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Abstract

A 1-D dual porosity model using Richards’ [Richards 1931] coupled non-linear
parabolic equations are solved numerically with finite differences.This model is
especially appropriate when modelling unsaturated ground water flow in frac-
tured rocks or cracked soils.

Iteration was required to achieve the numerical solution due to the non-linear
form of the parabolic equations.

Experiments were made to find the effects of varying parameters on the accu-
racy,on the convergence of iteration and on the computational effort required to
achieve the numerical solution.

Some numerical examples are also included to show the hydraulic plausibility of
the numerical results obtained.
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Chapter 1

Dual porosity ground water flow

1.1 Introduction

z=0cm
Ground level
GENERAL ,
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Figure 1.1: The domain of the model.

In this dissertation we will examine the model proposed in the 1993 paper of
Gerke and van Genuchten.This model is a one-dimensional dual-porosity model
which can be used to study variably saturated water flow in structured soil or
fractured rock.The domain of the soil is shown in figure 1.1 .

The model consists of superposing two continua at macroscopic level. The two con-
tinua are a macropore or fracture pore system and a less permeable matrix pore
system.Mobile water exists in both pores.There is an assumption of no horizontal
flow taking place since the rock(or soil structure)is assumed to be horizontally
homogeneous.

Richard’s equation[Richards 1931]describes the variably saturated water flow in
both pore systems.The transfer of water between the two pore regions is simu-
lated by means of first-order equations governing the rate.

The model results in two coupled systems of nonlinear partial differential equa-
tions which can be solved numerically using Galerkin Finite Element Methods
and mass lumping in space(as in [Milly 1985] as ‘L1%).The time stepping was
achieved by the fully implicit # method.



The new approach which we are going to introduce here uses the same ba-
sic model as used by Gerke and van Genuchten in their 1993 paper,but solves
the coupled system of nonlinear partial differential equations by finite difference
schemes.In space the integration method [Wood 1993] is used and in time we use
the fully implicit § method.This approach is different to that taken by Gerke and
van Genuchten because a different form of mass lumping is implicitly used(as

in[Milly 1985]‘L2").

Further,when the numerical solution is available,we will use the program to ex-
periment to try to find the best ways of producing the results.This means trying
to find the fastest,most accurate and most reliable way a numerical solution may
be obtained given general initial, and boundary conditions of the problem.

Further still,we will also try to investigate the dependence of the numerical so-
lution on different types of initial, and boundary conditions and the ease with
which different specifications of numerical solutions may be obtained.

Finally we will conclude this dissertation with some simple numerical examples.

Since we use the same model as Gerke and van Genuchten used (in their 1993
paper) ,we must explain that model in more detail. This we do in the next sec-
tion,section 1.2 .

1.2 The Model of the Problem

The equations of the dual-porosity model are

6hf B 8 . 6hf . Yw
AT FE A m ) R (L)
oh, 9, Oh, Yo

where ¢, and ¢; are the specific soil water capacities of the matrix and fracture
pores respectively. h; and h,, are the pressure heads of the fracture and matrix
pores respectively.Also Ky and K, are the hydraulic conductivities of fracture
and matrix pores. 7, is a term representing water transfer from fracture to matrix
pores. The term wy represents the volume of fracture pores as a proportion of to-
tal volume. Finally ¢ is time and z is spatial distance(measured downwards with
z=0 being ground level). 1.1 and 1.2 are forms of Richard’s equation[Richards
1931].

The soil retention functions 8, and 0, are defined to be the amount of water
present in a representative elementary volume of the matrix or fracture pores(respectively),
divided by that representative elementary volume.

They are defined here as in [Gerke and van Genuchten 1993]in terms of 0,y ,
Ostnt gy » Xy gy s hmp gy > My 1) a0 My ) s follows

O = 0,0+ By — O, )L+ |ty |77 (1.3)



0 = 0,5 + (055 — 0,5)[1 + [aphy|™]7™ (1.4)

where 0,; , 0,,, are residual soil water retention constants for fracture or matrix
pores. Similarly 0, , 0, are the saturated soil retention constants for fracture
or matrix pores.

My 5 Oy 5 Ny, OF My, ay , Ny are empirical constants for the matrix or fracture
pores respectively.

The values of the specific soil water capacities ¢, , ¢; can be approximated to
be the gradient of the soil retention functions 0, or §; with respect to pressure

heads h,, or hy . That is;

db
) 1.
c . (1.5)
a9,

The hydraulic conductivity of the matrix or fracture pores( K,, or K; ) can be
thought of as representing the ease(or difficulty)with which water flows through
their structures for a given pressure head gradient.This is shown by Darcy’s Law

[Darcy 1856] .

. Ohn,
Ok
95 = —[‘f(g —1) (1.8)

where ¢, or ¢s represent the downward flux of water flow in the matrix or fracture
pores.

Gerke and van Genuchten(in their 1993 paper)use the van Genuchten formulae
[van Genuchten 1980] for the hydraulic conductivity of the matrix and fracture
pores ( K., or Ky )in terms of their hydraulic conductivity at saturation,as follows

Koy (Sem) = Ky, S1[1— (1 — §L/mmymm]2 (1.9)
Ky(Seg) = Kyp St [ — (1 — SHm™ )2 (1.10)

where Ky, or K s is the hydraulic conductivity at saturation of the matrix or
fracture pores.The effective saturation parameters S.,, and S.; are defined in
terms of the water content functions

0;—0,;
= ST 1.11
Sef - (1.11)
h, —0
- _m rm 1.12
Sem esm _erm ( )

Boundary and initial conditions are necessary to solve equations 1.1 , 1.2 and
these will be discussed in Chapter 2.

As noted by Gerke and van Genuchten[1993] the above model needs modification
when the water downflow at the surface(caused by rainfall-for example)is larger
than the matrix pores can absorb by themselves.If the water downflow is not so
large that the entire absorption capacity of the soil is exceeded then a solution is



still possible.

In this case a positive pressure head builds up above the matrix pores.From this
pressure head it is possible to find the pressure heads in the matrix and fracture
pores at the surface of the soil using the equations 1.7 and 1.8 and the equation

q=wiqs+ (1 —wy)gm (1.13)
1.13 is derived as follows;

Fracture or matrix fluxes can be defined in the following equations:-

_ 9

= 1.14
Calyy (1.14)
Qm
S 1.1
In =4 (1.15)

where ¢; or ¢, are the fluxes of water flowing through the fracture or matrix
pores. s or ), are the volumes of water(per unit time)flowing through the
given areas Ay or A,, or the fracture or matrix pores.

The general flux of water, q, in the general soil structure can be described in
terms of Q) , @, , Ay and A,, as follows;

@yt @n

(1.16)
Now we are re-introducing the volumetric weighting factor wy which is equal to
the volume of fracture pores( vy ) as a proportion of total volume ( v ) in the
following equation.

wy = %f (1.17)

Ay and A,, may be defined in terms of A (the area of general soil structure
perpendicular to the direction of flow of water(ie.horizontally))as follows

Ap =1 —ws)A (1.19)
This is valid if we assume (as implied by 1.17)
viy _ As
_ Uy 1.20
w(=)= 4 (120
and we also assume
A+ A, =A (1.21)

So from 1.16 we obtain

+ (1.22)

So using 1.21
g=——+ — (1.23)



Now using 1.18

wiQs , Om (1.24)

174 T A

Now using 1.19
m I —
g = wile L9 (A wy)
f m

ie.from 1.14 and 1.15 we get equation 1.13 .

(1.25)



Chapter 2

Numerical Solution of the Model

2.1 Spatial discretizion

The numerical solution of 1.1 and 1.2 will be by finite differences spatially.The
derivation of this method is by the integration method[?]and is as follows;

From 1.1 and 1.2

d 6hf Yw 6hf
0= K —Ky)— — —cp— 2.1
5, K1, — K4 o (2.1)
a - ahm - ’}/w ahm
0= a([xmiaz - K,)+ w, o (2.2)
(since w,, + wy = 1, by definition)
Now we use
Y =y Ko(hy — hi) (2.3)

(as stated in [Gerke and van Genuchten 1993]) to eliminate v, from 2.1 and 2.2.
Also multiplying 2.1 by wy and 2.2 by w,, gives

0 oh oh
0= wfa(f(fa—zf — Ky) — wfcfa—tf — o’ K by + o K by, (2.4)
o P
0=w, aa([’ aaz—[’ ) — wy,c maat—l—ozful(ahf—ozful(ahm (2.5)
So now dealing only with 2.4 we have
0 Ohy Ohy
wfaz([&fg—[&f)—wfcfa——l—oz K hf—Oé [X h (26)
Integrating with respect to z from z = Zj_1 to zjp1 (Fig 2.1 )where z; = jAz
gives
il 0 oh an Ohy
/Z +12 wfaz([&f 8; Kf)dZ:/Z (wfcfa——l—oz Kohy — ol Kohy)dz (2.7)

[N

=5 J—

Using an averaged value for the integrand on the right hand side of 2.7 | we have
/:J+%(wfcf aah —|—a K hf a,, [X h )dZ = AZ([wfcfaah ] —I-[Oé:;[(ahf]zj—[Oé:;[(ahm]zj)
(2.8)
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Figure 2.1: How 2.6 maybe spatially integrated.

Since wy 1s a constant the left hand side of 2.7 may be integrated to give

vk 0 . 8hf . . 8hf . . 8hf .
S g 0 = K = U T E = Ky = WG = KL )
(2.9)
Now from 2.7 by using the approximation of 2.8 and the result of 2.9 we obtain
. Oh , . Oh , oh
wi(((K; 75 = Kp)l, — (G5 = Kl ) = Asllwge, 20, (210)

—|—osz[Kahf]ZJ — ozfu[[(ahm]zj )

In the above equation it is obvious that some function values need to be eval-
uated mid-point between two spatial nodes.Since we only have values of these
functions at the nodes,it is clear that some form of averaging will be required.In
this numerical solution we will take the arithmetic average of the function values
at the two nodes either side of the mid-point to be the value of the function at
the mid-point.

From now on(for ease of notation)the subscript of a symbol will denote the num-
ber of its space-step and similarly the superscript will denote the number of its
time-step.This will apply with the number of space-step increasing downwards(as
z increases)and the number of time-step increasing with time.

From 2.10 and by approximating the space derivative(and by dividing by Az )we
find

= Thl Bl S B | P
(K]0 ([hf]]zz2 iy [s£;+2) B wf([[(f]j_%([hfb Az[ff]]- - [XL]Z ;)
— wf[cf%]j + O‘Z,[[(ahf]j — sz,[[(ahm]j
(2.11)

Similarly we find that 2.5 gives



(Kol jp1 . ndi = [ho)joa, Bt
A2 ) - Az )

ahm * ” * ”
= walen 1 + au[Bahm]j — o [Kahyl;
(2.12)
Now if we rearrange 2.11 then we obtain
wi[Kyljpa wi Kyl welKyljoe wy[Kyl;_a
[hf]j-l—l(T) - [hf]j(T + Az + ag,[Kalj) + [hyli=( A2 )
. dhy wil Byl welByl; s
—I_[hm]](aw[lxa]]) = wf [cf W]] —I_ AZ] - AZ] (213)

We will now represent 2.13 in a clearer form

oh
Ah; + Bh,, = Ca;tf—l—ﬂ (2.14)

where h;y = [, hy,_,, by hy,,., )" and where b, = [ Ay, _ys B o B
also where

SR o

0 —F=+ —(—%= oty aeiig) e
B=10 Oéfu:[:lx"a]] 0
C = 0 wf‘[‘c‘f]j ()
F=| iy _ wilKyl,_y

Az Az

In all the above examples j increases or decreases as the row number of the matrix
element increases or decreases.

When boundary conditions have been implemented we will find that the matrix
A will become square.However boundary conditions are discussed more fully later
on in this chapter.



2.2 Timelike discretization

The # method is used to approximate the time derivative in equation 2.14.Therefore
we obtain the following expression

k1 k

AR B £ (1= 0) (AR B = oo (P g e
(2.15)

In the above equation it is clear that timelike averaging between two time node

points is necessary in order to evaluate the function value mid-way between two

time nodes.This is done in exactly the same way as can be done spatially,ie.evaluating

the function at both adjacent time nodes and then taking an arithmetic average.

It is well known(see [Wood 1993])that § = 0.5 tends to produce oscillations; § = 1
gives an unconditionally stable scheme with smoother results.Hence a value of
0 =1 is used.

However using # = 1 has the disadvantage of requiring a matrix solver for each
iteration of the numerical solution of 2.14

Discretising 2.14 as previously indicated gives the following equation:-

1 1 1 hk+1 - K 1
AHE@?“ + Bk+5ﬂ1+1 _ Ck-|—5(—f N —f) _I_Ek+5 (2.16)

Using this form of time discretisation we find(from 2.13)that

w K] wi K72 w K7
iyl sl gl
[hf]fﬂA—Z; — [hg]F AZQJ + Az; Fal K] ?)
- 1kt
wf[le]_f k+ L
b ) + (a5
N ] T
B L) il U1 (Kl iy 1B fwy
- At Az Az
(2.17)
We will now rearrange 2.17 to give
- gkt - k3 - Tkt kit
" ]Hl(wf[]gf]j_l_%) - ]k+1(wf[kf]f+% . wf[[&f]j_% t oK ]k+% .\ wyles]) )
T A T Az Az? vl At
- kts
wf[le]‘_f k41
b ) + (e
1 e 1
(—wf[cf]f-l_?[hf]? ([Af]ﬂ_;_)wf _ ([Af]]‘_;_)wf
At Az Az
(2.18)

Similarly,by completing the same procedure(of rearranging,discretising in time
and again rearranging)that we completed on 2.11 ,we find that from 2.12
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2.3 The General Solution

2.3.1 The form of the matrix problem

A five-diagonal matrix system can be formed by solving 2.18 and 2.19 simulta-
neously.Gerke and van Genuchten(in their 1993 paper)found the stability of the
simultaneous solution to be superior to the stability exhibited when the equations
were solved alternately.In the alternative approach the numerical solution is found
by using 2.18 to update @?‘H and then using 2.19 to update }_Lfn-l_l values.This pro-
cess is then iterated until the updated values converge to a satisfactory tolerance.

The form of the simultaneous solution to the problem is

[R)+3 (1)1 = [G]H= (2.20)

where [Q]k"'% is a column vector.The ¢(s/,) and K (/) terms have to be updated

k+1

on each iterate since they have an implicit dependence on [A] .The exact form

of [G]**2 can be seen from the right hand side of 2.18 and 2.19 .

The term [A]**! now represents both the fracture and matrix values of the pressure
heads and is shown below

(B = [ R

j—1> [hm]k+1

S T a5 [l ()5

T
j j ]

(2.21)

The structure of the matrix [R]¥*2 (as in 2.20 )is non-trivial and is shown below

- 1kt
K
k+i wf[xf]]+%

0 —[AAT ar (K]

J w

@ [K,]

Az? w
1 E+1 ,
— 2 0 _[AA]j+12 O‘Z;[Aa]j-l—l

E+ L
wm[I\/ym] 12 1
itz « [0 1k T2
0 I oK)

10

(2.19)

- k5
Wi [Km] g
J+§

Az?




wilK, 7w KM . K+3
Y B O R V(2
[AA]; 72 = ( A2 + A2 +a,[K.); ° + A ) (2.22)
and where
- gkt - 1k+1 K+1
Ny WKl 7w, [K] . K+3
k+§ o m m]+§ m m]_§ * - k+§ wm[cTTL]]
[BB]; * = ( A2 + A2 +a,[K.); 2 + —anr ) (2.23)

Notice there are more columns than rows in the matrix. Therefore boundary
conditions(in terms of both fracture and matrix pressure heads)are required at
both the top and bottom of the ground in order to solve for [h]**! . The terms
involving the boundary values are shifted to the right hand vector [G] (in 2.20
)in order to make R (also in 2.20 )square.

2.3.2 Method of iterating

Picard iteration is used due to the implicit dependence of [G] and [R] on [R]*! .We
can accelerate the convergence of the iteration by selecting a suitable parameter
w in the following equation 2.24 .The updated value of [h]*+1?*! can be used as
the best approximation(so far in the iteration)to the pressure head values [h] at
the next time-step(k+1);ie.the program uses the following:

(B =[R2 4 w([R) P — [B) ) (2.24)

In equation 2.24 the first superscript refers to time-step of the pressure head
values [h] and the second superscript(where used)denotes the iterate number.

The stopping condition for the iteration is when the maximum absolute difference
between consecutive iterates is less than a pre-set tolerance.When this tolerance
is met then time-stepping to the next time-step may proceed.

2.3.3 Method of time-stepping

Initially the value of [h] at the first time-step is approximated(to start the itera-
tion )by assuming it to be identical to the initial values given.

Further timesteps are approximated in the first instance(to start the iteration )by
using the formula

A0 = (% 4 (5 (1 — (A ) (2.25)

lp—1
where Aty is equal to the time stepped by the kth time-step. The above pressure
head values are in the same notation as in 2.24 .Also in 2.25 ;we are simply using
the superscripts p and ¢ to represent the number of iterates required to achieve
convergence at a given time.

The variable 2 is designed to be varied to increase the accuracy of the approx-
imation of the pressure-head values at the first time-step(as w was designed to
accelerate the convergence of the iteration in equation 2.24 ).

11



2.3.4 Numerical values used in this dissertation

The various parameters which can be used were given in [Gerke and van Genuchten

1993]and are shown in Table 2.1 :-

0, 0, | a.om™ | n 1 | Ks.em/day | w m

Fracture 0.0 0.5 0.1 2.0 0.5 2000.0 0.05 | 0.5

Matrix 0.10526 | 0.5 | 0.005 | 1.5]0.5 1.0526 0.95 %
Exchange Term 0.005 | 1.5 ]0.5 0.01

Table 2.1: Parameter values.

Spatial and time-steps are initially both uniform in this numerical solution,along
with the depth of the soil region(which was always assumed to be 40cm).

The value of o ,as introduced in equation 2.3,is also constant.lts value is ap-
proximated in [Gerke and van Greuchten 1993] and is given in equation 2.26

. _ B

L=t (2.26)

o

where 3 is a constant which depends on the geometry of the soil(equal to 3.0 for
rectangular blocks), v is an empirical constant for all soil types(its equal to 0.4),
and a is the average size of the matrix blocks in the soil type.All these values are
assumed to be constant for any one particular soil type.

The actual values of most of the functions which occur in the numerical solution
can be evaluated using equations 1.9 , 1.10 , 1.11 , 1.12, 1.3 , 1.4 and equations
1.5, 1.6 of section 1.2.These functions are also graphically represented in figures
4.1 4.4 .

The only function which is introduced in chapter 2 and not explained in chapter
1 is the K, function introduced in equation 2.3.This function is evaluated in the
same way as for the K, function,except that the K constant(for the exchange
term)is much smaller(see table 2.1).The function K, is also evaluated at a different

pressure head value from K, . K, is evaluated at [h]; where

(R = (Al + ) (227)

The numerical solution of the model may now be calculated.

12



Chapter 3

(General Results

3.1 General properties of the numerical solu-
tion

3.1.1 Oscillation

No oscillation was experienced in the numerical results in time and in space.In ad-
dition it was noted that consecutive iterates(of a time-step)did not oscillate.The
behaviour of the consecutive iterates not oscillating can probably be explained
by the lumping of the mass matrix which has(implicitly)taken place in our solu-
tion(according to ‘L2” in [Milly 1985])but which was done differently in the 1993
paper of Gerke and van Greuchten(according to ‘L17 in [Milly 1985]).

In [Ouyang and Xiao 1994] there is a result stated regarding a linear parabolic
problem which we have transformed to relevant variables,as follows;

oh
i aV2h(z, 1) + f(z,1) (3.1)
(where h represents the pressure head in either of the two pores and « is constant)
Similar boundary and initial conditions to the ones we used in this problem are
assumed.

The solution of equation 3.1 in space is assumed by finite element methods.This
procedure is assumed to give the following equation;

[M]a(t) + [Kh(t) = £ (3.2)

(where now A is assumed to be the form of pressure heads as used in 2.21). Ouyang
and Xiao assume the problem has been discretized in time by the # method and
then give the following condition (equation 3.3) as a sufficient condition of the
non-oscillation of the numerical solution in time.The inequality of equation 3.3 is
valid because K;; < 0if ¢ # j and K;; > 0.

max| J

(6 ) < A < minf e (3.3

Using our method of numerical discretization on equation 3.1 we may assume
that the mass matrix M(as shown in 3.2 )is in fact lumped and hence M;;(: # j)

13



terms are zero.Further since we use the fully implicit # method we may take 6 to
be equal to 1.Hence we conclude that condition 3.3 shows that our numerical so-
lution on 3.1 will not oscillate in time when discretized by the numerical method
we have used.

This result on our method of discretization of equation 3.1 applies to oscilla-
tion of the numerical solution in time but does not apply to the oscillation in
space or to the oscillation of the iterates which may occur during the iteration
of a time-step.However we conjecture that the result of [Ouyang and Xiao 1994]
may suggest an explanation for the non-oscillation of our numerical solution(to
equations 1.1 and 1.2)in time which we observe in this dissertation.Further inves-
tigation is required to confirm this conjecture.

3.1.2 Stability

Stability is not an issue in the numerical solution because a fully implicit difference
scheme is used.

3.1.3 Convergence

By convergence we mean the ability of the pressure head values to converge to
a new value for the new time-step,as the iterations continue.If the consecutive
pressure head values begin to diverge,then convergence is unlikely.

To start with a fixed time and space-step is used,but later it was found to be
beneficial to have a varying time-step.But in this section we shall assume the
time-step to be fixed.

Often the only criterion for choosing the space and time-step was whether the
iterative solution would converge.Decreasing the space-step(for a fixed overall soil
depth)was found to have a detrimental effect on the convergence of the solution
and decreasing the time-step was found to have a beneficial effect on the conver-
gence(these results are also backed up by some of the results of section 3.6)

In the paper [Neuman 1973] it is suggested that the lumping of the mass matrix
is necessary for convergence in an unsaturated flow.Indeed both Gerke and van
Grenchten and the author did lump their mass matrices.

However Wood and Calver in their 1990 paper concluded that the distributed
mass matrix should be used in saturated-unsaturated subsurface flow because it
gives increased accuracy.This conclusion may be inappropriate in our case because
we are dealing with unsaturated flow.

3.2 Applying rainfall

3.2.1 Boundary conditions

We briefly discussed boundary conditions in chapter 2.However it is perhaps ap-
propriate for us to comment some more on how the boundary conditions were
implemented in this numerical solution.

14



Usually Neumann boundary conditions were implemented.Therefore fictitious
points had to be created in order to achieve these Neumann conditions.Strictly
speaking these fictitious points are not within the soil structure and are not
recorded in any results we show in future sections.

Upper boundary conditions

Using equations 1.7 and 1.8 these rainfall fluxes can be turned into pressure head
gradients.The evaluation of the hydraulic conductivity term in 1.7 and 1.8 is at
the point just below the fictitious point.

Once the pressure head gradient has been evaluated then the pressure head at the
space point two space-steps below the fictitious point is changed by an amount
in accordance with the gradient of the pressure head,until it reaches the value to
be assigned at the fictitious point.This is shown in figure 3.1 .

Fictitious z \L
point increasing
dh/d : :
z deltaz
evaluated
Ground
for a
level

given
rainfall < %<

The point at which functions such
as K and c are evaluated

Figure 3.1: How upper boundary conditions are evaluated.

Later in this dissertation we may refer to‘no flow’boundary conditions which
merely means imposing a zero velocity of rainfall at the upper boundary.
Lower boundary conditions

These are almost always‘free flow’boundary conditions.They are said to represent
the unimpeded release of water as it exits from the soil structure(into a water
table,for example).

These boundary conditions are simply implemented by making the value at the
fictitious point (which is one vertical space-step below the lower boundary)equal
that at the space node on the lower boundary.

More generally,the velocity of the flux of rainfall formed the upper boundary
condition, and the lower boundary condition remained‘free flow’(as before).

3.2.2 General properties

Generally the number of iterates required for each time-step(for fixed time-step)varied
from problem to problem and varied as the fixed time-step varied for each prob-
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lem.However it seemed that the number of iterates required(for a fixed time-
step)seemed to diminish as the numerical solution tended towards the steady-state
solution,or increase as the solution tended towards a saturated solution.Results
backing-up some of these conclusions will be provided later.

3.3 Introducing the rainfall gradually

We now carried out a numerical example to see if(in this case)there was any
benefit to be had by‘running the problem in’as the flow of water at the top of the
soil is introduced.

In general we would expect only a marginal difference unless the flow is introduced
so slowly that the numerical solution has had time to move significantly closer
to the steady-state solution,before the full impact of the flow is felt.Again the
number of iterates required(per time-step)could form the basis of an indication
as to when it is safe to add extra rainfall.

However,in the following example we do demonstrate the beneficial effects of
introducing the flow gradually.

Numerical example

Firstly we introduced a rainfall of 3cm/day into the matrix pores(‘no flow’boundary
conditions were imposed on the fracture).Both the fracture and matrix pores have
an initial uniform pressure head of -1000cm(This very dry initial condition is used
by Gerke and van Genuchten in their 1993 paper).A‘Free flow’boundary condi-
tion was imposed at the lower end of the soil structure in both media.We set
Az = 0.2cm and set At = 107°days.We also set the transfer term to represent
rectangular blocks sized lem(to let some of the water flow into the fracture)and
the tolerance of the iteration to be 107*cm .The program initially converged in
about 10 iterates(per time-step)and then it lost convergence after the fourth time-
step.

Secondly we repeated the above experiment-but now introducing the rainfall grad-
ually(by slowly increasing the flow(uniformly)over 100 timesteps until 3cm/day
had been reached).The program did not loose convergence and iterated in about 3
iterates(per time-step).The program continued to run after the 3cm/day rainfall
had begun to be added(although the number of iterates(per time-step)began to
increase as the soil became more saturated).

This demonstrates the beneficial effects of a gradual introduction of rainfall. However
we have picked a rather unusual example because,in the first case,the numerical
solution was very close to converging and so it only needed a very small calming
of the initially imposed boundary conditions in order for the convergence to be
regained.This explains the speed with which the boundary conditions may be
introduced(in the second case)and still result in convergence.

Of course a drawback of using a gradual‘run in’of boundary conditions(especially
if they are extreme)is that the numerical solution is in fact solving a different
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problem to that which would result if the boundary flow was introduced imme-
diately. The gradual‘run-in’is really only of use if the steady-state solution of the
soil is sought.If the numerical solution must approximate the solution which intro-
duces the flow immediately at all times then a much better approach is to initially
reduce the time-step and then gradually increase it as the system recovers from
the shock of the initially imposed boundary conditions.

3.4 Varying the time-step

As we indicated in the previous section,this seems(in most cases)to be the most
superior way of letting the program deal with extreme or abruptly imposed bound-
ary conditions.It is not difficult to modify the program to be able to cope with a
varying time-step length.Some method of varying the time-step must be imple-
mented so that the number of iterates achieved remains roughly constant(per
time-step)over the running of the numerical solution.Of course the time-step
length must only be varied slowly since a large variation may cause the time-
stepping procedure to approximate a wildly inaccurate value of the next time-step
and hence convergence may be threatened.However in our experimentations we
found the program to be fairly robust to time-stepping changes,and easily able
to cope with a halving of time-steps over one time-step.

We will now include a specific numerical example.We comment on a program
which changes the time-step depending on the number of iterates being required
to achieve convergence on the last time-step.The program is given a single num-
ber of iterates(or a range of iterate values)and if the program produces a number
less than this(per time-step)then it increases the time-step by a factor of 10 per
cent.If the program exceeds this number by 1 then the time-step is decreased by
a factor of 10 per cent.If the program exceeds this number by a number greater
than 1 then the time-step is halved.Hence usually the program achieves a constant
number of iterates(per time-step).

Numerical example

In the following example we introduce a specified rainfall into the soil structure
with specified initial pressure head.The depth of the soil sample is 40cm and the
space-step is also specifed below.A tolerance of 1073 c¢m was used(unless stated
otherwise).A transfer term assuming rectangular shaped blocks of size lem was
used.In all cases a‘free-flow’boundary condition was imposed at the lower end of
the soil structure.

We show the results in the form of a table 3.1 .In case (a) an initial time-step of
107? days and space-step of lcm are used,with initial pressure heads of -100cm in
both pores.We imposed‘no-flow’boundary conditions at the top.We measured the
total number of iterates to reach 0.1days.In case (b) we used the same initial con-
ditions as in case(a) but now with an initial time-step of 5x10™* days with initial
pressure heads of -50cm in both pores.In this case a flow of 0.5cm/day was also
imposed to both the matrix and fracture pores.We measured the total number of
iterates required to reach 0.05days.In case(c) we used the same conditions as in
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case(a) except the initial time-step was 10™* days,the space-step was 0.25cm and
We counted the total number of iterations up to time 0.005 days.In case(d)we
used the same conditions as case(a)except now a tolerance of 1072 ¢cm was now
used.Finally.in case(e) the same conditions were used,as in case(a),except now an
initial pressure head of -50cm was imposed in both matrix and fracture pores.

We give a large range of cases to show that the behaviour observed is not just
localised to a certain type of problem and initial conditions.

iterates | total number | total number | total number | total number | total number
per time of iterates of iterates of iterates of iterates of iterates
step for case(a) for case(b) for case(c) for case(d) for case(e)
2 320 450 107 86 472
3 214 1051 112 97 338
4 206 395 109 101 323
5 202 232 117 109 322
6 207 230 117 114 321
7 224 231 123 118 346
8 213 232 139 130 358
9 230 236 140 130 388
10 236 238 142 129 393
10-14 244 265 190 232 426

Table 3.1: Results

These results are somewhat erratic.This randomness can probably be accounted
for by the inherent uncertainty resulting from the method of changing time-
step.For example if the time-steps are such that the program often overshoots
the desired number of iterates(per time-step)by more than 1 then the time-step
is halved.Hence in some unlikely circumstances it is possible that asking the
computer to increase the required number of iterates(per time-step)by 1 could
actually result in a smaller average number of iterates(per time-step)actually re-
sulting. Therefore if this method is to be adopted then a more reliable method of
achieving a set number of iterates(per time-step)is probably required.

Nevertheless,our results still show that the optimum number of iterates to aim
for(per time-step)is not a constant value(however it does not vary a great deal).Perhaps
the best value to aim for is 5 because in these examples it is quite near the opti-
mum point.

Assuming that we do not change time-step then the time-stepping estimation and
the estimation made between iterates use @ = 1.0 and w = 1.0 (equations 2.24
and 2.25) respectively. Therefore it is difficult to see why there should be a benefit
in aiming for 5 iterates per time-step because both the convergence of the iterates
(see equation 2.24) and the time-stepping approximation(see equation 2.25)both
relax with parameter 1.0.

By way of summary we can not emphasise enough the necessity of a varying
time-step procedure.This is because at certain times the time-step must be very
small because of extreme imposed boundary conditions or because the program
seems to be tending towards a more saturated numerical solution.If the time-step

18



was not this small then the iteration of the solution(at a given time-step)would
simply not converge to a solution for the next time-step in a finite number of itera-
tions.However as the numerical solution changes(with time)the program may not
need to maintain such a small time-step in order to maintain convergence(because
conditions may have become less severe or may have become less saturated)and in
some cases the time-step may safely increase by an order of more than 1000.There-
fore unless a variable time-step is used,the program would be forced to have a
very small time-step for all time,which results in an inefficient total number of
iterations being required.A feasible method of time-step changing is one depen-
dent on the number of iterates required for convergence at the last time-step(as
this section shows).

Variable space-step may also have advantages,however it is much harder to vary
the space-step(with time).Therefore we will not investigate that possibility.

3.5 Accelerating the convergence of the itera-
tion
Numerical example

In this section we comment on the results which can be obtained by having an
initially constant pressure head in both the fracture and matrix pores.Then‘free
flow’boundary conditions can be imposed at the bottom of the soil formation
and a‘no flow’boundary condition at the top of the soil structure.The exchange
term was assumed to be zero for this problem(ie.each medium was assumed to
be behaving in isolation).The space-step was set at 0.2cm and the time-step was
set to 107° days (constant)(but these figures are largely irrelevant to this section
and are just included for completeness).

The initial pressure heads and the relaxation parameter w (as used in equation
2.24 )were varied and the results are shown in Table 3.2.  Table 3.2 shows the
number of iterates required for convergence to a tolerance of 107 ¢m on the 4th
time-step of the above problem for the different initial pressure head differences
of -29cm and -20cm.

It can be seen from Table 3.2 that the optimum value of w varies for initial pres-
sure heads used.It is safe to assume that the optimum parameter probably also
varies for completely different problems as well.

Therefore it is difficult to make any sweeping conclusions about which relaxation
parameter is optimum for general convergence.However perhaps a safe conclusion
to make is that overrelaxation is more likely to be of benefit than underrelax-
ation.This is an expected conclusion since the iterates do not oscillate.

In terms of general conclusion it also seems likely that too large a value of w
is more likely to lose convergence (and/or take a larger number of iterates to
converge) than too small a value of w.Therefore one may deduce that if one is
unsure about which value to take one should always tend towards the smaller
end of any value used,since it is better that a solution converges slowly than not
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w number of iterates for number of iterates for
initial pressure head in both | initial pressure head in both
pores of -20cm pores of -29c¢m

0.6 13

0.7 12

0.8 11

0.9 10

1.0 10 4

1.1 9 4

1.2 9 3

1.3 8 3

1.4 8 3

1.5 8 4

1.6 7 5

1.7 7

1.8 10

1.9 16

Table 3.2: Results

at all.This is especially true since the difference(as measured by the number of
iterates required)produced by changing the value of w is only relatively marginal.

Bearing the last two paragraphs in mind,we suggest that a fixed value of w =
1.2 may be the best value to use for a general problem.However,as the results
show,particular cases can do much better.

On further investigation of the results we were interested in the following quan-
tity(which we call [¥]; )where

| (3.4)

where [A]; represents the maximum absolute difference between the pressure head
values of the jth and (j41)th iterate.In calculating values of A we were careful to
take the pressure head value at the new(or (j+1)th)iterate as the value before the
iterate was accelerated(using the current value of w ).

We found that when the initial pressure head value was -20cm the value of [¥];
settled at about 0.78 (after an initial fluctuation).However when the value of -
29cm was used as the initial pressure head value we found that [V]; was more
in the region of 0.42.Therefore we conjecture that(assuming that the value of W
remains approximately constant over a time-step and that the iterations do not
oscillate)the larger the value of W obtained then the larger the optimal value of
w 1s.This could possibly form the basis of a method to accelerate convergence for
any problem(in much the same way that the Cooley algorithem [Cooley 1983] can
accelerate any problem which requires underrelaxation).

On further investigation we decided that the assumption of ¥ remaining constant
over the time-step was not valid and so we obtained some further results which
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w | iter.(a2) | [V]ao(a) | [Plaz(a) | iter.(a3) | [V]ss(a) | iter.(b2) | [¥]42(b)
0.6 24 0.99051 | 0.999122 11 0.999862 12 0.999903
0.7 22 0.99050 | 0.998926 10 0.999851 11 0.999879
0.8 20 0.99048 | 0.998722 9 0.999840 10 0.999858
0.9 18 0.99048 | 0.998521 9 0.999831 9 0.999837
1.0 17 0.99046 | 0.998307 8 0.999830 9 0.999818
1.1 16 0.99045 | 0.998099 8 0.999833 8 0.999800
1.2 15 0.99043 | 0.997885 7 0.999842 7 0.999787
1.3 14 0.99042 | 0.997675 7 0.999857 7 0.999777
1.4 13 0.99040 | 0.997467 7 0.999880 7 0.999771
1.5 13 0.99039 | 0.997266 7 0.999917 9 0.999770
1.6 13 0.99035 | 0.997059 8 0.999974 12 0.999774
1.7 19 0.99030 | 0.996853 12 1.000047 18 0.999784
1.8 42 0.99028 | 0.996658 22 1.000051 41 0.999801
1.9 | not conv. not conv.

Table 3.3: Results

we displayed in the following table(table 3.3 ).

In both cases a tolerance of 107® cm,average rectangular shaped matrix block
size of lem and a space-step(fixed)of 0.2cm were taken.However, in addition,
case(a)used a fixed time-step of 107 days with initial pressure heads initially set
to -20cm in both media.Case(b)used a fixed time-step of 107" days and initially
set both media to have -100cm pressure heads.The letter in brackets(within the
table)refers to either of the two cases used.

The number of iterates was counted in order to achieve convergence.(‘iter.(a2) refers
to the number of iterates required for convergence on case(a)on the second time-
step,and similiarly for the other labels).[W]s2(a),[¥]s2(a),etc.simply refer to the
value of [U]y,[W]3.etc.(as defined in equation 3.4)for case(a)on the 2nd time-
step,and similarly for case(b).

As is clear(from case(b))there maybe some relationship taking place,since the op-
timum value of w seems to be accompanied by the smaller values of W.However
any firm conclusions are shattered by some of the results from case(a).We conjec-
ture that an acceleration scheme which trys to minimise U (during the iteration
of every time-step) would result in quicker convergence.Further investigation is
needed.

We could argue that the total number of iterates for the time-step gives the best
indication as to the efficiency of the iteration.However we only know this num-
ber after the time-step is complete and therefore it can not be used during the
time-step to accelerate its convergence.However,by taking the value of ¥ before
the time-step is complete,we hope that it may be possibe to vary w during the it-
eration process to minimise W and therefore hopetully accelerate the convergence
during the iteration process.However,as the results show,much more work has to
be done on this question.

Just for reference the Cooley algorithem[Cooley 1983] was implemented and since
it repeatedly returned the maximum relaxation parameter w =1.0 it is clear that
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there is no benefit to be had from introducing it.Other methods of accelerating
the iteration process (such as Newton[Conte-and-de-Boar-1980]) are also not ap-
plicable due to the effort required to form the various differentials.Newton also
requires a very good starting value for convergence to be achieved.

However in [Gerke and van Genuchten 1993] Picard iteration with Cooley under-
relaxation [Cooley 1983] is used which suggests that the iterations (of a time-step)
do oscillate.This is because if their iterates do not oscillate then the underre-
laxation scheme used would be of no benefit.It should be noted that although
we suspect the iterates did oscillate this is not explicitly stated anywhere in

[Gerke and van Genuchten 1993].

Since we suspect the iterates(of a time-step)oscillate when ‘L1’'mass lumping is
used but the iterates do not oscillate when ‘L2’mass lumping is used then we
conclude that the ‘L1” form of mass lumping is probably preferable.We conclude
this because as long as the iterates(of a time-step)oscillate then their convergence
may be accelerated by the Cooley algorithem.If the iterates do not oscillate then
their convergence can not be easily accelerated.

The same procedure of varying the parameter value € as in equation 2.25 may
be applied to the initial interate of the new time-step.However,since the solution
does not oscillate in time either it seems likely that similar results will be ob-
tained.We tried values of 2 = 0.5 and 2 =1.0 and found the value of  =1.0 to
be superior(as one would expect for a non oscillating problem).This value of
was then adopted.

3.6 Numerical difficulties

We now aim to quantify the numerical difficulty associated with solving different
types of numerical problem.

Numerical example

To achieve this aim we set the computer a set of problems(or cases)which only
vary by one aspect.To quantify the difficulty that the computer has we will pro-
duce a table similar to table 3.1 .However now only 5 iterates(per time-step)were
aimed for and no other values were taken(ie.variable time-step was used as de-
scribed in the previous section).

The larger the total number of iterates required,the harder the computer finds
the problem(in general-there are some exceptions).There are different cases to be
considered.

Case(a)is the same as case(a)from the previous section,ie.using a 40cm depth of
soil,a tolerance of 107 cm,initial(variable) time-step of 1072 days with initial
pressure heads of -100cm in both matrix and fracture pores.We were assuming a
transfer term which assumed that the average rectangular shaped matrix block
size was lem and also setting the space-step to be lem.Finally a‘no flow’condition
was assumed on the upper surface and a‘free flow’boundary condition was as-
sumed on the lower surface.We counted the number of iterations required to
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reach a time of 0.1 days.

In case(b)we used the same conditions as in case(a) except our initial(variable)
time-step was 10™* days,the space-step was 0.5cm.In case(o)a space-step of 2cm
was used with other conditions remaining as those in case(a).The total numer of
iterates required to solve each of these cases may be found in Table 3.4.

In case(c)we used the same conditions as case(a)except now a tolerance of 1072
cm was used.The results of these cases are displayed in Table 3.5.

In case(d)the same conditions were used,as in case(a),except now an initial pres-
sure head of -50cm was imposed in both matrix and fracture pores.In case(g)the
same conditions were used as in case(a)except now that an initial pressure head
of -500cm was used.Table 3.6 displays the results for these cases.

In case(e)the same conditions were used,except now a the average rectangular
matrix block size was assummed to be 0.1cm.The conditions of case(h)were as
those of(a)except now the average rectangular matrix block size was assumed to
be 3.3cm.The results for these cases are displayed in Table 3.7.

In case(f)a soil depth of 80.0cm was assumed,with all other conditions to be left
as in case(a).Also is case(n)the length of the soil structure was assumed to be
20cm with again the other conditions remaining as in case(a).Table 3.8 displays
the results for these cases.

In case(i) the conditions were as those of(a)except now a flow of 0.2cm/day was
imposed at the upper surface.The same conditions as case(i) are used in case(m)
except now 0.1lem/day was applied to the upper surface.The results of these cases
are displayed in Table 3.9.

In case(j)the matrix had initial conditions of a pressure head of -50cm and the
fracture had initial conditions of a pressure head of -100cm with all other con-
ditions being the same as those of case(a).In case(k)the conditions were those of
case(j) but with the average matrix block size assumed to be 0.lcm.Finally in
case(l)the same initial conditions were used as those in case(j) except now the
average rectangular matrix block size was 3.3cm.Table 3.10 shows the results of
these cases.

Our results show that there is an advantage to be had in increasing the tolerance
of the iteration.Of course the price you pay for this advantage is a reduction in
the accuracy of the solution.From the results from case(a) and case(c)( Table
3.5 )we can say that there is a significant difference in the results.It is safe to
assume that the results of case(a) will be substantially more accurate than those
of case(c).Where case(a)has a pressure head of -107.1cm,case(c)has a pressure
head of -108.9cm(at the same depth),however in both cases the qualitative na-
ture of the numerical results are similar.Furthermore this error would probably
be acceptable,from a hydrological point of view,because of the many uncertainties
which are associated with the various parameters used for real problems.The ab-
solute error(between results)which we have experienced here would be expected
to increase with time(for similar time-steps).
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total
number
of iterates
for case(a)

total
number
of iterates

for case(b)

total
number
of iterates
for case(0)

Table 3.4: Table showing the effects of varying space-step size

202 528 82
total total
number number

of iterates
for case(a)

of iterates
for case(c)

Table 3.5: Table showing the effects of varying tolerance

202 109
total total total
number number number

of iterates
for case(a)

of iterates

for case(d)

of iterates
for case(g)

202

322

55

Table 3.6: Table showing the effects of varying initial pressure heads

total
number
of iterates
for case(a)

total
number
of iterates
for case(e)

total
number
of iterates

for case(h)

202

193

204

Table 3.7: Table showing the effects of varying matrix block sizes for equal pres-

sure heads in fracture and matrix pores

total
number
of iterates
for case(a)

total
number
of iterates
for case(f)

total
number
of iterates
for case(n)

Table 3.8: Table showing the effects of differing soil depth

of iterates
for case(a)

of iterates
for case(i)

202 202 202
total total total
number number number

of iterates
for case(m)

202

402

188

Table 3.9: Table showing the effects of applying rainfall
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total total total
number number number
of iterates | of iterates | of iterates
for case(j) | for case(k) | for case(l)
354 294 317

Table 3.10: Table showing the effects of varying matrix block sizes for differing
pressure heads in fracture and matrix pores

Our results also show that there is a very large increase in the amount of nu-
merical work required to find a solution with a halved space-step.In fact this
increase in work is even larger than is suggested by the table (see table 3.4 )be-
cause the amount of numerical work done(per iterate)was larger in case(b)than
case(a)because there were a greater number of spatial nodes present.

As we have suggested earlier on in the dissertation,it seems(from the results of
table 3.6 )that the program computes less saturated conditions more easily than
more saturated conditions.

The results also show us that changing the average matrix block size seems to
have a relatively small effect on the increase in the amount of numerical work
required when the pressure heads in the two media are similar( see Table 3.7
).However the effects seem to be more marked when the pressure head differences

are larger( see Table 3.10 ).

It also seems that doubling or halving the soil depth does not change the total
number of iterates required( see Table 3.8 ).However,as with Table 3.4,the amount
of numerical work required is still substantially increased.

When some rainfall is applied(0.2cm/day)there is a significant increase in the
amount of numerical work needed to obtain a numerical solution( see Table 3.9
). This is probably as a result of the‘shock’of immediately introducing the bound-
ary conditions and not so much as a result of the numerical solution becoming
more saturated(as it does not have time to become significantly saturated).In fact
applying a slightly lesser amount of rainfall(eg.0.1cm/day as case(m)shows)can
actually need less numerical work than case(a) required, which had no rainfall
applied.We think the reason for this is because ‘no-flow’boundary conditions at
the top of the soil structure actually cause more of a ‘shock’ to the program than
just letting a small amount of water flow into the surface to replace the water
‘free-flowing’ out of the soil at the lower end.

3.7 Evaluating the functions at mid-points

As is mentioned earlier in this dissertation(in Chapter 2),the way in which the
value of the functions (ie the hydraulic conductivity of the specific soil water ca-
pacity) are taken at the mid-point of two nodes is to evaluate the functions at
the pressure head values of the two adjacent nodes and then take the arithmetic
average.

However another way of attacking the problem is to average the pressure head val-
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ues at the two adjacent nodes before the function’s value is calulated(ie.evaluate
the functions’ value at the averaged pressure head).In so doing one will find that
there is a significant reduction of the number of function calls required.Since
the function evaluations are somewhat complicated and therefore time consum-
ing,there is a significant advantage to be had in averaging the pressure head values
before calling the function.

Numerical example 1

We set a tolerance of 1072 days, initial pressure heads of -100cm in both pores,
initial(variable) time-step of 1072 days, space-step to be lcm, depth of soil to be
40cm, average rectangular matrix block size to be lem, the number of iterates
aimed for(with variable time-step)was 5, and finally we take the results at time
= 0.2 days.

Using the averaging after the function calls the computer took 34.9 seconds(in
real time)and used 359 iterates.In using the averaging before the function calls
the computer took 19.7 second and 358 iterates.(Please note that we are con-
vinced that the differences in real time that we observed are not as the result
of variable demand on the computers,since we observed these differences several
times)

The numerical results were remarkabley similar.For a pressure head value of -
110.60427cm(at a particular depth)on the averaging before method, a pressure
head of -110.60582cm was experienced on the averaging after method.This differ-
ence could safely be said to be neglible.

Since the averaging before method evaluates the function at the mid-point,and
the averaging after method takes an arithmetic average of the values at the two
node points it is clear that any discrepancy between the two methods will be
greater when the space-step and/or time-step is larger(for a constant soil depth).

Numerical example 2

We now put this hypothesis to the test, by using the same conditions as the above
numerical example-except we now use a space-step of 10cm(however a complica-
tion is that the average time-step may now be smaller than in Numerical example

).

Averaging after took 66 iterates and 1.0 seconds and averaging before took the
same numer of iterates and approximately half the time(although the time mea-
surement was difficult to evaluate for such a short space of time).

Even now there is a very small difference in the numerical results.For example
averaging before obtained a value of -106.344577cm (at a certain depth) and av-
eraging after obtained a value of -106.365380cm (at the same depth).

We now aim to quantify the effect of a larger time-step in the following numerical
example.
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Numerical example 3

In the following numerical example we follow the conditions of Numerical Exam-
ple 1(of this section),except now we let the program run for a substantially longer
period of time(10.0 days).This means the time-step grows larger because(as the
last section shows)the computer finds more ease in evaluating conditions which
become more dry and tend more towards the steady-state solution.We also have
a larger space-step(10cm)in order to exaggerate any differences.

Again now very little difference between the results occurs.Both versions take
416 iterates.By way of difference in numerical solution we can say the averaging
before method has a value of -171.0261cm (at one depth)and the averaging after
method has a value of -170.7046c¢m (at the same depth).Of course(as with all of
these numerical examples)the qualitative nature of the results were also similar
in the two cases.

Which is the correct method is a matter of debate.There should be little differ-
ence between the two approaches if the pressure head values and the functions
called (ie K and ¢) vary linearly between the node points.However if they do not
vary linearly then there will be some difference. For small space and time-step
there should be little difference(as we have discovered).

one .. two .. three
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Figure 3.2: A possible distributions of nonlinear functions.

It is too complicated to analyse the case for general nonlinear functions,however
we will come to a conclusion as to which is the best approach to adopt in some
cases of special nonlinear functions.

From the next chapter (see figures 4.1 and 4.2) it will become clear that the distri-
bution of the function K (the hydraulic conductivity function) is like that shown
in Fig.3.2 case one,with the value of K being the y-axis and the pressure head
being the x-axis.The similarity will not be exact, but hopefully it will be close
enough so that the qualitative arguments we comment upon here follow through.
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For the purpose of simplicity we will assume that the pressure head values may
take either Fig.3.2 case two or Fig.3.2 case three(with the y-axis being the value
of the pressure-head and the x-axis being the depth of the soil structure).This is
a large assumption which is motivated by the form of the boundary conditions at
the lower surface of the soil(these two types of pressure head distributions can be
seen in the numerical results of figures 4.6 , 4.7 , 4.9 and 4.10).This assumption
will be especially wrong when oscillatory boundary conditions are to be applied
to the soil.

We will now explore the accuracy of the two methods of evaluation of the value
of the K function at a mid-node in space.Firstly we will assume that the pressure
head distribution has the form of Fig.3.2 case two.

Here the average value of the pressure heads at the two nodes(d and e in case 2 of
figure 3.2)will be 0.5.By observing the assumed distribution for K(case one) it is
clear that h=0.5 returns a value of about 0.05.For h=1(the value of the pressure
head at node d)we find that K returns a value of 1.0 and for h=0(the value of
the pressure head at node e)we find that K returns a value of 0.0.Therefore by
averaging after we obtain a value of 0.5 for the value of the function K at the
midpoint of the two nodes.

In fact the value of the pressure head(case two) at depth=0.5(ie.the midpoint of
the two nodes,d and e,in space)is 0.05,which returns a value of K(case one) being
approximately equal to 0.0.S0 in this (ie.case two) averaging before is the more
accurate of the two methods and it will also require less computational time to
evaluate the solution.

However a similar argument concludes that if the pressure head distribution has
the distribution as given in case three then the averaging after scheme is the more
accurate(or the closer to the correct value).

Therefore we conclude that,for these two simple examples,neither of the two meth-
ods is superior on a general pressure head distribution.This implies that it is better
to use the averaging before method since it does not lose out on accuracy and
produces a result in about half the time.

As stated earlier,we have used a large number of simplifying assumptions. We will
comment on the inadequacies of our previous argument as follows.

Firstly we have not discussed at all how the pressure head values may vary with
time.This is significant because a large amount of timelike averaging between
nodes is also necessary.However we hope the distribution may be similar to that
of case two or case three,but have no results to prove this.

Secondly the ‘¢’ (ie.the specific soil water capacity) functions are also averaged
between time nodes and again we have no results(as yet)to give us any indication
as to the distribution of this function(in time).However (for non-oscillatory solu-
tions) perhaps we should hope that the distribution is quite close to case two or
case three.

Finally(as we have mentioned before)in certain circumstances the spatial distri-
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bution of the pressure head values may not be similar to either case two or case
three, and hence all of the preceeding arguments may be invalid.

Which method is best is open to question,however in any case(due to small
space and time-steps)the differences between them appears to be very small any-
way. Therefore we suggest the averaging before method is better to use on the
grounds of the lesser amount of numerical effort required.
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Chapter 4

Numerical examples and
representation of functions used

4.1 Representation of functions used

The functions we have used in this model vary with pressure head values.Therefore
it is useful to include their representation in my dissertation.

It is important to remember that these are just mathematical approximations to
what occurs physically. They are not exactly correct and other approximations to
the physical behaviour of the soil also exist which are not necessarily the same as
the ones we are using here.

The first function we will consider is the hydraulic conductivity function K, /¢
(as introduced in chapter 1).These values are especially valuable to know because
they can be used in conjunction with equation 1.7 and 1.8 to estimate the flux of
fluid flowing.
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Figure 4.1: Hydraulic Conductivity values.

It is also helpful to compare the hydraulic conductivity functions on the same
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graph also.This is

shown in figure 4.2
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Figure 4.2: Hydraulic Conductivity values.

The water content functions (6, as introduced in chapter 1) also vary as a
function of pressure head and are shown(as a proportion of saturated value)in
the following graph(ie.figure 4.3 ).
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Figure 4.3: Water content functions.

Finally the ¢,/ function (as introduced in chapter 1)is also a variable function
of pressure head.Its value is given by equations 1.5 and 1.6 .Its representation is

given in figure 4.4 .
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Figure 4.4: The specific soil water capacities.

4.2 Numerical examples

In this section we aim to show that the model and the numerical solution at
least give plausible results and that,therefore,the dual porosity model is worthy
of further investigation.Since there are many factors and variables to consider
when deciding if the numerical solution is sensible,we will try and concentrate on
simple numerical examples so we will have a better chance of understanding the
processes taking place better.

4.2.1 Very Wet Soil

Numerical Example

No Flow
\L Pressure heads initially
40cm
at-10cm
z
increasing in both pores
[ R Free Flow

Figure 4.5: The numerical example.
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In this numerical example we will show how the model reacts to an initially wet
soil(see figure 4.5).This soil will slowly dry because we have a‘no flow’boundary
condition at the top of the soil structure and a ‘free flow’boundary condition at
the bottom of the soil structure.The initial conditions were of a pressure head of
-10cm in both fracture and matrix pores.The length of the soil medium was 40cm,
space-steps of lcm were used and the average rectangular matrix block size was
set to be 1.0cm.

By observation of figure 4.3 it is clear that just because the pressure heads are
identical(initially)in the matrix and fracture pores does not necessarily mean that
their water contents are the same.Nevertheless it is still clear that both media
would initially be said to be‘wet’as defined by any sensible definition(in fact a
more precise definition of ‘wetness’ may be given by equations 1.11 and 1.12
).Further,since both the water content functions in the matrix and fracture are
monotonic,it is a safe to assume that as the pressure head decreases in one medium
then the water content of that medium also decreases.
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Figure 4.6: Pressure Heads at time=0.01 days

By observing figure 4.6 (also with reference to figure 4.3 )it is clear that the pres-
sure heads in the fracture are decreasing faster than the matrix.This is because
the water is flowing downwards more quickly in the fractures.The fact that the
water is flowing quicker in the fractures can be deduced from figure 4.2 and from
equations 1.7 and 1.8 ,given the initial pressure heads used(ie.initially zero pres-
sure head gradients).

This phenomenon may be thought of as the water running quickly down the wet
cracks while the water seeps only slowly down the wet matrix blocks which seems
to be intuitively correct.This process would not be modelled as well by a single
porosity model.

It is also clear that the water has had little effect on the lower boundary of the ma-
trix pores since the pressure head values are still around the values to which it was
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set initially. This may be accounted for by the explanation that since the water is
flowing(relatively)slowly in the matrix pores,it has had not had time to make the
lower end of the soil structure significantly dryer at this short time(0.01days)after
the initial conditions were imposed.

At this point we should perhaps mention the transfer term.This regulates the
transfer of water from the medium with the higher pressure head to the medium
which has the lower pressure head(its definition is given by equations 2.3 and
2.26).We will assume that this transfer term has had little effect on the flows ob-
served in figure 4.6 since it will have not had time to affect the flow significantly
because the pressure head differences are not of a large enough magnitude.
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Figure 4.7: Pressure Heads at time=0.1 days

Now considering figure 4.7 (again also with reference to figure 4.3 )it is clear that
the fracture system has dried significantly more than at time 0.01days and the
matrix is also dryer than it was at time 0.01days.This is(at least partly)because(as
commented upon before)the water travels faster(at first)in the fractures than in

the matrix.

By again considering figure 4.7 further we are beginning to see a different phe-
nomenon taking place.Since initially the flow is greater in the fracture than the
matrix it seems likely that the majority of the dryness of the matrix pores may
be accounted for by the transfer term(~, as introduced in equations 2.3 and
2.26)moving water into the fracture.We think this process is now significant be-
cause of the time the process has been running ,the differences in the pressure
head values experienced at t=0.01 days and the growing similarity between the
two pressure head distributions of the two media at 0.1days.

It may be possible to analyse the hydrology of the processes occurring in the nu-
merical results further(by calculating the flux of water flowing in the two pores-for
example)but that degree of hydrological detail has not be carried out because of

time constraints.
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By imagining what would happen physically in the soil and by analysing the
numerical results in this example it becomes obvious that this dual-porosity
model gives very believable results and hopefully models the movement of un-
saturated flow in the soil much better than the previously used single porosity
models(see [Beven and Germann 1982]for more information on the inadequacy of
single porosity models).

4.2.2 Applying Rainfall

The average size of the rectangular matrix blocks is a critical factor affecting the
transfer of water between the two pores.This is adequately discussed in the 1993
paper of Gerke and van Genuchten.However we will just include two examples to
show how well the dual porosity model deals with differing average rectangular
matrix block sizes and to show how well the model deals with rainfall.

It should be noted that some care is needed in devising the problem because
if a much dryer initial condition is used , or if a much larger flux of rainfall
is applied then we risk forming a positive pressure head at the top of the soil
structure(usually at the fictitious point).This is probably an undesirable situation
and although we can cope with this in certain circumstances(see section 1.2), we
do not know how to overcome this problem in general.Therefore we will only use
situations which are not so severe as to cause a positive head to be formed at the
fictitious point.

Numerical Example 1

1cm/day
rainfall
applied

\L Pressure heads initially

40cm
at -70cm
z
increasing in both pores
[ Free Flow

average size of rectangular shaped
matrix blocks  being 3.3cm

Figure 4.8: The numerical example.

Again we use a 40cm depth of soil with lem space-steps.We will immediately
apply rainfall of lem/day to an initially dry (-70cm of pressure heads in both
soils) soil to see how the model reacts to this situation.Figure 4.8 shows the
various boundary and initial conditions applied.

Here it is clear(by observing figure 4.9 )that the water flux,due to rainfall,has
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Figure 4.9: Pressure Heads at time=0.04 days with average rectangular matrix
block size=3.3cm

infiltrated further into the matrix than fracture pores at this time.This is what

one may expect given the initial pressure heads,by observing figure 4.2 and using
equations 1.7 and 1.8 .

Since the average matrix block size is relatively large(and therefore the transfer
term(equations 2.3 and 2.26)is relatively small)and a relatively short time has
been allowed to pass since the imposition of the boundary conditions it is safe

to assume that there has been relatively little transfer of water between the two
pore systems.

Numerical Example 2

We will now show an example in which a smaller average rectangular matrix block
size(1.0cm)is used to show that now the pressure heads become more similar(all

other initial and boundary conditions are as in Numerical Example 1 of this sub-
section).

By observing figure 4.10 it is clear that there has been a larger transfer of wa-
ter occurring between the two systems.Physically this is explained because the

smaller rectangular shaped matrix blocks have more surface area from which to
pass water.

One must also bear in mind the larger volume of matrix pores as opposed to frac-
ture pores (as dictated by the wy term as given in table 2.1 and as introducted
in section 1.2.) when trying to analyse these results. That means that when the
water transfer is increased between the two pore systems then the pressure head

values in the fracture are likely to change more than the pressure head values in
the matrix pores.

Again the dual-porosity model has proved itself to be superior to the single-
porosity models available,since the single porosity models would have a severe
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Figure 4.10: Pressure Heads at time=0.04 days with average matrix size=1.0cm

difficulty in modeling the interaction between the two pore systems which is re-

sulting here and which (of course) will be dependent on the average matrix block
size as figures 4.9 and 4.10 show.

4.3 Conclusion

No oscillation was observed in time,space or in the consecutive iterates of a time-
step.

The gradual introduction of rainfall was found to have a beneficial effect on the
convergence of the numerical solution(as opposed to its immediate introduction)

A variable time-step was found to be a necessity for producing our numerical
solution in an efficient number of time-steps.

The convergence of the iteration(of a time-step)may be accelerated by overrelax-
ation.However it is not clear how this acceleration may be maximised in general

In general dryer(ie.problems with more negative pressure head values)are solved
with less computational work being required.Also problems which have smaller

depth,larger space-step and larger tolerance are computed with more computa-
tional ease.

The difference in the amount of computational work required when changing the
average size of the rectangular shaped matrix blocks is marginal when the pres-
sure head differences between the two pores systems is small. However when the

pressure head differences between the two pore systems is larger then the differ-
ence in the computational work is more marked.

The imposition of increased rainfall at the upper surface increases the computa-
tional effort required,in general.
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We also conclude that it is probably better to calculate nonlinear terms by aver-
aging the values of the pressure heads to adjacent nodes(in time or space)before
calulating the corresponding hydraulic conductivity or specific soil water capac-
ity.

Finally(as the graphical examples show)we conclude that the dual-porosity model
produces plausible results for certain initial and boundary conditions.
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Description.

average distance from centre of matrix block to its bounday.
specific soil water capacity of matrix pores.

specific soil water capacity of fracture pores.

average pressure head of matrix and fracture pores.
pressure head of fracture pores.

pressure head of matrix pores.

hydraulic conductivity of fracture/matrix interface.
hydraulic conductivity of fracture pores.

hydraulic conductivity of matrix pores.

hydraulic conductivity at saturation of fracture pores.
hydraulic conductivity at saturation of matrix pores.

experimental constant for fracture pores.

experimental constant

flux of water in fracture pores

flux of water in matrix pores.

effective saturation of fracture pores

effective saturation of matrix pores

temporal variable(starting with t=0 initially)

volume of fractual pores as a proportion of total volume

volume of matrix pores as a proportion of total volume

spatial variable(measured downwards with z=0 being ground-level).

constant.

experimental constant depending on size and structure of matrix pores.
empirical constant depending on the structure of the soil.

empirical constant.

term representing water transfer from fracture to matrix pores
time-step.

time stepped by the kth time step.

spatial-step.

parameter in the § method of time stepping.

soil water retention function for fracture pores.

soil water retention function for matrix pores.

residual soil water retention constant for fracture pores.

residual soil water retention constant for matrix pores.

saturated soil water retention constant for fracture pores.

saturated soil water retention constant for matrix pores.

maximum absolute difference in pressure heads of consecutative iterates.
specified ratio of A terms as given in equation 3.4.

relaxation parameter in the iteration of a time step.

relaxation parameter in the time stepping approximation.



