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Abstract

Variational data assimilation systems for numerical weather prediction

rely on a transformation of model variables to a set of control variables

that are assumed to be uncorrelated. Most implementations of this trans-

formation are based on the assumption that the balanced part of the flow

can be represented by the vorticity. However, this assumption is likely to

break down in dynamical regimes characterised by low Burger number.

It has recently been proposed that a variable transformation based on

potential vorticity should lead to control variables that are uncorrelated

over a wider range of regimes. In this paper we test the assumption that

these two transforms produce an uncorrelated set of control variables.

Using a shallow-water model we calculate the correlations between the

transformed variables in the different methods. We show that the control

variables resulting from a vorticity-based transformation may retain large

correlations in some dynamical regimes, whereas a potential vorticity-

based transformation successfully produces a set of uncorrelated control

variables. Calculations of spatial correlations show that the benefit of the

potential vorticity transformation is linked to its ability to capture more

accurately the balanced component of the flow.

KEYWORDS: Burger number; control variable transform; potential vorticity;
shallow-water model

1 Introduction

An important component of three- and four-dimensional variational data assim-
ilation schemes is the background error covariance matrix. This matrix, which
specifies the covariances of the a priori forecast errors, determines the way in
which information from observed variables is spread to unobserved variables and
to unobserved spatial points. For operational weather forecasting the huge size

1



of the system state means that a full representation of this matrix is impossible
and so the matrix is constructed implicitly by means of a variable transforma-
tion. The analysis is generally performed with a set of variables different from
the model variables, known as control variables, and a transformation of these
control variables to the original model variables is defined. An important as-
sumption made in building a variational data assimilation system in this way is
that the forecast errors in the control variables chosen are statistically indepen-
dent, so that no cross-covariance information needs to be defined in the space
of control variables.

In practice the variable transformation from model to control variables con-
sists of several stages. The first stage is a transformation to a set of physical
variables whose errors are assumed to be uncorrelated between themselves, but
which may contain spatial correlations. This part is known as the parameter

transform. Further transformations are then used to remove spatial correla-
tions in the horizontal and vertical directions. A natural way of performing the
parameter transform is to partition the flow into balanced and unbalanced com-
ponents. For the linearized system these components are linearly independent
and so there is no dynamical interaction between them. Thus we may expect
that in a weakly nonlinear regime errors in control variables based on such a
partioning will be largely uncorrelated. For the atmosphere it is known that
the balanced component of the flow is well characterized by the advection and
inversion of potential vorticity (PV) and so a parameter transform based on PV
would be expected to give a good decomposition of the flow variables (Hoskins
et al., 1985). In practice for certain dynamical regimes, characterised by high
Burger number, the PV is well approximated by the vorticity. In this case the
inversion reduces from a three-dimensional to a two-dimensional problem that
is much easier to solve. Thus Parrish and Derber (1992) proposed a parameter
transform based on the vorticity rather than the PV. In that paper, and in many
operational data assimilation systems since, it is assumed that the rotational
part of the flow is completely balanced and so the balance is completely cap-
tured by the vorticity (Derber and Bouttier, 1999; Gauthier et al., 1999; Lorenc
et al., 2000; Lorenc, 2003; Barker et al., 2004; Fischer et al., 2005; Zupanski
et al., 2005; Bannister, 2008). While this is true for many flow regimes, the
approximation is likely to break down on scales larger than the Rossby radius
of deformation. In operational systems the lack of validity in these dynamical
regimes is usually accounted for by a statistical regression technique. However,
this results in a univariate analysis in these regimes and the true correlations
between the mass and wind variables are ignored.

It is expected that these problems could be eliminated by the use of a
parameter transformation based on potential vorticity (PV) rather than vor-
ticity as the balanced variable. Wlasak et al. (2006) showed, in the context
of a two-dimensional shallow-water model, that a PV-based control variable
could capture the true balance of the system over a wider range of regimes
than a vorticity-based control variable. In the context of operational models
Cullen (2003) and Bannister and Cullen (2007) performed initial studies with a
PV-based control variable transform in the models of the European Centre for
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Medium-Range Weather Forecasting and the Met Office respectively. However,
numerical issues led to compromises being made in the implementation of the
transform.

In this paper we extend these previous studies by testing the fundamental
assumption that the errors in the balanced and unbalanced control variables are
uncorrelated when the vorticity-based and PV-based parameter transforms are
used. Using a shallow-water model we calculate correlation statistics between
the different control variables to test how well the transforms remove correla-
tions by splitting the flow into its balanced and unbalanced parts. We show
that for certain dynamical regimes the assumption of zero correlations between
control variables is valid when the PV-based transform is used, but not with the
vorticity-based transform. These results give further details of the findings pre-
sented briefly in Bannister et al. (2008). Furthermore, we calculate the spatial
correlations for each control variable and use these to understand the effective-
ness of the parameter transforms at decoupling the balanced and unbalanced
parts of the flow.

The outline of the remainder of the paper is as follows. In section 2 we
present the model used in this study, in its continuous and discrete forms. In
section 3 we present the two different parameter transforms as applied to this
model. Section 4 examines briefly the covariance structures implied by these
transforms. In section 5 we present the statistics of the correlations between
control variables in different dynamical regimes. Section 6 presents the structure
functions of the different control variables, which allow us to diagnose how
well the balanced part of the flow is captured in the transforms. Finally we
summarise the results in section 7.

2 The model

2.1 Continuous system

The model we use for this study is the one-dimensional shallow-water equations
with rotation and orography, in the presence of a constant mean flow. The
model equations are given by

Du

Dt
+
∂φ

∂x
+ g

∂H̃

∂x
− fv = 0, (1)

Dv

Dt
+ fu = 0, (2)

D lnφ

Dt
+
∂u

∂x
= 0, (3)

where
D

Dt
≡ ∂

∂t
+ (Uc + u)

∂

∂x
(4)

and φ = gh. In these equations u denotes the departure of the velocity in
the x-direction from a known constant forcing mean flow Uc, v is the velocity
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in the y-direction, h is the height of the fluid, φ is the geopotential, H̃ =
H̃(x) is the height of the orography, f is the constant Coriolis parameter and
g is the gravitational force. The model assumes that there is no variation in
the y-direction and the boundary conditions in the x-direction are taken to be
periodic, with x ∈ [0, l].

This model is chosen as it is the simplest system that contains key properties
required to define the vorticity-based and PV-based parameter transforms. In
particular, we have a non-trivial first-order geostrophic balance relationship

fv = g
∂(h+ H̃)

∂x
. (5)

This relationship is found through an asymptotic expansion in small Rossby
number (Pedlosky, 1987), where the Rossby number is defined as the dimen-
sionless parameter

Ro =
U

fL
, (6)

where U and L are characteristic velocity and length scales. The balance (5)
becomes important at horizontal length scales which are larger than the Rossby
radius of deformation Lr, defined as

Lr =

√
gH

f
, (7)

where H is a characteristic depth scale. The shallow-water equations also con-
serve the potential vorticity (PV), defined by

q =
1

h

(
f +

∂v

∂x

)
. (8)

In order to characterize the differing flow regimes in this system we will make
use of the Burger number, which is defined as

Bu =

√
gH

fL
(9)

(Wlasak et al., 2006). The Burger number is a measure of the relative impor-
tance of rotation and stratification in the flow. It is the ratio of the Rossby
number and the Froude number

Fr =
U√
gH

. (10)

The Froude number is the ratio of the advective velocity to the gravity wave
speed. In most deep atmospheric motions Fr is small, i.e. the advective velocity
is much less than the gravity wave speed. The two components on the right
hand side of the PV equation (8) take on a different importance as the Burger
number changes. For small Burger number regimes the PV is dominated by the
first term, f/h, whereas in regimes of high Burger number the PV can be well
approximated by (∂v/∂x)/h (Wlasak et al., 2006).
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2.2 Discrete model

The model (1) to (3) is discretized using a semi-implicit, semi-Lagrangian scheme,
following a similar scheme to Lawless et al. (2003). This gives the following
time-discrete equations

un+1
a − und

∆t
+ α1

[
φx + gH̃x − fv

]n+1

a

+(1 − α1)
[
φx + gH̃x − fv

]n
d

= 0, (11)

vn+1
a − vnd

∆t
+ α2 [fu]

n+1

a + (1 − α2) [fu]
n
d = 0, (12)

lnφn+1
a − lnφnd

∆t
+ α3 [ux]

n+1

a + (1 − α3) [ux]
n
d = 0, (13)

where the subscript x denotes the derivative with respect to x, subscripts a and
d denote arrival and departure points respectively and superscripts denote the
time level. The discrete equations are solved on a grid where the velocities u
and v are held on points staggered from those where the height h is held, that
is, on a one-dimensional analogue of the Arakawa B grid. The time-weighting
parameters α1, α2 and α3 are chosen to meet the stability requirements of the
scheme. Further details about the discrete solution of the differential equations
can be found in Katz (2007).

3 Parameter transforms

The transformation from model variables to control variables is used within the
incremental formulation of variational data assimilation. In this formulation
of the assimilation problem the minimization of the nonlinear variational cost
function is replaced by a series of minimizations of linear cost functions (Courtier
et al., 1994; Lorenc et al., 2000). We let x represent the model state. In
incremental variational data assimilation the nonlinear cost function is linearized
about the current state estimate x̄ and this linearized cost function is solved
for an increment x′ in what is known as the ‘inner loop’ minimization. The
increment can then be added to the estimate x̄ in an ‘outer loop’ step to provide
a better estimate of the system state and the process repeated as required.
This is equivalent to applying a Gauss-Newton iteration to solve the nonlinear
minimization problem (Lawless et al., 2005).

The parameter transform occurs within the definition of the inner loop min-
imization problem. We define a control variable z′ and a transformation U from
control variables to model variables

x′ = Uz′ (14)

(the U-transform). The inverse transform from model to control variables is
defined by

z′ = Tx′ (15)

5



(the T-transform), where T is a generalized inverse of U. The inner loop mini-
mization problem is then defined in terms of the control variables z′, which are
assumed to be independent. The solution to the minimization problem can then
be transferred to the space of model variables using the U-transform in order
to update the state estimate in the outer loop step.

We note here that normally the transformation U is defined to include also
the transformation of the spatial covariances to spectral space (see, for example,
Lorenc et al. 2000). Here we use the notation U to imply only the parameter
transform. Hence we have

B = UΛUT , (16)

where Λ is a block-diagonal matrix with the blocks corresponding to auto-
correlations for each of the control variables. We now set out in detail the
vorticity-based and PV-based parameter transforms for the one-dimensional
shallow water model introduced in the previous section, where for this system
we have

x′ =




u′

v′

φ′


 . (17)

In order to decompose the shallow-water flow into its balanced and unbal-
anced components we perform a normal mode analysis of equations (1)-(3) in
the absence of a mean flow Uc, linearized around a state of rest. Such an anal-
ysis reveals the presence of three normal modes, one slow mode and two fast
modes. The slow mode is taken to be the balanced part of the flow and satisfies
the linearization of the PV equation (8)

q′h̄ =
∂v′

∂x
− q̄h′. (18)

The corresponding first-order linear balance equation is given by a linearization
of (5), which leads to

fv′ − g
∂h′

∂x
= 0. (19)

The two remaining modes represent the unbalanced part of the flow and can be
related to the departure from balance and to the divergence. A decomposition
of flow into balanced and unbalanced variables has previously been used to
develop numerical methods for solving the flow equations (Dritchel et al., 1999;
Mohebalhojeh and Dritschel, 2004). Here we use such a decomposition to design
the parameter transforms for incremental variational data assimilation. We seek
three control variables for the data assimilation problem which represent one
balanced and two unbalanced components of the flow.

In order to derive both the vorticity-based and PV-based transforms for our
model we make use of Wlasak et al. (2006), who derived the corresponding
T-transforms for the two-dimensional shallow-water equations on the sphere,
and Cullen (2003), who derived the PV-based transform for an operational nu-
merical weather prediction model. Appropriate transforms are defined for the
one-dimensional shallow water model used in this study. We first consider a
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separation of the flow into its rotational and divergent parts by means of a
Helmholtz decomposition. We define a streamfunction ψ′ and a velocity po-
tential χ′. Then for the one-dimensional shallow-water model the Helmholtz
decomposition reduces to the vorticity

ζ ′ =
∂v′

∂x
=
∂2ψ′

∂x2
, (20)

and the divergence

D′ =
∂u′

∂x
=
∂2χ′

∂x2
, (21)

with velocities u′ and v′ given by

u′ =
∂χ′

∂x
, (22)

v′ =
∂ψ′

∂x
. (23)

3.1 Vorticity-based transform

The vorticity-based transform makes the assumption that the rotational com-
ponent of the wind is totally balanced. We define a balanced height variable h′b
which is related to the streamfunction through the linear balance equation (19).
Thus we obtain

f
∂2ψ′

∂x2
− g

∂2h′b
∂x2

= 0. (24)

For the case of periodic boundary conditions this can be integrated to obtain

h′b =
f

g
ψ′. (25)

The control variables are then taken to be the streamfunction, the velocity
potential and the unbalanced (residual) component of the height field, defined
by

h′res = h′ − h′b. (26)

In operational systems this unbalanced height component is represented by an
unbalanced pressure (Lorenc et al., 2000). The T-transform, from model to
control variables, then proceeds as described for the two-dimensional shallow-
water equations by Wlasak et al. (2006) with the following steps:

1. Find the velocity potential from u′ using (21).

2. Find the streamfunction from v′ using (20).

3. Calculate the balanced height h′b using (25).

4. Calculate the residual height using (26).
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The solutions of (21) and (20) are unique up to a constant, which is chosen to
ensure that the mean values of ψ′ and χ′ are zero. By choosing the constant in
this way we lose a degree of freedom in each equation. These missing degrees
of freedom are used to retain the mean values of the wind components that are
lost through differentiation. Thus the mean values, which we denote < u′ > and
< v′ >, are also control variables.

The U-transform, from control variables to model variables, is defined in the
following way:

1. Calculate the velocity v′ from ψ′ and < v′ >

v′ =
∂ψ′

∂x
+ < v′ > . (27)

2. Calculate the balanced height increment h′b from ψ′ using (25).

3. Calculate the full height increment h′ from h′b using (26).

4. Calculate the velocity u′ from χ′ and < u′ >

u′ =
∂χ′

∂x
+ < u′ > . (28)

It is useful to note that the consideration of the mean values is more natural
in the implementation of the transforms in operational systems such as that of
the Met Office, where the transforms are solved in spectral space (Lorenc et al.,
2000). For these systems the transform is only applied to wavenumbers one and
above and wavenumber zero, which holds the mean values, is not transformed.
It is the lack of a spectral transform in our study that makes necessary a special
treatment of the mean values.

3.2 PV-based transform

For the PV-based transform we allow the streamfunction to have both balanced
and unbalanced components, which we denote ψ′

b and ψ′

u respectively, with cor-
responding balanced and unbalanced winds v′b and v′u defined by the Helmholtz
decomposition. In a similar way the height is split into balanced and unbalanced
components hb and hu. We assume that the linearized PV is associated solely
with the balanced variables and that the balanced variables satisfy the linear
balance equation, with the unbalanced variables satsfying departure from this
balance. Thus from (18) and (19) we obtain

f
∂2ψ′

b

∂x2
− g

∂2h′b
∂x2

= 0, (29)

∂2ψ′

b

∂x2
− q̄h′b = q′h̄, (30)

f
∂2ψ′

u

∂x2
− g

∂2h′u
∂x2

= ζ ′a, (31)

∂2ψ′

u

∂x2
− q̄h′u = 0, (32)
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where ζ ′a, the departure from geostrophic balance, is defined by the equation

ζ ′a = f
∂2ψ′

∂x2
− g

∂2h′

∂x2
. (33)

The control variables are then taken to be the balanced streamfunction ψ′

b, the
unbalanced height h′u and the velocity potential χ′. We note that other com-
binations of balanced and unbalanced variables could theoretically be chosen,
but this set is the easiest to implement numerically and is better conditioned
(Cullen 2003, Wlasak et al. 2006).

Integration of (29) with periodic boundary conditions gives

h′b =
f

g
ψ′

b. (34)

This can be substituted into (30) to obtain a second-order equation for ψ′

b,

∂2ψ′

b

∂x2
− f q̄

g
ψ′

b = q′h̄, (35)

which is the PV inversion equation for this system. The T-transform, from
model to control variables, is then given by the following steps:

1. Find the velocity potential from u′ using (21).

2. Solve (35) for ψ′

b.

3. Solve (34) for h′b and set h′u = h′ − h′b.

4. Store the mean values of u′ and v′ which are lost through differentiation.

The U-transform, from control variables to model variables, is defined as
follows:

1. Calculate the balanced velocity increment v′b from ψ′

b using (23).

2. Calculate ψ′

u from h′u using (32) and the unbalanced velocity increment
from ψ′

u using (23) and reconstruct the full velocity increment v′

v′ = v′b + v′u+ < v > . (36)

3. Calculate the balanced height increment h′b from ψ′

b using (34) and recon-
struct the full height increment h′ = h′b + h′u

4. Calculate the velocity u′ from χ′ and < u >

u′ =
∂χ′

∂x
+ < u > . (37)
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The derivation of these transforms assumes that the equation for the un-
balanced streamfunction (32) with periodic boundary conditions has a solution.
This will be true only if the mean value of q̄h′u is zero. Within the data assimi-
lation system this condition may not be satisfied unless it is explicitly enforced.
It is not straightforward to understand how to do this, since q̄ is varies in x and
is modified on every outer loop of the incremental variational data assimilation.
It is possible to modify h′u on each inner iteration so that the mean of q̄h′u is
zero. This can be achieved since we are always able to subtract a constant from
h′u such that < q̄h′u >= 0. The mean of the full height increment is therefore
split between h′b and h′u.

The problem could be avoided by choosing to approximate q̄ by a constant.
An approximation of this sort was made in Cullen (2003). This would mean
that we are simply able to set < h′u >= 0 and the condition < q̄h′u >= 0 will
always be satisfied. We then store the mean of the full height increment solely in
h′b. This approximation may desirable from an operational perspective since the
transform is then less computationally demanding. In section 5 we consider the
possible implications of making this approximation in the PV-based transform.
We choose to make the approximation

q̄ =
1

h̄

(
f +

∂v̄

∂x

)
≈ f

< h̄ >
, (38)

which essentially assumes that ∂v̄/∂x = 0. This is consistent with the clima-
tological assumptions and zonally averaged quantities used in determining the
background error covariance matrix. However, the use of this approximation
would weaken the dependence of the assumed background errors on the current
state of the flow, since the state only appears as a constant spatial average of
h, which is updated on each outer loop iteration.

Having derived both the vorticity-based and PV-based parameter transforms
for the one-dimensional shallow-water model, we now consider the covariance
structure implied by these transforms.

4 Implied covariance structures

We can understand something of the difference between the two parameter
transforms presented by looking at the implied background error covariance
matrix by means of (16). For ease of presentation we do not consider the mean
values of the increments in this analysis, although they are included in the
numerical calculations discussed in the remainder of this paper.

For the vorticity-based transform, the control variables are χ′, ψ′ and h′res
and the discrete form of the U-transform defined in section 3.1 can be written
in matrix notation as




u′

v′

h′


 =




∆x 0 0
0 ∆x 0
0 f/g 1







χ′

ψ′

h′res


 , (39)
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where ∆x is the matrix representing the discretization of the first derivative
operator ∂/∂x on the periodic domain [0, l]. Therefore the background error
covariance matrix for model variables u′, v′ and h′ implied by the transform is

BV =




∆xΛχ∆T
x 0 0

0 ∆xΛψ∆T
x ∆xΛψ

f
g

0
(
∆xΛψ

f
g

)T (
f
g

)2

Λψ + Λhr


 , (40)

where Λχ,Λψ and Λhr
are the auto-covariance matrices for χ′, ψ′ and h′res

respectively and form the blocks of the block-diagonal matrix Λ defined in (16).
For the PV-based parameter transform defined in section 3.2 the control

variables are χ′, ψ′

b and h′u. For this case the discrete U-transform can be written
in matrix notation as




u′

v′

h′


 =




∆x 0 0
0 ∆x Q
0 f/g 1







χ′

ψ′

b

h′u


 , (41)

where the matrix Q is the discrete operator such that Qh′u approximates

∂

∂x

(
∇−2q̄ h′u

)
(42)

on the periodic domain [0, l], with ∇2 ≡ ∂2

∂x2 . The implied background error
covariance matrix is then

BPV =




∆xΛχ∆T
x 0 0

0 ∆xΛψb
∆T
x + QΛhu

QT ∆xΛψb

f
g

+ QΛhu

0 (∆xΛψb

f
g

+ QΛhu
)T

(
f
g

)2

Λψb
+ Λhu


 , (43)

where Λχ,Λψb
and Λhu

are the auto-covariance matrices for χ′, ψ′

b and h′u
respectively and form the blocks of the block-diagonal matrix Λ defined in (16)
for the PV-transform.

We note first that for both BV and BPV there are no implied covariances be-
tween u′ and other model variables. This de-coupling of u is a result of assuming
that there is no variation in the y direction in the one-dimensional shallow-water
model and hence the divergence depends solely on u. This would not be true in
a more general model. Implied covariance with u could be introduced into this
model by splitting the u into balanced and unbalanced components. We would
then need a relationship defining a balanced component of u (see, for example,
Fletcher 2004, Wlasak et al. 2006).

A comparison of BV and BPV shows that the differences between the im-
plied background error statistics occur in the auto-correlations of the v field
and in the cross-correlations between v and h. For each of these we see that the
PV-based implied background error statistics depend on the currrent dynamical
state, through the dependence on the linearization state PV, q̄(x, t). The state
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dependence introduces a mechanism to change the implied background statis-
tics on each outer iteration of the incremental 4D-Var algorithm through the
linearisation state. In the case where the approximate PV (38) is used in the
transform, the state dependence arises only through the current mean value of
the h̄ field, which is updated on each outer loop. The statistics implied by the
vorticity-based transform on the other hand have no state dependence and so
are not updated when using this transform. Thus other mechanisms must be
used if we wish to introduce state-dependent background statistics when using
the vorticity-based transform. For example, some state dependence is also in-
cluded in the transform used at ECMWF, where the linear balance equation
in the vorticity transform is replaced by a nonlinear balance operator, which is
then linearized for use in the incremental 4D-Var system (Fisher, 2003).

5 Correlations between control variables

Having presented an analysis of the two different parameter transforms we ex-
amine how well the transforms remove correlations between control variables.
In particular we wish to understand whether the balanced and unbalanced com-
ponents of the flow, as described by the transform, really are uncorrelated;
whether the PV-based transform is more successful at removing correlations
between variables; and what are the consequences of using the approximate lin-
earization state PV (38) in the transform. In order to address these questions
we generate statistics of the correlations between background errors as repre-
sented by the different control variables. To do this we use the numerical model
introduced in section 2.2. First we discuss the methodology we use to generate
the correlation statistics.

5.1 Methodology

A common method for generating background error covariance statistics in data
assimilation is that introduced by Parrish and Derber (1992) and referred to as
the ‘NMC method’. This method uses differences between forecasts of different
lead times for the same validity time as a proxy for forecast errors. A large
sample of such differences is created, over which statistics can be calculated. A
disadvantage with this method is that it requires an existing data assimilation
system before the statistics can be calculated.

An alternative approach, presented by Polavarapu et al. (2005), is to gener-
ate one long integration of the numerical model and take differences between the
forecast fields at constant intervals of time apart as a proxy for forecast errors.
Statistics can then be taken over a sample of these forecast differences. It is this
method which we use to generate the correlation statistics in this paper. The
correlations between different control variables are calculated by first transform-
ing the forecast differences using the appropriate T-transform and then using
the transformed forecast differences as a statistical sample. In the calculation
of the statistics the values of the forecast differences at each grid point and for
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each time interval are assumed to be statistically independent and so the total
sample size is the number of grid points multiplied by the number of time in-
tervals. We note that one characteristic of the approach of Polavarapu et al. is
that the largest forecast errors are always associated with the highest frequencies
(Jackson et al., 2008).

For the experiments presented in this paper we discretize the model using
500 grid points and take 100 time differences, giving a total statistical sample
of size 50,000. This sample size was chosen as that for which the correlation
statistics were seen to have converged in a series of experiments with different
sample sizes. The model grid spacing is taken to be ∆x = 12.5m, which means
that the domain length l = 6250m, the model time step is ∆t = 2.5s, the
Coriolis parameter f = 0.01s−1 and the time-weighting parameters α1, α2, α3

are set to 0.6. The model orography is defined by

H̃(x) = Hc

(
1 − x2

a2

)
, (44)

where a = 40∆x and Hc is a mean height. The model is run in two different
dynamical regimes, defined by high and low Burger number. For the high Burger
regime we set Hc = 7.6m and for the low Burger regime we have Hc = 0.019m.
With these parameters the Burger numbers of the different regimes are 4.0 and
0.2. The initial conditions for the model are defined to be a state of rest, with h a
constant height above the orography of 40m in the high Burger regime and 0.1m
in the low Burger regime. These initial conditions are in geostrophic balance,
but unbalanced motions are then created by the presence of the orography.
This ensures that there is a mixture of balanced and unbalanced modes in the
solution fields, which thus provides a strong test for the parameter transforms.
Different experiments are performed in which the mean flow Uc is varied from
0.1ms−1 to 5.0ms−1, which varies the Rossby number between 0.02 and 1.0.

In order to generate the statistics we must choose an appropriate time in-
terval for the forecast differences. When the NMC method is used to generate
statistics for operational systems, the forecasts are taken to be 24 hours apart,
so as to remove the diurnal cycle, which would otherwise dominate the statis-
tics. Polavarapu et al. (2005) use a 6 hour interval in their method, but the
time-differences are then adjusted to account for diurnal changes. In a similar
way, for the shallow-water model used here, we must choose the time interval
over which we difference the model fields in order to remove any similar domi-
nant signal which may be present. To identify the dominant signal we generate
a forecast and plot values of the variables at fixed points in space against time.
As an example we show in Figure 1 the evolution of the u variable in the high
Burger regime at two different spatial points when the mean flow Uc = 0.5ms−1.
We see that the variable has a fast oscillation, which we calculate to have a pe-
riod of approximately 300s. A similar oscillation is seen in the φ field. Analysis
of the model equations shows that this arises from fast-moving gravity waves
travelling in the positive x-direction at a speed of 20ms−1 relative to the mean
flow, which take a time of l/(

√
gD + Uc) ≈ 300s to cover the whole domain,

where D is the height of the surface at rest. Since the oscillation is a product
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Figure 1: Values of u at spatial points i = 125 (top) and i = 250 (bottom)
plotted against time for Bu = 4.0.

of the periodicity of this particular problem, we choose to filter the signal by
choosing a time interval of approximately 300s. For the low Burger regime the
gravity wave speed is much slower relative to the mean flow at 1ms−1 and so no
fast oscillation is seen in plots of the different variables against time. Hence we
are free to choose the time-differencing interval in the low Burger regime to be
also approximately 300s, without worrying that the statistics will be affected by
a dominant signal. Further evidence of the appropriateness of the time intervals
chosen is obtained by verifying that the correlations in time between the differ-
ence fields decay in time. Details of this analysis can be found in Katz (2007,
Appendix A). We now examine the correlations between the control variables
in the different dynamical regimes.

5.2 Correlations in high Burger regime

We begin by considering the correlations between control variables in a high
Burger regime, where we expect the vorticity-based and PV-based transforms
to exhibit similar behaviour. The variation in the input values of Uc leads
to a variation of the Froude number from 0.005 to 0.25. The time differencing
interval is chosen to be l/(

√
gD+Uc) = 277.5s, where we assume an approximate

average mean flow of Uc = 2.5ms−1. We calculate the correlations between full
model fields (ψ, h+ H̃), model field increments (ψ′, h′), vorticity-based control
variables (ψ′, h′res) and PV-based control variables (ψ′

b, h
′

u). For the PV-based
control variables calculations are made using both the full linearized PV and
the approximation (38). The variation of the different correlations with Rossby
number is shown in Figure 2.

The first thing we notice is that there is a strong correlation between model
variables in both the full fields (ψ, h+H) and the increment fields (ψ′, h′), which
decreases with Rossby number. This indicates a high degree of balance in the

14



0 0.2 /0.05 0.4 / 0.1 0.6 / 0.15 0.8 / 0.2 1.0 / 0.25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Rossby number/ Froude number

C
or

re
la

tio
n 

co
ef

fic
ie

nt

Figure 2: Plot of correlation coefficient against Rossby number for high Burger
number regime. The solid line is the correlation between the full model fields
and the dashed line is the correlation between the model field time differences.
Correlations between vorticity-based control variable are indicated with crosses
and between PV-based variables using circles for the full linearized PV and
triangles when the approximate PV is used.
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fields. Since the balance approximation (19) is valid in the asymptotic limit
of small Rossby number, we see an increase in the correlation as the Rossby
number decreases and the flow becomes more balanced. This result helps to
validate our choice of statistical method, since this behaviour is exactly as we
would expect.

The correlation between the vorticity-based variables (ψ′, h′res) and between
the PV-based variables (ψ′

b, h
′

u) is much less than the correlation between the
model field increments (ψ′, h′), with the largest correlations being of order 10−2.
We see that in this high Burger regime both control variable transforms have
been successful in removing the strong correlation between model variables.
For all values of the Rossby number the correlations obtained from the two
different control variable transforms are very similar. This is to be expected,
since in a high Burger regime the balanced variable is approximated well by
the vorticity. When the approximation (38) is used in the PV-transform the
correlation between the control variables is almost exactly the same as when
we use the full PV variables. The approximation therefore seems to have little
effect on the correlation between the PV-based control variables in this model.

To demonstrate that our choice of τ is appropriate to the high Burger regime,
and that the method used to generate the statistics is sensitive to any domi-
nant signal in the data, we compare these results with those obtained when we
use a different time interval. Figure 3 shows the correlation coefficients using
an interval of τ = 100s, which does not filter the gravity wave signal. These
correlations do not correspond with the balances we understand to be present.
There is very little balanced correlation in the increments ψ′ and h′. However
the full model fields ψ and h+H are highly correlated. As the Rossby number
is decreased the balance approximation becomes more accurate and therefore
ψ and h +H become increasingly correlated. The same behaviour should also
be apparent in the increment fields. However, this is not observed in the corre-
lations. This is because the gravity wave signal is dominating the correlations.
A consequence of the lack of correlation between ψ′ and h′ in the data is that
an unduly strong negative correlation between the vorticity-based variables, ψ′

and h′res, is produced, since from (25) and (26) we have

h′res = h′ − f

g
ψ′. (45)

5.3 Correlations in low Burger regime

We now consider the correlations between control variables in a low Burger
regime, with Bu = 0.2. In this regime the streamfunction is not completely
balanced and we expect the vorticity-based transform to be less effective at
removing correlations between variables. The correlations between control vari-
ables for this regime are shown in Figure 4. We note that here the Rossby
number has the same range as in the high Burger regime, but the Froude num-
ber is larger, with the largest value now being 5.0. Here the Froude number
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Figure 3: Plot of correlation coefficient against Rossby number for the high
Burger regime using a time-differencing interval of 100s. The lines are labelled
as in Figure 2, but the experiment using the approximate PV is not shown.

is larger than the Rossby number and the flow is dominated by the effects of
rotation.

If we examine first the correlations between the full model fields we note
that in this regime, as for the high Burger regime, there is a strong balanced
correlation between the full fields for small Rossby number. For Rossby number
close to 1.0 we are not in a low Rossby number regime and we see that for this
case the flow is unbalanced. This is observed in the small correlation of ψ and
h +H. However, a positive correlation remains in the increment fields (ψ′, h′).
This is attributed to an unbalanced stationary wave in the forecast fields that
is tied to the orography, which is not seen in the increment fields but does have
a signal in the full field correlations. Such a wave would be expected to form
when the Froude number increases above one, leading to a loss of balance in the
full fields. This explains the sudden fall in the correlation between ψ and h+H
at this value of the Froude number.

The PV-based control variables show a correlation which is close to zero
over the whole range of the Rossby number. As in the high Burger regime, this
transform is also successful at removing the correlations in a low Burger regime.
The vorticity-based control variables on the other hand show a large negative
correlation for all values of the Rossby number. It is clear that in the low Burger
regime these variables remain highly correlated and so are not a valid choice of
control variables for a data assimilation system that assumes the variables are
uncorrelated. In this case the balance is dominated by the mass variables and is
not well captured by the vorticity field. Again we find that when the approxima-
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Figure 4: Plot of correlation coefficient against Rossby number for the low
Burger regime. The lines are labelled as in Figure 2

tion (38) is used in the PV-based transform the correlations between the control
variables are almost identical to those of the unapproximated transform.

6 Spatial auto-correlations of control variables

We can gain further insight into the way the control variables decompose the
balanced and unbalanced parts of the flow by calculating the spatial auto-
correlations for the different control variables. These auto-correlations provide
information on the inherent length scale of each variable. This length scale
can be compared to the Rossby radius of deformation (7) and used to assess
the degree to which each variable is representing the balanced and unbalanced
dynamics of the problem. We expect balanced variables to have a horizontal
length scale L ≈ Lr, whereas unbalanced variables may have horizontal scales
smaller than this, determined by the size of the orography and the value of the
mean wind field.

As in section 5 we generate the correlations from a set of 100 time differences,
each with 500 grid points. For each control variable we calculate the correlation
between the field at a spatial point i and the field at a spatial point i + j at
the same time level for j = −N/2, . . . , N/2 − 1, where N is the number of
grid points. The spatial correlation pattern, or structure function, can then be
found by plotting these correlations as a function of the separation distance j. In
order to compare the auto-correlations produced by the two different parameter
transforms we require a regime in which both balanced and unbalanced motions
are present and in which the gravity wave speed is greater than the advective
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Figure 5: Structure function for vorticity-based variables ψ (top), hres (middle)
and χ (bottom) in high Burger regime. The Rossby radius is marked with a
dashed line.

velocity (that is Fr < 1.0). We use the results of section 5.2 to identify regions in
parameter space where there are strong correlations between the model variable
time-differences (ψ′, h′) and also full fields (ψ, h+ H̃), which indicate that there
is a high degree of balance in the flow, without it being totally balanced. For
the results of the high Burger experiment shown in Figure 2 we see that the
flow is highly balanced for Ro = 0.25. and so we choose the mean flow to be
Uc = 1.25ms−1. This gives a Froude number of Fr = 0.0625. For the low
Burger regime, shown in Figure 4, it is necessary to choose a smaller mean
velocity to ensure that the Froude number remains less than one. Hence we
choose Uc = 0.75ms−1, which implies that Ro = 0.15 and Fr = 0.75. By
avoiding regimes where the Froude number is greater than one we ensure that
the fields are not strongly unbalanced.

We consider first the spatial correlations in a high Burger regime. For this
experiment the Rossby radius of deformation Lr, calculated from (7), is 2000m,
which corresponds to 160 grid points. In Figures 5 and 6 we plot the structure
functions corresponding to a point in the centre of the domain for the vorticity-
based and PV-based variables respectively. We see that the correlation scale is
largest for the balanced variables ψ′ and ψ′

b and is of order approximately Lr.
The correlation scales for the unbalanced variables h′res and h′u are less than the
Rossby deformation radius. These results indicate that both the vorticity-based
and PV-based variables are capturing the balance and unbalanced flows well in
this regime.

For the low Burger regime the Rossby radius is much smaller and is equal to
approximately 100m, or 8 grid points. In Figures 7 and 8 we plot the structure
functions calculated in this regime. We would expect that correlations for the
unbalanced height variable to be on a scale of less than 100m if it accurately
represents the unbalanced motion. We see that this is the case for the PV-
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Figure 6: Structure function for PV-based variables ψb (top), hu (middle) and
χ (bottom) in high Burger regime. The Rossby radius is marked with a dashed
line.

based variable h′u but not the vorticity-based variable h′res. In this regime the
balanced part of the flow is dominated by the height and the vorticity-based
variables do not account for this. Hence we see correlation structures for h′res
on too large a scale. We can therefore conclude that the PV-based variables are
accurately capturing the correct balances in the low Burger regime while the
vorticity-based variables are not.

7 Conclusions

The ability of the parameter transform to split the flow into uncorrelated parts
is an important assumption of many operational variational data assimilation
systems. A decomposition of the variables based on PV has previously been pro-
posed in the literature as being more valid than the commonly used vorticity-
based decomposition. In this study we have demonstrated that the approxi-
mate transform based on vorticity does effectively remove correlations in a high
Burger regime, but that the control variables are highly correlated in a low
Burger regime. This is explained by the fact that the balanced part of the flow
in the low Burger regime is best represented by the mass variables rather than
the rotational part of the wind. Thus the streamfunction, which is used as the
balanced variable in this transform, is unable to represent the balanced flow
correctly. On the other hand the PV-based variables are able to decouple the
flow successfully for both the high and low Burger regimes. As expected from
previous theoretical studies, the splitting of the streamfunction into balanced
and unbalanced components in this transform allows a better representation of
balance over a wider range of dynamical regimes.

Despite the evident advantage in using the PV-based transform, issues still
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Figure 7: Structure function for vorticity-based variables ψ (top), hres (middle)
and χ (bottom) in low Burger regime. The Rossby radius is marked with a
dashed line.
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Figure 8: Structure function for PV-based variables ψb (top), hu (middle) and
χ (bottom) in low Burger regime. The Rossby radius is marked with a dashed
line.
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remain with regard to its implementation in data assimilation systems. As
noted by Bannister and Cullen (2007), the use of a transform based on PV in
a full numerical weather prediction system requires the iterative solution of a
three-dimensional elliptic equation, which is not well conditioned. Cullen (2003)
commented that this poor conditioning of the transform could lead to slower
convergence of the assimilation, even though the assumption of uncorrelated
errors is more realistic. Hence further preconditioning techniques need to be
developed in order to implement the transform efficiently. Nevertheless the
results of this study indicate that there is much advantage to be gained from
using a parameter transform based on PV and so the effort towards an efficient
numerical implementation should be worthwhile.
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