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Abstract

Driven by a range of modern applications that includes telecommunications,

e-business and on-line social interaction, recent ideas in complex networks can be

extended to the case of time-varying connectivity. Here we propose a general frame-

work for modelling and simulating such dynamic networks, and we explain how

the long time behaviour may reveal important information about the mechanisms

underlying the evolution.

1 Introduction

Many application areas give rise to connectivity patterns that change over time. As well
as traditional contexts such as epidemiology [16, 28], examples are arising in modern
applications such as mobile telecommunications, on-line trading, smart-metering and
on-line social networking [2, 4, 6, 7, 11, 13, 16, 19, 24, 26]. Information such as ‘who
called who’, ‘who tweeted who’, ‘who facebooked who’, and ‘people who bought his book
also bought . . . ’ is naturally evolving over time and cannot be fully exploited through a
static representation as a single time-average or snapshot. The motivation for our work
is that these emerging, data-rich disciplines can generate large, highly-resolved network
sequences that demand new models and computational tools.

Although we will draw on concepts from the well-studied ‘network growth’ context, where
new vertices and accompanying edges are accumulated [3, 22], we are concerned here with
a different time-dependent scenario where the population of vertices remains fixed from
the outset, and the graph evolves through the appearance (birth) or the deletion (death)
of edges. Specific examples that have recently received attention include
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• networks of mobile phone users with a link denoting current interaction [24, 26],

• transportation networks defined over a dynamic infrastructure [6],

• networks describing transient social interactions [25],

• correlated neural activity in response to a functional task [11].

Our aims here are (a) to set out and study some general options for describing such
evolving networks in a stochastic setting and (b) to discuss practical challenges in inter-
preting and calibrating suitable models. In particular, we show how ideas from [11] can
be extended to produce a wider class of models.

In section 2 we introduce a range of models under successively less restrictive assump-
tions. Section 3 focusses on a particularly promising model class and in section 4 we
make some observations about long-time behaviour. In section 5 we give some illustrative
simulations on synthetic data and then show computational results on a real evolving
mobile phone network. Concluding remarks appear in section 6.

2 Stochastic models

For simplicity, we consider here undirected, unweighted graphs, defined on a set V of
exactly n > 2 vertices, with no self-loops. Extensions to directed graphs and self-
loops follow naturally. Any such graph G may be represented by a symmetric (n × n)
adjacency matrix, A, with elements Aij = Aji = 1 if the edge e = (i, j) is present, and
zero otherwise.

Let Sn denote the set of all such graphs defined over these n vertices. We have |Sn| =

2
n(n−1)

2 = M(n), say. An evolving graph over discrete time steps is simply an ordered
sequence, {Gk} for k = 0, 1, 2, ..., within Sn. We think of the evolving graph as taking
the particular state Gk at kth time step, that is, at time tk from some monotonically
increasing time sequence.

To introduce a stochastic element, suppose we have a set of conditional probabilities,
defined for all possible networks, Gk+1 ∈ Sn, given all of the networks earlier within the
evolving sequence: say

P (Gk+1|Gk, Gk−1, ....).

This set determines a probability distribution for the next element, Gk+1, in the sequence,
given its history to date. It may be applied iteratively to generate successive further
elements of the sequence.

Let us also suppose that the evolving graph respects the natural Markov property, so
that the most recent graph in the sequence is sufficient to define the statistics of its
future evolution: then we must have well defined probabilities

P (Gk+1|Gk), (1)
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for all ordered pairs (Gk+1, Gk) in Sn × Sn. Hence a total of 2n(n−1) probabilities is
required in this general setting. This number seems prohibitively large if we wish to
study general properties or calibrate models to data.

We may reduce this complexity by imposing symmetry. If there is nothing distinguished
about any of the vertices that effects the evolution, then we may argue that the prob-
abilities should not change if the vertices are permuted. (Note this is not the case for
range dependent graphs introduced in subsection 3.3, where the vertices are embedded
within some underlying ordering). In this permutable case the specification is reduced
by a factor of n!. For n large, Stirling’s approximation gives n! = O(2n log2 n), so this
cannot provide much relief!

A more useful simplification is to assume edge independence. Here, at each time step the
probability for the appearance or disappearance of each edge, e, is independent of those
for all other edges, yet all such probabilities are conditional on properties of Gk. So for
each edge e and each Gk we must specify the probability

P (e ∈ Gk+1|Gk). (2)

Then we can reassemble the full graph transition probabilities in (1) from those for the
independent edge transitions in (2), to give

P (Gk+1|Gk) =
∏

e∈Gk+1

P (e ∈ Gk+1|Gk)
∏

e/∈Gk+1

(1 − P (e ∈ Gk+1|Gk)). (3)

This radically reduces the need to specify graph to graph transition probabilities, since at
worst we now require n(n−1)2−1+n(n−1)/2 probabilities. In the next section, we consider
how these may be defined as suitable functions of e and Gk.

3 Independent edge birth and death dynamics

We will introduce a class of independent edge models by specifying edge birth and death
dynamics. Let us assume we have well defined terms

α(e) = P (e ∈ Gk+1|e /∈ Gk), ω(e) = P (e /∈ Gk+1|e ∈ Gk), (4)

that denote the edge birth probability and edge death probability, respectively. For
simplicity, this notation suppresses their possible dependence on Gk. Then to define
a model we simply give α(e) and ω(e) as functions of properties of Gk, when e is not
present, or present, in Gk respectively. We will propose three useful cases.
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3.1 Births and deaths dependent upon degree

Suppose the edge e that connects vertices vi and vj is not in Gk. Let di and dj denote
the degree of vertices vi and vj within Gk, respectively. Then let us define

α(e) = Fα(di, dj),

where Fα is any continuous mapping from pairs of integers onto the interval [0,1]. In
the undirected edge case that we consider in this work, symmetry demands Fα(z1, z2) =
Fα(z2, z1) for all nonnegative integers z1 and z2. For example, Fα might be monotonically
increasing in both arguments, meaning that edges are more likely to appear between
vertices of higher degree. Such a case is given by

Fα(di, dj) =
didj + a

didj + a + b

for positive reals a and b. This mirrors the concepts of preferential attachment and
assortativity found in static models [3, 21].

Similarly suppose e is in Gk, and connects vertices vi and vj . Then we may define

ω(e) = Fω(di, dj),

where Fω is any continuous mapping from pairs of integers onto the interval [0,1] (again
such that Fω(z1, z2) = Fω(z2, z1)). For example Fω may be monotonically decreasing
in both arguments, meaning that edges are less likely to disappear between vertices of
higher degree.

This type of degree-dependent activity where certain individuals act as hubs or authori-
ties, [17], or, in Gladwell’s terminology connectors, mavens and salespeople, [8], may be
appropriate for modelling social and business networking communities, such as Linkedin,
and for on-line marketplaces, such as ebay, where ‘powersellers’ may attract more busi-
ness.

3.2 Births and deaths dependent upon local clustering

Localised clustering, the ability for connections to be transitive, is a basic ingredient of
small world networks [31]. In applications involving networks of social ties, it may be
natural to assume that edges evolve so as to triangulate second neighbours and strengthen
clique-formation [1].

Suppose some possible edge e connects vertices vi and vj, but is not in Gk. Let rij denote
the number of adjacent vertices that vi and vj have in common. Then rij is the i, jth
element of A2

k (the square of the adjacency matrix for Gk). Then let us define

α(e) = Fα(di, dj, rij),
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where Fα is any continuous mapping from triples of integers onto the interval [0,1].
Note that rij ≤ min{di, dj}. As before we require Fα(z1, z2, z3) = Fα(z2, z1, z3) for all
nonnegative integers z1 and z2. For example Fα may be monotonically decreasing in
both z1 − z3 and z2 − z3, but increasing in z3, so that that edges are likely to appear
between vertices that have many adjacent vertices in common. Such a case is given by

Fα(di, dj, rij) =
1 + rij

√

1 + didj

.

Similarly, suppose e is in Gk, and connects vertices vi and vj . Then we may define

ω(e) = Fω(di, dj, rij),

where Fω is any continuous mapping from from triples of integers onto the interval [0,1],
with Fω(z1, z2, z3) = Fω(z2, z1, z3) . For example Fω may be monotonically decreasing in
z3 meaning that edges are less likely to disappear between vertices of with many common
adjacencies. Such a case is given by

Fω(di, dj, rij) =
1 +

√

didj

1 + rij
.

3.3 Births and deaths dependent upon edge range

In some circumstances, it is reasonable to assume that connections between vertices
are determined in part by their relative locations in some physical or abstract space
[18, 23, 29]. This concept of location in space may be more than geographical; there is
evidence for a more general ‘social distance’ metric that, in principle, could be inferred
form the network data [30]. Specifically, for range dependent graphs [9, 10, 12, 14, 15]
the vertices are considered to have an underlying (generally unknown) ordering on the
integer lattice, and the range of any possible edge e connecting vertices vi and vj , is
defined by the distance m(e) = |i − j|. To generate an instance of the graph, each edge
is then created independently, with a probability given by some predetermined function
of its range.

These ideas were extended in [11] to the dynamic network setting. In that case, we define
a range-dependent birth rate and death rate

α(e) = Fα(m(e)),

ω(e) = Fω(m(e)),

where Fα and Fω are continuous mappings from the integers onto the interval [0,1].

Typically we may choose Fα to be monotonically decreasing so that longer range edges
are less likely to arise. The case where

Fα(m)

Fω(m)
= θm2

,
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for constant 0 ≤ θ ≤ 1 was studied in [11], and shown to be attractive from a model
calibration perspective.

This case of range-dependent edge evolution is special because not only are the births
or deaths each for edge independent from each other, but each edge depends only on
its own immediate history (and of course its own range). In the newly proposed degree
dependent and cluster dependent models of subsections 3.1 and 3.2, the births and deaths
depend on Gk in a more sophisticated way, and the evolution of each edge cannot be
determined without determining the evolution of some or all other possible edges. For
the range-dependent case though, whether or not e is in Gk+1 depends only on whether
it is in Gk, and the corresponding forms assumed for α(e) and ω(e). As pointed out in
[11], if pk(e) = P (e ∈ Gk), then

pk+1(e) = α(e)(1 − pk(e)) + (1 − ω(e))pk(e).

So as k becomes large such an evolving network burns out its initial starting point and
we have

pk(e) → p∞(e) =
α(e)

α(e) + ω(e)
, as k → ∞.

4 Long term behavior

Suppose we have any Markov model over Sn, where we are given or can calculate
P (Gk+1|Gk) for all pairs (Gk+1, Gk) in Sn × Sn, as in (2) above. Let sm ∈ Sn de-
note the mth element of Sn, for m = 1, ..., M(n). At the kth time step, let wk =
(wk,1, ..., wk,M(n))

T where wk,m = P (Gk = sm). Then the P (Gk+1|Gk) together deter-
mine a transition matrix, B, such that

wk+1 = Bwk.

Under the reasonable assumption of ergodicity, meaning that B is irreducible, this iter-
ation tends to a unique nonnegative fixed fixed point w⋆ > 0 satisfying Bw⋆ = w⋆.

Let φ(s) be any binary valued feature defined for all s ∈ Sn, so that φ = 1 if the graph
has the feature present, and φ = 0 otherwise. Then as k tends to infinity the expected
value of φ(Gk) is given by

〈φ〉 =

M(n)
∑

m=1

w⋆
mφ(sm).

In particular each possible edge, e, is present with a probability

p∞(e) =
∑

e∈sm

w⋆
m.

Let G⋆ denote the long term expected random graph, where each edge e has a probability
p∞(e) of being present.
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Suppose this model does not use some additional (imposed) knowledge that differentiates
between the vertices. Of course range-dependent evolving graphs employ an imposed or-
dering of the vertices for example; whilst Barabási style aggregative graphs allow vertices
to become active in some predefined order, externally imposed. But for evolving graphs
having no such vertex discrimination, symmetry demands that G⋆ is invariant to any
permutations of the vertices. Hence all possible edges in G⋆ are equally likely: G⋆ is
an Erdös-Rényi random graph, with a Poisson distribution of vertex degrees, and no
scale free or small world properties. For example, this must be true of the evolving net-
works depending solely upon (current) vertex degrees or localised clustering coefficients,
introduced in the subsections 3.1 and 3.2.

So, if we observe a large evolving graph with long term average behaviour which has a non
Poissonian vertex degree distribution, then we know that the dynamics of any assumed
underlying Markov model must involve some extra knowledge or imposed information
distinguishing the vertices.

5 Numerical simulations

In Figure 1 we show the first sixteen adjacency matrices that arise from a degree-based
model, as described in subsection 3.1. More precisely, for a pair of vertices i and j we
used an edge birth probability given by

• pa = 0.9 if min(degi, degj) > 8,

• pb = 0.2 otherwise,

and an edge death probability given by

• pc = 0.9 if min(degi, degj) < 6,

• pd = 0.2 otherwise.

Hence, in this model new edges are favoured between vertices that both have relatively
high degree, and existing edges involving at least one low-degree node are penalised.
In order to make the adjacency matrices compact for visualisation purposes, we used a
relatively small number of vertices, n = 16. We begin, at time t = 0, with a sample of an
Erdös-Rényi random graph with 38 edges. The vertices are ordered according to their
degree in the initial network, from high to low.

After continuing the iteration for 200 more time steps, Figure 2 shows time levels t = 216
to t = 231.

To illustrate long time behaviour on a larger network, Figure 3 shows the results for
a case with with n = 200 vertices. Here, the initial network, shown in the upper left
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Figure 1: Initial network adjacency matrix and first fifteen iterates for a degree-
dependent evolution. Vertices are ordered according to degree at time zero.
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Figure 2: Iterates at time t = 216 to t = 231 for the network sequence initiated in
Figure 1.
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picture, is chosen from the preferential attachment model [3, 21], as implemented in the
function pref.m of CONTEST [27]. We used the same degree-based birth and death
rate construct as for Figures 1 and 2, with edge birth probabilities rescaled to

• pa = 0.3 if min(degi, degj) > 25,

• pb = 0.05 otherwise,

and an edge death probabilities given by

• pc = 0.9 if min(degi, degj) < 10,

• pd = 0.6 otherwise.

The initial degree distribution, which by construction is scale-free, is show in the upper
right picture.

The lower left picture then shows the adjacency matrix after 104 time steps, with degree
distribution in the lower right. We see that the scale-free pattern of the initial degree
distribution is completely lost over time and a Poisson-type distribution has arisen, as
predicted in section 4. For confirmation, Figure 4 plots the cumulative degree distribution
as circles and superimposes as a solid line the cumulative Poisson distribution with the
same mean of 15.3.

Figure 5 shows a different scenario where the edge evolution involves an external factor.
Here, we mix together the degree-dependent and range-dependent ideas from subsec-
tions 3.1 and 3.3. For the same size n = 200 and the same initial network as in Figure 3,
we now use edge birth rates given by

• pa = exp(−|i − j|/10) if degi + degj > 50,

• pb = 0.05 otherwise,

and edge death rates given by

• pc = 0.9 if max(degi, degj) < 30,

• pd = 0.5 otherwise.

In this case, pairs of vertices are likely to grow a new edge if at least one of them has
high degree and they are in close proximity. Similarly, an existing edge connecting
vertices that have degree below 30 is likely to be removed. We see that the long time
network at time 104 has a small number of vertices that are abundantly connected to
near neighbours. The resulting degree distribution looks far from Poisson, as verified in
Figure 6.
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Figure 3: An evolving network with degree based evolution. Top left: initial network.
Top right: initial degree distribution. Bottom left: network at time t = 104. Bottom
right: degree distribution at time t = 104.
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Figure 4: Circles: cumulative degree distribution for time t = 104 network shown in
Figure 3. Solid line: interpolant through cumulative degree distribution for a Poisson
random variable with matching mean of 15.3.
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Figure 5: An evolving network with evolution based on degree and edge range. Top left:
initial network. Top right: initial degree distribution. Bottom left: network at time
t = 104. Bottom right: degree distribution at time t = 104.
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Figure 6: Circles: cumulative degree distribution for time t = 104 network shown in
Figure 5. Solid line: interpolant through cumulative degree distribution for a Poisson
random variable with matching mean of 14.
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As a final computational test, we consider an evolving network from [5]. This data
comes from a “Reality Mining” study that used mobile phones to follow 106 subjects at
MIT over the course of the 2004–2005 academic year. Pairwise calls, SMS activity and
proximity information were recorded. Here we consider just the voice call component
of the data, summarized into weekly activity. So a link between nodes i and j in the
kth adjacency matrix indicates that at least one phone call took place between subjects
i and j in week k. This represents an an evolving network over 52 time points. This
network sequence was also used in [13], a visualization of the complete data set can be
found there. Of course, understanding the mechanisms that drive this type of dynamic
network has immediate benefits for designing mobile phone contracts, identifying and
marketing to specific customer groups, and predicting future patterns of network useage.

We attempted to calibrate this evolving network based on a range-dependent model.
Following [11], we formed a Laplacian matrix based on the cumulative edge data, and
used the Fiedler vector to infer an ordering of the nodes. Then for each pair of nodes i and
j we estimated the birth and death probabilities (4) based on their observed frequency.
However, in this context it is not appropriate to use a simple frequency count for the
edge death, s/N , where

• s is the number of edge deaths observed, and

• N is the total number of time points between the first and penultimate time on
which an edge existed.

This is because N = 0 for many pairs i and j. For this reason, we used Laplace’s Law
of Succession [20] to give (s + 1)/(N + 2) as our estimate for the edge death probability.
Similarly, the edge birth probability was estimated as (s′ + 1)/(N ′ + 2), where

• s′ is the number of edge births observed, and

• N ′ is the total number of time points between the first and penultimate time on
which no edge existed.

Figures 7 and 8 indicate the estimated birth and death probabilities, respectively, for
the node ordering given by the Fiedler vector. There are two main observations to be
made.

1. In both figures, the probabilities are not uniform across pairs i and j. Following the
discussion in section 4, this rules out the possibility that the data comes from the
steady state of an evolving network model like those discussed in subsections 3.1
and 3.2, where nodes are not differentiated by some external property.

2. The nodes have been reordered in an attempt to reveal range-dependency, so that, in
this new ordering, birth and death rates depend solely on |i− j|. In Figures 7 and
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8 this would correspond to a Toeplitz structure (common values along each super-
diagonal). No such obvious pattern is observed, although there is an indication
that some nodes are very active, having relatively high edge birth and death prob-
abilities, and in many cases this activity is localised to neighbours who are close in
the new ordering. There is also evidence of clusters of high activity in blocks along
the diagonal, where near-neighbours in this newly-discovered ordering have strong
mutual affinity. This behaviour is in broad agreement with the mixed ‘range and
degree dependence’ model that was used for Figure 5.

1 50 100

100

50

1

Prob(birth)

 

 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 7: Symmetric matrix whose i, j element shows the estimated birth probability
in (4) for an edge between nodes i and j, assuming range-dependent activity. The
underlying data came from an evolving network arising in telecommunication. Nodes
are ordered via a Fiedler vector in an attempt to reveal range-dependency, as described
in [11].

6 Discussion

Ideas from network science have proved to be useful in a range of disciplines, but we
feel there is great value to be had from moving attention away from fixed topological
structures. Many applications, notably in telecommunications, social networking, on-line
trading and utility consumption, give rise to a sequence of network “snaphots” from an
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Figure 8: Analogue of Figure 7 for edge death probabilities.

evolving system. Summarizing and quantifying the mechanisms that drive the network
evolution has a clear potential to help with decision making issue faced by professionals
in areas such as on-line marketing, telecommunications and business development.

New challenges arise in this time-dependent context. Here, we focussed on modelling
apsects—what mechanisms might govern the changes in topology? We extended the
framework in [11], showed that broad conclusions may be drawn about steady state
behaviour, and tested these ideas on real mobile phone data.

We are currently in a DRIP (data rich, information poor) era where there are huge poten-
tial benefits to be had from smarter, more strategic use of evolving network data. Among
the key challenges calibration and model selection stand out immediately—comparing
models that have a tractable number of parameters in terms of their explanatory and
predictive power on real data sets. An accurate, well-tuned model would not only offer
a high-level summary of the nature of the interactions, but would also give a powerful
quantitative tool to predict future evolution and study the response of the network un-
der ‘what-if’ scenarios. We hope that the framework outlined here sets the scene for a
systematic modelling approach.
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