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Abstract

A review is given of the Galerkin, iterated Galerkin and re-iterated Galerkin
methods for finding approximate solutions to integral equations of the second
kind. The process of re-iteration, first described by Porter & Stirling, is applied
to the Kantorovich method to produce two new re-iteration methods. The first,
the modified iterated Kantorovich method, is a straightforward application of the
re-iterated Galerkin method to a regularized Kantorovich equation. The second
method differs by applying the Kantorovich regularization at each iteration. This
second method is tested on some example integral equations and its convergence
compared with that of the re-iterated Galerkin method. Finally it is shown how

the presence of an eigenvalue can affect the convergence of these methods.
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Chapter 1

Introduction

1.1 Integral Equations

In certain problems it is not uncommon to encounter equations in which the un-
known function appears under an integral sign. Such equations are called integral
equations, and are often very difficult, if not impossible, to solve analytically.

Numerical techniques for integral equations, however, can prove to be espe-
cially powerful, and since many initial and boundary value problems for differen-
tial equations can be expressed as single integral equations, without the need for
extra conditions, these techniques are also extremely versatile.

There are two main types of linear integral equation: a) the integral equation

of the first kind,

b
fe)= [ k0o, (a<a<b) (L1)
in which the unknown function ¢(t) appears solely under the integral sign, and

b) the integral equation of the second kind,

6r) = F) A [ Ko, (< a <) (12
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in which the unknown function ¢(x) also appears outside the integral. In both
cases the functions f(x) and k(x,t) are presumed known.

The function k(x,t) is called the kernel of the equation, and f(x) is called the
free term.

Certain forms of equations (1.1) and (1.2) are known by special names. If
the limits of integration @ and b are constants, then the equations are called
Fredholm equation’s, and are said to be homogeneous if f(x)=0, whilst if a=0
and b=z, (ie. variable limit of integration) then the equations are known as
Volterra equation’s (again homogeneous if f(x) = 0).

Here we will be discussing techniques for finding approximate solutions to

Fredholm equations of the second kind. An example of such an equation is
1
M@:1+A/2mm@JW@Mt 0<z<1),
0

where the freeterm f(x)=1, and the kernel k(z,?)=2max(x,t).

Porter & Stirling [3] show how equation (1.2) can be solved using the equation

¢=[f+AK¢
Ao =1,

in L5(0,1), where A= (I —AK), and K is a compact operator on this space,

denoted by

where [ is the identity map.

A is assumed to be invertible throughout.



1.2 Projection methods

We wish to find approximations to the solution of integral equations of the form

6=f+AK (1.3)

in some Hilbert space H, such as Ly(0,1).
To do this we look for an approximation p, to ¢ in some finite dimensional

subspace F, of H, by solving the equation
pn = Pof + PAK 9, (1.4)

in K, where P, is an orthogonal projection of H onto F,,.

If the sequence of subspaces (E,,) has the property that V¢ € H, P,¢ — ¢ as
n — oo, then since ¢ = A7 f, we have that AP, ¢ — f as n — oo.

We would like p, to be in some sense the best approximation to ¢ in E,. One
way of achieving this is to choose p,, such that it minimises ||Ap, — f]||.

Hence,

[Aps — £ < [ APG — F =0 as n — oo,
= AP, —f as n — 0o,

= p,—o AT =¢ as n— oo,

which leads to what is called the Petrov-Galerkin method. Another method is
to construct p, to be that part of the solution ¢ which lies in the subspace E,,,
so that the closer F, is to H, the closer the approximation p, is to ¢. If £, is

spanned by an orthonormal basis {x1,..., xx} then p, will be of the form

P =D QiXis (1.5)
i=1
for some scalars «;. This process is known as the Galerkin method, which we

shall now discuss in more detail.



Chapter 2

Galerkin Methods

2.1 The Galerkin Method

If our approximation p, is chosen such that Ap, — f is orthogonal to the subspace

FE,, then we have
(Ap. — foxg) =0, j=1,....n
= (Apn, ) =(f1x5), J=1....n
where the y;’s are the orthonormal basis functions of F,,.
Using our definition of p, from equation (1.5) and A =1 — K (taking A =1

in equation (1.3) for convenience) we arrive at

n

Zai{(XhXj) — (Kxi,xi)b=(fixg), 7=1,....n (2.1)

=1

This system of n equations can be solved simultaneously, provided the deter-
minant of coefficients is non-zero, to obtain the «;’s which, via equation (1.5),
provide us with our approximation p, to the solution ¢ of our integral equation.

In terms of the projection P, of H onto F,,
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= p,=(-P,K)"'P,f,

since P,p, = p,.

The process described above is called Galerkin’'s method, and is a well-
established technique for finding approximate solutions to integral equations. The
accuracy of the approximation, determined by the norm of the difference between
the exact solution and the approximation, ie. ||p, — ¢||, is dependent upon the
size of the subspace chosen, since p, — ¢ as n — oo. From a computational
point of view, an increase in the dimension of the subspace results in both an
increase in the number of inner-products to be evaluated, and in the number of
simultaneous equations to be solved. These considerations have to be balanced

against the extra degree of accuracy obtained.

2.2 Degenerate Kernels

Integral equations with degenerate kernels are such that they can be reduced to
a set of linear equations. Thus, the integral equation ¢ = f 4+ K¢, where the

kernel of K is not degenerate, can be approximated by

on = [+ Knon (2.2)

where Ky is a degenerate kernel of dimension N (ie. of the form Zﬁl a;(x)b;(1))
and ¢ is the corresponding approximation to ¢.

In 1975, Sloan, Burn and Datyner [8] published a paper on degenerate ker-
nel methods for integrals. Whereas previous methods chose Ky to be a good
approximation to K over the whole space H, their approach was to construct

a degenerate kernel which was a good approximation in the sense in which K



appears in the equation, ie. as an operator on ¢.

That is, Ky¢ will be a good approximation to K¢ if

Kyx,=Kyx, n=1,....N

where {x1,..., xn} forms a suitable basis.
Using P,, the orthogonal projection onto the subspace F,, so that P,¢ is the

part of ¢ that lies in F,,, we have

KyP,=KP,

= (K- Ky)é=(K—Ky)(¢— P.o).

Conventional methods yield

(K — Kn)o|| < ||K — Kn|||l¢|| = constant,

whereas now we have

(K — Kn)d|| < ||IK — Kx|||6 — Pudl| — 0 as n — oo.

This method allows our approximate integral equation

ooy =[+ Knon

to be reduced to

N
n=1
where the o’s satisfy
N
7=1



Notice that this equation is identical to the expression for the a’s in Galerkin’s

method, so the a’s are the same for both methods. However, ¢ # p,,. In fact

N
n=1

The approximations are related by a single iteration of the integral equation.

2.3 The Iterated Galerkin Method

If we take our Galerkin approximation p, = (I — P,K)™'P,f, and iterate it

(writing ¢y as p), we observe that

A

Pn = [+ Kpn

= [+ K(I-PK)'Pf

= [+ KP,(I—-KP,)™f

— (- KP)+ KP](I—KP)™'f

= (I-KP,)'[.

Now
Po—¢ = (I-KP)'f—(I-K)'f
= (I=KP) ' [(I-K)—(I—KP))(I-K)f
= —(I—KP)'K(I—P)é
= (I=KP) " (K—=KP)(p, — ¢)
Hence ||, — || < ||S|lllpn — ¢l where S = (I — K P,)"Y(K — K P,). So iteration

provides a more accurate approximation provided ||S]| < 1, but since ||S]| <
(I — KP,) ||| K(I—P,)]||, we can ensure that ||S]| < 1 by choosing the subspace

E, to be suitably large.



This process is non-repeatable however. If we try to iterate our iterated

approximation we obtain
Po = I+ Kp,
but now
P = 6 = K(p, = )

which only gives an improvement if ||K|| < 1, which is not something we have
any control over.

Despite this, iteration provides us with a means of improving our approxima-

tion without directly having to increase the size of the subspace F,. (For more

details see Sloan [7]).

2.4 The Re-iterated Galerkin Method

The iterated Galerkin method provides us with an approximation py = f 4+ Kpg

to the exact solution ¢, which implies that

¢:Z§0+¢1

where ¢y is a correction term. By substituting this into the integral equation
¢ = [+ K¢ we obtain
o1 =710+ Koy (2.6)
where 79 = f — (I — K)po, the residual error incurred in approximating ¢ by po.
This leads to the method of re-iteration discovered by Porter & Stirling [4].
Notice that we now have an integral equation to solve for ¢;. We proceed as

before, by seeking an approximation p; to ¢1 in the subspace F,,, using Galerkin’s

method.



When finding our Galerkin approximation to ¢ = f 4+ K¢ we used

N
Po = Z QX
=1

where
N
Do) — (Kxox)y = (f,x5) j=1...,N
=1

and where {x1,...,xn} forms an orthonormal basis to F,,.

Now we wish to find an approximation to ¢, = ry + K¢, by finding
N
= ; Bixi
where
N
;@'{(Xuxy‘) — (Kxi, xi)} = (o, xg), j=1,...,N. (2.7)

We are looking for an approximation in the same subspace as before, so the
basis functions remain the same, which means we do not have to recalculate the
inner-products on the left-hand-side of equation (2.7). The only new calculations
are of the inner-products (v, x;), j = 1,..., N. In terms of the projection P,,
we have py = (I — K)™' P,7%.

As before we can perform a single iteration of our approximation p; to ¢, to
obtain py = 7o + Kpy, (p1 = (I — KP,)"'r%). So our new approximation to ¢ is
Po + Pi-

Now

Po+pr—¢ = (I—KP,) "o+ po—¢
= —(I—KP,)"(I-K)(po—¢)+ (Fo— ¢)
= (I-KP,) (K~ KP,)(po — ¢)
= S(po — &)

= 52(}70 - </5)



So po + p1 is an improved approximation to ¢, compared with py, provided
|S]| < 1, which we have already assumed for the iterated Galerkin approximation.

This process has the advantage that it can be repeated. We can write

& = po+p1+ o2

where ¢ is our new correction term. Substituting this into ¢ = f 4+ K¢ and

rearranging gives
$2 =11+ Koy
where 7y = 7y — (I — K)p,, the residual error in pg + p;.
Again this can be solved approximately using the iterated Galerkin method to

give an approximation py to ¢,. Our approximation to ¢ would then be py+p; +ps,

which has an error
Po+ P+ p— ¢ =S(po+p1 — 8) =5 (po— ).

In general, if we write ¢ ~ 67, = po + ... + pn, then each correction term
is determined by using Galerkin’s method on ¢, = 7,_; + K¢, to obtain p, =
(I — P,K)™'P,#,_; then iterating to get p, = #,_1 + Kp,, where 7, _; = f —
(I — K)&;a_ll. The error in the current approximation is given by ), — ¢ =
S(6771 = 6) = S (o — 6).

An important point to note is that p,; is calculated using the error involved

with the current approximation &

gals SO & small error at one stage is not propa-

gated; rather a compensatory correction is introduced in subsequent terms. This
suggests that, provided ||5]| < 1, the process produces a sequence of successively
improved approximations to ¢ without having to enlarge the size of the subspace
E,.

10



The bound on the norm of S only provides a guide for the convergence of the
re-iterated method. The value of ||S|| may be estimated beforehand to give an
indication of whether the method will converge for a particular choice of subspace
(see Porter & Stirling [4] for details).

The iteration itself also provides a means for checking convergence. It is easy
to see that what we require for convergence is for successive residuals to reduce

in magnitude, ie. that

N

ol

Pt

< 1.

Taking n=1, and expressing the residuals in terms of the projection P,, we

see
Fo = f+ Kpo— po and 1y = f+ K(po+ 1) — (Bo + 1)
= [ - — K)po =10 — ({ — K)pi
= f—(I—-K)I—-KP)'f =vy— (I — K)(I = KP,)" ',
= K(I - P)(I—KP)™'f = K(I — P)(I — KP,)™ "%,
So
:; <|(K =KP,)(I—KP,)™. (2.8)

We can in fact find a better condition for convergence. If the calculations can
be performed exactly, it can be easily shown that p, = S"po. Now, 3" p, = > 5" po
can be shown to converge (by the root test) if the spectral radius of S, denoted
p(S), is less than one. It follows, then, that the re-iterated Galerkin method

will converge, in theory, if p(5) < 1. Furthermore, the ratio of successive residual

norms, ”!j’_l'l'”, can be shown to converge to p(.5), giving a quick and easy check for

convergence. Indeed, if we take a little extra trouble to calculate the residual error

11



in the initial (non-iterated) Galerkin approximations we find, (taking n = 0),

ro = [+ Kpo—po
= ﬁo—po
= (I—KP)'f—(I-P.K)'P.K

= (I-P)(I—-KP,)f,

which leads us to

rA
s K|
70l ’

(2.9)

ie. the ratio of the residual of the iterated Galerkin approximation, over the

norm of the residual of the Galerkin approximation, provides a lower bound on

the norm of the operator K. Whereas this quantity has no direct consequences

for the convergence of the method, it is however valuable information to know

about the kernel, and comes relatively free.

12



Chapter 3

Kantorovich Methods

3.1 The Kantorovich Method

The re-iterated Galerkin method provides a means of calculating an approxima-
tion to the solution of an integral equation, providing certain conditions are met,
to any desired accuracy. The number of re-iterations required to reach a specific
accuracy depends upon the rate of convergence of the method, which, in turn,
depends upon the size of the subspace used. An increase in the size of F, will
result in faster convergence, but requires more calculations.

Is there a way in which the re-iteration process can be made more efficient,
increasing the rate of convergence whilst minimising the number of calculations?

The Kantorovich method is an established adaptation of Galerkin’s method.
Suppose we wish to solve (I — K)¢ = f (and that (I — K)~! exists ), then the
solution can be expressed as ¢ = f+ K¢ = f+1, where v = K¢. By substituting

¢ = f + 1 into the original equation we see that i satisfies the equation
v =Kf+ K. (3.1)

13



Equation(3.1) represents the application of the operator K to both sides of
the original integral equation ¢ = f + K¢.
We get a clue that we may have improved matters by considering the Neumann

series for our equation, given by
p=f+Kf+Kf+...+K"f+... (3.2)

The Kantorovich method gives ¢ = f + K f + K1, compared to ¢ = f + K¢
for Galerkin, and so contains an extra term of the Neumann series.
We approximate @ by finding the Galerkin solution of the equation ¢ =
Kf+ K, ie.
VR g, = i@%m
where ¢, € F,, a subspace spanned by the orthonormal basis {x1,..., \.}-
We want to choose ¢, so that Ay — K f is orthogonal to F,,, where A = [ — K.

Therefore

(Ag, — Kf,x;) =0, j=1,....n

= (Age, ;) = (Kf,xg), j=1,....n

= it Al i) — (Bxoxi)b = (Kfxg), 7=1,...,n
Notice that the 3;’s given by the system of equations above differ from the
«;’s given by Galerkin’s method because we have a different free term in the
integral equation, K f instead of f. The solution to our original problem is
therefore approximated by ¢ ~ p, = f + ¢,, which is different from the ¢ ~ p,

of Galerkin’s method.

The benefit of making the substitution in the Kantorovich method becomes

clear when we compare the differences between the approximations and ¢ =

14



(I — K)~'f. If we denote by P, the orthogonal projection onto F,,, we see that
po— 6= (I = PuK) (P, = DI = K)7'F, (33)

and
pn—0¢=(—-P,K)"(P,K — K)(I—-K)'f. (3.4)
The difference between the two errors is that for the first, P, has to be chosen
such that (P, — I)(I — K)™'f is small, so the choice depends on f, whereas, for
the Kantorovich method, it is only necessary to choose P, such that |P, K — K||
is small, independently of f, which is more easily satisfied (see Sloan [6]).
Another advantage of the Kantorovich method is that it removes f from the
calculations, replacing it by K f. This is desirable if f is not a particularly smooth
function. The application of K to f has the effect of smoothing the free term.
K f is then used in the calculations to approximate ¥, with f being added on

afterwards to give p, the approximation to ¢.

3.2 The Iterated Kantorovich Method

Sloan [6] demonstrated that the principle of iteration, which he first applied to
Galerkin’s method, could also be brought to bear on Kantorovich’s method.
We wish to find the solution ¢ = f 4+, where 1 satisfies the integral equation

v = Kf 4+ K. The Galerkin approximation to i gives
prq=1-PK)'PKf = ¢=po=[+q.

It we apply the iteration process to ¢q, by replacing ¢ in the equation, we
arrive at
Go=Kf+ Kqo

15



ie.
Go=I—-KP,)'Kf

= ¢~ po= [+ o
The error in the approximation of ¥ is given by

Go—th = (I—KP)'Kf—(I—K)'Kf
= (I=KP) (K = KPy)(q0 =)

= S(g—1), where S=(I—-KP,)""(K - KP,),

which in turn implies
}%0_45: S(po — ).

The operator S is the same as that encountered in the iterated Galerkin
method , which is as one might expect considering that the two methods differ
only in the choice of free term. As with the Galerkin method, iteration will
improve the Kantorovich approximation if the norm of the operator S is less than
one, which can be guaranteed by a suitable choice of subspace. The advantage
of the iterated Kantorovich method over the iterated Galerkin method lies in the

possibility that ¢» = ¢— f will be smoother than ¢, and thus easier to approximate.

3.3 The Modified Iterated Kantorovich Method

Although it has not previously been demonstrated, it seems fair to suppose that,
since Kantorovich’s method benefits from iteration, it might equally benefit from

the process of re-iteration.

16



The iterated Kantorovich method is obtained by applying the iterated Galerkin
method to the equation ¢» = K f + K, where ©» = ¢ — f. The iterated approxi-
mation ¢y exhibits an error which can be compensated for by adding a correction

term, 1y say, so that
= qo+ 1.

By substituting 1 into the modified integral equation we see
V1= Kf+ Ko —qo+ Ky
= 720 + I(¢17

where 7 is the residual error incurred in approximating ¥ by o.

We now have an integral equation to solve for ¢, with free term

As before, the ratio of the residual norms of the iterated and non-iterated ap-
proximations estimate || K]||.
Once again we can use iterated Galerkin to find an approximation ¢; to ¢,

and hence our new approximated solution to the modified equation becomes

YV~ Go+ 1,

where ¢, = (I — KP,)™ "%, which has an error

Qo+q—1 = (I—KP) "o+ (Go— 1)
= —(I = KP)™ (I = K)(Go— ) + (4o — 1)

17



= (I-KP,) (K — KP,)(do— )
= S(qAO - ¢)

= SQ(QO - ¢)7

ie. }%1 — ¢ = 5%*qo — ), where ¢ =~ p; = f 4+ Go + G- So o + ¢1 is an improved
approximation to ¢ if ||| < 1, which we have previously assumed.

As before, this process can be repeated by noting that

Y= qo+ ¢1 + Vo,

where 1, is a correction term which satisfies the equation
gy = Ty + Ky,

where 7, = 7y — (I — K)§ = (K — KP,)(I — KP,)"'#, the residual error in
Go + G1. As with the re-iterated Galerkin method, the ratio of successive residual

|7l

7 1Pl

norms gives an underestimate for the norm of S.

In general, then, we have ¢ =~ 67,,., = [+ Go+ ...+ Gn, where each correction
term 1, is determined by using iterated Galerkin on , = 7,_y + K1,, giving
G, = (I — KP,)™'%,_y, where #,_; = f — (I — K)&}.. The error in the current
approximation being given by 67, . — ¢ = S(67Y — &) = " (g0 — ).

The benefits of re-iteration for the Kantorovich method are the same as for the
Galerkin method. Any errors involved in calculating a particular approximation
are compensated for in the next iteration, and the process can be repeated to
achieve, in theory, any desired accuracy, provided that p(S) < 1.

This modified iterated Kantorovich method has an advantage when ¢» = ¢ — f

is smoother than ¢, since then the error in the initial approximation, gy — %, is

18



generally smaller than that for the re-iterated Galerkin method, py — ¢. All
subsequent approximations, however, improve by the same factor, ||.5||, for both
methods. So the rates of convergence are virtually the same.

The improvement in the initial approximation, brought about by the Kan-
torovich "regularization” of the original equation, leads us to wonder whether

subsequent approximations might also benefit from similar regularization.

3.4 The Re-iterated Kantorovich Method

Suppose, once again, that we wish to solve

6=f+K¢ (3.5)

in a Hilbert space H, where K is a compact linear map on H, f € H is given,
and ¢ is sought. We first perform a Kantorovich "regularization” on the above

equation, whereby we write the solution as
o= [+, (3.6)
where » = K¢ satisfies the equation
v =Kf+ K. (3.7)
We seek a Galerkin approximation ¢y to ¥ in a subspace E, of H, so that
Go = (I — P,K)"'P,Kf, where P, is the orthogonal projection of H onto F,.
Our Kantorovich approximation, pg, is therefore
¢xpo=qo+ [
Next we form the iterated Galerkin solution of equation (3.7), ie.
Go=Kf+Kj=(I—KP,)'Kf,

19



giving us the iterated Kantorovich approximation

where
}%0_ ¢ = S(};O - 45)

As we have seen before, iteration improves the initial approximation by a
factor ||.S]| for both the Kantorovich and Galerkin methods, the Kantorovich
method having the possible advantage that py has better convergence properties
than pg, since it relies upon | P, K — K| — 0 as n — oo, rather than (P, — I)({ —
K)™' - 0asn— oo.

We can utilise this convergence property in a re-iterative method by perform-
ing a Kantorovich regularization at each iteration. Instead of finding a correction
term 1y to &NO, to form ¢ = &NO—I—L/Jl, as we did for the modified iterated Kantorovich
method, we now look for a correction term for ¢.

We know ¢ =~ }%0 =+ &NO, so this implies that

¢ = po+ 1, (3.8)

which in turn implies that
o1 = o + Ko, (3.9)
where 7o = f — (I — K)}%O = Kry.
This method differs from the modified iterated Kantorovich method in that

we now perform a second Kantorovich regularization, this time to equation (3.9).

Let K¢y = 9, then ¢ = 79 + 101, where 1y satisfies

Y = Krg + K.

20



The Galerkin solution to this is

P~ G o= (I — P,K)" P, Ky,

which we can iterate to obtain

L= Kig+ Kgy = (I — KP,) ' K.

=

O~

The correction term ¢ is therefore given by

202>

=70+

3

o1~ Py 1

Substituting for ¢ in equation (3.8) gives us a new approximation to ¢, that is

45%}%04‘}%1- (3-10)

To see if we have improved our approximation we need to look at the error.

Botbr = Tot @ — (6= o)
= Po+ (I —KP) "Kfy— (I — K)™ "7,
= (I-=KP) " (KP,K — K*)(I — K)™'f,
= (I—-KP) ™MK = KP,)K(py— ¢),
= SK(py—¢) = SKS(po — ¢),
so that

1Po + b1 — &l = ISK (po — &)I| < 1SK|[|[Po — 4.

which is an improvement if ||[SK|| < 1.

We may continue by setting
¢ = }50 + }51 + ¢27

21



where ¢5 is a correction term which satisfies the equation

02 =71 + Koo, (3.11)

where 7y = f— (I — K)(p, —I—}%I) = K7,. Performing a Kantorovich regularization

on the above equation gives us

G2 = T + o,

where 5 satisfies

e = K11 + Ky
Applying Galerkin’s method gives us ¥y ~ ¢ = (I — P,K)™' P,K7, and upon
iteration, 1y A~ ¢, = Kiy + Ky = (I — KP,) ' K#y.

So now

which implies that
¢ & py+ Py + D

The error in this approximation can be shown to be

}%0 + }%1 + }%2 - 45 = (] - KPH)_I(K - KPH)K(}%O + }%1 - 45)

= S[((}%O ‘|‘}%1 - 45)

so that
lpo + Py + b2 = oIl < llpo + 11 — 4
provided, once again, that ||[SK]| < 1.
In general, if ¢ ~ 6", , =py+...4+p,,and #, = f — (I — K)é",, , denotes

the residual after the nth iteration, then the correction term ¢, = 7,1 + ¥, is
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approximated by p. = #,_; + ¢, where ¢ = (I — KP,)"'Kr,_; is the iterated
solution of the regularized equation ¥, = Kr,_1 + K.

This gives

Orckamt — 0l < ISK]

rekant

a-;lekant - ¢H
= SK|"po — ¢l

< ISKEHS R — 4l

Note that the operator controlling the convergence of this method is ||SK]],
rather than ||.S]| produced by the re-iterated Galerkin and modified iterated Kan-
torovich methods. This gives us a new condition on the size of the subspace F,,.
We now require that E,, is chosen such that ||[SK]|| < 1.

As commented on previously, these norms give a weaker bound on the con-
dition for convergence than may be obtained by considering the spectral radius
of the operators. Once again the method can be shown to converge (by the root

test) if p(SK) < 1. Also, the ratio of successive residual norms,

N

ol

o]

< (K — KP)(I— KP)~'K].

can be shown to converge to the spectral radius of SK.
In order to better understand the differences between the three methods we

can compare the solutions offered by them at each iteration. Let

a-;al = po+...+Pi (3.12)
a-zant = f + qu +...+ inv (313)
a-iekant = }%0 +...F }%H (314)

be the approximations to ¢ using the re-iterated Galerkin, modified iterated Kan-
torovich and re-iterated Kantorovich methods respectively.
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Then, for i=0,
oo = [+ Kpo,
Opune = [+ K[+ K.
6t = K[+ Ko,
and for i=1,
&;al = f+Kf+ Kpy+ Kpy,

Gtae = [HKf+ K2 f+ K0+ Kq,

Grepart = JHEf+ K f+ K[+ K4+ Kqu.

In general, for i=n,

n n
a-;al = Z [(]f + Z [(j-l-lpn—jv
=0 =0

n+1 ] n
AT — < & .
Tpant — Z K f + Z A]-I—lQn—]v
=0 =0
2n+1 n

Gt = > KIS KA,
=0 =0

From this we can see that after n iterations, the re-iterated Galerkin approx-
imation contains the first n4+1 terms of the Neumann series for ¢ = f + Ko,
the modified iterated Kantorovich approximation contains the first n+2 terms,
and the re-iterated Kantorovich approximation contains the first 2n+2 terms of
the Neumann series, twice as many as for the re-iterated Galerkin method. This
property appears to suggest that, under suitable conditions, the re-iterated Kan-
torovich method will have a much faster rate of convergence than the other two
methods. In reality, if ||K|| is greater than one, the Neumann series diverges,
and it is the other terms which have to compensate. The Neumann series itself

cannot therefore be responsible for the rate of convergence.
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In the following chapters we will be comparing the efficiency and accuracy of
the re-iterated Galerkin method with the new re-iterated Kantotovich method.
The modified iterated Kantorovich method has not been considered further due
to the belief that any improvement over the re-iterated Galerkin method will be

minimal.

25



Chapter 4

Numerical Considerations

4.1 Numerical Integration

The process of calculating successive corrections to previous approximations, a
feature of all the re-iterative methods, ensures that the accuracy of the numerical
solution can be increased until it is of the same order as the computational accu-
racy of the method. Once the residual 7, reaches this accuracy there is no point
in continuing the iteration, as no further improvement can be made. The main
factor governing the computational accuracy is the method of numerical integra-
tion used. In all the cases described here modified Gauss-Legendre quadrature
was employed, using 10 points and 20 subintervals. In this way, the value of every
function used in the method is known at each of the two hundred Gauss points
in the interval.

Numerical integration routines tend to encounter difficulties when dealing with

kernels containing slope discontinuities, such as



which has such a discontinuity at x = ¢.

The problem may be remedied by noting that

(K f)(z) = /Olk(:z;,t)f(t)dt
= [ KO0~ )t ) [ bt

This reformulated equation has a first term with a continuous first derivative, and
a second term that may be evaluated exactly. (See Chamberlain [1], who used

this device in the case where k(z,t) = s=sin(a|z — t|)p(1)).

4.2 Choosing The Subspace

In order to keep calculations as simple as possible, attention is restricted to finding
approximations in subspaces of minimal dimension. Provided that the subspace
is of sufficient size to ensure the conditions p(5) < 1 and p(SK) < 1 are satisfied,
the re-iteration process will cause the approximations to converge, even if the
initial approximations are not very accurate. For the equations considered in the
following chapter, one-dimensional subspaces suffice.

The next question is how to choose the subspace.

It would seem reasonable to suggest that we should seek a subspace which
exhibits some relationship to the equation we are attempting to solve. We know

that the Neumann series for the equation ¢ = f 4+ K¢, which is given by

6= 3 K,
n=1
converges if ||[K|| < 1. This leads us to suppose that, if || K| is small, then

p,=f+Kf+K*f+. ..+ K"
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would be a good approximation to ¢. For this reason we conclude that we ought to
be looking for approximations belonging to the n-dimensional subspace spanned
by f,Kf, K*f,..., K" f. Indeed, it has been shown (Porter & Stirling [3]) that
this constitutes the optimal choice of subspace.

For our one-dimensional case, therefore, we are looking for Galerkin approx-
imations of the form p = «ix;, where y; is chosen to be the free term of the
integral equation. For the re-iterated Galerkin method this is obviously y; = f.
What is perhaps not so obvious is what we mean by the free term for the Kan-
torovich method.

Whilst it is true we are trying to find ¢ satistying ¢ = f + K¢, which would
suggest taking y; = f, the Kantorovich regularization effectively removes f from
the approximation, so that we are instead seeking to approximate ¥, where
satisfies v = Kf + K. Here the free term is not f, but Kf, so we should
perhaps take our trial function to be y = K f instead.

Since the aim of this project is to give a comparison of the different methods, it
seems sensible that they should use the same subspaces. On the other hand, each
method should be illustrated utilising its optimal choice of subspace. For the one-
dimensional examples given in the following chapter, therefore, the Kantorovich

method is shown using both y = f and y = K f.
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Chapter 5

Examples and Results

5.1 The Kernel 2max(x,t)

The first equation under consideration is
1
é(z) = 1 +/ dmaz(z, é(t)dt, 0< e <1, (5.1)
0

which has been chosen because many of its properties are already known.
An exact solution can be found by converting the equation to an equivalent

boundary value problem, ie.

which has the solution

B cosh /2
olz) = (cosh V2 — /2 sinh \@)

The operator K, given by (K¢)(z) = fi 2maz(x,t)é(1)dt, is compact and

self-adjoint, and can be shown to have one positive eigenvalue, lying between
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%o 21 2 3 T4 et | g
69,1 | =2.000001 | —2.188480 | —2.751938 | —3.690437 | —4.996087 0.356
6%, | —1.771604 | —1.877493 | —2.210471 | —2.820908 | —3.791033 || 0.462 | 0.357
6%, | —1.792672 | —1.907131 | —2.263463 | —2.905859 | —3.907931 || 0.462 | 0.357
6%, | —1.790601 | —1.904216 | —2.258252 | —2.897505 | —3.896435 || 0.462 | 0.357
512, | —1.790804 | —1.904503 | —2.258764 | —2.898326 | —3.897565 || 0.462 | 0.357
515, | —1.790784 | —1.904475 | —2.258714 | —2.898245 | —3.897454 || 0.462 | 0.357
518, | —1.790786 | —1.904478 | —2.258719 | —2.898253 | —3.897465 | 0.462 | 0.357
621, | —1.790786 | —1.904477 | —2.258718 | —2.898253 | —3.897464 | 0.462 | 0.357
é(x) | —1.790786 | —1.904477 | —2.258718 | —2.898253 | —3.897464

Table 5.1: Re-iterated Galerkin Approximations

1-38 and 1-42, and infinitely many negative eigenvalues, all of modulus less than

0-3.

Table (5.1) shows the results of applying the re-iterated Galerkin method

(hereby denoted the RIG method) to equation (5.1), using the one-dimensional
subspace spanned by y = f = 1. The successive approximations, &,,, = po +

-+« + Pn, are given at the points a; (7 = 0,...,4), where the x;’s are the Gauss

points closest to @ = (0.25)j. The exact solution, ¢(x), is also given, as well

l|7l
llrnll?

as the values and which are the underestimates for p(5) and || K||
respectively.

The approximations are seen to converge to the exact solution after twenty-
two iterations (to an accuracy of six decimal places). The underestimate of the
spectral radius of S = (I — KP,)"'(K — K P,), settles immediately to 0-462, and
hence satisfies our convergence criterion, whilst the underestimate of | K'|| settles

to 0-357.

The results for the re-iterated Kantorovich method (hereby denoted the RIK
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%o 21 2 3 T4 e |
59, | —2.500001 | —2.627627 | —3.032719 | —3.785712 | —4.996088 0.356
62, | —1.813364 | —1.927510 | —2.283396 | —2.926562 | —3.932512 || 0.179 | 0.354
& 11791510 | —1.905215 | —2.259509 | —2.899160 | —3.898587 || 0.179 | 0.354
66, | —1.790809 | —1.904501 | —2.258744 | —2.898282 | —3.897500 || 0.179 | 0.354
&8 | —1.790787 | —1.904478 | —2.258719 | —2.898254 | —3.897465 || 0.179 | 0.354
69, | —1.790786 | —1.904477 | —2.258718 | —2.898253 | —3.897464 || 0.179 | 0.354
é(x) | —1.790786 | —1.904477 | —2.258718 | —2.898253 | —3.897464

Table 5.2: Re-iterated Kantorovich approximations (y = f)

method) for the same equation, again using the one-dimensional subspace spanned

Il

by x = f =1, are given in Table (5.2). The ratio TrnT

now represents the spec-
tral radius of SK, the convergence factor for the RIK method. Its value, 0- 179,
is much smaller than the underestimate of p(5), which is inherent in the RIG
method. This is why the RIK(x = f) method converges to the exact solution

|7l

after only ten iterations. The ratio L which underestimates || K| for all of the

methods given here, has a similar value to that of the RIG method.
Finally, Table (5.3) shows the results for the RIK method using the one-

dimensional subspace spanned by y = Kf. Now p(SK), which depends upon

%o 1 s T3 T4 | ]
50| Z1.801170 | —1.919602 | —2.286479 | —2.942667 | —3.958169 0.260
52 | —1.790821 | —1.904529 | —2.258813 | —2.898404 | —3.897670 || 0.058 | 0.260
G4 | —1.790786 | —1.904478 | —2.258719 | —2.808253 | —3.897464 || 0.058 | 0.260
55 | —1.790786 | —1.904477 | —2.258718 | —2.808253 | —3.897464 || 0.058 | 0.260
é(x) | —1.790786 | —1.904477 | —2.258718 | —2.898253 | —3.897464

Table 5.3: Re-iterated Kantorovich approximations (y = K f)
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the projection P,, and thus the choice of subspace, is approximated as 0-058.
This is smaller still than is obtained by taking y = f. As we might expect,
therefore, the approximations to ¢, given by 67, . = }%0 + -+ }%n, converge
to an accuracy of six decimal places after only seven iterations. (Naturally the
rate of convergence for all three methods would be improved by taking a higher
dimensional subspace.)

The value given here for ||K|| is noticeably different from that given in the
two previous tables. It isn’t immediately obvious why this should be; K hasn’t
changed, so the reason must be linked to the choice of subspace. In order to see
what is happening we need to look at the Rayleigh quotient, denoted R(¢).

If T"is a bounded, self-adjoint linear map from a Hilbert space, H, to itself,

then the Rayleigh quotient

gives a lower bound on the largest positive eigenvalue of T', denoted uf (T'). That
is
pi (1) = sup{Ri(¢): ¢ # 0}
= max{Ri(6) : £ 0} i} (T) £0.

Also
17| = max{|Rx(¢)] : ¢ # 0}.
(See Porter & Stirling [3] Lemma 5.1)

If we take ¢ = r,, and T' = K?, we see that

(Kry, Kry,)

(s )

Ric(r,) = < |IK|? = i (),
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where ] denotes the largest positive eigenvalue of K, with ¢ being the corre-

sponding eigenvector. This implies that

A

i l|?

[ K I .
= 2z S [y

lrall® 7l

So the closer r, is to a constant multiple of the eigenvector ¢7, the closer the

ratio Uzl
(7]l

is to || K||. Now, r, depends ultimately on f, K and either py or ¢o.
Since f and K are fixed by the problem, it is the initial Galerkin approximation,
determined by the choice of subspace, that defines r,.

It would appear from the example that since
0.260 < 0.354 < 0.357 < || K|,

taking y = f causes 7, to be a better approximation to a multiple of ¢, which

is why it gives a closer approximation to | K|| (for this example).

5.2 The Qiosin(/fokc — t|) Kernel
The second problem under consideration is the equation

o(2) = cos(koz) + /01 2; sin(role — to(dt,  0<az<1,  (52)

where kg is a real parameter.
The motivation for using this equation comes from its use in examining wave
scattering using the mild-slope equation, as investigated by Chamberlain [2].
Chamberlain noted that the solution to the boundary value problem he wished
to solve could be expressed as a linear combination of the solutions of two real-

valued integral equations, given by

(I —LP)o; = f;, 1 =1,2
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where

cos(kor) ,ifz=1
iy = ,

sin(kox) ife =2
1]
(o)) = [ 5—sin(molz —tho(t)dt,
0 2Kg
(Po)(x) = p(z)o(x),
and where p(x) is a real-valued function representing the effects of perturbations
in the still water depth.
In our example, we are taking ¢ = 1, p(x) = 1, and kg, the scaled wave
number, to be equal to 1-5. For this special case we can once again find an exact

solution by noting that equation (5.2) is equivalent to the following boundary

value problem:
¢"(x) + (15 — 1)o(x) =0,
kod(1) = 2kKgcos kg — sin ke (0) — kg cos ke (0),
qb’(l) = —2kgsin kg — cos k@' (0) + Ko sin ke (0),
which yields the solution

é(x) = C cos(wx) + D sin(wz),

where
2/430 . .
C = K{w + w o8 Ko cosw + Ko sin Ko sinw},
2/430 . .
D = X{w COS Ko SIN W — Kg Sin kg cos w},
— 2 _ 1 1
w = K , Ko > 1,
and

A = (/4;3 + wz) sin Ko sinw + 2kew(1 + cos kg cos w), A #0.
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%o 21 2 3 T4 el |
59, 11.124034 | 1.008170 | 0.815989 | 0.560542 | 0.258385 0.095
&L, 11.136099 | 1.018510 | 0.821792 | 0.561365 | 0.259203 | 0.026 | 0.082
62, | 1.135752 | 1.018261 | 0.821738 | 0.561428 | 0.259193 | 0.047 | 0.075
&3, | 1.135769 | 1.018272 | 0.821739 | 0.561424 | 0.259193 | 0.051 | 0.073
&4, 1 1.135768 | 1.018271 | 0.821739 | 0.561424 | 0.259193 | 0.052 | 0.073
é(z) | 1.135768 | 1.018271 | 0.821739 | 0.561424 | 0.259193

Tables (5.4)-(5.6) show the results of approximating the solution of equation

Table 5.4: Re-iterated Galerkin Approximations

(5.2) using the RIG, RIK(x = f) and RIK(y = K f) methods respectively.

Once again the Kantorovich methods display faster convergence than the re-
iterated Galerkin method, with the choice of subspace, y = K f, giving the best
results of all, with a convergence factor of p(SK)=0-007. For the first time it
is possible to see, in Table (5.4), the underestimate of the spectral radius of the
S operator converging. This illustrates the importance of not using the ratio of
the first two residual norms to give an estimate of the convergence factor. Its

value may increase, as it does in this case, and could exceed the convergence

limit p(S5) = 1.

The very small values given by the ratio 7

17l

|

for all three methods in this

o 1 2 23 || e
50 11.135032 | 1.017839 | 0.821061 | 0.560244 | 0.257597 0.095
5111135762 | 1.018268 | 0.821732 | 0.561413 | 0.259177 || 0.010 | 0.096
52| 1.135768 | 1.018271 | 0.821739 | 0.561424 | 0.259193 || 0.010 | 0.096
é(x) | 1.135768 | 1.018271 | 0.821739 | 0.561424 | 0.259193

Table 5.5: Re-iterated Kantorovich Approximations (x = f)
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%o 21 2 3 T4 el |
59, 1 1.135681 | 1.018201 | 0.821707 | 0.561426 | 0.259188 0.084
&L, | 1.135768 | 1.018271 | 0.821738 | 0.561424 | 0.259193 | 0.007 | 0.085
62, | 1.135768 | 1.018271 | 0.821739 | 0.561424 | 0.259193 | 0.007 | 0.085
é(z) | 1.135768 | 1.018271 | 0.821739 | 0.561424 | 0.259193

Table 5.6: Re-iterated Kantorovich Approximations (y = K f)

example, results in the need for far fewer iterations than was required for the pre-
vious equation. The RIK(y = K f) method, in particular, achieves an accuracy
of around four decimal places after the first iteration, even though it eventually
requires the same number of iterations as the RIK(y = f) method to reach an

accuracy of six decimal places.
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Chapter 6

Convergence Regions and

Eigenvalue Bounds

The results in the previous chapter lead us to wonder in what cases the Kan-
torovich based re-iterative methods are better, in the sense of convergence rates,
than the re-iterated Galerkin method, and whether taking vy = K f is always
preferable than y = f for such methods.

A simple way to test this proposition experimentally would be to apply the

[
Tl

three methods to a series of different kernels, and measure for each. By
introducing a parameter, A, to the kernel, we can achieve the desired changes in a

controlled way. The integral equations we investigate, therefore, are of the more

general form
6= [+ K.

It we now make incremental changes in the value of A, and apply the methods,
noting the value of the ratio of successive residual norms, we can build up a

picture of how the convergence factors, p(.5) and p(SK), vary with A.

37



6.1 The Kernel 2 Amax(x,t)

The first equation we consider is

$(z) =1+ )\/01 2 max(e,)é()dt, 0<a <1 (6.1)

+ rekant kf

regal
rekant f

Irhi/r|

convergence limit

0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0 5.5 6.0

lambda

Figure 6.1: Convergence of methods for k(z,t) = 2A max(x, 1)

Figure (6.1) illustrates the variation in M (written as |rh|/|r|in the Figure)

for each of the methods, with A taken in the range, 0 < A < 6. The most striking
feature of the graph is the spike which occurs at around A = 0-7. It seems
reasonable to suppose that this spike in some way represents the presence of an
eigenvalue, since the ratio of the residual norms approximates the spectral radii

of the operators S and SK.
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There is a process by which it is occasionally possible to calculate, analytically,
the value of the spectral radius of an operator. This process has been described in
the following section to calculate p(.S) for the RIG method, in a one-dimensional

subspace, using the kernel k(x,t) = 2A max(x,1).

6.1.1 Calculating p(5)

Let ¢ = f+ K¢ in Ly(0,1), where (K¢)(z) = fy 2\ max(z,t)é(t)dt and A > 0
(recall that K has only one positive eigenvalue and infinitely many negative eigen-
values). We seek the Galerkin approximation in the space of constant functions,
ie. let ¢ = po be the Galerkin approximation, where py = ag and g(z) = 1, so

that
(pO_f_[(pOLg):Ov Po = &g,
= o{(g,9) — (Kg,9)} = (f,9)

Now (g,9) =1, and

r 1
(Kg)(z) :/ 2)\:1;dt—|—/ Il = M1+ 22)
0 r

. 1 5 4A
= ([&g,g):/ )\(1+:1;)d:1;:§.
0
Therefore, o = —¢(f, g), where —c = =5, provided 3 # 4,
= po = —<(f,9)g-

[So (1= P PL)(w) = e 2 F(Dg(t)g(e)dt = — 2 f(1)dr. ]
Now, po = f+ Kpo = f — ¢(f,9)K g,
ole) = f(x) = [ AL+ () = (1= KB o).
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Finally,
S=(—-KP,)"(K-KP)=1—-(I-KP,)"'(I - K),
so

(SP(@) = 1) = () = (KN + [ M1+ 270 — ()0
— (Kf)(2) + A1 + 22 {/0 ftdt—/o ftdt/o 2\ max(s, 1)ds)

_ /01{2)\ max(z, 1) + A1+ 2?) — eA2(1 4+ 22)(1 + £2)} f(1)dt,

1
ie. (Sf)(x) = / {2  max(z, ) 4+ eA(1 4+ 23) (1 — X — M)} f(#)dt.
0
To find the eigenvalues of 5, let ¢ now satisty ¢ = AS¢,

ie.  é(zr) = 2A\ /gqus (1 dt—|—2A)\/1 16(1)dt — eAN(1 —|—:1;2)/1()\t2 A= De(t)dt

0

= Ye) = 2A)\/ dt—2:z;cA)\/ M2 A — 1)(1)dt

= $(z) = 20Mé(2) —chA/O M2+ X — 1)g(t)di

where #'(0) =0, (1) = o(1).

Now

/01 o(x)dr = A/ dt/ {2Amax(z,t) — cAM? + X — 1)(1 + 2%)}dz

- gcAA/O (1 + 3t3)6(t)dt.

Hence

1

(1- ;CAA)/ S(1)dl = —eA) /01 126(1)di

0

and so,

1

¢"(2) — 2A0e(x) = 2A(1 — ;CAA)/ S(1)dt — 2eANA — 1) /01 $(1)dt = 2¢,

0
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where € = A(1 — A) [y 6(t)dt.
Suppose A < 0, and write 2A\ = —w? (w € IR).

Then

é(x) = acos(wx)+ bsin(wr) — /f_A

= acos(wx) —

H?
(since ¢'(0) = 0). Therefore

a

/01 d(a)dx = (;sinw — %,

E=A1-A)%sinw— M1 —A)&

= £ =AXN1 —A)Zsinw.
Now, ¢'(1) = ¢(1)

= —qwsiNw = GCOSW — —

AN

=acosw — (1 — A)gsinw,
w

So (% —w)sinw = cosw, but A = —Lw?, so

(1+ —w? - wz)sinw = W COoS W

2

2w
t = . 6.2
= ane 2A(1 — w?) + w? (6.2)

Finally, let the roots of the above equation be £&, (&, > 0) for n € IN. Then

the eigenvalues of S are given by u~! = —21—/\(;)7%, ie. fl, = ;—%A (n € IN). Let &

denote the smallest such root.

Now, if we take the case when A > 0 so that 2A\ = w?, then w satisfies

2w
tanhw = ) )
amtw 2A(1 + w?) — w? (6.3)
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Let the roots of this equation be +&,, (&, > 0) for n € IN, and denote the smallest
root by @;.

The spectral radius of the operator S is therefore given by

p(5) = =, (6.4)

where w; = min(@y, @y ).

In order to determine the minimum of w; and @, it is necessary to explore the
behavior of the roots of equations (6.2) and (6.3). Such analysis is quite involved
and so only the results are given here.

For 0 < A <0-5 equation (6.3) has no non-trivial roots, unlike equation (6.2),
and so we take wy = @y, giving p(S) = % which increases linearly as A tends to
0-5.

For 0-5 < A < 0-75 equation (6.3) has one root which starts off being very
large, but which tends to zero like % (where € — o0) as A — 0. 75. This results
in p(S) — oo as w; — 0, giving p(5) = %

Finally, for A > 0 - 75, equation (6.3) once again has no non-trivial roots,
whereas equation (6.2) has a smallest root which increases rapidly from zero to

7 as A increases. For this region, p(.9) is therefore given by %

The values obtained for p(S) correspond almost exactly with the values of

Il

Trnal obtained via the RIG method, and so confirms our view that the ratio

of successive residual norms converges to the spectral radius of the convergence
operator. Similar analysis to calculate p(SK) for the RIK method proves too
difficult, but the process of re-iteration provides a means of obtaining an accurate
approximation.

It would appear reasonable to suggest that since no solution exists at an
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eigenvalue of the operator K (ie. for A = %n, where p, is an eigenvalue of K),
the numerical method would not be able to find an approximation and hence
would not converge. This would result in the ratio of the residual norms, and
therefore p(.5) and p(SK), exceeding the convergence limit, and in fact, becoming
infinite. If so, the spikes in Figure (6.1) would appear to mark the presence of an
eigenvalue of the kernel operator K, given by u = % Since A is positive in the
examples, and K has only one positive eigenvalue, the graphs seem to provide a
means of obtaining the maximum positive eigenvalue of K.

Unfortunately the graphs do not tend to infinity at the same point. The
RIG and RIK(y = f) methods both become infinite at A = 0 - 75, whilst the
RIK(y = Kf) method becomes infinite at a value closer to A = 0-72. The
problem is that we are not actually solving ¢ = f+ K¢, but rather an approximate
equation lying in a reduced space. The eigenvalues we are locating, therefore, are
not of the original equation, but belong instead to the approximate equation.

The approximate eigenvalues arise from the initial Galerkin method and are

unaltered by iteration or re-iteration. Thus, in the one-dimensional case with

X = f, the Galerkin equation is o{||f]|* — A(K f, f)} = || f]|?, which produces the

(K1, f)
IS

approximate eigenvalue fi; = . Since K is self-adjoint we can deduce that

py < jy < pf by considering the Rayleigh quotient. The eigenvalue apparent
in the graphs is therefore an underestimate of the maximum positive eigenvalue

of K. When we change the subspace, as for the RIK(y = K f) method, we

LK A1
(Kf.f)"

(K1H — AP

Since Tt < (K7p

also change the value of fiy, in this case to 3 =
this second fi; will be no less than (and in practice greater than) the first fiy.

Hence, taking y = K f produces a closer underestimate to the maximum positive
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eigenvalue of K than can be achieved by taking y = f.

This result is echoed in the graphs, where the RIK(x = f) and RIG (also
with x = f) methods offer i; = 133, corresponding to A = 0 - 75, whilst the
RIK(x = K f) method gives ji; = 1-39, since 1-38 < uf < 1-42 can be obtained
by standard eigenvalue estimation methods, as mentioned earlier.

Away from the eigenvalue, both of the RIK methods exhibit better conver-

[
Tl

gence properties than the RIG method, as illustrated by their lower

values,
which in turn lead to increased intervals of convergence. Although the RIK graphs
intersect the RIG graph, they do not do so until all the methods have exceeded
the limit for convergence. For this particular problem we can conclude that the
RIK methods exhibit consistently better convergence properties than the RIG
method, and that, away from the eigenvalue, taking y = f constitutes a better

choice of subspace than y = K f.

6.2 The Kernel Qi()sin(/fokc — t|)

The second equation we consider is the general form of equation (5.2), ie.
L1
B(a) = cos(ror) + A [ 5= sin(wolw — tho(t)dt, 0Lz <1 (6.5)
0 Ko

where kg is a parameter (taken to be kg = 1-5 in the following example).
Unlike equation (6.1), finding both p(S) andp(SK) analytically proves too
difficult, so we have to rely entirely on the numerical results in order to gain

information about the convergence properties of the methods for this kernel.

lI7xl

[17n—11]

Figure (6.2) shows the graphs of against A for the three methods when
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Figure 6.2: Convergence of methods for k(x,t) = ﬁ sin(kol|z — t|)

approximating equation (6.5). As before we notice discontinuities in the results,
pointing to the presence of approximate eigenvalues. This time, however, the
singularities occur at markedly different values for the methods with different
subspaces. The y = f methods become infinite at around A = 9 - 1, whilst the
x = K f method becomes infinite at approximately A = 7- 1. As in the previous
example, we can show that the latter choice of subspace provides the closest
underestimate to the maximum positive eigenvalue of K, giving us iy = ; ~
0-14 < uf.

We can compare this result with the following bounds on the largest positive

and negative eigenvalues of K, as proposed by Chamberlain [1] (Lemma 4.2), who
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gives

2
n . ko 1 2 )

py < min(0- 173704 + , \VKG — sIin“ Ko ),
! ( 2477 9, fox2 )

1
py > max(—n7%, — VK& —sin® kg ),
' 2, /22

ie. taking ko = 1-5 we have

pf < 017604,

pp > —0-10132,

Our approximation, [y, certainly lies below Chamberlain’s upper bound, and
since it is an underestimate, provides us with a lower bound on u .

All three methods, in this example, demonstrate convergence up to A ~ 6 -5,
where the effect of the approximate eigenvalue becomes too great. Neither the
RIG method, nor the RIK(x = f) method, manage to recover sufficiently from
the eigenvalue to provide additional regions of convergence. The RIK(y = K f)
method, on the other hand, recovers relatively quickly, recrossing the convergence
limit at A &~ 7 -5, and providing convergence up to A & 16 - 0.

The RIK(y = K f) method is clearly the best method for this problem using

a one-dimensional subspace.
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Chapter 7

Extending to 2-D

U7l — 1, does not prove to be very useful

The theoretical convergence limit, Tl =

when approximating solutions to integral equations. The number of iterations
required to reach a specified accuracy tends to infinity as the limit is approached.
A much more sensible practical limit would be Tl = 0 -5, corresponding to
roughly forty iterations. If the methods require more iterations than this it is
time to consider enlarging the size of the subspace.

Up to now we have been looking for approximations in a one-dimensional
subspace spanned by either y = f or y = K f. By extending the subspace to
two dimensions we are introducing additional degrees of freedom to the approx-
imations, leading to increased accuracy. We should find that, as a result, the
number of iterations required for convergence will decrease, leading to an overall

Il

reduction in the values of el and thus to larger intervals of convergence.

As outlined in section (4.2), the optimal choice of subspace is based upon the
terms of the Neumann series. For a two-dimensional subspace, therefore, we want

E, to be spanned by f and K f. Rather than take f and K f as they are, we

47



form an orthonormal basis {y1, x2}, where

and

Since we know that
(Xm7 Xn) -

this also saves us some calculations.

Figure (7.1) shows the effect of enlarging the subspace on the graph of M
against A for equation (6.1) . Both the RIK and RIG methods illustrated use
the trial space {x1, Y2} described above. The approximate eigenvalue peak has

narrowed considerably for both methods. As can be seen more clearly in the
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Figure 7.1: Approximating k(x,t) = 2A max(x,t) in 2-D
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Figure 7.2: The eigenvalue of k(x,t) = 2A max(x, 1) for a 2-D subspace

magnification in Figure (7.2), the value of A at which the approximate eigenvalue
occurs can be pinpointed at A = 0 - 71967, corresponding to iy =~ 1 - 38949.
The disruption caused to the convergence of the methods by the presence of
the eigenvector is greatly reduced, allowing us to see more clearly the linear
nature of the RIG method, and the quadratic nature of the RIK method. It also
demonstrates that the RIG method, which was the most disrupted in the one-
dimensional case, may converge faster than the RIK method for certain values of
A, and hence for certain kernels. The point of cross-over in this example does not,
however, occur until % is significantly greater than 0- 75, a value at which, in
a practical situation, we would be looking to utilise an even higher dimensional
subspace.

Finally, Figure (7.3) illustrates the effect of moving to a two-dimensional sub-

space for equation (6.5). In the one-dimensional case the eigenvalue proved rather
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Figure 7.3: Approximating k(x,t) = ﬁ sin(kolx — t|) in 2-D

disastrous for the convergence of the RIG method, preventing it from providing

any convergence after A = 6 -5. Using a two-dimensional subspace significantly

reduces the effect of the approximate eigenvalue, which we can now estimate,

with some accuracy, to be in the region of iy &~ 015224 (A ~ 6 - 5686). As

before, the RIK method demonstrates better convergence properties in general,
2]

the point of cross-over with the RIG method being at a value of ' too high

lI7n—1l|

to be of practical use.
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Chapter 8

Conclusions

The results in the previous two Chapters suggest that the new re-iterated Kan-
torovich method will converge, and do so faster than the re-iterated Galerkin
method, if

p(SK) < p(S) < 1.

When || K || is large, ie. when A is large in the previous graphs, the RIG method
can display the better convergence properties. However, if the view is taken
that values of % greater than 0 -5, corresponding to roughly forty iterations,
signal the need for a higher dimensional subspace in which to seek a solution,
then the RIK method represents the best practical method of approximation.
Naturally, increasing the size of the subspace, and therefore introducing more
degrees of freedom into the approximation, has the effect of increasing the rate
of convergence, leading to increased regions of convergence.

The presence of approximate eigenvalues can cause a fair amount of disruption

to the methods. This is especially true when using a subspace of low dimension,

where the number of terms in the expansion of the approximation available to
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compensate for the rapid growth of the residuals, is low. It has been shown that
choosing a subspace spanned by y = K f, rather than by y = f, for the one-
dimensional case, not only gives a closer underestimate to the exact eigenvalue
pf of the problem, but also reduces the effect of the approximate eigenvalue
on convergence. The position of the approximate eigenvalue may be calculated
beforehand and so be avoided. This is done by considering the initial Galerkin

equation, given by (in 1-D case)

ar{[all* = M )} = (F ),

hence the eigenvalue, iy, is given by

(KX17X1)
[[x1]I?

H1 =

where y; is the choice of trial function. Also to be avoided, naturally, are the
exact eigenvalues of the equation. Since the numerical methods approximate the
solution by solving an approximate equation, they may be seen to converge for
values of A, corresponding to the exact eigenvalues, for which we know the exact
equation has no solution. In these cases the numerical results will be entirely
spurious. Avoidance of the approximate and exact eigenvalues should not, in
practice, cause too much disruption to the regions of convergence of the methods
since the approximate and exact eigenvalues should be reasonably close together.

The ratio of successive residual norms for the RIG method has been seen to
converge to the spectral radius of S. A similar result has not been proved for
the RIK method since, for the equations given in the examples, an analytical
calculation of p(SK) proved to be too difficult. The convergence properties of

the method, however, lead us to the conclusion that a similar result will hold.
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Whereas the estimates of p(.5) proved to be very accurate, a similar degree of

l|7l

accuracy could not be attributed to the underestimates of || K|, given by T

for both methods. These were shown to be very poor in comparison, depending
upon the residual, r,, being a close approximation to a constant multiple of the
eigenvector & .

There is obviously a need for more exhaustive testing of the re-iterated Kan-
torovich method, as well as more in-depth analysis, before its strengths and weak-
nesses are fully understood. In the limited time available, it has only been possible
to explore some basic ideas in relation to a few particular examples and many
issues have arisen which require closer analysis and examination. Some obvi-
ous features that have not been explored in this report include: a closer study
of the analytical properties of the spectral radii of S and SK ; the difference
in the way the two methods converge to the solution of the equation, ie. the
Galerkin method oscillates about the solution, whereas the Kantorovich method
approaches the solution monotonically from above; and the way in which the ratio
of successive residual norms tends to oscillate when it reaches a local minimum
after encountering an eigenvalue.

In the example using the kernel k(x,t) = ﬁ sin(ko|z —1|), ko was fixed at 1-5.
Due to its use as a kernel in the practical application of modelling wave scattering,
it would be interesting to investigate the effect of changing k¢ on the convergence
properties of the two re-iterative methods. This could lead to the methods being
used to find a solution to the practical problem which Chamberlain [2] solved

approximately by variational techniques.

Finally, Porter & Stirling [4] demonstrated how the properties of the re-
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iterated Galerkin method could be exploited in variational principles. It would
seem plausible that the re-iterated Kantorovich method could be similarly utilised,

and may, under certain conditions, once again yield improved results.
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