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Abstract

Variational data assimilation schemes are commonly used in major numerical weather
prediction (NWP) centres around the world. The convergence of the variational scheme and
the sensitivity of the analysis to perturbations are dependent on the conditioning of the
Hessian of the linearized least-squares variational equation. The problem is ill-conditioned
and hence is difficult to solve quickly and accurately. To make the scheme operationally
feasible, NWP centres perform a control variable transform with the aim of preconditioning
the problem to reduce the condition number of the Hessian. In this paper we investigate
the conditioning of the 3DVar problem for a single periodic system parameter. We give
bounds on the condition number of both the original and preconditioned 3DVar problems
and demonstrate the reasons for the superior performance of the preconditioned system. We
also exhibit the effect of the observation error variances and the positions of the observations
on the conditioning of the system.

1 Introduction

Variational data assimilation is popularly used in numerical weather and ocean forecasting to
combine observations with a model forecast in order to produce a best estimate of the current
state of the system and enable accurate prediction of future states. The estimate minimizes
a weighted nonlinear least-squares measure of the error between the model forecast and the
available observations and is found using an iterative optimization algorithm. Under certain
statistical assumptions the solution to the variational data assimilation problem, known as the
analysis, yields the maximum a posteriori Bayesian estimate of the state of the system [15].

In practice an incremental version of the variational scheme is implemented in many operational
centres, including the Met Office [19] and the European Centre for Medium-Range Weather
Forecasting (ECMWF) [18]. This method solves a sequence of linear approximations to the
nonlinear least-squares problem and is equivalent to an approximate Gauss-Newton method for
determining the analysis [14]. Each approximate linearised least-squares problem is solved using
an inner gradient iteration method, such as the conjugate gradient method, and the linearization
state is then updated in an outer iteration loop. Generally only a very few outer loops are
performed. For use in operational forecasting the complete iteration scheme must produce an
accurate solution to the variational problem rapidly, in real time.
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The rate of convergence of the inner loop of the variational scheme and the sensitivity of the
solution to perturbations are largely determined by the condition number, that is, the ratio of
the largest and smallest eigenvalues, of the Hessian of the linear least-squares objective function
[8]. Experimental results indicate that in operational systems the Hessian is ill-conditioned and
that this is a result of the ill-conditioning of the background error covariance matrix [16]. In
practice the system is preconditioned by transforming the state variables to new variables where
the errors are assumed to be approximately uncorrelated [2]. Experimental comparisons have
demonstrated that the preconditioning significantly improves the speed and accuracy of the
assimilation scheme [7], [16].

Explanations are offered in the literature for the ill-conditioning of the variational assimilation
problem and for the benefits of preconditioning in the operational system [1],[20],[16]. In [1],
an analysis of the preconditioned system in a simplified 3DVar system with only 2 grid points
shows that the conditioning of the preconditioned Hessian is dependent on the accuracy and
density of observations. In their paper, Andersson et al. take p observations at each grid point
with error variance σ2

o and a background with error variance σ2
b and find an approximation to

the condition number given by

κ ≈ 2p

(
σ2

b

σ2
o

)
+ 1. (1)

This approximation is supported experimentally in the ECMWF operational 4DVar system in
[20], where it is shown that for dense surface observations, the conditioning of the problem
improves as the observations become less accurate. The causes for poor conditioning for dense
observations are thus attributed to accurate observations, increasing number of observations
(larger p) and large background error variances.

In this paper we examine the conditioning and preconditioning of a more general 3DVar problem
theoretically. We derive expressions for the eigenvalues and hence bounds on the conditioning
of the Hessian of the problem in the case of a single, periodic, spatially-distributed system
parameter. We consider three questions: how does the condition number of the Hessian depend
on the length-scale in the correlation structures; how does preconditioning compare with the
conditioning of the original Hessian; and how do the error variances of the observations and the
distances between observations affect the conditioning of the Hessian.

In the next section we introduce the incremental variational assimilation method. In Section 3
we look at the conditioning of two particular background error covariance matrices. We consider
the conditioning of the Hessian and the preconditioned Hessian in Sections 4 and 5. In Section
6 we investigate how the position of observations affects the conditioning and in Section 7 we
summarize the conclusions.

2 Variational Data Assimilation

The aim of the variational assimilation scheme is to find an optimal estimate for the initial
state of the system x0 (the analysis) at time t0 given a prior estimate xb

0 (the background) and
observations yi, i = 0, . . . , n, subject to the nonlinear forecast model given by

xi = M(ti, ti−1,xi−1), (2)
yi = Hi(xi) + δi, (3)
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for i = 0, . . . , n. Here M and Hi denote the evolution and observation operators of the system.
The errors (x0 − xb

0) in the background and the errors δi in the observations are assumed to
be random with mean zero and covariance matrices B and Ri, respectively. The assimilation
problem is then to minimize, with respect to x0, the objective function

J(x0) =
1
2
(x0 − xb

0)
TB−1(x0 − xb

0) +
1
2

n∑

i=0

(Hi(xi)− yi)TR−1
i (Hi(xi)− yi), (4)

subject to the model forecast equations (2)–(3). If observations are given at several points
ti, i = 0, 1, . . . , n over a time window [t0, tn] with n > 0, the assimilation scheme is known
as the four-dimensional variational method (4DVar). If observations are given only at the
initial time with n = 0 , then the optimization problem reduces to the three-dimensional data
assimilation problem (3DVar).

2.1 Incremental variational assimilation

In operational NWP centres, to reduce computational cost, a sequence of linear approximations
to the nonlinear least-squares problem (4) is solved. Given the current estimate of the analysis
x0 , the nonlinear objective function is linearized about the corresponding model trajectory
xi , i = 1, . . . , n , satisfying the nonlinear forecast model. An increment δx0 to the current
estimate of the analysis is then calculated by minimizing the linearized objective function subject
to the linearized model equations. The linear minimization problem is solved in an inner loop
by a gradient iteration method. The current estimate of the analysis is then updated with the
computed increment and the process is repeated in the outer loop of the algorithm. This data
assimilation scheme is known as incremental variational assimilation [5], [14].

The linearised objective function, which is minimized with respect to δx0 in each outer loop,
can be written

J̃ [δx0] =
1
2
[δx0 − (xb

0 − x0)]TB−1[δx0 − (xb
0 − x0)] +

1
2
(Ĥδx0 − d̂)T R̂−1(Ĥδx0 − d̂), (5)

subject to the linearized model equations

δxi = M(ti, ti−1) δxi−1, (6)

where

Ĥ =
[
HT

0 , (H1M(t1, t0))T , . . . , (HnM(tn, t0))T
]T

,

d̂T =
[
dT

0 , dT
1 , . . . , dT

n

]
, with di = yi −Hi(xi).

The matrices M(ti, t0) and Hi are linearizations of the evolution and observation operators
M(ti, t0,x0) and Hi(xi) about the current estimated state trajectory xi , i = 0, . . . , n and R̂
is a block diagonal matrix with diagonal blocks equal to Ri .

The minimizer of (5) is also the solution to ∇J̃ = 0 , which may be written explicitly as the
linear system

(B−1 + ĤT R̂−1Ĥ)δx0 = B−1(xb
0 − x0) + ĤT R̂−1d̂. (7)

Iterative gradient methods are used to solve the inner loop (5), or equivalently (7). The gradients
are found by an adjoint procedure.
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2.2 Condition number

A measure of the accuracy and efficiency with which the data assimilation problem can be solved
is given by the condition number of the Hessian matrix

A = (B−1 + ĤT R̂−1Ĥ) (8)

of the linearized objective function (5) [8]. Our aim here is to establish explicit bounds on
the condition number of A and to investigate its properties in terms of the background and
observation error covariance matrices B and R̂.

The condition number of the Hessian, which is a square, symmetric, positive definite matrix, is
defined in the 2-norm by

κ(A) = ||A||2||A−1||2 ≡ λmax(A)
λmin(A)

, (9)

where λmax(A) and λmin(A) denote the maximum and minimum eigenvalues of the matrix
respectively. The condition number measures the sensitivity of the solution to the linearized
least-squares problem (5), or equivalently the solution to the gradient equation (7), to perturba-
tions in the data of the problem. If the condition number of the Hessian, κ(A) , is very large, the
problem is ‘ill-conditioned’ and, even for small perturbations to the system, the relative error in
the solution may be extremely large. For the gradient methods that are commonly used to solve
the problem, such as the conjugate gradient method, the rate of convergence then may also be
very slow. For example, for the conjugate gradient method the error in the computed solution

after k iterations is bounded in proportion to
(
(
√

κ(A)− 1)/(
√

κ(A) + 1)
)k

, which shows
that slow convergence can be expected if the Hessian is ‘ill-conditioned’, with a large condition
number.

Here we consider the conditioning of the 3DVar linearized least-squares problem in the case of
a single periodic system parameter spatially distributed.

3 Conditioning of the Background Matrix

In [16] it has been proposed that an ill-conditioned background matrix contributes to an ill-
conditioned Hessian. Here we consider the conditioning of two background error covariance
matrices commonly used in data assimilation in the case of a single periodic system parameter
on a one-dimensional uniform grid of N points.

We write the background error covariance matrix as B = σ2
bC , where C denotes the correlation

structure of the background errors and σ2
b is the background error variance. The condition

number κ(B) then equals the condition number κ(C) . We assume that the correlation structure
is homogeneous where the correlations depend only on the distance between states and not
position. Under these conditions the correlation matrices are symmetric and have a circulant
form [9], which we exploit to derive our theoretical bounds. For example, the Gaussian, Markov
and SOAR correlation matrices have this structure, as do those based on Laplacian smoothing.
A circulant matrix is a special form of Toeplitz matrix where each row is a cyclic permutation
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of the previous row

C =




c0 c1 c2 c3 . . . cN−2 cN−1

cN−1 c0 c1 c2 . . . cN−3 cN−2

cN−2 cN−1 c0
...

. . . . . .
...

. . . c2

c2
. . . c0 c1

c1 c2 . . . cN−2 cN−1 c0




.

The eigenvalues of such a matrix are the discrete Fourier transform of the coefficients of the first
row of the matrix [9] and are given by

νm =
N−1∑

k=0

cke
−2πimk/N . (10)

Similarly the corresponding eigenvectors are given by the discrete exponential function,

vm =
1√
N

(1, e−2πim/N , . . . , e−2πim(N−1)/N )T . (11)

3.1 Conditioning of the Gaussian background error covariance matrix

We first consider the Gaussian correlation matrix C ([6], [11]) with entries given by

ci,j = ρ|i−j|2 (12)

for |i − j| < N/2 , where ρ = exp
(
−∆x2

2L2

)
, and by periodicity for the remaining entries. The

coefficient ci,j denotes the correlation between background errors at positions i and j , L is
the correlation length-scale and determines the strength of the spatial error correlations, ∆x is
the grid spacing and N is the number of grid points. A large length-scale means that the errors
are strongly correlated over the whole grid. The maximum eigenvalue of this correlation matrix
is

λmax(C) = σ2
b

N−1∑

k=0

ρk2
, (13)

with corresponding eigenvector vmax = 1√
N

(1, . . . , 1)T . Similarly the minimum eigenvector is

λmin(C) = σ2
b

N−1∑

k=0

(−1)kρk2
, (14)

with corresponding eigenvector vmin = 1√
N

(1,−1, 1, . . . ,−1)T .

The condition number is given by the ratio of the maximum to minimum eigenvalues and is
highly sensitive to changes in length-scale, as shown in Figure 1 for a grid spacing of ∆x = 0.1
and N = 500 grid points. The matrix becomes very ill-conditioned as the length-scale increases,
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Figure 1: Condition number of the periodic Gaussian background error covariance matrix B
against length-scale.

primarily due to a rapid reduction in its smallest eigenvalue, seen in Figure 3, compared with the
modest growth of the largest eigenvalue, seen in Figure 2, as we increase the length-scale. We
note that the Gaussian covariance matrix is known to be inherently ill-conditioned. Kostinski
[12] shows that the ill-conditioned behaviour of the Gaussian correlation function, which [13]
calls the Gaussian Anomaly, is due to the fact that the function lies on the boundary of a
parametric family of auto-correlation functions with positive Fourier transforms.

3.2 Conditioning of the Laplacian background error covariance matrix

Another commonly used background matrix (see [10]) applies a second derivative smoothing
derived from the discrete Laplacian operator. The correlation matrix is defined in terms of its
inverse as

C−1 = γ−1

(
I +

L4

2∆x4
(L)2

)
, (15)

6



Figure 2: Change in largest eigenvalue of the periodic Gaussian background error covariance
matrix B with length-scale.
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Figure 3: Change in smallest eigenvalue of the periodic Gaussian background error covariance
matrix B with length-scale.
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where the matrix L is given by

L =




−2 1 0 0 . . . 0 1
1 −2 1 0 . . . 0 0

. . . . . .
...

. . . . . . 0

0
. . . . . . 1

1 0 . . . 1 −2




,

and we define γ so that the maximum value of an element of C is unity. Using circulant theory
we find the maximum eigenvalue to be

λmax(C−1) =
1
γ

(
1 + 16

(
L4

2∆x4

))
, (16)

with corresponding eigenvector wmax = 1√
N

(1,−1, 1, . . . ,−1)T . The smallest eigenvalue is

λmin(C−1) =
1
γ

, (17)

with corresponding eigenvector wmin = 1√
N

(1, 1, 1, . . . , 1)T . The conditioning of the Laplacian
correlation matrix is therefore

κ(C) =
(

1 + 16
L4

2∆x4

)
. (18)

The conditioning grows in proportion to L4 and hence is also quite poorly conditioned. However,
as Figure 4 shows, the condition number is many orders of magnitude smaller than that of the
Gaussian error covariance matrix at all length-scales.

4 Conditioning of the Hessian

In this section we consider the conditioning of the Hessian of the 3DVar linearized least-squares
problem

A = (B−1 + HTR−1H) (19)

in the case of a single periodic system parameter with background error variance σ2
b . We examine

the Hessian for each of the two background error correlation matrices defined in Section 3. We
write the observational error covariance matrix in the form R = σ2

oIp, where p is the number of
observations. We assume that the observations are direct measurements of the state variables.
Then HTH is a diagonal matrix, where the kth diagonal element is unity if the kth state
variable is observed and is zero otherwise. Under these conditions we can prove the following
bounds on the condition number of the Hessian matrix for the 3DVar problem


 1 + p

N
σ2

b
σ2

o
λmin(C)

1 + p
N

σ2
b

σ2
o
λmax(C)


κ(C) ≤ κ(B−1 + HTR−1H) ≤

(
1 +

(
σ2

b

σ2
o

)
λmin(C)

)
κ(C), (20)

where λmax(C) and λmin(C) are the largest and smallest eigenvalues of C respectively. A proof
of this result is given in Appendix A.
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Figure 4: Condition number of Laplacian matrix B against lengthscale.
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Figure 5: Condition number of the Hessian (red) and bounds (blue) against length-scale for
Gaussian error covariance matrix B.

We see that with σb fixed, as σo increases and the observations become less accurate, the upper
bound on the condition number of the Hessian decreases and both the upper and lower bounds
converge to κ(C) = κ(B) . As σo decreases, the lower bound goes to unity and, unless σo is
much smaller than λmin(C) , the upper bound remains of order κ(C) . We expect, therefore,
that the conditioning of the Hessian will be dominated by the condition number of C as the
correlation length-scales change in the background errors. We demonstrate this in Figure 5
for the Gaussian background covariance matrix with σ2

o = σ2
b = 0.1 , N = 500 grid points

and p = 250 observations. Similarly Figure 6 shows the conditioning of the Hessian for the
same configuration but using the Laplacian background matrix. (Since the conditioning of the
Laplacian is better than that of the Gaussian, a wider range of length-scales is shown in Figure
6.) In these cases including observations has little effect on the conditioning of the assimilation
problem.
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Figure 6: Condition number of the Hessian (red) and bounds (blue) against length-scale for
Laplacian error covariance matrix B.
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5 Preconditioned variational assimilation

A well-known technique for improving the convergence of an iterative method for solving a linear
least-squares problem is to apply a linear transformation to ‘precondition’ the system and thus
reduce the condition number of the Hessian [8]. The strategy used in many forecasting centres
is to precondition the Hessian symmetrically using the square root of the background error
covariance matrix B1/2 [4],[17],[19],[2]. The preconditioning is implemented using a control
variable transform to new variables δz = B−1/2δx0 , which are thus uncorrelated. In terms of
the new control variable, the 3DVar problem is to minimize with respect to δz the transformed
objective function

Ĵ [δz] =
1
2
[δz− (zb

0 − z0)]T [δz− (zb
0 − z0)] +

1
2
(HB1/2δz− d)TR−1(HB1/2δz− d), (21)

where zb
0 = B−1/2xb

0 and z0 = B−1/2x0 . The Hessian of the preconditioned objective function
is now given by

In + B1/2HTR−1HB1/2. (22)

In general there are fewer observations than states of the system and therefore the matrix
B1/2HTR−1HB1/2 is not of full rank, but is positive semi-definite. It follows that the smallest
eigenvalue of (22) is unity and the condition number of the preconditioned Hessian is equal to
its largest eigenvalue. We can then establish that the condition number satisfies

1 +
σ2

b

σ2
o

γ ≤ κ(In + B1/2HTR−1HB1/2) ≡ κ(Ip +
σ2

b

σ2
o

HCHT ) ≤ 1 +
σ2

b

σ2
o

||HCHT ||∞, (23)

where γ = 1
p

∑
i,j∈J ci,j and J is the set of indices of the variables that are observed. A proof

of this result is given in Appendix B.

We see that the upper bound on the condition number is significantly reduced by preconditioning.
For the Gaussian background error covariance matrix we show this in Figure 7 for the case
with the same data as in Figure 5. The condition number of the preconditioned problem is
shown to be of order unity and to increase roughly linearly. In comparison to the case without
preconditioning, there is a dramatic reduction in the condition number from order 107 to size
∼= 3.5 at length-scale L = 0.2 . Similar, although less dramatic results, are obtained with
the Laplacian correlation matrix. Figure 8 shows the condition number of the preconditioned
Hessian with the Laplacian background error covariance matrix B using the same configuration
as for Figure 6.

If we fix σb , but increase σo , then the bounds on the conditioning tend towards one. If,
however, we decrease σo , then both bounds will increase. Hence an increase in the accuracy of
the observations results in poorer conditioning of the preconditioned Hessian.

6 Spacing of the Observations

We now consider the condition number of the preconditioned Hessian as a function of the density
or separation of the observations. From the definition of the correlation matrix C the coefficients
ci,j are expected to decrease as the distance |i− j| increases. Both upper and lower bounds in
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Figure 7: Condition number (red) and bounds (blue) against length-scale for the preconditioned
Hessian with the Gaussian background error covariance matrix.
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Figure 8: Condition number (red) and bounds (blue)against length-scale for the preconditioned
Hessian with the Laplacian background error covariance matrix.
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(23) depend on sums of the elements of the matrix HCHT , which can be viewed as a ‘reduced’
correlation matrix. The reduced matrix is simply the correlation matrix C with all non-observed
rows and columns deleted. As the separation of the observations increases, the elements of the
reduced matrix decrease, due to the decrease in the coefficients with distance. Similarly, as
the observations become more dense and the number of observations increases, the bounds in
(23) become larger as more elements are summed. We therefore expect the conditioning of the
problem to decrease as the separation of the observations increases or the density decreases.

The effect of spacing of observations on the condition number can be further illustrated if we
consider a few special cases. If we observe every qth grid point, where q divides N exactly,
then HCHT is a circulant matrix. For the Gaussian background error covariance matrix,
whose enteries are all positive, the upper and lower bounds are equal and hence we have an
exact expression for the condition number

1 +
σ2

b

σ2
o

p∑

j=1

(HCHT )1,j . (24)

The larger the spacing between observations, the smaller the elements in the sum (24) are. Sim-
ilarly the fewer the number of observations, the smaller the total sum is. Hence the conditioning
is improved by separating and thinning the observations.

If we have only two observations, at the grid point positions k and m, then we can also write
an exact expression for the conditioning. We have

κ(I + B1/2HTR−1HB1/2) ≡ λmax(I + B1/2HTR−1HB1/2) = 1 +
σ2

b

σ2
o

(1 + |ck,m|). (25)

As a function of observation separation, the conditioning changes in proportion to the corre-
sponding background error correlation. In the Gaussian case, as the grid points become farther
apart the condition number decays exponentially, as shown in Figure 9.

7 Conclusions

We have examined the conditioning of the 3DVar incremental variational data assimilation
problem in the case of a single periodic system parameter. We have derived an expression for
the conditioning of two classes of background error correlation structures and demonstrated
that the correlation matrices become ill-conditioned as the length-scale increases. In particular
the Gaussian correlation matrix has been shown to be especially sensitive to changes in length-
scale. We have also established bounds on the condition number of the Hessian in the 3DVAR
case and shown that this is dominated by the background error correlations as the length-
scales increase. The theory shows also that for a fixed background variance, as the variance of
the observation errors increases, the conditioning of the Hessian decreases. We have obtained
theoretical bounds on the preconditioned Hessian (preconditioned by the symmetric square root
of the background covariance matrix) and demonstrated that the preconditioning provides a
dramatic reduction in the condition number of the problem. For the preconditioned system we
have also shown theoretically that the conditioning of the problem improves as the separation
between observations is increased and the density is reduced. We also confirmed the result
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Figure 9: Condition number of the preconditioned Hessian for two observations as the grid-point
separation is increased. The background error covariance matrix is Gaussian with a length-scale
of 0.2.
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found in [1] for a two grid-point observing system, which shows that the conditioning of the
preconditioned system reduces as the accuracy of the observations is decreased.

Experiments in the Met Office operational variational assimilation system support the theoretical
results presented here and confirm that they hold in a more general case. These results will be
published in a forthcoming report.

There are two natural extensions to the work presented here. The first is to extend the results
for the preconditioned system to encompass more general systems. One approach analogous to
our treatment here is to use the dual form of the Hessian [3]

Ip + R−1/2HBHTR−1/2. (26)

The largest eigenvalue of this matrix is the condition number of the preconditioned Hessian and
a general upper bound can be found, as in Appendix B, to be

κ(IN + B1/2HTR−1HB1/2) ≤ 1 + ||R−1/2HBHTR−1/2||∞. (27)

For more general systems the conditioning of the assimilation problem may be easier to analyse
using (27). The other major extension is to incorporate a forecast model and examine the con-
ditioning of the 4DVar problem. This will be the considered in a future report.

Acknowledgements This research has been supported in part by the National Centre for
Earth Observation, the UK Engineering and Physical Sciences Research Council and the Met
Office.

Appendix A: Bounds on the Condition Number of the Hessian

To bound the condition number of the Hessian

A = B−1 + HTR−1H, (28)

we bound the maximum and minimum eigenvalues of the Hessian.

If A1 and A2 are n× n symmetric matrices, then

λk(A1) + λn(A2) ≤ λk(A1 + A2) ≤ λk(A1) + λ1(A2) (29)

where λk(A) is the kth largest eigenvalue of a matrix A [8]. Then, noting that R = σ2
oIp ,

HHT = Ip and therefore

λ1(HTR−1H) = σ−2
o and λn(HTR−1H) = 0, (30)

we find that the maximum and minimum eigenvalues of the Hessian have the following bounds

λmax(B−1) ≤ λmax(B−1 + σ−2
o HTH) ≤ λmax(B−1) + σ−2

o , (31)

λmin(B−1) ≤ λmin(B−1 + σ−2
o HTH) ≤ λmin(B−1) + σ−2

o . (32)
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An improvement in the bounds can be achieved using the Rayleigh quotient, RA(v) , which, for
a Hermitian matrix A and non-zero vector v , is defined to be

RA(v) =
vTAv
vTv

. (33)

The maximum and minimum eigenvalues of A are the maximum and minimum values of RA(v)
respectively, where v is the corresponding eigenvector. We first consider the eigenvector cor-
responding to the largest eigenvalue of B−1 . For the the Gaussian covariance matrix this is
vmin and for the Laplacian covariance this is wmax (see Section 3). In both cases the Rayleigh
quotient with respect to HTR−1H = σ−2

o HTH is simply σ−2
o p/N , where p is the number

of observations and N is the number of grid points. Then an improved lower bound on the
maximum eigenvalue of the Hessian is given by

λmax(A) = max
v∈Rn

(
vTAv
vTv

)
≥ zT

maxAzmax = λmax(B−1) + σ−2
o

p

N
, (34)

where zmax is either vmin or wmax . Similarly we consider vmax and wmin , which are the
eigenvectors corresponding to the smallest eigenvalues of the Gaussian and Laplacian covariance
matrices respectively. The same Rayleigh quotient, σ−2

o p/N , is found with these vectors with
respect to σ−2

o HTH . We find an improved upper bound on the smallest eigenvalue of the
Hessian as

λmin(A) = min
v∈Rn

(
vTAv
vTv

)
≤ zT

min(A)zmin = λmin(B−1) + σ−2
o

p

N
, (35)

where zmax is either vmax or wmin . The following bounds are found for the maximum and
minimum eigenvalues

λmax(B−1) + σ−2
o

p

n
≤ λmax(A) ≤ λmax(B−1) + σ−2

o . (36)

and
λmin(B−1) ≤ λmin(A) ≤ λmin(B−1) + σ−2

o

p

N
. (37)

Noting that, λmax(B) = λmin(B−1) , κ(B−1) = κ(B) and using the bounds (37) and (36), the
bounds on the condition number of (8) are produced after factoring out κ(B) giving the result
(20).

Appendix B: Bounds on Condition Number of the Precondi-
tioned Hessian

Using results from [3] we know that the preconditioned Hessian has exactly the same eigen-
values (with an additional n − p unit eigenvalues) as the Hessian of the dual problem Ip +
R−1/2HBHR−1/2 , which for our configuration is equal to

Ip +
1
σ2

o

HBHT = Ip +
σ2

b

σ2
o

HCHT . (38)
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A lower bound can be achieved by considering the Rayleigh quotient on (38). We define a unit
vector v ∈ Rp which is equal to v = 1√

p(1, 1, . . . , 1)T . Hence

vTHBHTv =
σ2

b

p

p∑

i=1

p∑

j=1

(HCHT )i,j . (39)

Thus we find that

λmax(IN + σ−2
o B1/2HTHB1/2) = max

||x||=1
(xT (Ip + σ−2

o HBHT )x) ≥ 1 +
σ2

b

pσ2
o

p∑

i=1

p∑

j=1

(HCHT )i,j ,

(40)
which establishes the lower bound.

The upper bound can be found simply by noting that λ(A) ≤ ||A||p for any p. Hence

λmax(HCHT ) ≤ ||HCHT ||∞. (41)

Therefore we have

κ

(
Ip +

σ2
b

σ2
o

(HCHT )
)
≤ 1 +

σ2
b

σ2
o

||HCHT ||∞, (42)

which establishes the bounds given in (23).
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