Periodic solutions for nonlinear dilation equations

Peter Grindrod

Department of Mathematics and Centre for Advanced Computing and Emerging
Technologies, University of Reading,
Whiteknights PO Box 220, Reading, RG6 6AX UK.

Abstract

We consider a class of functional equations representing nonlinear dilation maps of the real line having an invariant interval bounded above by a fixed point. Necessary and sufficient conditions for the existence of periodic solutions demand that the maps satisfy an eigenproblem, with integer eigenvalues, for a certain nonlinear generalisation of Chebyschev's ordinary differential equation. Hence we obtain generalisations of Chebyschev polynomials, where the associated functional equation has periodic solutions of a related Hamiltonian system. The maps given by Chebyschev polynomials, and their cosine solution, correspond to the special simplest case when the Hamiltonian system is linear.

Key words: Functional equations, nonlinear dilations, periodic solutions,

Hamiltonians

PACS: 02.30.Ks, 02.30.Hq

1 Introduction

Aczel's book [1] provides an historical and systematic treatment of the solution of functional equations, one of the oldest topics within mathematical analysis. In [2] a further comprehensive overview and development is given.

Functional equations are at the heart of many subjects, including the foundation and derivation of the rules probability theory (see [4] and the references therein). More recently the role of the Feigenbaum functional equation [5] derived through a renormalisation approach to the super stability of attractors for unimodal one dimensional maps, is the key to the universality of the period doubling route to chaos.

There has been a huge amount of interest in linear dilation equations, since these are satisfied by wavelets [6]: such functional equations are common. Here we will address nonlinear dilations: where some unknown function is mapped by a given nonlinear function, and is to be recovered modulo a suitable dilation of the independent variable. Methods appropriate to linear dilation equations are clearly inapplicable to such problems.

In [3] a particular form of nonlinear dilation equation is introduced, comparimetric equations, that have applications in the analysis of multiple images. In this paper we will consider a general class of equation, that include comparametric equations, and our initial approach to proving the existence of solutions is, initially at least, based on convergence within a Banach function space.

Specifically we shall consider certain solutions $\phi(x)$ of the nonlinear dilation equation

$$\phi(\lambda x) = F(\phi(x)), \phi(0) = 1, \ \phi'(0) = 0, \ \phi''(0) < 0,$$

where F is a given smooth mapping from the interval [-1,1] into itself, satisfying F(1) = 1 and F'(1) > 1, and λ is a positive real to be determined also. (In the appliactions given in [3] F must be trivilally redefined so as to [0,1] onto itself.)

We show that there may exist periodic solutions only when λ takes integer values. Moreover the class of functions, F, for which such periodic solutions are admitted is precisely those which satisfy a certain nonlinear generalisation of Chebyshev's equation, a second order ordinary differential equation. Such preriodic solutions can be used to generate nonperiodic solutions for the same function F, having different values for λ though relaxing the condition $\phi''(0) < 0$.

2 A functional equation

Let F be a smooth mapping from the interval [-1,1] onto itself, such that F(1) = 1 and F'(1) > 1, where ' denotes differentiation.

We consider smooth solutions $\phi : \mathbb{R} \to [-1, 1]$ satisfying the functional equation,

$$\phi(\lambda x) = F(\phi(x)), \quad \phi(0) = 1 \text{ and } \phi'(0) = 0,$$
 (1)

for some real $\lambda > 0$.

If $\phi_0(x)$ is a solution for (1) with $\lambda = \lambda_0$ say, such that $\phi_0'(x) \sim x^q$ for some q > 1 and small x, then $\phi_1(x) = \phi_0(x^s)$ is also a solution of (1) for

 $\lambda = \lambda_1 = \lambda_0^{1/s}$. So setting s = 2/(q+1) we see that $\phi_1'(x) \sim x$ for small x, and hence $\phi_1''(0) \neq 0$, and is therefore strictly negative (since one is an upper bound).

Conversely if $\phi_1(x)$ is a solution of (1), for which $\lambda = \lambda_1$ say, and $\phi_1''(0) < 0$, then one may generate a one parameter family of solutions for (1), via

$$\phi(x) = \phi_1(x^r), \ \lambda = \lambda_1^{1/r}, \ r \ge 0,$$

for which both $\phi'(0)$ and $\phi''(0)$ vanish.

Hence we shall asume that we seek solutions for (1) satisfying $\phi''(0) < 0$.

In addition any solution, $\phi(x)$, for (1), is determined up to a rescaling of the x axis (since for any constant, α , $\phi(\alpha x)$ is also a solution). Therefore without loss of generality we shall impose the scaling condition

$$\phi''(0) = -1. \tag{2}$$

Immediately it follows from (1) and (2) that ϕ has the Maclaurin expansion $\phi(x) = 1 - \frac{x^2}{2} + \dots$

Differentiating in (1) twice with respect to x, and setting x to zero, we obtain the condition

$$\lambda^2 = F'(1) > 0.$$

For example, if $F(y) = T_n(y)$, the *n*th Chebyschev polynomial (see [7][8] and the references therein), then $\lambda = n$ and $\phi(x) = \cos(x)$, for all n > 0. In that case (1) corresponds to the well known formula $\cos(nx) = T_n(\cos x)$.

Let $F^{(m)}$ denotes the *m*th iterate of F. As $\lambda > 1$ it is sufficient to solve (1) on an interval about the origin, [-1,1] say, and employ $\phi(\lambda^m x) = F^{(m)}(\phi(x))$ to evaluate ϕ elsewhere.

Let us define a sequence of even functions in $C^{\infty}[-1,1]$, all taking values within [-1,1], by

$$\phi_0(x) = 1 - \frac{x^2}{2}$$
 and $\phi_{k+1}(x) = F(\phi_k(x/\lambda)), \ k = 1, 2 \dots$ (3)

The following result guarantees a solution to (1) and ((2).

Theorem 1 For $\lambda = \sqrt{F'(1)} > 1$ there exists an even solution of (1) and (2). Furthermore as $k \to \infty$ the sequence $\phi_k(x)$ in (3) converges uniformly on [-1,1] to such a solution.

Proof It is straightforward to show by induction that $\phi_n(0) = 1$, $\phi'_n(0) = 0$, $\phi''_n(0) = -1$, and ϕ_n is even for all n. Therefore we show that the sequence converges: the rest follows immediately. Applying the mean value theorem

$$|\phi_{k+1}(x) - \phi_k(x)| = |F^{(k)}(F(\phi_0(\frac{x}{\lambda^{k+1}}))) - F^k(\phi_0(\frac{x}{\lambda^k}))|$$

$$= \left| \frac{dF^{(k)}}{dx}(\theta) \right| \left| F(\phi_0(\frac{x}{\lambda^{k+1}})) - \phi_0(\frac{x}{\lambda^k}) \right|,$$

for some θ between $\phi_0(x/\lambda^k) = 1 - \frac{x^2}{2\lambda^{2k}}$ and $F(1 - \frac{x^2}{2\lambda^{2(k+1)}})$. The first factor behaves like $F'(1)^k = \lambda^{2k}$ as $k \to \infty$; and second factor behaves like $F''(1)x^4/4\lambda^{4(k+1)}$ as $k \to \infty$. Hence

$$|\phi_{k+1}(x) - \phi_k(x)| \to 0$$

uniformly on [-1,1] and the result follows.

The curve (y, F(y)) remains within the box $[-1, 1] \times [-1, 1]$: yet $\phi(x)$ may be periodic or wandering. For example if $F(n) = T_n(y)$ then $\phi(x) = \cos(x)$ is 2π periodic. However next we show that cases such as these are nongeneric.

Suppose the solution ϕ is P-periodic, satisfying $\phi(x+P) = \phi(x)$ for all $x \in [0, P]$, with some minimal period P (ϕ is not periodic for any smaller period, P'). Then we have, for all x,

$$\phi(\lambda P + x) = F(\phi(P + x/\lambda)) = F(\phi(x/\lambda)) = \phi(x).$$

Hence ϕ is also Q-periodic, where $Q = \lambda P > P$.

If λ is an integer, then this is trivial. If λ is not an integer, then set $S \in (0, P)$ to be the remainder

$$S = Q \operatorname{mod}(P).$$

Then there is an integer k such that, for all x,

$$\phi(x+S) = \phi(x+Q-kP) = \phi(x-kP) = \phi(x).$$

This contradicts the assumption that P is the minimal period. Hence we have the following.

Corollary 2 An integer value for λ is a necessary condition for the existence of a periodic solution ϕ of (1) and (2).

It is natural to ask what class of functions F may admit periodic solutions for

(1) and (2). For such a periodic solution, $\phi(x)$, this requires that

$$F(y) = \phi(n\phi^{-1}(y))$$

is well defined considering all branches of ϕ^{-1} . Next we give a sufficient condition on F.

Theorem 3 Let $\phi(x)$ be a twice continuously differentiable periodic function with range $[\beta, 1]$ (for some constant $\beta < 1$), satisfying

$$\phi(0) = 1$$
, and $\phi'(0) = 0$

together with the equation

$$\phi''(x) = \dot{G}(\phi(x))/2,\tag{4}$$

for some smooth nonnegative function $G: [\beta, 1] \to \mathbb{R}^+$, where $\dot{G}(w)$ denotes the derivative of G(w) at w, and satisfying $\dot{G}(1) = -2$, $G(\beta) = G(1) = 0$.

Then for any integer n, if F and ϕ also satisfy (1), for $\lambda = n$, (and (2)) then F is the solution of the differential equation

$$\frac{n^2}{2}\dot{G}(F(y)) = G(y)\frac{d^2F}{dy^2}(y) + \frac{1}{2}\dot{G}(y)\frac{dF}{dy}(y),\tag{5}$$

$$F(1) = 1, \ \frac{dF}{dy}(1) = n^2.$$

Conversely, suppose that G(w) is differentiable and positive on $(\beta, 1)$, with simple zeros at β and 1 and satisfies $\dot{G}(1) = -2$. Then if F and ϕ satisfy (5) and (4), together with the boundary conditions, then they also satisfy (1) and (2) with $\lambda = n$.

Proof Using $\phi'(x)^2 = G(\phi(x))$, the integral of (4), together with (1), and $\phi''(nx) = \dot{G}(F(\phi(x)))/2$, we may obtain directly:

$$\frac{d^2}{dx^2} \left(\phi(nx) - F(\phi(x)) \right) = \frac{n^2}{2} \dot{G}(F(y)) - G(y) \frac{d^2 F}{dy^2} (y) - \frac{1}{2} \dot{G}(y) \frac{dF}{dy} (y). \tag{6}$$

Hence if F and ϕ satisfy (1) and (2), then setting the right hand side to be zero, we see F is the solution of (5) on $[\beta,1]$, subject to the given boundary conditions.

Conversely when G(w) is given as specified, suppose F is the solution of (5) on $[\beta,1]$, and ϕ solves (4); then (5) may be integrated directly. First, multiplying

through by $\frac{dF}{dy}(y)$, we obtain

$$n^2G(F(y)) = G(y)\left(\frac{dF}{dy}\right)^2.$$

If we write F(y) = f(x) where $y = \phi(x)$, this last becomes

$$n^2G(f) = \left(\frac{df}{dx}\right)^2.$$

which is a rescaled version of the equation $\phi'(x)^2 = G(\phi(x))$ (that is equivalent to (4)). Hence by inspection $f(x) = \phi(nx)$, so that $\phi(nx) = F(\phi(x))$ as required.

Remark. In the special case that $G(w) = 1 - w^2$, we have $\dot{G}(w) = -2w$, and (5) is the Chebyshev (linear) differential equation [7] [8]; whence $F(y) = T_n(y)$, whilst (4) implies $\phi(x) = \cos(x)$. Thus (5), which in general in nonlinear (via the $\dot{G}(F)$ term), is a natural generalisation of the Chebyshev equation; and for each integer n there exists a whole class for functions F for which there exists a periodic solution to (1) and (2).

Remark. As an example, suppose $\phi(x) = \cos(x) + \epsilon(3\cos(3x) - 5\cos(5x) + 2\cos(7x))$ for some small constant $\epsilon > 0$. Then ϕ is even, 2π -periodic and satisfies $\phi(0) = 1$, $\phi'(0) = 0$ and $\phi''(0) = -1$ (and $\phi(\pi) = -1$) for all ϵ . An examination of ϕ'^2 reveals that $G(\phi) = \phi'(x)^2$ is well defined on (-1,1) for all $0 \le \epsilon < 1/48$. For all such value for ϵ , and each n, integer, we may obtain a function, F, for which ϕ is a solution to (1) and (2).

Remark. Consider the nonlinear difference equation starting out from some z_0 in [-1,1]: $z_{n+1} = F(z_n)$. Since [-1,1] is invariant for F, the sequence remains there. Of the many famous results for such one dimensional interations, the statement that "period three implies chaos" [9] is one of the most memorable and reflects the position of period three orbits appearing at the end of Sharkovsky's sequence [10], where there are orbits all all possible periodicities. Suppose F is such that there exists a periodic solution ϕ satisfying (1) and (2), of period P, say. This may be guaranteed by our theorem in the previous section. Necessarily $\sqrt{F'(1)} = \lambda = n$ an integer. For all integers m for any x we have $F^{(m)}(\phi(x)) = \phi(n^m x)$. So we set $z_0 = \phi\left(\frac{P}{n^m-1}\right)$, and apply the nonlinera iteration. Directly it follows that $z_m = \phi\left(\frac{n^m P}{n^m-1}\right) = \phi\left(\frac{P}{n^m-1}\right) = z_0$. Hence we have an m-periodic orbit. Thus if F is such that a periodic solution exists then the corresponding iteration map is chaotic, having orbits of all possible periods embedded within its attractor within [-1,1].

References

- [1] Aczel, J., Lectures on Functional Equations and their Applications, Academic Press, New York, 1966; and Dover, New York, 2006.
- [2] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations. Encyclopedia of Mathematics and its Applications, Vol. 32, Cambridge University Press, Cambridge 1990.
- [3] S. Mann, Comparametric equations with practical applications in quatigraphic image processing, IEEE Trasactions on Image Processing, 9, No. 8, pp 1389-1406, 2000.
- [4] Jaynes, E.T. Probability Theory: The Logic of Science, Cambridge, 2003.
- [5] Feigenbaum, M. J. Quantitative universality for a class of non-linear transformations, J. Stat. Phys. 19, 25-52, 1978.
- [6] Strang, G., Wavelets and Dilation Equations: A Brief Introduction, SIAM Review, Vol. 31, No. 4, pp. 614-627, 1989.
- [7] Abramowitz, M., and Stegun, I.A., eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1965.
- [8] Weisstein, E.W. "Chebyshev Polynomial of the First Kind." From MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
- [9] Li, T. Y., and J. Yorke, Period three implies chaos, American Mathematical Monthly, LXXXII, 985-92, 1975.
- [10] Stefan, P., A theorem of Sharkovsky on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54, 237-248, 1977.