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Abstract

An acoustics problem, modelling the scattering of sound waves in a particular type of waveguide
is formulated, and converted into a two-dimensional integral equation using a Green’s function.
The Galerkin, iterated Galerkin and re-iterated Galerkin methods of approximating the solution
of integral equations are introduced and discussed. A link to variational principles is made that
provides superconvergence results for the approximation of certain quantities. The acoustics
problem is solved using the re-iterated Galerkin method and conclusions are drawn about its
performance.
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Chapter 1

An acoustics problem

Consider the following idealised acoustics problem.

In a region that will be known as a waveguide, of height b, and length and breadth of
far greater dimension, a continual disturbance at one of the ends causes a disruption to the
equilibrium state within the waveguide. The sound waves that are produced by the disturbance
travel through the waveguide towards the opposite end. Within the waveguide, the relationship
between pressure and density, and hence wave speed, is constant (as in air) in all but a fixed
region. This region is referred to as the obstacle. The effect of the obstacle is to scatter
the incident waves. At some non-specific point in time after the disturbance first occurs, the
behaviour within the waveguide settles to a periodic steady state.

In addition, it is known that the geometry of the obstacle is that it resembles a uniform
tube, lying in the breadth direction. That is, it has a constant height by length cross-section.
The walls (i.e. boundaries of the waveguide) are highly absorbent, or so-called ‘sound-soft’.
This will be important later.

From this information, we aim to construct a mathematical model that will determine the
structure of this periodic steady state. By concentrating our attention on the steady state
problem, we are absolved from any need for an initial state, that could lead to an initial value
problem. The steady state problem is of use in determining the energy transfer that results
from the wave scattering. This issue will become better defined in due course.

The inherent symmetry in the problem means that, under some simplifying assumptions,
one of the three spatial dimensions is redundant. Specifically, if it is assumed that the motion
of the sound waves caused by the disturbance is perpendicular to the generators of the obstacle,
that is, entirely without breadth direction, then the problem is unsensitive to breadth variation.
This means it may be solved by working only over a length by height cross-sectional portion.
This will be the case from now on.

For the purpose of simplicity, let the length dimension of the waveguide be of such sig-
nificantly greater dimension than the height, that the effect of the length boundaries do not
influence proceedings around the obstacle. In this case, we may relinquish the length dimensions
altogether and assume that the waveguide has infinite length.

No generality is lost in assuming that the cross-section in question, which from now on will
be referred to as the domain D, lies in the regular cartesian directions, so that

D={z,y:x € R0 <y <b}.



For the present, the subdomain on which the wave speed varies will be undefined, suffice to
say that it is connected and bounded. It will be denoted D', and obviously D' C D.

It is assumed that the disturbance is small in amplitude, in which case we may solve for
the linear wave profile ® = ®(x,y,t). It is well known (see [6] for example) that ® satisfies the

wave equation
1

V20 = =&,  in D,Vt, (1.1)
c
where ¢ = ¢(z,y) denotes the wave speed over D. As the wave equation is linear, ® is the

linear combination of solution waves. In particular, ® may be constructed as the superposition
of harmonic waves, as is manifest in a Fourier series representation

Oz, y,t) = Y dulz,y)e ™. (1.2)

n=—oo

Each Fourier mode e~ represents the time dependence of a string of harmonic waves, trav-
elling with the constant frequency w,,. The representation (1.2) of ® is in fact a mathematical

device. The true solution to the acoustics problem involves only the real part of (1.2)

o0

Re(P)(z,y,t) = Z (Re(¢n) (2, y) cos(wnt) + Sm(y,)(z, y) sin(wpt)). (1.3)

n=—oo

As mathematicians, we need only solve for an arbitrary Fourier mode, allowing someone
more closely related to the original problem to perform the reconstruction. So, let the solution
of (1.1) be

B(z,y,t) = ¢(x,y)e ™,
so that the problem’s time dependence is fully defined. The wave equation now reduces to a
Helmholtz equation for the unknown function ¢(z,y),

V3¢ + K¢ =0, in D,

where )
W

c*(z,y)
varies with the wave speed, i.e. k only varies over D'. This may be expressed by writing

k? = k2(x,y) =

k =k in D\D',
k=k(x,y) in D', (1.4)
where kg is a constant, and k(x,y) — ko as x,y — 6D’, the boundary of D'.

The function ¢ is known as the velocity potential. This is as its gradient is equal to the vector
field of sound wave velocities. This information will only be of use to us as a way of describing ¢.

Before going any further, let us deal with the issue of non-dimensionalisation.



1.1 Non-dimensionalisation

By suitably redefining the independent variables in such a way that one dimension is set to
a non-dimensional scale, we gain the practical advantage of removing a parameter from mat-
ters. Consistency then dictates that all dimensions are lost, and the problem is said to be
dimensionless.

The choice of re-scaling is ours. So, let

v = =z
- b ) y by,
which rescales the breadth onto the dimensionless interval (0, 7).
Now, if
s
Qb(l',y) :w(xl,yl), k(l‘,y) = Eﬁ(xlayl)a
then

Vi +k2)=0 2 ecR0<y <.

Without wishing to confuse matters, yet eager to avoid the undesirable notation just intro-
duced, let us revert to the previous notation by now re-defining

and the domain
D={z,y:zeR0<y<7}.

Our dimensionless problem stands as
V2 + k2 p =0, in D
and k remains as in (1.4). Note that the original breadth b does not appear in this problem.

So far nothing has been said of the conditions that are needed to make this a well-posed
problem.

1.2 Conditions

The ‘sound-soft’ property of the walls may be interpreted as
P =0 ony =07 Vaz,t,

or, in the context of our problem

»p=0 ony =07 V. (1.5)

Further conditions may be deduced as follows.



For large positive or negative x, that is x away from D', ¢ ~ gzNS such that
V2 + k3o =0,

and ¢ satisfies condition (1.5). The separation solutions of this equation may easily be deter-
mined, but first let us make a further simplifying assumption. Although generality is lost, we
will be content to restrict ourselves to the case in which

1< ky<2.
Now, let ¢(x,y) = X ()Y (y), then
X"Y + XYV"+ kXY =0
hence
Yoo X"+ X,
Y X
where y is the separation constant.
This yields the two ordinary differential equations

X"+ (ki — )X =0

and
Y// 4 HZY — 0,

where Y satisfies homogeneous boundary conditions.
There exist infinitely many solutions to each of these equations, which are

Xl(x) = alewox + ble—iﬁofU, 50 =V k(% — 17
X, (z) = ape™® + bye ", Yo =N —kE (n=2,3,...),

where 3, and 7, are positive, real roots, and
Yo(y) = ¢ sin(ny), n €N,

all of which are determined up the arbitrary constants a,, b, or c,.
The solutions X,, (n > 2) are unbounded as x — oo, unless a,, = 0 and as x — —oo unless
b, = 0. Hence, the only bounded solutions X,, (n > 2) are trivial. This leaves

d(z,y) = (11" + bye~")¢, sin(y). (1.6)

This result has significant implications for our problem.

1.3 Radiation Conditions

A solution _ _
¢ ~ ePor sin(y) = &~ gt (Boz—wt) sin(y),

represents a wave travelling in the positive x direction. Similarly

O~ g~ ihom sin(y) = &~ ¢ H(Boztwt) sin(y),

4



is a wave travelling in the negative x direction. Therefore, from the solution (1.6) it may be
deduced that, for large |z|, ® behaves like the composition of two harmonic waves of the same
frequency travelling in opposite directions parallel to the z-axis, with a sinusoidal y variation.

Suppose the disturbance occurs at x* = —oo, and we assume the wave in question has unit
amplitude. After interaction with the domain D', part of the disturbance will be transmitted
and part reflected. We are now in a position to derive and interpret the so called radiation

conditions that ) )
d(z,y) ~ ( eibor 4 Re~ihox ) sin(y), T — —00,

~
incident wave reflected wave
. (1.7)
z,y) ~  TePsin(y), T — 00,
Yy S——

transmitted wave

where R, the complex amplitude of the reflected wave, and T, the complex amplitude of the
transmitted wave, are both unknown. A complex amplitude gives the real amplitude of a wave
as its modulus, and the phase of a wave as its argument.

These unknown values give a measure of the energy transfer in the model, with |R|? pro-
portional to the reflected energy and |T'|? proportional to the transmitted energy. Note that,
the model must satisfy

[RI> + 71" =1,

to conserve energy.

Figure 1.1 gives a diagrammatical representation of the model problem.

¢=U y=n

Qﬁ"’(eiﬁ’nx"‘Re—i Box )S|n(y) :_f\ D' ‘."""-...__ QS"'TeianSin(y)

H=0 y:o

Figure 1.1: The 2-dimensional model

Now that our model problem is fully posed, we must address the question of how to solve
it.

No known explicit analytic expression for ¢ exists. Accordingly, approximate solutions are
sought.

There is a variety of possible approximation techniques that may provide a solution. Some
of the most familiar are finite difference, finite element, or finite volume. Disregarding these
approaches, we look first to a technique used to produce solutions for similar but more basic
equations.



1.4 Green’s functions

A full treatment of Green’s functions may be found in many texts, see for example [4]. Here,

it will suffice to introduce a Green’s function through our example.

Definition The Dirac delta function 6(z) is defined as

/ab¢(2)5(z = { 1/)(50) ifa<z<b

if 2o <aorzg>b

for any sufficiently smooth function .

Define a Green’s function G = G(z,y | o, yo) as
V?G + k{G = —8(z — 20)(y — yo)
in D® D ={x,y,x0,% : (x,y), (x0,y0) € D}, with boundary conditions
G=0 ony=0,m, forzeR; (xo,y0) €D

and radiation conditions

G = C\ (w9, yo)e % sin(y) = — —o0,
G = C12(1‘07 yO)eiﬁOI Sln(y) T — 00,

where the C;(z0,yo) are functions that are constant with respect to x and .

(1.8)

(1.9)

(1.10)

It is mentioned at this juncture that the expression d(x — x)d(y — o) is undefined at the
point (z,y) = (zo,%). In this two-dimensional case, the singularity it induces in the Green’s
function is weak (logarithmic) and in theory does not prove problematic. It will, however,

require special treatment for numerical computation. This point is pursued in §6.3.

Let us determine G in its Fourier series representation by writing

o0

G(may | l‘anO) = ZATL(‘T | l‘anO) Sin(ny)a

n=1

where the cosine terms have been omitted to satisfy the homogeneous boundary conditions

(1.9). By orthogonality of the Fourier series the variable coefficients A,, are given by

2 [T .
Az | o, y0) = ;/ G(z,y | o, yo) sin(ny)dy
0

Noticing that
2 [T )
Al = —/ Gz sin(ny)dy
m™Jo
where ’ represents partial differentiation with respect to z, and

2 7T
—n?A, = —/ Gy sin(ny)dy,
0

™

equation (1.8) may be manipulated to produce the set of equations

Al — (n? — k) A, = 2 sin(nyo)d(x — xg)
m

(1.11)



to be solved for the A,. To make matters clearer, we write these equations as
n 2 2 :
AT+ 65A = - sin(yo)d(x — xo)

and 2
Al — 424, = —=sin(nyo)d(z — z0) (0> 2)
m

with 3y and 7, as previously defined. Using condition (1.10), we require

Al = Cl(mﬂayﬂ)eiiﬁoxa r — —00,

Ay = Cy(z9, yo) e, T — 00. (1.12)

All other A, necessarily decay as |z| — oc.
Equations of the form

u"(z) + wju(z) = f(z)
and

V' (2) = Kyu(w) = g(2),
where the k; are constants with respect to x, have the solutions

x

~ , 1
w(z) = €™ + e + — [ sin (ki (z —t)) f(t)dt
K1 a1

v(x) = c3€™7 + 4™ + — / sinh (s (z — 1)) ()t
K2 as

where the ¢; are constants, and the a; lie in the domain of the appropriate solution.
Therefore, the solutions of (1.11) are

Av(z | 20,0) = €107 4 cpemPoT %(yo)/ sin (fo(z —t))0(t — o) dt
07" —00
10T - cye oz (zo > 1)

N €007 | ¢peiBor _ 2sin(yo) sin (Go(z — 20))
Bo

(xg < )

and, for n > 2

2 si v
An(z | o, y0) = 3™ + g — M/ sinh (yn(z — t))6(t — 20)dt
InT —00

c3€1T + cqe” (zg > x)

= 2 sin(nyg) sinh (v, (z — x
6367"I + 6467771,1 o ( y[]) (7 ( U))
TnT

(2o < ).

The only point of contention here is at x = xy. This should not be surprising considering what
has been said of the expected singularity in the Green’s function. Taking the limits x — z
and x — 1z, it can be shown that the coefficients A, are continuous functions of x at this
point. However, similar calculations show that all A, have a slope discontinuity at the point
x = Tp.



Consider applying the appropriate conditions to the cases A; and A, (n > 2) separately.

In the limit x — —oo, the inequality xy > = holds, hence
Ay = ;0% 4 e 0 as r — —0o

and the first part of condition (1.12) implies that ¢; = 0.
Now, taking the limit z — 0o, so that xy < z,

2sin(yo) sin (Bo(z — o))

Az | 2o, y0) = coe P07 — Bor
— CQQ—iﬁOCB + Z'Sln(yo) (eiﬁo(ﬂc—xo) — e—iﬁo(ﬂc—xo))
07"
— (02 _ Z_Sin(y[]) eiﬂol‘o)efiﬁox _|_ Z_Sin(y[]) eiﬁO(I*l’O)
Bom Bom
and to satisfy the second part of condition (1.12) we must set
Cy = iism(yo)eiﬁo“.
Bom
This leaves
Z-siz(?JO)e—iﬁo(x—:vo) (xO > ZL‘)

0T

Ai(z | mo,90) = i) —ifo(e—a0) _ 2sin(yo) sin (Bo(z — x0)) (20 < 7).
for Bom "

It is easily shown that G satisfies the symmetry property

G(l‘ay | 'TU,yU) = G(:’EUayU | 'Tvy)v \V/(I,L’,y), (l‘Ova) eD: (IL’,y) 7A (I‘anO)'

This enables us to write A; as a single expression (or, it at least saves much calculation in doing
s0)
sin(yo)

Ay | 20,90) = Zﬁewom_gﬁo' (z,y), (x0,y0) € D.
0
Similarly, as * — —o0
Ap(x | 0, Y0) = c3e™" + cae” "~ cqe MY,

so a bounded solution requires ¢, = 0. Letting z — o0

2sin(nyop) sinh ('yn(I*IL’o))

TnT

A,z | zo,y0) = 3" —

— CS@'YTLCE _ _sin_(nyo) (6')%(7;_530) _ 6_')%(7;_530))
YnT

— (63 _ Mef')’nmo)e')’nx _|_ MQ*%(I*‘TO)
YnT TnT

si —
~ c3— 71%:7‘?0)6 VnTo 0T



and we must set the constant )
sin(nyo) J——

TnT

Cc3 =

for boundedness.

Thus

e (e (20 > 2)

An (IL’ | o, yO) - sin(nyo) 2sin(nyo) -

7%7‘1:0 en(z—x0) _ 7%7;/0 sinh (’Yn(l’ — CL’())) (2o < )

TnT
The required Green’s function is now defined as

G(z,y | mo,y0) = ﬁ— sin(yo) sin(y)e' "
o7
+ Z in(ny)e Mool (1.13)

This series expression is convergent everywhere except the point (x,y) = (xg, yo), where G has

the singularity spoken of. Now
1 1

[ —

Yo M

for large n implies that the singularity is logarithmic in nature (this will be made explicit in
§6.3). Such functions are measurable and hence expressions containing the Green’s function
beneath an integral sign are well defined.

We proceed by applying Green’s theorem in the plane

2 2 _ ov _ Ou
//D(uVU vV u)dxdy-/{s (uan van)dc (1.14)

to our problem, where % denotes the outward unit normal derivative.
Substituting u = ¢ and v = G in (1.14) gives

//D (¢V2G—GV2¢)dxdy:/ (¢Z_§_ %)

Let us analyse each side of this equality in turn, beginning with the left hand side
/ / (pV?G — GV?¢)dady
D
— [ [ 16 (R | 70.0)5(e—0)3(-10)) =Gl | ) (~4(,5) . )by
D

= —p(w0, yo) + //’(k2(xay) - k§)¢(x,y)G(x,y | 0, yo)dady.



In order to implement the conditions as |x| — oo, it is necessary to evaluate the right hand
side using the finite domain Dx = {z,y : |z| < X,0 < y < 7}, with boundary éDx = {z,y :
x<|X|ony=0,mand 0 <y <monz==+X}. Forlarge X, (recall that ¢ =0 on y=0,7)

/ (65 ~G52)de
:_/0 ( gj G%)%:_xdyﬁL/o7r (d)g—j_G%)x:Xdy
1

~ _;/ [(62'50)( + RefiﬂoX)efiﬁo(XJrIo) _ (6i50X _ RefiﬁoX)efiﬂo(Xero)] SiIlZ(y) Sin(yo)dy
0

1 [ . ) . )
—— / [Tewoxezﬁo(x_’”o) — TelBOXezﬁo(X_’”O)] sin® (y) sin(yo)dy
™ Jo

— —e"P0m0 gin (y,) as X — 00

Combining these expressions gives

¢(xo, Yo) = eifoo sin(yo) + // (kQ(xay) - k§)¢(xay)G(xay | 2o, yo)dady (1.15)

Dl
for (xg,y0) € D. If the independent variables are restricted to the domain D', this is known as
an integral equation for the unknown function ¢ over D'. Once the integral equation is solved

for ¢ in D', the full solution, ¢ in D, can be trivially obtained by substitution of ¢ in D’ into
the right hand side of (1.15).

The real interest is in solving the integral equation. It is with this issue that much of the
proceedings will be concerned.

As alluded to earlier, the amplitudes R and T are of particular interest. In preparation of
§4 we shall use the term quantities of interest to describe them. Using (1.15) we may derive
similar expressions for these constants, as follows

Ty — —00 ¢ ~ €m0 gin(y,) +—// (k2(z,y) — k2)ePol@=20) gin(y) sin(yo) o (, y)dzdy
DI

_ woxoSm<yo>+“m Q B/ / (K (2, y) — k) sin(y)e®*(, y)dzdy

and
o0 o~ e%singn) + o [ [ (1) = B)e W singy) sin) o, ) dody
= 1 + —// (k*(x,y) )sin(y)e’lﬁomdxdy>elﬁ°‘”° sin(yo).
Bom D’

Referring to (1.7), R and T must satisfy

— [ [ ) - By ote pysdy (1.16)
and
T=1+ %//p' (K*(z,y) — k2)e "% ¢(z, y)dady, (1.17)

10



both of which depend on the solution ¢ in D'.
Therefore, producing approximations to the reflected and transmitted energies may be re-

garded as our final goal, with the approximations to ¢ in D' that must be made en route to
achieve this final goal, coming almost as a by-product.

11



Chapter 2

Integral equations

In §1 we found that an attempt to solve a differential equation, that models a realistic situation,
using a Green’s function, results in an implicit expression for the solution, in the form of an
integral equation. This example will serve as both motivation and a suitable illustration for
what follows.

Background reading on integral equations can be found in Porter and Stirling [1].

The term integral equation refers to an unknown function appearing beneath an integral sign.
Integral equations can often appear as reformulations of initial and boundary value problems.
Although the relative merits of using either formulation over the other will not be pursued,
it is worth highlighting that integral equations have the advantage that they carry no extra
conditions: all boundary and initial values are encompassed by the equation. It has also been
noted that the ‘smoothing’ properties of integrals make them preferable to derivatives. The
use of integral equations is now widespread, especially when solving problems in the vein of the
one considered in the previous chapter.

Like differential equations, most integral equations of interest are intractable. Our attention
must turn to approximation methods. It is with the specifics of this issue that the main
body of this dissertation is concerned. After introducing the re-iterated Galerkin method of
approximating integral equations, its application to the two-dimensional problem (1.15) will
be explored, something that is not known to have previously been attempted. The re-iterated
Galerkin method was devised by Porter and Stirling, and first published in [2]. It owes much
to the work of Sloan, who provided the iterated Galerkin approximation in [9].

In particular, it will be shown how abstract techniques of functional analysis may be utilised
for the practical purpose of approximating integral equations. In what follows a detailed knowl-
edge of functional analysis is not expected; the nature of this dissertation is one of applied
mathematics. More specifically, it has been written within the field of numerical analysis.
However, a substantial portion of the material dealt with is theoretical.

A good starting point is to derive an abstract problem from a standard general integral
equation.

12



2.1 Integral equations of the second kind

The one-dimensional, scalar integral equation of the second kind takes the form

o(x) = f(x) + )\/ k(z,t)p(t)dt (a <z <b). (2.1)

It is to be solved for ¢(z) (a < x < b), given the free term f(x), kernel k(x,t) and constants
a,b, \.
Let

(K 6)(x) = / Faé(dt  (a<z<Db)

then K represents a linear map between function spaces, generated by the kernel k(z,t). We
may then consider the entire equation (2.1) as belonging to a function space, and write

¢ =f+AK¢. (2.2)

This differs subtly from (2.1), as we are now dealing with fixed elements of a space defined
by their associated function, and hence the equation’s explicit dependence on the variable x
may be dropped. As will be seen, it is necessary to re-introduce the independent variables
when making an approximation. It is helpful to think of these elements as infinite dimensional
vectors that contain the values of the associated function for all z in the interval in question.
The reason for recasting the problem in this way is to make use of the properties of the space.

The operator K maps a space that contains the unknown ¢ into a space that also contains
¢. This being the case, and assuming that f also belongs to this space, no generality is lost by
considering all operations taking place in one function space.

The problem (2.1) lends itself most readily to the function space Ls(a,b), the space of
Lebesgue, square integrable functions, over the field R (or C) . This is well known to be a
Hilbert space. To maintain generality it will be assumed that we are working in an arbitrary
Hilbert space and denote it by .7#°, and all theoretical results will hold for #, although, when
speaking of 7, we will almost exclusively be referring to Ly(a,b) or a higher order extension.
Hilbert spaces are the most structured class of function space; this will be particularly helpful
as we are dealing with approximations. When approximating an element it is necessary to
assign a value to its accuracy. By definition, a Hilbert space is equipped with an inner product

(+,) and norm || - ||, that are used to assign a value to the abstract angle and distance between
elements.
In the space Ly(a,b)
b
(u,v) = / uv
a
and .
[l = (u, u)?.

The question of whether a solution to (2.2) (and (2.1)) exists and is unique, is a non-trivial
one, but will not be addressed (find full discussion in [1]). It is dependent on the parameter
A and the spectrum of K. We are primarily concerned with approximation techniques, rather
than the existence of a solution. For this reason it is assumed that approximations are made
to a unique solution ¢ of (2.2). To emphasise that we are dealing with what would be a set
problem let us relabel K = AK, so that the scalar A is absorbed by the operator.
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Definition The rank of an operator is the dimension of its range.

If the operator K has finite rank, equation (2.2) is known as degenerate, and may be solved
exactly. It would be illogical to attempt to approximate such equations, and so it is assumed
that all K under consideration take infinite rank.

Definition An operator F' is said to be bounded on 7 if

11 = max {1750 € )

is finite.

Definition An operator F is said to be compact on 2 if it is the limit of a sequence of finite
rank operators {F,} C 2, i.e. lim, , F,, = F.

It will also be assumed that the operator K is bounded and compact on 7. These assump-
tions essentially say that our kernel is ‘respectable’; which is most often the case in practice.
Much can be said of operators that are bounded and compact. These properties will not regu-
larly be referred to, but they are necessary for many of the results used.

When using the Ly(a,b) space, a function k(z,t) is said to be a Ly-kernel if

b b
//|k(x,t)|2dxdt<oo.

Such a function induces a bounded, linear, compact integral operator K on Ls(a, b), defined by

b
(Ko@) = [ K 0ptit
Hence, (2.1) has been reduced to approximating the unique solution

o= (I—K)'f (2.3)
of
p=f+Ko (2.4)

in a Hilbert space .7, where the operator K is linear, bounded, compact, and of infinite rank.
For simplicity, on occasions (2.4) will be written as

A6 = f (2.5)

where A = I — K, and I is the identity map on #. The exact solution (2.3) becomes ¢ = A~ f.
Note that such expressions for ¢ are only notation. It has not been assumed that the inverse
operator A~! exists as a mapping from 7 into itself. All that is required for a unique solution
to exist is that A is injective, and the free term f lies in its range A(J7).

Although the above Hilbert space problem was derived from (2.1), the connection is not
exclusive. That is, we may easily recast any linear integral equation in the form (2.5), although

14



the required assumptions can not be expected to hold in general. This point is being emphasised
as methods that will be investigated in subsequent chapters seek to approximate the solution
of (2.5) rather than (2.1). In particular, it will be shown that the two-dimensional example of
the first chapter is applicable.

Before investigating approximation methods, it is nescessary to define what criteria they
will be judged on.

2.2 A good approximation method?

These statements should be implicit, but for clarity it is sometimes helpful to to have them in
print.

1. A good approximation is one that minimises the norm of the pointwise error.
2. The method used is computationally inexpensive.

3. The method allows us to calculate an approrimation to an arbitrary degree of accuracy
with respect to 1 whilst not violating 2.

Definition The pointwise error is
e=¢—p

where p is the approximation to the exact solution ¢.

Note that condition 1 is norm specific, that is, it is sensitive to the chosen space 7.
Therefore, what may appear as a good approximation under one norm may not under another.
What can be said though, is that the reduction of the norm of the pointwise error means that
our approximation is getting closer to the exact solution, in some sense.

Condition 2 will often be alluded to, although no attempt will be made to measure the
efficiency of a method.

Condition 3 essentially says that if we have a method of calculating successively improved
approximations, then the n'* approximation is not sensitive to the value of n. The phrase
‘arbitrary degree of accuracy’ is somewhat limited by the error in calculations, introduced by
computational round-off. The best achievable approximations are those whose error is of the
same order as that of the computations. This last point is a prelude to §6.
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Chapter 3

Galerkin Methods

Our main problem in finding an analytic solution to (2.4) is in our inability to deal with infinities.
It is then natural to constuct our approximations in finite dimensional spaces where we may
easily produce a general framework to solve equations. We seek to strike a balance between
letting the finite dimension get large, as it will obviously play a role in increasing the accuracy
of the approximation, and keeping the dimension small enough to simplify calculations.

3.1 The Galerkin method

This is a well-established and widely used form of projection method. We may attempt to make
a Galerkin approximation in any finite dimensional subspace of 7. Let us fix this subspace
to be Ey, where N denotes the dimension. As a subspace of a Hilbert space it possesses an
orthonormal basis {x1,..., x~}, so that

EN - Span{Xla s 7XN}7

where L
_J 0 iFy
(XZJ X]) - { 1 Z — ]
This basis may be used to define an orthogonal projection Py from S into Ey

Py : H — Ey (31)
N
P = > (e
=1

Now, note that
o= (p&)&
i=1

for any orthonormal basis {&1, &, ...} of 7. So Py reduces each element in the Hilbert space
into its components that lie in the chosen subspace, and hence

The projection Py has the property that it maps each element in 7 onto the element that
best approximates it (with respect to the norm of the space), that is, for any ¢ in

I1Pvo —¢ll <llp—wll  Vpe Ey. (3-3)

16



We solve equation (2.4) for its components within the subspace. This is achieved by using
the projected forms of the terms on the right hand side of (2.4):

fs Pyf K PyK.

The solution py of this projected equation , which is obviously in the subspace, is the Galerkin
approximation

py = Pyf + PvKpn

It has been assumed that this solution exists, ie. the operator (I — PyK)~" exists. We shall see
that, this assumption is guarteed by another assumption made in subsequent approximations.

Definition The functions that correspond to the basis elements are known as trial functions,
and the space of functions spanned by these functions the trial space.

Some properties of the Galerkin solution will now be highlighted.
Only in rare circumstances does the Galerkin approximation py coincide with the projection
of the solution of (2.4) ¢. To see this consider the difference between the two elements

Py¢—py = Py(I—K) 'f—(I—PyK) 'Pyf
= (Px(I - K)™' = (I - PxE)™'Px)f
= (I = PyK)™((I = Py)Py — Py(I = K))(I = K)7'f
(I — PyK) ' Py(K — KPy)o, (3.5)

if ¢ =3, a;xi, then (3.5) vanishes only if, for all j > N, either
Clj =0

or
(Kxj,xi)=0 i=1,...,N.

Otherwise py # Py¢, and

dg € By : [lg = o[l <llpv — oI, (3.6)

so it is not the optimal element in the subspace (with respect to the pointwise error). The
choice ¢ = Py¢ will satisfy (3.6).

Nor does the Galerkin approximation minimise the residual error. The approximation ¢y
that does this satisfies the projected equation

Agn = QN f

where @)y is the orthogonal projection onto the space AEy.
The orthonormal basis {x1, ..., xny} may be extended indefinitely to an orthonormal basis
of 2. This is what is implied when N — oo is written. Using (3.3), as N — oo

Pyo — o, Vo € 2,
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and in particular

Pyf— f as N — oo,
PyvK — K as N — oo.

Therefore, despite (3.6), the Galerkin approximation satisfies (2.4) increasingly more closely as
N — oo , and since

pv = —=PyK)"'Pyf—=(I-K)"'f=¢ as N — oo,

the Galerkin approximation tends towards the exact solution.

To improve our approximation we need only extend our subspace. Unfortunately, as will be
shown, in practice this approach on its own is flawed .

The dimension of the subspace is not the only factor that dictates the accuracy of the
Galerkin approximation, the choice of basis relative to the problem in hand has a major role.
In fact, the choice of basis is fundamental to all of the approximation methods we shall consider.
In §7.1 we shall face the question of choosing a basis for the problem set in §1.

3.1.1 Evaluation of the Galerkin approximation

The advantage of an expression such as (3.4), which involves the inverse of a finite rank opera-
tor, over an expression such as (2.3), which involves the inverse of an operator of infinite rank,
is that it can be written in an explicit form. To find this explicit form, (3.4) can be turned into
a system of equations as follows.

Again, we consider the subspace

Eyx =span{xi,...,xn}

as fixed.
By definition the Galerkin approximation satisfies
pn = Pnf + PvKpn (3.7)
and as it belongs to the subspace, by (3.2)
Pnpy = pn (3.8)

so (3.7) may be written
Pypy = Pyf + PyKpy <= Py(Apn — f) =0,
and hence the residual

Apy — f € null(Py).

From the definition (3.1) of Py we have



This says that the null space of Py is orthogonal to the basis {x1,..., x5} (and hence to the
space Fy). We conclude that the Galerkin approximation must have a residual error Apy — f
that satisfies the N equalities

(ApN—f,XZ):O Z:]_,,N
= (Apv.xi) =(f,xa) i=1,...,N. (3.9)
As py € Ey it may be expressed in terms of the basis {x1,...,xn}

N
PN = Z%Xi (3.10)
i=1

where the scalar coefficients a; are currently unknown (as py is currently unknown). Substi-
tuting (3.10) into (3.9) yields an N x N system of equations

N
Y ai(Axgx) = (fixi),  i=1,...,N (3.11)
j=1

that may in theory be solved (by the earlier assumption that I — PyK is invertible) for the
unknown coefficients a;. This fixes our Galerkin approximation py via (3.10).

The basis {x1,..., xny} was chosen in equations (3.9) to (3.11) for continuity of notation,
although any basis of Ey would suffice.

Thus, every time we wish to find a Galerkin approximation we must solve an N x N sys-
tem (3.11). Although achievable, this is computationally very expensive and sensitive to the
value of N. Another drawback is that information is non-transferable, that is, work done to
calculate py will not aid calculation of py,;. For these reasons we wish to keep N small, and
so disregard the afore-mentioned approach, of expanding the subspace, for finding a sequence
of approximations that tends to the exact solution as, in this approach, N is unrestricted.

Is it possible to improve on the Galerkin approximation py without increasing the dimen-
sion N7 We address this in what remains of this chapter.

Definition If T is a bounded, linear operator on a Hilbert space, then the adjoint of T is the
unique bounded linear operator 7" with the property

(Tu,v) = (u, T*v)

for all u,v € .
If T'=T%, then T is said to be self-adjoint.

3.2 Iterated Galerkin

The structure of (2.4) lends itself to an iteration process. Let us take the Galerkin approxima-
tion py as our ‘initial guess’, and iterate using (2.4) to produce the approximation

pn = f + Kpn. (3.12)

This intuitively shares more of the exact solution’s structure.
Before investigating the effects of this iteration, (3.12) is introduced independent of the
Galerkin approximation.
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3.2.1 Degenerate kernels

A kernel k(z,t) is known as degenerate if it induces a linear operator K of finite rank. Such
kernels take the form

k(z,t) = Zbi(x)ki(t)

for functions b; and k;, and some finite integer M. As mentioned in §2 there exists an analytic
framework for solving (2.4) if K has finite rank. Although it has been assumed from the
start that operators under consideration take infinite rank, it has also been assumed that these
operators are compact. As such, all K under consideration are the limit of a sequence of finite
rank operators { K, }. A natural approach to approximate ¢ would be to use the exact solution
of

on = f + Knon (3.13)

where Ky is an operator of finite rank /N that approximates K in a way that will shortly be
defined.
The effect of any compact, bounded operator on an element may be expressed as the,

possibly finite, series
o0

Kp= Z en(@a Un)(Pna
n=1
where v, are the eigenvectors of the operator K*K, e? the corresponding eigenvalues, and
©n = e, Kv,'. For K of infinite rank, this series is infinite.
Now, we may form a degenerate, linear integral operator, Ky, by truncating this series in
some fashion. Let us suppose

N
Kyp = Z en(@a Un)(Pna

i=1

then
Kv,, = Ky, (n=1,...N).

In this sense Ky approximates K. Further, {¢y,...,¢on} is an N-dimensional basis for the
operator Ky, and hence so is {Kwvy,..., Kvy}. Therefore, for any v;, there exist scalars o;
such that

o Kyvi +...anKyvy :KNUj j € N. (314)
Suppose j > N, by using the linearity of Ky

KN(Oqu + ...aNUN — Uj) =0
= v +...ayvy —v; € null(Ky)

but
v; ¢ null(Ky) i=1,...,N.

Hence, the scalars «; are necessarily zero, and (3.14) becomes

Kyv; =0  (j > N). (3.15)

!Taken from theorem 4.18 of [1].
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If the approximation is written

[o¢]
ON = Uy + E a;v;,
=1

where Kvy = Kyvg = 0, then by (3.15)

Knon = ZaiKNUi
i=1

N
= ZaiKNvi. (316)

i=1

Substituting (3.16) into (3.13), we obtain the expression

N
oy =f+> aKv, (3.17)

i=1
and all that must be done to find ¢y is to fix the coefficients aq,...,ay. This can be acheived

by taking the inner product of (3.17) with the first N v;

N
(¢N7U]):(f?X])+Za/Z(KU1,7UJ) ]:laaN
i=1

[e%9) N
:>Zai(vi,vj) = (f,Uj)—l-ZCLi(KUZ‘,’Uj) jZl,...,N
=1 N =1
= Zai((vi,vj) — (K’Ui,?}j)) = (f, Uj) ] = 1, RN N. (318)
i=1

Comparison of (3.18) with (3.11) shows these a; are exactly the coefficients used to define
the Galerkin approximation py, where the same basis {vy,...,vx} is used. However, the
approximations are not the same, as the coefficients are used in different expressions. In fact,
¢n is equal to the iterated Galerkin approximation

N
N = f+ZGiKUi
i1

= f+ Kpy
= iﬁN
7é PN

Note however, the strict conditions on the subspace. This does not exclude the possibility
that there are other vectors that would satisfy the required relations.
If, instead the approximation ¢y is chosen to lie in the space {vy,...,vn}, i.e.

N
¢N = E QpUn,
n=1

then the constraints on the v; are not required. This approach is discussed by Burton [7] and
credited to Sloan, Datyner and Burn.

In either case, (3.12) holds as an approximation ¢y to ¢ independently of the Galerkin
approximation. For the purposes of this project it suits us to consider (3.12) as the iterate py.
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3.2.2 Analysis of py

Can it be shown that the iterate py is an improvement over py as an approximation to ¢?
To answer this we seek an expression for the new error py — ¢ in terms of the old error
py — ¢. Firstly, we need to derive an expression for py that will simplify this task. To do this,
an auxiliary operator equality is required, namely
PN(I—KPN):PN—PNKPN:(I—PNK)PN
= Py(I — KPy) ' = (I — PyK) 'Py. (3.19)
Note that, this equality also tells us that the existence of the inverses of I — K Py and [ — Py K

are co-dependent.
Combining (3.4) and (3.12) gives

pyv =[+K( —PyK)Pyf,
then rearranging the second term on the right hand side using (3.19) we obtain
pv = f+KPy(I—KPy)'f

= (I - KPy)+ KPy)(I—-KPy)'f
(I — KPy)™'f. (3.20)

From here on (3.20) will be used to define the iterate.
Now, analysing the error using (3.20) and (2.3) gives

pv—¢ = (I-EKPy)"'f-(I-EK)'f
= (I-KPy)'(I-K)-(I-KPy)I-K)'f
= —(I - KPy)"'K(I — Py)o. (3.21)

This is not quite what is required. It is an expression for the new error in terms of the exact
solution only, but may be overcome by noting that from (3.8)

(I—Pn)py = 0
= (I - KPy) 'K(I — Py)py = 0. (3.22)

Thus, adding the left hand side of (3.22) to the right hand side of (3.21) we obtain

pv—¢ = (I—KPy) 'K~ Py)py — (I — KPy) 'K(I — Py)¢
= (I - KPy)'K(I = Px)(py — ), (3.23)

as required, expressing the new error in terms of the old. For brevity, (3.23) will be written

Pv— ¢ =S(px = ¢), (3.24)

where

S =(I—-KPy) 'K(I - Py) (3.25)

may be called the Sloan operator.
Note that, by(3.19), the existence of the Sloan operator implicitly requires the existence of
the Galerkin approximation.
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What can this expression tell us?
Taking norms on (3.24) and applying the Schwarz inequality

153 = oIl < [IS]lllpx — 4l (3.26)

Recall that a good approximation is one that minimises the norm of the error, then (3.26) tells
us that py is an improvement to py, i.e.

1pn — &l < |lpny — 9

if the Sloan operator satisfies the inequality
IIS|| < 1. (3.27)

Sadly, this is not always the case.

Fortunately though, it is a condition that can be controlled through our choice of subspace
En. This is due to the appearance of the orthogonal projection Py in the definition (3.25) of
S. Note that, for a fixed K, the Sloan operator is dependent only on Py. In §3.1 we saw that
Py acts like the identity map on Ey. Thus, as the dimension N increases, Py tends towards
the identity map on 7. So, on any finite dimensional subspace

II — Py|| =0  as N — co. (3.28)
Taking norms and using the Schwarz inequality on (3.25)
S|l < I = KP) MK (T = P)l. (3.29)
Although K has infinite rank, its compactness is enough to ensure? that from (3.28) on 7
|K(I — Py)||—0  as N — oco.

Therefore, the factor ||[K(I — Py)|| can be made arbitrarily small via choice of a suitably
large subspace.

In turn, ||S|| can be made arbitrarily small, if the first factor in (3.29) does not become un-
bounded. This is equivalent to requiring the operator I — K Py to be invertible that by equality
(3.19) is equivalent to the operator I — Py K being invertible. This was an assumption made in
§3.1 for the existence of the Galerkin approximation. As N — oo, the operator (I — PyK) ™!
tends to (I — K)~!, which by assumption of uniqueness of a solution has a bounded norm.
Hence, as we expand Ey, the norm of first factor, (I — PyK) ™!, of S tends to a bounded limit.

So far in this section, it has been shown that under a condition we control we may iterate
the Galerkin approximation py to produce an improved approximation py. Computationally,
this improvement is achieved at a low cost.

In practice, the dimension N does not have to be particularly large to ensure we have a
suitable operator S.

*for proof see [1] Lemma 7.2.
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3.2.3 Does the improvement repeat?

A natural question to ask is whether a further improvement will result if a second iteration of
the form (3.12) is performed. Let the second iterate be

~
~

py = [+ Kpn
= [+ K(I-KPy)''f (3.30)

by (3.20).
Again we seek an expression for the new error py — ¢ in terms of the old error py —¢. Using
(3.30) and (2.3)

by —¢ = f+K(I—KPy)'f—¢
(I-K)p+K(I—-KPy)'f—¢
~K(I-(I-KPy)'(I-K))¢

—K(I = KPy)((I = KPy) — (I — K))¢
= —K(I—-KPy) 'K(I - Py)é.

[

-~

=¢—p by (3.21)

Hence R
Py —¢=K(p—9)

Applying the argument used to deduce that py is an improvement over py if ||S|| < 1 from
(3.24), from (3.31) we find that py is an improvement over py if | K|| < 1. However, this is
where the similarity to the previous case ends. For, we may not manipulate the operator K; it
is dictated by the problem in hand. Although in some circumstances we may be dealing with
a problem (2.4) in which ||K|| < 1 and a second iteration will produce a further improvement,
in general this is not the case. For this reason, iterated Galerkin does not provide a suitable
means of calculating an approximation to an arbitrary degree of accuracy. In general we still
rely on improvements to the Galerkin approximation to improve our iterated approximation,
an approach that was earlier disregarded. The iterated Galerkin approximation does however
provide an essential intermediate step for the re-iterated Galerkin approximation.

From now on it will be assumed that the dimension N is fixed such that ||S|| < 1. For
reasons that will soon become clear, the approximations will be re-labeled as

Po = Pn,

ﬁO :ﬁN-

3.3 The re-iterated Galerkin method

The re-iterated Galerkin method picks up after the iterated Galerkin approximation py, of
the last section, has been made. It seeks to improve this approximation by adding on an
approximation to the pointwise error eg, such that

d) = ﬁo + €p. (331)
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How should this approximation be made? Firstly, a useable expression for ey must be found.
The above equality (3.31) is not suitable, as it involves the unknown ¢. However, (3.31) may
be manipulated as follows. We note that

¢ = Doteo
— Ap = Apy + Aep
= Aey = A¢— Apy
— f— Ap,. (3.32)

The right hand side of (3.32) is the residual error in the approximation py, that is, importantly,
calculable. If this residual error is denoted by 79, (3.32) becomes

Aeg = f(), (333)

an integral equation to be solved for the pointwise error in the approximation py.

Comparison with (2.4) shows (3.33) to be almost identical to our original equation, differing
only in the free term. It is possible to follow the procedure that produced the approximation
Po to ¢, merely substituting 7y for f, to find an approximation to ¢y;. That is, we first form the
Galerkin approximation to ey, using the subspace Ey. Call this py, from (3.4)

p1 = (I — PyK)™ 7.
Then we iterate to find

p1 = o+ Kp
(I — KPy)™'#.
Note that, as we have only changed the free term, and have done nothing to the operator

K nor the subspace Ey, the Sloan operator S is the same one that appears in (3.24). By
assumption ||S|| < 1, and hence

1p1 — eol| < |lp1 — eoll,

i.e. the iterate p; is an improvement over p; as an approximation to eg.
Our new approximation is pg + p;. Can it be shown that this is an improvement to py?
Again this is established by error analysis, since

I —
I —
(

~
clele

Py)"'Fo + (Po — ¢)

Py) (K = 1)(po — ¢) + (o — ¢)

Py) 'K (I = Py)(po — ¢)

! (3.34)

(Po+D1) — ¢

—~

—~

N
=
S

Therefore

151120 — 4l

|(Po +p1) — @] <
< |IS]1P/lpo — ¢|I-

Again using the assumption that ||S]| < 1, the new approximation py + p; is an improvement
over py. More than this, the improvement has an upper bound of ||S||. This is the same upper
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bound on the improvement of py over py, hence our new approximation is an improvement over
the original Galerkin approximation with upper bound ||S||?.

The algebraic manipulations leading to (3.34) do not involve any properties of the original
approximation py, rather that we add on p; to the original approximation, where p; is the
iterated Galerkin approximation to the pointwise error, made using (3.33). As such, it is
clear that we are able to repeat the above procedure indefinitely, substituting in our latest
approximation for py, and the improvement will hold. This may be shown formally using
induction.

Let the n'* approximation to ¢ be

n
On = E Di,
=0

where py and py are as previously defined, and

~

pj = T+ Kp;
= (I - KPy) '#j1

is the iterate of
pj = (I — KPy)PnTj_1, (j=1,...,)

the Galerkin approximation to the current error e;_; = ¢ — ;-1 in Ey, obtained from the
equation
Aej_1 =Tj_q,

which says that the current pointwise error is the solution of an operator equation, identical
to the original equation (2.4), excepting the free term that has been replaced by the current
residual error.

Suppose that the current approximation is ,, and up until this point each new approxima-
tion has been an improvement over the previous by a factor bounded above by ||S]], i.e.

il < ISINj=1ll, (j=1,...,n)

(the case n =1 was proved in (3.34)).
What about 6,417 Using the above definitions

OA-n-H _d) = ﬁn-l—l_'_a-n_d)
= (I-KPy) ' +6,—¢
= (I-KPy) (K =1)(6n—¢) +60— ¢
= (I-KPy) "(K—=1)+ (I - KPy))(6a — ¢)
= (I - KPy)"'K(I - P)(6, — ¢)
= S(a-n - d))a
hence the Sloan operator maps the current error onto the new error.
Thus, by induction

1641 =@l < [IS]lllon — 4l n2>0
< [IS1"* |60 — ol
< 1SI™*=llp — ¢l
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the method can be repeated as required.

It is important to emphasise the computational efficiency of the re-iterated Galerkin method.
The expense of an approximation method is largely dictated by the number of and size of
systems of equations that arise in their evaluation. In re-iterated Galerkin there are two types
of approximation that must be made, the Galerkin approximation and the iterated Galerkin
approximation. Only in the ordinary Galerkin approximation are we required to solve a system
of equations. As the subspace Ey has been fixed, this will always be an N x N system of the
form (3.11). In addition, as the operator A is the same in each step of the re-iterated Galerkin
method, the co-efficients on the left hand side of (3.11) are the same. This means we need only
calculate the inverse of the resulting matrix once and re-apply it to vectors resulting from the
right hand side of (3.11) with the free term changed to the appropriate residual error. This
constitutes a substantial computational saving.

This computational saving relies on only one subspace being used. Our ability to only use
one subspace yet still incur improvements, is a consequence of the intermediate iterations. To
see this, suppose we were to attempt the re-iteration process without using the iterations p;,
then

ro=f — Apo

and

Pyrg = Pxf— PyApo
Py f + PvKpoy —Pnpo
=po by (3.7)
Po — Do
= 0.

Our Galerkin approximation p; in Ex to the current error satisfies

(I = PxK)p1 = Pyrog =0
=p =0
and the new approximation

Do +P1 = Po

is equal to the previous approximation. Thus, the re-iteration process breaks down at the first
step without the use of the p;.

Another practical advantage of the re-iterated Galerkin method is that inaccuracies are not
propagated. This is because improvements are calculated relative to the error in our current
approximation.

3.3.1 A more accurate improvement factor

By using the Schwartz inequality to deduce condition (3.27), which if satisfied ensures iterations
will improve our approximation, a certain amount of information is lost. For this reason, (3.27)
is only a sufficient condition. We are only able to say that i¢f the Sloan operator has a norm

27



value less than one, then an iteration will improve matters. However, this does not preclude
the possibility that iteration could improve the approximation although ||S]| > 1.

To remedy this situation, consider our approximation &, = > .. p;. Rather than ask
whether each successive approximation is an improvement, we seek to determine if the series
representation of the approximation converges and if it does is its limit ¢?

Analysis of the convergence is eased if &, is written as a geometric progression. First, note
that

pi = Ti-1+ Kp;
= Pnxpi = Pyvi1+ PyKp;
= PnDi = i,

so that the projection of the iterate is the Galerkin approximation, a result of independent
interest. Now,

Spi = (I — KPy)"'K(I — Px)p;
= (I — KPy) 'K(p;i — pi)
= (I — KPy) (-1 — pi + Kp;)
= (I - KPy)™'#
= ﬁiﬂ
Therefore, by induction .
pi = S"Po (3.35)

and the approximation
=Y _ S"po. (3.36)
i=0
Call 5" the smallest Hilbert subspace of . (possibly . itself) containing all of the terms in
the series, S’ey, on which S may be considered as an operator. By application of the root test,

the condition .
lim ||S™||» <1 (3.37)
n—o0

can be deduced for convergence of the series (3.36) as n — oo. It is well known (see [3] for
example) that the limit to the left hand side of (3.37) is equal to (and sometimes used to define)
p (S) = max{|v| : Jp € " such that S = vy} the spectral radius of S over #'. Hence,
the condition that (3.36) converges is

pj;w(S) <1
This is a weaker condition than ||S|| < 1, as p(S) < ||S]|. In fact
par(S) < par(S) < |IS]I,

and pu(S) = ||S]| only if S is self-adjoint.

If (3.36) converges, necessarily p, — 0 as n — oo. From the definition of p,, p, — 0 is
equivalent to 7, ;1 — 0. The residual error tending to zero is enough to guarantee that the
limit of the series is ¢, and the approximations &, converges to the exact solution.
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In §3.3 we saw that e,;; = Se,. Using this equality, a similar expression to (3.36) is
obtainable for the sum of the error terms

n

Z €, = zn: Sieo.
1=0

1=0

Assuming convergence, ¢ is the limit of the re-iterated Galerkin approximations, all of which
belong to 2" by definition, and the closed property of Hilbert spaces then ensures

¢ e A

Hence, for the same reasons, this series converges as n — oo if and only if p(S) < 1. This is
equivalent to saying that the series
> lleal

converges if and only if p(S) < 1. We may now deduce that the ratio of successive terms

len

— pe(S) as n — 00.
lenl]
At worst, we can expect,
e — pw(S) as n — 00.
lenll

Thus, the theoretical improvement factoris p(S), the spectral radius of the Sloan operator
over J7'. This result has been verified in practice (see [2]), although for reasons that will be
discussed in §6.4 it is shown in terms of the ratio of the norm of successive residual errors.
However, we must be careful to note that the theoretical improvement factor is an ‘eventual
trend’. Early iterations may not bear any relation to this value, with the ratio of successive
error terms being bounded only by ||S||. This means, if ||S|| > 1 and p»(S) < 1, the re-iterated
Galerkin approximation could get worse before it starts improving.

It is important to remember that the last results have been made on a purely theoretical
basis. In practice, where computational round-off occurs, and errors may be magnified by [|.S]|,
it would be unwise to expect the re-iterated Galerkin method to converge if the spectral radius
of S is only narrowly less than one but ||S|| is appreciably greater than one. Also, the above
relations (3.35) and (3.36) are not suitable means of calculating approximations. They break
down under the effects of round-off error, and the property of not propagating errors, described
earlier, is lost.

For the benefit of the numerical analyst, the following section is an aside, in which the
iteration step is introduced in what should be a more familiar context.

3.3.2 [Iteration as a preconditioner

A preconditioner is a way of manipulating a difficult problem in order to ease an attempt to
solve it. These are widely used in practical problems.
Note that

= (I - KPy) '(I-K)¢ ; (I — KPy)'f,



and

I-S = I—(I—-KPy)'K(I - Py)
(I - KPy)™'(I — K).

Combining these results gives
(I-S)¢ = (I-KPx)"'f
= P (3.38)

This says that the iteration step is equivalent to preconditioning the original equation by
multiplying by the operator (I — K Py)~!. This has the effect of replacing the operator K with
S. As S may always be chosen such that ||S]| < 1, the preconditioned equation (3.38) is open
to repeated application of the Sloan iteration

p=[f+Kp. (3.39)

This was earlier disregarded due to the requirement that ||K|| < 1. Indeed, it easily verified
that

a-n—l—l = po + Sop.

This confirms that the re-iterated Galerkin method is in fact the combination of Sloan iteration
and preconditioning.

This point will remain as an aside, and will only be revisited briefly in §7.
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Chapter 4

Quantities of interest

The links between deriving an approximation to the unknown function ¢ and approximating
a quantity that involves this function, as one may expect, are strong. The latter however, is
worthy of treatment in its own right. We shall focus on a method analogous to the re-iterated
Galerkin method.

For the purposes of our example, the quantities of interest, which involve an unknown
function, are the definitions (1.16) and (1.17) of the wave amplitudes R and 7. In the next
chapter it will be shown that they may be written as inner products where one of the arguments
in each is the unknown ¢.

4.1 Variational principles

Our goal is to approximate inner products of the form

(4,9) (4.1)

where ¢ is the unknown solution of A¢ = f in J and ¢ is an arbitrary, known member of 7.
To do this we may exploit methods of variational calculus. In particular, we will need to know
that a functional .J is defined to be stationary at p if any variation dp causes at most a second
order variation in J. This may be written symbolically as

J(p + dp) = J(p) + O(||dp]]*) (4.2)

The multi-dimensional definition follows in the obvious fashion.

Under suitable choice of functional, the stationary value coincides with the desired inner
product. Hence, methods used to approximate this stationary value will also produce approx-
imations to (4.1). The above definition (4.2) means that the error in an approximation to a
stationary point becomes a second order error in the approximation to the stationary value.
This extra degree of accuracy is gained with no extra effort, and is the reason for using this
method rather than simply evaluating the inner product (4.1) with ¢ replaced by an approx-
imation, for which we know nothing of its degree of accuracy. The process of obtaining an
improvement in the order of accuracy of a calculation over the original approximation is known
as superconvergence.

Any Hilbert space operator A under consideration may be used to define the operator L
that maps any (p, q, f,g) € " to (f,q) + (p,g) — (Ap,q). If we consider f and g to be fixed,
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with f the free term of (2.4) and ¢ as in (4.1), then

L. —C
(p,q) = (f,a) + (p,g9) — (Ap,q).

Although L is now only dependent on p and ¢, f and ¢ are still arbitrary. To emphasise this,
the operator will be written

L=L(p,q,f,9)

Consider the stationary point (¢,%) (the reason for the clash in notation will soon become
clear) of L , and an arbitrary variation (¢ + d¢, 1) + 1)), then

L(p+ 60,0+, f,9) = (f,+0¢) + (9 +0¢,9) — (A(d +d¢), ¢ + 0))
[0)+(f,00) + (6, 9) + (66, 9)
—(A¢, ) — (Ao, 6¢) — (Ad, ¥) — (Adg, 0v)
= L(p,q, f,9)
+(f,09) + (09, 9) — (Ag, 0¢) — (Ade, ¥) (4.3)
—(Ado, 6¢).

To satisfy the requirements of a stationary point, the first order variations (line (4.3)) must
vanish, therefore

—~~

0 = (f,0¢) + (60, 9) — (A9, 0¢) — (Adg, )
(f = Ag,6¢) + (6,9 — A%q). (4.4)

Equality (4.4) holds for all (6¢, d¢) € S & S if and only if
Ap=f and A" =g. (4.5)

By assumption, ¢ is unique, and it follows by a simple corollary of Theorem 4.11 of [1] that
is also unique. So, the functional L is stationary at the unique point (¢, ), such that ¢ and
are the unique solutions of (4.5).

The corresponding unique stationary value

= (¢,9)

is the required inner product.

Finding the stationary value of L directly is no easier than solving (2.4) exactly. Again, our
attention must turn to approximation methods. It should be clear that approximations to the
stationary value of L will involve approximations to the ¢.

4.1.1 The Rayleigh-Ritz method

An obvious candidate to approximate the stationary value of L (or any functional) consistent
with our previous work, would be to reduce it to a problem of finite dimensions. Let Exy® Fy; C
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H ® A, where Ey and F), are finite dimensional subspaces of 7, of dimension N and M
respectively, and

Ey =span{x1,...,xn}
Fy = Span{gla s 7£M}

We seek an approximation (py, qy) to (¢,1)), where

N M
PN = Z%Xi € En; qu = sz‘& € Fir.

=1

This defines py = py(ai,...,ay) a function of the N variables a; and ¢y = qar(by, ..., byr)
a function of the M variables b;. The functional L on the subspace Ey @ F); becomes the
function L = L(ay,...,an,by,...,by) of the N+ M variables a;,b; i =1,...,N;j=1,..., M.
Explicitly

M N N M
L(ala - '7aN;b17 - JbM) = ZB](f7 g]) + Zaz(Xzag) - ZZaZEJ(AXU§])
j=1 i=1 i=1 j=1

Using basic calculus, the stationary values of L can be found by setting the derivatives with
respect to the a; and b; to zero, i.e.

oL M .

0 - X“ Z]Axlagj 1=1,...,N,
a; s

oL N .

% - fg] Zal AXzagj ]:1,...,M,
I i=1

or

(xi,g — A%qn) =0, i=1,...,N,
(f —Apn,&) =0, j=1,...,M.

Comparison with (3.9) shows that py and ¢, are not the respective Galerkin approximations
in Ey and F); to the equations (4.4), unless N = M and y; = &, which would mean the
subspaces Ey and F); were dependent on one another. This can not generally be expected to
be the case. As has been discussed already, a subspace is chosen to suit the specific equation,
i.e. Ey and F); are not dependent on each other.

Therefore, Rayleigh-Ritz does not provide a means for use of the re-iterated Galerkin method
and will not be explored further.

4.1.2 The application of the re-iterated Galerkin method to the
functional L

Rather than finding the stationary points of L within a finite dimensional subspace, let us

examine the effect of evaluating L at the sequence of unrelated co-ordinates (6,,7,), where

On = > 5o Di is the n'" re-iterated Galerkin approximation to ¢ = f + K¢ resulting from the
Galerkin approximation py € Ey and 7, = > i §; is the n'" re-iterated Galerkin approximation
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to ¥ = g + K™ resulting from the Galerkin approximation ¢y € Fy;. Let Py and S be as in
(3.1) and (3.25) respectively, and @y and T' be the corrosponding orthogonal projection and
Sloan operator for the subspace Fj, i.e.

T=(I-KQuy) "KI—-Qu).

Recall that, it has been assumed that ||S|| < 1. By the same argument, it can also be
assumed that ||T'|| < 1. Following the theory of §3.3 we have

¢ — nll < IS1"*[po — ¢l (4.6)
and
16— 7ull < NN llgo — @1I. (4.7)

The structure of the re-iterated Galerkin method is nicely reflected in the addition formulae

Lip+9p.,q+4d,f.9)=Lp,g, f,9)+ LY. ¢, f—Ap, g — A%q), Vp,p'iq.q € A, (4.8)

which says that improvements to an approximation of (¢, ¢) are made by approximating the
stationary value (p/,q') = (¢',¢') of L = L(p', ¢, f — Ap, g — A*q), that must satisfy

APl =f—Ap AW =g—Aq

Moreover, equality (4.8) is of practical importance. A feature of the re-iterated Galerkin
method, when approximating ¢, was that the computational cost of calculating an improvent
did not increase. Is there an analogous result here? Calculating directly, that is,

L(6n, Fun £,9) = Y (i) + Y (Fd) = D> > (Apir )
=0

i=0 = i=0 j=0

constitutes n? + 4n + 3 inner products, of which n? + 2n are known from previous calculations.
So, 2n+3 additional inner products must be calculated to make each improvement. Importantly
2n 4+ 3 — oo as n — oo, and the cost of calculating improvements increases.

Compare this with calculating improvements using (4.8), so that

L(a.n;%na fa g) - L(ﬁOaQO) f7 g) + ZL(pAiaquifla §i71)7

1=1

where 7, = f — Ag; and §; = g — A*7; are the respective residual errors. Only the three
inner products involved in L(py, Gn, 71, 5,1) are needed to calculate the improvement over
the previous approximation L(G, 1,7, 1, f,g). As desired, we have a method that does not
increase in cost as n increases.

This result is only of use when making calculations ‘by hand’. In general, a machine will not
recognise any difference in calculating an inner product involving the n'* re-iterated Galerkin
approximation compared to an inner product involving the iterated Galerkin approximation.
In fact, calculating L as described above increases the number of inner products that make up
an approximation to the stationary value, and hence increases the chances of computational
errors influencing results. For this reason, the computer program used in §7 simply calculates
the functional L directly, without breaking up the re-iterated Galerkin approximations.
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It would be reasonable to assume that as n — oo our approximation L(dy,,7,, f,g) will
tend to the stationary value (¢,g). Can this be shown, and if so, can the improvements be
described?

In §4.1, it was shown that

for any variations d¢, d1p € . As, for any p and ¢ in JZ, there exist d¢ and d¢ in S, such
that

p=9¢+0¢;  q=1+0Y,
(4.9) may be written

(0,9) — L(p.a, f,9) = (Alp— b),qa %)  Vp,qe A.

Substituting &,, for p and 7,, for ¢, and using the Schwartz inequality

(0,9) = L(6n, Tu, f,9) < [|Alll¢ = oullll — 7all,
using (4.6) and (4.7) gives
(6, 9) = L(6n, 7, £, 9)| < CIIS|I™H|T|"*

where C' = || Al|||po—¢]|||go—¢|| is a constant (depending on the choice of subspaces). This shows
that the re-iterated Galerkin method provides a means for calculating successive improvements
to the staionary value (¢, g). The improvements are bounded above by ||S||||T|| < [|S|| < 1,
although it must be noted that this tighter bound is obtained at the expense of a second system
of equations to be solved, for the auxiliary, adjoint equation

A" = g.

Again, the discussion of §3.3.1 holds, and the improvement factor is expected to tend to
p (S)pn (T), where A" is the equivalent of 5" for the adjoint problem.
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Chapter 5

The acoustics problem revisited

Having covered the theory of how to approximate the solution of certain operator equations
in §3, we wish to use this theory to solve the problem set out in §1. In order to do this, it is
necessary to classify the integral equation (1.15) in an appropriate setting. This process will
lead neatly into making explicit how to use the theory of §4 to approximate the reflection and
transmission amplitudes, R and T'.

5.1 The Hilbert space Ly(D')

Recall that the integral equation in question is

¢ (w0, yo) = €' sin(yo) + //D'(kZ(x, y) — kg)G (@, y | 20, yo)b(x, y)dady (5.1)

for (xg,y0) € D', where D" is a bounded subset of D = {xg,y0 : 20 € R0 < yo < 7}. Let
us suppose that we wish to recast (5.1) in the Hilbert space of Lebesgue square integrable
functions, over the domain D’. This space will be denoted Ly(D'). More generally, any space
of two-dimensional Lebesgue integrable functions will be referred to as a Ly @ Ly space, i.e. the
direct sum of one-dimensional Lebesgue spaces.

The space Ly(D') is defined with the inner product

(u,v)://luv, Vu,v € Lo(D') (5.2)

and norm 1
Jul| = (u,u)z.

Note that, other Hilbert spaces could have been considered. However, the Ly(D') space
is the most natural choice in regards to the functions that are being dealt with. As we will
soon see, the inner product (5.2) is particularly well suited to finding R and T by the method
proposed in §4.

Let the Ly(D') element ¢ represent the function ¢(xg, yo) that satisfies the integral equation
(5.1). Likewise, let the element fy represent the free term

giPoo sin(yo)
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of (5.1). In addition, we define the multiplication operator M as

(M) (z,y) = (k*(z,y) — ki) o(z,y)

and the integral operator G as

(QQO)(IE(),?JO) = / D,G(xay | l‘anO)gp(l‘ay)dl‘dya

where G(z,y | 2o, o) is the Green’s function defined in (1.13). The integral equation (5.1) may
now be solved by solving the equivalent operator equation

¢=fo+GM¢ (5.3)

in the Hilbert space Ly(D’). This may be achieved via application of the re-iterated Galerkin
method.

It is also required that the reflection and transmission amplitudes, R and 7', be determined.
In §1, it was shown that these unknowns may be written as

= [ [ ()~ By o, g)asdy

T=1+ —// (K*(x,y) — k2)e™ 0% ¢(x, y)dzdy.
Bom '

To access the theory of §4, these definitions must be expressed in terms of inner-products on
Lo(D"). Our choice of function space makes this task particularly simple, with

and

R = ﬁ (¢ Mgy) : gi(z,y) = e sin(y)
0T

and

T—1+5(¢Mm)m@m=émﬁdw

It is apparent that ¢g; and g, are equal to the conjugate of f, and f, respectively. This point
will be made use of later.

There is a purely theoretical issue that arises from the choice of Ly(D') as our Hilbert space,
that should be briefly addressed.

Elements of Ly @ Lo spaces define equivalence classes of two-dimensional square integrable
functions, rather than individual functions. A set of suitable functions that differ only on a
set of measure zero are all represented by the same L, & Ly element. It may be helpful to
think of this as the correspondence between the set of Ly @ Ly functions and the set of Ly @ Lo
elements being non-injective. It is, therefore, not unreasonable to foresee formal difficulties
in re-mapping our Hilbert space approximation onto a function that approximates the exact
solution of (5.1) in a pointwise sense. Recall though, from (1.15), that the full approximation,
Papp(T0, Yo) on D, is defined as

Bapp(To, Yo) = gihozo sin(yo) + // (kQ(xay) - kS)G(%y | 20, 40)0 (2, y)dzdy,
D/
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where 6 (z,y) is any function that belongs to the equivalence class defined by the re-iterated
Galerkin approximation 6. By definition of the equivalence class, any 6(z,y) will provide the
same approximation, ¢,,,. This may be described as one of the ‘smoothing’ properties of the
integral.

In practice, when making a Hilbert space approximation, we must reintroduce the indepen-
dent variables to define Ly & Ly elements. In doing so, we will exclusively consider ourselves
to be working with continuous, or, at worst, piecewise continuous functions. The question of
re-mapping elements onto functions does not arise. For this reason, from now on we shall speak,
in the main, of functions rather than elements and assume an implicit understanding of the
analogous Hilbert space situation.

With the problem now fully defined, we may make some physical interpretations of previ-
ously abstract quantities. To begin with, let us consider the error.

5.1.1 Error

The re-iterated Galerkin method seeks to reduce the norm of the pointwise error

el =6 =aull = ([ [ 16-aufaaas)” (5.4

Again, the smoothing property of the integral removes any contention of definition of pointwise
error.

The norm of the error is a measure of the error in the approximation, across the domain D’.
A decrease in this value does not imply that the error is decreasing at all points in the domain,
rather that the error is decreasing in an ‘overall’ sense. We can draw a link between the norm
error and pointwise error as follows. It can be shown that

[(GM @) (o, y0)| < Cll¢| (5.5)

where C? = [ [, |(k*(z,y) — k§)G(x,y | 2o, y0)|*dxdy is a finite constant. Now, (using the
notation of §3)

= (I — KPy)'KPy = KPy(I — KPy)™!,
hence
K(I —Py)+ KPyS = K(I— Py)+ KPx(I — KPy)"'K(I — Py)
= K(I—Py)+ (I — KPy) 'KPyK(I — Py)
= (I — KPy)"'K(I — Py)
S

This gives the equality
60— ¢ = (K(I — Py) + KPyS) (-1 — ). (5.6)
Combining (5.5) and (5.6) gives

ClI((I = Px) + PxS)(6n1 = 9
O+ [1517)211(6n1 = D).

|‘3n($0,y0) - ¢($0,y0)|
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Therefore, as the norm of the error tends to zero, so does the pointwise error at all points in the
domain. If we had the time to estimate C, we could estimate the magnitude of the pointwise
error, but this would inevitably be very crude.

It should also be noted that the value of (5.4) is relative to the size of the domain D’. This
can be loosely thought of as, two approximations of equivalent average pointwise accuracy: the
one defined on the larger domain will have a larger error norm.

5.2 Assumptions

Before attempting to use the re-iterated Galerkin method on the acoustics problem, which has
been re-written as an operator equation, it is necessary to show that the assumptions outlined
in §2 are satisfied by this equation. That is, it must be shown that equation (5.3):

e possesses an unique solution,
and the combined operator GM:
e has infinite rank,

e is compact and bounded.

5.2.1 Existence and Uniqueness

To prove the existence and uniqueness of the solution of an integral equation or operator
equation is a highly intricate matter, and worthy of consideration in its own right. A necessary
condition for uniqueness of a solution is that the combined operator GM does not possess
the unit eigenvalue. This property is sensitive to the many parameters left free in the model.
An attempt to find conditions on the parameters, for which GM satisfies even this necessary
condition, is deemed beyond the scope of this work. Instead, parameters will be varied on a
trial and error basis. Any unexpected behaviour may be attributed to this eigenvalue issue.

The discovery of parameters that do not produce such a solution, is an indication of ei-
ther some physical phenomenon or deficiency in the model. In other words, if we discover
combinations of parameters for which we are confident that the re-iterated Galerkin method
will not produce a solution, then there are two possibilities. Firstly, the mathematical model
may be accurately representing the fact that there is no solution of the original acoustics prob-
lem. Secondly, in modelling the acoustics problem, discrepancies could have been introduced,
causing the model to be unrepresentative for these combinations of parameters. Again, fur-
ther investigation into this area is deemed far beyond the scope of our work, and will not be
attempted.

5.2.2 Non-degeneracy

Extending what was said of degenerate kernels in §3.13 to two-dimensional integral equations,
GM is an operator of infinite rank only if the kernel (MG)(z,y | zo,v0) = (K*(z,y) —k})G(z,y |
Zo, Yo) cannot be written in the form

N

(MG)(2,y | 2o, y0) = Zbi(anyO)ki(xay)a

=1
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for some finite integer N. This property may be established by noting the non-separability of
the Green’s function G.

There is however another form of degeneracy that we must be aware of. This degeneracy
would not effect the infinite rank of GM, rather it would make the operator of finite rank in one
of the independent variables. This would essentially mean that we would be solving a finite set
of one-dimensional integral equations. To fully test the capabilities of the re-iterated Galerkin
method on two-dimensional integral equations, this scenario should be avoided.

The non-separability of GG spoken of is in the variable zy, and we should therefore be
suspicious of degeneracy only in 9. As an example, consider the case where the multiplication
operator M only introduces extra variation to the kernel in the x direction, and the domain
D’ is rectangular and covers the breadth of domain D. Assuming existence and uniqueness of
a solution, the structure of the kernel implies a solution of the form

(20, Yo) = Z $n(w0) sin(nyo).

Substituting this solution into (5.3) and using orthogonality of the functions sin(ny) and sin(my)
(m # n), gives the one dimension integral equations

. Io
1 (0) = e [ pfp(eifole—mol) (1) (1) da (5.7)
2060 Jy,
and z
o) = 5= [ Ml BN @), @)da (n22), (59)

where [; and [ are the lower and upper limits on the length of the domain D’. Uniqueness
implies that the solutions of the homogeneous integral equations (5.8) are the trivial solutions,
hence

d(0,Y0) = ¢1(w0) sin(yo),

so that the yy dependence is fully defined and ¢, is found by solving the one-dimensional integral
equation (5.7).

5.2.3 Boundedness and compactness

The multi-dimensional extension of what was said of boundedness and compactness of Lo-
kernels, in §2, holds . Hence, it need only be shown that the kernel (MG)(z,y | zo,y0) is a
Loy ® Lo-kernel on D', i.e.

/ / / / (K2 y) — K2) G,y | 70, o) [2dady daodyo < o0 (5.9)
D/ D/

and it may be deduced that GM is bounded and compact as an Lo(D’) operator.
It is reasonable to assume that the function k*(z,y) — k2 is itself a Ly @ Lo-kernel, so the
satisfaction of inequality (5.9) becomes a matter of showing that

// / |G,y | %0, 90)[*dzdy daody, < oo, (5.10)
D/ D/
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where the Green’s function, G, is fully defined as

G(xay | anyO) = ﬁT sm(yo) Sln 250\90 zo| + Z

and D' is a bounded sub-domain of D.
As in §1.4, let

(ny)e Yn|T—20]

Dx ={z,y: || < X,0 <y <7},
but will now be considered only as a finite domain, and let D' C Dx. Obviously, if a function

is a Ly @ Ly-kernel on Dy, then it is a Ly @ Lo-kernel on any subset of Dy
deduce (5.10) by showing that

// // |G(xay | xo,y0)|2dxdy dzodyy < oo
DX DX

. (5.11)
Note that, the term

. Thus, we may

i

ﬂ— sin(yo) sin(y)ewo‘x’mOI
07T

is bounded, whence, its contribution to the integral (5.11) is finite and it need not be considered
for the current purpose. This leaves only the integral of the series

[L1%

in(nyo) sin(ny)e "=/ 2dxdy daodyo.

(5.12)
n=2 |
The orthogonality relation
" . 0 m#n
/0 sin(my) sin(ny)dy { = m=n
allows expression (5.12) to be simplified to
X X o
/ / Z %e””’""”’“ldxdxo. (5.13)
—xJox =4

Now, e~ 27—l i3 hounded, and

n® — k2
~ ’]’L2
for large n. So, for large N

E —6_27”"” 2ol E — <00

n=N fyn
at which point we have

oo

™ _ _

E e 2mlE—ol g
42

n=2

Tn
and hence the integral (5.13) must also be finite

This proves that the Green’s function G(x,y | zo,¥o), and hence kernel (MG)(z,y | xo, yo)
are Ly @ Lo-kernels on Dy, and consequently (MG)(z,y | zo,yo) induces the bounded and
compact operator GM on D'.
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Chapter 6

Numerical Considerations

This chapter deals with the factors that separate the task of actually carrying out the re-iterated
Galerkin method from the theoretical issues of §3-4.

6.1 The discrete problem and numerical quadrature

In performing calculations on a computer, our continuous problem is necessarily reduced to a
discrete problem. This means that instead of solving for elements that were earlier described as
‘infinite vectors’ that describe the shape of their associated function over a particular domain,
we work with finite dimensional vectors that hold only certain point values of their associated
functions.

This in itself does not effect our problem, as the continuous solution is, by definition, the
solution of any discrete version of the equation. Also, as the solution is only being approximated,
for a sufficiently refined discrete problem, some form of interpolation would be sufficient to
provide a continuous solution if required.

On what basis should the discrete problem be set? This question is closely linked to the form
of quadrature used in computations. In general, a computer program will employ a quadrature
method to evaluate integrals. Quadrature methods are used to approximate definite integrals
with a finite sum that takes the form

N
/d fA)dt = sz‘f(tz‘)
omain i1

for some finite natural number N. Quadrature rules differ from one another in their abscissae
(points ;) and weights w;. In order to employ a quadrature rule, a program must necessarily
carry around the values of functions at the appropriate abscissae points. It is therefore logical
to base the discrete problem around the quadrature rule being used. As always, we seek to
strike a balance between the extra accuracy that is gained by increasing the dimension of the
quadrature rule and minimizing the computational expense.

In using a quadrature rule another form of error is introduced to our approximation, this
will be discussed in §6.5.

By defining the wave profile as (1.2) complex variables were introduced into the problem.

When making calculations, carrying around these complex variables can be cumbersome. The
following section shows how this can be avoided, but first we make a simplifying assumption.
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Let k?(x,y) — k2 be a real-valued function. This is physically valid as the function k(x,y)
and constant ko are produced by the ratio of the wave frequency and wave speed. Only in
extremely rare circumstances would either of these measures involve an imaginary part.

6.2 A real valued kernel

In practice, it is of significant advantage to work with operators that map the real-valued
elements of a space onto real-valued elements. Operators with this property allow the equation
to be split into its real and imaginary parts, and solved independently. In terms of integral
equations, such operators arise from real-valued kernels. Suppose

¢ =[f+ Ko,
where f = f,. + ifim and the kernel of K is a real-valued function, then
¢ = Pre + 1 im,
such that ¢; € R and
;= f;j + Ko¢j, (j =re,im).

Thus, any program written to perform re-iterated Galerkin on a problem involving a real-valued
kernel need only deal with real numbers.

Our kernel (MG)(z,y | wo,v0) = (k*(z,y) — ko)G(z,y | o, yo), unfortunately does not
possess this property due to the appearance of the complex term BoLw sin (1) sin(y)e?Ple—2ol in
the Green’s function G. However, this problem can be amended. Note that, by De-Moivre’s
theorem

ﬁT.F sin(yo) sin(y)ePole—2ol = ﬁ%ﬁ sin(yo) sin(y) [ cos (Bolz — mo|) + isin (Bolz — zo])].  (6.1)

Using the even property of the cosine function (6.1) gives
ﬁ— sin(yo) sin(y) [ cos (Bo(z — m9)) + isin (Bolz — zo))]
07

1

=5 sin(yo) sin(y) [i cos(Box) cos(Bowo) + i sin(Box) sin(Bym) — sin (Fo|z — o)) ].

We may then rewrite (5.3) as

¢ = fo+ ﬁ C1f1 ﬁ 02f2+QM¢, (6.2)

where
f1(zo,y0) = cos(Boxo) sin(yy) € R,

f2(z0,y0) = sin(Boxo) sin(yo) € R,
C1 = (¢7 Mfl)a
= (¢7 Mf?)a
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and the integral operator

G anm) = [ [ Glavy 2o, mhole. pady,

is such that

sin(nyp) sin(ny)e 12wl (6.3)

. 1 . . — 1
G(z,y | w0, 0) = Bomt sin(yo) sin(y) sin (Bolz — zo|) + Z P
n=2 '™

It is easily seen from our assumptions on the function k*(z,y) — k2, that the operator GM is
an integral operator arising from the real-valued kernel (MG)(x,y | zo, yo)-

The arguments made in §5.2, which showed that the operator GM satisfies the relevant
assumptions needed to apply the re-iterated Galerkin method, hold for the modified operator
GM.

The move made by redefining our problem as (6.2) is to remove the terms in the kernel that
prevent it from being real-valued, and adding their contribution to the free term. In doing this,
the original kernel, (M G)(z,y | zo,4o), has been split into a degenerate kernel of rank 2

7
507f

and a real kernel of infinite rank, (MG)(z,y | Zo,1). The gain in creating a operator with a

real-valued kernel is made at the cost of a less straightforward sum of free terms, as the kernel

of rank 2 has been moved into the free term. This however does not prove to be problematic.
First though, let

(kZ(x, y) — kg) sin(yo) sin(y) cos(fo|x — o)),

¢ = ¢7‘e + Z¢zm7

and

¢ = (Qﬁre,ij)‘Fi(QSimaij)

= ere + Z.C]‘im7 (] = ]-7 2)7
then the equations
1 1 ~
bre = Re(fo) — 5—cr f1 — =02, fo + GM @y,
Bom Bom
. . : (6.4)
bim = Sm(fo) + 5—c1,. fi + 5—ca, . fo + g~M¢im
Bom Bom

are both real-valued. Before proceeding, it will help to spot that

§Re(f0) = COS(ﬁ0$0) sin(yg) = fl; %m(fo) = Sin(ﬁol‘o) sin(yo) = fg.

Thus, equations (6.4) may be written

1 1 -
¢re:f1_—climf1_ C2imf2+gM¢re

507T ﬂoﬂ
1 1 ~
Gim = fo+ 5—c1,. L + =—ca,. fo + GM dipy,.
ﬂoﬂ 507T
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To deal with the unknown constants that appear in these equations, define ¢; (i = 1,2) to
be the solution of

¢i = fi + QM¢i,
so that e -
¢re = (1 - 5071')¢1 - 5071' ¢2
and o -
¢im = ﬁgﬂ'd)l + (]. + ﬁoﬂ_)qsg.

Substituting these solutions into the definitions of the ¢;,

e, = (1 - Clim)(qsthl) — B (g, M),

Bom fom

e = (1= G2) (60, MP) = 2 (60, M ),
Clun = G2 (01 M) + (1 2) (60, M),
o = G (01, MP) + (L4 Z2) (92, M),

a 4 x 4 system to be solved for the unknown coefficients. It is unsurprising that, in separating
the kernel into a degenerate part and a part of infinite rank, we are left to approximate the
solutions involving the kernel of infinite rank, and then solve an equation of finite rank. The
size of the system to be solved reflects that we are solving for the real and imaginary parts of
a system arising from a kernel of rank 2. The inner products involved in this system may be
approximated using the theory of §4.1.2. In turn, the solution of the system of equations, the
coefficients, will be approximations.

Moreover, the structure of the operator GM allows these inner products to be approximated
at a reduced cost.

6.2.1 The functional L revisited with the operator GM

BothNC; and M are easily seen to be self-adjoint operators. However, only in rare circumstances
will GM be self-adjoint.

Recall from §4 that approximations to an inner-product

(¢.9),

where ¢ is known and ¢ is unknown, can be made by approximating the stationary value of the
functional L, such that

L(p,q, f,9) = (f,q) + (p,9) — (Ap,q).

This was achieved by approximating the solution of

Ap=f
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and the auxiliary equation

A" =g.
Our current goal is to approximate inner products of the form
(d)ia Mf])a
where .
¢i = fi + GM ;.

With A=1— QM, redefine the functional L as

L(p,q, f,9) = L(p, Mq, f,9)

and put (f,g) = (fi, g;). As in §4, seek the stationary value (p, q) = (¢, ) of L:
L(¢p+ ¢, ¢+ 04, fi, M f5) = L(¢ + 66, M(yp + 6¢), fi, M f;)
= (fis M( +60)) + (¢ + 66, M f;) — (I = GM) (¢ + 66), M () + 6¢)).

Isolating the first order terms, and using the self-adjointness of M

O(6y) : (Mfi = Mo+ MGM,6¢) = (fi — ¢+ GMp, M)

Hence, the stationary value requires

6= f; +GMo,
= f; +GM,

equations for which we have made approximations of the solutions. Thus, the approximation

of the stationary value (¢;, M f;) entails no auxiliary equation.

The solution ¢ may now be completely defined as the sum of solutions of assossiated real-

valued operator equations.

6.2.2 The wave reflection and transmission amplitudes

Part of the problem set in §1 was to determine the wave reflection and transmission amplitudes

R and T, such that

R [ [ (8) =~ 1) sin()oe. y)sdy

— L 2 1.2\ ,—ifox o
T 1+507T/// (k (x,y) ko)e sin(y)o(z, y)dzdy.

It has been shown that this may be achieved by interpreting these values as the innerproducts

_ 7
Bom
7

Bom

R (6, Mg1):  gi(x,y) = e P7sin(y)

T=1+ (¢; Mg2) : 92(% y) = /T sin(y)
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Note that
gi(z,y) = cos(fox) —isin(f) sin(y)
= fl(l‘a y) - ifQ(mv y)

and
ga(x,y) = cos(Box) + isin(fo) sin(y)

= fl(xay)+lf2(l‘ay)a
so R and T may be written

R = —ﬂTZ(qﬁ,MfQHﬁTiﬂ(@Mfl)

— —ﬂTlﬂ(@—icl)

_ _ﬂTlﬂ((clim +e5,.) +i(ca, — 1)),
T = 1+ﬁi—ﬂ(¢,Mf2)+%%(¢,Mf1)

1
= 1+ ﬁo—ﬂ'(62+i61)

1 .
= 1+ ﬁo—w((%e — 1) +ien,, +e,,))-

Thus, we may deduce approximations to R and T by combining previous approximations.

We now return to the issue of the singularity in the Green’s function, spoken of in §1.4. To
deal with this problem, we must first lose some of the generality in our problem.
From now on, it is assumed that the domain D' is rectangular, such that

D'={z,y:a<z<bec<y<d}

Before attempting to write a program some preliminary adjustments must be made to the
integral operator G so that the singular kernel may be dealt with numerically.

The subsequent section owes much to Porter and Porter [5], and the work of Chamberlain

[8]-

6.3 Dealing with the singularity

Our operator is C;M such that

(Ge) (w0, o) Z//,C?(w,yvao,yo)w(fv,y)dfvdy, (6.5)

where the kernel

0
G(x,y | o, y0) = —ao + an,
2
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with
ap = ap(x,y | xo,yo) = o sin(yp) sin(y) sin (Bo|z — o))
0
and

|x—xo|

Sp = sp(z,y | To,y0) = sin(nyo) sin(ny)e ™

n

As already stated, a program will generally rely on a quadrature rule to approximate inte-

grals. In what follows, it is assumed that the rectangular midpoint rule is used. To do this, let

the required points be defined as
(20 — 1)

:CZZTAX})(I)_CL)—’_G, Z:177XP1 Yi =

(20 — 1)

o, (d—c)+e, i=1,...Y,

and for brevity
Titrj(Xp—1) :(l‘lay])a Z.:]-a"'aXpaj:]-a"wY;)'

From now on, this will be known as a X, x Y, refinement. The rectangular midpoint approxi-
mation of (6.5) is

XpYp

(GM ) (z0,90) = Q Z Gz | o, yo) (K (i) — kg) o (2),

where () = (b — a)(d — ¢)/XpYp is the area of one cell in the rectangular mesh defined by the
points x;.

This simple expression is unfortunately invalid as a numerical device, due to the singularity
in the kernel. More specifically (see §1.4), the singularity is logarithmic, occurring at the points
(x0,%0) = (z,y) in the function G. This means, an alternative expression for the above series
at the points (g, yo) = &; must be found.

A second, related problem is in calculating approximations to the infinite series contained

in G. When (zq, 1) = (z,y) the terms
1
Sp ~ —,
n
for large n. Hence, the logarithmic singularities is a result of a non-converging series at these
points. Around the singularities the convergence of the series is extremely slow. This will

obviously be a practical obstacle. Matters are much improved by writing

an = Z(Sn - tn) + Ztna
n=1

n=2 n=1
where
tn = to(z,y | o, yo) = — sin(nyp) sin(ny)e’”‘x’mo‘
nmw
and
S1 = 0.
It is easily shown that
1
Sp — tn ~ E

for large n. Hence, the series > (s, — t,) contains no singularities (i.e. it will not diverge) and
converges faster than ) s, at all points in the domain.
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The series ) ¢, is summable, with

Zt = —%e (In(1 —n) — In(1 = &)),

where | |
n=n(z,y | zo,yo) = " WHITlTml & = ¢(x,y | mg,yo) = "WVl
Using Re(In(z)) = In|z| gives

oo
1
Z tn = 4—(1n(1 — 2 1"l cos(y 4 yo) + e 27™) — In(1 — 2e "™l cos(y — yo) + e 270,
m
1

The logarithmic singularities are now clear. Note that, the former logarithm has singularities
on the boundary

(IL', y) = (1‘07 yO)a Y= Oaﬂ-a
the latter when
(z,y) = (v0,%0), Y7,y
As the points x; never lie on the boundary of D', the integral involving In |1 —7| may be approx-
imated using the rectangle midpoint rule. However, as In |1 —&| contains singularities within D',
the integral arising from this function requires further attention before it may be approximated.

Before considering this problem, let us summarise.

The kernel of G, G may be written
G($y|$0ay0 _—ao-i-z —|——(ln|1—77| ln|1—§|).

So that, the operator GM may now be approximated as

X,Y,
(GMe) (o, y0) ~ QY (K (@) — k3) [ — ao(ai | zo,y0) + Sn (i | 0, 90) - - -
=L | 70, 0)] ()

_4i / / La(x,y | 20, o) (M) (x, y)dady (6.6)

where
Li(z,y | o,50) = In(1 = 2e "l cos(y + yo) + e7217=),

Lo(z,y | z0,70) = In(1 — 2¢~ |zl cos(y — yo) + 6_2"”_“'),

and Sy is some finite series that approximates > (s, — ty,).

We are still in need of an approximation to the remaining integral appearing in (6.6).
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In preparation for what is to come let us write

/ Lo,y | 0, yo) o, y)dady
DI

1 — 2e~lz—20l — —2|z—wo|
= // In ( ¢ cos(y — o) + ¢ )go(x, y)dzdy
D/

( —20)*> + (y — w0)?

[ [ tule = )+ (0= 0 (2(9) — plan, ) dady
+ptan) [ [ (= a0 + (5 = 90)?)dady.

By using the equality

In(1 — 2e 17720l cos(y — yg) + e 2= 0l)

1 — 2e~ 1770l cos(y — yo) + e 2ol
=In ( 5 5
(z —20)* + (¥ — vo)
we see that, from the limit

) +In((@ = 20)? + (v — 90)?)

1 — 2e~ 2=l cos(y — 5y9) + e 2lo—0l
lim In ( s ) ‘ ) =0, (6.7)
et (# = 0)* + (y = o)

Y—Yo

the singularity has been transferred into the term

In ((x — 20)” + (y — y0)2)-

This is a less cluttered and hence more appealing term.
Matters have been further simplified by writing

e(z,y) = p(r,y) — ¢(o, o) + ¥(Zo, Yo)

and noting that for continuous ¢(x, y)

lim In((z —20)*+ (y — %)) (¢(z,y) — (0, o)) = 0. (6.8)

T—T0
Yy—Yo

Thus, the unknown function ¢(z,y) has been removed from the integrand containing the sin-
gularities, this being
/ Ls(z,y | o, yo)dzdy. (6.9)
D/
where L3(z,y | 20, y0) = In((z — 20)* + (y — %0)?).

Recall that the singularities occur at the points (xg,y9) = (z,y), so that difficulties in using
the rectangle midpoint rule occur when (zg,yy) = x;. At these points

XpYp

yjb+Y Ija+X
/ Ls(x,y | zj)dedy ~ Q E Ls(z; | ;) +/ / Ls(x; | zj)dzdy
D’ 17:51 Yi, =Y Jzj,—X
i#]
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where

and

Now

iy Yz +X Y X
Axy = / / Ls(z; | zj)dzdy = / / In(u® + v*)dudv
T -YJ-X

Yj,—Y ja—X

Y X
= 4[XYIn(X?+Y?) - 3XY + X? arctan(}) +Y? arctan(?)]

an analytic expression that holds for all ;.
Thus, the integral (6.9) may be approximated by the modified rectangle midpoint rule

g(xﬂa yo) (%a yo) *
L dxdy ~
/ D’ 3(x,y | 270,?;0) ey { ﬁ(%ayo) (xoayo) = Iy,

where
X, Y,
L (20, 90) = Q Z Ls(x; | o, yo)
i=1
and
XPYP
Zi(x0,90) = Q Z Ls(@; | (x0,90)) + Axy.
=y
The entire approximation is
XY,
(GMp)(zo,10) ~ Q Z (K*(z:) — kg) [ —ag(z; | 0,%0) + Sn(x; | o, yo) + - -
i=1
"Ly | w0,mn) — - Lale | 20,m)] ()
 dr (&5 | To, Yo . 4\Ti | Lo, Yo) | P\
X, Y,
_Q

Z Ls(x; | (xoayo)((MSO)(mi) - (MSO)(anyO))
4 4

1 ZL(xo, Yo X0, Yo Z;
_E(M(p) (70, %0) { iﬂiEJTO,?yJO; Efo,g?jo)) i L

where

1 — 2e l#=20l cos(y — o) + e““"o')
(z —20)* + (¥ — 50)?

Bearing in mind what was said in §6.1, it is the approximation involving .Z;, rather than
<, that will be used.

Li(x,y | ©0,y0) = In (
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6.3.1 The series approximation

For simplicity, let
N 00

SN:Z(Sn—tn) zZ(sn—tn),

n=1 n=1
where N is some fixed positive integer. Increasing N improves the accuracy of Sy, although it
is expected that N should not have to be chosen particularly large, as the terms in the series
are exponentially small accross the domain, except at the points (xg, yo) = (x,y).

As an analytic solution is not at our disposal it is of importance to have as many ways of
verifying the numerical solution as possible.

Check i. Recall that the functions that will be approximated by the re-iterated Galerkin
method satisfy the real-valued operator equations
which implies that B

Mf; = (M — MGM)g;, (i=1,2). (6.10)
From the known self-adjoint property of the operators G and M, it is easily deduced that the
operator R
M — MGM
is also self-adjoint.
Now, consider the quantity

(¢27Mf])7 (27]:172)7

that must be approximated to find R and 7. Using the above information

(i, M f5) (¢, (M — MGM)g;)
= (M = MGM)g;, 6;)
= (Mf;, ¢j)
= (¢, M fi).
This equality can be used to check the validity of the operator equations (6.10) used in com-

putations.
There is a related result that can be used to reduce the amount of computation needed to
approximate R and 7. Our approximation of (¢;, M f;) is

L(Gip, M6jp, fis M f),
where 6;,, is the n' re-iterated Galerkin approximation to ¢;. Now
L(Gips MGjn, fi; Mfj) = (fis M) + (Gin, M [})
—(Gipns MGj) + (GM6in, M6jy)
= (Ojn, M fi) + (fj, MGin)
~(6jns M6iy) + (GMGj,0, M6 )
= L(6jn, MGin, fj, M fi),
the approximation of (¢;, M f;). This shows that there is some symmetry in the 4 by 4 system
described in §6.2, that may be taken advantage of.
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Check ii Conservation of energy (see §1.3)
BRI +|T" =1.
We shall come accross more checks as we progress.

In the preceeding theory, approximation methods were concerned with the pointwise error
e = ¢ — d,. However, it is not possible to monitor what is happening to this quantity as it
requires knowlege of the exact solution. Instead, we shall be content to look at the residual
error 7 = f — GM&, a quantity that must be calculated when using the re-iterated Galerkin
method.

6.4 The residual error

Let us consider some of the properties of the residual error, most of which are analogous to
those already found for the pointwise error. To emphasise the generality of these results, the
notation reverts to that of the earlier chapters.

It has already been shown that
Ae, =T,

from which we may deduce
[17n]] < NI All[en]]-

Thus, as ||e,|| = 0, ||7|| = 0.
Now, consider the effect of iteration on the residual error. Using the equality

p = f+Kp
= r+p

then

>
|

f—Ap

= f-p+Kp

= f—(f+Kp)+ K(r+p)
Kr.

This says that the operator K maps the residual error in the Galerkin approximation onto the
residual error in the iterate p. Therefore, even if iteration improves the approximation with
respect to the pointwise error, this does not necessarily entail an improvement in the residual
error if || K| > 1.
Finally, what is the overall behaviour of the residual error? Using (3.19) and the similar
equality
(I - KPy)'K = K(I — PyK)™,

we may deduce that

K(I — Py)(I - KPy)™' = (I — KPy)"'K(I — Py).
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Thus

Fnp1 = [ —Abpp
= f— Ao, — AﬁnJrl
= f, — Al — KPy)™ "%,
= K(I—Pyx)(I - KPy) 'ty
= (I - KPy)'K(I — Py)i,

Stp. (6.11)
Therefore,
'fn—l—l = Sy,
= SAe,
and
'fn—l—l = Aen-i—l
= ASe,,
which imply that
SAe, = ASe,.

As e, is essentially arbitrary, this shows that the operators A and S commute. Equality (6.11)
also produces the series expression

n

n
E fz — E 52720
=0

1=0

= zn:SiAeg
1=0

= Azn:Sieg.
1=0

From §3.3.1, it is known that Y S’ey converges if p(S) < 1. So, this inequality must deter-
mine the convergence of >_7; = Y S'#;. Mimicing the argument of §3.3.1, from which it was
deduced that the ratio of the norms of sucessive point-wise errors tends to the spectral radius
of the Sloan operator, this paragraph has shown that

|
17

— pr(S) as n — 00. (6.12)

Appendices A-F, the MatLab code written to solve (5.3) using the re-iterated Galerkin
method, are based on the work of §6.1-6.4. In particular, appendix D, the code that approxi-
mates the effect of the operator GM, is based on §6.2-6.3.

To constuct bounds on the accuracy of any results would be a difficult and laborious task,

and would inevitably prove to be crude and overly restrictive. Instead, we shall adopt a wholly
pragmatic approach to the question of accuracy.
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6.5 Accuracy

Let us summarise the errors that will effect our approximations:

e The error inherant in an approximation.
e The rounding error in the computations.
e The error in the quadrature method.

o The error introduced by truncating the infinite series in the Green’s function.

Of these, we are able to control all but the rounding error.

In §3 it was shown that by suitable choice of basis, the re-iterated Galerkin method can
be used to reduce the error in our approximation as required. However, in doing this, it was
assumed that all calculations could be made exactly. We must now consider a more realistic
position. Due to the series truncation error, the kernel with which we shall work is only an
approximation of the true kernel. Thus, the operator used in computations is only an approxi-
mation to the true operator. Thus, we are no longer approximating the solution of the desired
equation, rather the solution of a ‘near-neighbour’ equation. Furthermore, the quadrature and
rounding errors will effect the accuracy of calculations made. In particular, the operator’s in-
fluence on an approximation is manifest in a finite-dimensional matrix approximation to the
operator. Computational errors in calculating the inner-products that make up this matrix
cause innaccuracies in each entry. Therefore, there is a disparity between the operator and it’s
matrix approximation.

Recall the feature of the re-iterated Galerkin method, discussed briefly in §3.3, that it is
sensitive to the error in the current approximation. The full importance of this property will
now become clear. In the re-iterated Galerkin method, improvements are calculated using the
residual error in the current approximation

o= f — Aby. (6.13)

In using relation (6.13) to calculate the residual error, it will contain information about all
errors in the current approximation &,, including rounding and quadrature errors. Thus, the
improvement calculated will, amongst other things, attempt to compensate for these errors. For
this reason, the quadrature and rounding errors made at each stage of the re-iterated Galerkin
method do not accumulate. That is, aside from the inaccuracies in the matrix approximation
to the operator, the only computational errors that will effect our approximation, are those
made at the last step.

If the errors under our control are reduced by performing more re-iterations, using more
accurate quadrature methods, and taking more terms in the infinite series, then the problem on
the computer becomes increasingly closer to the real problem, and in turn our approximation
tends towards the desired solution. Now, suppose that a certain degree of accuracy is specified.
If we make the error reductions spoken of, yet our approximation, to the specified degree of
accuracy, does not change, then, to the specified degree of accuracy, the approximation is not
sensitive to the errors in the approximation, and we have produced the required approximation.
As the rounding error cannot be changed, it would not be possible to produce an approximation
to a higher order of accuracy. In practice this would not prove to be an issue.

We shall suppose that we wish to obtain the quantities |R|?> and |T|*> accurate to three
decimal places.
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Chapter 7

Results

All calculations are made with MatLabv6, using the code given in appendices A-F.

It is now time to settle on a final problem, so that we may produce concrete results. This
entails choosing the constant kg, function k(z,y) and domain D’. This choice is essentially our
own, excepting the constraints previously outlined. These are

1 <ky <2,

k(iv,y)—”% as (.’L’,y)-)(SDI,

and the domain D' is rectangular. It should also be noted that, we should avoid letting £ = 0
at any point, as this could only result from infinite wave speed, a physical impossibility.
So, let
k(z,y) = ko + aCOSQ(%) sin?(y)
for z,y in D', where
D' ={z,y:|z| < %,0<y<7r}.

The constant parameters kg, « and m have been left free, to allow comparison of results.

k(x.y)

Figure 7.1: The function k(z,y) over D’

It should be emphasised that the program written to perform the re-iterated Galerkin
method on our acoustics problem, using the theory of the previous chapter, is adaptable to
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any choice that may have been made of the function k(z,y) and rectangular domain D'.

The final influence that we must make over the problem is in constructing an appropriate
subspace, in which the Galerkin approximation is made. The choice of this subspace will
determine the ultimate success or failure of the application of the re-iterated Galerkin method.

7.1 Trial functions

The basis elements that form the subspace, are defined by their associated trial functions. As
successive approximations will be built around these functions, it is logical that they share
common traits with the exact solution. So, let us consider the solutions of

6150, 0) = Esoysintun) + [ [ (@0)Goy | mv, st sty (1= 1,2),
0o J_m
where i ma
M (x,y) = akg cos2(7) sin?(y) + o cos4(7) sin® (y), (7.1)

Fi(zo) = cos(Boxo); Fy(xy) = sin(fozo),

and G(z,y | zo,10) is as previously defined. Assuming that we are free to interchange the
integrals and the infinite sum®, then

bi(ro,y0) = Fj(wo)sin(yp) + Z/o /i M, y)5n(z,y | z0) sin(nyg) P (z, y)dedy
n=1 Tm

= Z 5in(20) sin(ny), (1=1,2),
n=1

where

S1(z,y | @) = _ﬁTlﬂ sin (ﬁg|x — x0|) sin(y)

1
Sn(2,y | 1) = ——e 20l gin(ny) (n=2,3,...)

n

and

Sualoo) = Foo) + [ [ @iy oo, )iy

Sin(m0) = /0 /_E_ M (2,y)50(2,y | 20) (2, y)drdy (n=2,3,...).

Unlike the example of §5.2.1, no proof of degeneracy in this series expression is forthcoming.
Therefore, both solutions ¢;(zg,yo) (i = 1,2) may be assumed to be expandable into infinite
Fourier sine series in the variable .

!This assumption is justified as the overall expression is known to be convergent.
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Turning our attention to the xy variable, let our motivation come from noticing that the
function F} is even (about the origin) and F; is odd (about the origin). Now, using the even
property of .4 (x,y) in x, we find that

(GMW)(—xo,yo) = / /L/% z,y)G(x,y | —x0, yo)e(x,y)daxdy
= / /t M (,y) [~ ﬁTlﬂ sin (fo|z + o|) sin(y) sin(yo)
+Z

— /0 /t M(=Ey)| — ﬁTlﬁ sin (Bo|¢ — o)) sin(y) sin(yo)

e~ n|T+T0] sin(ny) Sin(nyo))] oz, y)drdy
InT

-Fzgggige_””gﬂ“'ﬂn(ny)ﬂn(nyw)]w(—fyy)dfdy

{ (QNZ\N/[go)(xO, yo)  if o(xg, o) is even in zg
—(GMp)(xo,y0) if ©(x0,yo) is odd in zo.

Hence, the operator GM will preserve an odd or even property of a function in the xy variable.
Any function is the sum of its odd and even parts, so, if we let

¢i(T0, Yo) = Pi.cvn, (T0s Yo) + @i odd,, (To, Yo), (1=1,2)

where d)im% and ¢i70ddz0 are the even and odd parts of ¢; in the variable xy, respectively.
Therefore,

Pievny T Piodd,y, = [it g~M(¢i,e’um0 + i odd,, )
= [i+t GM&iev,, + GM; odd,, - (7.2)

AsGM maps even functions in xy onto even functions in xy, and odd functions in zy onto odd
functions in xy, we may split (7.2) into its odd and even components, giving

qsi,evmo = fi,evmo + QNMqSi,evmoa (Z =1, 2)7
Pioddry, = [isoddny T GMPiodd,, (1=1,2),
where, as expected, fi,e% and fi,oddmo are the even and odd parts of f; in the variable z,

respectively. Formalising what has been said of the odd and even properties of the free terms,
gives

fl,oddgg0 = 0; f2,evm0 = 07
in which case d)laOdde and ¢>2,evz0 must both satisfy the homogeneous equation

0 =GMo. (7.3)

However, uniqueness of solution, which is assumed, prevents any non-trivial solutions of (7.3),
ie.
Qsl,oddm0 — 07 ¢2,evzo =0
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This shows that ¢; = ¢1,evz0 is even in xg, and ¢y = gzﬁg,oddzo is odd in zg. This can and will be
reflected in our choice of trial space. That is, the trial space corresponding to the solution ¢,
shall be even in xy, and the trial space corresponding to ¢, odd in x;.

Recall that the Galerkin approximation is defined as

p= (I — PyK)™'Pyf.

Expanding the operator (I — PyK) ™! into series form gives

p=>Y (PvK) Pyf.

Jj=0

With K = GM and f = f; (i = 1,2), the Galerkin approximation becomes

o0

Dio = Z(PNQNM)jPNfi-

Jj=0

As any orthogonal projection, onto a purely odd or even trial space, preserves the odd or even
property of a function, and from what has been noted of the odd and even properties of the
operator and free terms, it is clear that the Galerkin approximations to ¢1(xg, yo) and ¢9(x¢, yo)
will be even and odd in x, respectively.

In turn, the iterate .

Pio = fi+GMp;, (i=1,2),
and residual .
Tio = fi — Dio + GMpip, (i=1,2),

will preserve the even or odd property. An inductive argument can then be used to show that
all approximations that are used to create the re-iterated Galerkin approximation will preserve
the even or odd property. Thus, at every stage, the re-iterated Galerkin approximations to
b1(z0, yo) and ¢o(xg, yo) will be even and odd in zy, respectively.

Can anything similar be said of the variation of the approximations in ,?

The function

sin(ny) (n €N)

is even about the point 7, i.e.

sin (n(g — y)) = sin (n(g + y)),
if n is odd, and odd about 7, i.e.
sin (n(g — y)) = —sin (n(g + y)),

if n is even. A simple consequence of this is that

(M) (z,y) = A (z,y)p(7,y)
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is even or odd about the point 7 in y, if ¢ has also has that property. Now, using the orthog-
onality of functions even about to functions odd about 7, we have that if ¢(xo, o) is even
about 7 in yo then

(GM)(x0, y0) / /L M (z,y)[(— ﬂi—ﬂ sin (fo|z — xo|) sin(y) sin(yo)

—_

+

= +17Te “vntrlrrolgin ((2n 4 1)y) sin (20 + Dyo)) ] ¢(z, y)dzdy,
n=1 n

a function even in o, about the point 7, and if ¢(zo,0) is odd about 7 in yq

e
YonT

=1
(GMp)(o,10) // M(z,9)Y 1l lsin (20 + 1)y) sin ((2n)yo) ¢(x, y)dady,
n=1

a function odd in yo, about the point 7. The former result is of importance to us, as both
fi(o,90) (i = 1,2) are even in yo, about 5. Therefore, splitting ¢; (i = 1,2) into their even and
odd parts about § in y, we may deduce that the odd parts satisfy the homogeneous equation
(7.3), and hence both solutions are even about 7 in yo, and the trial functions will be chosen to
reflect this. This being the case, by exactly the same arguments used in the previous paragraph,
the Galerkin approximation, iterate, residual, and hence all approximations must be even in
about the point 7.
From this discussion, we may deduce the following representations of the solutions

(70, Yo) ZZ a;i,j cos( ) sin ((2¢ + 1)yo) (7.4)

=0 7=0

and

2(0, Yo) ZZ b; ; sin( )sin ((2i + 1)yo), (7.5)
=0 j=1
where a; ; and b; ; are constants. It is, therefore, not unreasonable to create trial spaces from

combinations of functions of the form

") sin (20 + o), (irj =0,1,2,...),

cos( p-

for the first problem, and

T . . .
]mo)sin((Qz—l—l)yo), (1=0,1...;7=1,...),

sin(

for the second problem. We shall proceed on this basis, increasing the size of the trial space in
some logical fashion.

Both (7.4) and (7.5) are truncated versions of the double Fourier series. We have implicitly
used the fact that the double Fourier series span Lo @ Lo spaces.

There is undoubtedly an optimal approach to increasing the size of our trial space. More-
over, there may well be a better set of trial functions to use. Analysis into this optimality could
be expected to prove difficult, and may have to be approached as a practical trial and error in-
vestigation. This point is mentioned as possible extension to our work, and will not be pursued.
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Check iii. The re-iterated Galerkin approximations must satisfy the even and odd properties
spoken of.

This property could be used to quarter the computational domain. However, it is more
useful to us as a device to help verify results.

Check iv. The inner-products that make up the matrix used in the re-iterated Galerkin
method, are of the form

(AXU Xj)a
where ; is a trial function. With A = I — GM, and the specified trial functions, i.e.

Xi(®o,Yo) = T;, (o) sin(ipyo),

where T; (79) is equal to either cos(“Z22) or sin(*Z2), and i,,i, € N, this inner product

becomes " . "

Concentrating our attentions to the term (GMy;, X;), we have
(GMxi,x;) = M (z,y)] — ot sin o]z — wol) sin(y) sin(yo)
o J_=Jo J_=

1 : : o .
+ Z ’y—ﬂe_%"”_xo‘ sin(ny) sin(nyo)| T;, (z) sin(ipy)dzdy T;, (o) sin(ipyo)dzodys
n=2 "

_ /m / /m M (x,y)s;,(x,y | 20)Ti, (2)T;, (o) sin(ipy)dady dg,
_ T 0 _ T

thus removing the infinite series. This allows us to check the inner-products calculated with
an approximation to the infinite series, with an integral in which we may use the exact integrand.

Check v. The approximations to ¢; and ¢, will be used in the functional L (see §6.2). In
particular, we must calculate

L(6ip, M&j, fis M fj) = (fi, MGj0) 4 (Gin, M fj) — (Giy M&j0) + (GM6; 0, MGj,),

where ;, is the n'" re-iterated Galerkin approximation to ¢;. The odd and even properties
of these approximations and the free terms, imply that terms of subscript ¢ are orthogonal to
terms of subscript j, for i # j. Therefore

L(é'i,n;MOA.j,mfiaij) :07 (27&])

This check is of the functional, and should follow directly if check i is satisfied.

There is another consequence of these odd and even properties.
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7.2 The subspaces E(D') and O(D’)

It has just been shown that the operator GM maps the elements of Ly(D') that correspond to
functions even or odd in x( onto similar elements, and elements corresponding to functions even
or odd about 7 in yp onto similar elements. This implies that GM defines an integral operator
on any of the related L,(D')-subspaces, or combinations of such subspaces. In particular, the
equation

¢ = fi +g~M¢h

may be considered in the L, & L, space of elements corresponding to functions even in zy and
even about § in yp, over the domain D'. Similarly, the equation

P2 = fo +QNM¢2;

may be considered in the Ly & Ly space of elements corresponding to functions odd in xy and
even about 7 in gy, over the domain D'. These subspaces we denote by E(D') and O(D'),
respectively.

Therefore, we are essentially solving two equations in two separate Hilbert spaces. This
links to the discussion of improvement factors of §3.3.1. A proof that E(D') and O(D’) are
the smallest Hilbert subspaces of Lo(D'), containing their respective equations, will not be
attempted. There is, however, no reason to suspect otherwise, and for this reason we shall
assume this property. Moreover, for any choice of the trial spaces defined, the Sloan operators
are operators over E(D’') and O(D’). We shall also refer to E(D’) and O(D') as the smallest
subspaces containing all of the individual terms involved in our approximations. In any case, we
have managed to refine the problem, and can deduce that the convergence of an application of
the re-iterated Galerkin method depends, more so, on the spectral radius of the Sloan operator
over the relevant Ly(D')-subspace, rather than Ly(D') itself.

This is a good point at which to summarise the salient features of the problem to be solved.
We will be approximating the solutions, ¢; (i = 1,2), of the two operator equations

where
fi(wo, o) = cos(Boxo) sin(yo),  f2(wo, yo) = sin(Bowo) sin(yo),

G)aoun) = [ [ Gy |20, m)elr,y)dad

where G is the modified Green’s function (6.3), and

(Mo)(z,y) = A (z,y)p(z,y),

where .# is defined by (7.1), over the space Ly(D'), where
D' ={z,y:|z| < 1,0<y<7r}.
m
These approximations are used to approximate the quantities
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using the functional L (see §4). In turn, we use these approximations to approximate |R|*
and |T|?, quantities proportional to the reflected and transmitted energies, respectively. These
values are required to three decimal places.

From now on, equation (7.6) will be known as problem 1 for i = 1 and problem 2 for i = 2.
The respective trial spaces will be known as trial space 1 and trial space 2.

Let us clarify what we wish to investigate within the set problem:
1. Test the re-iterated Galerkin method.
2. Assess the controllable errors.

3. Solve the original problem.

As it stands, the problem contains more than enough parameters to allow us to deal effectively
with these issues. A realistic position to put ourselves in, would be to allow some variation
in the size (of the norm) of the operator GM for 1, and leave one parameter with which to
compare the results in 3. Intuitively, the size of the operator will increase as the size of the
domain increases, or the size of the kernel increases. These factors may be controlled by the
parameters m, and ky and «, respectively. Let us choose to fix

m:27 kU:ﬁa

and vary a.

Taking matters in the order presented, we begin by studying the application of the re-
iterated Galerkin method.

7.3 Application of the re-iterated Galerkin method

The current section is exclusively a study of the re-iterated Galerkin method, rather than of
any physical interpretation of results, or of the computational error. As such, throughout §7.3
a consistent refinement of 40 x 40, and series approximation Ss, is used.

To give a full test of the re-iterated Galerkin method, it should be used on a problem in
which the integral operator takes a norm value greater than 1. If this were not the case, the
re-iterated Galerkin method would not be required, as repeated regular Sloan iteration (3.39)
would converge.

7.3.1 Sloan iteration

A straightforward and practical test of whether the re-iterated Galerkin method is required, is
to apply Sloan iteration to our problem, to see if it will converge.

Let us introduce the notation
7ﬁi,n
to be the residual error in the n' re-iterated Galerkin approximation to ¢; (i = 1,2), and

Tin,
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to be the residual error in the n' Sloan iterate to ¢; (i = 1,2).

The Sloan iteration should converge or diverge independently of the trial space (see §3.2.3).
So, so let
Trial Space 1: 1 € E(D') (7.7)

and
Trial Space 2: x5 € O(D"). (7.8)

Case o = 1: Results of the application of Sloan iteration are recorded in table 7.1. Problem
1 displays evident divergence, whereas problem 2 is converging. In both series, the ratio of
normed residuals settles within 10 iterations. Although the divergence in problem 1 is very slow,
settling to 1.064, it is nevertheless divergence, and requires the re-iterated Galerkin method.
As problem 2 does not diverge, and does in fact converge reasonably fast, it does not require
the re-iterated Galerkin method. This does, however, provide us with another opportunity:
to observe how the re-iterated Galerkin method affects the speed of convergence of an already
convergent series.

Table 7.1: Sloan iteration

a =1; Sy = Ss; refinement: 40 x 40
Trial space 1 : (7.7); Trial space 2: (7.8)

Iterate | ||, lFaall | ety | el
0 [0.9119 | 0.8802
1 [1.177 | 02728 1201 | 0.3000
5 (09753 [0.1274 0828 | 0.4670
5 [1.116 | 5970 x 102 | 1.144 | 0.4686
1 [1.162 [2.800 x 102 | 1.041 | 0.4689
5 1245 | 1310 x 10-2 | 1.079 | 0.4690
6 1322 |6.200x 10 | 1.062 | 0.4690
7 [1.407 [2.900 x 107 | 1.065 | 0.4690
S [1.497 6353 x 10-7| 1.064 | 0.4690
0 1593 [2.970 x 107 | 1.064 | 0.4690
10 | 1.605 | 1897 x 10~° | 1.064 | 0.4690

By making explicit a result that has been implicit thus far, we can extract further infor-
mation from table 7.1. In §3.3.2, we saw that re-iterated Galerkin is a combination of Sloan
iteration, with pre-conditioning replacing the operator K with the Sloan operator S. Therefore,
all results on S in re-iterated Galerkin, are applicable to K in Sloan iteration. In particular,
from (6.12), in repeated Sloan iteration

70l

[Finall

— p (K), as n — 00.

Therefore, table 7.1 also gives the approximations

peon (GM) ~ 1.064,
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and .
PO(D’) (QM) ~ 04690,

for a = 1.

Although, there is no guarantee that, if the operator GM has small eigenvalues, a relatively
small trial space will ensure S also has small eigenvalues, it is a good indication of this property.
To see this, consider the two factors of

S =(—-GMPy)""(GM — GMPy)

separately. The operator (I — GM Py) has the eigenvalue 1 for all functions strictly outside the
trial space, and 1 — u,, for all the eigenvalues p,, of the operator GM, where the corresponding
eigenfunctions lie in the trial space. Hence, the operator (I — GMPy)~" has the eigenvalues
1 for all functions strictly outside the trial space, and (1 — p,,)~" for all eigenfunctions of GM
within the trial space. Whereas, the operator GM — GM Py has the eigenvalues p,, for the
eigenfunctions of GM orthogonal to the trial space. Therefore, the Sloan operator S has eigen-
values pi,, the eigenvalues of GM where the corresponding eigenfunctions are orthogonal to the
trial space. However, this is not necessarily the complete set of eigenvalues and eigenfunctions.
It is now clear that, by picking a trial space containing parts of the eigenfunctions of GM
corrosponding to the larger eigenvalues, minimises the spectral radius of S.
Table 7.2 shows the results? of the application of re-iterated Galerkin, with

Trial Space 1: sin(yp) (7.9)

and
Trial Space 2: sin(2x) sin(y). (7.10)

From the discussion of the previous paragraph, it is not surprising to find that these choices
of trial spaces produce fast convergence. Again, the ratio of norms of successive residuals
settle within 10 re-iterations, in both problems. Note that, we have improved the convergence
rate in the second problem. Furthermore, problem 2 maintains a superior convergence rate.
The approximations to the |R|> and |T'|? also converge quickly. They are accurate to three
decimal places (as required) by the second re-iterate, with the residual errors of orders 107!
and 1072 respectively. The program does, however, run into problems at later re-iterates. At
the seventeenth re-iterate, the convergence rate of the second problem begins to deteriorate,
and by the twenty-fifth re-iterate has begun to diverge at an near settled rate. As we shall see,
this feature occurs consistently, in both problems. An explanation of this phenomena will be
discussed in due course. For the present, it will not disturb our ability to observe the re-iterated
Galerkin method working, and produce approximations to |R|? and |T'|2.
The effects of expanding the trial spaces to

: . Sin(yﬂ)a
Trial Space 1: { cos(2z0) sin(yo), (7.11)
" (220) sin(in)
. ) sin(2xq) sin(yo),
Trial Space 2: { sin(4zo) sin(yp). (7.12)

are recorded in table 7.3. Note that, in both problems, a larger subspace has produced faster
convergence, and the values of |R|? and |T|*> have converged by the first iterate (re-iterate 0).

2All tables are given to 4 significant figure accuracy.
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Table 7.2: Re-iterated Galerkin

a =1; Sy = 83; refinement: 40 x 40
Trial space 1 : (7.9); Trial space 2: (7.10)

Reciterate | |71 IF2all | 2y | mecn Ll 7"

Galerkin | 0.8793 0.7731
0 0.9364 7.990 x 102 4.202 x 107 | 1.000
1 0.2885 7.700 x 10 [ 0.3081 | 9.610x10~2 | 2.500 x 102 | 0.9975
2 0.1049 1.100 x 10~% | 0.3636 | 0.1455 2.900 x 10~? | 0.9971
3 3.900 x 102 | 1.744 x 10" [ 0.3721 | 0.1562 3.000 x 102 | 0.9700
1 1.460 x 10 % | 2.773 x 10 ° | 0.3738 | 0.1590 3.000 x 107 | 0.9700
5 5.500 x 10 ° | 4.430 x 10 ° | 0.3741 | 0.1598 3.000 x 107 | 0.9700
6 2.200 x 10 * | 7.088 x 10 7 | 0.3742 | 0.1600 3.000 x 107 [ 0.9700
7 7.641 x 10~ | 1.135 x 107 | 0.3742 | 0.1601 3.000 x 102 [ 0.9700
16 1.092 x 107 | 8.375 x 10 ™ [ 0.3742 [ 0.1701 3.000 x 107 [ 0.9970
17 1019 x 10 ® | 2.585 x 10 © | 0.3742 | 0.3087 3.00 x 10~* [ 0.9970
18 1.537 x 10 ® [ 2.205 x 10 [ 0.3742 | 0.8530 3.000 x 107 [ 0.9970
19 5.752 x 10 ° [ 2.550 x 10" | 0.3742 | 1.156 3.000 x 10~? [ 0.9970
24 [4.218x 107 [ 4741 x 107 [ 0.3742 | 1.115 3.000 x 102 [ 0.9700
25 | 1578 x 10 ' | 5417 x 10 | 0.3741 | 1.143 3.000 x 107 | 0.9700
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However, this is at the cost of a higher computational expense to achieve each new approx-
imation. By the twenty-fifth re-iterate, both approximations are tending towards a settled
divergence.

Table 7.3: Re-iterated Galerkin

a =1; Sy = 83; refinement: 40 x 40
Trial space 1 : (7.11); Trial space 2: (7.12)

Re-iterate 171 ]| |72, ||,‘A,|f;7_1|1|“ ||7L|jir_t|l||| |R[” T

Galerkin | 0.1390 0.6340
0 5.280 x 1072 | 2.670 x 102 3.000 x 1073 | 0.9970
1 8.700 x 10=3 | 2.500 x 1073 | 0.1641 | 0.0950 | 3.000 x 10=3 | 0.9970
2 1.600 x 1072 | 3.00 x 10=* | 0.1838 | 0.1184 | 3.000 x 10~2 | 0.9970
3 3.022 x 10~ | 3.61 x 10™> | 0.1900 | 0.1206 | 3.000 x 10=3 | 0.9700
14 4.943 x 1072 | 3.700 x 1071 | 0.1969 | 0.1598 | 3.000 x 102 | 0.9970
15 9.724 x 1071 | 2.490 x 10~'° { 0.1967 | 0.6729 | 3.00 x 10~* | 0.9970
16 1.919 x 10713 | 2.554 x 10~ | 0.1973 | 1.026 3.000 x 1073 | 0.9970
18 7.502 x 1075 | 3.290 x 107'° | 0.1984 | 1.136 3.000 x 1073 | 0.9700
19 1.856 x 10715 | 3.654 x 10~ '° | 0.2475 | 1.111 3.000 x 1073 | 0.9700
20 9.415 x 1071° | 4.089 x 10715 | 0.5071 | 1.119 3.000 x 1073 | 0.9970
21 7.267 x 107 | 4.539 x 10~'° | 0.7719 | 1.110 3.000 x 1073 | 0.9970
22 6.880 x 107'° | 5.057 x 10715 | 0.9467 | 1.114 3.000 x 1073 | 0.9970
23 6.847 x 1071° | 5.635 x 10715 | 0.9952 | 1.114 3.000 x 1073 | 0.9970
24 6.999 x 10 % | 6.259 x 101 | 1.022 1.111 3.00 x 10~% | 0.9970
25 7.155 x 1010 1 6.792 x 107 1% | 1.022 1.085 3.00 x 10~% | 0.9970

Case a = 2: Tables 7.4-7.8 are the corresponding results for o = 2.
The results of Sloan iteration show that, as expected, an increase in the value of « has
increased the spectral radius of the operator GM, with

and .
pO(D,)(gM) ~ 1.099, (7.13)

for a = 2. This provides a sterner test for the re-iterated Galerkin method, and convergence
should no longer be expected in problem 1 for a small trial space 1.
Indeed, the results of table 7.5, where

Trial Space 1: sin(yo)

and
Trial Space 2: sin(2x) sin(y).
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Table 7.4: Sloan iteration

a = 2; Sy = Ss; refinement: 40 x 40
Trial space 1 : (7.7); Trial space 2: (7.8)

Tterate | ol | [Faall | preel | 2l
0 0.9528 1.244
1 2.847 1.054 2.988 0.8476
2 5.318 1.158 1.868 1.099
3 14.23 1.273 2.675 1.099
4 34.18 1.399 2.403 1.099
5 84.84 1.5378 | 2.482 1.099
6 208.52 1.691 2.458 1.099
7 514.0 1.858 2.465 1.099
8 1.266 x 103 | 2.043 2.463 1.099
9 3.119 x 10° | 2.246 2.464 1.099
10 7.682 x 10% | 2.269 2.463 1.099

show divergence, although not in the predicted problem. In addition, table 7.5 provides the
approximation po(pr)(S) & 3.505, for the spectral radius of the Sloan operator in the second
problem, which is far larger than the approximation to po(py(GM), (7.13). Therefore, in this
case, the divergence has worsened by using re-iterated Galerkin over regular Sloan iteration.
This is the type of behavior that has never been ruled out, but that is difficult to attribute.
As the spectral radius has grown from the operator GM to S, it would not appear that the
divergence is related to the trial function sin(2xg) sin(yy) being a poor approximation to the

largest eigenfunction of GM.

Table 7.5: Re-iterated Galerkin

a = 2; Sy = Ss; refinement: 40 x 40
Trial space 1 : (7.9); Trial space 2: (7.10)

Terate | [lfrall | IMfaall | ey | moc | 1BP | 1TP
Galerkin | 0.9562 5.897
0 2.521 4.351 0.4505 | 0.5495
1 1.535 15.23 0.6088 | 3.500 | 0.2122 | 0.7878
2 1.148 53.37 0.7483 | 3.505 | 0.1645 | 0.8355
3 0.8862 | 187.0 0.7718 | 3.505 | 0.1437 | 0.8563
9 0.1961 | 3.465 x 10° | 0.7780 | 3.505 | 0.1197 | 0.8803
10 0.1526 | 1.215 x 10° | 0.7780 | 3.505 | 0.1192 | 0.8808
Expanding the trial spaces to
: [ sin(yo),
Trial Space 1: { cos(2:0) sin(yo),
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and
sin(2x¢) sin(yo),

Trial Space 2: { Sin(4l‘0) Sin(yO)a

improves matters (see table 7.6) and provides convergence in both problems. However, the

extremely slow convergence in problem 2 is impractical.

Table 7.6: Re-iterated Galerkin

a = 2; Sy = Ss; refinement: 40 x 40
Trial space 1 : (7.11); Trial space 2: (7.12)

fterate | [|71n] ool | e £ rr

Galerkin | 0.2795 2557
0 | 0.4454 1179 7.020 x 10 2 | 0.9298
T [0.2367 131 | 0.5314 | 0.9598 | 5.670 x 10 2 | 0.9433
2 |0.1311 118 | 0.5540 | 0.9882 | 5.190 x 10 7 | 0.9481
3 | 7300 x 10 2| 1.102_| 0.5564 | 0.9857 | 4.790 x 10 ? | 0.9521
9 [2.100 x 102 [ 1.013 | 0.5548 | 0.9860 | 2.310 x 10-? | 0.9769
10 | 1.200 x 10 7 | 0.9983 | 05547 | 0.9860 | 1.840 x 10 2 | 0.9816

The results that come from further expanding the trial spaces to

Sin(yO)a
Trial Space 1: cos(2zy) sin(yo), (7.14)
sin(3yy)
and
sin(2xy) sin(yy),
Trial Space 2: sin(4xy) sin(y), (7.15)

sin(2xy) sin(3y),

are recorded in table 7.7. Observe the sharp increase in the rate of convergence in problem
2, that has been created by adding the trial function sin(2zy)sin(3y,). Also note that, for
the current and previous trial space 1, the norm of the residual error deteriorates between the
Galerkin approximation and the iterated Galekin approximation. This is not unexpected, and
does not indicate that the norm of the pointwise error is deteriorating (see §6.4).

Results of an even further expansion of the trial spaces to

( sin(yo),
cos((??xo)) sin(yo),
. . S 9Yo
Trial Space 1: < cos(4zy) sin(yo), (7.16)
cos(2xg) sin(3yp),
| sin(5y0),
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Table 7.7: Re-iterated Galerkin

a = 2; Sy = Ss; refinement: 40 x 40
Trial space 1 : (7.14); Trial space 2: (7.15)

terate 71,0 |72 vl B RF | TP
Galerkin | 0.2606 0.7044
0 0.3026 0.1048 0.2127 | 0.7873
1 0.1403 2.400 x 1073 | 0.4636 | 2.260 x 1072 | 0.2011 | 0.7989
2 7.080 x 102 | 4.588 x 10~* | 0.5048 | 0.1935 0.1985 | 0.8015
3 3.620 x 1072 | 4.365x10° | 0.5117 | 9.510x10°2 | 0.1978 | 0.8022
4 1.860 x 1072 | 5.720x107% | 0.5135 | 0.1310 0.1976 | 0.8024
9 6.695 x 107" | 1.668x 1070 | 0.5144 | 0.1253 0.1976 | 0.8024
10 3.444 x 10°* | 5.257x10°10 | 0.5144 | 0.3152 0.1976 | 0.8024
11 1.772 x 1071 | 1.191x10 19 | 0.5144 | 2.266 0.1976 | 0.8024
19 8.691 x 107 | 1.615x10~7 | 0.5144 | 2.463 0.1976 | 0.8024
20 4.471 x 1077 | 3.978x10~7 | 0.5144 | 2.463 0.1976 | 0.8024
and
([ sin(2zp) sin(yp),
sin(4xy) sin(y),
Trial Space 2§ % (00) S {30) (7.17)
sin(4xy) sin(3yo),
[ sin(2z) sin(5yo),

can be found in table 7.8. The most noticeable effect is that the convergence rates of both
problems are improved. The improvement is far greater in both size, and relative size, in
problem 1. Also this improvement in problem 1 is far greater than the improvement gained by
the last expansion of trial space (between table 7.6 and table 7.7). This could be a product
of the extra number of terms added or the properties of the terms added. This relates to the
possible investigation of the optimal expansion of the trial space that could be conducted.

Case o = 3: As a further test of the re-iterated Galerkin method, and by way of confirmation
of the behaviour we have witnessed thus far, we increase « again.
Table 7.9 produces the approximations

pry(GM) ~ 4.194,

po(py(GM) ~ 1.892,

for o = 3. Thus, we deduce that increasing the value of a has again increased the spectral
radius of the operator GM in both problems.
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Table 7.8: Re-iterated Galerkin

a = 2; Sy = Ss; refinement: 40 x 40
Trial space 1 : (7.16); Trial space 2: (7.17)

lterate | il lPoall | iy | ey | IRP | ITP

Galerkin | 0.1450 0.5417
0 4.450 x 1072 | 2.170 x 102 | 0.4636 | 2.260 x 1072 | 0.1987 | 0.8013
1 9.200 x 1073 | 1.700 x 1072 | 0.2060 | 7.610 x 1072 | 0.1976 | 0.8024
2 2.000 x 1073 [ 1.614 x 10-* | 0.2199 | 9.770 x 102 | 0.1976 | 0.8024
3 4.521 x 10~* | 1.680x107° | 0.2242 | 0.1041 0.1976 | 0.8024
9 6.044 x 1078 | 2.735x10~'* | 0.2263 | 0.1103 0.1976 | 0.8024
10 1.368 x 107% | 1.093x10"! | 0.2263 | 0.3995 0.1976 | 0.8024
11 3.095 x 1077 | 2.594x10" ' | 0.2263 | 2.373 0.1976 | 0.8024
19 2.546 x 1071 | 3.516x107% | 0.2706 | 2.463 0.1976 | 0.8024
20 1.589 x 10~ | 8.660x10~% | 0.6241 | 2.463 0.1976 | 0.8024

Table 7.9: Sloan iteration

a = 3; Sy = Ss; refinement: 40 x 40

Trial space 1 : (7.7); Trial space 2: (7.8)

fterate | [[7uall Il | ety |

0 0.9852 3.052

1 5.057 3.294 5.133 | 1.605
2 15.88 6.247 3.139 | 1.896
3 72.71 11.82 4.580 | 1.892
4 296.9 22.36 4.084 | 1.892
5 1.256 x 10% | 42.31 4.229 | 1.892
6 5.253 x 10° | 80.05 4184 | 1.892
7 2.205 x 10* | 151.5 4197 | 1.892
8 9.245 x 10% | 286.6 4193 | 1.892
9 3.878 x 10° | 542.2 4195 | 1.892
10 1.627 x 10° | 1.026 x 10% | 4.194 | 1.892
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Results with varying trial spaces are recorded in tables 7.10-7.14, with the largest trial
spaces being

and

Trial Space 1:

Trial Space 2: <

;

Sin(yO)a
cos(2xg) sin(yp),
in(3yo),
0s(4o) sin(yp),
cps((Q:vo) sin(3yo),

o ®w,

cos(619) sin(yp),
cos(4xoxo) sin(3yo),
cos(2xg) sin(5yp),

Table 7.10: Re-iterated Galerkin

a = 3; Sy = Ss; refinement: 40 x 40
Trial space 1 : (7.9); Trial space 2: (7.10)

Reiterate | [lfiall | lfaall | el | pleel 1 gRp |2

Galerkin | 0.9969 | 1.199
0 4.690 | 1.265 0.5816 | 0.4184
1 4.409 [0.1003 0.9402 | 7.930 x 102 | 0.6328 | 0.3672
2 5262 |2.360 x 1072 [ 1.194 | 0.2352 0.4962 | 0.5038
3 6.515 | 2.100 x 10~° | 1.2380 | 8.840 x 1072 | 0.4334 | 0.5666
4 8.128 [ 1.100 x 10~ | 1.2476 | 0.5499 0.3988 | 0.6012
12 48.56 [ 2.018 x 10 " [ 1.250 [0.7009 0.3469 | 0.6531
13 60.72 | 7.607 x 10 7| 1.250 | 3.770 0.3464 | 0.6536
14 75.93 [3.188 x 107° | 1.250 | 4.191 0.3461 | 0.6539

|20 2092 | 1.740x 10 %[ 1.250 |[4.194 | 0.3455 | 0.6555 |

(7.18)

(7.19)

A new phenomenon that is discovered is that an increase in trial space 1 from (7.9) to
(7.11), and (7.11) to (7.14) (between table 7.10, 7.11 and 7.12) causes the convergence rate of
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Table 7.11: Re-iterated Galerkin

a = 3; Sy = Ss; refinement: 40 x 40

Trial space 1 : (7.11); Trial space 2: (7.12)

Re-iterate | 71,0 IPoall | iy | sy | IRP [ 1TP

Galerkin 2.867 0.6383
0 6.961 0.1789 0.3743 | 0.6257
1 24.96 4.150 x 1072 | 3.590 0.2322 | 0.3474 | 0.6526
2 89.16 1.100 x 1072 | 3.572 0.2646 | 0.3457 | 0.6543
12 2.948 x 10° | 1.196 x 10~7 | 3.564 0.5112 | 0.3455 | 0.6545
13 1.051 x 108 | 4.005 x 10~7 | 3.564 3.348 0.3455 | 0.6545
14 3.744 x 10 | 1.677 x 107% | 3.564 4.188 0.3455 | 0.6545
15 1.334 x 10% | 7.035 x 10~ °® | 3.564 4.194 0.3455 | 0.6555

Table 7.12: Re -iterated Galerkin
a = 3; Sy = Ss; refinement: 40 x 40
Trial space 1 : (7.14); Trial space 2: (7.15)

Re-iterate 1740l 72,0 HJJT,ITZL'H ||7‘A=|§,2T;T_L|1|H |RJ? T

Galerkin 3.336 0.6059
0 6.809 4.570 x 102 0.3523 | 0.6477
1 27.74 6.200 x 103 | 4.074 0.1364 | 0.3460 | 0.6540
2 113.8 1.400 x 1072 | 4.101 0.2296 | 0.3455 | 0.6545
1 3.731 x 107 | 2.519 x 10 © [ 4.101 | 0.4743 [ 0.3455 | 0.6545
12 [ 1.530 x 10° | 8.332 x 10 © | 4.101 | 3.308 | 0.3455 | 0.6545
15 1.055 x 100 | 6.138 x 107° | 4.101 4.194 0.3455 | 0.6555
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Table 7.13: Re-iterated Galerkin

a = 3; Sy = Ss; refinement: 40 x 40
Trial space 1 : (7.16); Trial space 2: (7.17)

Re-iterate [ 71| ] sy B vl O L R B A

Galerkin | 0.3045 0.5268
0 0.1985 2.800 x 10~2 6.200 x 1073 | 0.9938
1 8.000 x 10~ | 4.000 x 10~% | 4.010 x 10~ | 0.1436 [ 1.996 x 10~* | 0.9998
2 3.300 x 10~% | 7.442 x 10~* [ 0.4193 0.1854 | 1.976 x 10 * | 0.9998
3 7.336 x 10" | 1.472 x 10" [ 0.2196 0.1978 | 1.978 x 10 * | 0.9998
4 1.998 x 10* | 2.985 x 10 ° | 0.2723 0.2028 | 1.978 x 10~ * | 0.9998
5 5376 x 10 ° | 6.121 x 10 © | 0.2691 0.2051 [ 1.978 x 10~* | 0.9998
6 1.483 x 10=° | 1.262 x 10~° | 0.2758 0.2062 | 1.978 x 10~" | 0.9998
9 3.261 x 10 7 | 1.121 x 10 ® [ 0.2818 0.2077 [ 1.978 x 10 * | 0.9998
10 9.221 x 10% | 4.487 x 10 ° | 0.2827 0.4001 | 1.978 x 10~* | 0.9998
11 2.613x 10 % | 1.613 x 10 ° [ 0.2834 3.595 [ 1.978 x 10 * | 0.9998
12 7.419 x 107 | 6.762 x 10~° | 0.2839 4192 | 1.978 x 10~* | 0.9998
15 1.769 x 10 10 | 4.989 x 1075 [ 0.2947 4194 [1.978 x 10 * | 0.9998
16 1.031 x 100 | 2.092 x 10" [ 0.5829 4194 [1.978 x 10 * | 0.9998
17 1.796 x 1070 | 8.7758 x 10" | 1.741 4194 [1.978 x 10 * | 0.9998
20 | 1.370 x 107 | 6.500 x 1073 [ 1.972 4194 | 1.978 x 10~* | 0.9998
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Trial space 1 : (7.18); Trial space 2: (7.19)

Table 7.14: Re-iterated Galerkin

a = 3; Sy = Ss; refinement: 40 x 40

Re-iterate 71,0l 720 a1 el |R|? |

Galerkin | 8.220 x 10~2 | 0.4597
0 1.860 x 1072 | 1.070 x 1072 6.200 x 1073 | 0.9938
1 3.000 x 1073 | 7.571 x 10~* [ 0.1596 | 7.100 x 1072 | 1.977 x 10~* | 0.9998
2 5.491 x 10~* | 7.826 x 107" | 0.1849 | 0.1034 1.978 x 10~* | 0.9998
8 3.257 x 1078 [ 4.532 x 10710 [ 0.1994 | 0.1699 1.978 x 10~* | 0.9998
9 6.497 x 1079 | 1.086 x 10~ | 0.1995 | 2.397 1.978 x 10~* | 0.9998
10 1.297 x 1072 | 4.551 x 1079 | 0.1995 | 4.189 1.978 x 10~* | 0.9998
13 1.521 x 1071 | 3.357 x 107 | 0.2926 | 4.194 1.978 x 10~* | 0.9998
14 2219 x 107" | 1.408 x 107°% | 1.459 | 4.194 1.978 x 10™* | 0.9998
15 4.368 x 1071 | 5.906 x 107% [ 1.969 | 4.194 1.978 x 10~* | 0.9998

| 20 [ 1.323x10° [ 7.700 x 10 7 | 1.979 | 4.194 [ 1.977 x 10" | 0.9998 |

problem 1 to worsen, rather than improve. It is important to note that, the properties of the
operators that have been spoken of, are, in the main, made according to a limit. In particular,
it was never said that an expansion in the trial space would always cause the spectral radius of
the Sloan operator to fall. Rather, in the limit that the dimension of the trial space tends to
infinity, the spectral radius of the Sloan operator tends to zero. This is a good demonstration
of this point. The increasing divergence does not continue indefinitely. As trial space 1 is
further expanded, the convergence of problem 1 improves (see table 7.13 and 7.14), i.e. the
approximation to the spectral radius of the Sloan operator gets smaller.

Tables 7.2-7.14 all contain approximations to two different problems, where the sizes of the
trial spaces are equal, and the trial spaces themselves are analogous. A couple of comparisons
are now made about the general differences between the two approximations. Firstly, for con-
vergent approximations, the Galerkin approximation to problem 1 is generally superior to the
Galerkin approximation of problem 2, or it at least appears to tend towards the exact solution
faster as the trial spaces are expanded. Secondly, an effect which balances the first point, the
convergence rate, of the re-iterated Galerkin method, in the second problem is faster than that
of the first, in the main. This is surely connected with the fact that the approximations to the
spectral radius of GM are considerably smaller in problem 2, than problem 1. These points
will remain as observations. They fall under the remit of possible future investigations into
optimality of the trial spaces.

Let us now return to an unresolved issue — what causes a sequence of re-iterated Galerkin

approximations, that have a settled convergence rate, to become disrupted and subsequently
diverge?
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7.4 Eventual divergence

This problem is highlighted in tables 7.2, 7.3, 7.7, 7.8, 7.10, 7.11, 7.12, 7.13, 7.14, occurring in
one or both of the problems. The problem appears to arise from a small residual error. We
have already raised the point that an approximation may only be as good as the order of com-
putational rounding error. However, this is not the answer as the rounding error is far smaller
than the size of the residual error, at which the approximations go wrong. Also, re-iterating
after rounding error has been reached, would cause a ‘re-shuffling’ of errors, rather than the
consistent divergence that we are finding.

Consider the following explanation.

The behaviour we are witnessing, seems to suggest that the re-iterated Galerkin method
finds a new eigenvalue of the Sloan operator when the residual gets small — but why does this
eigenvalue arise only for a small residual error, and why can it not be eliminated by expansion
of the trial space? In §7.1, we discussed the properties of the Hilbert spaces in which each
problem is set, and chose trial spaces accordingly. These Hilbert spaces we denoted E(D’)
and O(D'), and are subspaces of the ‘global’ Hilbert space Ly(D’'). The appearance of the
subspaces was essentially a product of the various symmetries in the problems. By choosing
trial functions from these subspaces, we are attempting to minimize the spectral radius of
the Sloan operator over the subspace in question, and doing little, or nothing, to the spectral
radius of the Sloan operator over the rest of Ly(D'). Whilst the various factors involved in
the problem are relatively large, the effect of computational errors are negligible, relatively,
and the problem maintains its true ‘shape’. Hence, the re-iterated Galerkin method behaves
as the theory suggests it would. However, as the residual error decreases, remembering that
improved approximations are calculated from the residual error, computational errors become
more pronounced, destroying the symmetries of the problem. Under these effects, the problem
being dealt with on the computer moves from the subspace into the global Hilbert space,
Ly(D'), and the convergence rate begins to seek out the spectral radius of the Sloan operator
over Ly(D’), rather than the subspace. As our choice of trial space has not taken into account
this possibility, the spectral radius of the Sloan operator over Ly(D') can be expected to be
large, and cause divergence.

The evidence for this hypothesis seems irrefutable. For example, note that, for a constant
«, the eventual divergence rates appear to be settling to the same value (this is particularly
clear in the tables presented for problem 2: « = 3).

The effects of computational error on the residual are also visible. Figures 7.2-7.4 sample
the residual error at three re-iterates for problem 2, with aw = 1, and trial space 2 as in (7.10).
This corresponds to table 7.2. They catalogue the deterioration of the symmetry in the residual
errors. Sample cross-sectional profiles are also included, all at the arbitrary value yy = 1.9242.

It is also evident that the higher the value of «, the larger the residual when the effects
of computational error take hold. This is unsurprising, as, when calculating the residual error
in an approximation, computational errors may be magnified by as much as ||GM||, which we
may assume is generally larger for larger a.

If there were a requirement that approximations be made to a very high degree of accuracy,
or we were using operators of very large size, we would need to investigate as to how the effects
of computational error may be counteracted. A possible way of doing this would be to add in
trial functions that would be of no use in the analytic problem, but would reduce the spectral
radius of the Sloan operator over Ly(D’). As it is clear that we can already produce sufficiently
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Figure 7.2: Residual error in problem 2 after 3 re-iterations and cross-section at y, = 1.9242
« = 1; Trial space 2: (7.10)
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Figure 7.3: Residual error in problem 2 after 16 re-iterations and cross-section at y, = 1.9242
« = 1; Trial space 2: (7.10)
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Figure 7.4: Residual error in problem 2 after 20 re-iterations and cross-section at y, = 1.9242
« = 1; Trial space 2: (7.10)

good approximations to |R|*> and |T'|?, this point will remain as only a possible avenue for
further study.

In comparison, we seek only 3 decimal place accuracy in the quantities |R|?> and |T|?, and
will use values of o no greater than 3. Tables 7.2-7.14 indicate that, to achieve convergence to
3 decimal places in |R|? and |T'|?, we require approximations with norm residual error of order
approximately 1072 to 102, depending on the size of a, in both problems 1 and 2. To be certain,
when making approximations, with a no greater than 3, we shall allow our approximations to
¢ and ¢, to reach a residual error of order 10~* before terminating the re-iterations. Having
carried out tests on the re-iterated Galerkin method, we turn our attention to the accuracy of
the approximations that are produced, in relation to the original problem.

7.5 Accuracy of approximations

In the results produced thus far, we have been working with a fixed quadrature refinement and
series approximation. By using a numerical quadrature and truncating the infinite series in
the kernel, we introduce errors that affect our results (see §6.5). These errors diminish as we
increase the accuracy of the quadrature, by increasing the refinement of the computational grid,
and decrease the truncation error in the series approximation, by taking an increased number
of terms. The effect of varying these errors may be judged from the approximate values of |R|*
and |T'|* that they produce. This will allow us to estimate how our program must be set to
achieve approximations to 3 decimal place accuracy.
We treat these two causes of error separately.
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7.5.1 Quadrature refinement

To make an accurate comparison, all other variables must be fixed. So, making use of prior
results, we shall work with @ = 1,2, and 3, choosing a pair of trial spaces, for each «, that
produced convergence in |R|? and |T|? to four decimal places within 5 re-iterations. All other
variables, excepting the refinement, are unchanged.

Re-iterated Galerkin approximations, where varying quadrature refinements are used, are
contained in tables 7.15-7.17. Values of |R[* and |T'|* are recorded after 5 re-iterations, by
which time they had converged to at least 4 decimal places.

Table 7.15: Results of varying quadrature refinement after 5 re-iterations

a=1; Sy = &3
Trial space 1 : (7.11); Trial space 2: (7.10)

Refinement | | & [Falk
10 x 10 3.200 x 1073 | 0.9968
20 x 20 3.000 x 1073 | 0.9700
30 x 30 3.000 x 1073 | 0.9700
40 x 40 3.000 x 1073 | 0.9700
50 x 50 3.000 x 1073 | 0.9700

Table 7.16: Results of varying quadrature refinement after 5 re-iterations

a=2; Sy = Sz
Trial space 1 : (7.16); Trial space 2: (7.15)

Refinement | [|R[|? | [|T|?
10 x 10 0.1958 | 0.8042
20 x 20 0.1973 | 0.8027
30 x 30 0.1975 | 0.8025
40 x 40 0.1976 | 0.8024
50 x 50 0.1976 | 0.8024

We have already seen how a larger operator, produced by a larger value of «, can cause
problems with numerical results. This appears to be the case again. The quadrature error
may be magnified by as much as [|GM]||. It can be conjectured that this is the reason that
approximations are further apart between different quadrature for larger a.

All three show apparent accuracy of |R|? and |T'|? to 3 decimal places by 40 x 40 refinement.

7.5.2 Series truncation

Tables 7.18-7.20 give the re-iterated Galerkin approximations, after 5 iterations, with varying
series truncation, and the refinement has been fixed at 40 x 40. Again, values of |R|* and |T|?
had converged to at least 4 decimal places by the fifth re-iterate.
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Table 7.17: Results of varying quadrature refinement after 5 re-iterations

a=3; Sy = Ss;
Trial space 1 : (7.16); Trial space 2: (7.15)

Refinement KR AR
10 x 10 | 6.000 x 1073 | 0.9940
20 x 20 | 8.748 x 10~* | 0.9991
30 x 30 | 3.323 x 10~* | 0.9997
40 x 40 | 1.978 x 1072 | 0.9998
50 x 50 | 1.978 x 10~* | 0.9998
60 x 60 | 1.216 x 10~* | 0.9999

Table 7.18: Results of varying series truncation after 5 re-iterations

a=1; 40 x 40
trial space 1 = 2; trial space 2 =1
Terms ES [
1 2.900 x 1073 | 0.9971
2 2.900 x 1073 | 0.9971
3 3.000 x 1073 | 0.9970
4 3.000 x 1073 | 0.9970
5 3.000 x 1073 | 0.9970
10 3.000 x 1073 | 0.9970

Table 7.19: Results of varying series truncation after 5 re-iterations

a =2; 40 x 40
trial space 1 = 2; trial space 2 =1

Terms | [|R]* | IT|”

1 [0.2009 | 0.7991
0.2009 | 0.7991
0.1976 | 0.8024
0.1976 | 0.8024
0.1974 | 0.8026
10 | 0.1974 | 0.8026

O = W DN
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Table 7.20: Results of varying series truncation after 5 re-iterations

a = 3; 40 x 40
trial space 1 = 6; trial space 2 = 3

Terms 12 17

1 [6.100 x 10 [ 0.9939
6.100 x 10~° | 0.9939
1.978 x 10 7 | 0.9998
1.978 x 107 | 0.9998
8.082 x 10 | 0.9999
10 | 7.877 x 10 % | 0.9999

QY | W DN

As terms in the infinite series are ordered in decreasing size, it seems a fair assumption that
an increase of five to ten terms, having little relative effect, is a good indication that a further
increase in terms used would have even less effect.

It is easily seen that, a low number of terms provides an approximation to the infinite series
that produces ‘good’ approximations to the required quantities. This was predicted in §6.3.1,
and somewhat vindicates the trouble taken to modify the original infinite series.

There are evidently terms in the series that, although they would be thought to have a
significant size, do nothing to the approximation, for example, term 2. This is undoubtedly
due to an orthogonality relationship, and could be pursued as further investigation.

Again, variations appear to have a greater net effect when the value of « is larger. This
cannot be attributed to any magnifying effect the operator has on errors. It is likely to be
simply that a larger value of o produces larger terms in the series.

The setting of an acoustics problem was used to fuel an investigation into the re-iterated
Galerkin method. Having said this, we have arrived at a point at which we are able to produce
results, and it will provide a satisfactory and neat end to our work to actually solve the original
problem, albeit on a sample set.

7.6 Solutions of the acoustics problem

It is necessary to set limits on a sample set of parameters that we shall solve for. To maintain
consistency with what has gone previously, only the parameter o will be varied. In order to
keep the size of the operator used relatively small, we restrict « to the interval [-1,2]. This also
allows us to investigate negative values of «, which has not been attempted previously as it
was found that the operator GM that they induced allowed convergence from Sloan iteration.
All other parameters remain fixed, as defined at the beginning of this chapter.

We may now make practical use of §7.5. As we are looking for 3 decimal place accuracy
in |R|? and |T)?, it seems reasonable to set the quadrature refinement to 40 x 40, and take
Sy = &5. To be absolutely certain of the accuracy of our approximations, we should perform
similar tests to those in §7.5 on each separate value of a. However, for our purposes this would
be highly over-zealous. Our choices of series approximation and quadrature refinement, would
appear to be cautious enough to accept that we will achieve the required degree of accuracy.
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Figure 7.5 plots the energies |R|? and |T|? against «, where values of a have been taken in
steps of 0.05. Values of |R|? and |T'|? were allowed to converge to 3 decimal place, and recorded
at this accuracy. The trial spaces used in the re-iterated Galerkin method, were varied as
required, although this point is immaterial to figure 7.5.

1 T — 1 — T — T — T

0.9 / ~ _

0.8 / ,

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 7.5: Energy proportion approximations against «

Note that, figure 7.5 shows that check ii, the conservation of energy property
|RI” + T =1,

is satisfied. Checks i and v were also satisfied by all approximations, to within a limit that can
be attributed to the errors in the approximations and rounding error.

The graphs of |R|* and |T|* display ‘wobbles’. This is akin to the findings of similar inves-
tigations, see for example [5].

With a = 0 there is no obstacle, and hence nothing to reflect the incident wave. This is
indicated by total transmission, i.e. |T|?> = 1, in figure 7.5. Note that total transmission is
produced at one other point, with « just greater than 1. Such occurrences are unsurprising,
and attributed to ‘interference effects’ taking place across the obstacle.

A negative « indicates that the wave speed is greater in the domain D', than the rest of D.
Our sample set indicates that a shift in « in the negative direction causes more energy to be
reflected than an equivalent shift in the positive direction.

82



The overall tendency seems to be that, the greater the size of the obstacle, the greater the
amount of reflected energy.

In figures 7.6-7.7, we return to investigating the behaviour of the re-iterated Galerkin
method. Figure 7.6 plots the size of trial space one used against the number of re-iterations
until the norm of the residual error in problem 1 reaches order 10~*. Figure 7.7 is the corre-
sponding graph for problem 2. Both figures 7.6 and 7.7, also plot the number of re-iterations
needed for |R|? and |T'|? to converge to 3 decimal places.
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Figure 7.6: Convergence rates and trial spaces in problem 1

The trial spaces are built up in a ‘triangular’ fashion. This tactic has been adopted through-
out this chapter. Essentially, both trial spaces are expanded by adding in more oscillatory terms.
Figures 7.8-7.9 are diagrams that number the order in which the functions are added into their
respective trial space, and are designed to convey the ‘triangular’ construction spoken of.

The expansion or contraction of subspaces, in figures 7.6-7.7, followed no exact pattern.
Rather, changes were made to ensure convergence, and in a reasonably low number of re-
iterations. Also, attempts were made to synchronize the convergence of the two problems.

Note that, in general, a lower sized trial space is required for fast convergence in problem 2.
This is attributed to the faster convergence rate of the re-iterated Galerkin method in problem
2, which was also noted at the end of §7.3.
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Figure 7.7: Convergence rates and trial spaces in problem 2

Figure 7.8: Trial space 1

1, sin(yg) = >2, cos(mxo) sin(yo) 4, CQS(meU) sin(yo)

P

s, sin(3y0)

5/ cos(mxy) sin(3yo)

a0

6, sin(5yp)

Figure 7.9: Trial space 2

1, sin(mag) sin(yg) = > 2, sin(2may) sin(yo) 4, sin(3mxy) sin(yp)
3, sin(mx) sin(3y0) 5, sin(2may) sin(.3y0)

6, sin(mag) sin(5yo)
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It is of interest to see the approximations to ¢; and ¢,. Figures 7.10-7.35 display these
approximations, at steps of 0.25 in «. All approximations have a norm residual error of order

10~ % or less.
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Note that all approximations satisfy the required symmetries (see §7.1).
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Each pair of approximations may be linearly combined, to give an approximation to the
velocity potential, ¢. The co-efficients needed to make these combinations, have already been
calculated in making the approximations to |R|? and |T|* (see §6.2). This confirms the earlier
assertion that an approximation to ¢ would come as a by-product of our goal to approximate
|R|? and |TJ*.

The real and imaginary parts of ¢ are plotted side by side in figures 7.36-7.61.

Figure 7.36: ¢,e; a = —1 Figure 7.37: ¢jm; @ = —1
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Figure 7.38: ¢pe; a = —0.75 Figure 7.39: ¢; o = —0.75

Both the real and imaginary parts of ¢ contribute to ®, the function defining the wave profile
(see (1.3)). We shall not attempt any further reconstruction of the original acoustics problem.
Our work gives a suitable base from which further investigation of the physical problem may
be attempted.
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In order to test whether the re-iterated Galerkin method, and the program that performs it,
are robust, they are applied to a variation on the problem that has thus far been investigated
in this chapter.

7.7 Parabolic x dependence

By making the subtle change

1, 7

k(z,y) = ko + ;((%)2 — 27%) sin®(y), (z,y) € D' (7.20)

we introduce a new property to the problem, in that the wave speed’s x dependence, in the
obstacle, is inversely parabolic, rather than inversely trigonometric. This change does little to
the overall size and shape of k. In particular, all symmetries present in the previous problem
remain, and all preparatory investigation into trial spaces are preserved. As such, it could quite
reasonably be presumed that the re-iterated Galerkin method should work in a very similar
fashion on this problem as it did on the previous.

I/ I[ l “‘\\\\\\
k(xy) I/ ' \~\
// I \ N
y/’////l ///,I,///I/,"I, ‘\\\\\\\,}\\

m “‘\\\\\ \

Figure 7.62: The new function k(z,y) over D’

We are also presented with the opportunity to compare how a different wave speed variation
effects the energy transference. Although it was just said that the new function k(z, y) resembles
its predecessor, there is a marked difference. At the points z = +7- (the lateral boundary of
the obstacle D') the function k(x,y), defined by (7.20) and k¢ in D\ D', has a discontinuous
derivative. It could be speculated that these discontinuities will prevent a gradual modulation
of the wave, possible in the trigonometric case, and therefore increase the amount of reflected
energy.

Similar experiments to those carried out on the previous problem were made here, with
m = 2 and kg = /2 fixed. The behaviour of the re-iterated Galerkin method and variations of
the errors were consistent with previous findings. To avoid appearing overly repetitious, only
a sample of results is presented.

Taking o = 3, tables 7.22-7.24 show how the re-iterated Galerkin method performs on the
parabolic problem with varying subspaces.
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As always, we begin by satisfying ourselves that the re-iterated Galerkin method is required,
by applying Sloan iteration to the problem. Table 7.21 contains the results of this test. It is
obvious that both problems are diverging, and we gain the approximations

and .

for a = 2. These are suitably large operators to provide a good test of the re-iterated Galerkin
method.

Table 7.21: Sloan iteration

a = 2; Sy = Ss; refinement: 40 x 40
Trial space 1 : (7.7); Trial space 2: (7.8)

terate | [[Fall [ IlFaall | gy | ety
0 0.8654 | 1.503
1 1.025 1333 [ 2.224 | 0.9235
2 3.030 1612 | 2.024 | 1.161
3 11.87 1.863 | 3.022 | 1.156
1 32.20 2153 | 2.712 | 1156
5 90.44 9.488 | 2.809 | 1156
6 | 2513 2.875 | 2.779 | 1.156
7 17007 3.322 | 2.738 | 1156
8 [ 1.951 x 10° | 3.830 | 2.785 | 1.156
0 [ 5.436 x 10° | 4.436 | 2.786 | 1.156
10 | 1514 x 107 | 5.126 | 2.786 | 1.156

Tables 7.22-7.24 contain the results of the application of re-iterated Galerkin to the parabolic
problem, with a = 2.

All observations on the re-iterated Galerkin method are present in tables 7.22-7.24. The
re-iterated Galerkin method appears to perform better on the parabolic problem, in this case.
Convergence is achieved in both problems, for all trial spaces used, despite the large size of the
operators. Compare this situation with the case a = 2, for the trigonometric x dependence.

To view the effect, the change to the parabolic problem, has on the transference of energies,
the re-iterated Galerkin approximations to |R|? and |T|?, are recorded over the interval a €
[—1,2] in the same way as the previous problem. This will also allow us to test our hypothesis,
that the discontinuous derivative will produce more reflection. Again, care was taken to try to
ensure that results are accurate to 3 decimal places, and, as before, a refinement of 40 x 40 and
series Sy = S5, were found to be sufficient.

Figure 7.63 contains a graph of the approximations to |R|? and |T|?, against a, calculated
using the re-iterated Galerkin approximations, for the parabolic problem. Interestingly, there
is almost total transmission over the interval o € [0,0.75].
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Table 7.22: Re-iterated Galerkin

a = 2; Sy = Ss; refinement: 40 x 40
Trial space 1 : (7.9); Trial space 2: (7.10)

Re-iterate | [|F1a] | [|F2nll H?Uf,lr;r—b!\l H?Uj,zn’i!\l |R|? IT|?
Galerkin | 0.8563 | 2.688

0 1.576 | 1.532 0.2831 | 0.7169

1 1.131 | 1.017 | 0.7175 | 0.6638 | 0.1179 0.8821

2 0.9550 | 0.6733 | 0.8446 | 0.6623 | 0.3395 0.6605

9 0.3544 | 0.0374 | 0.8688 | 0.6617 | 0.1435 | 0.8565.

10 0.3079 | 0.0247 | 0.8688 | 0.6617 | 0.1412 0.8588

Table 7.23: Re-iterated Galerkin
a = 2; Sy = S3; refinement: 40 x 40
Trial space 1 : (7.11); Trial space 2: (7.12)
Re-iterate 710l 1 7o.nl pal [ Ral R | TP
Galerkin | 0.3743 1.462

0 0.3886 0.6453 0.2195 | 0.7805
1 0.1914 0.1825 0.4925 | 0.2829 | 0.1422 | 0.8578
2 0.1020 0.0547 0.5328 | 0.2995 | 0.1362 | 0.8638
3 5.550 x 1072 | 0.0161 0.5396 | 0.2940 | 0.1351 | 0.8649
8 2.600 x 10 | 3.618 x 107 ° | 0.5443 | 0.2954 | 0.1347 | 0.8653
9 1.400 x 1073 | 1.069 x 107> | 0.5444 | 0.2954 | 0.1347 | 0.8653
14 2.015 x 107> | 1.776 x 107% | 0.5445 | 1.867 | 0.1347 | 0.8653
15 1.097 x 107° | 4.913 x 10°% | 0.5445 | 2.767 | 0.1347 | 0.8653
25  [8.474x107% [ 1.782 x 107" [ 0.5445 | 2.786 | 0.1347 | 0.8653
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Table 7.24: Re-iterated Galerkin

a = 2; Sy = Ss; refinement: 40 x 40
Trial space 1 : (7.14); Trial space 2: (7.15)

Re-iterate | [|71,0]] 720 el [ Jreal R]> | |TP
Galerkin | 0.3575 0.6565

0 0.2443 0.0556 0.1494 | 0.8506
1 0.1091 2.900 x 10~% [ 0.4464 | 5.220 x 102 | 0.1384 | 0.8616
2 5.550 x 1072 | 2.566 x 10=* | 0.5092 | 8.850 x 10~2 | 0.1357 | 0.8643
3 2.880 x 10 % | 2.737 x 10" [ 0.5186 | 0.1067 0.1349 [ 0.8651
6 4.100 x 1073 | 5.604 x 10=% | 0.5222 | 0.1343 | 0.1347 | 0.8653 |
10 3.045 x 10" [ 4.949 x 10~ [ 0.5224 [ 0.3261 0.1347 | 0.8653 |
11 1.590 x 10 7] 1.247 x 10 1 [ 0.5224 | 2.519 0.1347 | 0.8653 |
15 1.184 x 10=° | 7.507 x 107 [ 0.5224 | 2.786 | 0.1347 | 0.8653 |
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Figure 7.63: Energy proportion approximations against o
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Figure 7.64 plots the approximations to |R|* from both the problem in which the z depen-
dence of k(z,y) was trigonometric, against the current problem, in which the dependence is
parabolic. This is done specifically to test the hypothesis.

0.8

IRI?

trigonometric

- ~

y parabplic

Figure 7.64: Comparison of |R|? between parabolic and trigonometric problems

Over the chosen interval, the two approximations, to |R|?, do not differ vastly in size. The
values of |R|? are particularly close for negative a. The average values of |R|? are: 0.1383 in the
trigonometric case and 0.1429 in the parabolic case. This further demonstrates little difference
between the two problems. Therefore, we have collected no evidence to support the hypothesis
that a discontinuous derivative would cause more reflection.
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Chapter 8

Conclusions

The body of our work has been in familiarising ourselves with the ways a particular aspect
of approximation theory has been merged and influenced by results of functional analysis and
spectral theory. It has been shown how this coalescence has brought about the Galerkin, iterated
Galerkin (of Sloan) and re-iterated Galerkin (of Porter and Stirling) methods of approximating
the solution of integral equations, and the related variational principles that can be used to
approximate quantities that involve these solutions. In particular, the superiority of the re-
iterated Galerkin approximation was expounded, and it was this approximation that we used
in practice. The idealised acoustics problem, of §1, was introduced essentially as a platform on
which to parade the re-iterated Galerkin approximation. As has already been noted, with a less
stringent time restriction, this work could have induced an investigation with more physical
conclusions. We attempted one, rather unsuccessful, investigation with physical implications,
by asking whether a sharp change in wave speed would cause more reflection than allowing a
gentle introduction to changing wave speed. The results of this investigation proved inconclusive
but leaves an opportunity for a more expansive investigation. In seeking a function that satisfies
the wave equation we have also gained the benefit of witnessing how a Green’s function may be
utilised in converting a differential equation into the integral equation used in our work. Many
avenues were passed in making this transition, for example finite difference and finite element
approximations. There is obviously a variety of possibilities for comparison of the re-iterated
Galerkin method with one or more of these alternatives.

The latter chapters concentrated on the practical aspects of constructing an approximation.
During this period, the acoustics problem, and hence integral equation, was refined to the
point in which only a small set of parameters were available for variation. It was the aim of this
work to show that the re-iterated Galerkin method is applicable to two-dimensional problems.
This aim became somewhat lost at stages due to the presence of the acoustics problem. This
added the limitation, that we only worked with a specific kernel which required much attention
and rather consumed our attention. A full test of the re-iterated Galerkin method on two-
dimensional would require consideration of far more varied problems. With a less stringent
time restriction, we could have experimented more comprehensively with the multiplication
operator M, introducing variations, such as asymmetries. It must, however, be noted that the
kernel used has many strengths as a test for the re-iterated Galerkin method. It is singular,
non-separable, involves an infinite series and induces a non-self-adjoint integral operator. These
are all properties that could have highlighted inabilities in the method.

Although much of the material of the later chapters has generality, it was specifically with
the integral equation posed in §1 that we dealt. This integral equation was equated to an op-
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erator equation in the Hilbert space of Lebesgue integrable functions. Most of the issues raised
were of a computational nature, with attention centring on how an efficient program could be
constructed to implement the re-iterated Galerkin method for the acoustics problem. In §1
we introduced the imaginary dimension to the problem, and this meant that when writing a
program the integral equation had to be split into two, in order that the program worked only
with real numbers. The integral operator also required special attention due to the singular
infinite series that appears in the kernel. We also touched on the errors that are introduced by
writing a program to perform computations, and the effects on the accuracy of approximations
made using the re-iterated Galerkin method. It was seen that the re-iterated Galerkin method
is well suited to the effects of these errors, as it is sensitive to the error in the current approx-
imation, and hence does not accumulate errors. Given more time and effort, this could have
been proved in a rigorous manner.

The program was implemented using trial spaces motivated by a discussion of the sym-
metries of the two integral equations. This discussion also helped us refine the setting of the
integral equations. To counter the lack of an analytic solution, the results were verified against
a set of checks, although it must be noted that these checks cannot be deemed as absolute
assurance of the validity of results. Tests were made on the re-iterated Galerkin method and
the errors introduced by numerical quadrature and truncation of the infinite series, before the
original integral equation was solved for a sample set, in which only one parameter was var-
ied. Most interest was reserved for the results that indicated the behaviour of the re-iterated
Galerkin method. In the main, the program produced results consistent with the theory of the
re-iterated Galerkin method, with the ratio of the norm of successive residuals settling, and
operators with larger norm values requiring larger trial spaces to produce convergence, or a
faster rate of convergence. It was, however, interesting to note that an expansion of a trial
space did not always produce an improved convergence. The eventual divergence phenomenon
was an incongruence that made for discussion that raised awareness of a fallibility of using
the program to perform computations, but ultimately provided evidence that the program was
working as it should.

Let us finish by briefly outlining areas of possible further research.

In the discussion of the existence and uniqueness of a solution (see §5.2.1), the question
of eigenvalues and eigenvectors was introduced. Although no evidence of eigenvalue behaviour
was found in our investigation, there are almost certainly parameters for which an eigenvalue
will be present. By this it is meant that our choice of parameters prevent the existence and
uniqueness of a solution. An eigenvalue can appear from two different sources. It may be an
eigenvalue of the original problem, in that the chosen parameters cause the operator GM to
have a unit eigenvalue. Such eigenvalues correspond to the eigenfunctions of the operator GM,
which are known as ‘normal modes’ of oscillation. In this case, there are either infinitely many
solutions of the original equation or none. This indicates a probable flaw in the assumptions
made in constructing the mathematical model for these parameters, for example the assumption
of periodic steady state conditions. Recall that, the model can only ever be an approximation
as it is built on the linearised wave equation. The re-iterated Galerkin approximations can be
expected to ‘blow-up’ at an eigenvalue. For ‘nearby’ parameters, although there will exist an
unique solution, the eigenvalue can cause problems in its approximation. An eigenvalue was
found and discussed by Burton [7], for a one-dimensional example. It is still possible to produce
Galerkin and iterated Galerkin approximations at such an eigenvalue, but these approximations
are spurious. Conversely, it may not be possible to produce a Galerkin approximation when
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there exists an unique solution. This is if the chosen parameters coincide with an eigenvalue of
the Galerkin approximation. More specifically, for a chosen trial space, and set of parameters,
it may not be possible to invert the matrix required to produce the Galerkin approximation.
The eigenvalues of this matrix are approximations of the eigenvalues of the exact equation. By
changing the trial space these approximations will move, and the problem disappear, unless
the problem was an accurate indication of an eigenvalue of the exact equation. The subject of
eigenvalues is an ongoing area of research.

In §7, frequent reference was made to the possibility of an investigation of the optimality of
trial spaces. The choice of trial space is fundamental to the success or failure of an application
of the re-iterated Galerkin method. For the problems with which we dealt, it was possible to
achieve a fast rate of convergence from a fairly small trial spaces, chosen in a logical rather
than knowingly optimal fashion. However, by simple changes in certain parameters, the spectral
radius of the operator G M could be made large enough that a more prudent choice of trial spaces
would be required to maintain the low computational cost that the re-iterated Galerkin method
emphasises. The difference in the effect of the re-iterated Galerkin method on problems that
involve operators, with different size spectral radii, was well documented in the results of §7.
An extension in this area could involve comparing the truncated double Fourier series used here,
against other trial spaces, for instance, Legendre polynomials, or it could be in deciding on a
more optimal way of extending the truncated Fourier series, than the ‘triangular’ approach we
have adopted. The orthogonality relations of the trigonometric functions used in the kernel as
well as the trial functions, would undoubtedly have an influence over this optimality question.
As mentioned before, to attempt this extension from an analytic viewpoint could prove highly
intricate, and would most likely involve the approximation of eigenvalues. It would, therefore,
be more appropriate to tackle this issue as a practical investigation.
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Appendix A

The MatLab code used to apply the re-iterated Galerkin method.

Functions are represented by finite dimensional vectors that hold point values taken at the
nodes of a regular cartesian mesh. This structure was outlined in §6. The functions that appear
are contained in appendices C-F.

clear;

global X2d
global rect
global alpha
global m
global k.0
global beta.0
global X_vals
global f.5
global basisl
global basis?2
global mx_term

comment — Define the parameters here ...

alpha = 1.25;

k0 = sqrt(2);

beta 0 = sqrt((k-0A2)-1);
m = 2;

comment — This is number of terms used in the series, i.e. Sy = Spx_tern-

mx_term = 5;

comment — STORE is used to store the required output and does not affect the approximation.
STORE = zeros(1,9);

STORE(1,1) = alpha;

STORE(1,2) kO;
STORE(1,3) m;
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STORE(1,4:8) = 0;

comment — Define the limits of the rectangular region D’. ..

A = -pi/m;
B = -A;
C=0;
D = pi;

comment — xp=X, and yp=Y).
xp = 40;
yp = 40;

comment — X_vals contains the values x;. Likewise Y_vals contains the values y;.

X_vals = zeros(xp,1);
for loop=1:xp

X_vals(loop)=((2*loop -1)*(B-A)/(2xxp)) + A;
end

Y_vals = zeros(yp,1);
for loop=1:yp
Y_vals(loop)=((2*loop -1)*(D-C)/(2xyp)) + C;
end
comment — X2d contains the points ;.
X2d = zeros(xp*yp,2);
for loop=1:yp
X2d (xp* (loop-1) +1:xp*loop,1)=X_vals(:);
X2d (xp* (loop-1) +1:xp*loop,2)=Y _vals(loop);
end
comment — rect=Q).

rect = ((B-A)/xp)*((D-C)/yp);

free_term(:,1) = cos(beta_0%X2d(:,1)) .*sin(X2d(:,2));
free_term(:,2) = sin(beta_0%X2d(:,1)).*sin(X2d(:,2));

comment — mesh is the number of nodes in the rectangular mesh.
mesh = length(X2d(:,1));
comment — basisl contains vectors defining the trial functions for problem 1.

basisl = zeros(mesh,1);
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basisi(:,1)
basisi(:,2)
basisi(:,3)

sin(X2d(:,2));
cos(m*xX2d(:,1)) .*xsin(X2d(:,2));
sin(3*X2d(:,2));

comment — basis2 contains vectors defining the trial functions for problem 2.

basis2 = zeros(mesh,1);

basis2(:,1) sin(mxX2d(:,1)) .xsin(X2d(:,2));
basis2(:,2) sin(2xm*xX2d(:,1)) .*sin(X2d(:,2));
basis2(:,3) sin(m*X2d(:,1)) .xsin(3*xX2d(:,2));

comment — Calculate the dimensions of the two trial spaces ...

diml
dim2

length(basis1(1,:));
length(basis2(1,:));

comment — £25 = Axy.
f 5 = log 5(X2d(:,1));

comment — The G_basis matrices contain vectors defining the trial functions having been
operated on by GM.

for loop=1:diml
G_basis1(:,loop)
end

tilde G modif (basis1(:,loop));

for loop=1:dimil
A basis1(:,loop)
end

basis1(:,loop) - G_basisi(:,loop);

comment — matrixl and matrix?2 are the matrices used to calculate the Galerkin
approximations.

for loop = 1:diml
for loop2 = 1:diml
matrixl(loop,loop2) = A basisi(:,loop2)’*basisi(:,loop);
end
end

matrixl = rect*matrixil;
for loop=1:dim2
G_basis2(:,loop) = tilde_G_modif (basis2(:,loop));

end

for loop=1:dim2
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A basis2(:,loop) = basis2(:,loop) - G_basis2(:,loop);
end

for loop = 1:dim2
for loop2 = 1:dim2
matrix2(loop,loop2) = A basis2(:,loop2)’*basis2(:,loop);
end
end

matrix2 = rect*matrix2;
comment — Define the vectors of inner products of the free term with the trial functions.

F
G

basis_ipl(free term(:,1));
basis_ip2(free_term(:,2));

comment — Store the inverse matrices to save computations.

inv_matl = inv(matrixl1);
inv_mat2 = inv(matrix2);

comment — The Galerkin approximation.
comment — Solve for the unknown co-efficients.

cl
c2

inv_mat1x*F;
inv_mat2x*G;

clear F;
clear G;

comment — Use coefficients to define Galerkin approximations. ..

pl = basislxcl;
p2 = basis2xc2;

comment — Calculate the residual errors in the Galerkin approximations. ..

residual_1 = free_term(:,1) - pl + G_basislx*cl;
residual 2 = free term(:,2) - p2 + G_basis2xc2;

12 norm(residual_1)
12 norm(residual_2)

Galerkin_res_erroril
Galerkin_res_error?

STORE(2,:) = 0;

STORE(3,1) = 0;
STORE(3,2) = Galerkin_res_errori;
STORE(3,3) = Galerkin._res_error?2;
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STORE(3,4:9) = 0;
clear cl; clear c2;
comment — From now on the approximations are sigmal and sigma?2.

sigmal = zeros(mesh,1);
sigma?2 zeros (mesh,1);

comment — The iterated Galerkin approximation.
comment — Initially the approximations are the iterated Galerkin approximations.
comment — The following definition is computationally economical.

sigmal = residual_1 + pi;
sigma2 = residual_2 + p2;

clear residual_1; clear residual_2;
residual 1 = free term(:,1) - sigmal + tilde_ G modif (sigmal);
residual 2 = free term(:,2) - sigma2 + tilde_G.modif (sigma?2);

iterate_errorl = 12 norm(residual_1)
iterate_error?2 12 norm(residual_2)

STORE(4,1) = 0;
STORE(4,2) = iterate_errori;
STORE(4,3) = iterate_error?2;

comment — The energy approximations.
comment — The A_sigma are defined so as to save on calculations. They are vectors
that represent the operator I — GM on our current approximations.

A_sigma_1 = free_term(:,1) - residual_i;
A_sigma 2 = free_term(:,2) - residual_2;

L(1,1) = 2xinner_product(sigmal , Mult(free_term(:,1))) - ...
inner _product(A_sigma_1, Mult(sigmal));

L(2,2) = 2xinner_product(sigma2 , Mult(free_term(:,2))) - ...
inner_product (A_sigma 2, Mult(sigma2));

L(1,2) = inner_product(free_term(:,1), Mult(sigma2)) + ...
inner_product(sigmal , Mult(free_term(:,2))) - ...
inner _product(A_sigma 1 , Mult(sigma2));

comment — This equality comes from a result proved in check i.

L(2,1) = L(1,2);
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clear A_sigma_l1; clear A_sigma_2;
comment — This follows the theory of §6.2.

energy_mat = eye(4);

energy_mat(1:2,3:4) (1/ (beta_0*pi))*L;
energy_mat(3:4,1:2) -(1/(beta_0xpi))*L;
energy._vec(1:2,1) = L(1:2,1);
energy.vec(3:4,1) = L(1:2,2);

energy_c = energy_matxenergy_vec;

R
T

(1/(beta_0xpi))*(ix (energy_c(1)-energy_c(4)) - (energy_c(2) + energy c(3)));
1 + (1/(beta_Oxpi))*(i*(energy_c(1) + energy.c(4)) - (energy.-c(3)-energy_c(2)));

comment — Check ii. ..

energy_cons = abs(R)A2 + abs(T)A2;

abs (R)A2
abs(T) A2

energy_R
energy_T

STORE (4,6)
STORE(4,7) = T;

STORE(4,8) energy_R;

STORE(4,9) = energy.T;

STORE(4,4:5) = 0;

clear energy mat; clear energy_vec;

R;

comment — Checks i & v.

check_1 = inner_product(sigmal , Mult(free_term(:,2)));
check_2 = inner_product(sigma2 , Mult(free_term(:,1)));
check_error = 12_norm(check_1 - check_2);

re_iterate_res_errorl = iterate_erroril;
re_iterate_res_error2 = iterate_error?2;
clear iterate_errorl; clear iterate_error?2;

comment — Re-iteration.

comment — Can do any number of re-iterations, here 1000 is the chosen number.
comment — The code within the loop mimics the above code

for loop=1:1000

comment — The previous are used in the spectral radius approximations

previousl = re_iterate_res_errorl;
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previous2 = re_iterate_res_error2;

clear re_iterate_res_errorl; clear re_iterate_res_error?2;

F = basis_ipl(residual_1);
G = basis_ip2(residual_2);
cl = inv_matl*F;
c2 = inv_mat2xG;

sigmal = sigmal + residual_l1 + G_basislx*cl;
sigma2 = sigma2 + residual_2 + G_basis2*c2;

clear residual_1; clear residual_2

free_term(:,1) - sigmal + tilde_G_modif(sigmal);
free_term(:,2) - sigma2 + tilde_G_modif (sigma2);

residual_1
residual_2

iterate = loop

re_iterate_res_errorl = 12 norm(residual_1)
re_iterate_res_error? 12 norm(residual_2)

STORE (4+1oop,1) = loop;
STORE(4+loo0p,2) = re_iterate res erroril;
STORE (4+1oop,3) re_iterate_res_error2;

comment — Spectral radius approximations. .

spectral radl = re_iterate res_errorl / previousl
spectral rad2 = re_iterate res_error2 / previous2

STORE (4+1loop,4) = spectral _radl;
STORE (4+loop,5) = spectral_rad?2;

clear previousl; clear previous2;

A_sigma_1 = free_term(:,1) - residual_i;
A_sigma 2 = free_term(:,2) - residual_2;

clear L; clear energy mat; clear energy._vec; clear energy._c;

L(1,1) = 2xinner_product(sigmal , Mult(free_term(:,1))) - ...
inner_product (A_sigma 1, Mult(sigmal));

L(2,2) = 2*inner_product(sigma2 , Mult(free_term(:,2))) - ...
inner_product (A_sigma_2, Mult(sigma2));

L(1,2) = inner_product(free_term(:,1), Mult(sigma2)) + ...
inner_product (sigmal , Mult(free_term(:,2))) - ...
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inner_product (A_sigma_1 , Mult(sigma2));
L(2,1) = L(1,2);

energy_mat = eye(4);

energy-mat(1:2,3:4) (1/ (beta_0*pi))*L;
energy_mat(3:4,1:2) -(1/(beta_0*pi))*L;
energy-vec(1:2,1) = L(1:2,1);
energy.vec(3:4,1) = L(1:2,2);

clear energy._c;
energy_c = energy mat / energy._vec;

R = (1/(beta_Oxpi))*(i*(energy_c(1)-energy_c(4)) - (energy_c(2) + energy.c(3)));
T =1+ (1/(beta_0*pi))*(i*(energy_c(1) + energy._c(4))
- (energy_c(3)-energy_c(2)));

energy_cons = abs(R)A2 + abs(T)A2;
energy R = abs(R)A2
energy_T = abs(T)A2

STORE (4+1lo0p,6) = R;
STORE (4+loop,7) = T;
STORE(4+1loop,8) = energy_R;
STORE (4+1lo0p,9) = energy.T;

clear energy mat; clear energy_vec;

check_1 = inner_product(sigmal , Mult(free_term(:,2)));
check 2 = inner_product(sigma2 , Mult(free_term(:,1)));
check_error = 12 norm(check_1 - check_2);

end
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Appendix B

The MatLab code used to apply repeated Sloan iteration.
comment — Up until iteration this has exactly the same structure as appendix A.
clear;

global X2d
global rect
global alpha
global m
global k.0
global beta.0
global X_vals
global f.5
global basis
global mx_term

alpha = 2;

k 0 = sqrt(2);

beta 0 = sqrt((k-0A2)-1);
m=2;

mx_term = 3;

STORE = zeros(1,3);
STORE(1,1) alpha;
STORE(1,2) k 0;
STORE(1,3) m;

A
B

-pi/m;
_A;

C =0;
pi;

o
I

xp = 40;
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yp = 40;

X_vals = zeros(xp,1);
for loop=1:xp

X_vals(loop)=((2*loop -1)*(B-A)/(2*xp)) + A;
end

Y_vals = zeros(yp,1);
for loop=1:yp

Y_vals(loop)=((2*loop -1)*(D-C)/(2xyp)) + C;
end

X2d = zeros(xp*yp,2);
for loop=1:yp
X2d (xp* (loop-1) +1:xp*loop,1)=X_vals(:);
X2d (xp* (loop-1) +1:xp*loop,2)=Y_vals(loop);
end

rect = ((B-A)/xp)*((D-C)/yp);
comment — This program only works on one problem at a time.

comment — The appropriate free term and trial function are chosen by the user by deleting the
unwanted code.

free_term = cos(beta_0%X2d(:,1)) .*sin(X2d4(:,2));
free_term = sin(beta_0%X2d(:,1)) .*sin(X2d(:,2));

mesh = length(X2d(:,1));

basis = zeros(mesh,1);
basis(:,1) = X2d(:,1);

n = length(basis(1,:));
f 5 = log 5(X2d(:,1));

for loop=1:n
G_basis(:,loop)

tilde G .modif (basis(:,loop));

end
for loop=1:n

A basis(:,loop) = basis(:,loop) - G_basis(:,loop);
end

for loop = 1:n
for loop2 = 1:n
matrix(loop,loop2) = A_basis(:,loop2)’*basis(:,loop);
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end
end

matrix = rect*matrix;
F = basis_ip(free_term);
inv_mat = inv(matrix);

inv_matx*F;
basis*c;

T O
1]

residual = free_term - p + G_basisx*c;
Galerkin_res_error = 12_norm(residual)

STORE(3,2) = Galerkin_res_error;

iterate_error = Galerkin_res_error;
clear Galerkin_res_error;

comment — Repeated Sloan iteration
for loop=1:1000
clear previous;

previous = iterate_error;

clear iterate_error;
p = residual + p;

clear residual;
residual = free term - p + tilde G modif(p);

iterate_error = 12 norm(residual)
spectral rad est = iterate_error / previous
done = loop

STORE (3+1oop,1) = loop;

STORE (3+1o0p,2) iterate_error;

STORE(3+loo0p,3) = spectral rad est;
end
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Appendix C

The multiplication operator M. The unwanted function is merely deleted.
function var = Mult(f)

global X2d
global alpha
global m
global k.0

comment — The trigonometric  dependence. ..

var = 2%k _O*alphax*(cos(m*xX2d(:,1)/2).A2) .*((sin(X2d(:,2))).A2 ) .*xf +...
(alphaA2)*(cos (m*¥X2d(:,1)/2) .A4) .x((sin(X2d(:,2))) .A4) .*f;

comment — The parabolic x dependence. . .
1 = pi/m;

parab = (1A2)-(X2d(:,1).A2);

parab = parab/pi;

var = 2xk_O*alpha*parab.*((sin(X2d(:,2))).A2) .xf +...
(alphaA2) *(parab.A2) .*x((sin(X2d(:,2))) .A4) .*f;
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Appendix D

The approximation of the operator GM. .
The modifications that led to the structure of GM used is outlined in §6.3. Integrals are
approximated using the rectangular midpoint rule.

D.1

comment — The function that approximates GM.
comment — It merely combines other functions.

function var = tilde_G_modif (f)
global f.5

var = —-sine_kernel(f) + ...
modified_series(f)+. ..
(log-2(£f)/4)-. ..
(log_3(f)/4)-...
(log_4(£f)/4)-...
(Mult (f) .*f_5)/4;

var = var/pi;

D.2

comment — The part of the kernel defined as wM (ay).
function var = sine_kernel(f)

global X2d

global rect

global beta_0

g = Mult(f);
dim = length(f);
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var = zeros(dim,1);

for loop=1:dim
var = var + sin(beta_Ox*abs(X2d(loop,1)-X2d(:,1)))*...
sin(X2d(loop,2))*g(loop);

end

var = var.*sin(X2d(:,2));
var = var*rect;

var = var/beta 0;

D.3

comment — The approximate series (MSy)(x,y | xo, yo)-
function var = modified _series(f)

global X2d
global rect
global k0
global mx_term

g = Mult(f);
dim = length(f);
var = zeros(dim,1);

comment — The first term is done separately. . .

for loop = 1:dim
var = var - exp(-abs(X2d(loop,1)-X2d(:,1))) .*sin(X2d(loop,2))*g(loop);
end

var = rect*sin(X2d(:,2)) .xvar;

for loop2=2:mx_term
int_term =zeros(dim,1);
gamma n = sqrt((loop2land2)-(k_0land2)) ;
for loop = 1:dim
int_term = int_term + g(loop)*sin(loop2*X2d(loop,2))*sin(loop2*X2d(:,2)) .*...
(loop2*exp (-gamma_n*abs (X2d (loop,1)-X2d(:,1)))-...
gamma_n*exp (-loop2*abs (X2d (Loop,1)-X2d(:,1))));
end
int_term = int_term*rect;
int_term = int_term/(gamma n*loop2);
var = var + int_term;
end
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D.4

comment — The part of the kernel defined as (ML1)(x,y | o, yo)-

function var = log 2(f);

global X2d
global rect

dim = length(f);
g = Mult(f);
var = zeros(dim,1);

for loop=1:dim
var = var + g(loop)*log( 1 - 2xcos(X2d(loop,2) + X2d(:,2)).x...
exp(-abs (X2d(loop,1)-X2d(:,1))) +...
exp (-2*abs (X2d (loop,1)-X2d (:,1))));
end

var = var*rect;

D.5

comment — The part of the kernel defined as (MLy)(x,y | o, yo)-

function var = log_3(f)

global X2d
global rect

dim = length(f);
g = Mult(f);
var = zeros(dim,1);

for loop = 1:dim
comment — The vectors Z and Xv are used to artificially implement the limit (6.7).
Z=zeros(dim,1) ;
Z(loop)= 1;
Xv=X2d;
Xv(loop,1)= X2d(loop,1) - 1;
var = var + g(loop)*log(Z + (( 1 - 2xcos(X2d(loop,2)...

- X2d(:,2)).*exp(—abs(XQd(loop,1)—X2d(:,1))) +...
exp (-2*abs (X2d (loop,1)-X2d (:,1)))) ./ (((X2d(1oop,1)-Xv(:,1))A2). ..
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+((X2d (loop,2)-Xv(:,2)).A2))));
end

var = var*rect;

D.6

comment — The part of the kernel defined as L3(x,y | o, yo) (M) (z,y) — (Mv)(zo, yo))-
function var = log_4(f)

global X2d
global rect

dim = length(f);
g = Mult(f);
var = zeros(dim,1);

for loop=1:dim
comment — The vector Xv is used to artificially implement the limit (6.8).

Xv=X2d;
Xv(loop,1)= X2d(loop,1) - 1;

var = var + ...
(g(loop)-g(:)).*. ..
log(((X2d(loop,1)-Xv(:,1)).A2)+((X2d(loop,2) ...
-Xv(:,2)).A2));
end

var = var*rect;

D.7

comment — The part of the kernel approximated by a modified rectangular mid-point rule.
comment — In §6.3 this function is denoted as .Z,.
comment — The value of this function depends only on the refinement.

function var = log_5(f)
global X2d

global rect

global X_vals

dim = length(f);
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var = zeros(dim,1);
comment — Calculates the values X1=X and Y1=Y (see §6.3)...

X1=(X2d(2,1)-X2d(1,1))/2;
Y1=(X2d (1+length(X_vals),2)-X2d(1,2))/2;

comment — The cell containing the singularity is calculated analytically, analytic=Ax .

analytic = 4*(X1xY1xlog(X1A2 + YIA2) - 3*X1xY1l + (X1A2)*atan(Y1/X1) +...
(YIA2) *atan(X1/Y1));

for loop=1:dim
comment — The vector Xv is used to artificially remove the cell containing the singularity.
Xv=X2d;
Xv(loop,1)= X2d(loop,1) - 1;

var = var + log(((X2d(loop,1)-Xv(:,1)).A2)+((X2d(1loop,2)-Xv(:,2)).A2));
end

var
var

var*rect;
var + analytic;
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Appendix E

Functions that output a vector of inner products of a function with either trial space 1 or trial
space 2.

They are used to produce the ‘right hand side’ vectors that appear in the Galerkin approx-
imations.

E.1

comment — Used in problem 1.
function var = basis_ip1(f)

global rect
global basisl

dim2 = length(basisi(l,:));
var = zeros(dim2,1);
for loop=1:dim2
var (loop) = basisl(:,loop)’*f;
end
var = varxrect;

E.2

comment — Used in problem 2.
function var = basis_ip2(f)

global rect
global basis?2

dim2 = length(basis2(1,:));
var = zeros(dim2,1);

for loop=1:dim2
var(loop) = basis2(:,loop) ’*f;

120



end

var = var*rect;
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Appendix F

Functions that approximate a Lo(D')-inner product and Ly(D')-norm. As always, approxima-
tions are made using the rectangular midpoint rule.

F.1

function var = inner_product(f,g)
global rect

comment — Written knowing that all functions to be encountered are real-valued.

var = f’xg;
var = var*rect;

comment — The norm function is a trivial extension of the inner product function.
function var = 12 norm(f)

var = sqrt(inner product(f,f));
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Symbol
A

A()
D, D'

)

E(D"),0(D)

Enx

en) fn

G, G
Gg,g

Y 4

I

f(z)
L(p,q, f,9)
K (x,y)
k(x,t)
K
Ly(D")
M
null(Py)
i, Di

Py

R,T

S

Sy

T*

T, Y, Zo,s Yo
a,m, ko
Xi

¢

o(z,y)
(z,y,1)

Notation Index

Description

I - K

range of operator A over J
domains

subspaces of Ly(D")

N —dimensional subspace
pointwise, residual errors
Green’s function, modified Green’s function
specific integral operators
arbitrary Hilbert space
identity map

free term

specific functional
2
CQZB,y)

kernel
integral operator

space of Lebesgue square integrable functions over D’

operator of multiplication by k?(x,y) — k?
null space of Py

Galerkin, iterated Galerkin approximations
orthogonal projection

complex amplitudes

Sloan operator

approximate series

adjoint operator of T’

cartesian co-ordinates

parameters

orthonormal basis element

exact operator equation solution
velocity potential

linear wave profile

solution of adjoint equation
specral radius of S over 7
re-iterated Galerkin approximation
arbitrary element of J#

(52 3y)

inner product

norm
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14
14

62
16
15,25
6, 44
37, 44
13

14

13

31

13
13
36
37
18
17,19
16

22
49
19

56, 2
16
13

32
28
26
14

13
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