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Abstract

In numerical weather prediction (NWP) data assimilation (DA) methods are
used to combine available observations with numerical model estimates. This
is done by minimising measures of error between the observations and the
model estimates, with more weight given to data that can be more trusted.
For any DA method an estimate of the initial forecast error covariance ma-
trix, Pf , is required. For convective scale data assimilation, however, the
properties of the error covariances are not well understood. An effective way
to investigate covariance properties in the presence of convection is to use
an ensemble based method for which the error covariance is readily available
at each time step. In this work, we first investigate the performance of the
ensemble square root filter (EnSRF) in the presence of cloud growth when
applied to an idealised 1D convective column model of the atmosphere. We
show that the EnSRF performs well to capture the cloud growth; however,
the ensemble does not respond well to parametrized rain in the model. Sec-
ondly, we apply the EnSRF to the column model to investigate the properties
of the ensemble error covariance matrix when convection is present.

Keywords:
Ensemble square root filter, convective data assimilation, covariance
matrix, cloud fraction

1. Introduction

For operational meteorological centres, such as the Met Office, improving
predictions of extreme weather is currently one of the main challenges. Such
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phenomena often impact on very localised regions and models are required
to have high spatial resolution to maximise the chances of skillful forecasts.
At high resolutions orography can be resolved much better, which allows the
convection to be correctly organised in a geographical sense. Observations
such as radar and high-resolution satellite measurements have also an essen-
tial role in improving model predictions when assimilated in the model. The
aim of the data assimilation is to combine observations with model forecasts
and to obtain the best possible estimate (also known as the analysis) of the
atmospheric flow for the purpose of prediction.

A possible method for studying forecast errors is the Ensemble Square
Root Filter (EnSRF), which is a statistical ensemble data assimilation method.
In this method a set of state estimates (denoted as ensemble members) are
used to represent an ensemble forecast error covariance. An ensemble can
represent flow dependent uncertainties that vary in space and time. Hence,
this approach can in principle provide better estimates than schemes with
fixed covariance matrices. Various types of ensemble filtering schemes based
on the Kalman Filter (KF) [3] have been proposed. Early ensemble meth-
ods were based on perturbed observations, in which each analysis ensemble
member was derived from a Kalman-type equation using randomly perturbed
observations. Using this approach the original Kalman Filter equations were
satisfied statistically. However, perturbing observations adds an extra de-
gree of uncertainty and, hence, several deterministic ensemble filters, includ-
ing the EnSRF, were later derived. In these methods, it is required that
the updated analysis perturbations satisfy the Kalman filter analysis error
covariance equation. A very important benefit of the EnSRF (as for all en-
semble methods) is that the error covariance matrix for these methods is
readily available at each step with little extra cost, which is not the case for
variational data assimilation techniques such as 3D-Var and 4D-Var. The
ensemble preserves the nonlinearity of the model flow, as it does not linearise
the dynamical model, and approximates the error covariance matrix of the
state, thus becoming computationally efficient. Hence, the EnSRF not only
provides the forecast at each time step, but also gives a probability of how
good the forecast is.

All operational variational systems need to prescribe initial forecast error
covariances and so far, for convective data assimilation systems, it is not
known what properties this matrix should have. For example, the balance
relations that are used to model forecast error covariances in variational data
assimilation for synoptic scales are not necessarily suited for mesoscale flows
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[9]. An ensemble could be used to investigate the relationships between
model variables to estimate the initial covariance matrix for convective flow
in variational systems. It is also important to study the performance of
the ensemble method itself at convective scales, for example, the EnSRF
performance in cases where the parameterized cloud growth is a strongly non-
linear function of the state variables. Of particular interest, is to investigate
the ensemble response to a regime switch from linear to highly-nonlinear (i.e.
a switch from linear advection of state variables with no cloud to a sudden
cloud growth in the system) and the EnSRF ability to trace the true solution
in the presence of parametrized variables such as cloud fraction and rain.

Here we apply the EnSRF to an idealised 1+1D convective-scale model
first developed by A. Rudd [5] with parametrized cloud and rain to investigate
the performance of the EnSRF in the case of a sudden regime change from
linear to highly non-linear. We examine the frequency of observations and the
number of ensemble members needed for the EnSRF to capture the solution
in the linear phase, as well as the ability of the ensemble to detect the switch
and capture the cloud growth after the change of regime. We are especially
interested in whether the cloud growth is indicated in the forecast error
correlations before it actually happens. To test the ensemble further we
consider the case where part of the growing cloud is allowed to rain out. This
case is more complex as it correlates the two control variables, temperature
and total water, which were previously independent of each other. It is also
of interest to see if there is an optimal way to initialise the ensemble, which
would give better results without increasing its size.

2. The EnSRF

An Ensemble Square Root Filter (EnSRF) has been built and imple-
mented, as given by [2], making sure that the filter is unbiased and does not
collapse [4], [1]. The EnSRF is based on the Kalman Filter (KF) equations,

xa = xf +K
(
y −Hxf

)
(1)

Pa = (I−KH)Pf (2)

K = PfHT
(
HPfHT +R

)−1
(3)

where x is the state vector, K is the Kalman gain, y is the observation vector,
H is the observation operator, P denotes an error correlation matrix and
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superscripts a, f stand for analysis and forecast, respectively. The ensemble
matrix is defined as

X = [x1,x2, ...,xN ] ∈ Rn×N (4)

where xi are state vectors (ensemble members), n is the total number of
variables in the control vector, and N is the number of ensemble members.
The model state is assumed to be represented by the ensemble mean, which
we define as

x =
1

N

N∑
i=1

x(i) or X = (x,x, ...,x)

and the ensemble perturbations are given by

X′ = X−X.

The ensemble error forecast covariance matrix can be defined by

Pf
e =

1

N − 1
X′X′T .

Note, that Pe ≈ P, and as the ensemble number increases, Pe is expected to
approach the true P as given by the KF. Thus, the update of the ensemble
forecast error covariance (3) can be written as

(Pa ≈)
X′aX′aT

N − 1
= (I−KH)Pf

e .

Further, using the SVD decomposition of KH, where V2 is the singular
vector matrix and Σ2 is the singular value matrix, and the eigenvalue de-
composition HPHT +R = ZΛZT , where the columns of Z are eigenvectors
and the diagonal elements of Λ are eigenvalues, we can express the analysis
ensemble perturbations explicitly as

X′a = X′fV2

√
I−ΣT

2Σ2V
T
2 . (5)

Note that since VT
2 is a symmetric orthogonal matrix, then VT

2 V2 = I and
post-multiplying equation (5) by VT

2 does not alter the analysis error covari-
ance, Pa

e . However, this rotation keeps the filter unbiased [6]. This gives us
the analysis for the state (the ensemble mean)

xa = xf +X′fSTZΛ−1ZT
(
y −H

(
xf

))
, (6)
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where the terms V2,Σ2,S,Z,Λ come from the decompositions (see [2] for
more detail). Finally the analysis of the ensemble is

Xa = X
a
+X′a (7)

and the ensemble analysis forecast error covariance matrix is

Pa
e =

1

N − 1
X′aX′aT . (8)

The main difference between the traditional EnKF and the square root
version EnSRF (and the reason for using EnSRF) is that in the square root
algorithm the perturbation of measurements is avoided as this can lead to
more errors. Also, we do not need to perform inversion of the observation
error correlation matrix, R, nor do we need the assumption of uncorrelated
measurement error covariance matrix 1 [2].

3. 1+1D column model

In this work we use a 1+1D model (1D in space and time) describing
the atmospheric flow in a vertical column. The model state variables are
vertical velocity, w(z), temperature, T (z), total water, qt(z), pressure, p(z),
temperature change with height, Ψ(z), liquid cloud water, qcl(z), saturated
vapour, qsat(z), and cloud fraction, f(z), where z ∈ [0, 12] km is vertical
height. From all of the model variables, only T (z) and qt(z) are used in the
data assimilation process to update the system, and these are known as the
control variables. In vector form we define the control vector x, as

x =

(
T
qt

)
∈ R102×1, (9)

with height z being discretised with 51 equal levels and T, qt ∈ R51 × 1.
Control variables, T and qt, at a given height z are linearly advected by

a known vertical velocity w(z) = 0.5 sin ((z/ztop)π), constant in time with
maximum speed in the middle atmosphere of 0.5 m/s. The model uses a
cloud scheme [7], to compute a strongly non-linear cloud fraction, f , given
by

f(z) = 0.5

(
1 + tanh

(
2qcl(z)

qsat(z)(1−RHc)

))
, (10)

1Here we do use uncorrelated R.

5



where RHc is critical relative humidity, qcl = qt − qsat and qsat = ϵes/p with
ϵ = 0.622 being the ratio of molecular weights of water and dry air and
es = es(T ) being the saturation vapour pressure. Thus, cloud fraction, f ,
depends on both control variables T and qt, and the range of f is [0,1] with
f = 0 meaning no cloud and f = 1 meaning full cloud.

The model exhibits linear and non-linear regimes. If the model exhibits
no cloud, the system is in a linear state and we refer to this as a ’no cloud
regime’ or ’linear regime’. However, if the model has cloud growth, the
system is in a non-linear state and we refer to this as a ’cloud regime’ or
’non-linear regime’.

3.1. Rain parametrization

The threshold for cloud fraction at which the rain parametrization is
switched on is f > 0.2. When this threshold is reached we reduce the cloud
fraction by using a parameter r ∈ (0, 1) as follows,

fr = rf. (11)

The rain fraction parameter varies smoothly to reduce the cloud fraction over
an hour. 2 Next we invert equation (10) to express it in terms of liquid cloud
water as

qcl = 0.5qsat (1−RHc) arctanh (2f) . (12)

Hence, using the reduced cloud fraction (11) in equation (12) we obtain a
new liquid cloud water value qcl,r = qcl(fr). The vapour amount, qsat, is
computed from the temperature profile as in the case of no rain, and the
reduced total water amount is given by

qt,r = qcl,r + qsat (13)

for each vertical level where f > 0.2 in each ensemble member.

4. Results of experiments

Using our 1+1D model, we aim to investigate the performance of the
EnSRF in the case of a sudden regime change from near-linear to highly

2Note that, depending on the cloud growth, the cloud fraction f can increase faster
than the rain parameter r can reduce it.
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non-linear. The model parameters are chosen so that initially for the first
3 hours there is no cloud in the solution, but then a very sudden and fast cloud
growth occurs in the upper half of the atmosphere. To examine the EnSRF
performance in these conditions we use a twin experiment. We create a
12 hour long reference solution (’truth’) from initial chosen profiles of T (z, 0)
and qt(z, 0). We then sample observations with some time frequency from the
reference solution and add noise with a σo = 1% variance. We also perturb
the initial profiles with σe = 10% variance to give an initial ensemble mean
around which we create the initial ensemble. Using a twin experiment allows
us to deduce the accuracy of the ensemble estimate as a difference between
the ensemble analysis and the truth.

4.1. Results for regime switch

The ensemble exhibits a high ability to capture the solution in the linear
phase (i.e. no cloud) even with a small ensemble size (N = 10) with respect
to the size of the state space (n = 102), provided enough good observations
of both control variables are given at a suitable time frequency, e.g every
30 min. For larger ensemble size the observation quality and/or frequency
can vary to obtain the same accuracy of the solution. Interestingly, the
EnSRF is able to capture the regime switch in most cases, with the accuracy
and the rate of ensemble convergence to the true solution depending mainly
on the ensemble size and secondly on the observation frequency. However, it
is important that both control variables are observed at least once before the
cloud growth. Note that, in cases where the ensemble size is small, we find
that the EnSRF over-predicts the cloud growth, i.e. in the ensemble estimate,
cloud growth is initiated sooner than in the reference solution. This clearly is
an issue, especially in an operational setting, where the ensemble size is much
smaller than the size of the state space. However, in this idealised model,
unless liquid is removed from the system, the model would just saturate
in the levels where cloud is present, thus becoming linear again. If this is
allowed, the ensemble, even with N = 10, can capture the solution very well
after a few observation cycles.

4.2. Results with rain parametrization

To keep nonlinearity in the system we introduce parametrized rain as
explained in section 3. This reduces the cloud fraction after the cloud has
grown to a given threshold in the column. In this case, a large ensemble
(say N > 102) will be able to capture the solution with parametrized rain
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well if good observations (at least every 30min) are used. However, it is not
realistic, for practical applications, to have an ensemble size larger than the
state space. With a small ensemble size and many good observations at the
initial phase (no cloud regime), the ensemble is not capable of increasing its
spread to respond when the parametrized rain is switched on/off. This can
be seen in figure 1, where the ensemble spread is larger than the ensemble
analysis error until the parametrized rain is switched on. This indicates that
the ensemble spread captures the true solution and thus has the ability to
trace it. We also see that for the cloud fraction, f , the ensemble has ’learned’
after the first set of observations that there is no cloud in the system in the
first 3 hours, i.e. both the analysis error (blue) and ensemble spread (red) for
f become very small for this period. The combination of a small ensemble
size and many good observations assimilated in the ’no-cloud’ regime results
in the ensemble spread becoming too small to respond when the parametrized
rain is switched on. We see from figure 1 that a small ensemble, here N = 30,
is not able to increase its spread to capture the true solution when the rain
parametrization is switched on. The ensemble spread keeps on decreasing
(red), whereas the analysis error increases (blue). On the other hand, if
only a limited portion of the state space is observed, say every tenth vertical
level for both control variables, then the small ensemble has a spread which
encompasses the true solution even after the parameterized rain is switched
on. This can be seen from figure 2, where the ensemble spread responds (in
red) to the parametrized variables and the ensemble analysis error (in blue)
is always below the ensemble standard deviation. We note that, even though
the ensemble has ’learned’ that there is no cloud in the first 3 hours, the
accuracy in this period is much worse than that of the ensemble that used
more good observations, as can be seen from the plots for cloud fraction, f ,
in figures 1 and 2.

4.3. Forecast error correlations

We are also very interested in whether the cloud growth is indicated in the
forecast error correlations before it actually happens. First of all we study
the theoretical correlations between T and qt by looking at the model. It is
possible to see that in the model there are no cross-correlations between T and
qt if neither cloud nor rain is present in the system. However, variables are
cross-correlated in the model when cloud develops and/or rain is permitted.

In the ensemble correlation matrix, even if we start with a small ensem-
ble that has spurious cross-correlations between the control variables, these
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Figure 1: Ensemble analysis error (blue) compared to ensemble standard deviation (red).
Observing all variables every 30min, N = 30. Rain at 3h.

are eliminated after a few assimilation cycles (how many assimilation cycles
it would take depends on the ensemble size) so that the control variables
become uncorrelated. Small cross-correlations appear on the levels where
cloud develops and, since for small ensemble sizes cloud develops sooner in
the ensemble estimate than in the reference solution, the ensemble correla-
tion matrix is not accurate until cloud also develops in the reference solution.
When the rain is permitted in ensemble members, the cross-correlations of T
and qt are very strong at the locations where it is raining and clearly if the
ensemble is too small to increase its spread then its cross correlations will
not be accurate.

5. Conclusions

To investigate the ensemble performance in a convective system, we have
applied the EnSRF to a 1+1D column model with parametrized cloud and
rain. We have examined the ability of the ensemble to capture a sudden
regime switch. In our idealised model this was represented by a near-linear
(no cloud) regime for the first three assimilation hours followed by a sudden
cloud growth (non-linear regime). This was intended to represent a sudden
development of convection in the system.

We showed that the EnSRF, even with a small number of members, was
able to capture the true solution in the linear phase. Moreover, as long as the
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Figure 2: Ensemble analysis error (blue) compared to ensemble standard deviation (red).
Observing every tenth level of T and qt every 30min, N = 30. Rain at 3h.

system was observed at least once before the cloud developed, even with a
small ensemble size, the EnSRF was able to detect the regime switch. How-
ever, the accuracy with which the switch was captured depended mainly on
the ensemble size and secondly on the observation frequency. An important
note is that for small ensemble sizes the EnSRF developed cloud in its solu-
tion sooner than in the reference solution. The reason for this and the impact
it has on the ensemble solution needs to be investigated further.

In the cases where parametrized rain was permitted after the initial cloud
development, we found that for ensembles that have more ensemble members
than variables with good frequent observations, the performance of the En-
SRF was good. By this we mean that the ensemble spread was always larger
than the ensemble error, thus capturing the true solution within its spread.
However, as in operational settings, if the ensemble size was much smaller
than the state space and many good observations were used, the ensemble
became too confident in the linear regime and was unable to respond when
the rain was switched on. This was rectified by having fewer observations, i.e.
only observing every tenth level of the two control variables. By doing this,
the ensemble spread was always larger than its error. However, the accuracy
of the ensemble solution in the linear phase was obviously worse than with
many observations.

Finally, we have performed an initial investigation of the ensemble correla-
tion matrix in convective conditions. The ensemble develops correlations and
cross-correlations as expected between the variables. However, with small en-
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sembles and, in particular, when rain was parametrized, the correlations and
cross-correlations at the time of cloud development were shifted in time or
incorrect as the ensemble either developed cloud too soon and hence devel-
oped cross-correlations too soon, or its spread was too small, thus resulting
in incorrect correlations.
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