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Abstract

We consider a class of functional equations representing nonlinear dilation maps of
the real line having an invariant interval bounded above by a fixed point. Necessary
and sufficient conditions for the existence of periodic solutions demand that the
maps satisfy an eigenproblem, with integer eigenvalues, for a certain nonlinear gen-
eralisation of Chebyschev’s ordinary differential equation. Hence we obtain gener-
alisations of Chebyschev polynomials, where the associated functional equation has
periodic solutions of a related Hamiltonian system. The maps given by Chebyschev
polynomials, and their cosine solution, correspond to the special simplest case when
the Hamiltonian system is linear.
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1 Introduction

Aczel’s book [1] provides an historical and systematic treatment of the solution
of functional equations, one of the oldest topics within mathematical analysis.
In [2] a further comprehensive overview and development is given.

Functional equations are at the heart of many subjects, including the founda-
tion and derivation of the rules probability theory (see [4] and the references
therein). More recently the role of the Feigenbaum functional equation [5] de-
rived through a renormalisation approach to the super stability of attractors
for unimodal one dimensional maps, is the key to the universality of the period
doubling route to chaos.
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There has been a huge amount of interest in linear dilation equations, since
these are satisfied by wavelets [6]: such functional equations are common. Here
we will address nonlinear dilations: where some unknown function is mapped
by a given nonlinear function, and is to be recovered modulo a suitable dilation
of the independent variable. Methods appropriate to linear dilation equations
are clearly inapplicable to such problems.

In [3] a particular form of nonlinear dilation equation is introduced, compari-
metric equations, that have applications in the analysis of multiple images. In
this paper we will consider a general class of equation, that include compara-
metric equations, and our initial approach to proving the existence of solutions
is, initially at least, based on convergence within a Banach function space.

Specifically we shall consider certain solutions ¢(z) of the nonlinear dilation
equation

¢(A\z) = F(¢(x)),¢(0) = 1, ¢/(0) = 0, ¢"(0) <0,
where F'is a given smooth mapping from the interval [-1,1] into itself, satis-
fying F'(1) =1 and F'(1) > 1, and A is a positive real to be determined also.
(In the appliactions given in [3] F' must be trivilally redefined so as to [0,1]
onto itself.)

We show that there may exist periodic solutions only when A takes integer
values. Moreover the class of functions, F', for which such periodic solutions
are admitted is precisely those which satisfy a certain nonlinear generalisation
of Chebyshev’s equation, a second order ordinary differential equation. Such
preriodic solutions can be used to generate nonperiodic solutions for the same
function F', having different values for A though relaxing the condition ¢"(0) <
0.

2 A functional equation

Let F' be a smooth mapping from the interval [-1,1] onto itself, such that
F(1) =1 and F'(1) > 1, where ' denotes differentiation.

We consider smooth solutions ¢ : R — [—1, 1] satisfying the functional equa-
tion,

¢(Az) = F(¢(x)), ¢(0) =1 and ¢'(0) =0, (1)

for some real A > 0.

If ¢o(x) is a solution for (1) with A = g say, such that ¢)(z) ~ 29 for
some ¢ > 1 and small z, then ¢(x) = ¢o(z®) is also a solution of (1) for



A=A = A/ So setting s = 2/(q + 1) we see that ¢, (z) ~ x for small z,
and hence ¢7(0) # 0, and is therefore strictly negative (since one is an upper
bound).

Conversely if ¢1(x) is a solution of (1), for which A = A; say, and ¢/ (0) < 0,
then one may generate a one parameter family of solutions for (1), via

o(x) = dr(a"), A= X", 120,
for which both ¢/(0) and ¢”(0) vanish.
Hence we shall asume that we seek solutions for (1) satisfying ¢”(0) < 0.

In addition any solution, ¢(x), for (1), is determined up to a rescaling of the
x axis (since for any constant, «, ¢(ax) is also a solution). Therefore without
loss of generality we shall impose the scaling condition

¢"(0) = —L. (2)

Immediately it follows from (1) and (2) that ¢ has the Maclaurin expansion
o(r)=1- %2 + ...

Differentiating in (1) twice with respect to x, and setting x to zero, we obtain
the condition

M =F'(1) > 0.

For example, if F(y) = T,(y), the nth Chebyschev polynomial (see [7][8] and
the references therein), then A = n and ¢(x) = cos(z), for all n > 0. In that
case (1) corresponds to the well known formula cos(nz) = T,,(cos z).

Let F(™ denotes the mth iterate of F. As A\ > 1 it is sufficient to solve (1) on
an interval about the origin, [-1,1] say, and employ ¢(A\™x) = F™(¢(z)) to
evaluate ¢ elsewhere.

Let us define a sequence of even functions in C*°[—1,1], all taking values
within [-1,1], by

2

T
oo() = 1= 2 and 6y (@) = Flon(a/N). k=1.2.... 3)
The following result guarantees a solution to (1) and ((2).

Theorem 1 For A\ = /F'(1) > 1 there exists an even solution of (1) and

(2). Furthermore as k — oo the sequence ¢r(x) in (3) converges uniformly on
[-1,1] to such a solution.



Proof It is straightforward to show by induction that ¢,(0) = 1, ¢/,(0) = 0,
¢!(0) = —1, and ¢, is even for all n. Therefore we show that the sequence
converges: the rest follows immediately. Applying the mean value theorem

X

Br1(2) = 6u(2)| = [FO(F (Dol 507))) = F (o5

dF® x x
= =~ ONF (@o(557)) — 907l
for some @ between ¢g(z/\F) = 1 — Qf\% and F(1 — ﬁ;n) The first fac-

tor behaves like F'(1)¥ = A?* as k — oo; and second factor behaves like
F'(1)2* /4X*¢++D) as k — oo. Hence

|Pr41(2) = Gr(x)] — 0

uniformly on [-1,1] and the result follows.

The curve (y, F(y)) remains within the box [—1, 1] x [—1, 1]: yet ¢(x) may be
periodic or wandering. For example if F'(n) = T,,(y) then ¢(z) = cos(x) is 27
periodic. However next we show that cases such as these are nongeneric.

Suppose the solution ¢ is P-periodic, satisfying ¢(z + P) = ¢(x) for all x €
[0, P], with some minimal period P (¢ is not periodic for any smaller period,
P’). Then we have, for all x,

AP + 1) = F(¢(P + /) = F(o(z/X)) = ¢(x).
Hence ¢ is also Q-periodic, where Q = AP > P.

If A is an integer, then this is trivial. If A is not an integer, then set S € (0, P)
to be the remainder

S = Qmod(P).
Then there is an integer k such that, for all x,

¢(x +5) = o(x +Q = kP) = ¢(x — kP) = ¢(x).

This contradicts the assumption that P is the minimal period. Hence we have
the following.

Corollary 2 An integer value for A is a necessary condition for the existence
of a periodic solution ¢ of (1) and (2).

It is natural to ask what class of functions F' may admit periodic solutions for



(1) and (2). For such a periodic solution, ¢(x), this requires that

F(y) = ¢(no~ ' (y))

is well defined considering all branches of ¢~!. Next we give a sufficient con-
dition on F'

Theorem 3 Let ¢(z) be a twice continuously differentiable periodic function
with range [3,1] (for some constant 3 < 1), satisfying

6(0) = 1, and ¢/(0) = 0
together with the equation
¢ () = G(6(2))/2, (4)

for some smooth nonnegative function G : [3,1] — RT, where G(w) denotes
the derivative of G(w) at w, and satisfying G(1) = =2, G(B8) = G(1) = 0.

Then for any integer n, if F' and ¢ also satisfy (1), for A =n, (and (2)) then
F' s the solution of the differential equation

FOEW) =G )+ 560) ), (5)
dF ,
P =1, G 1) =n

Conversely, suppose that G(w) is differentiable and positive on (3,1), with
simple zeros at § and 1 and satisfies G(1) = —2. Then if F and ¢ satisfy (5)
and (4), together with the boundary conditions, then they also satisfy (1) and
(2) with A = n.

Proof Using ¢/(x)* = G(¢(x)), the integral of (4), together with (1), and
¢"(nx) = G(F(¢(x)))/2, we may obtain directly:

d? n? . d*F 1., dF

g2 (P(na) = F((x))) = 5 G(F(y)) - G(y)TyQ(y) - 5G(y)@(y)- (6)

Hence if F' and ¢ satisfy (1) and (2), then setting the right hand side to be
zero, we see F' is the solution of (5) on [3,1], subject to the given boundary
conditions.

Conversely when G(w) is given as specified, suppose F is the solution of (5) on
[8,1], and ¢ solves (4); then (5) may be integrated directly. First, multiplying



through by %(y), we obtain

G(F(y)) = Gly) (ff;) |

If we write F'(y) = f(x) where y = ¢(x), this last becomes

nG(f) = (jﬁ) .

which is a rescaled version of the equation ¢'(z)? = G(¢(z)) (that is equiva-
lent to (4)). Hence by inspection f(z) = ¢(nx), so that ¢(nx) = F(¢(z)) as
required.

Remark. In the special case that G(w) = 1 — w?, we have G(w) = —2w, and
(5) is the Chebyshev (linear) differential equation [7] [8]; whence F'(y) = T,,(y),
whilst (4) implies ¢(x) = cos(x). Thus (5), which in general in nonlinear (via
the G(F) term), is a natural generalisation of the Chebyshev equation; and
for each integer n there exists a whole class for functions F' for which there
exists a periodic solution to (1) and (2).

Remark. As an example, suppose ¢(x) = cos(z) + €(3 cos(3x) — 5 cos(bx) +
2cos(7x)) for some small constant € > 0. Then ¢ is even, 2w-periodic and
satisfies ¢(0) = 1, ¢/(0) = 0 and ¢"(0) = —1 (and ¢(7) = —1) for all e. An
examination of ¢ reveals that G(¢) = ¢/(z)? is well defined on (-1,1) for all
0< € < 1/48. For all such value for ¢, and each n, integer, we may obtain a
function, F, for which ¢ is a solution to (1) and (2).

Remark. Consider the nonlinear difference equation starting out from some
2o in [-1,1]: 2,41 = F(z,). Since [-1,1] is invariant for F', the sequence re-
mains there. Of the many famous results for such one dimensional interations,
the statement that “period three implies chaos” [9] is one of the most memo-
rable and reflects the position of period three orbits appearing at the end of
Sharkovsky’s sequence [10], where there are orbits all all possible periodicities.
Suppose F' is such that there exists a periodic solution ¢ satisfying (1) and
(2), of period P, say. This may be guaranteed by our theorem in the previous

section. Necessarily y/F’(1) = A = n an integer. For all integers m for any x we
have F(™(¢(z)) = ¢(n™z). So we set 2z = ¢ (%), and apply the nonlinera

iteration. Directly it follows that z,, = ¢ (:,: P 1) = ¢ (nm—1> = z9. Hence we
have an m-periodic orbit. Thus if F' is such that a periodic solution exists
then the corresponding iteration map is chaotic, having orbits of all possible

periods embedded within its attractor within [-1,1].
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