we derive the associated higher order
linear balance equations.

4 Linearisation

This section is comprised of two parts. The first part deals with the consequences
of introducing a linearisation to the height field, and hence to ub and the balance
equations (19) and (20). The second part deals with the ellipticity conditions
for the linear pdes. There is an interesting feature of the ellipticity conditions
for the linear versions of (19) and (20), which relates the base state we choose
to linearise about to the full non-linear pdes, and we discuss this at the end of
this section.

4.1 Higher Order Linear Balance Equations

We seek a balanced height increment, h′. This is accomplished by introducing
a base state height, h̄, such that h = h̄ + h′. As a consequence of this the
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geostrophic winds can be defined as ug = ūg + u′
g, or

ūg = − g

fa

∂h̄

∂θ
, u′g = − g

fa

∂h′

∂θ
, (25)

v̄g =
g

fa cos θ

∂h̄

∂λ
, v′g =

g

fa cos θ

∂h′

∂λ
. (26)

This then enables (5) to be linearised as

ub′ ≡ u′
g −

α

f

(
(ūg · ∇)

(
k× u′

g

)
+
(
u′
g · ∇

)
(k× ūg)

)
. (27)

In spherical coordinates, the component form for (27) is

ub′ = u′g −
α

f

(
ūg

a cos θ

∂v′g
∂λ

+
u′g

a cos θ

∂v̄g
∂λ

+
v̄g
a

∂v′g
∂θ

+
v′g
a

∂v̄g
∂θ

+
2 tan θ

a
u′gūg

)
− 2

αβ

f2
v̄gv

′
g, (28)

vb′ = v′g +
α

f

(
ūg

a cos θ

∂u′g
∂λ

+
u′g

a cos θ

∂ūg
∂λ

+
v̄g
a

∂u′g
∂θ

+
v′g
a

∂ūg
∂θ

− tan θ

a

(
u′g v̄g + ūgv

′
g

))
− αβ

f2
(
ūgv

′
g + u′g v̄g

)
. (29)

The full expressions are given here to highlight the fact that this alternative
approach is flow-dependent. An important feature of the expression (29) is that
if the geostrophic winds are changing over short distances, then their derivatives
are large and could make the extra terms, apart from the Laplacian, significant
and these should therefore not be ignored.

If we compute the divergence of the balanced wind field, we find

∇ · ub′ ≡ ∇ ·
(
u′
g −

α

f

(
(ūg · ∇)

(
k× u′

g

)
= −α

f

(
(ūg · ∇) ξ′g +

(
u′
g · ∇

)
ξ̄g
)
,

and we note that ub′ contains a balanced divergent component. (This can also
be easily verified for the full field version as well.)

To derive the linearised versions of (19) we substitute ub′ for u in (1a). The
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resulting linear pde for the balanced height increment h′ is

ξb′ ≡ g

f
∇2h′ +

gβ

f2a2
∂h′

∂θ
+

2g2α

a4f3 cos2 θ

(
2
∂2h̄

∂θ∂λ

∂2h′

∂θ∂λ

− ∂2h̄

∂λ2
∂2h′

∂θ2
− ∂2h̄

∂θ2
∂2h′

∂λ2
+ 2 tan θ

∂2h̄

∂θ∂λ

∂h′

∂λ

+ 2 tan θ
∂h̄

∂λ

∂2h′

∂θ∂λ
+ 2 tan2 θ

∂h̄

∂λ

∂h′

∂λ
+ cos2 θ

∂h̄

∂θ

∂h′

∂θ

+
∂h̄

∂λ

∂h′

∂λ
+ sin θ cos θ

(
∂2h̄

∂θ2
∂h′

∂θ
+
∂h̄

∂θ

∂2h′

∂θ2

)
+
β

f

(
2
∂h̄

∂θ

∂2h′

∂λ2
+ 2

∂h′

∂θ

∂h̄

∂λ2
− 2

∂h̄

∂λ

∂2h′

∂λ∂θ

− 2
∂h′

∂λ

∂2h̄

∂λ∂θ
+ 4

β

f

∂h̄

∂λ

∂h′

∂λ
− 3 sin θ cos θ

∂h̄

∂θ

∂h′

∂θ

− 1

f

∂β

∂θ

∂h̄

∂λ

∂h′

∂λ

))
. (30)

For the PV approach we have to modify (8) slightly as it is non-linear in
terms of h′. The linearised version for qb is given by

qb′ ≡ ξb′

h̄
−
(
f + ξ̄b

)
h̄2

h′, (31)

where ξ̄b is (1a) evaluated with ūb which is given by

ūb ≡ ūg −
2α

f
(ūg · ∇) (k× ūg) . (32)

In its component form this is

ūb ≡ ūg −
2α

f

(
ūg

a cos θ

∂v̄g
∂λ

+
v̄g
a

∂v̄g
∂θ

+
tan θ

a
ū2g

)
− αβ

f2
v̄2g ,

v̄b ≡ v̄g +
2α

f

(
ūg

a cos θ

∂ūg
∂λ

+
v̄g
a

∂ūg
∂θ

− tan θ

a
ūg v̄g

)
− αβ

f2
ūg v̄g.

This then gives us two linear pdes, (30) for the RV method and (31) evaluated
with (30) for the PV method.

As with the non-linear pdes (19) and (20), there is a similar condition for
(30) and (31) to have solutions. In the next subsection we introduce the theory
for linear pdes and the condition for solvability.

12



4.2 Ellipticity Theory: Part II

The general form for linear pdes differs slightly from that of the non-linear
Monge-Ampère equation, as shown below

A
∂2h′

∂λ2
+B

∂2h′

∂θ∂λ
+ C

∂2h′

∂θ2
+D

∂h′

∂λ

+ E
∂h′

∂θ
+ Fh′ +G = 0, (33)

where A, . . . , G are functions of
(
θ, λ, h̄

)
and the derivatives of h̄. From this,

the linear pde is said to be elliptic if the condition

B2 − 4AC < 0, (34)

holds (Garabedian 1967).
As for the nonlinear case, we also require boundary conditions to ensure that

the equations have a solution. For this problem we have periodicity in the λ
direction, whilst in the θ direction we have two choices: the first is ∂h′/∂λ = 0;
the second is periodicity of h′ with respect to θ across the poles.

Given these boundary conditions it can be shown, after some manipulations
(see Fletcher (2004)), that the ellipticity condition for (30) is

αξb
(
h̄
)
<
f

2
+

α2

a2f

(
v̄2g + ū2g

)
− 3βα

fa
ūg +

βα2 tan θ

f2a2
ū2g

+

(
2β2α

f3a2
− ∂β

∂θ

2α2

f2a2

)
v̄2g , (35)

where ξb
(
h̄
)
is (19) evaluated with h̄.

For equation (31) it can be shown, as an extension to the ellipticity condition
for (30), that the ellipticity condition for the PV equation is

αqb
(
h̄
)
h̄ <

(1 + 2α) f

2
+

1

a2f

(
v̄2g + ū2g

)
− 3βα

fa
ūg

+
βα2 tan θ

f2a2
ū2g +

(
2β2α

f3a2
− ∂β

∂θ

2α2

f2a2

)
v̄2g , (36)

where qb
(
h̄
)
is (20) evaluated with h̄.

We observe that the ellipticity conditions for the variable coefficient linear
equations are identical in functional form to the ellipticity conditions for the
nonlinear Monge-Ampère equations in Section 3, evaluated with h̄. Therefore
the ellipticity conditions, (35) and (36), require the base state height field to
satisfy the ellipticity conditions for the non-linear forms, (24) and (25), in order
for a solution for the increment to exist. In other words, as one might expect,
because of the flow dependencies of the transformation, the base state height
field, h̄, plays a crucial role in the use of the transformation.

13



5 Scale Analysis

Given the result indicated in the last section we now perform a scale analysis
on the new balance equations to identify for which types of flows these balance
equations give us extra information. We also consider the terms in (30) and
(31) to see if all the terms are significant.

The values we use to assess the effects the flow dependency has on the
ellipticity conditions and on the coefficients come from three different runs of
the Met Office’s 2-D shallow water equations model, initialised by different
Rossby-Haurwitz waves (Williamson et al., 1992). The Met Office’s shallow
water model runs on an Arakawa C-grid and more details of the model can be
found in Malcolm (1996).

The initial conditions for a Rossby-Haurwitz wave are defined by

h =
1

g

(
gh0 + a2A (θ) + a2B (θ) cosRλ

+ a2C (θ) cos 2Rλ
)
,

u = aω cos θ + aK cosR−1 θ
(
R sin2 θ − cos2 θ

)
× cosRλ,

v = −aKR cosR−1 θ sin θ sinRλ,

ζ = 2ω sin θ −K sin θ cosR θ
(
R2 + 3R+ 2

)
× cosRλ,

where h0 is the height at the poles and A (θ) , B (θ) and C (θ) are given by

A (θ) =
ω

2
(2Ω + ω) cos2 θ +

1

4
K2 cos2R θ [(R+ 1)

× cos2 θ +
(
2R2 −R− 2

)
− 2R2 cos−2 θ

]
,

B (θ) =
2 (Ω + ω)K

(R+ 1) (R+ 2)
cosR θ

[(
R2 + 2R+ 2

)
− (R+ 1)

2
cos2 θ

]
,

C (θ) =
K2

4
cos2R θ

[
(R+ 1) cos2 θ − (R+ 2)

]
,

and ω, K and R are three parameters that determine the characteristics of
the Rossby-Haurwitz wave along with the initial height at the poles, h0. The
parameter R is the wavenumber and, for the results that are shown here, is
taken to be 4 as this is the highest stable wave number for this type of wave
in the shallow water model (Hoskins, 1973). The parameter h0, determines the
shortest height for the wave, ω determines the underlying zonal flow from West
to East and K controls the amplitude of the wave.

We consider three sets of values for the parameters that generate flows with
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different Burger numbers, Bu. This number is given by

Bu ≡
√
gh

fL
=
LR

L
, (37)

where L is the horizontal length scale and LR is the Rossby radius of deforma-
tion.

The three test cases generate different values for Bu at different latitudes. A
more detailed study of the change in the Burger number for each of the following
three test cases can be found in Wlasak (2002).

The first test case, TC1 hereafter, has the parameters h0 = 50m and ω =
K = 7.848 × 10−7s−1. The type of flow that is generated has a low Burger
number and a difference in the height from the pole to the equator of 200m.

The second test case, TC2, has the parameters h0 = 8000m and ω = K =
7.848 × 10−6s−1. This flow has a high Burger number and is quite fast. The
difference in the height from the pole to the equator of 2500m.

The final test case, TC3, uses the parameters h0 = 8000m and ω = K =
7.848× 10−7s−1. The flow this wave generates has a high Burger number with
the same difference in the height profile from the pole to the equator as TC1
but the wave is slower than that of TC1.

The values that are used to perform the scale analysis are taken from the
computed h field from each of the three test cases 72hrs after the start of the
model run. Given the height field, a central differencing is used to calculate
the geostrophic winds at the h points on the grid and the relevant derivatives.
From these values we obtain a zonal average at 45◦N. We also use the value for
f at this latitude, f = 1.0313× 10−4s−1. The resulting values are displayed in
Table 1 for all three test cases.

Before we perform the major parts of the scale analysis we need to consider
the β term in the equations, to see if it should be retained. We assume that
the value for β in the mid-latitudes is 10−11 (Browning and Kreiss, 2002). The
main point to note here is that in the derivations of the equations we have taken
the derivative of f−1 and not f itself. This has given us an extra f−1 in the
equations. We start by considering a general term in the Hessian component
(which includes all the terms after the first β term following the Laplacian) in
(30). This is

g2

f3a4
≈ 102

10−121024
≈ 102

1012
≈ 10−10.

We now consider the terms in the Hessian that involve β, these are

g2β

f4a3
≈ 10210−11

10−161018
≈ 10−9

102
≈ 10−11.

Therefore the β terms are an order of magnitude smaller than those that are
in the rest of the Hessian part of (30). As we show in the scale anaysis that
follows, the equations are dominated by the Laplacian terms and therefore the
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Table 1: Scale Analysis 1: Table of average values for the scale analysis, where
h̄ has units m, ūg and v̄g have units ms−1 and their derivatives are in s−1.

Test Case h̄ ūg v̄g
∂ūg
∂λ

∂v̄g
∂λ

∂ūg
∂θ

1 165.79 3.48 2.73 6.72×10−7 1.69×10−6 1.14×10−6

2 9.10×103 27.94 26.72 5.83×10−6 1.66×10−6 5.30×10−6

3 8.10×103 3.65 2.22 6.45×10−7 1.38×10−6 2.78×10−7

β terms being an order smaller than the Hessian components means that for
the time being we shall drop these terms from the equations.

The aim of the scale analysis of the remaining terms is to answer the following
three questions

• For what types of flows may the ellipticity conditions fail?

• When, if at all, are the extra terms significant with respect to the Lapla-
cian?

• Is there any difference between the RV and the PV approach?

In the next two subsections we summarise the scale analysis and calculate the
values for the coefficients in both the ellipticity condition and in the equations
themselves, and then we shall return to the questions posed above in Section 6.

5.1 Scale Analysis of the Ellipticity Conditions

In this subsection we are concerned with the coefficients of the ellipticity con-
ditions. We present four tables that contain approximations for all three test
cases for both the RV and PV approach. Tables 2 and 4 contain approxima-
tions to the B2 term in the ellipticity condition for the RV and PV methods
respectively. Tables 3 and 5 contain the approximations for the coefficients in
the 4AC term for the RV and PV methods respectively. All of these tables do
not include the β terms which we have just shown to be an order of magnitude
smaller than those with the Hessian component.

5.1.1 RV Approach

A clear feature in Table 2 is the difference, in magnitude, of the coefficients for
TC2 compared to the other two test cases. The importance of this feature is
that it highlights the possibility that flows similar to TC2 could have problems
satisfying the ellipticity condition.

Before we look at the terms that make up 4AC we must note that the first
row in both Table 3 and Table 5 are the values of the Laplacian term. Given
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Table 2: Scale Analysis 2: Scale Analysis of the Coefficients in B2 for the RV
Method.

Coefficients
(
m2s−6

)
TC1 TC2 TC3

16g2
(
∂ūg
∂λ

)2

6.95× 10−10 5.23× 10−8 6.41× 10−10

−32g2 sin θ
a

∂ūg
∂λ

v̄g −6.27× 10−10 −5.32× 10−8 −4.89× 1010

16g2 sin2 θ
a2

v̄2g 1.41× 10−10 1.35× 10−8 2.46× 10−10

B2 1.82× 10−10 1.26× 10−8 2.46× 10−10

Table 3: Scale Analysis 3: Coefficients in 4AC for the RV Method.

Coefficients
(
m2s−6

)
TC1 TC2 TC3

4g2f2 cos2 θ 2.05× 10−6 2.05× 10−6 2.05× 10−6

8g2f cos θ
a

∂ūg
∂θ

4.53× 10−8 2.10× 10−7 1.10× 1010

−8g2f cos θ
∂v̄g
∂λ

−9.48× 10−8 −9.32× 10−7 −7.76× 10−8

−16g2 cos θ
∂ūg
∂θ

∂v̄g
∂λ

−2.10× 10−9 −9.56× 10−8 −4.16× 10−10

−16g2 sin θ cos θ
a

∂ūg
∂θ

ūg −4.80× 10−10 −1.79× 10−8 −1.23× 10−8

−8g2f sin θ cos θ
a ūg −2.17× 10−8 −1.74× 10−7 −8.83× 10−8

4AC 1.97× 10−6 1.04× 10−6 1.89× 10−6
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Table 4: Scale Analysis 4: Scale Analysis of the Coefficients in B2 for the PV
Method.

Coefficients
(
s−6
)

TC1 TC2 TC3

16g2
(
∂ūg
∂λ

)2

h̄2
2.53× 10−14 6.31× 10−16 9.73× 10−18

−
32g2 sin θ

∂ūg
∂λ

v̄g

ah̄2
−2.28× 10−14 −6.42× 10−16 −7.42× 1018

16g2 sin2 θv̄2g
a2h̄2

5.13× 10−15 1.63× 10−16 1.42× 10−18

B2 7.63× 10−15 1.52× 10−16 3.73× 10−18

this, we see that for TC1 and TC3 this term is a factor of 102 larger than all
of the other coefficients in the 4AC term. However, for TC2 this term is only
a factor of 10 larger than the others. We can therefore tentatively say that for
TC2 the Laplacian term is affected by the extra terms.

If we now consider the approximate values for 4AC, last row in Table 3,
we see that for TC1 and TC3 this does not differ much from the value for the
Laplacian. However, for TC2 we see a significant change between the two lines.
Therefore we are seeing signs that for flows similar to TC2 then the extra terms
involved in the balance equation (30) are having an affect on the ellipticity
condition.

Finally if we compare the approximate value for the B2 term, bottom row
of Table 2, we see that for TC1 and TC3 the 4AC term is a factor of 104 larger
than the B2 term suggesting that the extra terms may not be that significant
with respect to the ellipticity condition. However, this does not appear to be
the case for TC2 where we only have a difference of 102 suggesting that flows
similar to TC2 do require the extra terms but also that flows much faster or
rapidly changing could violate the condition.

5.1.2 PV Approach

If we now consider the B2 term for the PV approach, Table 4, we see an affect
due to the inclusion of the height in the calculation of the balanced variable.
We see this impact on all three terms in the B2 component of the ellipticity
condition with TC1 now having a larger value than TC2. This may indicate
that for the PV approach more of the flow dependicy is introduced into the
ellipticity condition. Therefore there is an extra component now, the base state
height, which could cause the condition to be violated.

The impact of the introduction of the height field in the denominator is also
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Table 5: Scale Analysis 5: Scale Analysis of the Coefficients in 4AC for the PV
Method

Coefficients
(
s−6
)

TC1 TC2 TC3

4g2f2 cos2 θ
h̄2

7.45× 10−11 2.47× 10−14 3.11× 10−14

8g2f cos θ
∂ūg
∂θ

h̄2
1.65× 10−14 2.53× 10−15 1.67× 1016

−
8g2f cos θ

∂v̄g
∂λ

h̄2
−3.45× 10−14 −1.13× 10−14 −1.18× 10−15

−
16g2 cos θ

∂ūg
∂θ

∂v̄g
∂λ

h̄2
−7.65× 10−16 −1.15× 10−15 −6.37× 10−18

−
16g2 sin θ cos θ

∂ūg
∂θ

ūg

ah̄2
−1.75× 10−16 −2.16× 10−16 −1.87× 10−18

−8g2f sin θ cos θūg
ah̄2

−7.89× 10−13 −2.10× 10−15 −3.47× 10−16

4AC 7.36× 10−11 1.25× 10−14 2.97× 10−14

clear in the 4AC terms displayed in Table 5. Here we see that the Laplacian
is still dominating the condition for TC1 but for TC2 this is not so. For the
flows similar to TC3 we see that the effect is minimal and that even for the PV
approach the ellipticity condition is dominated by the term involving the scaled
Laplacian.

If we now compare the approximate values for B2 and 4AC for the PV
method we see that for TC1 and TC3, 4AC is a factor of 104 larger than B2

but for TC2 this difference is approximately 102, suggesting that for TC2 we
are seeing a possible affect on the ellipticity condition from the extra terms.

The important feature to note for this analysis is that we only took one
value for the height field. Over the whole globe the values of h change quite
significantly indicating that the ellipticity condition could be violated by heights
not much larger than those for TC2.

5.2 Scale Analysis of the Linear Partial Differential Equa-
tions

In this subsection there are two tables, Table 6 contains the values for the co-
efficients in (30), and Table 7 has the values for (31), both with the β terms
removed. In Tables 6 and 7 we have highlighted which coefficients are multiply-
ing second order derivatives; this is to remind us that these are the coefficients
in the ellipticity condition. The first three rows of both tables are the coeffi-
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Table 6: Scale Analysis 6: Scale Analysis of the Coefficients in the Differential
Equation for the RV Method.

Coefficient
(
ms−3

)
Term TC1 TC2 TC3

gf hλλ 1.01× 10−3 1.01× 10−3 1.01× 10−3

sin θ cos θfg hθ 5.06× 10−4 5.06× 10−4 5.06× 10−4

cos2 θfg hθθ 5.06× 10−4 5.06× 10−4 5.06× 10−4

2g
∂ūg
∂λ

hθλ 2.62× 10−5 2.29× 10−4 2.53× 10−5

2g cos θ
∂v̄g
∂λ

hθθ 2.34× 10−5 2.30× 10−5 1.94× 10−5

2g
∂ūg
∂θ

hλλ 2.24× 10−5 1.04× 10−4 5.45× 10−6

4g sin θ
a v̄g hθλ 1.19× 10−5 1.16× 10−4 9.67× 10−6

2g sin θ cos θ
a ūg hθθ 5.36× 10−6 4.30× 10−5 5.62× 10−6

(4g tan θ sin θ + 2g cos θ)
a v̄g hλ 1.78× 10−5 1.75× 10−4 1.45× 10−5

2g cos2 θ
a ūg hθ 5.36× 10−6 4.30× 10−6 5.62× 10−6

4g tan θ
∂ūg
∂λ

hλ 2.64× 10−5 2.29× 10−4 2.53× 10−5

2g sin θ cos θ
∂ūg
∂θ

hθ 1.12× 10−5 5.20× 10−5 2.73× 10−6
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cients of the Laplacian and it is with these values that we compare the other
coefficients.

Starting with TC1 we see that the Laplacian terms are a factor of 10 larger
than any of the terms arising from the higher order balance. However, of the
extra nine terms only two are a factor of 102 smaller than the Laplacian. How-
ever, for TC3 we see that there are five terms that are factor of a 102 smaller
than the Laplacian. This suggests that the extra terms are large enough to be
considered of some significance for TC1. For TC3, however, only four terms are
a factor of 10 smaller, suggesting that it may not be necessary to include all of
the extra terms.

For TC2, however, there are four of the nine terms which are the same size as
that of Laplacian, clearly showing that for these types of flows the extra terms
are quite important and should be used. Of the remaining five terms there is
only one that is a factor of 102 smaller than the Laplacian and is multiplying a
first order derivative term.

If we now consider the coefficients of the pde for the PV approach we have
an extra term in this table, Table 7 last row, which is due to the linearisation
of the PV.

The first noticeable feature of this table is that the term from the lineari-
sation is the largest coefficient for TC1. This suggests that there could be a
difference in the results using the PV instead of the RV for this test case. For
the other two test cases it is camparable in magnitude to that of the Laplacian;
this suggests that this is a significant part of the approximation.

If we consider the remaining terms for the three test cases then we see that
for TC1 there are five terms that are a factor of 10 smaller than the Laplacian
and four that are a factor of 102 smaller. The same is also true for TC3. For
TC2 we have five terms that are the same magnitude as the smallest terms in
the Laplacian, with the remaining four terms only a factor of 10 smaller. This
would suggest that we again would have to consider all the terms when using
the PV approach for TC2, but for TC1 and TC3 then there are some terms
that could be dropped. An important thing to remember here is that if we do
drop any terms from the equation we have to be consistent and remove the same
terms from ξb

(
h̄
)
and this may affect the summaries that we have presented

here.
In the next section we use these summaries to answer the three questions

which were posed at the beginning.

6 Conclusions and Further Work

In this paper we have derived two alternative methods for capturing the bal-
anced part of atmospheric flows. These two methods are based upon results
from MR96 and MR02 where a balanced wind field, ub, is defined which has
an associated conserved potential vorticity. These two alternative methods are
based upon considering either the relative vorticity or the potential vorticity
associated with these balanced wind fields. These conditions result in either a
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Table 7: Scale Analysis 7: Scale Analysis of the Coefficients in the Differential
Equation for the PV Method.

Coefficient, s−3 Term TC1 TC2 TC3

gf
h̄

hλλ 6.09× 10−6 1.11× 10−7 1.25× 10−7

sin θ cos θfg
h̄

hθ 3.05× 10−6 5.56× 10−8 6.24× 10−8

cos2 θfg
h̄

hθθ 3.05× 10−6 5.55× 10−8 6.23× 10−8

2g
∂ūg
∂λ
h̄

hλθ 1.59× 10−7 2.51× 10−8 3.12× 10−9

2g cos θ
∂v̄g
∂λ

h̄
hθθ 1.44× 10−7 2.53× 10−9 2.36× 10−9

2g
∂ūg
∂θ
h̄

hλλ 1.35× 10−7 1.14× 10−8 6.73× 10−10

4g sin θv̄g
ah̄

hλθ 7.17× 10−8 1.28× 10−8 1.19× 10−9

2g sin θ cos θūg
ah̄

hθθ 3.23× 10−8 4.73× 10−9 6.94× 10−10

(4g tan θ sin θ + 2g cos θ) v̄g
ah̄

hλ 1.08× 10−7 1.92× 10−8 1.79× 10−9

2g cos2 θūg
ah̄

hθ 3.23× 10−8 4.73× 10−9 6.94× 10−10

4g tan θ
∂ūg
∂λ

h̄
hλ 1.59× 10−7 2.50× 10−8 3.12× 10−9

2g sin θ cos θ
∂ūg
∂θ

h̄
hθ 6.76× 10−8 5.71× 10−9 3.37× 10−10

a2f2 cos2 θ

(
f + k · ∇ × ūc

g

h̄2

)
h 8.68× 10−4 2.58× 10−7 3.10× 10−7
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Monge-Ampère equation that determines a balanced height field if we consider
the non-linear version of ub, or a linear elliptic pde for a balanced height incre-
ment if we consider the linearised version of the balanced wind field, ub′. We
showed that the ellipticity conditions for both types of pdes had a physical sig-
nificance . However, for the linearised equation we still required the base state
height, h̄, to satisfy the nonlinear ellipticity condition for a solution to exist.

In the last section we performed a scale analysis of the ellipticity condition
using three different Rossby-Haurwitz waves with the Met Office’s 2D shallow
water equations model on the sphere. At the beginning of Section 5 we posed
three questions about the ellipticity condition and the linear pdes. We now
present conclusions to these questions.

The first question was: for what types of flows may the ellipticity conditions
fail? The main answer to this question is the same for both the RV and PV
method. Flows much faster than TC2, but also flows which are rapidly changing
over small distances, could cause the B2 term to grow, which we require to
be smaller than the 4AC term. If not, then the ellipticity condition would be
violated. We must also recall that these derivatives are in the 4AC term, besides
the Laplacian coefficients, and could counteract the effect in the B2 term.

Question two was: when, if at all, are the extra terms significant with respect
to the Laplacian? We answer this separately for the RV and PV method. For the
RV method the results for TC2, Table 6, show that we should use all the extra
terms for flows of this type, flows that are not dominated by the geostrophic
flow, as these are comparable with the Laplacian. This is not the case for
TC3 where we have geostrophic flow dominating and the extra terms are quite
small compared to the Laplacian. For TC1 we see that some of the terms are
comparable to the Laplacian and so suggests including all the terms.

For the PV method we have the same conclusions that we had for the RV
method for TC2. Unlike for the RV method for TC3, half of the extra nine
terms are a factor of 10 smaller than the Laplacian compared to only two for
the RV method therefore we would have to consider using the extra terms when
using the PV. TC1’s results are quite similar to those for the RV method and
so we say that all of the terms are significant to the Laplacian.

The final question was: is there any difference between the RV and PV
approach? The main answer is clearly visable in the bottom row of Table 7
where we have the extra terms arising from the linearisation to the PV. For
TC1 this dominates the scale analysis suggesting that for this type of flow we
would have different results between the RV and the PV method. For the other
two test cases we have this term the same size as the Laplacian, suggesting that
there may not be much difference between the two.

Therefore our overall conclusions are that for flow similar to TC2, high
Burger number with fast travelling, tall waves, we would have to use all of
the terms from the higher order balance and for flows much faster or rapidly
changing in height over short distances then the ellipticity condition could be
violated.

For flows similar to TC1, low Burger number with short heights, then we
suggest using the extra terms but we also strongly suggest using the PV ap-
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proach as the extra factor from the linearisation of the potential vorticity is
significantly larger than the Laplacian term.

The third test case, high Burger number, high height but slow wave, shows
signs that the extra terms may not be that significant when considering the RV
method but are slightly more significant if considering the PV approach. The
Laplacian could, however, be sufficient for this type of near geostrophic flow.

In summary in this paper we have presented a hierachy of balance equations
in both non-linear and linearised form which have come from a Hamiltonian
framework derived in McIntyre and Roulstone (1996) and (2002). The advantage
of these balance relationships is that they are flow dependent and are compatible
for certain flow patterns with a data assimilation framework.

The non-linear balance relationships are in the form of Monge-Ampère equa-
tions which have an associated ellipticity condition which guarantees a solution
if this conidtion is not violated. The ellipticity condition has enabled us to in-
vestigate when the flow dependency of the associated balanced decomposition
may fail. The non-linear balance equations are second order approximations to
geostrophy on the sphere and we have been able to test these conditions with
idealised data to see the scale of the second order terms and when they may
have an influence on the balance equations.

It should be noted that the ellipticity condition for the non-linear balance
equations is similar in form to those shown in Knox (1997), but here we have
not ignored the metric terms referred to in Knox (1997) as we have shown these
to be a vital part of the ellipticity condition for certain types of flows.

One final remark about the methods presented in this paper is again associ-
ated with the ellipticity property, but now with the physical significance if the
conditions fail. The ellipticity conditions presented in Sections 3 and 4 are in
terms of a general α that could take the values 0, −0.5 or 1 depending on which
type of balance is sought. It was remarked that for the case α = 0 (geostrophic
balance), the solution is robust, since the ellipticity condition is always satisfied;
however, for the other two situations, α = −0.5 (semi-geostrophic balance) and
α = 1 (Charney-Bolin balance), the ellipticity conditions are flow dependent
and the solutions are not always guaranteed to exist. Our understanding is that
when the ellipticity condition is not satisfied for either of the flow dependent
cases, then this is simply informing us that the flow is not in Charney-Bolin
balance or semi-geostrophic balance; however, there may be some part of the
flow that is in geostrophic balance, albeit small.
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