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Abstract

We develope a No Response Test for the reconstruction of some polyhedral obstacle
from one or few time-harmonic electromagnetic incident waves in electromagnetics.
The basic idea of the test is to probe some region in space with waves which are
small on some test domain and, thus, do not generate a response when the scatterer
is inside of this test domain.

This is the first formulation of the No Response Test for electromagnetics. We
will prove convergence of the method for testing a non-vibrating domain B whether
the far field pattern of some scattered time-harmonic field is analytically extend-
able into the interior of B. We will describe algorithmical realizations of the No
Response Test. Finally, we will show the feasibility of the method by reconstruction
of polygonal objects in three dimensions.

Key words: Electromagnetic Waves, Maxwell Equations, Inverse Scattering,
Object Reconstruction, Sampling Method, No Response Test

1 Introduction

Using electromagnetic waves for probing and investigation of unknown regions
in space is widely employed in the natural sciences, ranging from optics and
microscopy via X-Ray science to radar and electromagnetic tomography. An
introduction into the mathematical theory of inverse problems for acoustic
and electromagnetic waves can be found in (Colton and Kress, 1998). A sur-
vey about several more recent methods is given by (Potthast, 2006) and a
comparative study of some of these methods can be found in (Honda et al.,
2007).

Our goal here is to formulate and analyse the No Response Test first suggested
in acoustics by (Luke et al., 2003) for object identification in electromagnetics.
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In particular, we will provide a convergence analysis for the reconstruction of
a polygonal perfectly conducting object in three dimensions from the far field
pattern of two incident time-harmonic electromagnetic waves.

LetD be a polyhedral domain in R3. We consider the following electromagnetic
scattering problem. The propagation of time-harmonic electromagnetic fields
in a homogeneous media is governed by the Maxwell equations

curl E − iκH = 0, (1)

curl H + iκE= 0, (2)

in R3 \ D where κ is the real positive wave number. At the boundary of the
scatterers the total field E satisfies the Dirichlet boundary condition

ν × E = 0 on ∂D. (3)

We look for solutions of the form E := Ei +Es, and H = 1
iκ

curl E, of (2) and
(3) where the scattered field (Es, Hs) is assumed to satisfy the Silver-Müller
radiation condition

lim
r→∞

(Hs × x− rE) = 0, (4)

r = |x| and the limit is uniform with respect to all the directions θ := x
|x| ,

while the incident field (Ei, H i) is given by

Ei(x, d, p) =
i

κ
curl curl peiκx·d = iκ(d× p)× deiκx·d,

H i(x, d, p) = curl peiκx·d = iκd× peiκx·d, (5)

where d ∈ R3 is the direction of incidence and p ∈ R3 is the direction of
propagation.

It is proven by Cakoni, Colton and Monk (Cakoni et al., 2004) that a solution
to this problem exists and it is unique. In addition, from the classical theory as
presented for example in (Colton and Kress, 1998), the scattered field satisfies
the following asymptotic property,

Es(x, d, p) =
eiκr

r
(E∞(θ, d, p) +O(r−1)), r →∞,

Hs(x, d, p) =
eiκr

r
(H∞(θ, d, p) +O(r−1)), r →∞, (6)
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where (E∞(·, d, p), H∞(·, d, p)) defined on the unit sphere S is called the far
field pattern associated to the incident field (Ei(·, d, p), H i(·, d, p)).

We will study and solve the shape reconstruction problem for polygonal do-
mains.

Definition 1.1 (Shape reconstruction problem) Given E∞(·, d, p) on
S with N directions, N ≥ 1 of incidence di, i = 1, ..., N and polarization
pj, j = 1, ...,M for the scattering problem (2) - (4) reconstruct the obstacle D.

2 The No Response Test in Electromagnetics

2.1 The Idea of the No Response Test

We consider scattering of incident plane waves with direction of incidence d
and with polarization pi for i = 1, 2. We assume that we have

pi⊥d, i = 1, 2 and p1 and p2 are not co-linear . (7)

For every g ∈ L2(S), we set vg(x) :=
∫
S e

iκθ·xg(θ)ds(θ) to be the scalar Herglotz
wave corresponding the density g.

Then we define

I(B) = lim
ε→0

{ 2∑
i=1

∣∣∣ ∫
S

E∞(−θ, d, pi)g(θ) ds(θ)
∣∣∣ : |vg|C1(B) ≤ ε

}
(8)

for any nonvibrating domain B, i.e. B is in the set

B :=
{
B :

the homogeneous interior Maxwell problem for B does

have at most the trivial solution

}
(9)

The idea of the No Response Test is to test if the unknown obstacle D is
included in some B ∈ B by computing I(B). In the next subsection, we show
how this idea can be used to reconstruct the convex hull of D.

2.2 Convergence of the NRT.

Our key goal is to prove the following reconstruction of the convex hull of D.

3



theorem 2.1 (No-response characterization) The convex hull of D is
characterized by

CH(D) =
⋂

B∈B,I(B)=0

B. (10)

Further, as a consequence of this results we immediately obtain the following
uniqueness statement.

Corollary 1 The convex hull of a polygonal domain in R3 is uniquely deter-
mined by the scattered field for one (N = 1) directions of incidence and M = 2
polarizations.

Definition 2.2 (Admissible vertices) We call a convex vertex of ∂D ad-
missible if we can continue at least one of the faces of ∂D to the infinity without
crossing ∂D, again.

We call a vertex an exterior convex vertex if it is in the boundary ∂CH(D)
of the convex hull CH(D) of D.

Remark 2.3 The exterior convex vertices characterize the convex hull of D.

We will need the following identity

E∞(θ, d, p) =
iκ

4π

∫
∂D

{
ν(y)× Es(y, d, p) + [ν(y)×Hs]× θ

}
e−iκθ·yds(y)(11)

given by using the Straton-Shu formula in R3 \ D for Es(·, d, p), Hs(·, d, p)
and Φ(·, y) and their asymptotic behavior at infinity (see (Colton and Kress,
1998), Theorem 6.8) where ν is the outward normal of ∂D. Let g ∈ L2(S),
then

∫
S

E∞(−θ, d, p)g(θ)ds(θ) =
1

4π

∫
∂D

{
− ν(y)× Es(y, d, p)× curl vg

+
1

iκ
[ν(y)×Hs]× curl curl vg

}
ds(y) (12)

Let B ⊂ R3 be a convex non-vibrating domain for the Maxwell equation, i.e.
let the interior homogeneous boundary value problem with boundary condition
ν × E = 0 be uniquely solvable. We consider two cases:

(A) D ⊂ B. Suppose that |vg| ≤ ε, then from (12), we have , for d = di and
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p = pji ,

|
∫
S

E∞(−θ, d, p)g(θ)ds(θ)| ≤ Cε

with a uniform constant C. This implies that I(B) = 0.
(B) D 6⊂ B. In this case, we can find at least one exterior convex point of ∂D

which is not in B. We denote by z0 one of these points. We consider a
sequence of points zq included in R3 \D tending to z0.

We consider the multipole fields

ψq :=
ε

2β(zq, µq)
(hq · ∇z)

µqΦ(x, zq) (13)

where hq is a unit vector, µq is a multi-integer and

β(zq, µq) := sup
y∈B
{|(hq · ∇z)

µqΦ(x, zq)|}.

For every q we take gqn ∈ L2(S) such that v[gqn] tends to ψq in C1(B ∪D).

From (12), we get:

lim
n→∞

∫
S

E∞(−θ, d, p)gqn(θ)ds(θ) =
1

4π

∫
∂D

{
− ν(y)× Es(y, d, p)× curl ψq

+
1

iκ
[ν(y)×Hs]× curl curl ψq

}
ds(y)(14)

Using the Stratton-Chu formula and due to the form of ψq, we have:

lim
n→∞

∫
S

E∞(−θ, d, p)gqn(θ)ds(θ) =
ε

2β(zq, µq)
(hq · ∇z)

µpEs(zq, d, p)+

∫
∂ΩR

{
−ν(y)× Es(y, d, p)× curl ψq +

1

iκ
[ν(y)×Hs]× curl curl ψq

}
ds(y)

where ΩR is a ball of radius R large enough to contain D. Arguing as in
((Colton and Kress, 1998), Theorem 6.6), we deduce that the integral over ΩR

tends to zero as R tends to infinity. Hence

lim
n→∞

∫
S

E∞(−θ, d, p)gqn(θ)ds(θ) =
ε

2β(zq, µq)
(hq · ∇z)

µqEs(zq, d, p). (15)

Lemma 2.4 (Extensiblility) Assume that for some positive real number
ρ, the set of vectors

{
sup
|h|=1

ρµ
(h · ∇z)

µEs(z, d, p)

µ!
, µ ∈ Z+

}
(16)
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is uniformly bounded in a compact set V , where here the boundedness is under-
stood componentwise. Then Es(z, d, p) is analytically extensible into an open
neighbourhood Vρ = {x : d(x, V ) < ρ} of V .

Proof of Lemma 2.4. The basic result can be found in (Honda et al., 2007) or
(Potthast, 2007). The authors use (16) as a bound for the Taylor coefficients of
the function and construct an analytic extension into the open neighbourhood
of V by multi-dimensional Taylor series. 2

Lemma 2.5 Consider the scattered fields Es(·, d, pi) for i = 1, 2 in a neig-
bourhood of an exterior c. Then there exists at least one pair (d, pi) such that
Es(z, d, pi) is not analytically extensible into an open neighbourhood of the
point z0.

Proof of Lemma 2.5. By definition of the exterior vertex, there exists at least
one face around z0 which can be extended to infinity without crossing again
∂D. On this face we have ν × E = 0. Since E is extendable near z0 then it
satisfies, with H, the Maxwell equations around z0. Hence it is real analytic
near z0. This means that ν × E = 0 on an infinite part of the plan having
as a normal ν. But E = Ei + Es and Es tends to zero at infinity then we
have ν × Ei = 0 on an infinite part of the plan. Recall that Ei(x, d, p) =
iκ(d× p)× deiκx·d hence

lim
|x|→∞

ν × (d× p)× deiκx·d = 0.

This implies that

ν × (d× p)× d = 0.

Since p is chosen orthogonal to d, then (d× p)× d = p and hence ν × p = 0.

Having two polarization directions p1 and p2 orthogonal to d, then we get
ν × pi = 0, i = 1, 2, which means that ν is co-linear to both p1 and p2. But
this contradicts the assumption that p1 and p2 are linearly indepedent. 2

Corollary 2 There exist sequences (hq) ⊂ S and (µq) ⊂ N such that

lim
q→∞

ρµq
(hq · ∇z)

µqEs(zq, d, p)

µq!
=∞. (17)

Proof of Corollary 2. It is a combination of Lemma 2.4 and Lemma 2.5. 2

As it is shown in (Honda et al., 2007), the quantities β satisfy

|β(zq, µq)| ≤ C
µq!

ρµq
.
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¿From (15) and Corollary 2, we have

lim
q→∞

lim
n→∞

|
∫
S

E∞(−θ, d, p)gqn(θ)ds(θ)| =∞.

For ε > 0 fixed, we can take q, n large enough such that

‖vgq
n
‖C1(B) ≤ ‖vgq

n
− ψq‖C1(B) + ‖ψq‖C1(B) ≤ ε.

This implies that I(B) =∞. 2

3 The Realization of the No Response Test

The basic goal of this chapter is to develop the numerical realization of the
No Response Test. We will first describe general preparation steps which are
uniform for all subsequent realizations of the No Response Test. Then, we will
describe an efficient approach to realize the No Response Test numerically.

We consider an electromangetic Herglotz wave function

V [a](x) :=
i

κ
curl curl

∫
S

eiκx·θa(θ) ds(θ), x ∈ R3 (18)

with density a ∈ T (S), where T (S) denotes the set of all vector fields a ∈ L2(S)
with ν(x̂) · a(x̂) = 0 for all x̂ ∈ S. Clearly, it satisfies the Maxwell equations
(1) - (2). Further, consider the magnetic multipole

Ψ(x, z) :=
i

κ
curl curl pΦ(x, z), x ∈ R3 (19)

with source point z ∈ R3. Now, let B be a non-vibrating domain in R3 with
boundary of class C2. Then, with the operator H : L2(S) → L2(∂B) defined
by

(Ha)(x) :=
i

κ
curl curl

∫
S

eiκx·θa(θ) ds(θ), x ∈ ∂B, (20)

and z ∈ R3 \B we will study approximate solutions to the equation

Ha = Ψ(·, z) on ∂B. (21)
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With curl x(ϕ(x)a) = grad xϕ× a when a does not depend on x we obtain

(Ha)(x) = iκ
∫
S

eiκx·θ(θ × a(θ))× θ ds(θ), x ∈ ∂B, (22)

and for tangential field a(θ) ∈ T (S) this reduces to

(Ha)(x) = iκ
∫
S

eiκx·θa(θ) ds(θ), x ∈ ∂B, (23)

First, we note important properties of equation (21).

Lemma 3.1 The equation (21) does not have a solution a ∈ L2(S).

Proof. Assume that there is a solution a ∈ L2(S) of equation (21). Then
both fields V [a] and Ψ(·, z) solve the Maxwell equations in B with identical
boundary values. By the well-posedness of the interior Dirichlet problem in
B the two fields will coincide in B. Now, since the fields are both analytic
in R3 \ {z}, they coincide in R3 \ {z}. However, the field V [a] is smooth in
R3, but Ψ(·, z) has a singulity in z which is a contradiction. This proves the
lemma. 2.

We have shown that (21) does not have a solution. However, the operator H
can be seen to have dense range in L2(∂B).

Lemma 3.2 The operator H defined by (20) is injective and has dense range
as an operator from T (S) into L2(∂B).

Proof. First, we study the injectivity of H. Let a ∈ T (S) be some density
such that Ha = 0 on ∂B. Then, we have V [a] ≡ 0 in B due to the well-
posedness of the interior Dirichlet problem for the Maxwell equations in B.
Due to the analyticity of V [a] in R3 we have V [a] ≡ 0 in R3. Now, we can
apply Theorem 3.15 of (Colton and Kress, 1998) to conclude that a = 0. This
proves injectivity.

To show the denseness of the range of H we consider the adjoint operator H∗
which due to (22) is given by

(H∗ψ)(θ) = iκ
∫
∂B

eiκy·θθ × (ψ(y)× θ) ds(y), θ ∈ S, (24)

with ψ ∈ L2(∂B). Assume that H∗ψ = 0. Then according to (6.26) of (Colton
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and Kress, 1998) the function

W [ψ](x) := curl curl
∫
∂B

Φ(x, y)ψ(y) ds(y), x ∈ R3 (25)

has farfield 1/4π · H∗ψ = 0. According to Rellichs lemma Theorem 6.9 of
(Colton and Kress, 1998) the field W [a] vanishes in R3 \ B. We now pass
to the tangental values of this field on the boundary via the vector jump
relations (compare (2.86) in combination with Theorem 2.17 of (Colton and
Kress, 1983)) and obtain

Nψ = ν × curl curl
∫
∂B

Φ(x, y)ψ(y) ds(y) = 0, x ∈ ∂B. (26)

This first needs to be carried out in an L2 sense. Then we argue that solutions
ψ ∈ L2 of Nψ = 0 are continuous and use the uniqueness of the interior
boundary value problem with homoneneous tangential boundary values and
the classical jump relations to conclude that ψ ≡ 0 on ∂B. This ends the
proof. 2

As a consequence of the previous result we obtain that the equation (21) has
approximate solutions in the sense that for every ε > 0 there is a ∈ T (∂D)
such that∣∣∣∣∣∣Ha−Ψ(·, z)

∣∣∣∣∣∣
L2(∂B)

≤ ε. (27)

In fact, the approximate solution to this equation can be calculated via clas-
sical Tikhonov regularization

aα := (αI +H∗H)−1H∗Ψ(·, z), (28)

which is equivalent to minimizing the functional

µ[a] := ||Ha−Ψ(·, z)||2L2(∂B) + α||a||2L2(S). (29)

Clearly, the minimum of the functional (29) tends to zero for α → 0 if H
has dense range. Thus, via (28) we obtain stable approximate solutions for
equation (21).

It has been shown in (Ben Hassen et al, 2006) that in fact we do not need
to solve the full vectorial equation (21), but that it is sufficient to solve the
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scalar equation

Hg = Φ(·, z) on ∂Bρ (30)

with some parameter ρ > 0, Bρ := {x ∈ R3 : d(x,B) ≤ ρ} and

(Hg)(x) :=
∫
S

eiκx·θg(θ) ds(θ), x ∈ Rm. (31)

Then, the a := p · g(x) is a solution to (21). ¿From a algorithmical point of
view to solve a scalar equation is clearly much more efficient. With the same
arguments as above we can employ Tikhonov regularization for its solution,
i.e. we calculate

gz,α := (αI +H∗H)−1H∗Φ(·, z) on ∂B (32)

for α > 0. Also, it has been shown in (Ben Hassen et al, 2006) that by
inserting the approximation of Φ(·, z) into the Stratton-Chu formula we obtain
an approximation∫

S

E∞(x̂)gz,α(x̂) ds(x̂)→ Es(z), α→ 0 (33)

in the sense that given ε > 0 there is gz ∈ L2(S) such that∣∣∣Es(z)−
∫
S

E∞(x̂)gz(x̂) ds(x̂)
∣∣∣ ≤ ε (34)

which holds under the condition that the field Es can be analytically extended
into R3 \B.

We now describe a direct realization of the No Response Test via the functional

I(B, d, p, α) := sup
{∣∣∣ ∫

S

E∞(−θ, d, p)g(θ) ds(θ)
∣∣∣ : g ∈ G

}
(35)

for some nonvibrating domain B where G is some set of densities with

||vg||C2(B) ≤ ε. (36)

In particular, we will calculate such densities by solving the integral equation
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(a) (b)

Fig. 1. Modulus of the total electric field for scattering by a polygonal domain with
perfect conductor boundary condition, wave number κ = 2. We show two different
views, (b) from above and (a) looking onto one of the edges. Half of the object is
covered by the plane with the field visualization.

(30) and multiplying the solution with the constant cε which satisfies

cε ≤
ε

2||Φ(·, z)||C2(B)

. (37)

Here, for simplicity we use ρ = 0.

Algorithm 3.3 (No Response Test via the NRT Functional) The No
Response Test estimates the functional (8) by calculating I(B, d, p, α) defined
in (35), where for some domain B, a direction of incidence d and α > 0 the
density g is calculated by (30) for one or several points z ∈ R3\B. In a second
step we calculate the intersection

Drec :=
⋂

I(B,d,p,α)≤c
B (38)

with some adequate constant c.

We complete this work with some numerical reconstructions which prove the
feasibility of the method. Figure 1 shows the simulation of the field via integral
equation methods. We have tested the code by solving the exterior boundary
value problem with a dipole with source point located in the interior of the
object as reference field. The error was clearly below 2% even with a modest
number of triangles as shown in Figure 1. Reconstructions are demonstrated
in Figure 2. We show a visualization calculated via Algorithm 3.3 for different
locations and sizes of the polygonal domain with wave numbers κ = 1.
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(a) (b)

(c) (d)

Fig. 2. In (a) we demonstrate the behaviour of the indicator function of the No
Response Test for one electromagnetic wave only. Here, every image point z corre-
sponds to a test domain G(z) with z ∈ ∂Gρ(z) and G(z) ⊂

{
y ∈ R3 : y1 < z1

}
. The

blue area clearly indicates all such domains for which D ⊂ G(z), i.e. it indicates
a successfull No Response Test for the location of the domain. A second step is
then to build the intersections (38). Figure (b) - (d) show reconstructions of some
polygonal domain from the far field pattern of one wave via the No Response Test
functional with balls as test domains. Here, we show a slice of the mask on a plane
intersecting the scatterer. The results here have not been optimized to yield good
shape reconstructions, but we worked on a grid with cells of size h = 0.5. Clearly,
we can easily identify the location and size of the scatterer and prove the feasibility
of the ideas described above.

References

F. Cakoni, D. Colton and P. Monk: The elctromagnetic inverse scattering prob-
lem for partly coated Lipschitz domains. Proceedings of the Royal Society
of Edinburg, 134 A, 661-682. (2004).

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering
Theory. 2nd edition (Berlin-Springer) (1998).

D. Colton and R. Kress, Integral Equation Methods In Scattering Theory,
John Wiley and Sons 1983.

N. Honda, G. Nakamura, R. Potthast and M. Sini, The no-response approach
and its relation to other sampling methods. Annali di Matematica Pura ed
Applicata. (2007)

V. Isakov, Inverse Problems for Partial Differential Equations. Springer Series
in Applied Math. Science. Berlin: Springer, 127, (1998).

12



R. Kress, Linear integral equations. 2nd Ed. Springer-Verlag (1999).
Luke, D.R. and Potthast, R.: ” The no response test - a sampling method for

inverse scattering problems.” SIAM Journal of Applied Math No.4, Vol. 63
(2003), 1292–1312.

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations.
Cambridge University press, (2000).

R. Potthast: Sampling and Probe Methods - An Algorithmical View. Com-
puting, 75, no. 2-3, 215–235, (2005).

Potthast, R.: ” A survey on sampling and probe methods for inverse problems”
Topical Review for Inverse Problems 22 (2006), R1-R47.

R. Potthast: On the convergence of the no-response test. SIAM J. Math. Anal.
(2007).

M.F. Ben Hassen and K. Erhard and R. Potthast: The point-source method
for 3d reconstructions for the Helmholtz and Maxwell equations, Inverse
Problems 22 (2006), 331-353.

K. Erhard: Point Source Approximation Methods in Inverse Obstacle Recon-
struction Problems. Dissertation, Göttingen 2005.

13


