
The University of Reading

The Department of Mathematics and Statistics

MSc Dissertation

SELF - CONSISTENT FIELD

CALCULATIONS ON A VARIABLE

RESOLUTION GRID

Author:

Melios Michael

Supervisors:

Professor Michael J. Baines

Professor Mark W. Matsen

August 2011

This dissertation is submitted to the Department of Mathematics in partial

fulfilment of the requirements for the degree of Master of Science

Declaration

I confirm that this is my own work and the use of all material from other sources

has been properly and fully acknowledged.

Signed ...

1

Abstract

The Self-Consistent Field Theory, otherwise known as Mean Field Theory, repre-

sents interactions by two static fields acting on two polymer segments (A, B). The

model corresponds to a melt of AB diblock copolymers subject to a local incom-

pressibility constraint. Exploiting the simplest classical microstructure (Lamellar)

the density distributions of the copolymer blocks are computed by applying the

Crank-Nicolson algorithm on a uniform mesh. The aim of this dissertation is to

increase the numerical efficiency of the calculations by employing an adaptive mesh

using subdivision. The dissertation contains a study of the effectiveness of using the

h refinement technique on the computation of the copolymer propagators with the

equation ∂
∂s
q(r, s) = a2N

6
∇2q(r, s) − w(r, s)q(r, s). Preliminary studies are carried

out using a uniform mesh method and globally refining the mesh before subdividing

the mesh in areas of interest. Numerical results of the total partition function and

the segment concentration distributions are compared and conclusions drawn on the

space size step and local refinement factors.

2

Acknowledgements

I would like to thank all the staff of the Mathematics Department for being friendly

and supportive throughout the duration of my studies. Particular thanks must go

to Dr. Peter Sweby and Sue Davis for all their help and for their spontaneous replies

and guidance. I would also like to thank Prof. Mark Matsen for his help and super-

vision in my dissertation. Particular thanks for his help, guidance, conversations,

motivation and positivity in all matters and situations whether they reflected on

the course or general topics and personal problems must go towards Prof. Mike

Baines. Your supervision, ideas, jokes and patience have really been appreciated

and inspiring.

Lastly I would like to thank my family and close friends for their understanding

and support which made the completion of the course and dissertation easier and

possible.

3

Contents

1 Introduction 5

1.1 Background . 5

1.2 Reasons for Research . 6

1.3 The Model . 6

1.4 Aim of this study . 9

1.5 Adaptive Methods . 9

2 Preliminary Stage 11

2.1 The Finite Difference Method . 11

2.2 A fully Explicit scheme . 14

2.2.1 Applying the Explicit Scheme 15

2.3 Numerical Integration . 25

2.3.1 The Trapezoidal Error . 26

2.3.2 Applying the Trapezoidal rule 27

3 The Crank Nicolson Scheme 30

4 Grid Refinement 42

4.1 Stage 1 - Local grid refinement . 43

4.2 Stage 2 - Variable spaced grid . 49

5 Computational Efficiency 54

5.1 Refinement Errors . 57

6 Conclusions and Discussion 62

6.1 Further Work . 62

4

Chapter 1

Introduction

1.1 Background

A polymer can be defined as a macromolecule. It is essentially constructed from

several repeated monomer building blocks or chemical units, linked together into

one or more chains [4]. Typically there could be several hundred to several thou-

sand monomer units in a polymer. When the monomers that build a chain are

all of the same chemical structure, in other words if they are identical, the poly-

mer is called a Homopolymer. If however it involves two or more chemical distinct

monomers then, the result is termed a copolymer. In our current investigation, we

will be considering block copolymers, these refer to molecules grouped together as

blocks. A linear diblock copolymer is a polymer constructed by attaching one end

of a linear homopolymer of one type of chemical units to the end of another linear

homopolymer of distinct types, creating a longer but still linear molecule. Symbol-

ically we denote A and B the two distinct types of chemical units or monomer and

the portion of the chain which is of type A is referred to as the A block, and similarly

the porton of the chain which is of type B is referred to as the B block. Thus, di-

block copolymer refers to a copolymer comprised of two blocks of distinct species [6].

Figure 1.1: Classical Microstructures

5

A larger unit consisting of monomers grouped together each with a specific volume is

called a segment. Unlike segments are incompatible and the segment segregates into

an A and a B rich domain. This is termed Periodically Structured microstructures

and there is a list of such Classical Microstructures e.g Spheres, Cylinders and the

Lamella, as shown in Figure 1.1. The simplest of these ordered microphases is the

Lamellar (L) phase in which the A and B monomers separate into A-rich and B-rich

lamellae . It is observed to occur when the volume fractions of the two monomers

are comparable at f = 1
2
, where f is the average volume fraction that distinguishes

the number of segments that are of each type. Every AB diblock copolymer is thus

characterised by N number of segments and f , the fraction [9] .

1.2 Reasons for Research

Block copolymer melts have become an excellent model for studying fundamental

phenomena associated with molecular self-assembly. This interest is driven by the

vast industrial and commercial applications of polymer materials.

The field of complex liquids includes a diverse range of molecular systems which

involve molecules with two unfavourable contacts that tend to self assemble into or-

dered microstructures. Manipulating this tendency, researchers have created a large

host of important applications as for example the emerging field of nanotechnology.

Polymers have become a vital class of materials for the industrial sector. It stands

as one of the dominant areas in soft considered matter physics.

Great attention has been given to the equilibrium phase behaviour and with it has

emerged a thorough understanding in terms of simple intuitive explanations. The

theoretical contributions to these efforts are largely attributed to mean-field calcu-

lations on a standard Gaussian model [4].

1.3 The Model

Our model considers individual molecules and it ignores their atomic structure as

it does not explain the mesoscale behaviour of the melt. It is chosen because it is

simple and valid. It will consist of n identical AB diblock copolymer molecules, N

segments and f, the fraction that forms A block.

Using the Self Consistent Field Theory otherwise known as the Mean Field The-

ory (M-F-T), molecular interactions are replaced by fields which fluctuate since the

molecules that create them move. The M-F-T focuses on a single molecule and

6

represents interactions by two static fields acting on A,B segments. The model cor-

responds to a melt of AB diblock copolymers subject to a local incompressibility

constraint. It uses the applicability of the Gaussian model and develops the nec-

essary statistical mechanics for a single chain which is subject to an external field,

w(r). According to the Gaussian model, diblock copolymers are treated as micro-

scopic elastic threats [14].

We should define the following notation that will be used in our model:

• ri = ith monomer

• rα(s) = a function explaining the coarse-grained trajectory of the polymer

• s = a parameter indicating the interval of the chain (segment) and is defined

within 0 ≤ s ≤ 1

• subscript α is ued to label different molecules

• N total number of segments

When discretising the partial differential equation 1.2, s is treated similarly to a

time variable and r as the space variable.

Each molecule is parametrised by a variable s that increases from 0 to 1 along

the length. The partition function Q for a single copolymer experiencing chemical

potentials q and q∗ that exerts forces, respectively, on the A and B blocks is given

by

Q =

∫
q(r, s)q∗(r, s)dr (1.1)

where the copolymer propagator satisfies

∂

∂s
q(r, s) =

a2N

6
∇2q(r, s)− w(r, s)q(r, s) (1.2)

and can be evaluated starting from q(r, 0) = 1 . Similarly for q∗(r, s) the differential

equation to evaluate is identical but the right hand side is multiplied by -1 as follows

∂

∂s
q∗(r, s) = −α

2N

6
∇2q∗(r, s) + w(r, s)q∗(r, s) (1.3)

7

(a) External Fields (b) Segment Concentration Dist.

Figure 1.2: [8]

and starting from q(r, 1) = 1. The function w(r, s)is given by

w(r, s) =

{
wA(r), 0 ≤ s ≤ f

wB(r), f ≤ s ≤ 1
(1.4)

For our case, a symmetric diblock copolymer melt, f = 1
2

, the model exhibits a

microphase phase separation into a lamellar phase for segregation strengths χN ,

where χ is the Flory parameter that quantifies the repulsive interaction of the

chemical units. The boundary conditions for this problem can either be periodic

or reflective Neumann conditions [1] .

φA(r) and φB(r) correspond to ensemble-averaged segment concentration distri-

butions and from the schematic diagram in Figure 1.2b we can see the concentrations

of A and B segments at different points r.

The incompressibility assumption is then given by φA + φB = 1. The segment

concentrations are defined as follows:

φA(r) =
V

Q

f∫
0

q(r, s)q∗(r, s)ds φB(r) =
V

Q

1∫
f

q(r, s)q∗(r, s)ds (1.5)

8

1.4 Aim of this study

The main target of this study is to evaluate the exact equilibrium behaviour of a

single diblock copolymer subject to the mean field, therefore it will be with reference

to the partial differential equations (PDE) that the copolymer propagators satisfy

in 1.2. Clearly it will be far from simple to calculate the truncation errors created

by such schemes using analytic methods and as such, we have used other means of

testing our results. Applying finite difference schemes based on forward time centred

space, Crank-Nicolson solutions to the modified diffusion equation can model these

polymeric materials that are used by the self-consistent field theory. Many attempts

to solve these equations using the ordinary Crank-Nicolson algorithm on a uniform

mesh have been made, but the aim is to increase the numerical efficiency of the

calculation by employing an adaptive mesh. In order to solve equation 1.2 we need

the establishing of the external fields wα,i . The results should be symmetric and the

plot should look similar to Figure 1.2a. Other tests to perform are the validation of

the incompressibility assumption and that the Q equation 1.1 is constant throughout

the whole period. More analytical explanations on these tests will be given later.

The preliminary tests using uniform meshes will set the grounds for the adaptive

methods and hopefully produce more efficient results where the fields fluctuate and

where polymer configurations intersect. As we will see further on, a fortran program

will be used to apply the Crank-Nicolson scheme on an adaptive mesh and then

results plotted in Matlab.

1.5 Adaptive Methods

The results of the Self-Consistent field equations we are going to evaluate depend on

the reliability of the mathematical model and the accuracy of the numerical approx-

imations. Using a standard uniform mesh, to which approximations are required

at equally distant points, a large number of points would be required to achieve

satisfactory accuracy levels. By doing so the cost of a processing unit that would be

able to handle the data involved would be great. In addition it would cause extra

unnecessary processing time. On the other hand, too few points would lead to bad

approximations and large errors.

An adaptive approach is to achieve, in the most effective way, an approximate so-

lution which is in the range of admissible accuracy (tolerance). In general, there

are three forms of adaptive methods, these are the mesh refinement (h) - refining

the grid locally (adding grid points), order enrichment (p) - changing the order of

accuracy locally and mesh movement (r) - relocating a grid (moving grid points).

9

”Refining indicators” are often used to identify portions of the domain in need of

additional resolution [10].

This dissertation will centre around the use of the local grid refinement. The

aim of the h type adaptive procedure is to achieve a higher rate of convergence and

thus reach the desired accuracy with minimal cost. Given that we have sufficient

information describing where best to refine the mesh, then there are several ways

of approach. Using h-refinement, we obtain a new mesh by simply subdiving the

intervals.

Using this method we can break the mesh into smaller pieces when necessary and

even coarsen the mesh where the solution is very smooth. However, large jumps in

mesh size could cause numerical errors and an arbitrary number of unknowns will

lead to unknown run times. The number of elements from one refinement to another

may increase significantly. Another key point to raise is that the original location of

nodes does not alter through successive refinements. Though new nodes are added

and old ones may be deleted at each refinement stage, the initial orientation of the

elemets does not change and thus highly distorted elements do not appear as when

the r-method is used. The h method has to calculate how new nodes get incorpo-

rated but does not need to calculate a solution of a PDE to shift the nodes.

All in all the h method is one of the most widely used as it’s a self-adaptive

technique which requires minimal user interaction to activate the adaptive process.

In Chapter 4 we will see how it is implemented in our case when dealing with the

Self-Consistent equations.

10

Chapter 2

Preliminary Stage

We are interested in obtaining the solution to the Self-Consistent Field equations in

which the normalised density distributions, φα(r) reflect a lamellar morphology. In

this symmetry, φα(r) varies only along one axis, and exhibits a periodic variation.

φα(r) can thus be reduced to a function of only one co-ordinate, r, and be periodic.

By concentrating exclusively on the lamellar morphology, the shortcomings of the

unit-cell approximation used in the early self-consistent efforts were avoided while

maintaining a manageable numerical task.

Only configurations where block A and block B are joined should be considered, so

the partition function will be restricted to include only those cases. Furthermore,

the periodicity of these functions mean that we need only evaluate them over a single

period.

The reason for this prelminary stage is to approximate the partial differential equa-

tion 1.2 using a less sophisticated scheme and set some grounds for reference when

using the Crank Nicolson scheme and adaptive techniques as we progress.

2.1 The Finite Difference Method

As mentioned in section 1.3 the copolymer propagators are defined by the following

partial differential equation:

∂

∂s
q(r, s) =

a2N

6
∇2q(r, s)− w(r, s)q(r, s) (2.1)

which can also be rewritten by setting qi,j = q(ri, sj) as follows:

qs =
a2N

6
qrr − w(r, s)q (2.2)

11

The finite differences method will be used to approximate the solution of the diffusion

equation 2.1. The basic idea of the finite difference method of solving PDEs is to

replace spatial and time derivatives by suitable approximations, then to numerically

solve the resulting difference equations. Specifically instead of solving q(r, s) with

r continuous, we solve qi,j ≡ q(ri, sj) where ri ≡ iδx and sj ≡ jδs. We will have a

grid similar to Figure 2.1

Figure 2.1: Grid

In all numerical solutions the continuous PDE is replaced with a discrete ap-

proximation [11]. The word ”discrete” means that the numerical solution is known

only at a finite number of points in the physical domain. Increasing the number of

points not only increases the resolution but also ideally the accuracy of the numeri-

cal solution. We will thus create a mesh. The mesh is the set of locations where the

discrete solution is computed. These points are called nodes. Applying the finite-

difference method to a differential equation involves replacing all derivatives with

difference formulas that involve only the discrete values associated with positions

on the mesh. The rate at which the numerical solution approaches the true solution

varies with the scheme.

Derivatives of q are approximated in terms of the values of q at grid points. Since:

12

∂q

∂r
= lim

∆r→0

∆q

∆r
(2.3)

the derivatives evaluated at the grid points (r, s) = (ri, sj) can be approximated in

many different ways, the simplest being the following:

Forward Difference =
∂q

∂r
|ri,sj '

qi+1,j − qi,j
ri+1 − ri

=
qi+1,j − qi,j

δr
(2.4)

Backward Difference =
∂q

∂r
|ri,sj '

qi,j − qi−1,j

ri − ri−1

=
qi,j − qi−1,j

δr
(2.5)

Central Difference =
∂q

∂r
|ri,sj '

qi+1,j − qi−1,j

ri+1 − ri−1

=
qi+1,j − qi−1,j

δr
(2.6)

The second derivative at the grid point (ri, sj) may be approximated from:

∂2q

∂r2
= lim

∆r→0

∆(∂q
∂r

)

∆r
(2.7)

Instead of using approximations for ∂q
∂r

in terms of the values of q at ri+1, ri as for

the forward difference or at the points ri, ri−1 as for the backward difference, let’s

imagine instead that we evaluate it as ri+ 1
2
, ri− 1

2
. Then using the central difference

approximations for the spatial derivatives evaluated at these points,

∂q

∂r
|r
i+1

2
,sj '

qi+1,j − qi,j
ri+1 − ri

=
qi+1,j − qi,j

δr
(2.8)

∂q

∂r
|r
i− 1

2
,sj '

qi,j − qi−1,j

ri − ri−1

=
qi,j − qi−1,j

δr
(2.9)

Therefore,

∂2q

∂r2
|ri '

∂q
∂r
|r
i+1

2

− ∂q
∂r
|r
i− 1

2

ri+ 1
2
− ri− 1

2

=
qi+1,j − 2qi,j + qi−1,j

(δr)2
(2.10)

We can approximate time derivatives in the same way. For example, the forward

difference approximation for ∂q
∂s

at the grid points (ri, sj) is:

∂q

∂s
|ri,sj '

qi,j+1 − qi,j
sj+1 − sj

=
qi,j+1 − qi,j

δs
(2.11)

The error in the differential equation is called the truncation error.

In the computer program in FORTRAN, that we will create, the following notation

will be used:

• Nx will be the total number of spatial nodes, including those on the boundary

13

and dr the size of the space step

• D will denote the total length of space, 0 ≤ s ≤ D

• tmax the total length of time and as previously mentioned, the segments s

behave similarly to the time variable so tmax = 1

• Nt the total number of time steps and ds the size of time step

• finally r(i) = (i− 1) ∗ dr where dr = D
Nx−1

wherei = 1, ..., Nx and ds = tmax
Nt−1

2.2 A fully Explicit scheme

Figure 2.2: [17] Explicit Scheme - Grid

If we use 2.10, 2.11, 2.1 and rearrange we obtain the following difference equation

which can be iterated to find the approimate solution to 2.1.

qi,j+1 = qi,j +
ds

(dr)2
(qi+1,j − 2qi,j + qi−1,j)− wiqi,j (2.12)

This equation is called explicit because the computation of q at sj + 1 is com-

pletely determined by our computation of q at sj. This scheme is also called con-

sistent because the finite difference approximations have a truncation error that

14

approaches zero in the limit that δs → 0 and δr → 0. The scheme is found to be

”consistent”, first order in time and second order in space.

In order to guarantee that the scheme will give a good approximation to the true

solution of the diffusion equation, when the discretised equation approaches the ex-

act solution then the numerical scheme is termed convergent.

For a linear solution such as the diffusion equation, convergence is dependent on

the stability of the numerical scheme, it is termed stable if the amplification factor

remains bounded during calculations. According to the Lax Equivalence theorem

schemes that are convergent are those that are consistent and stable [7].

Therefore, for a properly posed initial value problem for a linear PDE and a consis-

tent finite difference approximation, stability is the necessary and sufficient condition

of convergence. The explicit scheme 2.12 is stable and therefore convergent when

δs

(δr)2
≤ 1

2
(2.13)

The main advantage of the explicit scheme is that it’s easy to solve numerically.

However, the stability condition raises issues as we are bound by the physical prob-

lem on having total space length D = 2.336784 and total time variable tmax = 1

and thus restricting us on the choice of total number of space and time steps Nx, Nt.

We can therefore conclude that the stability condition and the scheme’s first order

in time truncation error restrict the accuracy of our numerical result.

2.2.1 Applying the Explicit Scheme

Since the explicit Scheme is relatively easy to solve numerically, we will use a FOR-

TRAN program that will numerically solve the partial differential equation 2.1 that

defines the copolymer propagators.

Using the finite difference method as shown in the previous section we can obtain

the discretised equation of 2.1,

qi,j+1 = qi,j +
1

6

ds

(dr)2
(qi+1,j − 2qi,j + qi−1,j)− wjqi,j (2.14)

For the q∗ the PDE is identical to 2.1 but with the right hand side multiplied

by -1. Therefore the discretised form is very similar but with a small difference as

shown below,

q∗i,j-1 = q∗i,j +
1

6

ds

(dr)2
(q∗i+1,j − 2q∗i,j + q∗i−1,j)− wjq∗i,j (2.15)

In both cases, equations 2.14 and 2.15, we use reflective boundary conditions

15

which are defined in the program as, q0,j = q2,j and qNx+1,j = qNx−1,j. They are

defined similarly for q∗ which is denoted as q1 in the program. The initial data for

the q propagator is q(r, 0) = 1 and for the q∗ is q∗(r,Nt) = 1.

The function wαj , the external field, is given by

wα,i =
∞∑
j=1

Wα,jfj(r) (2.16)

where α is equal to either A or B depending on the segment and

fj(r) =
√

2 cos

(
2πjr

D

)
(2.17)

The fields are calculated over the whole domain using sample data for wα,i. Most

of the program trials are executed with the use of χN = 100.0 and a sample of 80

values of wA and 80 values of wB. During the computation of q, wA is used for

the first half of the time (s) steps and then wB for the remaining steps. However

for q∗, wB is used first and wA afterwards. When plotting the results, the external

fields should look similar to Figure 1.2a and indeed the FORTRAN program outputs

results for the fields that are plotted using MATLAB and are shown in the figure

below.

Figure 2.3: External Fields - Nx = 15, Nt = 80

16

In Figure 2.4 the blue line denotes wA and the green line wB. The external fields

have been computed using 15 space steps and 80 time steps for 0 ≤ r ≤ 2.336784

and 0 ≤ s ≤ 1 and because there are only 15 space steps the plot is not smooth nor

is it accurate enough. We therefore try plotting it using Nx = 100 and Nt = 3592,

the results were more sufficient and presented in the figure below.

Figure 2.4: External Fields - Nx = 100, Nt = 3592

The biggest issue with the explicit scheme is the stability condition that needs

to be satisfied in order for the scheme to converge, so the total space steps and time

steps should be chosen with great care. The FORTRAN program helps tackle the

issue by informing the user of the minimum Nt number of steps that correspond to

each Nx steps. As an example in Figure 2.5, the user selected 100 space steps and

the program notified that at least 3592 time steps should be selected for the stability

condition to be met.

17

Figure 2.5: Program - Stability condition notification

The numerical solution of q when choosing 15 space steps and 80 time steps has

been plotted in MATLAB and is shown in Figure 2.6. The results could also be

plotted on a logarithmic scale so that the plots show more details in all the domain

and the propagator’s behaviour, however the propagator plots are only shown for

reference. The aim is to compute the segment concentrations with great accuracy

and to meet the incompressibility condition

Figure 2.6: q propagator - explicit scheme - Nx = 15, Nt = 80

18

In order to check the correctness of the plot, a small test we could perform is to

remove the wα,i function, the external fields, from the partial differential equation

2.14. This would transform our PDE in a pure diffusion equation and in fact we

would be solving the Heat Equation ∂q
∂s

= ∂2q
∂r2

, of which the expected result is known.

The discretised form of our PDE would then look like equation 2.18. The fact that

our initial data is equal to 1 throughout the whole domain including the boundary

points, would lead us to expect a constant value of 1 as a solution and a flat plot

2.7

qi,j+1 = qi,j +
1

6

ds

(dr)2
(qi+1,j − 2qi,j + qi−1,j) (2.18)

Figure 2.7: q propagator - removing external fields

Now that we have validated that the explicit scheme works correctly, another

test run could be to plot the results of the PDE with segragation strength χN = 1

instead of 100. This would help us understand how the wα,i function affects our

results and the overall copolymer propagator. The outcome is shown in figure 2.8

19

and from a different angle in figure 2.9.

Figure 2.8: q propagator - χN = 1

Figure 2.9: q propagator - χN = 1 - different angle

Looking at the results we could see how the wα,i function chages the plot from

Figure 2.7 to Figure 2.9 and then Figure 2.6. We could therefore conclude that the

20

larger the values of wα,i, the larger the values of q will be. An exponential growth

appears in the values of q. This could not have been caused by the diffusion part of

the equation as all the research concludes that diffusion satisfies the solution which

appears in Figure 2.7. We therefore refer to the analytic solution of ∂q
∂s

= −wα,iq ,

which is q = Ae−sw. If wα,i < 0 then we would, indeed expect exponential growth.

There is no restriction in the wα,i values so they could be negative and thus the re-

sults in Figure 2.6 are explained. These assumptions and conclusions are important

and will help us analyse the results of the Crank Nicolson scheme used later and set

the grounds for reference and comparison in the later stages.

We will now consider the q∗ propagator and check if its discretised equation

behaves in a similar manner and if the wα,i function affects it in the same way as it

does for the q propagator. Once more we choose Nx = 15 and Nt = 80.

The discretised equation 2.15 works backwards, the initial data is given for the last

time step, Nt, and the FORTRAN program computes each time step in reverse order

to q. The wB,i function is used for the first half of the time steps and then the wA,i

function for the remaining steps. The results are plotted in MATLAB and shown

in Figure 2.10

Figure 2.10: q∗ propagator Nx = 15, Nt = 80

We then remove the wα,i function in order to check if the discretisation of the

21

remaining diffusion equation produces the same result as the q propagator under

the same conditions. The discretised equation without the external fields is now,

qi,j-1 = qi,j +
1

6

ds

(dr)2
(qi+1,j − 2qi,j + qi−1,j) (2.19)

and the results satisfy our expectations, as shown in Figure 2.11.

Figure 2.11: q∗ propagator - external fields removed

Plotting the results of the PDE with segregation strength χN = 1 instead of 100 for

q∗ as well, allow us to make better comparisons between the two propagators. That

is because the wα,i function will be weaker and thus it will have less effect on the

PDE and will not experience such great exponential growth. The outcome is shown

in Figure 2.12 and from a different angle in figure 2.13.

22

Figure 2.12: q∗ propagator - χN = 1

Figure 2.13: q∗ propagator - χN = 1 - different angle

Comparing Figure 2.12 of the q∗ copolymer propagator to Figure 2.8 of copoly-

mer propagator q, we can notice two relatively similar plots, with the first starting

from 1 in the last time step, Nt = 80, and the second one starting from 1 at the

initial time step j=0. They are both relatively symmetrical and q∗ being almost

23

equal to q if rotated through 180◦. Looking at the plots from a different angle, q∗

in Figure 2.13 and q in Figure 2.9, we can notice that they expand smoothly until

the space step i=40. The reason for this change is the fact that in both cases the

middle space step i=40 is the switching step from wA,i to wB,i and vice versa. How-

ever, these figures are valid for segregation strength χN = 1, when we turn back to

χN = 100 the program outputs the corresponding plots for q and q∗ as in Figures

2.6 and 2.10, respectively.

The problems with using the fully explicit scheme are not so serious until we try

to numerically solve the segment concentration equations 1.5. The problems would

mostly be attributed to the truncation error of the scheme being first order in time.

The current issue though is the fact that by increasing the total space steps from 15

to a larger more realistic number e.g Nx = 1000 or even more, which would give us

better resolution and also the satisfactory levels of accuracy, we would require the

use of a huge number of time steps e.g. Nt = 365533. This would create a larger

error in the calculations but also the processing time that would take to compute

the solution for much greater number of space steps would be significantly more

and possibly require a bigger computer processor. As an example of the greater

accuracy in the numerical solution of the propagators using Nx = 100 instead of 15

and Nt = 3592 instead of 80, Figures 2.14 and 2.15 present the resullts for q and q∗

respectively.

Figure 2.14: q propagator - Nx = 100, Nt = 3592

24

Figure 2.15: q∗ propagator - Nx = 100, Nt = 3592

2.3 Numerical Integration

Once q(r, s) and q∗(r, s) have been calculated using the numerical scheme, we must

solve equations 2.20 and 2.21.

Q =

∫
q(r, s)q∗(r, s)dr (2.20)

φA(r) =
V

Q

f∫
0

g(r, s)q∗(r, s)ds φB(r) =
V

Q

1∫
f

q(r, s)q∗(r, s)ds (2.21)

Equation 2.20 indicates the partition function and 2.21 the ensemble-averaged

segment concentration distributions and their results should resemble Figure 1.2b.

Both equations involve integrating the product of q(r, s) and q∗(r, s),(X = q(r, s).q∗(r, s)

). There are several method of numerical integration of varying accuracy and ease

of use. The most commonly used method and the one we are going to apply to our

problem is the composite trapezoidal rule.

The trapezoidal rule is a simple formula that estimates this integral. It basically

replaces the integral by a discrete sum that can be interpreted as the sum of areas

25

of trapezoids. A trapezoid is a four-sided region with two opposite sides parallel.

The area of a trapezoid is the average length of the parallel sides, times the distance

between them.

Given the partition [0,D] we can define the associated trapezoid sum to correspond

to the area under the X-line.

The FORTRAN program will read all the numerical results of q(r, s) and q∗(r, s)

that were previously produced by the explicit scheme. The two equations differ in

the aspect that Equation 2.20 requires the numerical solution to be divided into

areas along the space axis (r) whereas Equation 2.21 requires division along the

segment axis (s). The trapezoidal rule is then used in both cases. The equations

used by the program are 2.22 and 2.23 for the integral equations 2.20 and 2.21,

respectively.

Q =
Nx∑
i=1

1

2

((
q(i+ 1, j) ∗ q1(i+ 1, j)

)
+
(
q(i, j) ∗ q1(i, j)

))
∗ dr (2.22)

φα(r) =
Nt∑
j=1

1

2

((
q(i, j + 1) ∗ q1(i+ 1, j + 1)

)
+
(
q(i, j) ∗ q1(i, j)

))
∗ ds ∗D (2.23)

2.3.1 The Trapezoidal Error

The trapezoidal rule corresponds to approximating the product of the propagators,

(X = q(r, s).q∗(r, s)) by a straight line on each interval, dr = D
Nx

. If we look

at the Taylor expansion of X, the lowest-order deviation from a straight line is the

quadratic (X”)” term and this term means that the product deviates from a straight

line by at most ∼ ∆r2 within the interval [5].

The corresponding error area is the proportion to ∆r2∆r = ∆r3 ∼ 1
N3
x
. This is

the local error from a single interval. As there are Nx such intervals, the total error

should be bounded above by Nx
1
N3
x

= 1
N2
x
. The error of the trapezoidal rule decreases

at worst proportional to 1
N2
x
,

dr2D

12
f ”(CNx) (2.24)

The above formula says that the error decreases in a manner that is roughly

proportional to dr2. Thus doubling Nx and halving dr should cause the error to

decrease by a factor of ≈ 4.

26

Although the trapezoidal rule is generally only second-order
(
the error is O(dr2)

)
,

it is highly accurate for periodic functions like the one we are working on.

2.3.2 Applying the Trapezoidal rule

The problems with using the explicit scheme are more obvious in the consequent

results of the trapezoidal rule in respect to accuracy.

The solution to the numerical integration of Q should be constant across all time

steps. Therefore Q should have the same value throughout the time variable, s, and

if we plot the solution of Q against the different time steps we should observe a

straight line. However when using the program for space steps Nx = 15 and time

steps Nt = 80 the results are not in the accuracy levels expected, the magnitude

of the greatest oscillation is a staggering 120. The propagators q(r, s) and q∗(r, s),

as generated by the scheme, are shown in Figures 2.6 and 2.10 and the numerical

solution of Equation 2.20 of Q in Figure 2.16.

Figure 2.16: Total Partition Function - Nx = 15, Nt = 80

The segment concentrations that are defined as φA(r) and φB(r) are computed

using Equation 2.23. The results of these equations are known and presented in

Figure 1.2b. However, due to the small number of points used, the truncation

error of the explicit scheme and the trapezoidal error lead us to expect a very weak

27

approximation of the true result and in fact the numerical solution when plotted in

MATLAB is very inaccurate and disapointing, Figure 2.17.

Figure 2.17: Segment Concentration Dist. - Nx = 15, Nt = 80

Another attempt to improve the accuracy and get more realistic results for the

segment concentrations φα(r), is to allocate more space steps, e.g Nx = 100 and

corresponding time steps to meet the stability condition, Nt = 3592.

We should point out that an even greater number of space steps is prefered, however

by choosing e.g Nx = 1000 we would require Nt = 365533 and therefore we would

need a stronger processing unit. This problem is another reason why the explicit

scheme is not efficient for our problem.

The results for both Q and φA(r), equations 2.22 and 2.23 with Nx = 100 and

Nt = 3592 can be observed in Figure 2.18 and 2.19, accordingly. However we can

notice that the concentrations are still lacking accuracy and a small error in the

last few digits has caused Q not to be a straight line but in fact include a jump of

magnitude 113900032 which is still small compare to the values we are handling.

The relative difference is quite small.

All together the explicit scheme is not appropriate for all the reasons mentioned so

far, but gives us the background required to use a less unstable scheme and compare

28

its results.

Figure 2.18: Total Partition Function - N100 = 100, Nt = 3592

Figure 2.19: Segment Concentration Dist. - N100 = 100, Nt = 3592

29

Chapter 3

The Crank Nicolson Scheme

Figure 3.1: [17] Crank Nicolson Grid

The Crank Nicolson scheme is an implicit scheme and was chosen for our problem

as it has truncation error O(∆r2) + O(∆s2) which makes it better than other im-

plicit schemes which are less accurate as they have truncation error in time of first

order [2]. It is an improvement on the fully implicit scheme as it is an average of

the explicit and implicit difference schemes. In addition, unlike the explicit scheme

there is no stability condition and therefore we are not bound by any restriction on

our choice of Nx and Nt.

30

∂q

∂s
|ri,sj+1

=
qi,j+1 − qi,j

∆s
+O(∆s) (3.1)

∂2q

∂r2
|ri =

qi−1,j − 2qi,j + qi+1,j

∆r2
+O(∆r2) (3.2)

Substituting 3.1 and 3.2 into 2.1 and collecting the truncation errors we obtain

qi,j+1−qi,j
∆s

= 1
2
(1

6

qi−1,j−2qi,j+qi+1,j

∆r2
+ 1

6

qi−1,j+1−2qi,j+1+qi+1,j+1

∆r2
) + wα,i

qi,j+qi,j+1

2
+O(∆s2) +

O(∆r2)

We can notice that the values of q in the above equation from time step j and time

step j+1 appear on the right hand side. This equation is used to predict values of

q at time j+1 so all values of q at j are assumed to be known. The propagator q is

equal to 1 at the first time step as imposed by the initial data.

Rearranging the above equation so that values of q at time j+1 are on the left (L)

and values of q at time j are on the right (R) and dropping the truncation error

terms we obtain L = R as follows:

L =
(

1.0 +
1

3
µ+

∆s wα,i
2

)
qi,j+1 −

1

6
µqi−1,j+1 −

1

6
µqi+1,j+1 (3.3)

R =
(

1.0− 1

3
µ− ∆s wα,i

2

)
qi,j +

1

6
µqi−1,j +

1

6
µqi+1,j (3.4)

where µ = ∆s
2∆r2

.

This equation cannot be rearranged like the explicit equation scheme to obtain a

simple algebraic formula for computing for qj+1
i in terms of neighbors like qi+1,j, qi−1,j

and qi,j.

This equation is one equation in a system of equations for the values of q at the

internal nodes of the spatial mesh (i=2,3...,N-1).

The system of equations can be represented in matrix form, the left hand side

3.3 is presented by matrix 3.6. The matrix is tridiagonal and efficient algorithms

exist to invert the matrix.

When we perform a von Neumann stability analysis to the scheme by substituting

qi,j = ξjeikj∆r into the differential scheme, it yields an amplification factor:

31

ξ =
1− 2m(sin(k∆r

2
))2

1 + 2m(sin(k∆r
2

))2
(3.5)

where µ = k∆s
(∆r)2

and ξ ≤ 1 for all k.

We can therefore conclude that the Crank Nicolson scheme has unconditional sta-

bility just like the fully implicit scheme [13].

The tridiagonal matrix used as part of the Crank Nicolson scheme is,

b1 c1 0 . . . 0

a2 b2 c2 . . . 0
...

.
...

0 . . . aN−1 bN−1 cN−1

0 . . . 0 aN bN


(3.6)

where the coefficients of the interior nodes are:

a = −1
6
µ

b = 1.0 + 1
3
µ+

∆s wα,i
2

c = −1
6
µ

Due to the reflective boundary conditions,

a1 is multiplied by 2

cNx is also multiplied by 2

In addition, in order to satisfy the reflective boundary conditions on the right

hand side, the first space step should be altered from equation 3.4 to 3.7 and for the

last space step to equation 3.8.

R(1) =
(

1.0− 1

3
µ− ∆s wα,1

2

)
q1,j+1 +

1

3
µq2,j+1 (3.7)

R(Nx) =
(

1.0− 1

3
µ− ∆s wα,1

2

)
q1,j+1 +

1

3
µqNx−1,j+1 (3.8)

As for the q∗ propagator, the PDE is identical to 2.1 but with the right hand

side multiplied by -1. Therefore its discretised form is identical to the one we just

32

analysed but with opposite signs. However, since the initial data of q∗ is at the last

time step j=Nt, we need to work backwards to time step j=1 and thus we use the

same discretised equations with the same signs, for the right hand side, 3.4, 3.7 and

3.8 and for the left hand side the tridiagonal matrix solver for matrix 3.6.

The external field defined by the function wα,i and equation 2.16 is computed

in the same way as explained in the explicit scheme section 2.2.1 . Once more, for

propagator q the first half of the time steps use wA,i and the remaining steps wB,i

and for propagator q∗ vice versa. The plotted results should look similar to Figure

2.4.

We will test run the program of the Crank Nicolson scheme with a uniform mesh

to compare the results with that of the explicit scheme. Starting with the prop-

agator q and choosing 15 space steps and 80 time steps, the results should look

similar to that of Figure 2.6. The MATLAB plot of the Crank Nicolson results is

shown in Figure 3.2 and in fact the result resembles the explicit scheme figure with

a small difference which could be attributed to the fact that Crank Nicolson has a

truncation error of second order in time whereas the explicit scheme is of first order.

Figure 3.2: q propagator - Nx = 15, Nt = 80

As with the explicit scheme, we now remove the wα,i function from the discretised

33

partial differential equation. This would transform our PDE into a pure diffusion

equation of which the discretised form is equation 3.9 and the result should look

similar to Figure 2.7 of the explicit scheme.

qi,j+1 − qi,j
∆s

=
1

2
(
1

6

qi−1,j − 2qi,j + qi+1,j

∆r2
+

1

6

qi−1,j+1 − 2qi,j+1 + qi+1,j+1

∆r2
)+O(∆s2)+O(∆r2)

(3.9)

Figure 3.3: q propagator - excluding external fields

We can observe in Figure 3.3 that the scheme outputs a constant value of 1 as

the numerical solution of the diffusion equation and thus we can be reassured that

the Crank Nicolson scheme works correctly.

Similarly now, for the q∗ propagator we choose Nx = 15 and Nt = 90. The

computation should behave in the same manner as for the explicit scheme. We shall

start with the initial data at j=Nt and operate in a reverse order to that of q. Our

results should look similar to that of Figure 2.10 from the explicit scheme.

As we can see from Figure 3.4, the results are as expected. Better understanding

of the difference in accuracy between the numerical results of the explicit scheme

and the Crank Nicolson would be made when the total partition function Q and

segment concentration φα(r) equations are solved. As a next step we would also like

34

to validate that the Crank Nicolson scheme works correctly for the computation of

q∗ by removing the wα,i function and thus solve an ordinary diffusion equation but

backwards as the initial data is at the last time step. The solution is 1 throughout

the domain and Figure 3.5 presents the results.

Figure 3.4: q∗ propagator - Nx = 15, Nt = 80

Figure 3.5: q∗ propagator - excluding external fields

35

Unlike the explicit scheme, there is no stability condition that needs to be satis-

fied, therefore we can choose a larger number of space steps without having to select

a huge number of time steps. We now test run the program on a number of space

steps that was difficult to run using the explicit scheme. Figures 3.6 and 3.7 show

the results of the q and q∗ propagators for space steps Nx = 1000 and time steps

Nt = 100.

Figure 3.6: q propagator - Nx = 1000, Nt = 100

Figure 3.7: q∗ propagator - Nx = 1000, Nt = 100

36

We repeat the process and select Nx = 6000 and Nt = 1000. The results of

both q and q∗ propagators are in Figures 3.8 and 3.9. The increase of resolution

is noticeable and we only have to refer to the integral equations of Q and φα(r) to

check if the numerical solutions converges to the expected results.

Figure 3.8: q propagator - Nx = 6000, Nt = 1000

Figure 3.9: q∗ propagator - Nx = 6000, Nt = 1000

Applying the trapezoidal rule to the integral equations for the total partition

37

function and the segment concentrations, we should observe similar but more accu-

rate results from the explicit scheme. As we explained at an earlier stage, the nu-

merical solution of Q over all time steps (s points) should be constant and therefore

we expect a straight line. The segment concentration distributions should resemble

the plot in Figure 1.2b.

So far we have shown the results of the copolymer propagators at space steps

Nx = 15, Nx = 1000 and Nx = 6000 and the corresponding time steps, Nt = 80 ,

Nt = 100 and Nt = 1000. We will now refer to the numerical solution of the integral

equations for each of these results.

Figures 3.10 and 3.11 shows results of the integral equations for Nx = 15 and

Nt = 80. We can clearly notice the greater accuracy of the segment concentra-

tions’ results compared to the scheme results in Figure 2.17. But Q still appears to

have oscillations and in fact the magnitude of the greatest oscillation is a staggering

4999936. However the values of Q that we are dealing with are much greater and

makes this oscillation seem relatively small.

Figure 3.10: Segment Concentration - Nx = 15, Nt = 80

38

Figure 3.11: Total Partition Function - Nx = 15, Nt = 80

Further on are the results for Nx = 1000 and Nt = 100. We can observe an

improvement in the φα(r) plot in Figure 3.12, it has become flatter and with the

maximum almost at 1 as expected. The Q result has improved as well as there

are smaller oscillations. The magnitude of the greatest oscillation is a now 999936.

Although the value is still quite large, there is a big decrease in the oscillation mag-

nitudes compared to the previous run using Nx = 15 where the greatest oscillation

was 4999936.

Figure 3.12: Segment Concentration - Nx = 1000, Nt = 100

39

Figure 3.13: Total Partition Function - Nx = 1000, Nt = 100

Finally, we have the results of Nx = 6000 and Nt = 1000. This number of

points would be impossible using the explicit scheme with the current processing

units available. However as we can see Figure 3.14 resembles the expected results

shown in Figure 1.2b and Q is almost a straight line. The magnitude of the greatest

oscillation has further decreased to 300032. We must note that the values of Q are

very large and this difference between them is relatively small.

Figure 3.14: Segment Concentration - Nx = 6000, Nt = 1000

40

Figure 3.15: Total Partition Function - Nx = 6000, Nt = 1000

41

Chapter 4

Grid Refinement

Now that we have created a program that uses the Crank Nicolson scheme and nu-

merically solves our equations on a uniform mesh we would like to increase the level

of accuracy at the interface points between the two fields. Having a high level of ac-

curacy at those points is important in order to understand the nature of interactions

between the two fields and to manipulate and exploit them in the different industrial

and commercial applications. In addition, a uniform grid may be disadvantageous

when solutions possess large local gradients. In Chapter 1, we have talked about

adaptive methods and specifically about h refinement. Using this method we can

break the mesh into smaller pieces when necessary and coarsen the mesh where the

solution is very smooth if desired [3].

The basic idea of local uniform grid refinement is to cover the spatial domain,

D, with nested, finer and finer, locally uniform subgrids so as to accurately resolve

steep spatial transitions. This was done to balance the improvement in model ac-

curacy in the area of interest while trying to minimize errors of the refined model

and reduce processing time. When very large refinement ratios are used, errors in

the model solution in the coarse section might increase. To avoid that phenomenon,

the refinement was done in two stages to achieve a cell size suitable for interactions

between the two fields for a single molecule. In addition downsizing to an interme-

diate scale model made the process more computationally efficient [16].

Stage 1 involves recognising the regions that require refining and applying the scheme

with a new discretised equation and stage 2 aims to smooth the transition between

step size as to avoid big ”jumps”, but to change step size gradually around the

areas of interest. A common approach is the h-refinement, to provide refinement in

an area of interest. We achieve this by using a finite-difference grid with variable

spacing such that the grid spacing is small where needed and larger away from it.

42

4.1 Stage 1 - Local grid refinement

The local refinement strategy leads to a new method of discretisation of our partial

differential equation,

∂

∂s
q(r, s) =

1

6
∇2q(r, s)− w(r, s)q(r, s) (4.1)

The non-uniform mesh implies that the space step, dr will not be constant

throughout the domain. We therefore have to take into consideration the differ-

ent sizes of space step at each area of our domain. We can perform this by using

the following difference formulas:

∂q

∂s
|ri,sj+1

=
qi,j+1 − qi,j

∆s
+O(∆s) (4.2)

∂2q

∂r2
|ri =

qi+1,j−qi,j
ri+1−ri −

qi,j−qi−1,j

ri−ri−1

ri+ 1
2
− ri− 1

2

+O(∆r2) (4.3)

using 4.2 and 4.3. Removing the truncation errors we obtain,

qi,j+1−qi,j
∆s

= 1
12

qi+1,j−qi,j
ri+1−ri

−
qi,j−qi−1,j
ri−ri−1

r
i+1

2
−r

i− 1
2

+ 1
12

qi+1,j+1−qi,j+1
ri+1−ri

−
qi,j+1−qi−1,j+1

ri−ri−1

r
i+1

2
−r

i− 1
2

− wi qi,j+qi,j+1

2

At this phase we need to rearrange the above eqation so that the values of q

at time j+1 are on the left (L) and values of q at time j are on the right (R) and

dropping the truncation error terms we obtain L=R as follows:

L =

(
1.0 +

∆s

6

1

(ri+1 − ri)(ri+1 − ri−1)
+

∆s

6

1

(ri − ri−1)(ri+1 − ri−1)
+

∆swi
2

)
qi,j+1

− ∆s

6

1

(ri+1 − ri)(ri+1 − ri−1)
qi+1,j+1

− ∆s

6

1

(ri − ri−1)(ri+1 − ri−1)
qi−1,j+1

(4.4)

43

R =

(
1.0− ∆s

6

1

(ri+1 − ri)(ri+1 − ri−1)
− ∆s

6

1

(ri − ri−1)(ri+1 − ri−1)
− ∆swi

2

)
qi,j

+
∆s

6

1

(ri+1 − ri)(ri+1 − ri−1)
qi+1,j

+
∆s

6

1

(ri − ri−1)(ri+1 − ri−1)
qi−1,j

(4.5)

As in the previous discretised equation for the Crank Nicolson under uniform

mesh, this equation cannot be rearranged to obtain a simple algebraic formula for

computing qi,j+1 in terms of neighbours like qi+1,j,qi−1,j and qi,j. This equation is

one equation in a system of equations for the values of q at the internal nodes of the

spatial mesh (i=2,3,...N-1).

The system of equations is represented in a matrix form and in fact a tridiagonal

matrix, is represented by matrix 4.6,

b1 c1 0 . . . 0

a2 b2 c2 . . . 0
...

.
...

0 . . . aN−1 bN−1 cN−1

0 . . . 0 aN bN


(4.6)

where the coefficients of the interior nodes are:

a = −∆s
6

1
(ri−ri−1)(ri+1−ri−1)

b = 1.0 + ∆s
6

1
(ri+1−ri)(ri+1−ri−1)

+ ∆s
6

1
(ri−ri−1)(ri+1−ri−1)

+
∆swα,i

2

c = −∆s
6

1
(ri+1−ri)(ri+1−ri−1)

Due to the reflective boundary conditions,

a1is multiplied by2

cNx is also multiplied by2

Similarly the right hand side as defined by equation 4.5 satisfies the reflecitve

boundary conditions by imposing the following equations for the first and final space

44

step, 4.7 and 4.8 respectively.

R(1) =
(

1.0− 1

3
µ− ∆s wα,1

2

)
q1,j+1 +

1

3
µq2,j+1 (4.7)

R(Nx) =
(

1.0− 1

3
µ− ∆s wα,1

2

)
q1,j+1 +

1

3
µqNx−1,j+1 (4.8)

where µ = k∆s
(∆r)2

As for the q∗ propagator the equations are identical but are solved using backward

steps, starting from the last space step at j = Nt where the initial data is given and

q∗(r,Nt) = 1. We need to compute the q∗ propagator with great caution as it needs

to satisfy condition 4.9, which indicates that the value of any q should be the same

as of q∗ at the point located half a period further in space and at time step Nt−s,

where s is the time step of the q.

q(r, s) = q∗(r +
D

2
, 1− s) (4.9)

The external field defined by the function wα,i is computed in the same way, as

explained in previous chapters. Once more, for the propagator q the first half of the

time steps use wA and the remaining steps wB and for the propagator q∗ vice versa.

Both from the practical and theoretical point of view the first question to address

is how to select the regions in D that ought to be refined. Those are the areas of

interest and can be distinguished by the points at the interface between the two

fields. The fields wα,i are given by equation 2.16 and the results for Nx = 1000 and

Nt = 100 as given by the Crank Nicolson program under the uniform mesh problem

are plotted in Figure 4.1.

Figure 4.1: External Fields - Nx = 1000, Nt = 100

45

As we can see from Figure 4.1 the areas of interest are between 200 ≤ r ≤ 400

and 600 ≤ r ≤ 800, since those are the regions where the fields intersect. These

regions correspond to Nx = 1000 steps, we can therefore generalise them for any Nx

steps as follows:

• Nx
5
≤ r ≤ 2Nx

5

• 3Nx
5
≤ r ≤ 4Nx

5

Using these inequalities we can specify the areas where we need a finer grid and a

coarser grid in the rest of the domain.

The program subdivides the elements in those regions in any even number we

choose. As an initial test run we choose to double the points within areas of interest,

the space step therefore is divided by a factor of 2, (dr
2

). Such a grid should be more

accurate than a uniform grid calculation. As an example, if we choose Nx = 1000

and Nt = 100, the total points the adaptive Crank Nicolson program will calculate

are Nx = 1400 and the results are shown in the feedback table the program produces

as shown in Figure 4.2

Figure 4.2: Feedback table - Version 6

The propagators q and q∗ that are computed from this program are shown in

Figures 4.3 and 4.4, respectively.

46

Figure 4.3: q propagator - Version 6 - Nx = 1400, Nt = 100

Figure 4.4: q∗ propagator - Version 6 - Nx = 1400, Nt = 100

Finally the trapezoidal rule is used to solve the total partition function Q and

the segment concentration distributions φα(r) are presented in Figures 4.5 and 4.6

accordingly.

47

Figure 4.5: Total partition function Nx = 1400, Nt = 100

Figure 4.6: Segment concentration Dist. - Nx = 1400, Nt = 100

The plots look similar if not identical to those of the Crank Nicolson program

under a uniform grid in Figures 3.12 and 3.13. The differences will not be obvi-

ous until we compare the processing time required to numerically solve the partial

differential equations of the propagators and the integral equations, the numerical

error using the various schemes and the addition of φA(r) + φA(r) which should be

close if not equal to 1. Q seems to make a jump half way through the steps and

the magnitude of the greatest oscillation is quite large, especially with the jump it’s

48

a staggering 2.5130e+011. This might be attributed to the sudden change in size

steps from coarser to finer regions.

4.2 Stage 2 - Variable spaced grid

While most schemes can adopt any step size, the question of how to automatically

adopt the grid to rapid spatial transitions is much more involved. A common ap-

proach to provide more refinement in an area of interest is to use a finite-difference

grid with variable spacing. Using a variable spaced grid, the grid spacing is small

around the area of interest and gradually increases in size away from the area, out

to the boundary of the model domain. This approach reduces the computational

time compared to refining the grid over the entire domain (referred to as global

refinement). The difference from the program from Stage 1 (which we will refer to

as version 6) is that in order to apply the variable spacing (referred to as version 7)

we need to introduce two space steps before and after each ”jump” from coarser to

finer regions. We will call these points buffer points and the area they cover as the

intermediate regions [12].

Figure 4.7: Version 6 - Diagram

In Figure 4.7 we can observe the structure of program Version 6 as explained in

Stage 1 of this Chapter. It shows the 5 different areas the domain is divided into.

The coarse regions will have a number of nodes and space steps depending on the

user’s preference when the program is run. The user also selects how fine the grid is

to become in regions 2 and 4, those are the areas of interest as referred to at earlier

49

stages. We can select to subdivide the gird by any even factor, obviously the greater

the number (k) the finer the grid becomes. As an example if k=2 and there are

200 points in the coarse regions 1, 3 and 5, the fine regions 2 and 4 will have 400

points and step size half (dr
2

) of that of in the coarse regions. The advantages of

this adaptive mesh is that less physical memory will be required for a large number

of total space steps, Nx, less processing time and power and therefore less costs

imposed compared to having a uniform mesh and using the step size dr
2

throughout

the whole domain. We will explore and compare the time and accuracy differences

between the uniform mesh and different versions of the program in more detail in

the next Chapter.

Figure 4.8: Version 7 - Diagram

Program Version 6 is expected to be relatively better than the uniform mesh

program, as long as the step size between coarse and fine regions does not differ a

lot. The finer the grid in the areas of interest, the greater the accuracy of our results

at those points. However, the bigger the ”jumps”,the greater chances of errors in

the calculations. Version 7 of the program tries to tackle this issue by introducing

the intermediate regions and create a variably spaced grid. Figure 4.8 shows how

we tried to employ the variable spaced grid idea in our model. The refined grid uses

3 levels. Level 0 is defined by the user at the start of the program by selecting Nx

space steps and thus the step size is created, dr. Level 1 consists of 2 steps, and is

termed as the intermediate region which is generated by refining the grid using 3dr
4

step size and then dr
2

for the next step. Similarly Level 2 is the finer region where

50

the step size is dr
4

and the number of steps is 4 times the number in the coarser re-

gion. The accuracy of the locally refined calculation depends critically on the initial

number of space steps chosen. However, too many points and we will require more

processing power and time. We are continuing to investigate the relationship of the

grid placement and accuracy.

Version 7 of the program uses the same discretised equations 4.4 and 4.5 as shown

in section 4.1. The tridiagonal matrix, matrix2, is used to numerically solve the left

hand side 4.4 and the external fields wα,i as explained so far. Boundary conditions

are reflective and initial data the same. The q∗ propagator uses the same discretised

equation but starts from the last time step Nt and works in a backwards procedure.

The difference between Version 6 and Version 7 is the extra 2 steps between coarser

and finer regions that create the intermediate regions. As a first test run of the

program, we choose Nx = 1001 and Nt = 100 and the results are shown in the

feedback table the program produces as in Figure 4.9.

Figure 4.9: Feedback Table - Version 7

51

The propagators q and q∗ that are computed from this program are shown in

Figures 4.10 and 4.11, respectively.

Figure 4.10: q propagator - Version 7

Figure 4.11: q∗ propagator - Version 7

We numerically integrate using the trapezoidal rule to find the total partition

function Q and the segment concentration distributions φα(r). The solutions are

presented in Figures 4.12 and 4.13 accordingly.

52

Figure 4.12: Total Partition Function - Version 7

Figure 4.13: Segment Concentration Dist. - Version 7

As in Version 6 of the program, similarly here the plotted results do not differ a

lot and we cannot make any conclusions on the efficiency, accuracy and effectiveness

of the scheme and program using the variational grid refinement method. The Q

plot seems to still have a jump but the magnitude of the greatest oscillation has

decreased to 2.500e+011. The more points we use the more accurate this figure will

become. In the next chapter we will look at the processing time and accuracy of

each program in more detail and try to distinguish the advantages and drawbacks

of each one.

53

Chapter 5

Computational Efficiency

In order for a local refinement to make sense, refined calculations need to show

some computational savings. Using a fine grid over the entire domain (referred to

as global refinement) can be computationally intensive, both in terms of CPU time

and memory requirements. We will be investigating which method is more efficient

in terms of accuracy, CPU time and memory requirements. The program using a

uniform mesh referred to as Version 5, the program Version 6 that uses a locally

refined grid and Version 7 that introduces the concept of a variably spaced grid, were

run on the same processing unit, under the same conditions and using a constant

total time step, Nt = 100 throughout all the tests. Results are shown for refinement

ratios of 2, 4 and 8 in Version 6 and compared to the uniform grid. In each case

calculations were performed with a refined grid and a uniform grid. Version 7 is still

under construction and therefore results can only be compared for the refinement

ratio of 4. The uniform grid cell size corresponded with the finest cells in the refined

grid. Each calculation was run to the same simulation time and the CPU times were

calculated. The CPU times are recorded on the tables below. Our experience has

been that the CPU time per iteration does not vary much during a calculation so

these timings should be representative.

Figure 5.1

54

As we can see from Table 5.1, by refining the grid at the areas of interest by

only a factor of 2, the total CPU time used by the program is decreased by 16.4%.

We selected an initial total number of space steps Nx = 1000 in Version 6 of the

program. The refinement at the areas around the interface of the external fields were

double the points at the rest of the domain and the final points became Nx = 1400.

On the other hand by attempting a global refinement using Version 5, points had

to be selected as Nx = 2000 so that the size of the space step dr became equal to

the step size at the fine regions in Version 6.

Table 5.3 (on the next page) compares all 3 versions of the program. The fine

regions of the domain have 4 times the number of points in the coarse regions.

However, the difference between Versions 6 and 7 are the extra points. Version 7

creates buffer points in order to establish a gradual refinement of the grid. As we

can notice from the table, Versions 6 and 7 required almost the same number of

steps, but the latter reduced the time by an extra 3.85%.

We then attempted to increase the total number of space steps but maintaining

the refinement factor at k = 4. This was done to check if the time is positively

correlated to the factor or the number of space steps. However as shown in Table

5.4, although the initial number of points entered in Version 7 increased to 3001,

the time reduction was relatively the same as in Table 5.3.

Finally we compared having a fine grid over the whole domain with Nx = 8000

steps, using Version 5, to that of an adaptive grid using Version 6 and a factor of

refinement k = 8. The number of points used by Version 6 was only Nx = 3800 and

the time was reduced by 44%. This proves how applying the locally refined grid

maintains accuracy at the areas of interest and reduces processing time. In addition

this reduction of points implies that if a greater number of initial points were used

in Version 6, we would not require the processing power that we would using Version

5, therefore costs are reduced as well.

Figure 5.2

55

56

Great savings can be made by gradually refining the grid as to the solution ap-

proaches the interface points as in Version 7. Variably spaced grids are still being

investigated since we have noticed that the more we refine the domain covered by

the fine cells, the more time the calculations require. Currently the number of cells

at the fine regions, in both Version 6 and Version 7, is rather large compared to the

coarser levels. A more accurate analysis of the external fields is required so more

precise areas of interest are selected.

5.1 Refinement Errors

Applying the local refinement method, by either using a variably spaced grid or by

simply splitting the domain in coarser and finer regions, emphasis is given to spe-

cific areas of interest where a finer grid is used. This approach could create errors

in calculations of our segment concentration distributions, especially in the parts

wher a coarser mesh is used. We therefore want to distinguish the size of the overall

error between the results of a globally refined mesh using the uniform mesh program

(Version 5) with small size steps and that of a locally refined mesh that has similar

size steps only at the finer regions.

As an initial test for error calculations we find the mean sum of φA(r) and φB(r).

The incompressibility condition states that φA(r) + φB(r) = 1. Using numerical

schemes such as the Crank Nicolson and the trapezoidal rule lead us to expect a

small variance of the solution to this sum. We therefore calculate the mean sum of

the segment concentrations across the whole domain using equation 5.1

Mean Sum =
Nx∑
r=1

φA(r) + φB(r)

Nx

(5.1)

The results of this sum are shown in the table below, 5.3. Nt remained constant

across all programs and equal to 100. The refinement at the finer regions is done

using a factor k = 4.

57

Figure 5.3: Table

From the table above, we can conclude that the more we refine the grid the

greater the error and that can probably be attributed to the coarser areas where

less attention is given. However the averages differ only very slightly and the size of

the error is not clear and probably not very accurate with this method of measure.

We therefore use the error,

Error =

√√√√√ 1

D

D∫
0

(φAB1(r)− φAB2(r))2dr (5.2)

where φAB1(r) is the sum of φA(r) + φB(r) of the global refinement program which

produces the more accurate results throughout the whole domain, since the step size

is equal to that of the finer regions in Version 7. φAB2(r) is the sum of the segment

concentrations as a result of Version 7 that focuses on specific regions of the domain.

The issue with computing the error using equation 5.2 is that each program

makes calculations at different points in the domain and the global refinement has

a lot more points than the local refinement and we need to use this equation only at

the common points. Since we are more interested in the local refinement program,

we use its space points as reference where to apply the error equation. However,

there might not be an equivalent point in the global refinement program as differ-

ent size steps are used. We therefore use linear interpolation to find the equivalent

φAB2(r) at that specific point.

Once we have a φAB2(r) equivalent to φAB1(r) at each point that the local re-

finement program produced, we can then apply equation 5.2. The error equation

also includes integrating the difference over the two totals over the whole domain.

We use the trapezoidal rule to numerically solve this integration in the same way

as we did for calculating the total partition function and the segment concentration

equations.

We will now compare Version 7, a variably spaced grid that refines the fine re-

58

gions by a factor of 4 against Version 5, using a globally refined grid that has equal

space steps, to that of the fine regions of the locally refined grid. We will select

Nt = 100 in both programs and the results are shown in Table 5.4

Figure 5.4: error table

The results show that the difference between the result of globally refining the

grid and using a variably spaced grid is only 2.191146698777E-02. This error is

located around the coarser regions of the domain where the locally refined grid pro-

gram uses bigger space steps.

Table 5.5 performs global refinement on our domain by using smaller and smaller

steps. Part 1 of the table increases the total number of space steps from 12000 to

20000 and then 40000 while maintaining the time steps constant. We can observe

a negative correlation between processing time and error. As the processing time

increases as a consequence of the extra steps and calculations the error decreases.

But it’s the change in the error that is surprisingly small. The change appears in

the seventh significant figure. We therefore perform a different test, as shown in

Part 2. Space steps are kept at 6000, while we run the program with 1000, 2000,

4000 and 6000 total time steps. The processing time does increase similarly to Part

1, however the error decreases at each stage to almost half the size of the previous

test run. Thus having a sufficient number of total time steps is important. Part 3

shows a change in total time steps but with a smaller number of space steps. The

error increases as expected but very slightly. What is even more surprising is that

using 6000 total space steps and 1000 time steps does not affect the error as much

as using 1000 space steps and 6000 time steps. The error is almost double in the

first case. From table 5.5 we can conclude that using 6000 time steps gives us an

efficient step size and satisfying results.

Table 5.6 performs a local refinement on our domain. All 3 parts of the table

have identical time steps as in the equivalent parts in Table 5.5. However, the space

59

step size is equal between the two tables at only the fine regions of the domain.

The coarser regions in the local refinement process have greater step sizes and are

in fact 4 times bigger. We therefore see a big change in the processing time and

total space steps required. The error in each test is bigger than the equivalent one

using a global refinement but by only a slight variation. The 3 different parts lead

us to the same observations and conclusions as in Table 5.5. Therefore, the local

refinement method reduces the processing time with a cost of a slight increase in

the error but maintains all assumptions and conclusions of the more accurate but

more demanding in processing power and memory, global refinement approach.

60

These comparisons show that using a globally refined grid produces more accu-

rate results, which should be more efficient for analysis and applications. However,

the error is very small and is attributed to the coarser regions which are not our

areas of interest in the domain. The aim of local refinement is to maintain the

accuracy at specific areas and thus increase the processing speed. In addition the

memory requirements are much less severe for refined grids, provided that the finest

levels do not make up a large fraction of the domain. Refering to Table 5.2 the

number of total space points used in the globally refined program was a staggering

Nx = 8000 compared to the locally refined program that only used Nx = 3800, that

is less than half the points from the uniform mesh program. The important point

here is that for each space step, a calculation is required and a value needs to be

stored and this process is done for both propagators. We can therefore understand

how much physical memory we save by using the refined grid program. Lastly, it is

important to mention that at some levels of refinement, it is no longer feasible to

compare highly refined grids to uniform equivalent grids because the latter cannot

fit within physical memory [15].

61

Chapter 6

Conclusions and Discussion

Adaptive grid methods are meant for problems possessing rapid local transitions

in their solution. By their very nature, these problems remain difficult to solve

accurately and cheaply, also when using adaptive grids. The approach we used, of

computing on nested, finer and finer, local uniform subgrids, is widely applicable

in any number of space dimensions and provides much flexibility in the selection of

discretisation schemes.

Accuracy on uniform versus accuracy on non uniform grids, implicit solution costs

and no doubt the computer architecture plays an essential role.

While the local refinement approach improves accuracy at selected regions it gen-

erally results in introducing extra nodes and thus more computations, this approach

can produce finite-difference cells with large aspect ratios, which can lead to nu-

merical errors thus should be used with great caution. This approach demonstrates

the shortcomings of traditional finite-difference methods vs finite element methods

in that the grid is not flexible. Despite these drawbacks, this method of refinement

remains an accurate and viable solution to our problem. A good balance between

maintaining satisfactory levels of accuracy and low processing time is therefore es-

sential. Nevertheless, working with these grids is more complex than with uniformly

spaced grids but outputs better and more accurate results.

6.1 Further Work

Completing this study, the list of possible alterations we could make is great. The

truncation errors of the scheme have not been calculated and their effect on the over-

all results have been neglected throughout this project. A more accurate method

for numerical integration could have been applied rather than the trapezoidal rule.

62

Version 7 of the program has not been completed to work for any factor of re-

finement, currently only at k = 4. It would be very interesting to compared results

of higher orders with the globally refined method but also to check how much time

and memory we save compare to Version 6 that does not apply the variably refined

grid. Another possible issue is the fact that the complete solution computed over the

space-time domain must be kept in storage for error estimation and local refinement

purposes. This of course may become an obstacle when the PDE has two or three

space dimensions.

Throughout the dissertation project we have seen how to tackle the one-dimensional

case, the two- and three- dimensional case is still questionable for applications. The

CPU time required to solve those types of problems is certainly of some interest.

Solving a higher dimensional problem would allow us to analyse other Classical Mi-

crostructures e.g. Spheres and Cylinders as explained in Chapter 1. Attempting to

apply the problem on a three-dimensional case could be very challenging and costly.

63

Bibliography

[1] Hector D. Ceniceros and Glenn H. Fredrickson. Numerical solution of polymer

self-consistent field theory. Multiscale Model. Simul., 2(3):452–474, 1993.

[2] Daniel J. Duffy. A critique of the crank nicolson scheme strengths and weak-

nesses for financial instrument pricing. WILMOTT magazine, pages 68–76,

2004.

[3] Joseph E. Flaherty. Adaptive methods for partial differential equations. Rens-

selaer Polytechnic Institute, 1988.

[4] M. Schick G. Gompper. Soft Matter - Volume 1: Polymer Melts and Mixtures.

Wiley-VCH, 2006.

[5] Ian Gladwell. Numerical integration. Introduction to Scientific Computing,

2004.

[6] I. W. Hamle. Developments in Block Copolymer Science and Technology. John

Wiley and Sons, Lt, 2004.

[7] John Jossey and Anil N. Hirani. Equivalence theorems in numerical analy-

sis:integration, differentiation and integration. 2007.

[8] M W Matsen. The standard gaussian model for block copolymer melts. Journal

of Physics:Condensed Matter, 14:R21–R47, 2002.

[9] M. W. Matsen and M. Schick. Stable and unstable phases of a diblock copolymer

melt. Physical Review Letters, 72(16):2660–2663, 1994.

[10] Peter K. Moore. An adaptive h-refinement finite element method for parabolic

differential systems in three space dimensions. SIAM J. Sci. Comput, 21:1567–

1586, 2000.

[11] Gerald W. Recktenwald. Finite-difference approximations to the heat equation

recktenwald. Mechanical engineering (New York, N.Y. 1919), 2004.

64

[12] Mary C. Hill Steffen Mehl and Stanley A. Leake. Comparison of local grid

refinement methods for modflow. Ground Water, 44(6):792–796, 2006.

[13] Trueman C.W. Sun, C. Unconditionally stable crank-nicolson scheme for solv-

ing two-dimensional maxwell’s equations. IET Electronic papers, 39(7):595–597,

2003.

[14] Jeffrey David Vavasour. Self-consistent mean field theory of the lamellar mor-

phology of binary copolymer-homopolymer blends. January 2000.

[15] J.G. Verwer and R.A. Trompert. Analysis of local uniform grid refinement.

Applied Numerical Mathematics, 13:251–270, 1993.

[16] Mary Fanett Wheeler William Edward Fitzgibbon. Computational methods in

geosciences. Society for Industrial and Applied Mathematics, 1992.

[17] ETH Zurich. Explicit versus implicit finite difference schemes, 2009. 4D-

Adamello Numerical Modelling shortcourse.

65

