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Abstract

The first goal of this work is to study solvability of the neural field equation

τ
∂u(x, t)
∂t

− u(x, t) =
∫

Rm

w(x, y)f(u(y, t)) dy, x ∈ Rm, t > 0,

which is an integro-differential equation in m+1 dimensions. In particular, we show
the existence of global solutions for smooth activation functions f with values in [0, 1]
and L1 kernels w via the Banach fixpoint theorem.

For a Heaviside type activation function f we show that the above approach fails.
However, with slightly more regularity on the kernel function w (we use Hölder con-
tinuity with respect to the argument x) we can employ compactness arguments, inte-
gral equation techniques and the results for smooth nonlinearity functions to obtain
a global existence result in a weaker space.

Finally, general estimates on the speed and durability of waves are derived. We
show that compactly supported waves with directed kernels (i.e. w(x, y) ≤ 0 for x ≤ y)
decay exponentially after a finite time and that the field has a well defined finite speed.

1 Introduction

Modeling neurodynamics has a long tradition in mathematical biology and computational
neuroscience, starting with the study of simple neuron models and the theory of neural
∗r.w.e.potthast@reading.ac.uk
†p.r.beimgraben@reading.ac.uk
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networks in the 1940ies [1–8]. One particular neuron model with certain physiological
significance is the leaky integrator unit [2, 3, 5–8] described by the ODEs

(1) τ
dui(t)
dt

+ ui(t) =
N∑
j=1

wij f(uj(t)) .

Here ui(t) denotes the time-dependent membrane potential of the ith neuron in a network
of N units with synaptic weights wij . The nonlinear function f describes the conversion of
the membrane potential ui(t) into a spike train ri(t) = f(ui(t)), and is called the activation
function.

The left-hand-side of Eq.(1) describes the intrinsic dynamics of a leaky integrator unit,
i.e. an exponential decay of membrane potential with time constant τ . The right-hand-
side of Eq.(1) represents the net-input to unit i: the weighted sum of activity delivered
by all units j that are connected to unit i (j → i). Therefore, the weight matrix W =
(wij) comprises three different kinds of information: (1) unit j is connected to unit i if
wij 6= 0 (connectivity, network topology), (2) the synapse j → i is excitatory (wij > 0),
or inhibitory (wij < 0), (3) the strength of the synapse is given by |wij |.

For the activation function f , essentially two different approaches are common. On
the one hand, a deterministic McCulloch-Pitts neuron [1] is obtained from a Heaviside
step function

(2) f(s) :=
{

0, s < η
1, s ≥ η

for s ∈ R with an activation threshold η describing the all-or-nothing-law of action po-
tential generation. Supplementing Eq.(1) with a resetting mechanism for the membrane
potential, the Heaviside activation function provides a leaky integrate and fire neuron
model [6].

On the other hand, a stochastic neuron model leads to a continuous activation func-
tion f(s) = Prob(s ≥ η) describing the probability that a neuron fires if its membrane
potential is above threshold [6]. In computational neuroscience this probability is usually
approximated by the sigmoidal logistic function

(3) f(s) =
1

1 + e−(s−η) .

Analyzing and simulating large neural networks with complex topology is a very hard
problem, due to the nonlinearity of f and the large number of synapses (approx. 104

per neuron) and neurons (approx. 1012) in human cortex. Instead of analytically or
numerically computing the sum in the right-hand-side of Eq.(1), substituting it by an
integral over a continuous neural tissue, often facilitates such examinations. Therefore,
continuum approximations of neural networks have been proposed since the 1960ies [6,9–
26].
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Starting with the leaky integrator network equation (1), the sum over all units is
replaced by an integral transformation of a neural field quantity u(x, t), where the contin-
uous parameter x ∈ Rm now indicates the position i in the network. Correspondingly, the
synaptic weight matrix wij turns into a kernel function w(x, y). Then, Eq.(1) assumes the
form of a neural field equation as discussed in [10,11]

(4) τ
∂u(x, t)
∂t

− u(x, t) =
∫

Rm

w(x, y)f(u(y, t)) dy, x ∈ Rm, t > 0

with initial condition

(5) u(x, 0) = u0(x), x ∈ Rm .

Up to now, neural field equations have been investigated under serious restrictions
upon the integral kernel w(x, y), including homogeneity (w(x, y) = w(x−y)) and isotropy
(w(x, y) = w(|x−y|)). In these cases, the technique of Green’s functions allows the deriva-
tion of PDEs for the neural waves u(x, t) assuming special kernels such as exponential,
locally uniform or “Mexican hat” functions [13, 14, 18, 23, 26]. Solutions for such neural
field equations have been obtained for macroscopic, stationary neurodynamics in order to
predict spectra of the electroencephalogram (EEG) [14,17,19,22], or bimanual movement
coordination patterns [12,13].

By contrast, heterogeneous kernels and thalamo-cortical loops in addition to homoge-
neous cortico-cortical connections have been discussed in [16] and [17,19,25], respectively.
However, at present there is no universal neural field theory available, that would allow the
study of field equations with general synaptic kernel functions. Yet such a theory would
be mandatory for modeling mesoscopic and transient neurodynamics as is characteristic,
e.g., for cognitive phenomena.

Our goal is hence to develop a mathematical theory of neural fields starting with the
typical example of leaky integrator field equations. We expect that our analysis will serve
as a model for various variations and generalizations of neural field equations which are
currently being investigated for applications in the field of cognitive neurodynamics [27].

In this paper we shall examine the solvability of the integro-differential equation (4)
with tools from functional analysis, the theory of ordinary differential equations and in-
tegral equations. We will provide a proof of global existence of solutions and study their
properties in dependence on the smoothness of the synaptic kernel function w and the
smoothness of the activation function f .

2 The neural field equation

For studying the existence of solutions of the neural field equation (4) we define the
operator

(6) (Fu)(x, t) :=
1
τ

(
−u(x, t) +

∫
Rm

w(x, y)f(u(y, t)) dy
)
, x ∈ Rm, t > 0.
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Figure 1: We show the setting for the neural field equation (4) for the case m = 1. The
potential u(x, t) is depending on space x ∈ Rm and time t ≥ 0. Here, a pulse is travelling
in the x-direction when time increases. The plane indicates the cut-off parameter η in
the activation function f . Only a field u(x, t) ≥ η will contribute to the increase of the
potential.

Then the neural field equation (4) can be reformulated as

(7) u′ = Fu,

where u′ denotes the derivative of u with respect to the time variable t. For later use we
also define the operators

(8) (Au)(x, t) :=
∫ t

0
(Fu)(x, s) ds, x ∈ Rm, t > 0,

and

(9) (Ju)(x, t) :=
1
τ

∫
Rm

w(x, y)f(u(y, t)) dy, x ∈ Rm, t > 0.

To define appropriate spaces and study the mapping properties of the operators F and
A we need to formulate conditions on the synaptic weight kernel w and the activation
function f in the neural field equation. Here, we will study two classes of functions f .

The first class contains smooth functions f . In this case we can employ tools from the
classical theory of ordinary differential equations to obtain existence results.

The second class works with non-smooth functions f , as for example when f is a Heav-
iside jump function. In this case the above theory is not applicable and we will construct
counterexamples. We will study the existence problem by investigating particular kernels
w which allow particular solutions.
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2.1 General estimates for solutions to the NFE

The goal of this section is to derive general estimates for solutions to the neural field
equation. We will see that the solutions are nicely bounded under fairly general conditions
on the kernel and activation function and that we can estimate the speed and behavior of
compactly supported pulses.

The following conditions on the kernel w and the activation function f will be the
general conditions used throughout this work.

Definition 2.1 (Synaptic kernel and activation function ). Let the synaptic integral kernel
w satisfy

w(x, ·) ∈ L1(Rm), ∀x ∈ Rm,(10)
sup
x∈Rm

‖w(x, ·)‖L1(Rm) ≤ Cw(11)

‖w(x, ·)− w(x̃, ·)‖L1(Rm) ≤ cw|x− x̃|, x, x̃ ∈ Rm.(12)

with some constant Cw > 0 and

(13)
∣∣∣w(x, y)

∣∣∣ ≤ C∞, x, y ∈ Rm.

For the function f : R→ R we assume that

f(R) ⊂ [0, 1].(14)

Further, for some results we assume that the kernel w is sensitive to any open set
G ⊂ Rm in the sense that

(15) sup
x∈Rm

|
∫
G
w(x, y) dy| > 0.

The neural field equation allows general and global estimates for the above kernels,
which also guarantee existence of solutions.

Lemma 2.2. Let u0 ∈ BC(Rm) be an initial field (5) for the neural field equation (4)
and assume that the kernel w satisfies the conditions of Definition 2.1. Then the solution
u(x, t) to the neural field equation is bounded by

(16) Ctot := max(|u0(x)|, |Cw|)

i.e. we have the general estimate

(17) |u(x, t)| ≤ Ctot, x ∈ Rm, t ≥ 0.

for solutions to the neural field equation.
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Proof. We first note that the term Ju defined in (9) can be estimated by

(18)
∣∣∣(Ju)(x, t)

∣∣∣ ≤ Cw
τ

Next, we observe that the derivative u′(t) in the neural field equation is bounded by

(19) u′(x, t) ≤ −bu(x, t) + c, u′(x, t) ≥ −bu− c

with b = 1/τ and c = Cw/τ . Thus, the value of u(t) will be bounded by the solution to
the ordinary differential equation (77) with a = u0(x), b = 1/τ and c = Cw/τ . According
to Lemma 4.1 the bound is given by Ctot defined in (16). This proves the estimate (17).
�

2.2 The NFE with a smooth activation function f

Here, for the function f : R→ R we assume that

(20) f ∈ BC1(R),

With the conditions (10) to (14) we now obtain the following mapping properties of
the neural field operator F .

Lemma 2.3. The operator F defined by (6) with kernel w and activation function f
which satisfy the conditions of Definition 2.1 and (20) is a bounded nonlinear operator
on BC(Rm)× C1(R+

0 ), i.e. it maps bounded sets into bounded sets.

Proof. To prove boundedness we need to estimate the integral operator. The term
f(u(y, t)) has values in [0, 1], thus we can estimate∣∣∣ ∫

Rm

w(x, y)f(u(y, t)) dy
∣∣∣ ≤ ∫

Rm

|w(x, y)| dy

≤ ‖w(x, ·)‖L1(Rm)

≤ Cw(21)

for all x ∈ Rm. This proves that for u bounded the function Fu ∈ L∞(Rm). The continuity
of (Fu)(x, t) with respect to x and the differentiability with respect to t is obtained as
follows. We use (12) to estimate∣∣∣(Ju)(x, t)− (Ju)(x̃, t)

∣∣∣ ≤ 1
τ

∫
|w(x, y)− w(x̃, y)||f(u(y, t))| dy

≤ 1
τ

∫
|w(x, y)− w(x̃, y)| dy

≤ cw
τ
|x− x̃|.

6



Since u(x, t) is continuous in x we obtain the continuity of Fu in x. Finally, we need to
show that Fu is continuously differentiable with respect to the time variable. This is clear
for the first term −u(x, t)/τ . The time-dependence of the integral

(22) (Ju)(x, t) :=
∫

Rm

w(x, y)f(u(y, t)) dy

is implicitly given by the time-dependence of the field u(y, t). By assumption we know
that u(x, ·) ∈ C1(R+

0 ) and the function f is BC1(R). Then via the chain rule we derive

d

dt
f(u(y, t)) =

df(s)
ds

∣∣∣
s=u(y,t)

· ∂u(y, t)
∂t

.

Since f ′ is bounded on R and w is integrable we obtain the differentiability of the integral
with the derivative

(23)
∂Ju

∂t
(x, t) =

∫
Rm

w(x, y)
{df
ds

(u(y, t)) · ∂u
∂t

(y, t)
}
dy, t > 0.

The function ∂Ju/∂t(x, t) depends continuously on t ∈ R+ due to the continuity of df/ds
and du/dt in t and the term (23) is bounded for t ≥ 0 and x ∈ Rm. This completes the
proof. �

By integration with respect to t we equivalently transform the neural field equation
(4) or (7), respectively, into a Volterra integral equation

(24) u(x, t) = u(x, 0) +
∫ t

s=0
(Fu)(x, s) ds, x ∈ Rm, t > 0,

which, with A defined in (8), can be written in the form

(25) u(x, t) = u(x, 0) + (Au)(x, t), x ∈ Rm, t > 0.

Lemma 2.4. The Volterra equation (24) or (25), respectively, is solvable on Rm × (0, ρ)
for some ρ > 0 if and only if the neural field equation (4) or (7), respectively, is solvable
for x ∈ Rm and t ∈ (0, ρ). In particular, solutions to the Volterra equation (24) are in
BC1(R+

0 ).

Proof. If the neural field equation is solvable with some continuous function u(x, t),
we obtain the Volterra integral equation (24) for the solution u by integration.

To show that a solution u(x, t) to the Volterra integral equation (24) in BC(Rm) ×
BC(R+

0 ) satisfies the neural field equation (4) we first need to ensure sufficient regularity,
since solutions to equation (4) need to be differentiable with respect to t. We note that
the function

gx(t) :=
∫ t

0
(Fu)(x, s) ds, t > 0
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is differentiable with respect to t with continuous derivative for each x ∈ Rm. Thus,
the solution u(x, t) to equation (24) is continuously differentiable with respect to t > 0
and the derivative is continuous on [0,∞). Now, the derivation of (4) for u from (24) is
straightforward by differentiation. �

An important preparation for our local existence study is the following lemma. We
need an appropriate local space, which for ρ > 0 is chosen as

(26) Xρ := BC(Rm)×BC([0, ρ]).

The space Xρ equipped with the norm

(27) ‖u‖ρ := sup
x∈Rm,t∈[0,ρ]

|u(x, t)|

is a Banach space. For ρ =∞ we denote this space by X, i.e.

X := BC(Rm)×BC(R+
0 ),

‖u‖X := sup
x∈Rm,t∈R+

0

|u(x, t)|.(28)

An operator Ã from a normed space X into itself is called a contraction, if there is a
constant q with 0 < q < 1 such that

(29) ‖Ãu1 − Ãu2‖ ≤ q‖u1 − u2‖

is satisfied for all u1, u2 ∈ X. A point u∗ ∈ X is called fixed point of Ã if

(30) u∗ = Ãu∗

is satisfied. We are now prepared to study the properties of A on Xρ.

Lemma 2.5. For ρ > 0 chosen sufficiently small, the operator A is a contraction on the
space Xρ defined in (26).

Proof. We estimate Au1−Au2 and abbreviate u := u1−u2. We decompose A = A1+A2

into two parts with the linear operator

(31) (A1v)(x, t) :=
−1
τ

∫ t

0
v(x, s) ds, x ∈ Rm, t > 0,

and the nonlinear operator

(32) (A2v)(x, t) :=
−1
τ

∫ t

0

∫
Rm

w(x, y)f(v(y, s)) dy ds, x ∈ Rm, t > 0.
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We can estimate the norm of A1 by

(33) ‖A1u‖ρ ≤
ρ

τ
‖u‖ρ,

which is a contraction if ρ is sufficiently small. Since f ∈ BC1(R) there is a constant L
such that

(34)
∣∣∣f(s)− f(s̃)

∣∣∣ ≤ L|s− s̃|, s, s̃ ∈ R.

This yields∣∣∣Ju1(x, t)− Ju2(x, t)
∣∣∣ ≤ 1

τ

∫
Rm

|w(x, y)|
∣∣∣f(u1(y, t))− f(u2(y, t))

∣∣∣ dy
≤ 1

τ
L

∫
Rm

|w(x, y)|
∣∣∣u1(y, t)− u2(y, t)

∣∣∣ dy
≤ 1

τ
LCw‖u1 − u2‖∞.(35)

Finally, by an integration with respect to t we now obtain the estimate

(36) ‖A2u1 −A2u2‖ρ ≤
ρ

τ
LCw‖u1 − u2‖∞.

For ρ sufficiently small the operator A2 is a contraction on the space Xρ. For

(37) q :=
ρ

τ
(1 + LCw) < 1

the operator A = A1 +A2 is a contraction on Xρ. �

Now, the local existence theorem is given by the following theorem.

Theorem 2.6 (Local existence for NFE). Assume that the synaptic weight kernel w and
the activation function f satisfy the conditions of Definition 2.1 and (20) and let ρ > 0 be
chosen such that (37) is satisfied with L being the Lipschitz constant of f . Then we obtain
existence of solutions to the neural field equations on the interval [0, ρ].

Remark. The result is a type of Picard-Lindelöf theorem for the neural field equation
(4) under the conditions of Definition 2.1 and (20).

Proof. We employ the Banach Fix-Point Theorem to the operator equation (25). We
have shown that the operator A is a contraction on Xρ defined in (26). Then, also the
operator Ãu := u0+Au is a contraction on the complete normed space Xρ. Now, according
to the Banach fixpoint theorem the equation

(38) u = Ãu
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as a short form of the Volterra equations (25) or (24), respectively, has one and only one
fixpoint u∗. This proves the unique solvability of (24). Finally, by the equivalence Lemma
2.4 we obtain the unique solvability of the neural field equation (4) on t ∈ [0, ρ]. �

In a last part of this section we combine the global estimates with local existence to
obtain a global existence result.

Theorem 2.7 (Global existence of solutions to NFE). Under the conditions of Definition
2.1 we obtain existence of global bounded solutions to the neural field equation.

Proof. We first remark that the neural field equation does not explicitly depend on
time. As a result we can apply the local existence result with the same constant ρ to any
interval [t0, t0 + ρ] ⊂ R when initial conditions u(x, t0) = u0 for t = t0 are given. This
means we can use Theorem 2.6 iteratively.

First, we obtain existence of a solution on an interval I0 := [0, ρ] for

(39) ρ :=
τ

2(1 + LCw)
.

Then, the function u1(x) := u(x, ρ) serves as new initial condition for the neural field
equation on t > ρ with initial conditions u1 at t = ρ. We again apply Theorem 2.6 to this
equation to obtain existence of a solution on the interval I1 = [ρ, 2ρ].

This process is continued to obtain existence on the intervals In := [nρ, (n + 1)ρ],
n ∈ N, which shows existence for all t ∈ R. Global bound for this solution have been
derived in Lemma 2.2. �

2.3 The NFE with a Heaviside activation function f

In this section we will construct special solutions to the neural field equation in the case of
an activation function f given by Eq.(2). In this case the results of the preceding sections
are no longer applicable. We will develop specific methods to analyse the solvability of
the equation for this particular case.

We first show that for the activation function f defined in (2), the operator F does
not longer depend continuously on the function u.

Lemma 2.8. With f given by (2), w according to Definition 2.1 and the additional condi-
tion (15) for the kernel the function Fu does not depend continuously on u ∈ X with X
defined in (28).

Proof. Consider the sequence (un)n∈N of functions un ∈ X with

(40) un(x, t) :=


0, x ≤ −2
(η − 1

n) · (2 + x) x ∈ (−2,−1)
η − 1

n , x ∈ [−1, 1]
(η − 1

n) · (2− x) x ∈ (1, 2)
0, x ≥ 2,
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(a)

Figure 2: In (a) we show a function un which is used to prove the non-continuity of the
operator F for a Heaviside-type activation function f in the neural field equation.

for x ∈ R and t ≥ 0, compare Figure 2. The function u is defined by (40) with n = ∞,
where we use 1/∞ = 0. Then un → u for n → ∞ in X. For all n ∈ N we have
Fun = −un/τ , since f(un(y, t)) = 0 for y ∈ Rm and t ≥ 0. However, we calculate

(41) (Fu)(x, t) =
−1
τ
u(x, t) +

1
τ

∫
[−1,1]

w(x, y)dy︸ ︷︷ ︸
=:J(x)

.

Thus, we have

(42) lim
n→∞

(
Fun(x, t)− Fu(x, t)

)
= J(x), x ∈ R,

i.e. for general kernels w(x, y) where J(x) 6≡ 0 the operator F is not continuous. �

Remark. As a consequence of Lemma 2.8 the operator A is not a contraction on Xρ

for any ρ > 0, since∣∣∣Aun(t)−Au(t)
∣∣∣ =

∣∣∣−1
τ

∫ t

0

(
un(x, s)− u(x, s)

)
ds

+
∫ t

0

∫
R
w(x, y)

(
f(un(y, s))− f(u(y, s))

)
dy ds

∣∣∣
→

∣∣∣J(x)
∣∣∣t, n→∞,(43)

where J(x) is given by (41).

Since the operator A does not depend Lipschitz continuously on u, we need to use
techniques different from the Banach fixpoint theorem above. Here, we will develop an
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approach based on compactness arguments to carry over the existence results from above
to the non-smooth Heaviside activation function f . To this end we define the Hölder space

(44) Xρ,α := BCα(Rm)×BCα([0, ρ])

for α ∈ (0, 1] equipped with the Hölder norm

‖ϕ‖ρ,α := ‖ϕ‖ρ + sup
t∈[0,ρ],x,y∈Rm

|ϕ(x, t)− ϕ(y, t)|
|x− y|α

+ sup
x∈Rm,t,s∈[0,ρ]

|ϕ(x, t)− ϕ(x, s)|
|t− s|α

(45)

It is well known that the Hölder space on a compact set M is compactly embedded into
the space BC(M). However, for unbounded sets like the space Rm this is not the case.
However, we still get local compactness of the embedding, i.e. every bounded sequence
(ψn)n∈N in Xρ,α does have a subsequence (ψ̃k)k∈N which is locally converging in Xρ towards
an element ψ ∈ Xρ, i.e. where

(46) sup
t∈[0,ρ],x∈BR(0)

∣∣∣ψ̃k(x, t)− ψ(x, t)
∣∣∣→ 0, n→∞

for every fixed R > 0. We need some of the mapping properties of the operators A1 and A2

defined in (31) and (32), respectively, in these spaces. This is the purpose of the following
lemma. Define the indicator function of a set M by

(47) χM (x) :=
{

1, x ∈M
0, x 6∈M.

Lemma 2.9. The operator A1 is a linear operator which maps Xρ boundedly into Xρ with
norm bounded by ρ/τ . In particular, for ρ < τ the operator I − A1 is invertible on Xρ

with bounded inverse given by

(48) (I −A1)−1 =
∞∑
l=0

Al1

Moreover, the operators A1, I − A1 and (I − A1)−1 are local with respect to the variable
x with local bounds in the sense that

(49) A1(χMu) = (χM ·A1)(u), u ∈ Xρ,

for all open sets M ⊂ Rm where χM ·A1 is bounded in BC(M)×BC([0, ρ]) by ρ/τ . These
operators map a locally convergent sequence onto a locally convergent sequence.
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Proof. The linearity of A1 is trivial and the bound of the operator A1 has been derived
in (33). Then the form (48) is the classical Neumann series in normed spaces. Clearly, the
operator A1 and I − A1 are local in x in the sense of (49). And the bound ρ/τ holds for
χM ·A1.

Consider a bounded locally convergent sequence (ψn)n∈N ⊂ Xρ. Then we have∣∣∣A1(ψn − ψ)(x, t)
∣∣∣ ≤ −1

τ

∫ t

0

∣∣∣ψn(x, s)− ψ(x, s)
∣∣∣ ds→ 0, n→∞,(50)

uniformly for x ∈ BR(0) and t ∈ [0, ρ] for each fixed R > 0. This means that A1ψn is a
locally convergent sequence. The same arguments apply to I − A1 and (I − A1)−1, and
the proof is complete. �

We have seen above that the operator F is not continuous on X or Xρ, respectively.
The same is true for the operator A2. However, we will see that the operators are bounded
in appropriate spaces. Recall that for linear operators by basic functional analysis an
operator is continuous if and only if it is bounded, for nonlinear operators boundedness
and continuity are different.

Theorem 2.10. Let the kernel w(x, y) be in BC0,α(Rm) × L1(Rm), i.e. the function is
Hölder continuous with respect to the first variable and integrable with respect to the second.
Then the operator A2 defined by (32) is a bounded operator from Xρ into Xρ,α defined in
(44).

Proof. By direct estimates of the kernel of A2 we obtain the boundedness of the
operator on Xρ. We basically have to estimate the Hölder norms of A2u with respect to
the space variable x and the time variable t for some function u ∈ Xρ. First, we derive∣∣∣(A2u)(x, t)− (A2u)(x, s)

∣∣∣ =
∣∣∣ ∫ t

s

∫
Rm

w(x, y)f(u(x, s)) dy ds
∣∣∣

≤ |t− s|
∫

Rm

|w(x, y)| dy

≤ Cw|t− s|(51)

for x ∈ Rm and t, s ∈ [0, ρ] with Cw given in Definition 2.1. Thus, the function A2u is
Lipschitz continuous with respect to t and by compact embedding of BC0,1([0, ρ]) into
BC0,α([0, ρ]) in every Hölder space for α ∈ (0, 1).

Hölder continuity for the x variable follows from the estimate∣∣∣(A2u)(x, t)− (A2u)(x̃, t)
∣∣∣ ≤ ∫ t

0

∫
Rm

∣∣∣w(x, y)− w(x̃, y)
∣∣∣ dy ds

≤ cρ|x− x̃|α(52)

with some constant c according to our assumption on w(x, ·). This completes the proof.
�
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We consider a sequence of nonlinear smooth functions fn : R→ [0, 1] such that

(53) fn(t) = 0 on [−∞, η − 1
n ], fn(t) = 1 on [η,∞).

Such a sequence can be easily constructed with arbitrary degree of smoothness. We will
denote the operators depending on the nonlinearity functions fn by An and Fn and the
operators with the function f by A and F , respectively. We split the operator An into
An = A1 + A2,n. The operator A2 with the discontinuity in the nonlinearity f generates
some difficulties, which are reflected by the following result.

Lemma 2.11. For fixed u ∈ Xρ we have A2,nu → A2u locally. The convergence does not
hold in the operator norm.

Proof. We estimate

σn :=
∣∣∣A2u(x, t)−A2,nu(x, t)

∣∣∣
≤

∣∣∣ ∫ t

0

∫
Rm

w(x, y)
(
f(u(y, t))− fn(u(y, t))

)
dy ds

∣∣∣
≤
∫ t

0

∫
Rm

|w(x, y)|
∣∣∣f(u(y, t))− fn(u(y, t))

∣∣∣ dy ds
Now with Mn(t) := {y ∈ Rm : u(y, t) ∈ supp(f − fn)} we estimate this by

σn ≤
∫ t

0

∫
Mn(t)

|w(x, y)| dy ds→ 0, n→∞(54)

as a result of (53). This holds uniformly on compact sets, but in general it does not hold
uniformly for x ∈ Rm. �

For some function v ∈ Xρ we define the set

(55) Mη,ρ,R[v] :=
{

(y, s) ∈ BR(0)× [0, ρ] : v(y, s) = η
}
,

i.e. Mη,ρ,R[v] is the set of space-time points (y, s) in BR(0) × [0, ρ] where v(y, s) equals
the threshold η in the Heaviside nonlinearity. When we use R =∞ then in this definition
B∞(0) is equal to Rm. By µ(M) we denote the Euclidean area, volume or more general
Euclidean measure

(56) µ(M) :=
∫
M

1dy

of a set M . We call an operator A2 locally continuous if for a locally convergent sequence
un → u we have A2un → A2u.
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Lemma 2.12. The operator A2 is locally continuous in v ∈ Xρ if and only if the volume
of Mη,ρ,∞[v] is zero. Moreover, in this case we have

(57) un
loc→ u ⇒ A2,nun

loc→ A2,nu.

Proof. We need to start with some preparations. We first note that when µ(Mη,ρ,∞[v])
is zero this is the case also for all Mη,ρ,R[v] with R > 0. The set Mη,ρ,R[v] is a closed
set, thus BR(0) \Mη,ρ,R[v] is an open set. We choose a sequence Gl, l ∈ N of closed sets
Gl ⊂ BR(0) \Mη,ρ,R[v] such that

µl := µ(BR(0) \Gl)→ 0, l→∞.

Second, if vn → v locally in Xρ, then for each l ∈ N there exists N ∈ N such that
f(vn(y, s)) = f(v(y, s)), (y, s) ∈ Gl, for all n ≥ N .

We are now prepared to prove continuity of A2 in v. Let v be given with µ(Mη,ρ,∞[v]) =
0 and (vn)n∈N be a sequence in Xρ with vn → v locally. Given some r > 0 and ε > 0 we
proceed as follows.

(1) We choose R > 0 such that

ρ

∫
Rm\BR(0)

|w(x, y)| dy ≤ ε

2
, x ∈ Br(0).

The existence of such R is a consequence of the condition w(x, ·) ∈ L1(Rm) which is
continuous in x ∈ Rm and bounded on the compact set Br(0).

(2) On BR(0) we choose L ∈ N such that

µL · C∞ ≤
ε

2
.

(3) Given L we choose N sufficiently large such that on GL we have

(58) f(vn(y, s)) = f(v(y, s)), (y, s) ∈ GL

for all n ≥ N .
We now estimate the integral

(59)
∣∣∣A2vn(x, t)−A2v(x, t)

∣∣∣ ≤ ∣∣∣ ∫ t

0

∫
Rm

w(x, y)
(
f(vn(y, s))− f(v(y, s))

)
dy ds

∣∣∣
by a decomposition of the integration over Rm into one over

M1 := Rm \BR(0), M2 := BR(0) \GL, M3 := GL.

The three integrals can be estimated by (1), (2) and (3) and we obtain

(60)
∣∣∣A2vn(x, t)−A2v(x, t)

∣∣∣ ≤ ε, x ∈ Br(0), t ∈ [0, ρ], n ≥ N(ε).
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This shows local continuity of A2 in v.
If the volume of Mη(v) is not zero, there is a set G ⊂ Rm× [0, ρ] with µ(G) > 0 where

v(y, s) = η. In this case as in Lemma 2.8 we can construct a sequence of functions vn ∈ Xρ

which converges to v such that they are equal to v on Rm × [0, ρ] \G and vn(y, s) < η on
the open interior of G. In this case we obtain a remainder term∣∣∣A2vn(x, t)−A2v(x, t)

∣∣∣→ ∣∣∣ ∫
G
w(x, y) dy ds

∣∣∣ > 0, n→∞,

according to (15). This proves that in this case the operator A2 is not continuous in v.
The more general convergence (57) is shown with the same arguments, where the equality
(58) needs to be replaced by some estimate involving fn. �

We will now carry out the basic steps to study solvability of the discontinuous equation.
We consider solutions un ∈ Xρ for some ρ with ρ/τ < 1 of the Volterra equation (24)

with function fn for n ∈ N, i.e.

(61) un −Aun = u0, n ∈ N.

Then, the operator I − A1 is linear and invertible in Xρ. Multiplication by the operator
(I −A1)−1 leads to the equivalent equation

(62) un − (I −A1)−1A2,nun = (I −A1)−1u0, n ∈ N.

According to Lemma 2.2, the sequence (un)n∈N of (4) on [0, ρ] is bounded uniformly by
the constant Ctot in Xρ. Then, the sequence

(63) ψn := A2,nun, n ∈ N,

is bounded in Xρ,α for α > 0. By the locally compact embedding of Xρ,α into Xρ, the
sequence (ψn)n∈N has a locally convergent subsequence in Xρ which we denote by (ψk)k∈N
and its limit in Xρ by ψ∗. The operator (I − A1)−1 maps locally convergent sequences
onto locally convergent sequences, thus the sequence

uk = (I −A1)−1u0 + (I −A1)−1A2,kuk, k ∈ N

is locally convergent towards some function u∗. In this case by application of I − A1 we
obtain

u∗ +A1u∗ − ψ∗ = u0.

If we could show that A2u∗ = ψ∗, then we would obtain solvability of the equation (I −
A)u = u0 in Xρ. However, in general we have

A2,kuk 6→ A2u∗, k →∞.

However, if µ(Mη,ρ,∞(u∗)) = 0 following Lemma 2.12 we obtain

A2,kuk → A2u∗, k →∞,

therefore ψ∗ = A2u∗. We summarize these results in the following theorem.
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Theorem 2.13 (Local existence for Heaviside type activation function f). Consider a
kernel w which satisfies the conditions of Definition 2.1 with a Heaviside type activation
function f given in (2) where we assume that w ∈ BC0,α(Rm) × L1(Rm). If an accumu-
lation point u∗ of solutions of un −Anun = u0 satisfies µ(Mη,ρ,∞(u∗)) = 0, then u∗ solves
the equation (I −A)u∗ = u0, i.e. the Volterra integral equation (24) has a solution in Xρ.

We are now prepared to derive a global existence result with the same technique as in
the previous section.

Theorem 2.14 (Global existence for Heaviside type activation function f). Consider a
kernel w which satisfies the conditions of Definition 2.1 with a Heaviside type activation
function f given in (2) where we assume that w ∈ BC0,α(Rm)×L1(Rm). If an accumula-
tion point u∗ of solutions of un−Anun = u0 satisfies µ(Mη,∞,∞(u∗)) = 0, then the neural
field equation (4) has a global solution for t > 0.

3 Velocity and durability of neural waves

The goal of this part is to estimate the velocity and durability of neural waves. Here, we
will say that a wave field is relevant at a point x ∈ Rm at time t > 0 if

(64) u(x, t) ≥ η.

Otherwise a field is called irrelevant in x. The condition (64) arises in connection with
the integral Ju given by (9) in (4), where local contributions from x ∈ Rm are given only
if u(x, t) ≥ η. We will consider the time in which fields which are zero in some part of the
space reach a relevant magnitude or amplitude, respectively.

Speed estimates for a neural wave. To evaluate the maximal speed in space of a
neural wave we must first define an appropriate setup for the wave speed. In our current
model setup (4) with a non-local kernel w(x, y) some field u(x, t) ≥ η has an instantaneous
effect in the whole space Rm, since time delay in the propagation of signals is not included
into our simple neural field equation (cf. e.g. [6,9,10,12,14,18,23] for a general approach).
However, there is a time factor included implicitly by the time derivative u′(x, t) which is
modelling the local change of the potential u.

Consider a wave u0 which is supported in a convex bounded set M ⊂ Rm at t = 0.
Such initial conditions will be called admissible. We define the time T (x) as the infimum
of all times t > 0 for which u(x, t) ≥ η, i.e. T (x) is the minimal time for which the wave
reaches the point x ∈ Rm. Now, the speed of the wave is given by

(65) V (x) :=
d(x,M)
T (x)

, x ∈ Rm.
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The maximal speed of waves for the neural field equation (4) is given by

(66) Vmax := sup
u0 admisible,x∈Rm

∣∣∣V (x)
∣∣∣

A general estimate for the time T (x) is given as follows.

Lemma 3.1. Under the conditions of Definition 2.1 the time T (x) is bounded by

(67) T (x) ≤ −τ log(1− η

Cw
)

for all x ∈ Rm. Given x, it is possible to construct kernels w such that one has equality
in (67).

Proof. The quickest increase of the field u(x, t) at a point x ∈ Rm is given by the
solution of (77) with initial condition a = 0 and parameters b = 1/τ and c = Cw/τ . This
leads to the equation

η = Cw(1− e−T (x)/τ ) ⇔ T (x) = −τ log(1− η

Cw
)

which proves the estimate. Here Cw is the supremum over the integrals of w(x, ·). For a
given open set M and x ∈ Rm it is possible to choose kernels such that this supremum is
reached at x with w(x, ·) supported in M . This proves the second part and the proof is
complete. �

Remark. The previous lemma shows that the conditions of Definition 2.1 are not
sufficient to limit the speed of a neural wave. The speed here can become arbitrarily large
for d(x,M) → ∞. However, if we demand further decay properties of the kernel w, the
speed will be bounded.

Lemma 3.2. Assume that the kernel w(x, y) satisfies the estimate

(68) |w(x, y)| ≤ c

(1 + |x− y|)m+s
, x 6= y ∈ Rm,

with some constant c and s ≥ 1. Then the maximal speed of the solutions to (4) is bounded
by

(69) Vmax ≤
Cw − η
sη

.

Proof. From (68) we derive∣∣∣ ∫
M
w(x, y) dy

∣∣∣ ≤ max
(
Cw, cmc

∫ ∞
d(x,M)

(1 + r)−(1+s) dr
)

= max
(
Cw,

cmc

s · (1 + d(x,M))s
)

(70)
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with some constant cm depending on the dimension m. For the next steps we will directly
work with a bound (70).

On Rm \M the field was zero at t = 0. The local behavior of the field is bounded from
above by

(71) u(x, t) =
cmc

(1 + d(x,M))s
· (1− e−t/τ ), x ∈ Rm \M, t ≥ 0.

After some time T the supremum of the field u on Rm \M will reach the threshold η, i.e.
η = cmc(1− e−T/τ ). We note that the derivative of this field at the boundary ∂M can be
estimated via

(72)
d

dr

η

(1 + r)s

∣∣∣
r=0

= −sη 1
(1 + r)s+1

∣∣∣
r=0

= −sη.

Let the boundary ∂M be located at x = 0 and consider only the one-dimensional case.
The field u(x, T + t) for t = 0 has a tangent g(x) = η − sηx in x = 0. The curve has time
derivative at x = 0 bounded by u′ = −η + Cw. Now, we can estimate the speed of the
arguments x of u(x, t) = η defined in (71) by

u(x, T ) + u′(x, T ) · t ≤ η − sηx+ (−η + Cw)t != η

which yields x/t = (Cw − η)/(ηs) and thus (69). This is a local estimate, but the front
with u(x, t) = η will move along with the local speed and the above case is an upper
estimate for any x and t. This completes the proof. �

Remark. The speed estimate reflects important properties of the neural field equa-
tion. If the threshold η approaches the maximal forcing term Cw, then the speed will be
arbitrarily slow since the fields need more and more time to reach the threshold. If the
decay exponent s increases, the speed becomes smaller. If the threshold η is small, then
the speed will be large. For η → 0 the speed diverges.

Durability of directed waves. We call a synaptic weight kernel w of the neural
field equation directed if there is a direction d0 ∈ S such that

(73) w(x, y) ≤ 0 for all (x− y) · d ≥ 0.

Directedness of a kernel means that its influence to increase a field in some part of space
is limited to a direction d with d · d0 ≥ 0. We use the notation

(74) H(τ) := {y ∈ Rm : y · d ≤ τ}

for special affine half-spaces in Rm. We assume to work with non-degenerate kernels in
the sense of the condition

(75)
∫
H(τ)\H(τ0)

|w(x, y)| dy → 0, τ → τ0
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for τ ≥ τ0 uniformly for τ0 ∈ R and x ∈ Rm, which means that if we sum up all maximal
influences over a small strip of depth s = τ − τ0 the integral will be small if s is small.

Fields with compactly supported initial conditions which solve the neural field equation
with directed kernel will have a limited durability in any region of space.

Theorem 3.3. Let the conditions of Definition 2.1 be satisfied, the initial field u0 have
compact support in Rm and let w be a non-degenerated directed synaptic weight kernel with
direction d0 ∈ S and the conditions of Definition 2.1. Then, for every x ∈ Rm there is a
time T (x) > 0 such that for t > T (x) the field u(x, t) shows exponential decay.

Proof. Since u0 is compactly supported there is a parameter τ0 such that u0 is zero on
{x ∈ Rm : x · d ≤ τ0}. We choose τ1 > τ0 sufficiently small such that

(76) c1 := sup
x∈H(τ1)

∫
H(τ1)\H(τ0)

|w(x, y)| dy < η

Then the derivative u′(x, t) for x ∈ H(τ) is smaller than −u(x, t)/τ + c1/τ and larger
than −u(x, t)/τ − cτ/τ . This means that the function u(x, t) is bounded from above by
solutions to the equation (77) with b = 1/τ and c = cτ/τ , i.e. by

u(x, t) = cτ + (u0(x)− cτ )e−t/τ , x ∈ H(τ1), t ≥ 0.

Since c1 < η there is a finite time T depending only on c1 and η such that u(y, t) < η
for t ≥ T for all y ∈ H(τ1). Then, f(u(y, t)) = 0 for t ≥ T and y ∈ H(τ1). This means
that for t ≥ T and x ∈ H(τ1) the field u(x, t) satisfies u′(x, t) = −u(x, t)/τ , which yields
exponential convergence towards zero.

We can now repeat the above arguments with τ2, τ1 instead of τ1, τ0, where τ2 − τ1 =
τ1 − τ0. Since the field on H(τ0) is smaller than η, it will not influence the field in
H(τ)\H(τ0) for any τ > τ0. This yields some time T2 such that u(x, t) shows exponential
decay in H(τ2). Given x ∈ Rm, after a finite number of applications of the above argument
we obtain some time T such that u(x, t) exhibits exponential decay for t ≥ T . This
completes the proof. �

4 Appendix

4.1 Solution to some special ODEs

Here we will briefly summarize results for some special ordinary differential equations
which are useful for studying neural field equations. First, consider the equation

(77) u′ = −bu+ c

with some positive constant b and c ∈ R and the initial condition

(78) u(0) = a ∈ R
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where we assume that a < c/b.

Uniqueness of solutions. First, we investigate uniqueness of the equation. Let u1, u2

be solutions and define u = u1 − u2. Then u solves the homogeneous equation u′ = −bu
with u(0) = 0. Assume that there is some t > 0 such that u(t) 6= 0. Then we find ρ ≥ 0
such that u(t) = 0 for t ∈ [0, ρ] and u(t) 6= 0 for t ∈ (ρ, σ). Then, we divide by u(t) to
obtain

u′(t)
u(t)

= −b,

⇒ log(u(t)) = −bt+ d

⇒ u(t) = e−bt+d(79)

for t ∈ (ρ, σ) with some integration constant d. However, we need to satisfy the boundary
condition u(ρ) = 0, which contradicts the positivity of the exponential function e−bt+d for
t, d ∈ R. Thus, the assumption u(t) 6= 0 for some t > 0 cannot be valid.

(a) (b)

Figure 3: We show the solution to the special ordinary differential equation (77) with two
different choices of parameters (a, b, c) = (0, 1, 1) and (a, b, c) = (0.7, 1, 3). The solution is
bounded by c and is exponentially approaching the limiting value u(t) = c.

Existence of solutions. Solutions can be constructed with a derivation similar to
the integration (79). Under the condition u(t) 6= c/b and c > 0 we derive

u′(t) = −bu(t) + c = b (c/b− u(t))︸ ︷︷ ︸
≥0

⇒ u′(t)
c/b− u(t)

= −b,

⇒ log(c/b− u(t)) = −bt+ d

⇒ u(t) = c/b− e−bt+d(80)
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Matching the boundary condition u(0) = a for a < c/b yields

(81) a = c/b− ed ⇒ ed = c/b− a,

and for a > c/b via eiπ = −1 we obtain a complex d = iπ + d0 with ed0 = a− c/b. Thus,
the unique solution is given by

(82) u(t) = c/b(1− e−bt) + ae−bt, t > 0.

The function is shown in Figure 3. For a = c/b the unique solution is given by u(t) = c/b.
For c < 0 it is quickly verified that (82) satisfies (77), thus we have unique solvability for
c ∈ R.

Lemma 4.1. The unique solution (82) to the ordinary differential equation (77) for initial
value a is bounded by Ctot := max(|a|, |c/b|).
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loni, D. Potherat, and R. Potthast, editors, Proc. Waves 2007. The 8th International
Conference on Mathematical and Numerical Aspects of Waves, pages 120 – 122, Read-
ing, 2007. Dept. of Mathematics, University of Reading.

24


