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Abstract

Direct numerical methods for the evaluation of uncertainties in the solutions

of various partial di�erential equations� that contain uncertain parameters� are

developed� The equations of particular interest are those which model the �ow

of a �uid in a porous medium whose properties are not known precisely� such as

the modelling of oil in an underground reservoir� Some analytic work on the use

of 	eld theoretic methods to study �ow in a heterogeneous medium is reviewed�

and then extended to a simple time
dependent case� The 	rst numerical model

is a zero
dimensional transient mass
balance� where uncertainty is modelled as

a single parameter� with a corresponding single
variate probability distribution

function� This is treated� predominantly analytically� as a one
dimensional sensi


tivity analysis problem� with various plots of the development of the distribution

function and mean value� of the analytic solution� being obtained and analysed�

The next model is that of a simple single
phase steady
state �ow model� The

method involves a discretisation of the analytic equation� after which� perturba


tions about a mean of the uncertain parameter are considered� The distribution

function� when treated in this way� is modelled as multivariate and dealt with

accordingly� The 	nal� and most signi	cant� model is that of a two
dimensional�

single
phase� dynamic one� Again� a perturbation expansion about a mean of the

parameters is done� resulting in coupled equations for second order approxima


tions to the mean at each point� and 	eld covariance of the solution� These are

then solved numerically� This method involves only one �albeit complicated� so


lution of the equations� and contrasts with the more usual Monte
Carlo approach�

where many such solutions are required�
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Chapter �

Overview

The objective of this research project is to investigate techniques for analysing

uncertain systems of di�erential equations� with application to the problem of oil

recovery from heterogeneous porous rock reservoirs�

Throughout this thesis� we concentrate on consideration of the e�ects of un�

certainties in the permeability of the rock properties� with a speci�c concentration

on how they a�ect the output properties of the oil �eld� such as pressure� when

standard numerical discretisation techniques are applied to the di�erential equa�

tions modelling the �ow through the porous media�

In the �rst chapter we introduce the basic model that is under consideration�

This is obtained by a combination of Darcy�s law 	
�� for �ow of a �uid in a porous

medium with the continuity equations� We consider three main model equations�

with the e�ects of uncertainty� which are derived in this chapter� These are

very much simpli�ed versions of the types of equations that would be used in a

practical context� but they are investigated in this form so as to illustrate clearly

and pinpoint the main problems associated with treatment of the uncertainties

in the permeabilities� In each case� single�phase �ow is considered� The need for

a probabilistic approach is also discussed�






We consider which methods might be used to solve the �ow equations for the

deterministic problem� which is the corresponding problem where uncertainties

are disregarded� The emphasis throughout this research is on how these determin�

istic schemes may be used� in an adapted form� to assess the complete problem

containing the uncertainties�

The second chapter is an introduction to the statistical ideas that are needed to

develop the theory� Various probabilistic concepts are necessary� Most important

are the ideas of distribution and expected value� out of which we can develop

the crucial idea of moments� Speci�c forms of distributions are introduced� with

the importance of lognormal distribution in a geostatistic context emphasised�

and the generalisations to multivariate distribution functions� with corresponding

correlations and moments� are explored� We also consider the e�ect of integral

and di�erential operators on the uncertain variables� such as permeability�

The following chapter is a review of some of the background literature in

the area of this research� We consider Monte�Carlo methods� and how a poten�

tial development of direct methods to obtain statistical moments might be far

more �exible� There is some discussion of previous research in direct methods

for stochastic p�d�e�s� including those of Adomian� and Schwydler and Math�

eron� whose perturbation series are studied further in later chapters� We also

review some more theoretical work proving the existence of solutions of some

equations under consideration� We then review some of the techniques employed

in groundwater research for equations of the type we are interested in� and then

brie�y introduce the ideas behind the evaluation of e�ective permeabilities�

In chapter 
� an extension of the analytic work done by Dr� P� King� 	���� on

the use of �eld theoretic methods in the study of �ow in a heterogeneous porous

medium� is described� This work uses a perturbation formulation on the Fourier

�



transform of the Green�s function equation for single�phase� steady�state �ow in

a heterogeneous medium� By use of �eld theoretic methods� Dr� King is able

to sum up the entire perturbation series and compare with earlier work� which

involved truncated summation processes and assumptions in single dimensions

	��� An e�ective overall permeability is thus obtained� together with the pressure

variance� in terms of the correlation function and the geometric mean of the

permeability�

We make an attempt to extend this work to a time�dependent version of

the King model� which allows changes in e�ective permeability with respect to

time to be observed� The Fourier transformed time�dependent equation version

is shown to satisfy an identical integral equation to that in Dr� King�s paper�

The perturbation summation can then be performed in an identical way� so that

the parallels in the results can be used to �nd expressions for the time�Fourier

transformed e�ective permeability� Unfortunately� terms which then occur prove

to be impossible to invert analytically� However� it is felt that future investigations

into this approach might prove fruitful�

An extension of some preliminary work done for this project� which was per�

formed in order to satisfy requirements for an MSc dissertation� 	
��� is described

next� This work involves the investigation of a zero�dimensional mass�balance

equation as a simpli�ed model equation� with a single uncertain variable� Al�

though very simplistic� this model provides considerable insight into the general

problem of di�erential equations with uncertain variables� By using a closed

form of the solution� the di�erence between the expected value of this solution

and the deterministic value of the solution can be expressed in terms of moment

generating functions of distributions� By manipulation of some basic probability

theory� and the closed form solution� expressions for the probability distribution

�



function of the analytic solution� as a function of time� can be obtained� As an

extension to this work� we are able to �nd a method of summing up the series

terms that were not evaluated previously� The development in time of the mean

of the solution� and in particular its behaviour with respect to the deterministic

solution� can then be assessed more precisely�

In the following chapter� we consider the steady�state two�dimensional model

equation� We primarily consider the discretised equation� using a perturbation

method� When a perturbation formulation is applied to equations that have al�

ready been discretised� we are left with matrix equations involving mean value

matrices and perturbed matrices that contain uncertain components� It is there�

fore necessary to develop some elementary theory for coping with matrices with

uncertain components� such as distributivity and associativity of mean value op�

erators� To begin with� we investigate the properties of a general admissible real�

isation� by developing general perturbation series� Expressions for the bounds on

errors caused by truncating these series for general realisations are also obtained�

When we take mean values over all possible realisations� we obtain expressions for

mean values of the numerical solutions� which� when truncated at second order�

involve just mean values and autocorrelation terms of the permeability� which

are the generally available geostatistic quantities� Taking these mean values of

the error terms also allows expressions to be obtained for the error introduced by

truncating the mean value perturbation series� Other manipulations of the orig�

inal perturbation series for general realisations allow us to develop second order

approximation terms for the covariances of the numerical solution in terms of the

same input geostatic quantities� Making use of the structure of these equations�

we then are able to develop numerical procedures to evaluate the particular terms

of interest� This development is followed by a presentation and discussion of the

�



results�

In the �nal chapter� the time�dependent model is considered� This model

is again based on obtaining approximations to the mean value of the numerical

solution using a perturbation series� We �rst develop a system of hierarchical

equations for both standard�symmetric and lognormal distributions� where the

e�ects of truncating these series at some arbitrary order of accuracy is investi�

gated� The problems of taking mean values straight away are illustrated� leading

to awkward terms that cannot be dealt with� Terms for an approximation to the

variance can also be obtained� with the same problems preventing any attempt

at solution� It has been found� however� that if the hierarchical terms are dis�

cretised� in some general sense� expressions allowing us to evaluate the required

terms can be obtained� The result of these manipulations is to provide us with

systems of coupled numerical di�erential equations� with all relevant quantities

being solvable� A speci�c discretisation is then investigated in detail� with typical

equations that occur from this process being presented� Some results of the ap�

plication of this method are then presented and discussed� followed by comments

on suggested extensions for the work�
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Chapter �

Introduction to the Model

Equations

Di�culty in the mathematical and numerical modelling of physical systems may

often arise when a precise knowledge of data is not available� Speci�cally� data

that is crucial for describing the system� may only be known within certain limits

of accuracy� or it may only be possible to specify certain statistical properties of

the data� This may be due to inaccuracy in measuring equipment� or inaccessi�

bility� or a high level of heterogeneity in materials whose parameters are involved

in the model equations�

It is the e�ects of these latter sorts of uncertainty on the solutions of analytic

and numerical systems which form the basis of this research project�

��� Darcy�s Law

The starting point for any mathematical model of �ow in a porous medium is

Darcy	s law 
��
� This is an empirical law that states that the �uid �ow velocity

is proportional to the pressure gradient across the medium� with a gravitational

��



potential term included� and is given by�

u � �
K

n�
�rp� �grd� � �������

where u is the �uid �ow velocity�K is the permeability tensor� � the �uid viscosity�

p the pressure� n the volumetric porosity� � the �uid density� and d the physical

depth� 
�
� Viscosity is just a property of the �uid� which ought to be known�

Permeability is a property of the oil reservoir� and it is uncertainties in this that

are of speci�c interest�

For multiphase �ow considerations� the modi�ed Darcy	s law is used for each

phase �� with an e�ectively reduced permeability� caused by the presence of other

phases�

u� � �
K��

��
�rp� � ��grd� � �������

where � � �� � � is the reduction factor associated with each phase� ��

For the purposes of this research� in order to highlight the e�ect of� and

problems due to� uncertainty� we shall restrict our considerations to single�phase

�ow with gravitational e�ects neglected� so that we are modelling the �ow in a

horizontal plane� thus

u � �
K

�
rp� �������

In many practical cases of reservoir modelling� the oil�bearing rock can be

assumed to be considerably larger in its horizontal dimensions than its vertical

dimension� It it therefore quite a reasonable assumption to ignore the gravita�

tional e�ects� Because of the linearity of equation �������� though� inclusion of

the gravitational term may be incorporated into much of the analysis in a fairly

straightforward way� For example� this may be done by substitution of a total

potential form in equation ��������

It is hoped that a detailed investigation of this form of Darcy	s law will provide

��



insight into how to treat uncertainties� which� in the future� will allow us to deal

with more complicated equations� such as multi�phase �ow with gravitational

terms included�

��� Conservation Equations

We now combine the Darcy equation with the following form of the

three�dimensional basic mass�balance equation� 
�


�n�

�t
�r � ��q� � ��

where q is the storage� de�ned as

q � nu�

Assuming constant porosity and dividing throughout by n� whilst combining these

two equations gives

��

�t
�r

�
�
K

�
rp

�
� ��

Multiplying throughout by dp

d�
� and assuming a constant compressibility�

dp

d�
� �

�

	
�

gives the basic model equation for pressure that concerns us�

	
�p

�t
�

�

�
r �Krp� � �� �������

It is the e�ects of uncertainties in the permeability on the solution of this

equation that is of primary interest in this research project�

We also consider the steady�state version of equation ��������

r�Krp� � �� �������

��



with appropriate boundary conditions�

Consider a spatial discretisation of equation �������� simpli�ed so that e�ects

of compressibility and viscosity are neglected� This would result in the system of

o�d�e�s

dp

dt
�rh �Krhp� � f � p��� � p�� �������

A standard method to approach this system of equations might be to diagonalise

it� and study the resultant equations� which would have the simple form

dp

dt
� �p � f�t�� p��� � p�� �������

At the time it was decided to study the behaviour of of this equation� where � is

an uncertain parameter� in the hope that it might give some useful insight into

the general behaviour of the system of equations� ������ and ultimately indicate

how to proceed with the study of numerical approaches for the analysis of the

model equation ��������

Equation ������� will later be shown to be a good starting point for an intro�

duction to this research�

��� Uncertainty

In all practical cases� the rocks that make up the oil reservoir are a considerable

distance under the ground� This means that the corresponding properties� such

as permeabilities and porosity are clearly not going to be accessible to any direct

measurement�

The only information about the particular makeup of the rock is obtained

by experiments performed on samples of the rocks that are brought up from

recovery wells� It is not considered an e�cient method of oil production to drill

more boreholes than is necessary� The ideal number would be just two� one for

��



injection and one for extraction� with no extra wells drilled just to provide more

information about the rock properties�

We are therefore left with the problem of how to cope with the uncertainties

in the properties and structure of the rocks that lie between the primary wells�

One approach would be to try to interpolate for the values of permeabilities

between the wells� There is� however� no straightforward way to do this� as rock

strata are known to have varied and complex structures which would invalidate

any simple linear interpolation between boreholes�

This leads to the necessity of developing a statistical approach to the problem�

If we consider one possible three�dimensional representation of a permeability

function� or realisation� we may assign a probability value to that realisation�

This allows us to think of the problem as consisting of sets of functions assigned

with probability distributions� This is described quantitatively in the following

chapter�

Given probability distributions for permeability� we would like to �nd proce�

dures to characterise the probability distributions of the solutions to the model

equation� This is certainly not a simple problem� as it e�ectively involves solving

partial di�erential equations for each possible� or admissible� realisation� A con�

tinuous probability distribution functional model for permeability would suggest

an in�nite number of admissible realisations� which indicates the considerable

complexity of the problem� This can be partially overcome by Monte�Carlo sim�

ulations� 
��
� with the need to generate large numbers of realisations� solving the

system of equations for every realisation� The problem with this approach is the

considerable number of times that the numerical procedure has to be applied in

order to obtain accurate results that re�ect the probability distributions of the

solutions�

��



The approach we take in this research is to �nd more direct methods of �nd�

ing quantities that characterise the p�d�f� of the solution� We are particularly

interested in �nding mean and variance� eventually to allow some prediction of

yields and spread for ranges of yields that particular oil��elds may be expected

to provide� Where possible� we develop separate equations that need only be

solved once� in order to provide the important parameters� The e�ect of applying

numerical discretisations to the model equations is investigated in detail�

We make the approximation of an isotropic permeability for K� This means

that the tensor K can be approximated by a scalar� k� and allows for an easier

description of numerical and analytic techniques for solving the p�d�e�s� More

importantly in this context� it facilitates a straightforward description of the sta�

tistical properties of the permeability� We may then re�write the model equations

������� and ��������

	
��

�t
�

�

�
r �krp� � �� �������

and

r �krp� � �� �������

��� Deterministic Equations

We introduce here an important distinction of terms used throughout this re�

search� This is the concept of the deterministic problem�

Classically� a problem containing uncertainty might be approached by solving

the deterministic version of the problem� This can be de�ned as the system of

equations solved with the uncertain parameter replaced by its mean value� For

our three model equations� these would be�

	
�p�

�t
�r

�
hki

�
rp�

�
� f�� �������

��



r �hkirp�� � f�� �������

and�

dp�

dt
� h�ip� � f�� �������

Procedures for solving these types of equations are well known in standard

analysis�

The classical solutions to these equations might be accepted as reasonable

approximations to the mean values of the solutions of the model equations� �������

to �������� The accuracy of this statement is one of the things we explore in detail

in this thesis�

In many cases� we consider the di�erence between the mean value of the solu�

tions to the stochastic problem and the deterministic solutions� both analytically

and numerically� The behaviour of the di�erence of these two quantities governs

much of the research about the p�d�f� of the solution�

In the next chapter we introduce the probabilistic concepts and notations

that are necessary to understand the following chapters� De�nitions of statisti�

cal properties of single�variate� and then multivariate� probability distributions

are introduced� in order to analyse equations �������� �������� and �������� with

particular emphasis on moments and their derivation�
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Chapter �

Statistical Concepts

Various statistical concepts and results are needed for the development of this

research� and those used in this thesis are described in this chapter� The �rst

six sections deal with univariate distributions� or those where there is a single�

uncertain parameter� Most of the general results and properties obtained here

are used in Chapter 
� The remaining chapters deal with results concerning

multivariate distributions�

��� Distribution and Range

The starting point for any statistical consideration is that of a random variable�

de�ned by two quantities� �����

	� the set of possible values that X can take� also known as the set� or

the phase�space� It can be discrete or continuous�

�� the probability distribution over the range�

The probability distribution in the case of a continuous one�dimensional range

is given by a probability density function �henceforth known as p�d�f� � which is

	�



a non�negative normalised function p�x� � �� such that

Z
R
p�x�dx � 	� ���	�	�

where R is the range of possible values�

The probability that X takes a value in the incremental range x to x� dx� is

then given by

p�x�dx�

and so the probability that X has some value in the range �x�� x�� is given by

Z x�

x�

p�x�dx�

��� Expected Value and Moments

We now introduce the concept of a mean� or expected value of a function of X�

de�ned on some interval region R� f�X�� given by

hf�X�i �
Z
R
f�x�p�x�dx� �����	�

The expected value of the random variable itself is then given by

hXi �
Z
R
xp�x�dx� �������

which can be generalised so that the idea of moments can be de�ned as the

expected value of X raised to some arbitrary mth power�

�m � hXmi �
Z
R
xmp�x�dx� �������

So� �� corresponds to the mean value� and the standard deviation� �� and variance�

��� are both de�ned� ����� by

�� � h�X � hXi��i

� �� � ��� �������

	�



This idea of a moment deviation from the mean can be generalised to the idea of

shifted moments� which are de�ned by

�m �
Z
R
�x� hxi�mp�x�dx� �������

so that

�� � 	�

�� � ��

and

�� � ���

for all distributions�

An important property of a symmetric distribution function is that mth order

corrected moments� where m is odd� are all equal to zero� This is because� for a

symmetric distribution function� p�x� hxi� is an even function� and the region R

can be assumed to be symmetric about hxi �most generally� from �� to ����

Therefore� we may write the mth corrected moment as

�m �
Z
R
�x� hxi�mp�x�dx�

and� by changing variable to x� � x� hxi�

�m �
Z
R
�x��mp�x� � hxi�dx�� �����
�

For m odd� the integrand is clearly odd� also� thus giving the zero result�

��� Moment Generating Function

This is de�ned� ����� as the expected value of the function eikX �

G�k� � heikXi �
Z
R
eikxp�x�dx� �����	�

	�



which is also the Fourier transform of the p�d�f�

It generates the individual moments of the distribution� in the sense of the

Taylor expansion

heikXi � h	 � ikX �
�ikX��

��
�

�ikX��

��
� � � �i

� 	 � ikhXi �
�ik��

��
hX�i �

�ik��

��
hX�i� � � �

�
�X

m��

�ik�m

m�
�m� �������

����� Cumulants

The moment generating function also serves to generate the cumulants� �m of the

distribution� de�ned in the sense that

log G�k� �
�X
m��

�ik�m

m�
�m� �������

By expanding the log of expression �����	�� these cumulants can be shown to

be various combinations of the moments� for example�

�� � ��� �������

�� � �� � ��� � ��� �������

and

�� � �� � ����� � ����� �����
�

��



��� Examples of Univariate Distributions

����� Uniform Distribution

The most simple type of univariate distribution is the uniform distribution� The

p�d�f� has the form�

	�x� �

����
���

�
�A
� hxi �A � x � hxi�A

�� otherwise

�����	�

and can be interpreted as the parameter lying somewhere within a de�ned range�

of size �A� with equal probability of it taking any value within that range� and no

probability of it lying outside� Although a very simple�minded type of distribution

function� it serves to illustrate a number of interesting properties� particularly

where no more speci�c information about the shape of the distribution function

is available�

In the MSc dissertation� �	��� the following properties were found� An explicit

formula exists for a general moment�

�n �
	

��n � 	�A

n
�hxi�A�n�� � �hxi �A�n��

o
� �������

and for the corresponding shifted moments�

�n �

����
���

An

n��
for n even

� for n odd

�������

It then follows that

�� �
A�

�
� �������

and so the standard deviation is Ap
�
� which is proportional to the size of the range�

The moment generating function of a uniform distribution takes the form of

a sinc multiplied by an exponential function�

G�k� �
eikhxisin�kA�

kA
� �������

�	



����� Gaussian Distribution

The most commonly used distribution function is the Gaussian distribution�

which has the form

	�x� �
	

��
���
�
�

exp

�
�
�x� hxi��

���

�
� �����
�

and x takes possible values in the in�nite range� ��������

From �	��� a recurrence relationship can be obtained for the moments�

hxni � �n � 	���hxn��i� hxihxn��i� �������

or�

�n � �n� 	����n�� � ���n���

A formula for the corrected moments� which is much more useful in this context�

can be derived fairly easily� Noting that a Gaussian is a symmetric distribution�

so that all odd moments are zero� we can derive the even moments as

��m �
Z �

��
�x� hxi��m

	

��
���
�
�

exp

�
�
�x� hxi��

���

�
dx�

and� changing variable to y � x� hxi� we have�

��m �
	

��
���
�
�

Z �

��
y�me�

y
�

��� dy

�
	

��
���
�
�

Z �

��
y��m��� � ye�

y
�

��� dy� �������

Integrating by parts gives

��m

�
	

��
���
�
�

�
�y��m�����e�

y
�

���

	�
��

�
	

��
���
�
�

Z �

��
��m� 	�y��m�����e�

y
�

��� dy

� ���n� 	���m��� �������

since the e�
y
�

��� term always dominates the y��m��� term at ���

��



So� for the Gaussian�

��m � ��m���	��m
��m����m���	

��m�� � �


���
���	m 
 IN� �����	��

An important property of a Gaussian distribution is that all cumulants above

second order are zero� ��	�� and ������ This is because the moment generating

function can be written

G�k� �
	

��
���
�
�

Z �

��
eikxexp

�
��x� hxi��

���

�
dx� �����		�

By multiplying the integrand throughout by

exp



�ihxi���� �
��

���

�
� exp�



�ihxi���� �
��

���

�

we can complete the square in the exponential� as in �	��� to give

G�k� � exp

�
�hxiik � ��k�

�

�
�

so that

log�G�k�� � ikhxi�
�ik��

�
���

Equating this with the expansion term de�ning cumulants� �������� shows that

for a general Gaussian distribution

�� � hxi

�� � ��

�m � � 	 m � ��

Cumulants of order greater than two� in distributions other than Gaussian�

can be thought of as a measure of how dissimilar they are from Gaussian�

��



����� Lognormal Distribution

A commonly�used distribution function in geostatistics �	�� is the log�normal dis�

tribution function� To describe a univariate log�normal function� we must de�ne a

new variable� y� where y � ln k� If k is de�ned to have a log�normal distribution�

then y is standard normally�distributed�

We de�ne kg to be the geometric mean�

kg � ehyi� �����	��

Then there exist some well�known equations relating the statistics of y and k�

��
��

hxi � exp

�
��
y

�
� hyi

�
� �����	��

and

��
x � exp

n
����

y � hyi�
o
� exp

n
��
y � �hyi

o
� �����	��

��� Multivariate Distributions

Here we introduce the concept of a multivariate distribution� necessary for the

development of any partial di
erential equation containing uncertain parameters�

in this context�

A multivariate distribution function can be thought of as a function of many

variables with corresponding ranges of possibles values for each variable�

F � f�x�� x�� x�� ���xN�� �����	�

with ranges Ri for each xi�

We can have a mean value for each variable�

hxii �
Z
R
xif�x�� x�� ���� xi� ���� xN�dx� �������

��



and its moments�

hxni i �
Z
R
xni f�x�� x�� ���� xi� ���� xN�dx� �������

The integration is performed over the entire space of variable� fxig for all i� The

correlation moment between two variables is also de�ned as

Co�xi� xj� � h�xi � hxii��xj � hxji�i

�
Z
R
�xi � hxii��xj � hxji�f�x�� x�� ���� xi� ���xj� ��� xN�dx

�������

����� Permeability

In the previous chapter� we discussed the need for a statistical approach� speci��

cally when considering the permeability�

The ideas for a multivariate distribution can be generalised to that of an un�

certain function� which enables us to introduce formally the statistical description

of the permeability function� when considered as a function of spatial position�

r� The statistics of the permeability are characterised� ��	�� by its mean value

function�

k��r� � hk�r�i� �������

its variance�

��
k�r� � h�k�r�� k��r��

�i� �����
�

and the permeability autocorrelation function� �P�A�F��� de�ned as a function of

two spatial positions� r� and r�

	�r�� r�� �
h�k�r��� k��r����k�r��� k��r���i

�k�r���k�r��
� �������

This is essentially a measure of the statistical relationship of neighbouring per�

meabilities�

��



Mathematically� the P�A�F� ought to satisfy certain requirements� which are

	� approach of 	�r�� r�� to one� as r� approaches r�

�we would expect the permeability at two points to be perfectly corre�

lated as those two points coincide�

�� approach of 	�r�� r�� to zero� when r� and r� are separated by some

characteristic distance

�this characteristic distance is the correlation length� and is associated

with a particular model�

The P�A�F� can usually be assumed to be a function of separation only�

	�r�� r�� � 	�r� � r��� �������

and a further simpli�cation that can be made is that the P�A�F� is �statistically�

homogeneous�

	�r� � r�� � 	�j r� � r� j�� �������

The correlation length can be formally de�ned as

� �
Z �

�
	�x�dx� �����	��

and represents an intuitive measure of maximum distance over which the statis�

tical properties of the permeability are strongly correlated�

We have now introduced most of the statistical concepts that are needed in

the remainder of this thesis� Some additional theory concerning multivariate

distribution functions is described in chapter �� where it is used in its context� In

the next chapter� we review methods for treating the problem of �uid �ow in an

uncertain medium that were developed elsewhere�

�




Chapter �

Literature Survey

In this chapter� we review some of the literature that concerns the numerical

solution of di�erential equations that contain uncertain parameters� In particular�

we restrict our study to equations of a similar structure to those of our model

equations �������� �������� and �����	��

��� Monte�Carlo Methods

Most numerical work that has been done up to this point in the practical area of oil

reservoir modelling� taking into account uncertainty in the equation parameters�

has involved a Monte
Carlo approach� The �rst attempt to employ this technique

was developed by Warren and Price� in their paper titled Flow in Heterogeneous

Porous Media� �	�
� Subsequent work has been done� speci�cally in the �eld of

water �ow in underground aquifers� in one
dimension by R� Allan Freeze� ���
�

and in two dimensions by Smith and Freeze� ��	
�

Monte
Carlo techniques involve multiple generations of large sets of realisa


tions of rock properties� The model equations in numerical� or discretised� form

can then be applied to each separate realisation in turn to give each particular

��



solution for whatever properties are of interest� such as pressure or �ux� that are

associated with that speci�c realisation� The statistical properties of the solution

may then be directly obtained from the ensemble of solutions for the realisations�

Those properties of usual interest are mean and variance�covariance� and also the

e�ect of the statistical properties of the uncertain parameters on the statistical

properties of the numerical solutions�

This is the general approach taken in ��
� where �� realisations of a two


dimensional cross
section are generated� The results given are found to be over

optimistic estimations of the mean performance of the reservoir� In ���
 di�erent

probabilities are assigned to each realisation� and estimations of the probability

distributions are made� It is shown that �nding the most probable realisation is

not a simple problem�

The advantage of Monte
Carlo methods is that the same numerical scheme

may be applied to each realisation� enabling the numerical errors to be assessed

and identi�ed� Once the numerical results for each realisation are obtained and

collated� it is then a comparatively straightforward process to obtain the sta


tistical properties of interest� For a reasonably large number of realisations� it

is feasible that any statistical property� such as higher order moments� of the

solution are available� This� in theory at least� allows a detailed picture of the

distribution function to be built up�

Any set of realisations generated for the purposes of Monte
Carlo simulation

must� of course� have the correct statistical properties� That is� their statistics are

required to have a broad similarity with the known� or assumed� properties of the

rocks under investigation� In most cases for the oil problem� we need to generate

the realisations from data given in the form of a correlation function� One paper

that succinctly describes this process is that by P� R� King� and P� J� Smith�

��



entitled Generation of Correlated Properties in Heterogeneous Porous Media�

��	
� The general mathematical methods required to quantify and generate sets of

correlated random �elds� are described� particularly using the nearest neighbour

model� The techniques investigated are especially appropriate when it is required

that the set of �elds generated are done so over a discrete numerical grid�

The problems with using Monte
Carlo methods are that the accuracy and

convergence with the statistical solution parameters are partly controlled by the

number of realisations that need to be generated� The number required might

possibly be impracticably large� especially in terms of speed and storage for com


putational purposes�

For the purposes of this research� we have restricted our consideration to an

investigation of more direct methods to �nd the statistical parameters of the

solutions� The emphasis has been on trying to �nd methods that allow a single

application of some numerical technique to produce directly an approximation to

moments of the distribution function of the solution�

��� Direct Methods

Much of the background work in the �eld of generalised linear stochastic operators

is presented by G� Adomian in his paper Linear Stochastic Operators ��
� This

paper concerns itself with equations of form�

Ly � x�t�� �	�����

where

L �
nX

���

a��t�
d�

dt�
� �	�����

In the most general case� there is uncertainty contained in the coe�cients a��t�

which are stochastic quantities� The term x can be thought of as the input

��



function� which may� or may not be stochastic� and the general problem can be

thought of as identifying the uncertainty caused in y due to the inverted form of

the L operator acting on x�t��

This gives a clari�cation of the nature of the type of problems that we are

dealing with in this research� A typical stochastic problem ��
 would involve

the x�t� term being a stochastic process� such as a white noise e�ect� and the

coe�cients a��t� being deterministic� We would then wish to investigate the

e�ect of the deterministic inverse operator L�� on the stochastic process to see

how it e�ects the uncertainties in the behaviour of y�t�� Our particular problem

is di�erent in that it is the coe�cients a��t� that cause the uncertainty in y�t�

and the input function may or may not be a stochastic term�

For the type of simpli�ed �ow problems we are dealing with� the coe�cients�

which stem from permeability and porosity� are independent of time�

Adomian is able to deal extensively with equations of this sort in an analytic

sense� by consideration of the Green�s function and integral form for equation

�	������ Some of the results he obtains are used in further research� particularly

when an analytic form of the equation is under consideration� such as in the work

of P� King� ���
� which is reviewed in some detail in chapter ��

Our background research on direct methods for stochastic solutions of the

oil reservoir problem� due to random permeabilities� began with Dupuy�s review

paper entitled Some New Mathematical Approaches for Heterogeneous Porous

Medium Studies ���
� In this paper� some techniques and results from two sets of

research� done by Schwydler and Matheron� are collated and summarised�

The contributions made by Schwydler are published in papers �	�
 to �	�
� He

�rst formalises the idea of the permeability autocorrelation function� to describe

��



a stochastic permeability function�

Cov�r� �
h�k�x�� k��x��� �k�y�� k��y��i

��
k

� �	�����

where r � jx� yj�

For �ow de�ned u� and given by u � �krp� he de�nes the probable �ow u��

u� � hui�

and �ow deviation

�u �
�
h�u� u���i

� �

�

�

Most importantly� the idea of relative standard deviation of permeability and

�ow���k and ��u� respectively� are de�ned as

��k �
�k

hki
�

��u �
�u

hui
�

It is argued that the variance reduction factor�

V RF �
���u�

�

���k�
�
�

is a measure of the e�ective heterogeneity of the porous medium model with

regard to the �ow considered�

Schwydler considers the permeability as a perturbation about its homogeneous

mean�

k�x� � k� � �k��x�� �	���	�

so that the pressure and �ow may be expressed as a perturbation series about

their unperturbed� or deterministic� solutions �

p�x� � p��x� �
�X
j��

pj�x�� �	�����

��



u�x� � u��x� �
�X
j��

uj�x�� �	�����

By substitution into the �ow equations� expressions for the analytic �ow vari


ance can be obtained� in terms of the analytic unperturbed pressure solutions�

and the autocorrelation function� By dividing by the unperturbed �ow� the rel


ative �ow variance can be obtained and compared with the relative permeability

variance to give the variance reduction factor �V�R�F���

The V�R�F�s for linear and radial �ows are then formulated to give an idea of

local �ow heterogeneities for these types of processes� Schwydler is also able to

apply these ideas� with some success� to a multi
well problem�

The work done by Matheron� with similar methods to Schwydler� is presented

in papers ���
� ���
� and ���
� He was able to make a signi�cant contribution to

the evaluation of e�ective permeabilities�

By expressing the pressures and �ows in terms of Green�s functions for the �ow

equations� Matheron is able to make comparisons with an e�ective �ow� These

can be expressed in terms of series involving relative variance of permeability with

geometric factors for di�erent dimensions of �ow under consideration� The sorts

of results obtained are comparable to those by Warren and Price �	�
�

Many results obtained by the two authors Schwydler and Matheron� are con


�rmed in later studies� Some of the mathematical formulations have proven

themselves to be invaluable for subsequent research� particularly some of the an


alytic perturbation techniques� which we further develop analytically� and also

numerically� later in this thesis�

A more recent attempt at this problem is made by Dikow and Hornung� ���
�

who study some further analytic properties of the homogeneous version of the

model equation� �������� and also develop series terms for the �ux� but with

slightly di�erent assumptions about the form of the random permeability func


��



tion� The precise form of equation they investigate is

r�krp� � �� �	�����

with mixed boundary conditions� p � p� on S� and �p

�n
� � on T � where S � T

makes up the boundary of the region G under consideration� The assumption

made on the values of the permeability k is that for all spatial positions it has

the limits�

�

�
� k � ��

where � is some constant that de�nes the limits of all admissible realisations for

permeability k� A unique weak solution can be shown to exist for all possible

realisations under this constraint� �	�
�

The random �ux� Q� is de�ned by

Q �
Z
k
�p

�n
� dS�

The permeability is assumed to have the form

k�x� � k��x�exp���x��� �	�����

where ��x� is a random function with mean value �� and a given covariance

cov ���x�� ��y�� � R�x� y�� �	�����

such that

�� � ��x� � ��

where

� � ln��

The random total �ux can then be expressed as

Q��� � Q� �Q�

���� �
�

�
Q��

� � r� �	������

��



where� Q�

�� Q
�

�� and Q��

� have explicit forms� Q�

� being a linear functional of �� Q��

�

being a quadratic functional of �� and an explicit bound existing for the remainder

r� The theory developed in this paper enables these moment terms for the random

total �ux to be calculated explicitly� Also� an expression for the variance of Q�

�

can be obtained�

The results achieved here are far more rigorous than those of Matheron and

Schwydler� ���
� Knowledge of the existence of these quantities has proved invalu


able in subsequent research� as we are now able to proceed to develop techniques

for solving these quantities numerically�

��� Groundwater Modelling

There is far more literature connected with �ow in uncertain media in the area of

groundwater modelling than in the �eld of oil reservoir modelling� We mention

here some of that work that has proven useful in our studies�

R� Allan Freeze ���
 applies Monte
Carlo methods to one
dimensional ground


water �ow problems in a non
uniform medium�

B� Sagar �	�
 considers �ow though a random porous medium with a Galerkin

�nite element discretisation�

The equation under consideration is a time dependent version of the water

�ow equations�

r�Trh��
�h

�t
� W� �	�����

where T is the transmissivity tensor� h the hydraulic head� S the coe�cient of

storage of the aquifer under investigation� and W is some forcing function�

By consideration of the weak form of these equations� a matrix equation may

�	



be formed�

GB � P
dB

dt
� F� �	�����

where B is the vector of solution parameters� and G is a matrix with coe�cients

dependent on the discretised uncertain transmissivity� Using a �nite central dif


ference discretisation in time� the equation is reduced to the form�

Cu � D �	�����

where the problem becomes one of inverting the matrix C� which has uncertain

elements whose statistical properties are known� We tackle a similar problem to

this in Chapter �� but Sagar in �	�
 employs rank one updates to change the inverse

elementwise� so that the mean of C�� may be found� The �rst two moments of

the solution distribution function can then be approximated� A simple example

is presented�

A few other authors have tried to approach the problem of �nding inverse

forms for the sort of uncertain matrix equations as in equation �	������ Some of

the more recent of these include Townley and Wilson� �	�
 and Hoeksema and

Kitanidis� ���
� These techniques involve linearisation of the Taylor expansions

for the inverse matrices and applying �rst order sensitivity analysis� This allows

for numerical results for mean value and covariance matrices of head values to

be obtained� Townley� �	�
� extended the approach to include second
order terms

in the mean head values� which permits a better estimate of how accurate the

technique may or may not be� A similar line of work has been employed to

attempt to solve the steady
state oil problem presented in chapter �� where the

second order terms are again included in the probabilistic approach� In this case

the emphasis is placed on solving larger sets of equations�

McKinney and Loucks ���
 apply the idea of �rst order uncertainty analysis to

��



the Galerkin �nite element discretised water �ow model equations� using a sensi


tivity matrix� Approximations for mean and variance�covariance of the solutions

are found� and favourable comparisons are made with Monte
Carlo simulations�

Graham and McLaughlin� ���
� explore� in detail� transport equations for a

conservative �ow in an uncertain environment

�c

�t
�

�

�xi
�vic��

�

�xi

�
Dij

�c

�xi

�
� �� �	���	�

where c�x� t� is concentration� a non
stationary random function� The pore ve


locity� vi�x�� is a random function�

Expressing the pore velocity as a perturbation function about its mean value�

writing the concentration as a perturbation also� and substituting these two terms

into the transport equation allows coupled equations for subsequent moments to

be developed� These analytical equations can then be solved and compared with

Monte
Carlo simulations�

Much detailed and varied work has been done in the area of groundwater

�ows� with uncertainty taken into account� by G� Dagan in papers such as ���


to ���
� and many others� Some of the principles are summarised in the book

entitled Flow and Transport in Porous Formations ���
�

The broad approach Dagan employs in this �eld is a predominantly analytic

one� and can be best illustrated by a look at ���
� Here he explores the equations

for solving for the random head �eld� h�

u � �krh� �	�����

and the continuity equation�

r � u � R�x�� �	�����

on a domain D� subject to appropriate boundary conditions�

��



Combining these gives

r�krh� � �R�x�

or in logarithmic form�

r�h�rY � rh � �e�YR�x�� �	�����

where Y is the log of the transmissivity� K� and R is rate of recharge�

These equations can be written in integral form using Greens� functions� for

example� ���
�

h�x��
Z
�rY �x� � rh�x��
G�x�x��dx�

� �
Z
hb�x

��
�G�x�x��

�n�
dx� �

Z
e�Y �x��R�x��G�x�x��dx� �	�����

where hb�x� is the boundary value�

Dagan forms a perturbation expansion of this equation� to give arbitrarily

high order terms in the expansion� As before� this method allows explicit formu


lae for expansion terms which can be averaged to give analytic terms for mean

and variance� The contribution of this paper is to consider conditional� as op


posed to the usual unconditional� probability distribution function� This is in

order to represent points at which a complete knowledge of the �eld is precisely

available� usually at a limited number of points� such as where wells have been

drilled� By application of conditional p�d�f�s and moments to the equations for

the perturbation series terms� conditional means and variances are developed�

Figures for e�ective conductivity in the conditional and unconditional cases

are obtained and compared� The di�erence between the two quantities is of

particular interest�

The calculations are done in one and two dimensions� with both linear and

radial �ows� and �nally in three dimensions�

��



The introduction of conditional probabilities into this area of study� so that

conditional e�ective permeabilities and variances may be compared with the un


conditional versions� is very interesting in the context of this research� Application

in oil reservoir modelling would clearly be of interest in cases where knowledge

of rock properties from borehole samples from a small number of production

wells needs to be taken into account� The reduction in variance is particularly

important�

In subsequent papers� Dagan further investigates uncertainty problems� Many

of his analytic results may prove interesting to investigate in a more practical or

numerical context in the future� These analytic results are based on an implicit

assumption of the existence� or at least availability� of analytic solutions to the

deterministic case� In this thesis the assumption that the analytic solution is

readily available is not necessarily made� which we feel allows a more physical

approach to problems� as encountered in a practical sense�

In recent years there has also been some considerable work done in speci�cally

spectral
based perturbation techniques� Some of these include those by Gelhar

and Vomvoris� ���
� Gelhar and Axness� ���
� Vomvoris� ���
� and many others�

Gelhar and Vomvoris� ���
� employ a spectral based perturbation technique

to �nd concentration variability in a three
dimensional aquifer� This results in

a highly anisotropic covariance function for the concentration� with very large

correlation lengths aligned to the mean �ow direction� The authors were able to

show a signi�cant decrease in the unusually large longitudinal correlation length

when the input lnK spectra had their high wave number values omitted� It is

noted that some of the analytical results obtained for the covariance function

here can be tentatively con�rmed by much of the general numerical behaviour

observed by Graham and McLaughlin� ���
� It is felt that more practical work in

��



this area could be pursued in the future�

In the paper of Bellin� Salandin and Rinaldo� ��
� an e�ort is made to draw

together some of the di�ering approaches employed in this area and to make

comparisons of their e�ective usefulness� Some aspects of numerical analysis of

dispersion of �ow in a heterogeneous porous medium are discussed� Of particular

interest is the accuracy of approximations in some of the previously developed

�rst order theories� such as that of Dagan� ���
� and the convergence of some of

the computational results� For example� di�erent rates of convergence were found

for Monte
Carlo simulations for di�erent spatial moments� and assessments of the

required number of simulations for convergence to be obtained for second order

moments is made and found to be large� even in the case of relatively mild hetero


geneity� Unexpectedly favourable comparisons between linear theories for mod


erately heterogeneous formations and Monte
Carlo simulations when solving for

variances are found� and some explanations for these observations are obtained�

��� E�ective Permeability

A number of people have done research with the emphasis on establishing mathe


matical formulations of e�ective values of permeabilities for �ow in porous media�

Gutjhar et al� ��
� found that the e�ective conductivity is the harmonic mean in

one
dimensional �ow� the geometric mean for two
dimensional �ow� and ��� ��
f�

times the geometric mean for three
dimensional �ow� Some of their results are

replicated� only more rigorously and in more general cases� by P� King� in ���
�

This paper is be reviewed in more detail in Chapter �� Drummond and Horgan�

���
� are able to replicate some of the values for e�ective permeability by two

di�erent methods� One is a perturbative method� as before� but they are also

��



able to apply a simulation method that is shown to give good agreement with

other methods� It is envisaged that the simulation method might be appropriate

in cases where the standard perturbation methods cannot be implemented�

��� Conclusions

There is a great deal of background literature in the �eld of porous �ow in un


certain media stemming from groundwater �ow models� Although most of these

ideas have not been extensively applied to oil reservoir modelling� there is no

reason why this could not be done�

However� virtually all this literature adopts analytic methods for the solution

of the model equations� The assumption behind this is that analytic solutions for

these equations are freely available� something that is not necessarily true in most

practical applications� It is the aim of this project to produce numerical meth


ods� adapted from simulation techniques for deterministic equations� to evaluate

statistical data about the solutions� Present literature indicates� to some extent�

how the jump from deterministic to stochastic solutions may be made� but there

is hardly any that demonstrates precisely how this can be done when working

with numerical simulation models for oil reservoirs�

There have recently been published several books that review the entire sub


ject� especially from the point of view of groundwater modelling in an uncer


tain environment� Among the best of these is that by Dagan� ���
� which has

already been mentioned� and L� W� Gelhar�s Stochastic Subsurface Hydrology�

���
� Gelhar�s book contains chapters reviewing much of the current work al


ready described in this chapter� especially that of the author� with extra chapters

that emphasize the transport processes in strongly heterogeneous media� Rather

	�



importantly� some limited indication of numerical extensions to all the analytic

methods introduced here are reviewed also� This at least allows the reader to

gain some limited insight into the important jump from numerical deterministic

approaches to full probabilistic numerical techniques� which in the context of this

research� can be regarded as the ultimate aim of this �eld of study�

In the next chapter� we review and then attempt to extend the work of P�

King� This is one of the �rst steps taken in this research project� The general

di�erence between the jump from deterministic to stochastic in an analytic case

and a numerical case is illustrated by the way in which this chapter di�ers from

subsequent chapters�

	�



Chapter �

Extension of P� King�s Work

In this chapter� we review� and then attempt to extend� the work done by Dr� P�

King ����� entitled �The use of �eld theoretic methods for the study of 	ow in a

heterogeneous porous medium��

In this paper� an integral equation for the Green
s function is developed�

A perturbation series is obtained� and this is expressed using �eld theory by

diagrammatic means� This allows the entire series to be averaged and summed

up� The averaged Green
s function is then equated with the deterministic form

to obtain an e�ective permeability in a renormalised form�

As an extension to this work� we consider the extension to a time� dependent

version of this model equation� By considering the Green
s function of this equa�

tion� Fourier transformed in time� we are able to show that it satis�es the same

equation as the steady�state Green
s function� The same diagrammatic series

technique could then be employed to perform the entire summation of the aver�

aged series� It was intended that this would enable us to develop a time�dependent

e�ective permeability� the main problem being how to invert the Fourier time�

transformed e�ective permeability� We attempted to invert this with contour

integration� but found eventually that this was not a suitable approach� It was


�



concluded that there may be ways of making use of this technique in the future�

but they have yet to be explored�

��� P� King�s work

Throughout this chapter only� the permeability is denoted by K� instead of k� in

order to maintain consistency with the notation of King�

The model equation under consideration is the steady�state equation ��������

r �Krp� � ��

The Green
s function for this equation is de�ned by

rr �K�r�rrG�r� r
��� � ��r� r��� �������

The pressure is then given as

p�r� � q �
Z
G�r� r��dS�� �������

To solve equation �������� King considers a perturbation y�r� about a homoge�

neous medium� K�� which is assumed to have a corresponding Green
s function�

known throughout as the deterministic� or �bare� Green
s function� G��r � r���

This has the familiar form� as in standard Green
s theory� for example� lnjr� r�j

in two�dimensional problems� and satis�es

K�r
�
r
G��r� r�� � ��r� r��� �������

So then� the full Green
s function satis�es�

K�r
�
r
G�r� r�� � ��r� r���K�rr �y�r�rrG�r� r

��� � �����
�

By multiplying equation �����
� throughout by G��r � r���� and integrating over

all r�� space� this equation can be transformed into an integral equation of the


�



form

G�r� r�� � G��r� r���
Z
G��r� r���K�rr��y�r���G�r��� r��dr��� �������

It should be stressed that this action of multiplying by the Green
s function and

integrating is equivalent to the inverse operation of the operator K�r�
r
� stemming

from the form of equation ��������

Written in Fourier transformed form� this gives the form required�

�G�j�k� � �G��j���j� k� � �G��j�
Z
dldmK� ��l�m��m���l�m� j��y�l� �G�m�k��

�������

where the Fourier transforms of G and y are denoted by �G and �y respectively�

This enables a series to be generated�

The deterministic Green
s function for the homogeneous mean is known to

have the following form in Fourier transform space�

�G��k� � �
�

K�k�
� �������

It is argued that if the mean behaviour of the heterogeneous medium is that

of a homogeneous one with an e�ective permeability� then the averaged Green
s

function would have the analogous form�

h �G�k�i � �
�

Keffk�
� �������

where Keff is the e�ective permeability of the entire heterogeneous medium�

Evaluating terms for moments of the lognormal distribution� allows the series

generated by equation ������� to be summeddiagrammatically� ����� giving derived

solutions of the form

h �G�k�i�� � �G��� �k��
X

k� �������







where
P
k is called the self�energy term� ����� The expression for the self�energy

term obtained is

X
k � K�

�

Z
dj�k � j�����k� j� �G��j�� ��������

Here� ���k� j� is the Fourier�transformed spatial correlation function considered

in this context to be a real function with a real argument�

So� by equating equations ������� and �������� King gives the form for the

e�ective permeability of a heterogeneous medium� ����� as

Keff � K� �

P
�k�

k�
� ��������

King found this term� when evaluated� to agree perfectly with that obtained by

Gutjahr at al ���� That result� however� is obtained by a truncated perturbation

series in limited dimensions� The signi�cant aspect of King
s results in ���� is

that no limiting assumption about the dimensions is made� and that the second

order truncated series is shown to be stable to higher orders�

Writing the expression for covariance�

��
p�r�� r�� � hp�r��p�r��i � hp�r��ihp�r��i�

in terms of Green
s functions� from �������� enables series terms for the covariance

to be obtained also�

A degree of agreement with previously�obtained results� such as those from

Bakr et al ���� is again observed�

��� Extension of Concept

In this section we consider the e�ects of introducing some time�dependence into

King
s approach� Our main aim is to �nd a time�dependent e�ective permeability�


�



using parallel steps to those in ����� We consider the following extended equation�

�p

�t
�r�K�r�rp� � �� �������

which is a simpli�ed and adapted version of our model equation� ��������

Again� we are trying to �nd the Green
s function for this equation� This is

de�ned to satisfy

�G

�t
�rr�K�r�rrG� � ��r� r����t� t��� �������

where the problem is assumed to be static� and

G � G�r� r�� t� t���

Consider K�r� to be a perturbation about some mean value� of the form

K�r� � K��� � y�r��� �������

The bare Green
s function� in this context� can be de�ned to satisfy�

�G�

�t
�K�r

�
r
G� � ��r� r����t� t��� �����
�

where we assume G� � G��r� r�� t� t���

Taking the Fourier transform of �����
� in space and time gives

i�
��G� �K�k

� ��G� � �� �������

We de�ne the time Fourier transform of G to be �G� and the Fourier transform in

space and time of G as ��G� Thus�

��G��k� �� �
�

i� �K�k�
� �������

So� we are seeking a form for the �full� Green
s function� that� when averaged

over all possible realisations for y� is of the form�

h��G�k� ��i �
�

i� �Keffk�
� �������


�



Returning to equation �������� with K�r� substituted as K���� y�r��� we �nd

�G

�t
�K�r

�
r
G �K�rr�y�r�rrG� � ��r� r����t� t��� �������

so

�G

�t
�K�r

�
r
G � ��r� r����t� t���K�rr�yrrG�� �������

which can be re�expressed as

�
�

�t
�K�r

�
r

�
G � ��r� r����t� t���K�rr�yrrG�� ��������

Now� from �����
�� we see that the action of the inverse operator � �
�t
�K�r�

r
���

is the same as multiplication by the bare Green
s function and integration with

respect to space and time� It can therefore be deduced that another form of

equation �������� obtained by multiplying by � �

�t
�K�r�

r
��� on both sides� is

G�r� r�� t� t��

� G��r� r
�� t� t�� �K�

Z Z
G��r� r

��� t� t���rr��y�r���rr��G�r��� r�� t��� t��d�r��dt���

��������

Making the assumption that the full problem is static� so that K�r� does not

vary in time� we have

G�r� r�� t� t�� � G�r� r�� t� t���

so

G�r� r�� t� t��

� G��r� r
�� t� t���K�

Z Z
G��r� r

��� t� t���rr��yrr��G�r��� r�� t�� � t��d�r��dt���

��������

We now consider taking the time Fourier transform of the Green
s function�

Z
G��r� r�� t� t��e�i��t�t

��d�t� t�� � �G��r� r�� ���


�



with great care taken when changing variable� Equation �������� may then be

re�written�

�G�r� r�� �� � �G��r� r�� ��

� K�

Z �Z Z
G��r� r�� t� t���rr��yrr��G�r��� r� t�� � t��d�r��dt��

�
e�i��d	�

��������

where 	 � t� t�� Now� consider the integral I� where

I �
Z Z

G��r� r�� t� t���rr��yrr��G�r��� r� t��� t��d�r��dt���

If we call

z � t�� � t��

then

dz � dt���

and

t� t�� � t� t� � t�� � t�

� t� t� � z

� 	 � z�

Therefore

I�	 � �
Z Z

G��r� r�� 	 � z�rr��y�r���rr��G�r��� r�� z�d�r��dz� ������
�

But note� this is in the form of a simple convolution� and when we take the Fourier

transform of I�	 �� we are just left with the product of the two Fourier transforms

within the integral� Thus�

F�T� �I� �
Z

�G��r� r��� ��rr��y�r���rr��
�G�r��� r�� ��d�r��� ��������


�



So� if we write out �������� in full� we obtain�

�G�r� r�� �� � �G��r� r�� ��

�
Z

�G��r� r��� ��K�rr��y�r���rr��
�G�r��� r�� ��d�r��

��������

Thus� the Fourier transform in time of the time dependent Green
s function

exactly satis�es the same equation as the Green
s function for the steady�state

equation �������� in ����� This is considered a very interesting and signi�cant

result� Equation �������� is quite general� and so any techniques used in solving

the steady�state problem in ����� may be re�applied to each frequency mode � to

give a solution for the averaged Green
s function as in the steady�state case�

We apply the results from equation �������

h �G�k�i�� � �G�
��
�
X

k�

where�

X
k � K�

�

Z
�k � j�����k� j� �G��j�d

�j�

Using exactly the same techniques and arguments� and treating the frequency as

a parameter �or each frequency mode separately�� as in ����� we obtain the form

of this equation for the time�dependent case as

h��G�k� ��i�� � ��G�

��

�k� ���
X

k� ��������

where

X
k � K�

�

Z
d�j�k � j�����k� j� ��G��k� ��

� K�
�

Z
d�j�k � j��

�

i� �K�j�
� ��������


�



����� One�dimensional Example

We consider here a one�dimensional example of this idea� It ought to be fairly easy

to extend the results� for this case� to three dimensions� The equation governing

the behaviour is

�p

�t
�

�

�x

�
K�x�

�p

�x

�
� �� ��������

K�x� being the one�dimensional heterogeneous permeability� and K� its homo�

geneous mean value� The main problem is in calculating the self�energy term�

equation ��������� The added problem now is that it contains both a real and

imaginary part� It is hoped that the imaginary part can be included with the i�

term� in the bare Green
s function� in some way to give a fully averaged Green
s

function of the form�

h��G�k� ��i �
�

i�� � 
� �Keffk�
� ��������

Consider �������� for the one�dimensional case�

X
k � K�

�

Z
k�j����k � j�

�

i� �K�j�
dj

� K�k
�
Z
�

��

K�j
�

i� �K�j�
���k � j�dj

� �K�k
�
Z
�

��

��
i� �K�j

�

i� �K�j�

�
���k � j��

i�

i� �K�j�
���k � j�

�
dj

� �K�k
�

�Z
�

��

���k � j�dj �
Z
�

��

i�

i� �K�j�
���k � j�dj

�
� ��������

The �rst term in �������� is easy to cope with because� if I� is de�ned as

I� �
Z
�

��

���k � j�dj�

then� by a change of variables to l � k � j�

I� � �
Z
��

�

���l�dl

�
Z
�

��

���l�dl

� ����� ��������

��



�that is� I� � ��r � �� �by inverse Fourier transform� as in the appendix of �����

Now consider the second term of ��������� de�ning

I� �
Z
�

��

i�

i� �K�j�
���k � j�dj�

We use calculus of residues to attempt to evaluate this� So�

I� �
i�

K�

Z
�

��

���k � j�

� i�
K�

� j��
dj

�
i�

K�

Z
�

��

���k � j��q
�

�K�

�i� �� � j

	�q
�

�K�

�i� �� � j

	dj�

or� by setting a� �
q

�

�K�

�i� ���

I� �
i�

K�

Z
�

��

���k � j�

�a� � j��a� � j�
dj� ��������

To perform the integration� we need to integrate around the edge of the top

half of the complex plane� along an in�nite semi�circle� denoted as C� We assume

the semi�circle has radius R� and that R��� Note here� that �� is being treated

as a complex function� This is due to the fact that it is now a function of a

complex argument�

We have considered the two most straightforward cases for the form that ��

might take�

�� ���k� j� is wholly analytic within the region enclosed by C �this is not

likely��

�� ���k � j� has a �nite number of simple poles in the region enclosed by

the contour C� denoted by a�� a�� a�����an�

If results for these two cases can be obtained� it is hoped that we can generalise

the results to the more complicated cases which would be�

� �nite number of multiple poles�

��



� in�nite number of simple poles� and

� in�nite number if multiple poles�

Case � implies that the integrand has one simple pole contained within the

upper half of the complex plane� at a�� The residue is then given by

lim
j�a�

�j � a��
���k � j�

�a� � j��a� � j�
������
�

� �
���k � a��

�a�

� �
��
�
k � �i� ��

q
�

�K�
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� �

s
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��

�� � i�

�
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�
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s
�

�K�

�
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��������

And so�

I
C

���k � j�

�a� � j��a� � j�
� ��i� residue

� �i

s
K�

��
�i� �� ��

�
k � �i� ��

s
�

�K�

�
�

��������

If we assume Jordan
s lemma ��� is satis�ed� then the contribution of the

in�nite semi�circle to the integral is zero� and

I
C
�
Z
�

��

�

Then

I
C

���k � j�

�a� � j��a� � j�
� �

s
K�

��
��� � i� ��

�
k � �i� ��

s
�

�K�

�
� ��������

Hence
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s
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�
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s
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�
�
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and

X
k � �K�k

�

�
���� � �i� ���
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�

�K�
��

�
k � �i� ��

s
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�K�

��
� ��������

In case �� ���k�j� has a �nite number of simple poles at points a�� a�� a�����an�

with corresponding residues b�� b�� b�����bn� Then� by an expansion theorem and

use of the formula

I ���k � j�

i� �K�j�
dj � ��i�

X
residues� ��������

we �nd

Z
�

��

���k � j�

i� �K�j�
dj

� ��i


�
��

s
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�� i
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�
k � �i� ��

s
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�K�

�
�

NX
n��

bn
i�

K�

� a�n


�
� ���������

��������

where

bn � lim
j�an

�j � an����k � j��

This result is known formally as Mittag Le�er
s expansion theorem� ��� and �
�

Note the extra set of terms in expression �������� compared to �������� are

the summation terms�

i�

K�
��i

X bn
i�

K�

� a�n

� �
���

K�

X �
i�
K�

� a�n

�
bn

� ��
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�

� a�n

�
���

K�

X
n

�
a�n �

i�

K�

�
�
��

K�

�

� a�n

� bn ��������

Although fairly complicated� this expression makes little di�erence to the

structure of the self�energy term in equation ���������

��



A sensible model for the ���k � j� function might contain one simple pole in

the upper half of the complex plane� in which case the self�energy takes on the

following form�

X
k

� �K�k
�


��
������� �i� ���

r
�

�K�
��

�
k � �i� ��

r
�

�K�

	
�

���

K�

�
a� � i�

K�

�
�
��

K�

�

� a�
� bn


��
�� �

�	
�
���

Further useful progress is not now possible without assuming a speci�c form

for the autocorrelation function� We �nd that this presents a di�cult problem

in that the types of function assumed in ����� notably of the form e�z
�

� do not

satisfy the Jordan
s lemma� so that the contribution from the in�nite semi�circle

is patently non�zero�

We must either consider alternative forms for the autocorrelation function�

or an alternative method of evaluating the self�energy term� This work was not

pursued further� but it was certainly felt that this line of approach ought to be

continued in the future� and may give useful results�

There is also the possibility of using a Laplace transform in time� as an al�

ternative� This was explored� but no useful preliminary results were obtained�

however� a fresh approach might prove useful�

In the following chapter� we review and extend work done on an ordinary

di�erential equation� containing uncertainty� The main interest is� again� on how

the uncertainty in the solution is e�ected and changed by the progression of the

solution� both analytic� and numerical� in time� We then go on to consider in

detail the behaviour of the discretised model equations for both the steady�state

and time�dependent cases�

�




Chapter �

Analysis of a Stochastic

Ordinary Di�erential Equation

In this chapter� we summarise� and extend some earlier work that was completed

in order to satisfy the requirements for an MSc dissertation� ����� All the work

summarised in section ��� represents a review of that from the MSc dissertation�

����� and it is not intended that this section forms part of the requirements for

the research project�

The work in this chapter provides an introduction to the research project as

a whole� and turns out to give some valuable insights into the general statistical

behaviour of these sorts of equations� Some of these ideas are included in further

consideration of the more complicated partial di	erential equations studied in

subsequent chapters�

��� Mass Balance Model

We consider the simple form of the model equation 
�����


�y � �y � f
t
 y
�
 � �� 
�����


��



Due to the comparative simplicity of this o�d�e�� we can obtain directly a closed

form of the solution�

y �
Z t

�
e����t�f
� 
d�� 
�����


����� Mean Value of Solution

The mean value on either side of equation 
�����
 can be taken� to allow the mean

value of the analytic solution to be expressed as

hy
t
i �
Z t

�
he����t�if
� 
d�� 
�����


We note that 
�����
 can be written in terms of the moment generating function

of the distribution�

hy
t
i �
Z t

�
G
�i
� � t

f
� 
d�� 
�����


from the basic de�nition of the moment generating function� 
�����
� This can

then be compared to the quantity de�ned in the introductory chapter� chapter ��

as the intuitive or deterministic solution�

�y
t
 �
Z t

�
eh�i���t�f
� 
d�� 
�����


The di	erence between the mean value of the solution� hy
t
i� and the deter�

ministic solution �y
t
� is de�ned by

ey
t
 �
Z t

�

n
he����t�i � eh�i���t�

o
f
� 
d�

�
Z t

�

��
�

�X
���


h��i � h�i�

� � t
�

��

��
� f
� 
d�� 
�����


To proceed� we need to evaluate the moment terms in equation 
�����
� for

which� in general� we do not have explicit forms� However� if we limit consid�

erations to speci�c distribution types� such as Gaussian� we can at least obtain

��



recurrence relationships for successive moments� For example� for a Gaussian it

is found� �����

hxni � 
n� �
��hxn��i� hxihxn��i� 
�����


This allows the �rst few terms in equation 
�����
 to be summed up� giving

ey
t
 �Z t

�

�
�� 
� � t
�

�
�

���h�i
�


� � t
� �

��� � ���h�i�


��

� � t
� � � � �

	
f
� 
d��


�����


This series can be considered quantitatively to see that ey
t
 cannot be guaranteed

to be equal to zero at any time� particularly as t���

At this point� it is not possible to sum up these in�nite series completely�

However� later work provides better insight into their general behaviour�

For the Gaussian case� we are also able to make use of the property of the

cumulants� �n� in that�

log
G
x

 � ix�� � x�

�
��

� ixh�i � x�

�
���

Therefore�

G
x
 � exp



ixh�i � x�

�
��

�
� 
�����


So if� for simplicity� we take f
t
 � �� for all time� so that

hy
t
i �
Z t

�
exp

�
h�i
� � t
 �

��
� � t
�

�

	
d�� 
������


and we compare this with the deterministic solution�

�y
t
 �
�

h�i 
�� e�h�it
�

then we could argue that �y
t
 was a valid approximation to hy
t
i� but only in

the region ��� t��� where

t� � �h�i
��

� 
������


��



����� Development of Probability Distribution Function

We also explored in ���� the analytic development of the p�d�f� of the solution of

model equation 
�����
 in time�

First� we assumed that an incremental probability that � takes a value within

the range � and �� d� corresponds to the probability that y lies between y and

y � dy� at time t� so that

��
�
d� � �y
y
dy� 
������


Then� we can obtain an equation for the p�d�f� of the solution� of the type

�y
y
 � ��
�

d�

dy

�
��
�

dy

d�

� 
������


The term dy

d�
can be extracted from the closed form of the solution� 
�����
� so

that

�y
y
 �
��
�
R t

�
� � t
e����t�f
� 
d�
� 
������


In ���� quadrature rules are used to obtain experimental results for plots of

p�d�f� of the 
analytic
 solution with respect to time�

����� Experimental Results

We present here some examples of the plots obtained in ����� In each case� �gure


a
 shows plots of the p�d�f� of the solution at di	erent time intervals� The �gures


b
 show the behaviour of the mean value of the solution� and the deterministic

solution plotted against time�

Figures �����
a
 and �����
b
 present the results when � is assumed to have

a Gaussian distribution� with mean value ��� and variance �� � ���� and forcing

function f
t
 equal to ��� for all time� The p�d�f� plots are plotted at time

intervals of ����� seconds each�

��



In �gures �����
a
 and �����
b
 we see a similar case to ���� but with much

smaller variance� �� � �����

In �gures �����
a
 and �����
b
 we see a similar case again� but this time the

mean of � is ���� with a Gaussian p�d�f�� of variance� �� � �����

In �gures �����
a
 and �����
b
 the forcing function is of the form F 
t
 � t��

with h�i � ���� with a Gaussian p�d�f�� variance �� � �����

The last �gures� �����
a
 and �����
b
 � has a uniform distribution form� with

mean value h�i � ���� and variance �� � ����� The forcing function is a constant

one� F 
t
 � ����

��



Figure �����
a
 Solution p�d�f� plotted at ����� sec� intervals�

h�i � ���� ��
� � ��� Gaussian distribution and f
t
 � ����

Figure �����
b
 Plot of hyi and �y against time�

��



Figure �����
a
 Solution p�d�f� plotted at ����� sec� intervals�

h�i � ���� ��
� � ���� Gaussian distribution and f
t
 � ����

Figure �����
b
 Plot of hyi and �y against time�

��



Figure �����
a
 Solution p�d�f� plotted at ����� sec� intervals�

h�i � ���� ��
� � ���� Gaussian distribution and f
t
 � ����

Figure �����
b
 Plot of hyi and �y against time�

��



Figure �����
a
 Solution p�d�f� plotted at ����� sec� intervals�

h�i � ���� ��
� � ���� Gaussian distribution and f
t
 � t��

Figure �����
b
 Plot of hyi and �y against time�

��



Figure �����
a
 Solution p�d�f� plotted at ����� sec� intervals�

h�i � ���� ��
� � ���� uniform distribution and f
t
 � ����

Figure �����
b
 Plot of hyi and �y against time�

��



In �gure ����� we see data where the mean value of � is zero and there is a

comparatively large dispersion� �� � ���� As expected� the mean value of the

solution diverges away from the deterministic solution� �y� almost immediately�

with �y being analytically linear� The initial movement of the p�d�f� is in a

positive direction� accompanied by its dispersion� After a while� it comes to a

halt� with a peak value of ���� which is rather surprising� since it implies a high

probability of the solution tending towards this value as the time increases� even

though the mean and variance increase unboundedly�

In �gure ������ the mean value of � is again zero� with a comparatively smaller

variance than in ������ Accordingly� hy
t
i diverges away from �y
t
 much less

drastically at �rst� owing to the higher value of t�� in equation 
������
� when

plotted on the same scale� This behaviour also accounts for the fact that the

p�d�f� moves further before coming to a stop� with peak at about ����

Figure ����� shows behaviour when h�i has a non�zero value� with the same

variance as ������ The deterministic solution has the analytic solution

�y
t
 � � � e�t�

and tends asymptotically to ���� For time less than ���� the deterministic solution

does approximate hy
t
i� in accord with expression 
������
� but there is rather

extreme divergence after this� The p�d�f�� plotted at time intervals of ����� tends

to a �xed pro�le� as in the previous two �gures� re�ecting the behaviour of �y
t
�

There is less dispersion� though� as this is to some extent� connected with the

distance travelled by the p�d�f�

In �gure ����� �y
t
 tends asymptotically to t� � �t � �� This demonstrates a

case where both the deterministic solution� and the mean value grow unboundedly

with respect to time� They do so� however� at considerably di	erent rates�

In the last �gures� ������ we see what is arguably the most interesting be�

��



haviour� There is convergence of both the deterministic solution and the mean

value� but to di	erent values�

For some of the results� notably those in �gures �����
a
 and �����
b
� and

�gures �����
a
 and �����
b
� we can see an apparent stabilisation of the solution

p�d�f� whilst the mean increases unboundedly� This is due to the e	ects of the

tail of the distribution always making a contribution to the mean value as time

increases� It could be argued in this sort of case that the deterministic solution

�y gives a better re�ection of the dynamic behaviour of the distribution function

than the actual mean value hyi�

����� Numerical Approach

The e	ect of applying a numerical scheme to the model equation is also investi�

gated in �����

It is shown that when applying a numerical scheme to both the mean value

of the solution and the p�d�f� of the solution� the convergence is of same order

as the convergence achieved when applying the same scheme to a deterministic

problem �����

��� Further Analysis of Model O�D�E�

The work in this section is an extension to the previous MSc work� ����� and was

done as part of the main research project� We use a form of one�dimensional

sensitivity analysis� which enables the series terms of the type in 
�����
 to be

investigated further� For a general value of �� consider the solution y for a �xed

time as an expansion about h�i�

y
�
 � y
h�i
 � 
�� h�i
	y
h�i

	�

�

�� h�i
�

��

	�y
h�i

	��

��



� � � �� 
�� h�i
n
n�

	ny
h�i

	�n

� � � � 
�����


Assuming uniform convergence of the series in equation 
�����
� we can take the

mean over all possible values of �� on either side of this equation� to obtain

hy
�
i � y
h�i
 �
h
�� h�i
�i

��

	�y
h�i

	��

� � � �� h
� � h�i
ni
n�

	ny
h�i

	�n

� � � � 
�����


The term of particular interest is the di	erence between the mean value of the

solution and the deterministic solution�

hy
�
i � y
h�i
 �
�X
n��


n
n�

	ny
h�i

	�n

� 
�����


where 
n is the nth corrected moment� h
� � h�i
ni� The time dependence is

contained within the derivatives of y� and must be considered carefully� This is

an example of one dimensional uncertain stability analysis� as in �����

Equation 
�����
 is true for any general � distribution� de�ned by mean h�i�

and corrected moments f
ng� It is now illustrative to consider the e	ect of sub�

stituting speci�c distributions� If the distribution is symmetric about the mean�

the shifted moments for n odd are equal to zero from chapter �� equation 
������
�

So� for a symmetric distribution function� equation
�����
 becomes

hy
�
i � y
h�i
 �
�X

m��


�m
�m�

	�my
h�i

	��m

� 
�����


For simple distribution functions� fairly straightforward� explicit formulae for

the �mth shifted moments can be obtained� For a Gaussian distribution� with

variance ��� from �����


�m �

�m� �
���m

�m��
m� �
�
�m � IN� 
�����


For a Uniform distribution� de�ned as

�
�
 �

����
���

�
�A � h�i �A 	 � 	 h�i �A

�� otherwise�

��



we have


�m �
A�m

�m� �
�m � IN� 
�����


����� Example� A Uniform Distribution

Considering the behaviour for a uniform distribution �rst� we �nd that equation


�����
 becomes

hy
�
i � y
h�i
 �
�X

m��

A�m

�m�
�m� �


	�my
h�
i
	��m

�
�X

m��

A�m


�m� �
�

	�my
h�i

	��m

� 
�����


The important question is does this series converge� The answer can easily be

obtained by looking at successive terms in the series and employing the ratio test�

If we �nd that the di	erential term ��my

���m
equals zero for one particular� and all

successively higher terms� we are left with a �nite series which is� by de�nition�

convergent� It is important to state when employing the ratio test that it is only

the limit of successive terms that we must consider� and cases where individual

terms are zero result in a truncated series� where convergence can be assessed by

consideration of the limit of the ratio�

If the series is written as
P�

m�� am� then� the ratio of absolute value of succes�

sive terms can be written

jam	�j
jamj �

A�m	�


�m� �
�
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 �

If we substitute bn for



�ny�h�i�

��n




� then
jam	�j
jamj �

A�


�m� �

�m� �


b�m	�

b�m
� 
�����


��



where A� is �nite� by de�nition of the original distribution� Now let us make the

assumption that b�m��

b�m
is bounded for all values of m� Therefore� A� b�m��

b�m
is a

�nite number� So there must exist an integer� M � such that


�M � �

�M � �
 � A� b�m	�

b�m
�

which implies

A�


�M � �

�M � �


b�m	�

b�m
� �� 
�����


and what�s more�

A�


�n� �

�n � �


b�n	�
b�n

� �� �n �M� 
������


So the series
P�

m�� am is convergent under these conditions� due to the ratio test�

For a �nite time value� the assumption that ��m��y�h�i�
���m�� 
�

�my�h�i�
���m

is bounded is

a fairly reasonable one� and so it is not expected that hy
�
i � y
h�i
 diverges to

in�nity for a �nite time� under standard conditions� It may� however� converge

to a very large number� The interesting behaviour� though� is that for t���

Looking at a speci�c example� consider the model equation 
�����
� and its

closed form solution 
�����
�

y �
Z t

�
e����t�f
� 
d��

This implies that

	y
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�
Z t
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� � t
e����t�f
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������


and so

	ny
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Z t

�

� � t
neh�i���t�f
� 
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������


An explicit formula for this can be calculated� if we make a speci�c assumption

about the form of f
t
� Let us consider f
t
 � �� and then de�ne In to be

In �
Z t

�

� � t
neh�i���t�d��

��



Integrating by parts gives

In � �
�t
n
h�i e�h�it � n

h�iIn��� 
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If n � ��
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and if n � ��

I� � � �

h�i�
�
� � e�h�it � h�ite�h�it
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���
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In general� it can be proved by simple induction that
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m
m�

�
� 
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Looking at the general case for a uniform distribution� we �nd
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�
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As t � �� if h�i is strictly negative� then the e�h�it always dominates the

P�m
n��

�h�it�n
n


terms� and always blows up� So�

h�i � �� hy
�
i � y
h�i
���

as t���

If h�i is greater than� or equal to �� then as t � � we �nd that e�h�it

eventually dominates the �h�it�n
n


terms� and therefore�
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A necessary and su�cient condition for this series to converge is just

A

h�i � ��

Therefore� the condition for convergence of the series is A � h�i� and there is di�

vergence if A � h�i� In the case where A � h�i� the series becomes �
h�i
P�

m��
�

�m	�
�

which is divergent� albeit very slowly�

So� to summarise the case for a uniform distribution� hy
�
i � y
h�i
 diverges

if either h�i is negative� or A � h�i� This corresponds to a constraint that all

possible values for � about h�i must lie in the positive half�plane� This corre�

sponds with the intuitive result that any possible negative value for � contributes

to an eventual blow up of the mean value�

A more rigorous proof of this is as follows� obtained by considering series


������
 again�
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If the terms in the series are
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So� am � ��

However� this does not necessarily imply convergence of the series� The im�

portant factor is again to consider the ratio of successive terms as m��� This

is given by 
�����
�

jam	�j
jamj �

A�


�m� �

�m� �





���m���y�h�i�
����m���







��my�h�i�
���m





��



�
A�
�m� �


h�i�
�m� �


�
� � e�h�it

P�m	�
n��

�h�it�n
n


�
�
� � e�h�it

P�m
n��

�h�it�n
n


� � 
������


Now� we put
�mX
n��


h�it
n
n�

� eh�it �
�X

�m	�


h�it
n
n�

�

so that�

jam	�j
jamj �

A�
�m� �


h�i�
�m� �



�� e�h�it
eh�it �P�
�m	�

�h�it�n
n







�� e�h�it
eh�it �P�
�m	�

�h�it�n
n






�
A�
�m� �


h�i�
�m� �


e�h�it
P�

�m	�
�h�it�n
n


e�h�it
P�

�m	�
�h�it�n
n


�
A�
�m� �


h�i�
�m� �


P�
�m	�

�h�it�n
n
P�

�m	�
�h�it�n
n


�
A�
�m� �


h�i�
�m� �


P�
�m	�

�h�it�n
n
 � �h�it��m��

��m	��
 � �h�it��m��

��m	��
P�
�m	�

�h�it�n
n


�
A�
�m� �


h�i�
�m� �


�
�P�

�m	�
�h�it�n
n
P�

�m	�
�h�it�n
n


�
�h�it��m��

��m	��
P�
�m	�

�h�it�n
n


�
�h�it��m��

��m	��
P�
�m	�

�h�it�n
n


�
A

�
A�
�m� �


h�i�
�m� �


�
�� �

�h�it��m��

��m	��
P�
�m	�

�h�it�n
n


�
�h�it��m��

��m	��
P�
�m	�

�h�it�n
n


�
A �


������


As m � �� the last two terms in the brackets of equation 
������
 go to zero�

and thus

jam	�j
jamj � A�

h�i� �

for all times under consideration�

So� convergence for any value of t has been proved� as long as A�

h�i� � � and�

h�i � �� This gives a slightly more rigorous proof than before�

One speci�c example� given experimentally in the dissertation� ����� is �gure

���
b
� where h�i � ���� and �� � ����� and hence� A � ��� 
p� �
p
�
� �

Consider the asymptotic behaviour of the series as t���
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Putting h�i � ��� implies
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As t��� e�t eventually dominates all the terms in the series
P�m

n��
�t�n

n

�

So asymptotically�
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This series clearly does converge� in comparison� for example� with a geometric

series� By computation� it was found that this series converges to ������ to three

signi�cant �gures� which compares extremely well with the measured di	erence

on �gure �����
b
� of ����� for a large value of t�

����� Gaussian Distribution

For a Gaussian distribution function� the shifted moments have the following form
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Applying these terms to the previous work�

hy
�
i � y
h�i
 �
�X

m��


�m
�m�

	�my
h�i

	��m

�
�X

m��


�m� �
���m

�m���m�
m� �
�

�
�m�

h�i�m	�

� � e�h�it

�mX
n��

h�it
n
n�




	

��



�
�X

m��


�m� �
�

�m��
m� �
�



�

h�i

��m
�

h�i

�
�� e�h�it

�mX
n��


h�it
n
n�

	
�


������


As before� we can consider the ratio of successive absolute terms�
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It has already been shown that as m���
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Hence� there is divergence of this series for all possible choices of ��

h�i� � This

con�rms precisely what was observed in the dissertation� ����� for Gaussian dis�

tributions of � � that hy
�
i � y
h�i
 always diverges to in�nity� irrespective of

the choice of variance and mean�

��� Summary

The �rst part of the work in this chapter on the stochastic model o�d�e�� set out

in detail in the dissertation� ����� was of predominantly academic interest� We

were able to see how the probability distribution functions changed with respect

to time� and how the mean value of the solution developed� In the second part�

��



by consideration of the high�order corrected moments� we were able to analyse

the behaviour of the mean value of the solution with respect to the deterministic

solution� �y
t
� These relative behaviours allow us to conclude that there are some

situations where the deterministic solution may be an acceptable approximation

to mean of the solution� but in the majority of cases this is not an assumption

that can be made without further investigation� This means that further research

must involve a careful consideration of this behaviour�

In further chapters we consider perturbation techniques on the more compli�

cated model p�d�e�s� 
�����
� and 
�����
� The perturbations� as in this chapter�

are also done about various means of permeability� but due to the di	erence be�

tween these equations and the more straightforward model o�d�e�� 
�����
� under

consideration in this chapter� the expansions performed turn out to be multi�

dimensional ones� We begin with the steady�state case� 
�����
�

��



Chapter �

Steady�State Model

In this chapter� we investigate in detail the behaviour of the model steady�state

partial di�erential equation� equation �������� in two dimensions� on a rectangular

region� with various types of boundary conditions imposed� We consider uncer�

tainty� speci	cally in the value of the permeability� which is considered to be a

random spatial function�

��� Properties of a General Realisation

It is illustrative to consider one general realisation as an example
 and by investi�

gation of the properties associated with this case� a great deal of information can

be obtained about the statistical properties of the complete problem� taken over

all realisations� The work is done here in two dimensions� but a generalisation to

three dimensions is fairly straightforward�

We consider a discretisation� with a simple 	ve�point di�erence scheme� on a

uniform stencil of mesh size h� of equation������� A numerical approximation to

the equation is

��



pi�j��ki�j� �

�


 pi���jki� �

�
�j � �ki� �

�
�j 
 ki� �

�
�j 
 ki�j� �

�


 ki�j� �

�

�pi�j


 pi���jki� �

�
�j 
 pi�j��ki�j� �

�

� � �������

We note that the discretised values for the permeability 	eld are those evaluated

at the half way points� between the nodes�

In the complete statistical problem� the permeability k�x� y� is a random spa�

tial function with a known mean value� which may or may not be assumed to

be homogeneous �i�e� spatially constant�� and a spatial autocorrelation function

which relates the statistical properties of the function at di�erent points� When

the permeability is discretised� as in the case above� the function is represented

as a set of statistical variables� each having its own mean value� which are all

equal� if the assumption of a homogeneous mean value function is made� Each

statistical variable is also correlated to the others� re�ecting a discretisation of

the original spatial� autocorrelation function� This means that points close to�

gether have a high correlation in their discretised permeability values� and points

at large distances apart have correlations approaching zero � i�e� the correlation

value is related to the separation of the two half grid�points� In the case of an

isotropic autocorrelation function the correlation is a function of distance only


and this is the situation investigated here�

We consider a perturbation representation of the permeability function� This

can be written

k�x� y� � k��x� y� 
 k��x� y�� �������

where the perturbation k��x� y� is taken about the mean value function� k��x� y��

In the discretised form this can be directly translated to

kij � k�ij 
 k�ij� �������

��



If the simpli	cation that the mean value of the permeability is homogeneous is

made� then equations ������� and ������� become respectively

k�x� y� � k��� 
 d�x� y��� �������

and

kij � k��� 
 di�j�� �������

where d�x� y� is a random function� with mean value zero� that is assumed small�

We now re�write the permeability autocorrelation function� as de	ned in equa�

tion ������� and assuming the variance is homogeneous� in terms of these pertur�

bations�

��r� r�� �
h�k�r�� hk�r�i��k�r��� hk�r��i�i

�r�r�

�
h�k��� 
 d�r�� � k���k��� 
 d�r���� k��i

��

�
k��
��
hd�r�d�r��i� �������

and for the discretised version� in ��D

�i�j� i��j� �
k�
�

��
hdi�j di��j�i� �������

The homogeneous mean assumption is made throughout� for simplicity� How�

ever� it is shown later that various conclusions about the generalised case �i�e�

with spatially varying mean� can be obtained from consideration of the simpli	ed

case� Substituting equation ������� into �������� we get

�pi�j�� � pi���j 
 �pi�j � pi���j � pi�j�� � di� �

�
�jpi���j � di�j� �

�

pi�j��
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�
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�

pi�j�� � � � �������

This leads to a system of equations� which� when combined with the relevant

boundary conditions for the problem� can be written as the matrix equation

Ap
Dp � b� �������

��



where b contains the boundary conditions� and is quite sparse� Due to the per�

turbation formulation� b can always be split into two parts�

b � b� 
 bd� ��������

where b� corresponds to the right hand side vector of the deterministic problem�

and bd contains various linear combinations of the uncertain statistical variables�

fdijg �

For the purposes of the following examples� all on a square region� the Dirichlet

case has boundary conditions aS� aE� aN � aW on respective south� east� north�

and west boundaries
 and the mixed case has aN � aS on the north and south

boundaries� with normal gradients vE� and vW on the east and west ones�

In a general case� the vector b can be written�

b �
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For simple Dirichlet conditions� the component vectors are
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For simple mixed boundary conditions� these are
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The matrix A is the usual block tridiagonal matrix for the simple ��point

di�erence scheme� and can be assumed to be irreducibly diagonally dominant�

with the form

A �

�
����������������������������������

A� �I � � � � � � � � � � � � � � � � � � �
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For Dirichlet boundary conditions� the component diagonal matrices are n by n�

symmetric� and tridiagonal with the form
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and for mixed boundary conditions� they are �n
�� by �n
��� and tridiagonal�

Ai �

�
�������������

� �� 
 � � � � � �

�� � �� � � � � � �

���
� � �

� � �
� � �

���

� � � � � � �� � ��

� � � � � � 
 �� �

�
������������	

� for i � �� �� ���n� ������
�

The matrix D has identical structure to A�

D �

�
���������������������������

D��� D��� 
 � � � � � � � � � � � � � � � � � �

D��� D��� D��� 
 � � � � � � � � � � � � � � �


 D��� D��� D��� 
 � � � � � � � � � � � �

���
� � �

� � �
� � �

� � �
� � �

���
���

���

� � � � � � 
 Di�i�� Di�i Di�i�� 
 � � � � � �

���
���

���
� � �

� � �
� � �

� � �
� � �

���

� � � � � � � � � � � � 
 Dn���n�� Dn���n�� Dn���n�� 


� � � � � � � � � � � � � � � 
 Dn���n�� Dn���n�� Dn���n

� � � � � � � � � � � � � � � � � � 
 Dn�n�� Dn�n

�
��������������������������	

�

��������

and the component matrices for the Dirichlet problem are n by n�
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For mixed boundary conditions� they are �n
 �� by �n
 ��� and tridiagonal�
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We consider one speci	c realisation for the set of perturbations where the ma�

trix D is denoted by Dn� the vector b by bn� and bd by bdn� The corresponding

expression to equation ������� is then

Apn 
Dnpn � b� 
 bdn� ��������

This can be re�arranged to give

pn � A���b� 
 bdn��A��Dnpn� ��������

This can then be formed into a perturbation series� and� due to fact that Dn

and bdn are both linear in the fdijg terms� the second order approximation to

the perturbation series is

psn � A���b� 
 bdn��A��DnA
���b� 
 bdn� 
A��DnA

��DnA
��b�� ��������

The equivalent full perturbation series is

pn � A��

�X
i��

��DnA
���ibn� ��������

This series is convergent elementwise if� and only if�

Sr�DnA
��� � �� ��������

where Sr�M� denotes the spectral radius of the matrix M �����

Alternatively� convergence with respect to a general norm� is satis	ed for

realisation n� if

k�DnA
���ik �� � as i�� �

So a necessary and su�cient condition for convergence in realisation n is

kDnA
��k � ��

��



Since

kDnA
��k � kDnk � kA

��k�

this condition is satis	ed if�

kDnk � kA
��k � ��

So

kDnk �
�

kA��k
�

implies

kDnA
��k � ��

So� a necessary condition for convergence of the series is

kDnk � kA��k��� ��������

This implies a restriction on the size of all possible admissible realisations for

the perturbations � they must be at least 	nite� and bounded� This could seem

a rather limiting factor in this technique� particularly when we may be dealing

with distributions that are not 	nite� such as Gaussian or lognormal type� As

was demonstrated in Chapter �� sometimes when an in	nite distribution is under

consideration� contributions from the far end of the tail may tend to lead to

strange unphysical results� In any practical approach to obtaining a sensible

measure of the statistical properties of the solution� such as implementation of a

Monte�Carlo method� it is not possible to include all the admissible realisations�

Due to the limiting process of taking a 	nite number� there is inevitably a loss of

some amount of the tail of the distribution� The technique we are using here has

an implied truncation of the tail� where the cut�o� tail contains all the realisations

that do not satisfy the condition in equation ���������

��



Now consider the e�ect of truncating the series �������� to second order�

psn � A��

�X
j��

��DnA
���jbn� ��������

This introduces an error between this expression and �������� given by�

en � A��

�X
j��

��DnA
���jbn

� A����DnA
����

�X
j��

��DnA
���jbn� ��������

If it can be shown that there exists a bound on DnA
�� in realisation n such that

kDnA
��k � �n � ��������

where � � �n � � � then a bound on the error expression in �������� can be

obtained quite straightforwardly�

kenk �
kA��k ��n kbnk

� � �n
� ��������

Let us assume there is a bound on the maximum relative value that each

perturbation can take� given by �� where � � �� This gives an absolute bound on

the entries of a general Dn�type matrix�

jDnj � �jAj� � n� ��������

Here we are using the convention that if for two matrices M and N � of the same

order� we have

Mij � Nij � � i� j�

then we write

M � N�

and we de	ne the absolute value matrix� kMk� of any given matrix�M to be such

that�

jM jij � jMij j � i� j�

��



Now consider kDnA
��kp for general p � IN� and for all admissible realisations�

n� de	ned in the usual way�

kDnA
��kp � max

x

kDnA
��xkp

kxkp
� ��������

where the maximum is performed over all vectors� x� Because of the properties

for a general p�norm ����� we know that

kDnA
��kp � kDnkpkA

��kp

Now� consider kDnk� for all n� We have

kDnk
p
p � max

x

kDnxkpp
kxkpp

� max
x

P
i j
P

j�Dn�ijxjjpP
i jxijp

� max
x

P
i�
P

j j�Dn�ijxjj�pP
i jxijp

� max
x

P
i j
P

j j�Dn�ij jjxjjjpP
i jxijp

� max
x

kjDnjjxjk
p
p

kxkpp

� max
x

kjDnjkppkjxjk
p
p

kxkpp

� kjDnjk
p
p�

since kxkp � kjxjkp� Therefore�

kDnA
��kp � kDnkpkA

��kp

� kjDnjkpkA
��kp

Combining this result with ��������� we have

kDnA
��kp � �kjAjkpkA

��kp� � n� ��������

So� from ��������� we 	nd that

� �
�

kjAjkpkA��kp
�

��



is a su�cient condition for convergence of the approximate series for all the rele�

vant realisations�

In equations �������� to ��������� it is seen that the vector bn can be written

as b� 
 bdn� where the vector bdn contains linear combinations of the fdijg

perturbations as its components� By again taking the maximal value for all these

perturbations� each component of bn can be shown to satisfy

���b��i � �bn�i � ��b��i�

or

j�bn�ij � �j�b��ij�

Therefore� since

kbnk
p
p �

X
i

j�bn�ij
p�

and it is known that

j�bn�ij
p � �j�b��ij

p � i and n�

we can conclude that

X
i

j�bn�ij
p �

X
i

�j�b��ij
p � �kb�k

p
p�

Which is equivalent to saying that

kbnk � � kb�k � n�

for a general p norm�

The errors for each realisation in expression�������� thus satisfy

kenk �
� ��kjAjk�kA��k�kb�k

�� �kjAjkkA��k
� n� ��������

This expression may be very useful when considering the error obtained when

truncating the series� for the mean value of the numerical solution�

��



��� Probabilistic Approach

One method of approach to the full statistical problem might be to take the mean

value over all possible realisations of the numerical scheme in equation�������

�hpi�j��ki�j� �

�

i � hpi���jki� �

�
�ji 
 hpi�j�ki� �

�
�j 
 ki� �

�
�j 
 ki�j� �

�


 ki�j� �

�

�i

� hpi���jki� �

�
�ji � hpi�j��ki�j� �

�

i � � �������

Whilst this equation is precisely true� it contains no useful information� as the

discretised pressure function cannot now be separated out from the cross terms�

which contain it� Indeed� equation������� leads nowhere�

If we return to equation��������

psn � A���b� 
 bdn��A��DnA
���b� 
 bdn� 
A��DnA

��DnA
��b��

taking the mean value� over all realisations� element�by�element� of both sides

gives

hpsi � A��b�
A
��hbdi�A��hDA��ib��A��hDA��bdi
A

��hDA��DiA��b��

�������

where the convention is that

�hV ectori�i � h�V ector�ii�

and

�hMatrixi�ij � h�Matrix�iji�

These uncertain matrices and vectors obey all the usual rules of matrix algebra�

including

�hABi�ij � h�AB�iji

� h
X
k

AikBkj i

�
X
k

hAikBkji�

��



Also if A is known exactly� and B is uncertain� then

�hABi�ij �
X
k

hAikBkji

�
X
k

AikhBkji

�
X
k

Aik�hBi�kj �

so that hABi � AhBi under matrix algebra rules� Similar rules apply for vector

operations also�

�hAvi�i � h�Av�ii

� h
X
j

Aijvj i

�
X
j

hAijvji�

and if� for example� A is known and v is uncertain� then�

�hAvi�i �
X
j

hAijvji �
X
j

Aijhvji �

so that

hAvi � Ahvi�

It is fairly trivial to prove all the other algebraic rules�

The vector bd and the matrixD only contain linear terms in the perturbations


and since we have already assumed that the mean value of all the perturbations�

over all realisations� is zero� taking the mean value of any 	rst order terms in

fdijg gives zero�

Equation������� can therefore be re�written�

hpsi � A��b� �A��hDA��bdi 
A��hDA��DiA��b�� �������

If we were tackling this problem in a deterministic way� we might make the intu�

itive assumption that a good approximation to the mean value of the numerical

��



solution would be obtained by solving the problem using just the mean value of

the permeability 	eld as data� This is equivalent to solving the problem�

ApA � b�� �������

with solution

pA � A��b�� �������

It can be seen� by comparison of ������� with �������� that this deterministic

solution is� in e�ect� a 	rst order approximation to the exact mean value of the

numerical solution� This means that pA can be thought of as an approximation to

hpi that e�ectively contains information about the mean value of the permeability

	eld� The information about the second order terms in fdijg has been discarded�

which means that two aspects of the statistical information have been lost�

�� variance of the 	eld �

Terms like hd�i�ji represent the variance of the permeability 	eld� For

a single variable� qualitatively� the variance represents the spread of

possible values that it can take� away from the mean value� For this

reason� if this information is excluded� it makes the mean value approx�

imation meaningless in a statistical sense� i�e� equation������� could be

an approximation to the solution for either a 	eld with zero disper�

sion � that is� one which is known precisely �� or for a 	eld with an

arbitrarily large dispersion � one that is highly uncertain ��

�� correlation of the 	eld �

Terms like hdi�jdi��j�i as seen in equation�������� are equal to the dis�

cretised correlation function for the separated points �i� j�� and �i�� j���

and give a measure of how similar the statistical properties at the two

��



points are� It is very important to take this measure into account� as

was mentioned in Chapter �� because this is a fundamental property

of the uncertainty in the permeability 	eld� Leaving out these terms

would give the result for a �static� uncertain 	eld� that is� one where

the permeability is uncertain at all sample points with the values at

each point being unrelated statistically to each other�

So the approximation from ������� for the mean value of the numerical solu�

tion� when written

hpsi � A��b� �A��hDA��bdi 
A��hDA��DiA��b�� �������

contains information concerning the mean� variance� and autocorrelation function

of the permeability 	eld� which is� essentially� what is required from the original

problem�

Clearly� the error introduced by making the approximation is given by

hei � A��

�X
m��

h��DA���mbi� �������

i�e� the error between the approximation ������� and the exact mean value of the

numerical solution� as in equation��������

We consider a general element of this error vector

�hei�i � h�en�ii� �������

where en is as de	ned in ���������

Now we consider the expected value of a general functional of a number of un�

certain statistical variables� assuming the functional f � and the set of all possible

realisations Rm have suitable properties� Then

��



hf�x�� x�� x�� � � � � xm�i �
Z
Rm

f�x�� x�� x�� � � � � xm���x�� x�� x�� � � � � xm�d
mx�

�������

where ��x�� x�� x�� � � � � xm� is the �joint� multivariate distribution for the variables�

and

j hf�x�� x�� x�� � � � � xm�i j

� j
Z
Rm

f�x�� x�� x�� � � � � xm���x�� x�� x�� � � � � xm�d
mx j

�
Z
Rm

j f�x�� x�� x�� � � � � xm���x�� x�� x�� � � � � xm� j d
mx

�
Z
Rm

j f�x�� x�� x�� � � � � xm� j � j ��x�� x�� x�� � � � � xm� j d
mx

� max
Rm

j f�x�� x�� x�� � � � � xm� j �
Z
Rm

j ��x�� x�� x�� � � � � xm� j d
mx�

Since ��x�� x�� x�� � � � � xm� is them�dimensionalmultivariate distribution function�

it is� by convention� always positive� and is assumed to be normalised� so that

Z
Rm

j ��x�� x�� x�� � � � � xm� j d
mx � �� ��������

Therefore� substituting �������� into the inequality expression above gives�

j hf�x�� x�� x�� � � � � xm�i j � max
Rm

j f�x�� x�� x�� � � � � xm� j � ��������

It can therefore be deduced that the mean value of any function or functional of

m statistical variables� irrespective of whether they are correlated� must lie within

the extremal values of that function or functional over its admissible space� This

is a completely general result and no assumptions� such as linearity� have been

made here�

Also�

jhv�x�� � � � � xm�ij � j
Z
Rm

v�x�� � � � � xm� ��x�� � � � � xm�d
mxj

�
Z
Rm

jv�x�� � � � � xm�j j��x�� � � � � xm�jd
mx

��



and since � � � over Rm�

jhv�x�� � � � � xm�ij �
Z
Rm

jv�x�� � � � � xm�j ��x�� � � � � xm�d
mx�

Hence for any Lp norm k � k�

jhv�x�� � � � � xm�ij � hjv�x�� � � � � xm�ji� ��������

irrespective of the distribution function for the variables fxjg�

We can therefore establish a bound on the error that has been introduced when

using expression������� as an approximation to the mean value of the numerical

solution� hei�

First� substituting hei into expression�������� gives

kheik � hkeki� ��������

Now� since

en � A��

�X
m��

��DnA
���m�b� 
 bn��

en is a vector function� in some speci	ed way� of all the fdijg terms� which are

themselves uncertain statistical variables� Therefore� the process of taking the

norm of a general vector en can be thought of as a functional of en � which means

it is itself a function of the fdijg type variables� So� the function kek must satisfy

the expression���������

Therefore�

hkeki � max
all realisations�n

fkenkg� ��������

Then� by combining �������� with ��������� we can see that

kheik � max
all realisations�n

fkenkg� ��������

which is a bound for the norm on the error introduced� when expression������� is

used to approximate the mean value of the numerical solution�

��



Therefore� combining equation��������� with equation��������� gives�

kheik �
� ��kjAjk�kA��k�kb�k

� � �kjAjkkA��k
� ��������

the required bound on the approximation to the mean value of the numerical

solution�

��� Numerical Approach to the Problem

At 	rst sight� the statistical terms in equation �������

hpsi � A��b� �A��hDA��bdi 
A��hDA��DiA��b��

appear very awkward to evaluate� because� due to the presence of A�� between the

two matrices in each term� the terms hDA��bdi� and hDA
��DiA��b� involve very

complicated linear combinations of the correlation terms� fhdi�jdi��j�ig� dependent

on the inverse of A� This problem can be resolved by considering the structure

of the Dn matrices� and noticing that each term like fdi�jg occurs either twice� if

it is next to a boundary� or four times if it is on an internal half grid�point�

Suppose �i� j� is an internal half grid�point lying between grid�points labelled

y� and z� It can be seen from equations �������� to �������� that the di�j term

only occurs at the matrix positions �y� y�� �y� z�� �z� y�� and �z� z� in the following

way�

��



y z

y

z

�
�������������������������

���
���

���
���

� � � � � � di�j � � � �di�j � � � � � �

���
���

� � � � � � �di�j � � � di�j � � � � � �

���
���

���
���

�
������������������������	

� �������

This contribution can be thought of as di�jEij� where

Eij �

�
�������������������������

���
���

���
���

� � � � � � � � � � �� � � � � � �

���
���

� � � � � � �� � � � � � � � � � �

���
���

���
���

�
������������������������	

� �������

The full matrix Dn can then be written as a weighted sum of simple elemental

matrices like Eij that contain either only four or two non�zero elements�

Dn �
X

halfgrid�points

dni�jE
ij �������

If a sum over all half grid�points is written as
P

i�j � each half grid�point being

labelled �i� j� �� then the expression ������� can be written�

hDA��Di � h
X
i�j

di�jE
ijA��

X
i��j�

di��j�E
i�j�i� �������

��



where the mean is taken over the joint multivariate distribution function for all

the values of di�j at half grid�points� Consider a general element of this matrix�

hDA��Dikl � h
X
i�j

di�jE
ijA��

X
i��j�

di��j�E
i�j�ikl

� h�
X
i�j

di�jE
ijA��

X
i��j�

di��j�E
i�j��kli

� h�
X
i�j

di�jE
ij�kmA

��

mn�
X
i� �j�

di��j�E
i�j��nli

� h
X
i�j

di�jE
ij
kmA

��

mn

X
i��j�

di��j�E
i�j�

nl i

� h
X
i�j

X
i��j�

�di�jE
ij
km�A

��

mn�di��j�E
i�j�

nl �i

� h
X
i�j

X
i��j�

�di�jdi��j�E
ij
kmA

��

mnE
i�j�

nl �i

�
X
i�j

X
i��j�

�hdi�jdi��j�iE
ij
kmA

��

mnE
i�j�

nl �

�
X

i�j�i��j�

�hdi�jdi��j�iE
ij
kmA

��

mnE
i�j�

nl �� �������

where
P

i�j�i��j� has the meaning of a sum over all possible ways that each half

grid�point can correlate with each other half grid�point� Of course� if there are N

of these half grid�points� then there will be �N � �� 	N possible ways that they

can correlate with each other�

A similar procedure can be applied to the second term in equation ��������

A��hDA��bdi to obtain a similar series term which involves a weighted sum�

In this case the sum is performed over half grid�points that are adjacent to the

boundary only� correlating with all other half grid�points within the region�

The hdi�jdi��j�i terms are now just equal to the normalised discretised correla�

tion function between points �i� j� and �i�� j��� as seen in equation �������� and is�

in the most general case� a vector function of the separation of the two points�

An isotropic assumption can be made about the correlation� in which case�

the terms hdi�jdi��j�i are just a function of the absolute distance of separation of

the points �i�j� and �i��j��� A more interesting case is one in which the correlation

function has a di�erent form in di�erent directions� There might be a strong

��



correlation in the properties of the rocks in a horizontal direction� and much a

weaker correlation in the vertical direction� representing the usual layered struc�

ture of oil bearing strata� A further development in an anisotropic correlation

function is periodicity in the vertical direction� which represents a repetition in

the layered structure of the rock properties� This introduces an extra parameter

into the correlation function� in addition to the two correlation lengths� which is

the spatial periodicity of the rock layering�

Typical possibilities for models for the spatial correlation function are an

exponential or a Gaussian�type decay� An isotropic exponential decay has the

form

��r � r�� � �� exp��jr� r�j	
�� �������

where 
 is the �characteristic� correlation length�

For a general correlation function� the correlation length� 
�� associated with

direction � is de	ned to be


� �
Z
�

�

���x�dx� �������

����� So a Gaussian�type correlation function� takes the form

��r� r�� � �� exp��
�jr� r�j�

�
�
�� �������

where 
 is the �in this case� isotropic� correlation length�

A Gaussian�type form for the correlation function is more useful mathemat�

ically when considering anisotropic correlations� because the distance squared

terms can be separated out straightforwardly � for example� in two dimensions�

jr� r�j� � j�x� x��� 
 �y � y���j � �x� x��� 
 �y � y����

and so the correlation function becomes a simple product

��r� r�� � �� exp��
��x� x���

�
�x
� exp��

��y � y���

�
�y
�� �������

��



An introduction of periodicity can also be made by an extra product� For

example� if there is periodicity assumed in the x�direction� then

��r� r�� � �� expf�
��x� x���

�
�x
g expf�

��y� y���

�
�y
g cos�
�x� x���� ��������

where ��

�
is the model for the spatial periodicity� an approximate length equivalent

to the repetition distance in the rock structure�

��� Results

The following section shows results for di�erent types of imposed boundary con�

ditions� In each case� the mean value for permeability is normalised to one�

Figures ������a���e� have enforced �ow at one end� no �ow at the opposite

end� and zero pressure conditions along the two sides� ������a� is the determin�

istic solution with homogeneous permeability values
 ������b� is the result with

variance equal to ���
 ������c� has variance ���
 ������d� has variance ���
 and for

������e� the variance is equal to ����

Figures ������a���e� have no �ow conditions at either end and a pressure dif�

ference of ��� across the region horizontally� Again� 	gures �a�� �b�� �c�� �d�� and

�e� are the results for increasing covariance values ��� �that is the deterministic

solution�� ���� ���� ���� and ����

Figures ������a���d� show the e�ects of increasing correlation length in relation

to grid size� and overall scale of the region� with the same boundary conditions

as ���� Figure �a� shows results for a correlation length of ����� which is ap�

proximately one third of the grid size
 	gures �b�� �c�� and �d� are results for

correlation lengths ���� ���� and ����� respectively� which are all larger than the

grid size� The variance for all these results is ����

The 	nal 	gures ������a���b� show results for anisotropic correlation lengths�

��



The boundary conditions are� again the same as those in ���� Figure �a� has

correlation length ��� in the x direction� and ��� in the y direction� and 	gure

�b� has correlation length ��� in the x� and ��� in the y direction� Variance is ���

throughout�

���



Figure ����� Plots of pressure verses position� with mean value for per�

meability equal to ���� and correlation function of Gaussian form�

Figure ������a� deterministic pressure solution� �� � ���

Figure ������b� mean pressure for �� � ����

���



Figure ������c� mean pressure for �� � ���

Figure ������d� mean pressure for �� � ���

���



Figure ������e� mean pressure for �� � ���

���



Figure ����� Plots of pressure verses position� hki � ���� correlation

function Gaussian form�

Figure ������a� deterministic pressure solution for �� � ���

���



Figure ������b� mean pressure for �� � ����

Figure ������c� mean pressure for �� � ���

���



Figure ������d� mean pressure for �� � ���

Figure ������e� mean pressure for �� � ���

���



Figure ����� Plots of pressure verses position� showing e�ects of increas�

ing the �anisotropic� correlation length� Correlation function is Gaussian form�

with �� � ���� and hki � ����

Figure ������a� mean pressure for 
x � 
y � ����

Figure ������b� mean pressure for 
x � 
y � ���
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Figure ������c� mean pressure for 
x � 
y � ���

Figure ������d� mean pressure for 
x � 
y � ����
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Figure ����� Plots of pressure verses position� showing e�ects of

anisotropic correlation lengths� Correlation function is Gaussian form� with �� �

���� and hki � ����

Figure ������a� mean pressure for 
x � ���� 
y � ���

Figure ������b� mean pressure for 
x � ���� 
y � ���
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Figures ������a� to ������e� show how increasing the variance of the perme�

ability 	eld increases the di�erence between the second order approximation to

the mean value of the pressure 	eld� and its deterministic solution� Particular

features� such as gradients� seem to be distorted� and exaggerated�

Figures ������a� to ������e� show a similar e�ect on a di�erent set of boundary

conditions� with no �ow at either ends� and an induced pressure di�erence across

the region� The deterministic case just results in a simple constant �ow across the

pressure di�erence� When the non�deterministic case is considered for small vari�

ance� the �ow �as in the gradient of pressure� is induced to increase� but because

of the necessity of satisfying the boundary conditions� the gradient is forced to

decrease close to the higher boundary condition� With increasing variance� this

e�ect becomes more pronounced� with the decrease in gradient becoming more

sharp� as the boundary conditions always have to be satis	ed� Eventually� this

e�ect becomes so great that in ������d�� the maximum principle for pressure is vi�

olated� and this roughly corresponds with the series expansion �������� becoming

invalid due to large stochastic perturbation in permeability�

Figures ������a� to ������d� show e�ects of changing the correlation length�

relative to the grid size� For the 	rst case� the correlation length is considerably

less than the grid size� meaning that the statistical properties at each grid�point

have virtually no correlation with each other� The values are therefore virtually

the same as the equivalent deterministic case 	gure ������a�� In 	gure ������b�� the

correlation length is roughly three times the grid size� meaning that the properties

of nearby grid�points are correlated much more strongly than between arbitrary

grid�points� This manifests itself as a slight distortion in the shape of the solution�

with respect to the deterministic solution� For 	gure �c� the correlation length

is ���� meaning that the statistical properties of the pressure at the grid�points

���



are correlated over roughly half the region� producing slightly more distortion� In

the last 	gure� the correlation length is ten times the dimensions of the region�

meaning that all grid�points are roughly equally correlated with each other� This

results in a large distortion compared to the deterministic case� as expected�

Figures ������a� and ������b� are supposed to show di�erences in cases where

the correlation function is spatially anisotropic� However� the results for several

tests of this type were not very interesting
 and tended to give results similar

to the isotropic cases with the smaller correlation length� That is� the shorter

correlation length always tended to dominate the observed behaviour� and this

does not seem to lead to very signi	cant results� The reason for this could be that

the more important behaviour is contained in the higher order moment term� and

it will be particularly interesting to see how these results behave in time�

��� Summary

We have developed a method for estimating mean values for numerical solutions

to systems of steady�state partial di�erential equations which contain a spatially

varying uncertain parameter� that takes into account terms up to second order

in the multivariate distribution function� This gives a signi	cant insight into

the behaviour of the mean when dispersion of the parameter values is taken into

account� as opposed to using just the deterministic solution� which only includes

information about the mean of the uncertain parameter� and consequently has no

real statistical information� Bounds on the accuracy of this approach have been

found and could be developed further� by evaluation and comparison for di�erent

multivariate distribution functions�

The problem with many of these results is the non�physicality of the model
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equations� and the need to impose arti	cial boundary conditions� which do not

allow a proper development of the �ow behaviour� It is� however always inter�

esting to observe the behaviour of the solutions with respect to the deterministic

solution� and this is where the bulk of the work has been performed�

We make an additional note that it is also possible to use this perturbation

method to obtain a second order accurate expression for the variance� and covari�

ance� of the numerical pressure� Let us refer to the equation for the numerical

solution for the pressure equation for a general realisation� equation ���������

pn � A��

�X
i��

��DnA
���ibn�

The covariance matrix is de	ned as

Cov�p� � �p� hpi��p � hpi�T � �������

where the ith diagonal term represents the variance of the pressure at the ith

gridpoint� It is fairly easy to see that� by using similar arguments as before� we

can write down the second order approximation to the covariance matrix for the

general realisation n�

Cov�p� �


A��bd �A��DA��b�

� 

A��bd �A��DA��b�

�T
� �������

So� the second order approximation to the full covariance matrix of the proba�

bilistic problem would be

Cov�p� �

A��hbdb
T
d iA

�T �A��hDA��b�b
T
d iA

�T

� A��hbdb
T
�A

�TDT iA�T 
A��hDA��b�b
T
�A

�TDT iA�T � �������

In principle� this can be evaluated by splitting the matrix elements up into the

weighted sums of elementalmatrices of equations ������� and �������� The variance
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of the pressure could then be calculated� as it would be found as the diagonal

terms of the matrix in equation �������� We decided not to evaluate these terms

numerically� but variance terms for the pressure are evaluated explicitly in the

following chapter when we consider the time�dependent model equation�

The equivalent results to those shown here� for time�varying systems of equa�

tions� are investigated in the next chapter� In this chapter we observe both the

time�varying mean value to the numerical solution� and its time�varying variance�

The e�ects of using more physical �that is� time�varying� boundary conditions are

also explored� and we extend the perturbation methods to more practical lognor�

mal distribution functions�

���



Chapter �

Two�Dimensional Dynamic

Model

In this chapter we consider the dynamic model equation �������� in two dimen�

sions �with the assumption that most results are able to be generalised to three

dimensions�� from Darcy	s law plus the continuity equation for single�phase 
ow�

�
�p

�t
�r�krp� � f�r� t�� ���
���

We assume that the boundary conditions are such that the 
ow� �krp� is known

around the edges of the rectangular region under consideration�

��� Hierarchical Equations

We �rst develop the hierarchical equations for a general admissible realisation�

By developing these systems of equations as far as possible� before taking mean

values on either side� we can obtain the equations required�
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����� Standard Form

For a permeability distribution function that is symmetric about the mean value�

a simple linear perturbation about the mean can be considered� We therefore treat

the two�dimensional permeability �eld for a single realisation as a perturbation

about some pre�de�ned mean value �eld�

k � k� � �k�� �������

We assume that k� � hki is a deterministicmean� knowledge of which is available�

Note that in this chapter we are using the formulation that includes � in the

analysis� in contrast to the form k � k� � k� which was used in chapter �� No

particular signi�cance should be deduced from this change and all analytical

results obtained can be easily converted into the other form� The advantage

of this slight change is that it makes it clearer when equating the equations in

successive powers of �� This is more appropriate for the case where the equations

do not naturally split into a perturbation series as in equation ���������

Equation ���
��� can then be written

�
�p

�t
�r ��k� � �k��rp� � f��r� t� � �f��r� t�� �������

where p is the pressure solution for the speci�c realisation under consideration�

As in much work by Dagan� ����� and Dupuy and Schwydler� ����� we assume

the pressure solution can be expressed in the form

p�r� t� � p��r� t� � �p��r� t� � ��p��r� t� � ��R��r� t��

where R� is some residue term due to the enforced lack of accuracy when this

series is truncated at second order in ��

Then� equation ������� can be re�written

�
�

�t
�p� � �p� � ��p� � ��R��

���



� r
�
�k� � �k��r�p� � �p� � ��p� � ��p��

�
� f��r� t� � �f��r� t��

�������

If p� is de�ned to be the solution of the mean value problem� or equivalently

of the deterministic problem�

�
�p�

�t
�r �k�rp�� � f�� �������

then� by equating successive powers of �� equation ������� splits up into the system

of hierarchical equations�

�
�p�

�t
�r �k�rp���r �k�rp�� � f�� �������

�
�p�

�t
�r �k�rp���r �k�rp�� � 
� �������

�
�R�

�t
�r ��k� � �k��rR���r �k�rp�� � 
� �������

This represents a set of coupled p�d�e�s for each admissible realisation� Truncating

this series at some point� of course� means imposing a level of accuracy on the

possible solutions� We are not able to solve the third equation �������� and so these

equations are of second order accuracy� It may� of course� be possible to obtain

bounds on the size of these residue terms over all admissible realisations� This

would e�ectively give a measure of the accuracy of the hierarchical approximation�

Theoretically� a higher N th order accuracy can be obtained by taking

k � k� � �k��

and

p �
NX

m��

�mpm �RN���

where RN�� is the residue due to truncating the series for N th order accuracy�

This leads to the N � � set of hierarchical equations� where the obtainable

accuracy is N th order�

�
�p�

�t
�r �k�rp�� � f�� �������
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�
�p�

�t
�r �k�rp���r �k�rp�� � f�� �������

���

�
�pm

�t
�r �k�rpm��r �k�rpm��� � 
� ������
�

���

�
�pN

�t
�r �k�rpN ��r �k�rpN��� � 
� ��������

�
�RN��

�t
�r ��k� � k��r�RN����r �k�rpN� � 
� ��������

����� Lognormal Distribution

If a lognormal distribution function is assumed for the permeability� the expansion

must be done about the geometric mean� ����� This is equivalent to a linear

expansion about the log of the permeability�

ln�k� � y � y� � �y��

where� y� � hyi� So�

k � ey� � �y�e
y� �

��y��
�

ey� � � � �

� �g � ��� � ���� � � � � � �g �
�X

m��

�m�m�

where �g is the geometric mean�

Performing the same procedure� assuming the pressure has the form

p �
NX

m��

�mpm � SN���

and substituting for pressure and permeability into equation ���
��� gives

�
�

�t
�

NX
m��

�mpm � SN����r

�
��g �

�X
m��

�m�m�r�
NX

m��

�mpm � SN���

�
� f�r� t��

��������
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Again� by equating powers of � we obtain the system of hierarchical equations

�
�p�

�t
�r ��grp�� � f� ��������

�
�p�

�t
�r ��grp���r ���rp�� � 
 ��������

�
�p�

�t
�r ���rp���r ���rp���r ���rp�� � 
 ��������

���

�
�pm

�t
�r ��grpm��

mX
i��

r ��irpm�i� � 
 ��������

���

�
�pN

�t
�r ��grpN ��

NX
i��

r ��irpN�i� � 
 ��������

�
�SN��

�t
�r ��grSN����r

�
�
�X
�

�m�m�rSN��

�
�

N��X
i��

r
�
�irp�N���i�

�
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��������

��� Statistical Properties of Analytical Equa�

tions

To progress further� we must consider the statistical properties of the solutions

to all of the above equations� by taking mean values on either side�

����� Standard Form

Firstly� we just consider the second order approximations for symmetric� or

standard�form� permeability distribution functions�

Taking mean values on either sides of equations ������� to �������� and assum�

ing k� is a perturbation about the absolute mean� so that hk�i � 
� we obtain

�
�p�

�t
�r �k�rp�� � f�� �������

���



�
�hp�i

�t
�r �k�rhp�i� � hf�i� �������

�
�hp�i

�t
�r �k�rhp�i� �rhk�rp�i � 
� �������

and�

�
�hR�i

�t
�r �k�rhR�i� �rh�k�rR�i � rhk�rp�i � 
� �������

As they stand� these equations are not solvable� even just up to second order�

due to the presence of the cross�correlation term� rhk�rp�i� For this to be

possible� a method to evaluate the correlation function� hk�rp�i is needed�

Consider multiplying k� by the grad of equation ������� to give an extra

p�d�e� The result of this is to give higher order cross�correlation terms� such as

hk�r� �k�rp��i to evaluate� which would involve introducing subsequently higher

order cross�correlation terms� This process� of course� is only feasible if a closure

can be imposed on the system of equations� under consideration� As they stand�

this is not possible�

����� Lognormal Distribution

The same procedure on the set of equations for the lognormal permeability dis�

tribution function� equations �������� to ��������� gives the similar� but adapted

equations�

�
�p�

�t
�r ��grp�� � f�� �������

�
�hp�i

�t
�r ��grhp�i� � hf�i� �������

�
�hp�i

�t
�r ��grhp�i��rh��rp�i � r �h��irp�� � 
� �������

The di�erence here is the presence of the third term�rh��irp� in equation ��������

but this term just links in the �rst equation in the series� with an extra moment

of the distribution� h��i which is a known property of the distribution�
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However� the basic problem is the same� that is the presence of h��rp�i� for

which a method for solving simultaneously must be obtained� for example in ��
�

and �����

����� Variance

A second order approximation to the covariance can be obtained in a similar

way to ����� by considering �
�p��r��t�p��r��t�

�t
� the values of the perturbation� at two

distinct points�

�
�

�t
�p��r�� t�p��r�� t�� � p��r�� t��

�p��r�� t�

�t
� p��r�� t��

�p��r�� t�

�t
�������

and substituting for � �p�
�t
� etc� from ��������

�
�

�t
�p��r�� t�p��r�� t��

� r� �k��r��r�p��r�� t�p��r�� t���r� �k��r��p��r�� t�r�p��r�� t��

� r� �k��r��r�p��r�� t�p��r�� t���r� �k��r��p��r�� t�r�p��r�� t�� � 
�

�������

Taking the mean value on either side of this equation results in an equation for

the behaviour of the covariance of the solution�

�
�

�t
�hp��r�� t�p��r�� t�i�

� r� �k��r�� t�r�hp��r�� t�p��r�� t�i� �r� �hk��r��p��r�� t�ir�p��r�� t��

� r� �k��r��r�hp��r�� t�p��r�� t�i��r� �hk��r��p��r�� t�ir�p��r�� t�� � 
�

������
�

If the covariance� at time t� between pressure values at two points r�� and r� is

denoted by C�r�� r�� t�� then these equations are

�
�

�t
�C�r�� r�� t��

��




� r� �k��r�� t�r�C�r�� r�� t���r� �hk��r��p��r�� t�ir�p��r�� t��

� r� �k��r��r�C�r�� r�� t���r� �hk��r��p��r�� t�ir�p��r�� t�� � 
�

��������

Evaluation of the terms in the expression is again rendered impossible� if no

method for solving the cross�correlation term is available�

So� we have found that developing a method to solve equations for the lowest

moments of the distribution function of the solution to equation �������� in this

case second order accurate approximations to mean and variance� requires some

method of solving or evaluating the cross�correlation terms hk�rp�i� for values

of spatial separation and time� Finding a solvable equation for these terms has

proved problematic� but it has been found that we may obtain closure in this

system of equations if we consider them in a discretised form�

��� Discretisation

We now show that the problem of providing a solution for hk�rp�i� or h��rp�i�

may be overcome by consideration of the discretised versions of these equations�

����� Standard Form

We consider a discretisation of the equations ������� to �������� with a simple

explicit time scheme� and a general �unspeci�ed� spatial discretisation�

�pn��� ij � �pn� ij

�t
�rh

�
k�ijrhp

n
� ij

�
� fn

� ij� �������

�pn��� ij � �pn� ij

�t
�rh

�
k�ijrhp

n
� ij

�
�rh

�
k�ijrhp

n
� ij

�
� fn

� ij � �������

and�

�pn��� ij � �pn� ij

�t
�rh

�
k�ijrhp

n
� ij

�
�rh

�
k�ijrhp

n
� ij

�
� 
� �������

���



where the �i� j� indices refer to spatial points �i�x� j�y� in cartesian co�ordinates�

and pnz ij refers to the numerical solution for pz�r� n�t�� where r is also in Carte�

sian co�ordinates�

Now let us denote a general value of the perturbation k� at a discrete point

�i�x� j�y� by k�i�j� � and consider the value at a second reference point� �i�� j���

Multiplying this into equation �������� and taking the mean values throughout

the resultant� together with equations ������� and ��������� gives

�pn��� ij � �pn� ij

�t
�rh

�
k�ijrhp

n
� ij

�
� fn

� ij� �������

�hk�i�j�p
n��
� ij i � �hk�i�j�pn� iji

�t

� hk�i�j�rh

�
k�ijrhp

n
� ij

�
i � hk�i�j�rh

�
k�ijrhp

n
� ij

�
i � hk�i�j�fn

� iji� �������

�hpn��� ij i � �hpn� iji

�t
�rh

�
k�ijrhhp

n
� iji

�
� hrh

�
k�ijrhp

n
� ij

�
i � 
� �������

This is now a complete set of coupled �numerical� p�d�e�s that can be solved�

When these equations are being solved� simultaneously� the cross�correlation func�

tion is found� from equation �������� and then substituted into equation �������� In

this form� it is a function of two �discretised� spatial points� The discretised au�

tocorrelation function of the permeability �eld occurs in the hk�i�j�rh�k�ijrhp
n
� ij�i

terms� These are basically just linear combinations of the autocorrelation parame�

ters� with coe�cients speci�cally dependent on the particular spatially�discretised

scheme under consideration� The boundary conditions have been incorporated

into the right hand side terms of the equations�

����� Lognormal Form

Performing the expansion for a lognormal distribution function� about the geo�

metric mean� results in an extra term in the second order equation� as seen in

���



equation ��������� In discretised form� the set of coupled numerical equations

becomes

�pn��� ij � �pn� ij

�t
�rh

�
k�ijrhp

n
� ij

�
� fn

� ij� �������

�hk�i�j�p
n��
� ij i � �hk�i�j�pn� iji

�t

� hk�i�j�rh

�
k�ijrhp

n
� ij

�
i � hk�i�j�rh

�
k�ijrhp

n
� ij

�
i � hk�i�j�f

n
� iji� �������

�hpn��� ij i � �hpn� iji

�t
�rh

�
k�ijrhhp

n
� iji

�
�hrh

�
k�ijrhp

n
� ij

�
i�rh

�
hk�ijirhp

n
� ij

�
� 
�

�������

����� Variance Equations

The same discretisation performed on the covariance equations �������� �which

have the same form in the linear case and lognormal distributions� results in the

following equations�

�Cn��
i�j�ij � �Cn

i�j�ij

�t

� rh

�
k�ijrhC

n
i�j�ij

�
�rh

�
hk�p�i

n
i�j�ijrhp

n
� ij

�

� rh

�
k�i�j�rhC

n
iji�j�

�
�rh

�
hk�p�i

n
iji�j�rhp

n
� i�j�

�
� 
� ������
�

The quantity of particular interest is the variance of the pressure distribution� an

important characterisation of the complete distribution function� In discretised

form� the variance for time level n�t� at spatial position �i�x� j�y� is the value

of Cn
ijij � Unfortunately� in the process of solving for this value� the correlation

values for distinct points� Cn
i�j�ij must also be solved and stored for each time�

level� These can be considered as a bonus to the required information� having

an academic� rather than practical point of interest� although an idea for the

correlation length of the solution variable is now clearly available through this

technique�

���



����� Summary

The result of the manipulation of the hierarchical equations ������� to ��������

gives us a set of coupled numerical p�d�e�s for the �rst two moments that char�

acterise the probability distribution function of the pressure solution� They can

be solved at each successive time�level to follow their progression in time� This

results in an approximate idea of the time development of the distribution func�

tion�

To summarise� these equations are

�pn��� ij � �pn� ij

�t
�rh

�
k�ijrhp

n
� ij

�
� fn

� ij� ��������

�hk�p�i
n��
i�j�ij � �hk�p�ini�j�ij

�t

� hk�i�j�rh

�
k�ijrhp

n
� ij

�
i � hk�i�j�rh

�
k�ijrhp

n
� ij

�
i � hk�i�j�fn

� iji� ��������

�hpn��� ij i � �hpn� iji

�t
�rh

�
k�ijrhhp

n
� iji

�
� hrh

�
k�ijrhp

n
� ij

�
i � 
� ��������

and�

�Cn��
i�j�ij � �Cn

i�j�ij

�t

� rh

�
k�ijrhC

n
i�j�ij

�
�r�h

�
hk�p�i

n
i�j�ijr�hp

n
� ij

�

� rh

�
k�i�j�rhC

n
iji�j�

�
�rh

�
hk�p�i

n
iji�j�rhp

n
� i�j�

�
� 
� ��������

For an assumed lognormal distribution function� the coupled equations take

the slightly adapted form

�pn��� ij � �pn� ij

�t
�rh

�
kgijrhp

n
� ij

�
� fn

� ij� ��������

�hk�p�i
n��
i�j�ij � �hk�p�ini�j�ij

�t

� hk�i�j�rh

�
k
g
ijrhp

n
� ij

�
i � hk�i�j�rh

�
k�ijrhp

n
� ij

�
i � hk�i�j�f

n
� iji� ��������

���



�hpn��� ij i � �hpn� iji

�t

� rh

�
k
g
ijrhhp

n
� iji

�
� hrh

�
k�ijrhp

n
� ij

�
i � rh

�
hk�ijirhp

n
� ij

�
� 
�

��������

and�

�Cn��
i�j�ij � �Cn

i�j�ij

�t

� rh

�
k
g
ijrhC

n
i�j�ij

�
�rh

�
hk�p�i

n
i�j�ijrhp

n
� ij

�

� rh

�
kgi�j�rhC

n
iji�j�

�
�rh

�
hk�p�i

n
iji�j�rhp

n
� i�j�

�
� 
� ��������

��� Application

We now apply this technique to a speci�c example of a discretisation�

Consider a simple �ve�point di�erence scheme� where the value of the per�

meability at points halfway between adjacent gridpoints �i� j� and �i � �� j� or

�i� j��� is always approximated by an average of the two values at the grid�points�

Equation ������� in this case becomes�

�pn��� ij � �pn� ij

�t

�
�k�i��j � k�ij�

��x�
p� i��j �

�k�i��j � k�ij�

��x�
p�i��j

�
�k�ij�� � k�ij�

��y�
p� ij�� �

�k�ij�� � k�ij�

��y�
p� ij��

�

�
�k�i��j � k�i��j � �k�ij�

��x�
�
�k�ij�� � k�ij�� � �k�ij�

��y�

�
p� ij � f� ij� �������

����� Standard Form

Making use of the similarity in structure of equations �������� to ��������� the

remaining system of equations can be written down immediately�

�hk�i�j�pn��� ij i � �hk�i�j�pn� iji

�t

���



�
�k�i��j � k�ij�

��x�
hk�p�ii�j�i��j �

�k�i��j � k�ij�

��x�
hk�p�ii�j�i��j

�
�k�ij�� � k�ij�

��y�
hk�p�ii�j�ij�� �

�k�ij�� � k�ij�

��y�
hk�p�ii�j�ij��

�

�
�k�i��j � k�i��j � �k�ij�

��x�
�

�k�ij�� � k�ij�� � �k�ij�

��y�

�
hk�p�ii�j�ij

�
�hk�k�ii�j�i��j � hk�k�ii�j�ij�

��x�
p� i��j �

�hk�k�ii�j�i��j � hk�k�ii�j�ij�

��x�
p�i��j

�
�hk�k�ii�j�ij�� � hk�k�ii�j�ij�

��y�
p� ij�� �

�hk�k�ii�j�ij�� � hk�k�ii�j�ij�

��y�
p� ij��

�

�
�hk�k�ii�j�i��j � hk�k�ii�j�i��j � �hk�k�ii�j�ij�

��x�

�
�hk�k�ii�j�ij�� � hk�k�ii�j�ij�� � �hk�k�ii�j�ij�

��y�

�
p� ij � hk�f�ii�j�ij �

�������

�pn��� ij � �pn� ij

�t

�
�k�i��j � k�ij�

��x�
p� i��j �

�k�i��j � k�ij�

��x�
p� i��j

�
�k�ij�� � k�ij�

��y�
p� ij�� �

�k�ij�� � k�ij�

��y�
p� ij��

�

�
�k�i��j � k�i��j � �k�ij�

��x�
�
�k�ij�� � k�ij�� � �k�ij �

��y�

�
p� ij

�
�hk�p�ii��ji��j � hk�p�iiji��j � hk�p�ii��ji��j � hk�p�iiji��j�

��x�

�
�hk�p�iij��ij�� � hk�p�iijij�� � hk�p�iij��ij�� � hk�p�iijij���

��y�

�
�hk�p�ii��jij � hk�p�ii��jij � �hk�p�iijij�

��x�

�
�hk�p�iij��ij � hk�p�iij��ij � �hk�p�iijij�

��y�
� 
� �������

�Cn��
i�j�ij � �Cn

i�j�ij

�t

�
�k�i��j � k�ij�

��x�
Cn
i�j�i��j �

�k�i��j � k�ij�

��x�
Cn
i�j�i��j

�
�k�ij�� � k�ij�

��y�
Cn
i�j�ij�� �

�k�ij�� � k�ij�

��y�
Cn
i�j�ij��

�

�
�k�i��j � k�i��j � �k�ij�

��x�
�
�k�ij�� � k�ij�� � �k�ij�

��y�

�
Cn
i�j�ij

�
�hk�p�ini�j�i��j � hk�p�ini�j�ij�

��x�
pn� i��j �

�hk�p�ini�j�i��j � hk�p�ini�j�ij�

��x�
pn� i��j

���



�
�hk�p�ini�j�ij�� � hk�p�ini�j�ij�

��y�
pn� ij�� �

�k�ij�� � k�ij�

��y�
p� ij��

�

�
�hk�p�ini�j�i��j � hk�p�ini�j�i��j � �hk�p�ini�j�ij�

��x�

�
�hk�p�ini�j�ij�� � hk�p�ini�j�ij�� � �hk�p�ini�j�ij�

��y�

�
pn� ij

�
�k�i���j� � k�i�j��

��x�
Cn
iji���j� �

�k�i���j� � k�i�j��

��x�
Cn
iji���j�

�
�k�i�j��� � k�i�j��

��y�
Cn
iji�j��� �

�k�i�j�
�� � k�i�j��

��y�
Cn
iji�j�

��

�

�
�k�i���j� � k�i���j� � �k�i�j��

��x�
�

�k�i�j��� � k�i�j�
�� � �k�i�j��

��y�

�
Cn
iji�j�

�
�hk�p�i

n
iji���j� � hk�p�i

n
iji�j��

��x�
pn� i���j� �

�hk�p�i
n
iji���j� � hk�p�i

n
iji�j��

��x�
pn� i���j�

�
�hk�p�iniji�j��� � hk�p�iniji�j��

��y�
pn� i�j��� �

�k�i�j��� � k�i�j��

��y�
p� i�j���

�

�
�hk�p�i

n
iji���j� � hk�p�i

n
iji���j� � �hk�p�i

n
iji�j��

��x�

�
�hk�p�iniji�j��� � hk�p�iniji�j��� � �hk�p�iniji�j��

��y�

�
pn� i�j� � 
 �������

����� Lognormal Form

In the example used to illustrate the numerical technique here� a lognormal dis�

tribution is assumed� The deterministic equation takes a similar form to equation

��������

�pn��� ij � �pn� ij

�t

�
�kgi��j � kgij�

��x�
p� i��j �

�kgi��j � kgij�

��x�
p�i��j

�
�kgij�� � kgij�

��y�
p� ij�� �

�kgij�� � kgij�

��y�
p� ij��

�

�
�kgi��j � kgi��j � �kgij�

��x�
�
�kgij�� � kgij�� � �kgij�

��y�

�
p� ij � f� ij� �������

Equations �������� to �������� then can be re�written

�hk�i�j�pn��� ij i � �hk�i�j�pn� iji

�t

�
�kgi��j � k

g
ij�

��x�
hk�p�ii�j�i��j �

�kgi��j � k
g
ij�

��x�
hk�p�ii�j�i��j

���



�
�kgij�� � k

g
ij�

��y�
hk�p�ii�j�ij�� �

�kgij�� � k
g
ij�

��y�
hk�p�ii�j�ij��

�

�
�kgi��j � k

g
i��j � �kgij�

��x�
�

�kgij�� � k
g
ij�� � �kgij�

��y�

�
hk�p�ii�j�ij

�
�hk�k�ii�j�i��j � hk�k�ii�j�ij�

��x�
p� i��j �

�hk�k�ii�j�i��j � hk�k�ii�j�ij�

��x�
p�i��j

�
�hk�k�ii�j�ij�� � hk�k�ii�j�ij�

��y�
p� ij�� �

�hk�k�ii�j�ij�� � hk�k�ii�j�ij�

��y�
p� ij��

�

�
�hk�k�ii�j�i��j � hk�k�ii�j�i��j � �hk�k�ii�j�ij�

��x�

�
�hk�k�ii�j�ij�� � hk�k�ii�j�ij�� � �hk�k�ii�j�ij�

��y�

�
p� ij � hk�f�ii�j�ij �

�������

�pn��� ij � �pn� ij

�t

�
�kgi��j � k

g
ij�

��x�
p� i��j �

�kgi��j � k
g
ij�

��x�
p� i��j

�
�kgij�� � k

g
ij�

��y�
p� ij�� �

�kgij�� � k
g
ij�

��y�
p� ij��

�

�
�kgi��j � k

g
i��j � �kgij�

��x�
�

�kgij�� � k
g
ij�� � �kgij�

��y�

�
p� ij

�
�hk�p�ii��ji��j � hk�p�iiji��j � hk�p�ii��ji��j � hk�p�iiji��j�

��x�

�
�hk�p�iij��ij�� � hk�p�iijij�� � hk�p�iij��ij�� � hk�p�iijij���

��y�

�
�hk�p�ii��jij � hk�p�ii��jij � �hk�p�iijij�

��x�

�
�hk�p�iij��ij � hk�p�iij��ij � �hk�p�iijij�

��y�

�
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��x�
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�
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�
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��y�

�
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�������
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i�j�ij

�t

���
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�
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��y�
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�k�i�j�
�� � k�i�j��

��y�
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�
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�hk�p�iniji���j� � hk�p�iniji���j� � �hk�p�iniji�j��

��x�
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�hk�p�iniji�j��� � hk�p�iniji�j��� � �hk�p�iniji�j��

��y�

�
pn� i�j� � 
� �������

��� Results

In this section we present some illustrative samples of the type of results that we

have obtained using this method to solve the full statistical problem�

In each case we consider a single Fourier mode as the initial condition� with no


ow conditions around the boundary� and zero forcing function� The region under

investigation is square with unit length� All lengths and times are normalised for

the purposes of this research�

���



Using a single Fourier mode as the initial condition means that in the case of

a homogeneous mean value for the permeability� the solution to the p�d�e� under

consideration� equation ���
���� may be expressed as the Fourier mode with an

exponentially decaying amplitude�

p�x� y� t� � e��
� k
�
tcos��x�� �������

It is fairly trivial to show by substitution that this is a solution to the model

equation� satisfying the zero boundary conditions� We choose this test function

as it is a straightforward solution whose deterministic behaviour is well�known�

We restrict the step�sizes to 
�
� in each illustration� The distributions are� in

each case� assumed to be lognormal�

����� Figures �����

In the �rst example� we have the case where the homogeneous mean value is


��� and the variance 	� � 
�
�� Correlation lengths in both the x� and y�

directions are the same� equal to ��
� the size of the region under investigation�

In Figure ������a� we show the initial condition for the deterministic solution� a

one�dimensional Fourier mode� given by equation ������� at t � 
�

p�x� y� � cos��x�� �������

The numerical amplitude at time t � ��
 is 
���
 compared to the analytic

value of e��
�
���� � 
����� In Figures ������b�� ������c�� ������d�� and ������e� we

show three dimensional plots of the variances throughout the region� The initial

value of the variance is taken to be zero throughout the region �equivalent to a

deterministic initial condition�� and the Figures show how the variance function

changes over time intervals of 
��� starting at t � 
��� and then at 
��� 
��� and

��
 for respective Figures ������b� to ������e�� Numerically� the covariances have

��




maximum values ����� � �
�	 at t � 
��� ����� � �
�
 at t � 
��� ����� � �
�


at t � 
��� and ����� � �
�
 at t � ��
� Figures ������f�� ������g�� ������h��

and ������i� show the second order correction to the mean value with respect

to the deterministic solution� hp�i� at time intervals t � 
��� 
��� 
��� and ��


respectively� The values have the following maxima� ����
 � �
�
 for ������f��

������ �
�� ������g�� ��
�
� �
�� ������h�� and ������ �
�� for Figure ������i��

����� Figures �����

In this second example we consider a similar case to Figures ������ but with a

lower value for the homogeneous mean� hki � 
��� The statistical variables are the

same as above� with the variance 	� � 
�
�� and correlation lengths ��
 in both

directions� The values for the deterministic solution are similar� but with a slower

decay rate� the numerical amplitude being 
���� after one unit of time� compared

with the analytic value of 
����� In Figure ������a� we show a three dimensional

plot of the variance function throughout the region of interest� plotted at time

t � ��
� The maximum numerical value for the function is ����
 � �
�
� Figure

������b� shows the second order correction to the mean value� at time t � ��


also� The maximum value is ����� � �
���

����� Figures �����

In Figures ������a� and ������b� we show the e�ect of increasing the variance of the

permeability� The general data is the same as for Figure ������ but with variance

	� � 
��� Figure ������a� shows the variance plotted after time t � ��
� with

maximum value ����� � �
�
� Figure ������b� shows the second order correction

to the mean� with maximum value ����� � �
���

���



����� Figures �����

In the Figures ������a� to ������f� we show the di�ering types of behaviour seen

when using an anisotropic correlation function� after a time interval t � ��
�

The mean and variance for permeability are the same in each Figure� hki � 
��

and 	� � 
�� respectively� In ������a� and ������b� we see the case where the

correlation length is comparatively short in the x�direction� 
x � 
��� and long

in the y�direction� 
y � ��
� ������a� shows the variance� with maximum value

�������
�
� and ������b� the correction to the mean� with maximum�������
���

In ������c� and ������d�� the correlation lengths are reversed� compared to

������a� and ������b�� with 
x � ��
� and 
y � 
��� ������c� shows variance� with

maximumvalue �������
�
� and ������d� shows correction� with maximumvalue

����� � �
���

In ������e� and ������f� we see the e�ect of a short isotropic correlation length

in both directions� 
x � 
��� and 
y � 
��� ������e� shows variance� with max�

imum value ����� � �
�	� and ������f� shows correction� with maximum value

����� � �
���

����� Figures �����

The �nal Figures show an example of the type of behaviour seen when a spatially

varying mean value for permeability is assumed� In this case� the mean value

linearly decreases in the x�direction� from 
�� at x � 
� to 
�� at x � ��
� The

variance of the permeability is 	� � 
�
�� and the correlation lengths are the

same for both directions� 
x � ��
� and 
y � ��
� Figure ������a� shows a three�

dimensional plot of the deterministic solution throughout the region� ������b� is

a plot of the variance� with maximum value ������ �
�
� and ������c� shows the

correction term� with maximum value ��
�� � �
���

���



Figures ����� Plots of pressure and pressure variance verses position� at

time intervals of 
�� seconds� h�i � 
��� 	� � 
�
�

Figure ������a� Initial condition for deterministic pressure solution

Figure ������b� Pressure variance at t � 
��

���



Figure ������c� Pressure variance at t � 
��

Figure ������d� Pressure variance at t � 
��

���



Figure ������e� Pressure variance at t � ��


Figure ������f� Second order correction to mean value� hp�i� at t � 
��

���



Figure ������g� hp�i at t � 
��

Figure ������h� hp�i at t � 
��

���



Figure ������i� hp�i at t � ��


���



Figures ����� Plots of pressure variance and second order correction to

the mean pressure verses position� after time interval of ��
 seconds� h�i � 
���

	� � 
�
�

Figure ������a� pressure variance at t � ��


Figure ������b� hp�i at t � ��


���



Figures ����� Plots of pressure variance and second order correction to

the mean pressure verses position� after time of t � ��
� h�i � 
��� 	� � 
��

Figure ������a� pressure variance at t � ��


Figure ������b� hp�i at t � ��


���



Figures ����� Plots of pressure variance and second order correction to

mean pressure after time t � ��
� with di�erences of anisotropy in the correlation

lengths� with h�i � 
�� and 	� � 
���

Figure ������a� pressure variance at t � ��
� 
x � 
��� 
y � ��


Figure ������b� hp�i at t � ��
� 
x � 
��� 
y � ��


��




Figure ������c� pressure variance at t � ��
� 
x � ��
� 
y � 
��

Figure ������d� hp�i at t � ��
� 
x � ��
� 
y � 
��

���



Figure ������e� pressure variance at t � ��
� 
x � 
��� 
y � 
��

Figure ������f� hp�i at t � ��
� 
x � 
��� 
y � 
��

���



Figures ����� Plots of pressure� pressure variance and second order

correction to the mean value pressure after t � ��
� with spatially�varying mean

value for permeability �eld� 	� � 
�
� and 
x � ��
 and 
y � ��
�

Figure ������a� deterministic solution at time t � ��


Figure ������b� pressure variance at t � ��


���



Figure ������c� hp�i at t � ��


���



��	 Summary

The examples we see plotted in this chapter are basically a selection of illus�

trative examples of the general type of behaviour that we have observed using

this method of evaluation� We employed a very simple explicit numerical dis�

cretisation scheme� which turned out to be severely limiting on the examples we

were able to solve e�ectively� We note here that the stability condition for the

deterministic scheme we use� equation ������� is

��tk

�h�
� �� �������

We found that the scheme would generally become unstable in cases where there

was a signi�cant probability that admissible realisations would lie outside the

general stability range of the scheme� Experiments on the speci�c point at which

instabilities start to occur have yet to be done� but it has been observed that they

can certainly be shown to occur when hki��	 lies outside the stability range for

our scheme�

In Figures ������a� to ������i� we see the time�dependent behaviour for a sin�

gle Fourier mode� where the mean of the permeability is homogeneous� and the

variance comparatively low� so that the results lie well within the stability range�

The deterministic solution �shown only at one time value� behaves as expected�

decaying exponentially� whilst retaining the basic shape of the �one�dimensional�

mode� The basic shape of the three�dimensional plot of the variance remains the

same throughout the time region under investigation� with maxima at the two

edges of the region given by x � 
�
� and x � ��
� The maximum variance was

seen to reach a maximum at around t � 
��� thereafter gradually decreasing� with

the maximum variance concentrating in the corners whilst it decays� The second

order correction to the mean begins by taking a similar shape to the deterministic

���



solution� on a much smaller scale� of course� This value is much more subject

to instabilities than the variance and deterministic approximations� and we see

large increases for large time values�

In Figures ������a� and ������b� we can compare the previous behaviour with

that for a lower mean value for �still� homogeneous permeability� Consequently�

the deterministic solution has a correspondingly lower decay rate� The general

shape assumed by the variance and second order approximations after one time

unit are the same� The numerical value of the variance is� however� higher due

to a greater relative spread in admissible realisations� There is a lower numerical

value for hp�i after the time interval� This may be due to the fact that hp�i is

related to the decay of the Fourier mode�

In Figures ������a� and ������b� we show the equivalent data to ������ but with

a larger assumed variance� As expected� both variance and correction term have

larger numerical values� whilst assuming a similar general shape�

The next �gures show data for anisotropic correlation lengths� In the case of

strong correlation in the y�direction� and much less correlation in the x�direction�

Figures ������a� and ������b�� we see that the statistical properties throughout the

region are more homogeneous in themselves than in ������c� and ������d� where

the situation is reversed and there are much higher variance �gures concentrated

in the corners� This seems to be due partly to the numerical process in solution

of the stochastic p�d�e� which from earlier �gures� seems to favour correlated

properties in the y�direction� The third case� where correlation lengths in both

directions are small compared to the entire scale of the region� Figures ������e�

and ������f� shows similar concentration of variance in the corners� with numerical

values of one order of magnitude lower� which is the sort of behaviour we would

expect if the statistical properties are weakly correlated�

���



We include the �nal couple of �gures� ������a� and ������b�� just as of a matter

of interest� The mean of the variance in this case was not homogeneous� decreasing

linearly from 
�� at x � 
�
� to 
�� at x � ��
� This inhomogeneity does not

seem to have been di�erent enough throughout the region to have induced any

particularly interesting numerical results� so we do not comment further�

The results presented here should only be considered as an introduction to this

approach of studying uncertain p�d�e�s in oil reservoir modelling� We have shown

some of the early results that this method provides us with� but feel that much

more research can be done in this speci�c area� Some further areas of potential

research may include

� Investigation of the di�ering e�ect of other schemes on this method� espe�

cially implicit methods�

� A full investigation of the e�ect of grid�size� in relation to correlation length�

and� in particular� how their ratio e�ects results�

� Improving the e�ciency of the method� or reducing the computational bur�

den�

� Investigation of the numerical correlation length of the numerical results

obtained�

� Investigation of the convergence and consistency of the schemes�

����� Alternative Schemes

The results obtained in Sections � to � of this chapter� in particular� equations

�������� �������� �������� and �������� can be generalised to any scheme with the

same time discretisation� Some degree of extra stability might be gained from

���



using di�erent� more accurate spatial discretisations� However� we feel that it

is probably more important to generalise the time discretisation also� to include

implicit schemes also� to enable a more practical application of the method� We

do not envisage any problems in doing this�

����� Investigation of the e	ect of grid
size

The relative lengths of grid�size and correlation length may be of vital importance

when applying this method in any practical case� This is because there may be

cases where the correlation length is less than the size of the grid� which would

imply no statistical correlation of the numerical results� This would probably

not be a bad model of the analytic problem� which ought to retain some of the

correlation due to the continuum� It is envisaged that a careful comparison of the

ratio of correlation length to grid�size in all directions would be necessary before

employing this method in a practical situation�

����� E�ciency of method�Computational burden

As these results stand we need to calculate all the cross�correlation terms in equa�

tion ������� for a full application of this method� This represents a potentially

restrictive amount of computational burden for this numerical technique� For

example� if there are N � M� gridpoints� equations like �������� and ��������

represent N� operations at each successive time level� when solving for auto�

correlation terms of the solution and cross�correlation terms successively� This

compares with � N operations for the deterministic equation ��������� and may

represent a large computational burden compared with� say� a Monte�Carlo simu�

lation� probably meaning that in a practical sense� implementation of this method

would be severely limited�

���



However� we �rmly believe that it is feasible to develop criteria for disregard�

ing many of these correlation terms when they represent those for two points

separated by a large distance� particularly compared to correlation length of

the permeability autocorrelation function� For this to be possible� an analytic

model of the covariance function of the pressure solution would be required�

This would allow us to develop a quantitative criterion for deciding which of

the cross�correlation terms are negligible� Qualitatively� we would expect the so�

lution pressures to be much more strongly correlated along the direction of 
ow

than in other directions� such as perpendicular to the 
ow� Research done where

the e�ort is made to evaluate the solution covariance function� such as that by

Gelhar and Vomvoris� ����� shows that solution covariance functions appear to be

highly anisotropic in many case� Large correlation lengths are observed along the

direction of 
ow� and signi�cantly smaller lengths in other directions� This would

suggest that the cross�correlation terms aligned to the 
ow are the most signi��

cant ones� and will dominate those for most other directions� Making full use of

this dominance would mean that the number of operations would be of the order

of N �M � or N � N
�

� � assuming 
ow roughly parallel to the boundaries of the

region� This would be further reduced if the largest correlation length aligned

to the 
ow was small compared to the dimensions of the entire region� There

might still be some correlations perpendicular to the 
ow to consider� but these

would be only of the order of L�N � where L is a low�valued integer� possible of

the order of �� depending on the type of numerical scheme under consideration�

The total number of operations would then be drastically reduced from � N� to

� N
�

� � LN � with corresponding reduction on computation time�

���



����� Correlation Length of solution

We are interested� in an academic sense� in the types of statistical correlation

between numerical solutions at di�ering grid�points� Because evaluation of this

method involves calculation of all correlation terms for pressure at di�erent points�

Cn
i�j�ij � or hp

n
� i��j�pn� i�ji� in equation �������� we already have this information avail�

able� Due to lack of time� numerical experiments have not yet been done on these

quantities� but we would be greatly interested to calculate relative correlation

lengths for pressure� in relation to those for permeability� The ratio of these

two quantities may be in some way connected with the variance reduction factor

formulation of Schwydler and Dupuy� ����� and we will investigate in the future�

Also� a potential comparison of numerically obtained correlation lengths and the

analytic models mentioned in the previous subsection would be of great interest�

����� Convergence and consistency of schemes

We must further investigate the convergence of the numerical�statistical schemes

we are using� It is envisaged that an approach similar to that in chapter � may

be used� whereby the assumed series form of the pressure�

p �
NX

m��

�mpm � SN��� �������

is considered for each admissible realisation� If we are able to show some form of

convergence for a speci�c realisation� we may be able to show convergence in the

general case� This would suggest that some of the statistical results of chapter �

that show how functionals of multivariate statistical variables are bounded over

all admissible realisations� equation ��������� ought to provide convergence for

the series ������� under certain conditions� These conditions have not yet been

formulated�

��




For the consistency of these numerical techniques� it is best to consider con�

ditions that can be applied to each admissible realisation� If consistency can be

shown for all these cases� then by similar arguments to those in chapter �� it

ought to be able to be shown to apply for the full probabilistic problem�

���



Chapter �

Conclusions

In this thesis we have developed methods to analyse various types of systems of

di�erential equations that contain uncertainty in some of their governing param�

eters� due to the heterogeneity of rock formations in underground reservoirs� The

new research done here has generally been written about in the order in which

it was actually done� Hopefully� this has given both a �avour of what we feel

we have achieved that is new� and also serves as a good indication of how the

research proceeded step�by�step�

We began by introducing the speci�c problem under consideration and devel�

oping mathematical models that we would be able to analyse in detail� All the

techniques in formulating the model equations were taken from standard mathe�

matical texts and literature� At all points in the thesis we referred our study to

the equations that might be used as a �classical� solution to the mathematical

problems� That is� the solutions obtained by making an assumption that substi�

tuting the mean value into the model would provide a valid approximation to the

mean value of the solutions� This was referred to as the deterministic solution

throughout the thesis�

Some statistical concepts� necessary for a complete understanding of all the
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techniques used and developed throughout the thesis� were introduced� with par�

ticular emphasis on the types of statistical parameters that were deemed to be

especially important in the research� Speci�c types of distribution functions were

also discussed�

Some of the literature in this� and adjacent areas of research� was reviewed

with comments on which areas were considered the most useful to pursue further�

The main part of the original research in this thesis then began with an ex�

tension of an analytical technique that had already been developed� Although

the approach we followed in attempting to extend the work of P� King was un�

successful in providing any useful practical results� we did gain some interesting

theoretical insight into the problem� It is felt that this may be readily extendible

in the future� and ought to give some useful practical results�

We went on to introduce the speci�cally numerical parts of the research� The

main object of this research was to develop numerical methods to evaluate uncer�

tainty in our model equations� with particular emphasis on how existing numerical

techniques might be adapted to analyse the general behaviour of the statistical

problem� particularly the mean and variance behaviour� We feel this has been

achieved in that simple techniques for numerical discretisations have been adapted

to give approximations� at least� for the mean and the variance of the numerical

solutions� We have always taken a careful approach to assuming that the deter�

ministic solution is a valid� or approximate� model for the full statistical problem�

In the case of our steady�state model we were able to develop an approach� based

on straightforward matrix algebra� that permitted us to obtain mean values of

numerical solutions� Because this problem could be put in this form� we were

able to assess rigorously the validity and accuracy of these approximations� when

used in conjunction with various simple results for multivariate distribution func�
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tions� We were able to evaluate the results formulated using standard fortran

programming� and some of the experimental �ndings proved of interest�

The last stage of research involved development of methods to analyse the

dynamic behaviour of our model equations� The techniques we employed were

similar to those in the previous chapter� although the problemwas approached in a

more general sense� with particular interest in the e�ects of making assumptions of

lognormal distribution functions for the permeability� Experimental results were

obtained for simple discretisations under investigation� We were able to gain

insight into what type of numerical schemes might best be used when employing

this method in future research� by this practical application� Further suggestions

as to how to proceed in this research were also discussed�

The limitations on this type of numerical approach were discussed� particu�

larly at the end of chapter 
� Because of similarities of the techniques used in

chapters � and 
� these limitations broadly apply in both time�dependent and

steady�state equations in a numerical context� In either case� we are implicitly

disregarding the tails of the input permeability distributions� and assuming that

the remaining admissible realisations satisfy the appropriate numerical stability

condition� In some cases this may seem to be a rather extreme assumption to

make� but in some research in this area� such as that by Bellin et al� ���� this

may be valid� particularly when considering inhomogeneous mean value func�

tions for the permeability �eld� In any statistical technique of this type� that

needs to include probabilistic considerations such as Monte�Carlo simulations� it

is inevitable that the distribution is implicitly truncated� even when the original

distribution is assumed to be in�nite� This is especially important when problems

due to numerical schemes that are introduced must be taken into account� In this

research we have obtained plausible approximations for at least the lower order
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moments of the solution distributions and this is considered to be an important

achievement in the context of this research project�

The implementation of all the techniques we developed in this research has

provided insight into how it may be extended further to provide practical results�

speci�cally in the area of oil reservoir modelling� and� in more general problems

that involve uncertainty of one form or another� We found that the speci�c

ways in which the uncertainties occurred in this problem were di�erent to those

that have been previously studied in standard stochastic di�erential equations�

It is hoped that more research will be pursued in this area� and more direct

techniques for the evaluation of uncertain di�erential problems will be developed

in this interesting area of mathematics�
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