
 
 

 

School of Mathematics, Meteorology 
and Physics 
 

 
Department of Mathematics 

 
Preprint MPS_2010_13 

21 April 2010 
 
 

Four-dimensional variational data 
assimilation for high resolution nested 

models 
 

by 
 

G.M. Baxter, S.L. Dance, A.S. Lawless, N.K. Nichols 
 
 

 
 



Four-dimensional variational data assimilation for high

resolution nested models

G.M. Baxter, S.L. Dance, A.S. Lawless∗, N.K. Nichols

Department of Mathematics, University of Reading, U.K.

Abstract

Four-dimensional variational data assimilation (4D-Var) is used in environ-
mental prediction to estimate the state of a system from measurements.
When 4D-Var is applied in the context of high resolution nested models,
problems may arise in the representation of spatial scales longer than the
domain of the model. In this paper we study how well 4D-Var is able to
estimate the whole range of spatial scales present in nested models. Using
a model of the one-dimensional advection-diffusion equation we show that
small spatial scales that are observed can be captured by a 4D-Var assimila-
tion, but that information in the larger scales may be degraded. We propose
a modification to 4D-Var which allows a better representation of these larger
scales.
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1. Introduction

In many applications of environmental forecasting, such as numerical
weather prediction, it is necessary to estimate the current state of the system
in order to make a forecast. Usually the number of available measurements
of the system is not sufficient to define the state uniquely and so the mea-
surements are combined with a numerical model forecast, using techniques
of data assimilation, in order to provide the best estimate of the system
state. In operational numerical weather prediction a common data assim-
ilation technique is that of four-dimensional variational data assimilation
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(4D-Var). This technique formulates the assimilation problem as an opti-
mization problem over space and time, constrained by a numerical model
of the equations describing the atmospheric flow. The solution to this opti-
mization problem provides the state estimate from which a forecast can be
produced.

An important challenge in weather prediction is the improvement of our
ability to forecast small-scale localized weather systems, such as convective
storms. Such systems are often associated with severe weather events, such
as localized flooding, and so have a large impact on people and society.
Detailed local weather forecasts are usually provided by running high resolu-
tion regional models nested within lower resolution models covering a larger
domain. The lower resolution model is used to provide lateral boundary
conditions for the higher resolution model throughout the forecast period.
However, current regional models in numerical weather prediction are usu-
ally unable to resolve the scales needed for storm-scale weather forecasting.
To improve forecasts at these scales the Met Office are developing a very
high resolution forecasting model covering the U.K. with a horizontal reso-
lution down to 1 km, nested in a lower resolution European-scale model [9],
[13]. The development of these very high resolution nested models presents
a challenge for current data assimilation methods such as 4D-Var [4], [12].
One such challenge is that for reasons of computational efficiency the high-
est resolution models usually only cover a small-sized domain. In such cases
large-scale atmospheric features, which may contain scales which are larger
than the model domain, cannot be correctly represented within the scales of
the nested numerical model. However, an accurate representation of these
long waves is important since meteorological processes are inherently multi-
scale and there are strong feedbacks between phenomena at large and small
spatial scales [4].

In this paper we study the ability of 4D-Var to capture information on
large length scales in a nested model. By considering a spectral transform of
the long waves, we show how information from these waves is aliased onto
other wave components in a nested model 4D-Var assimilation. We propose
a new adaptation of the 4D-Var scheme which uses this aliasing property
to provide a suitable constraint on the large scales. In section 2 we explain
in more detail the 4D-Var assimilation method and consider the problem
of representing long-wave information in a small domain. In section 3 we
present some numerical experiments using the one-dimensional advection-
diffusion equation. We demonstrate how a 4D-Var scheme may be adapted
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to capture better the long-wave information by using our knowledge of how
such waves are aliased. Finally we draw conclusions in section 4.

2. Four-dimensional variational data assimilation

2.1. Formulation

The aim of four-dimensional data assimilation (4D-Var) is to estimate the
system state x0 ∈ IRn at initial time t0 given a prior estimate of the state
xb
0 ∈ IRn at time t0 and observations yj ∈ IRpj at times tj, j = 0, . . . , N . We

assume that xb
0 has random, unbiased Gaussian errors with error covariance

matrix B0 and that the observations have random, unbiased Gaussian errors
with error covariance matricesRi, where the matricesB0 andRi are assumed
to be symmetric positive definite. Then 4D-Var defines the best estimate as
the state which minimizes the objective function

J [x0] =
1

2
(x0 − xb

0)
TB−1

0 (x0 − xb
0)

+
1

2

N∑
j=0

(hj(xj)− yj)
TR−1

j (hj(xj)− yj), (1)

subject to the nonlinear dynamical system equations

xj = m(tj, t0,x0), (2)

where m is the solution operator of the nonlinear model. The operator hj

maps the state space to the space of observations. Under the statistical as-
sumptions given, the solution to this minimization problem is equal to the
maximimum posterior Bayesian estimate of the initial state [10]. We refer
to this state estimate as the analysis. In operational weather forecasting the
function (1) is minimized using a few iterations of a Gauss-Newton method

[3], [8]. On each iteration (1) is linearized around the current estimate x
(k)
0 ,

beginning with x
(0)
0 = xb

0, and the linear cost function is solved for an incre-
ment δx0 to this estimate. Thus we obtain the linearized cost function

J̃ [x0] =
1

2
(δx0 − δxb)TB−1

0 (δx0 − δxb)

+
1

2

N∑
j=0

(Hjδxj − d
(k)
j )TR−1

j (Hjδxj − d
(k)
j ), (3)
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where δxb = xb
0 − x

(k)
0 , d

(k)
j = yj − hj(x

(k)
j ) is the innovation vector, Hj is

the Jacobian of hj evaluated at x
(k)
j and the increment δxj satisfies the linear

model equation
δxj = M(tj, t0)δx0, (4)

where M is the Jacobian of the nonlinear model m with respect to the cur-
rent estimate x

(k)
0 . In order to minimize (3) efficiently we transform to a

different set of variables δz defined by the linear transform δz = U−1δx,
where the transform U−1 ∈ IRn×n is defined to ensure that components of δz
are independent. Thus we obtain the linear cost function

J̃ [δz0] =
1

2
(δz0 − δzb)TΣ−1(δz0 − δzb)

+
1

2

N∑
j=0

(HjUδzj − d
(k)
j )TR−1

j (HjUδzj − d
(k)
j ), (5)

where δzb = U−1δxb and Σ−1 = UTB−1
0 U. The transform U is chosen to

ensure that the components of δz are independent and so the matrix Σ is
diagonal. Such a transformation always exists since B0 is symmetric positive
definite and so has a diagonal eigendecomposition.

2.2. 4D-Var in nested models

When 4D-Var is applied to nested models the lateral boundary condi-
tions play an important role. In nested modelling for weather forecasting the
lateral boundary conditions are usually provided by a larger-domain model,
here referred to as the ‘parent’ model, which may, for example, cover the
whole globe. This parent model is usually at a lower spatial and temporal
resolution than the nested model and so the boundary conditions must be
interpolated in time and space. Within the 4D-Var system the nested version
of the nonlinear model (2) is run, in order to calculate the innovation vectors
dj and to provide the state values at which the Jacobians of hj and m are
calculated. This nested model run requires boundary conditions from the
parent model on each Gauss-Newton iteration and at each time step during
the observation time window. Since the parent model is usually run sep-
arately from the nested model, these boundary conditions are usually not
updated during the assimilation and the increments δx are assumed to be
zero on the lateral boundaries. One way to enforce this is to define the trans-
form U−1 to be the sine transform and U to be its inverse. This transform
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is commonly used in data assimilation for nested models, for example at the
Met Office [11], and it is the transform we will use in this paper. In this case
the variables δz correspond to the different wave numbers in the discrete sine
transform.

One possible problem with the use of this transform is the treatment of
waves that have a wavelength longer than the domain of the nested model. In
this case the true scale of the wave cannot be represented by the sine trans-
form and so information from such long waves will be projected onto shorter
scales by the transform. This is essentially a reverse of the classical aliasing
problem. Whereas usually aliasing is considered as the misinterpretation of
small-scale waves as larger-scale waves, here we have large-scale waves being
misinterpreted as shorter-scale waves. To illustrate this effect we define a
sine wave with wavenumber one over the periodic domain [0, 1) and calculate
its sine transform over the whole domain and then the sine transform of the
part of the wave in the nested domain [0, 0.25]. The results are shown in
Figure 1. Both transforms are calculated using 32 spatial points. We see
that for the transform over the whole domain the power is all at wavenum-
ber two. This is a property of the sine transform, in which the power of a
sine wave of wavenumber k appears at wavenumber 2k when the transform
is applied on a domain of length one. When the transform is applied on the
smaller domain there is only a quarter wavelength that fits into the domain,
which is not within the discrete spectrum on the nested model grid. In this
case we see that most of the power is projected onto wavenumber one, with
significant power also in higher wavenumbers.

Previous studies have examined different methods for treating the large
spatial scales in a nested model data assimilation using a three-dimensional
variational data assimilation scheme, a variation of 4D-Var in which the
observations are all considered to be at the same time as the background.
Within this context the authors of [1] examined the possibility of taking the
large scales completely from a parent model analysis and using the nested
model data assimilation to update only the small scales. An alternative
method that has been proposed is to constrain the large scales to be close to
those of the parent model analysis and a nested model background field by
the addition of an extra term in the objective funtion [7]. Here we examine
how the aliasing of the long waves affects their representation in a 4D-Var
scheme and propose a new modification to the data assimilation system to
allow for this.
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Figure 1: Sine transform of sine wave with wavenumber k = 1 on domain [0, 1) (left) and
on domain [0, 0.25] (right).

3. Assimilation experiments

3.1. Model

The model we use to test the 4D-Var algorithm is the one-dimensional
advection-diffusion equation,

ut + cux = σuxx, (6)

where u(x, t) is the temperature, x is the spatial coordinate, t is the time,
c ≥ 0 is the constant advection velocity, σ ≥ 0 is the diffusion constant and
subscripts indicate derivatives. The equation for the parent model is defined
on the domain x ∈ (0, 1] with periodic boundary conditions.

The model is discretized using an explicit Euler scheme for the time
derivative, centred differences for the diffusion term and upwind differences
for the advection term. We define a spatial step ∆x and time step ∆t. Then
u(xj, tn) is approximated by uj,n, where for each point we have the discrete
update equation

uj,n+1 = (ν + µ)uj−1,n + (1− ν − 2µ)uj,n + µuj+1,n, (7)
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with ν = c∆t/∆x and µ = σ∆t/(∆x)2. The scheme is first-order in time and
space, but is close to second-order spatial accuracy when the discrete Peclet
number c∆x/σ is small [6, p. 138].

For the nested model we discretize (6) on the limited domain [0.5, 1], with
the boundary conditions u(0.5, t) and u(1, t) taken from a run of the parent
model at all times t. In the interior of the domain the discretization scheme
is exactly as in the parent model, with a higher resolution spatial step ∆xH

and time step ∆tH . Close to the boundaries the nested model solution is
relaxed to the parent model solution using a Davies relaxation scheme over
a small buffer zone [5].

3.2. Experimental design

Idealised 4D-Var experiments are set up by running the model from a
known initial state, which we refer to as the true trajectory, and then gener-
ating observations from this true trajectory to use in the assimilation. The
truth is generated at a higher resolution than either the parent or nested
models, with spatial step ∆xT and time step ∆tT . For the experiments pre-
sented here we use values of ∆x = 0.0625,∆xH = ∆x/4,∆xT = ∆x/8 and
∆t = 0.05,∆tH = ∆t/16,∆tT = ∆t/64. This means that there are 16 spatial
points in the parent model over the range (0, 1] and 32 spatial points in the
nested model over the range [0.5, 1]. The assimilation is performed over the
time window [0, 0.5], with observations at every spatial point of the nested
model and at every time step of the nested model. The diffusion constant is
set to σ = 10−3 and the advection velocity c = 1.

To generate the true trajectory we run the model from an initial value
consisting of the sum of three sine waves.

uT (x, 0) = 5 sinπx+ sin 2πx+ sin 36πx. (8)

The first of these waves (sin πx) is a wave that is longer than the nested model
domain. The other two waves, with wavenumbers k = 1 and k = 18, can
both be resolved by the nested model, but the wave with k = 18 is too short
to be resolved by the parent model. Synthetic observations are generated by
adding a random, Gaussian error to values of the true state trajectory with
variance σ2

o = 0.25.
In order to define the innovation vectors dj in the objective function (5)

we need to define a suitable background trajectory of the nested model at
all observation times within the time window. We suppose that we have a
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perfect analysis on the parent model grid which includes the components of
the truth uT at the initial time that can be represented on this grid, that is

uP (x, 0) = 5 sinπx+ sin 2πx. (9)

To generate a background field with known covariance for the nested model,
we choose to add random noise to this field in spectral space at the nested
model resolution. We interpolate uP to the nested model grid and then
apply the sine transform to obtain the field in spectral space. Random,
Gaussian noise, with variance σ2

b = 0.25, is then added to the wavenumbers
contained in the spectrum of the parent model (wavenumbers 1, . . . , 7). The
variance of the background error is thus equal to the level of noise we have
on the observations. The higher wavenumbers of the background are set
to zero. The inverse sine transform is then applied to obtain the nested
model background field at grid point values. The nested model can then
be run from this initial background, using boundary conditions provided
from the parent model run with initial state uP (x, 0), in order to provide a
background trajectory throughout the assimilation window from which we
can calculate the innovation vectors dj. It is important that this background
trajectory is obtained by running the numerical model at the resolution of the
assimilation model, as is done in practice, rather than just interpolating from
the background state of the lower resolution parent model [2]. The synthetic
observations are then assimilated using the 4D-Var formulation (5), which
is minimized using a conjugate gradient algorithm in order to obtain the
analysis at the initial time. The error in this analysis is calculated with
respect to the truth uT at the grid points of the nested model and compared
to the error in the background calculated in a similar manner.

We note that due to the effect illustrated in section 2.2, the long wave
will be projected mainly onto wavenumber one by the sine transform, with
some power also in the other low wavenumbers. The true k = 1 wave will
also be projected onto wavenumber one, and not wavenumber two as in the
example of section 2.2, since the domain is of length 0.5. Hence the signal
at wavenumber one will be a mixture of the true k = 1 wave and some of
the long wave information. Our aim is to understand how the 4D-Var treats
these two separate sources of information.

3.3. Results

We first aim to understand how the 4D-Var assimilation treats the long
wave when the correct variance information is used in the assimilation. The
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error covariance matrix Σ in (5) is defined to be a diagonal matrix, in which
the first seven components are set to the true variance of the background
error, 0.25. For the higher wavenumbers there is no useful information coming
from the background, so we assume a variance of 5.0, which ensures that
the observations will be given a much greater weight than the background
at these scales. In Figure 2 we show the power spectrum of the error in the
background and the error in the analysis. For clarity we show only the lowest
and highest wavenumbers, which are the parts of the spectrum containing
the true solution.

The first thing that we notice is that the data assimilation in the nested
model is able to capture the high resolution information at wavenumber
k = 18. This wave appears in the true solution, but it cannot be resolved by
the parent model and so is set to zero in the background field. The use of the
4D-Var system with the high resolution nested model enables information at
this scale to be inferred from the observations. Further experiments show
that a necessary condition to infer this wave is that the observations are
also at the high resolution; it is not sufficient to have a high resolution data
assimilation system with only low resolution observations [2]. At the low
wavenumbers we see that the errors in the analysis are worse than those in
the background for k = 1 and 2. The large-scale information coming from
the background has been degraded during the assimilation process. Since
these wavenumbers include information from the long wave that cannot be
represented on the nested model domain, the nested assimilation does not
treat this information correctly in this case.

In general we may expect the large scales provided by the parent model
to be reasonably accurate and we would like to use the nested model assim-
ilation to improve the small scales. Hence we would ideally like the 4D-Var
scheme applied to the nested model to retain the large-scale information
from the parent model. Since we have seen that this large-scale information
is projected onto low wavenumbers by the sine transform, we may expect to
improve the analysis if we constrain the solution to be closer to the back-
ground in these low wavenumbers. To test this possibility we run the assim-
ilation experiment again, but within the matrix Σ we assume that variance
on the low wavenumber components (k = 1, . . . , 7) is 0.05 rather than the
true variance 0.25. Thus the background field for these wavenumbers is given
more weight than a simple statistical argument would justify. The spectrum
of the error in the analysis from this experiment is compared to that of the
background in Figure 3. We see that the error on the low wavenumbers has
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Figure 2: Power spectrum of errors in background (black) and analysis (grey) for low
wavenumbers (left) and high wavenumbers (right) when the true error variances are used.

been much reduced with respect to the experiment using the true variances.
The wavenumber one component of the solution is now more accurate than
the background. At wavenumber k = 2 the analysis is still worse than the
background, but it is improved with respect to the first experiment. Other
choices of the variances at the low wavenumbers lead to further improve-
ments at these scales [2]. An important aspect of this experiment is that the
analysis at wavenumber k = 18 is still as accurate as in the first experiment.
Hence, by over-weighting the low wavenumbers in the background field, we
have been able to retrieve the small-scale information while retaining the
accuracy of the background in the large scales.

4. Conclusions

The development of data assimilation schemes for very high resolution
nested models is an important component of the development of future
weather prediction systems. In this paper we have analysed one particu-
lar aspect of such schemes, namely the treatment of very long waves within a
4D-Var data assimilation system. Information on large spatial scales is pro-
vided to a nested model by a larger-domain parent model and it is important
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Figure 3: As Figure 2, for the experiment in which the low wavenumbers are over-weighted
in the assimilation.

that the assimilation in the nested model does not degrade this information.
We have shown that within a nested model domain these scales are projected
onto low wavenumbers by a spectral transform. Hence the low wavenumbers
in the background contain a combination of information at scales which the
nested model can resolve and information at scales larger than the domain.
When a standard 4D-Var assimilation is performed in spectral space it is not
able to disinguish between these two sources of information. Hence the high
resolution assimilation is able to improve the estimate of the state at small
scales, but this occurs at the expense of a loss of information at the large
scales. We have proposed a modification to 4D-Var for these cases, in which
the low wavenumbers in the background are given more weight in order to
allow for the fact that they contain information on larger scales than can be
represented in the nested model. By performing the assimilation in spectral
space and over-weighting the low wave numbers, we are able to improve the
estimates of these large scales, while still keeping the same accuracy in the
smaller scales.

Previous studies reported in [1] and [7] have also used the large scales of
the parent model analysis as a constraint in the nested model analysis, in
the context of a three-dimensional variational assimilation. Whereas the ap-
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proach of [1] enforces the large scales of the nested model to be exactly equal
to those of the parent analysis, that of [7] weakly constrains the large scales
by a combination of these scales from the parent analysis and a previous
nested model forecast. In the new approach presented here we use the large
scales from only the parent analysis as a constraint, as in the work of [1],
but they act as only a weak constraint and observations are allowed to alter
these scales within the assimilation process. Experiments in a simple numer-
ical model indicate that this new approach can provide benefit, but a more
comprehensive comparison with the other approaches would be valuable.
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