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Abstract

A particle filter is a data assimilation scheme that employs a fully nonlinear,
non-Gaussian analysis step. Unfortunately as the size of the state grows the
number of ensemble members required for the particle filter to converge to the
true solution increases exponentially. To overcome this Vaswani [Vaswani N.,
2008, IEEE Transactions on Signal Processing, 56:4583-4597] proposed a new
method known as mode tracking to improve the efficiency of the particle filter.
When mode tracking, the state is split into two subspaces. One subspace is
forecast using the particle filter, the other is treated so that its values are
set equal to the mode of the marginal pdf. There are many ways to split
the state. One hypothesis is that the best results should be obtained from
the particle filter with mode tracking when we mode track the maximum
number of unimodal dimensions. The three dimensional stochastic Lorenz
equations with direct observations are used to test this hypothesis. It is found
that mode tracking the maximum number of unimodal dimensions does not
always provide the best result. The best choice of states to mode-track
depends on the number of particles used.
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1. Introduction

Data assimilation is the incorporation of observational data into a numer-
ical model to produce a model state which accurately describes the observed
reality. It is applicable to many situations as it provides a complete set of
accurate initial conditions for input into a numerical model.
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A particle filter (PF) is a data assimilation scheme that employs a fully
non-linear, non-Gaussian analysis step [15]. Such filters approximate the
conditional probability density function (pdf) of the model state given ob-
servations, using a weighted ensemble. As observations become available, the
posterior weights for each ensemble member are updated using Bayes’ rule.
Consequently, the ensemble members with the largest weights correspond to
the points in phase space with highest probability [4]. Reviews and tutorial
introductions for the particle filter can be found, for example, in [15, 4, 5, 1].

There are a number of well-known issues with the practical application
of the particle filter. These are discussed in detail by Snyder et al. [14]. The
main difficulty is that straightforward Monte Carlo estimation of continu-
ous pdfs is notoriously inefficient: the number of ensemble members needed
grows exponentially with the dimension of the state [13]. For low dimen-
sional systems the PF works well. However for problems such as numerical
weather prediction, where the state space is of order 107, the PF scheme is
too computationally costly.

There have been a number of attempts to deal with the difficulties of
dimensionality. For example, several authors have made extra assumptions,
such as spatially localized updates [2, 6]. For certain specialized scenarios,
it may be possible to compute marginal pdfs by direct integration, thus
reducing the dimension of the space that needs to be approximated by the
particle filter [12].

Vaswani [16] introduced the idea of mode tracking to try to reduce the cost
of the particle filter in high dimensional state spaces. The key idea is to split
the state space into two subspaces, such that the marginal posterior for one of
the subspaces is unimodal and relatively narrow. We will call this the mode-
tracking subspace. In this part of the state-space, the analysis step replaces
each of the ensemble members with the mode of the pdf, which is found by
minimizing a cost function. The cost function is not dissimilar to that seen
in variational data assimilation [7], except that the control vector consists
of only a part of the state. Thus Vaswani’s method is related to ensemble-
variational techniques such as the maximum likelihood ensemble filter [17]
and those described by Buehner et al. [3]. Importantly however in Vaswani’s
method, the ensemble weights are not assumed equal, and the calculation
of the weights takes into account the mode-tracking approximation. Mode
tracking has been shown to give comparable results to the PF but with fewer
numbers of particles, for a simple linear forecast model with a nonlinear
observation operator [16].



Vaswani [16] suggests that the best results should be obtained from the
particle filter with mode tracking when we mode track the maximum number
of unimodal dimensions. In this paper we test this using the 3D stochastic
Lorenz equations with a linear observation operator.

We begin, in section 2, by describing the algorithm for the particle filter
with mode-tracking. We also consider how the state should be split to provide
the best results from the particle filter with mode tracking. The simple
nonlinear stochastic model used for our experiments is described in section
3. In section 4 we test one hypothesis for how to split the state to obtain
the best results for the particle filter with mode tracking. We conclude in
section 5 by summarising and discussing the main results.

2. The Particle Filter with Mode Tracking

In this section we consider the particle filter with mode tracking (PF-
MT). We start by defining the notation used. Let ¢, € R", k=0,1,2,3,...,
be a sequence of model states at discrete times k and assume the initial pdf
of the state is given by p(1y). At subsequent times, 1)) satisfies

Y = M (Y1, wy,), (1)

where M : R™ x R" — R" is a possibly nonlinear function, and w, € R"
is a noise process sequence. This equation describes a Markov process with
transition density p(v|g_1).

Let d;, € R? be the observation vector at time k& which is related to the
model state by the equation,

dy = H(Yx, vp), (2)

where H : R" x R? — RP is a possibly nonlinear observation operator and
v, € RP is a noise process sequence. We assume that the observations are con-
ditionally independent given the state, with observation likelihood p(dg|vy).

We now consider the PF-MT [16]. The PF-MT is used to estimate a
model state given observations and previous model states. Using Bayes’ rule
we show the pdf we are trying to approximate is,

p(di|be)p(e) .

p(¢k|dk) = p(dk)

(3)



We introduce mode tracking to reduce the computational cost of the particle
filter in high dimensional systems. The essential idea behind mode-tracking
is to split the state, ¢, into two parts, ¢ = [V, U,]. The U, part of the state,
of dimension s, is treated using an ordinary particle filter. The W, part, of
dimension r, is treated as if the associated marginal pdf is unimodal, and W,
is set equal to the mode. It is hoped that reducing the dimension of the state
treated by the PF may allow a given filter accuracy to be obtained using a
smaller ensemble size.

Before we describe the PF-MT algorithm we make some additional as-
sumptions about the models and observations used. These assumptions are
not necessary conditions, but they are relevant to the experiments carried out
in this work. For the purposes of this paper, the general class of stochastic
forecast models given by (1) are restricted to the form,

U = f(Ur-1) + €, (4)

where f: R" — R" and ¢, ~ N(0, Q). Taking the splitting ¢ = [V, ¥, ] into
account our model (4) becomes

\I/ks fs(wk—l) ) ( €k,s )
) — + ) , 5
( \Ilk,r ) ( fr(wkz—l) €k,r ( )
where f, : R® — R* and f, : R” — R". The model error matrix () can be

written in block form,
QSS QST )
= : 6
Q ( Q?"S QT’T’ ( )

where Qs € R*** Q4 € R**" Q.. € R Q,s € R™* and () is symmetric
positive definite.
Similarly we restrict the general observation equation (2) to,

dk = wltf + Mk, <7>

where 1)} represents the true solution at time k, n is random Gaussian noise,
m. ~ N(0, R) with R = ¢1.

Table 1 summarises the general PF-MT algorithm. For the remainder of
this section we shall consider each stage of the algorithm to see how PF-MT
works in detail. Here we assume that the state splitting ¢» = [U,, ¥,] has
been predetermined. How we make this choice in practice is discussed at the
end of this section.



Table 1: The PF-MT Algorithm
The PF-MT Algorithm [16]

Initialization:

e Set k£ = 0 and sample N times from the importance function
m(tbo) to give the initial ensemble {t{}Y,.

e Set the weights, wj = 1/N.
For times £k =1,2, ....

1. Importance Sample ¥y ;: For ¢ =1,2,..., N, sample
ks ~ P(T i)
2. Mode track Wy,: For i =1,2,..., N, set ¥, = m} where

My (g1, Voo di) = argmin[—log p(de| W}, )p(Wir|¥5 1, U )]

k,r

3. Weight: For i =1,2,... N, compute w} = i ~ where

Z;'V:1 i
Wi = Wiy p(de )V, [0h_1, i)
and "Lpi; - [\Ij?ﬁsv \Ilz,r]'

4. Resample: Replicate particles in proportion to their weights
and reset the weights wi = 1/N.

Step 1. Once the filter has been initialized, the first step shown in Table
1 is the importance sampling step for the ¥, dimensions. This step involves
forecasting the ¥, dimensions forward for one timestep. In practice, it may
be necessary to evolve the full stochastic numerical model, (4), forward in
time from k£ — 1 to k, and then simply restrict to the relevant dimensions.

Step 2. The second step in the PF-MT algorithm is mode tracking on
Wy, where we set W}, - equal to the mode of the pdf conditioned on the W,



part of the subspace. The conditional pdf for ¥, , may be written as

p(qjkﬂ“’wlifh @2737 dk) X p(de;i,l, ‘I’Z,S)p(‘l’k,rWéqa ql?c,s)? <8>

using Bayes’ rule, since 1, is a Markov process and the observations are
conditionally independent of the model state [16]. Following [16] we let

iyt def i i
J (\Pt,sv quﬂ‘) = = 10g p(\Pkﬂ”W)k—la qjk,s» d/f) (9)
= —logp(dilt_,, U},
—log p(Vy. |1k 4, ‘I/zs) + const. (10)

If the pdf is unimodal we can set the constant term to zero and find the mode
by minimizing the cost function J¢ with respect to VU, ,. The cost function
for the example used in this paper follows on from (10) and can be written

as
1

Ji<\112,sa ‘Ijk,r) = 5 [JO(‘IJZ’S,\I/;W) + Jq(\yk,r)] ) (11>
where, using (7),
Jé(‘llz,w \I]kﬂ“) = - logp<dk|wllcfl7 \I/;;,s)

) (d’“_ < " ))R (d'f— ( e )) (12)

Jo(Urr) = logp(W, vy, ¥y ,)
= (q/k,r - fr(@bZ—l))T[Qﬂ" - QTSQ;rles}_l(‘lew - fr(djli—l)xl?’)

Step 3. At this stage in the algorithm, we have available updated values
for each part of the state. In this step, the weights for the resulting ensemble
members are calculated using the observation likelihood and probability of
the mode tracking subspace at time £ given ¥y, ; and the state at the previous
time. The derivation of weights is discussed in [16].

Step 4. Now the particles have been weighted the PF-MT continues
with a resampling step. The idea behind resampling is to produce a new
ensemble of particles with the same pdf, but equal weights on each particle.
In practice, particles with low weights in the original ensemble are discarded,
and the sample size returned to N by creating copies of particles with higher

and, using (5),
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weights. There are many resampling algorithms. Here we use a resampling
scheme known as stratified resampling [8] as it is efficient and simple to
implement [1]. We return to the forecast step to continue the assimilation
cycle. We repeat the iteration until the final forecast time is reached.

We must now consider how to choose the state-space splitting. For the
most efficient algorithm, Wy, ostensibly should contain the maximum num-
ber of dimensions such that p(W¥y,[¢}_;, ¥} ,,dx) is unimodal, so that the
subspace that is modelled by the standard PF is as small as possible [16]. In
principle, the unimodality of the mode-tracking subspace might change every
time k and for each ensemble member. Vaswani [16] argues that the method
should be successful if unimodality holds for most particles at most times.
For our case the full pdf of the state (3), may not be unimodal at all times
due to the nonlinear deterministic part of the forecast model. However the
conditional pdf (8), is unimodal regardless of the choice of state splitting as
the model and observation errors are Gaussian. This suggests that we should
obtain the best results from the PF-MT when two states are mode tracked.
In our work, we have tested a range of different choices of subspace to test
this hypothesis.

3. The numerical model

The model used for our numerical experiments is a discretization of the
stochastic Lorenz equations [10],

dX = O'(Y—X)dt—l—BxdWX, (14)
dY = (X(p - Z) — Y)dt + BydWy, (15)
dZ = (XY —BZ)dt + BzdWy, (16)

where X, Y and Z represent random variables and ¢ = 10, p = 28 and
b= %. Wx, Wy, W5 represent independent Wiener processes.

The constants By, By and By are parameters governing the magnitude
of the noise in the system. For simplicity we set each of these values equal,
Bx = By = By = B. In our experiments we have set B = 0.1 as it allows
relatively smooth solutions [11].

In our experiments, an Euler-Maruyama scheme [9] is used to solve (14)-
(16) numerically, using a timestep, A = 0.01. We run a ‘twin’ experiment
using the first run of the model to generate a true solution and observations.
We add random Gaussian noise with variance 2 to our observations giving
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the observation error matrix R = ¢2I where I is the 3 x 3 identity matrix
and 02 = 0.04 is the observation error variance. These observations are then
used in subsequent runs in the PF-MT. For the following experiments (14) to
(16) are solved for t € [0, 1] from initial conditions X =0, Y =0 and Z = 2.
These initial conditions lie in an unstable region of phase space so different
solutions with the same initial conditions may evolve on different sides of the
attractor due to the stochastic nature of the equations. Our implementation
of the model was validated in [11].

4. Splitting the State

We wish to test the hypothesis that the best results should be obtained
when we mode track the maximum number of unimodal dimensions. Fol-
lowing [16], we measure the performance of the filter using the root mean
squared error (RMSE) of the mean of the ensemble compared to the truth
run. We test the hypothesis by considering the RMSE obtained from the PF-
MT after splitting the state in each possible way. We compare these RMSEs
to determine which states to mode track. We also see if the best states to
mode track are dependent on the number of particles used.

—X,Z b
30 ---Y,Z
N —X,Y
L 20
p=
o
10
% 0.5 1
t

Figure 1: RMSE for different parts of the state being mode tracked with N = 5. a) shows
the RMSE when one state is mode tracked, b) shows RMSE when two states are mode
tracked.

Figure 1 shows the RMSE of the PF-MT when different states are mode
tracked with the number of particles set to N = 5. We see that for each
possible splitting the RMSE initially grows slowly. This is then followed by a
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period of rapid growth then decay. From Figure 1 we see that when N =5 it
is best to mode track ¥, = Z and set U; = (X,Y’). In Table 2 we summarise

Number of Particles | Best States to Mode Track | Worst States to Mode Track
5 Z Y
50 Z XY
500 X,Z XY

Table 2: The best and worst states to mode track for different numbers of particles as
measured by the RMSE.

the best and worst states to mode track for various numbers of particles
as measured by the RMSE. The hypothesis we are testing suggested that
the best results should be obtained when the maximum number of unimodal
dimensions was mode tracked. For our model the conditional pdf (8) is always
unimodal suggesting that the best results should occur when we mode track
two states. We can see from Table 2 that this is not always the case. For
small numbers of particles the best results are obtained when only one state
is mode tracked. This is perhaps due to the complicated nonlinear structure
of the full problem as, while the conditional pdf is unimodal, the full pdf
(3) is not. It is also possible that for small ensemble sizes the number of
particles is not large enough to resolve the pdf sufficiently for mode tracking
to be sensibly applied.

Additional experiments were carried out using varying numbers of par-
ticles and different initial conditions. It was found the best states to mode
track depends on both the numbers of particles used and the initial condi-
tions. For initial conditions in an unstable region of phase space, the choice
of state splitting appears important as different choices for the mode tracking
subspace provide results with a large range of RMSEs. However the PF-MT
seems less sensitive to the choice of state splitting when the initial conditions
lie in a stable region of phase space. These results suggest that both the
initial conditions and number of particles must be considered when deciding
how to split the state.

5. Conclusion

In this paper we have considered Vaswani’s idea of mode tracking [16]
that was introduced to reduce the computational cost of the particle filter.
Our main focus was on how to split the state to obtain the best possible result
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when using the PF-MT. We tested the hypothesis that the best results should
be obtained from the PF-MT when we mode track the maximum number of
unimodal dimensions. When using a nonlinear model it was found that the
best results from the PF-MT were not always obtained when the maximum
number of unimodal dimensions was mode tracked. This was possibly due to
the complicated nonlinear structure of the full problem. It was found that
the best states to mode track depended on the number of particles used. It
is possible that for some of the small ensemble sizes considered here, the pdf
is too under-resolved for mode-tracking to be applied sensibly. Our results
suggest that more research is required into how to split the state before mode
tracking can be successfully used in large-scale systems.
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