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Abstract

In this thesis, the numerical solution of the governing equations for contaminant
transport in porous media is considered and some of the implications of using an
implicit Galerkin discretisation approach are examined.

The discretisation of the contaminant mass balance equation generates a large
sparse non-symmetric linear system which must be solved to produce the approxi-
mate solution. This discretisation permits unphysical extrema in the approximate
solution. Techniques to control this, including mesh refinement and flux corrected
transport, are given and demonstrated to be effective.

A problem with the robustness of the recently developed non-symmetric iter-
ative solver, Bi-CGSTAB, is highlighted. This is shown to be caused by rounding
errors corrupting sensitive values. The accumulation of these rounding errors
during the iteration destroys the properties of the underlying recursion process.
These sensitive values are generated because the Bi-CGSTAB method is not ca-
pable of representing the eigenvalues of the matrix when these have a significant
imaginary part. Two methods for overcoming this problem are given and shown
to be effective. The first restarts the iteration, which has the effect of discard-
ing rounding errors in the process so that they cannot accumulate. The second
avoids the generation of the sensitive values by modifying the underlying recursion
process.

The governing equations for the fluid and the contaminant cannot be solved
separately due to the dependency of the fluid density on the contaminant con-
centration. A coupling iteration is used to allow the governing equations to be
solved individually. A partial coupling approach for saline intrusion, which relies
on the relative weakness of the dependency of the fluid density on the contam-
inant concentration, is shown to give results which show no appreciable loss of
accuracy but are obtained at a much lower computational expense than the fully

coupled solution.
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Chapter 1

Introduction

The main purpose of this thesis is to examine the use of non-symmetric iterative
solution methods on linear systems which arise from the non-symmetric discreti-
sation of the governing equations of contaminant transport in porous media.

In order that other issues related to the numerical modelling of the physical
problem can be addressed, the general structure of the thesis is such that the

overall approach for the solution of the governing equations is examined.

1.1 The Physical Problem and its Significance

The particular application area of interest here is groundwater flow. Due to
phenomena such as rainfall and the melting of snow and ice, some of the space
in the porous material beneath the surface of the ground contains water - this
is groundwater. This water is an important part of the hydrological cycle; it is
used naturally (e.g. transpiration - the uptake of water from soil by plants) and
artificially (e.g. the extraction of water through pumping wells for such uses as
irrigation).

There are many sources of pollution in groundwater, for example contamina-
tion by domestic and industrial wastes, oil spills, and agricultural activities such
as the use of fertilisers and pesticides. Groundwater quality is an issue of some
importance. Serious environmental problems arise when groundwater which is
polluted above a safe level emerges at ground surface, or discharges into rivers

and lakes; or when it is used for water supply for domestic, industrial or agricul-



tural purposes.

In its most general context, this thesis is concerned with the modelling of non-
passive, non-reactive, single-species contaminant transport in a porous medium.
In this type of flow, a contaminant is advected through a porous medium by a
fluid and the contaminant also undergoes diffusion; the contaminant does not un-
dergo any chemical or biological reactions but its presence does affect the physical
properties of the fluid, e.g. density, viscosity. A common example of this type
of flow is saline intrusion, this is the process of coastal saltwater moving inland
and mixing with less dense freshwater. The saline intrusion system is the main

physical system examined in this thesis.

1.2 The Need for, and Requirements of, the
Mathematical Model

In regions where coastal aquifers are utilised for water supply, saline intrusion
leads to a degradation of groundwater quality. In order to plan a strategy for
management of groundwater resources, an accurate method of forecasting the
response of a groundwater system to changes in usage patterns is essential. If
accurate and reliable local expert knowledge is not available, then the best alter-
native for producing quantitative predictions is a mathematical model.

A mathematical model is a set of equations. These are usually differential
equations in space and/or time. They relate the behaviour of the important, or
influential, variables in the system. The model gives quantitative results on the
behaviour of the system. The accuracy of these results depends on the effec-
tiveness with which the governing equations represent the physical system, and
also on how accurately these governing equations are solved. The effectiveness of
the representation is not considered in this thesis. Instead the accuracy, and the
related issue of the computational expense, are considered.

The modelling of saline intrusion is an important problem - witness the large
amount of research and the international conferences held on the subject e.g.
[17]. The accurate, fast and reliable modelling of saltwater intrusion systems is

the underlying goal of the work in this thesis.



1.3 Mathematical Models of Saline Intrusion

In saline intrusion, there is always a transition zone between the freshwater and
the saltwater. This is caused by hydrodynamic dispersion. In some circumstances,
the width of this zone is small relative to the thickness of the aquifer so that it
can be approximated as a sharp interface [6]. For the type of flow in this thesis,
the transition zone is relatively wide and the sharp interface approximation is not
valid [64]. In this case, a variable density model must be used.

Variable density transport models are well documented in the literature. They
essentially consist of four main components : a fluid mass balance equation which
ensures that no fluid is gained or lost except by flow through boundaries or
sources/sinks, a contaminant mass balance equation which performs the same
function for the contaminant, Darcy’s law which is a momentum balance equation
made specific to flow in porous media, and a constitutive equation which relates
the contaminant concentration to the fluid density. Each of the mass balance
equations has boundary conditions associated with it - these also form part of
the model.

The governing equations for saline intrusion, and their associated boundary

conditions, are described in Section 3.1.

1.4 Numerical Solution of the Governing

Equations

For most practical problems, the governing equations are too complex to be solved
analytically. This is due to many factors such as the heterogeneity of the domain,
the irregular shape of the boundaries, and the non-analytic form of various source
functions. In mathematical models where the governing equations cannot be
solved analytically, numerical methods can be used to generate approximations
to the solution.

Numerical methods for differential equations usually replace the true equa-
tion by a set of equations based on approximations to the solution at discrete

points. For this reason they are known as discretisation methods. Some discreti-



sation methods are described in Section 3.3, and discrete forms of the governing
equations for saline intrusion are given in Section 3.4.

The governing equations for the fluid and the contaminant are coupled to-
gether due to the dependence of the fluid density on the contaminant concen-
tration; hence they cannot be solved independently of each other. However, by
using a coupling iteration, it is possible to treat the equations individually. This
aspect of the whole solution procedure is introduced in Section 3.2 and examined
in more detail in Chapter 7.

The discretisation of the individual equations results in large sparse linear
systems which must be solved to generate the approximate solution. Due to the
coupling iteration these systems are linear even though the governing equations
are non-linear. The discretisation used for the equations governs the properties
of the resulting linear systems. The particular discretisation approach used for
the contaminant mass balance equation (a Galerkin finite element spatial approx-
imation with Crank-Nicolson time-stepping) leads to a linear system which has
a large, sparse, non-symmetric matrix. This discretisation results in a solution
that is unconditionally stable and possesses a good degree of accuracy. The non-
symmetry of the matrix is an important feature of the linear system. It is caused
by the implicit Galerkin discretisation of the advection term [40, 72, 88].

One of the main differences between the numerical solution approaches for
saline intrusion systems in the literature is the method used to discretise the
contaminant mass balance equation.

Due to the success of the preconditioned conjugate gradient method for the
iterative solution of linear systems with large sparse symmetric positive definite
matrices, and the lack of a similarly successful solver for linear systems with large
sparse non-symmetric matrices, discretisation methods which give rise to systems
with non-symmetric matrices tend to be avoided in the literature.

Symmetry of the matrix in the discretised contaminant mass balance equation
can be achieved by the use of operator splitting methods which allow the advection
component of the equation to be treated explicitly, while the other terms are
treated implicitly. This leads to either a decrease in the order of accuracy of

the solution [50], or a restriction on the size of the allowable discrete time-step



to ensure stability [10] (which makes these methods unfeasible for long term
transient calculations).

Symmetry can also be achieved by the use of Lagrangian methods which
effectively follow particles along characteristics to solve the advection component
(e.g. [30]). The Lagrangian approach, although effective, is not taken in this
thesis so that non-symmetric methods can be focussed on.

Due to recent advances in applied linear algebra, there now exist powerful
methods for the solution of large, sparse, non-symmetric linear systems, e.g. QMR
[28], GMRES [70], Bi-CGSTAB [84]. These methods still do not possess all
the advantages of the pre-conditioned conjugate gradient method for symmetric
positive definite systems, but they have been shown to be successful in many
application areas e.g. [44, 66], and the good properties of the non-symmetric
discretisation approach (i.e. simplicity, accuracy and unconditional stability)

may outweigh the shortcomings of the available non-symmetric linear solvers.

1.5 Purpose and Structure of the Thesis

A comparison of a symmetric and a non-symmetric approach for the numerical
solution of the contaminant mass balance equation is made in [62] where the
symmetric approach is found to be more effective. But the study in [62] only
considers the relative computing times for the two methods on different computer
architectures for a complicated case study, it does not consider the errors caused
by the discretisation or the practical robustness of the overall solution procedure.

The original purpose of this work was to fully compare the symmetric and
non-symmetric approaches to determine if the latter is as unfeasible as commonly
accepted. However, due to a problem with the robustness of the non-symmetric
linear solver Bi-CGSTAB which was uncovered and examined, this original pur-
pose was discarded. Hence, the main purpose of this thesis is to re-examine the
non-symmetric approach to the numerical solution of the contaminant mass bal-
ance equation in the light of the new non-symmetric solvers which are available.

Chapter 2 provides relevant background on iterative methods for large sparse

linear systems. This background covers methods for symmetric positive definite



and non-symmetric systemes.

In Chapter 3, the governing equations for contaminant transport in a porous
medium are given. Discretisation methods in both space and time are also intro-
duced and described in this chapter. Finally, a particular discretisation approach
is applied to the governing equations so that these can be solved approximately.

The performance of the discretisation methods used on the governing equa-
tions is examined by numerical experiments in Chapter 4, with particular atten-
tion being given to the control of unphysical oscillations which can arise in the
approximate solution due to the nature of the discretisation process.

In Chapter 5, the performance of the conjugate gradient method on the sym-
metric positive definite systems which arise is examined. These matrices are
generated during the numerical solution of the fluid mass balance equation and
Darcy’s law. Particular attention is given to the behaviour of the solver when an
extremely low convergence tolerance is requested, and also to mesh dependence
of convergence and preconditioning. The behaviour of the symmetric positive
definite solver used - the preconditioned conjugate gradient method - is well un-
derstood and documented in the literature. The purpose of Chapter 5 is to intro-
duce the type of numerical experiments that are conducted on the non-symmetric
solvers.

In Chapter 6, the performance of two non-symmetric solvers (Bi-CGSTAB
and GMRES) is compared. The behaviour of the Bi-CGSTAB solver with an
extremely low convergence tolerance is then examined and it is shown to be
unreliable in some cases. Techniques for improving the robustness of Bi-CGSTAB
are examined and tested.

The coupling iteration, which allows the (inter-linked) governing equations to
be solved independently of each other, is examined in Chapter 7. An approach
which operates at between approximately two-thirds and one-quarter of the com-
putational effort is tested to examine its effect on the accuracy of the overall
solution.

In the final chapter, the main conclusions drawn from this work are collated,
and some suggestions for further, or related, studies are made.

Throughout this thesis, the following notation convention is used for math-



ematical symbols. Scalars are denoted by lowercase italics and lowercase Greek
letters, vectors by lowercase bold italics. Matrices are denoted by uppercase ital-
ics - an exception to this being rank 2 tensors which are represented by underlined
bold italics. Finally, sets and vector spaces are denoted by uppercase calligraphic

letters.



Chapter 2

Solution of Large Sparse Linear

Systems

As stated in the introduction, the numerical solution of differential equations re-
quires a discrete representation of both the unknown function and the differential
equation. The discretisation of a differential equation generally gives rise to a
system of algebraic equations. Although discretisation techniques are outlined
and investigated in Chapters 3 and 4, it is the solution of linear systems that
forms the focus of the main part of this thesis.

In the current chapter, relevant techniques for the solution of systems of linear
equations are reviewed. The problem can be stated as follows. Given a matrix

A € IR™™" (assumed to be invertible) and a vector b € IR", solve
Az =b. (2.1)

for & € IR".

1
, so only

The matrices that arise in this thesis are real, large and sparse
matrices of this type are considered. Such matrices are generated by most stan-
dard discretisation methods for partial differential equations (an exception being
boundary element methods [7] which produce matrices that are fully populated
by non-zero coefficients). If the sparsity in a matrix is fully exploited, only the

non-zero entries are stored and methods using only these non-zero entries are

employed.

LA matrix is said to be sparse if only a relatively small number of its entries are non-zero.



A primary distinction made between methods for the solution of (2.1) is

whether the approach is direct or iterative.

e Direct methods require a fixed number of operations. If successful, they re-
turn the exact solution (& = A~'b) to within the limits allowed by machine
accuracy. Classical direct methods do not generally exploit the sparsity in a
matrix. (An implementation of a direct method which does exploit sparsity

is the frontal method which is described in the following section.)

e lterative methods generate a sequence of iterates (&1, @2, ...) which, if the
method is successful, converge to the exact solution. Numerically the con-

vergence is measured in a suitable norm.

Iterative methods are usually based on matrix-vector multiplications, which
allows them to exploit any sparsity which is present in the matrix, both in
terms of storage and operations per iteration - the goal being to minimise

the number of iterations needed to achieve a specified accuracy.

In the next section, a brief overview of direct methods is given. This is followed

in the remainder of the chapter by an overview of some current iterative methods.

2.1 Direct Methods

Most direct methods for the solution of linear systems are based on Gaussian
elimination. This method uses elementary row operations, for example the ad-
dition of a constant multiple of one row to another row, to change the original

system (2.1) to the row-equivalent form
Uz = L'b, (2.2)

where L € IR™™" is a unit lower triangular matrix (i.e. a lower triangular matrix
with “1”s on the diagonal) and U € IR™*" is an upper triangular matrix. The
solution of the upper triangular system (2.2) is relatively trivial by backward
substitution [31].

In many applications, systems with the same matrix A but different vectors b

need to be solved. An effective approach in this situation is to compute the LU



factorisation of A, that is generate triangular matrices L and U (as previously
defined) such that A = LU. Then the solution of (2.1) is reduced to one of solving
the system

Ly=25

for y by forward substitution, and then solving the system
Ux =y

for @ by backward substitution. In the symmetric case, the computation of the
L and U (= LT) factors, known as a Cholesky factorisation, requires square root
calculations. This is an expensive floating point operation compared with addi-
tions and multiplications so, in practice, the LDL" factorisation, which does not
require any square root calculations, is used. Algorithm 2.1 is the non-symmetric

version of this factorisation, it generates unit lower-triangular matrices, L and

M, and a diagonal matrix D such that A = LDM?T.

Algorithm 2.1 LDM? FACTORISATION
Given A € IR"*", the following algorithm computes the factorisation A = LDM?T.
A is overwritten by L' + M'T where L' and M’ are the strictly lower trian-

gular parts of L and M, and the diagonal matrix D is stored in the n-vector

[dy,dy, ..., d,]7 .

fork=1,...,n—1
forp=1,....k—1
rp = dyayp
w, = agpd,
end for
dy = agp — ZI;;} AkpTp
if (dx = 0) quit
fore=k+1,....n
aig 1= (aik - ZI;;} aiprp) [ di
api := (aki - ZI;;} wpapi) [ di
end for

end for

10



Note that, since the L and M factors are unit lower-triangular matrices, the
diagonal matrix D can be stored in the diagonal entries of one of these triangular
factors.

It Algorithm 2.1 runs successfully to completion, %n3 floating point operations
(flops) are required. However, the algorithm breaks down if the matrix has a
singular leading principal submatrix (which corresponds to di = 0).

Round-off error analysis of Gaussian elimination (see e.g. [31] Section 4.3)
shows that the method is very sensitive to rounding errors that occur in finite
precision arithmetic when the diagonal entries of A are small relative to the other
entries in the same column of the lower triangular part.

The method works well for systems in which the matrix is well-conditioned
and has no singular leading principle sub-matrices, but it is unstable for general
matrices. The instability and possible breakdowns are overcome by pivoting, this
is the interchange of rows during the elimination to avoid zero (or small) ag; in
the algorithm. From [31], Gaussian elimination with pivoting is stable if A is
non-singular.

The most successful Gaussian elimination based method for large problems
is the frontal method [22, 23] in which the matrix is assembled row-by-row and
the elimination is carried out during the assembly. For a strategy of this form
used in conjunction with a matrix of bandwidth d, in the absence of pivoting,
a (d+1) x (d+ 1) submatrix is required at each stage of the elimination (this
submatrix is larger if pivoting is required). Also, after the elimination phase is
completed for a row, that row is not required in the algorithm. Hence, if the
bandwidth of the matrix is relatively small, only a small part of the matrix needs
to be stored in main memory and the rest can be held in (slower) backing store.

Direct methods suffer from the problem of fill-in, i.e. zero entries in the
original system become non-zero during the elimination. Because of this fill-in,
more storage is required to store the factorised system than the original system.
If the bandwidth of the matrix is large, the level of fill-in is high, so the required
storage is greatly increased. Hence, the equations must be ordered (in a pre-
processing phase before the elimination) so that the level of fill-in is minimised.

This pre-processing phase must take into account future pivoting.

11



In some matrices, particularly those arising from the discretisation of 3-D
problems, the bandwidth is large and direct methods based on elimination are
impractical because of excessive demands on storage and time. For these types
of problems, iterative methods are the only feasible approach. A comparison of
direct and iterative methods for the types of systems of interest in this thesis
is given in [8]. That comparison confirms the general statements made in this
section on the storage and computational effort for direct methods.

Direct methods are not used in this thesis and all linear systems which arise

are solved by iterative methods.

2.2 Classical Iterative Methods

Classical iterative methods for solving (2.1) are based on a splitting of the matrix,
A, le.
A=M-N (2.3)

where M is invertible. Given such a splitting, a classical iterative method is
constructed by setting,
Mx;1 =Nz, +b,

i.e.

Lit1 = M_INQZZ' + M_lb. (24)

M~IN is known as the iteration matrix. In order for the iteration to be com-
putationally viable, M should be relatively trivial to invert, e.g. a diagonal or

triangular matrix.

Definition 2.1 The spectral radius of A € IR"*" is
p(A) = max |A]

where A; (¢ =1,...,n) are the eigenvalues of A.

It can be shown (see e.g. Theorem 10.1-1 in [31]) that

p(M™'N) < 1

12



is a necessary and sufficient condition for the iteration given by (2.4) to converge
for any choice of initial iterate, @q.
Bearing in mind the previous comment on the ease of invertibility of M, the

matrix A can be usefully decomposed as
A=D—-L-U, (2.5)

where D is a diagonal matrix consisting of the diagonal entries of A, —L is a
strictly lower triangular matrix consisting of the sub-diagonal entries of A, and
—U is a strictly upper triangular matrix consisting of the super-diagonal entries
of A. The relationship between the splitting (2.3) and the decomposition (2.5)
of A governs the method. Table 2.1 shows this relationship for some classical

iterative methods.

Iterative Method M N M~'N
Jacobi D L+U B
(Gauss-Seidel D—L U Ly
Successive Over-relaxation || L(D —wl) | L{(1 —w)D +wU} | L,

Table 2.1: Classical iteration methods

Definition 2.2 The asymptotic rate of convergence associated with a classical

iterative method with iteration matriz A is

Roo(A) = =In{p(A)}.

The asymptotic rate of convergence is a measure of the rapidity of convergence
of the iteration. From [87], if A is a 2-cyclic consistently ordered matrix with non-
zero diagonal entries (conditions which are generally satisfied by finite difference

discretisations of partial differential equations), then, if p(B) < 1,

e )\ = p? where \ is an eigenvalue of B and p is an eigenvalue of £y, so

Roo(Ly) = 2R (B).

13



e successive over-relaxation (SOR) converges only if 0 < w < 2. If the value
of the relaxation parameter w which gives the fastest rate of convergence is

wope then, since Gauss-Seidel is a special case of SOR,

Roo (Ewopt) Z Roo (El ) .

That is, SOR (with optimum relaxation parameter) converges at least as fast as
the Gauss-Seidel method, and both converge faster than the Jacobi method.
Due to the advent of Krylov subspace methods, classical iterative methods

are becoming obsolete as linear solvers.

2.3 Krylov Subspace Methods

As their name suggests, these methods search for the solution to (2.1) in a Krylov

subspace.

Definition 2.3 The :*" Krylov subspace of IR" of the matriz A € IR™*" and the

vector r € IR" is

KA, r) =span(r, Ar, A%r ... A7 p).

The following theorem indicates why it is desirable to search for the solution

in a space of this type.

Theorem 2.1 Cayley-Hamilton theorem : FEvery matriz satisfies its own
characteristic equation, i.e. if det(xl— A) = () (a polynomial of degree n) then
$(A) =0

Proof : See [15] p337. O

From Theorem 2.1,

A" 4 AV AT e A At e, I =0

14



where ¢; € R and ¢, = (—1)"det(A), which implies that, if A is nonsingular,

then
-1
ATV = —(epl Fep At QAT L AV AT
Cn
— 60] —|— 6114 —|— e —|— 6n_3An_3 —|— 6n_2An_2 —|— 6n_1An_1. (26)
Hence

A7t espan(l, A, A% ... A", (2.7)

Now, given an arbitrary vector v € IR",

x—v = A'b—w
= A_l(b — Av)
= Alp

where € IR" is the residual vector corresponding to @ = v in (2.1). Hence, from
(2.7),
x — v €span(r, Ar, A%r ... A" 'r) = K, (A7)

so, given an arbitrary vector v, the solution to (2.1) lies in the vector space
spanned by v and the Krylov space associated with the matrix A and the residual
vector, r = b — Awv.
From Definition 2.3, it is clear that &;(A,r) D K;_1(A, 7). If d is the smallest
integer such that
A'r € Kq(A,r)

then the dimension of K;(A,r) is

1 for 21 <d
d for 1> d.

dim{K:(A,r)} =

As noted in [67], in general d = n but, if A has multiple eigenvalues or r happens
to have a zero component of any eigenvector of A, then d < n. Thus the solution

vector @ lies in the space given by
x—vekKy(Ar)

and, by constructing the correct vector in this space, the solution is obtained in

d steps where each step adds a vector to the current Krylov subspace. Hence this
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approach would appear to be a direct method since the exact solution is found,
in theory, in a finite number of operations.

However, in the presence of rounding errors, this finite termination property
does not hold. Also, for very large matrices, the computation of K4(A,r) is
expensive. Fortunately, as demonstrated in [67], Krylov space methods are prac-
tical if considered as iterative methods, i.e. given an initial iterate, ¢, construct

iterates for the solution of (2.1) that satisfy,
x, —xo € K;(A,ro) ,i=1,2,...
where ro = b — Axq is the initial residual vector. This is equivalent to
@, = ®o + coro+ cLAro + e Ao+ . e AT ey Li=1,2, ... (2.8)

where the ¢; € IR are coefficients to be determined (not to be confused with the

coefficients in (2.6)).

Definition 2.4 The i'" residual polynomial, ¢;, is the (real) polynomial of degree

at most © such that
r; = ¢i(A)rg
with ¢;(0) = 1.

The existence of this polynomial is seen by considering the definition of the resid-

ual and the polynomial in (2.8). This gives

r, = b— AQEZ
= b— A{mo+ coro + 1 Arg + e Aro 4.+ ¢ Ao}
= (1= Aco)ro — il A?rg — e APrg — ... — ¢ Al

= ¢;(A)rg (with ¢; as in Definition 2.4).

In Krylov subspace methods, ¢; (and hence the unknown coefficients in (2.8))

is chosen at each iteration such that
r,~ 0
in some sense. Two ways of achieving this are :
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1. Minimize the residual in some norm over the appropriate space,

lrifl =~ min b —Az|| = min _o(A)roll, (2.9)

Z—Xo €KX (A,ro) $EP;:¢(0)=1
where P; denotes the set of all real polynomials of degree at most ¢. This
approach is known as a minimum residual method. An iterate that satisfies

(2.9) is always uniquely defined.
2. Satisfy a Petrov-Galerkin condition,
slr;=0 VY se&,, (2.10)

where §; C IR" is a subspace of dimension ¢. This approach is known as
a projection method. An iterate satisfying (2.10) is not always defined. In

the case s = r; (¢ # j) these are known as orthogonal residual methods.

Many minimum residual methods also satisfy a projection condition.

Storage demands for Krylov subspace methods are greater than for the clas-
sical splitting-based methods in Section 2.2, but this is repaid by greater speed
of convergence and applicability to systems in which the spectral radius of the
iteration matrix is greater than unity.

The generation of a Krylov subspace only involves matrix-vector products.
In general, satisfying a minimum residual or Petrov-Galerkin condition involves
vector-vector products, vector updates and scalar operations. The matrix-vector
product is usually the most expensive part of the algorithm.

The matrix-vector product can be successfully implemented on vector and
parallel machines: this adds to the popularity of Krylov subspace methods. The
parallel implementation of Krylov subspace methods is only discussed intermit-
tently during this thesis - see [69] and the references therein for more information

on this aspect of this class of methods.

2.3.1 Symmetric Positive Definite Matrices
In this section, the case where A is symmetric and positive definite is considered.

Definition 2.5 A matriz A is symmetric if, for all i and j, the (1,7)™ entry in

the matriz is equal to the (j,1)™ entry.
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Definition 2.6 A positive definite matriz, A € IR"*", salisfies
wlAw >0  for {w e R"|w # 0}.

Matrices of this type occur throughout this thesis, so the phrase “symmetric
and positive definite” is abbreviated to SPD. For this type of matrix, if the Krylov
subspace method is made to possess the minimum residual property,

Irilla-s =, min b= Az]Lior, (2.11)

(where ||w||p = VwT Mw is the norm on IR"™ associated with the SPD matrix,
M € IR™™™), then the result is the conjugate gradient method (abbreviated to CG
hereafter). This name arises because the method also possesses the orthogonal

residual property,
rir; =0 (i#]).
There are many versions of CG that are equivalent in exact arithmetic, but

show different behaviour in finite precision. The algorithm used in this work is

that given in [31].

Algorithm 2.2 CG
Given an initial iterate &g € IR", this algorithm generates iterates @; € IR", for

the solution of (2.1) where A is SPD.

rog:=b— Axg

for i = 1,2,... until satisfied (see following section)
Bii=(rlyria)/(rlyriss) (B1:=0)
pi =71+ Bipiy (P := 7o)

a; = (vl 7:20)/(pl Ap;)
T; =X+ ap;
T, =T, — OéiApi

end for

In practice, apart from A,  and b, this algorithm requires 3 vectors in IR"

for storage. The computational cost per iteration is 1 matrix-vector product, 2
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vector-vector products and 3 SAXPYs®.

Convergence Criteria

The term “until satisfied” appears in Algorithm 2.2 (and all subsequent iterative
algorithms). This means that the current iterate is perceived to be sufficiently
close to the solution of (2.1). The error in the current iterate, e; = & — x;, is
difficult to measure directly since the solution to (2.1) is not known. Instead,
stopping (or convergence) criteria based on the residual are used (in conjunction
with a user-supplied tolerance, 7 > 0).

The simplest stopping criterion is
[7ills < 7.

This is an absolute measure and hence does not reflect any properties of the

problem. A relative criterion is usually more effective, e.g.
[7ill2 < 7|2 (2.12)

Definition 2.7 The condition number of A € IR"*" associated with the 2-norm
of the matrix is

1< #a(A) = Al A7 ]l2 < oo

with the convention that k2(A) = oo for singular A. If A is SPD,

Amal’
Ko(A) =

)
)\min

where Aar and Ay, are the maximum and minimum eigenvalues of A respec-
tively.
Note that (e.g. from [2]) the relative error is bounded according to,

le:ll2 7]l

< k3(A) )
[ll> = 1]

So, for a system with a well-conditioned matrix (i.e. k2(A) = O(1)), the tolerance,

7,1n (2.12) gives a bound on the relative error in the current iterate. Indeed, if an

2A SAXPY operation is the summation of a vector and a constant multiple of another vector.
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upper bound on the condition number of the matrix is available, Ro(A) say, then

an upper bound (of 7) on the relative error is provided by the stopping criterion,

]
ille < ———1|b]ls.
Irill < 2 el

The effect of using different stopping criteria is not investigated in this thesis -

the stopping criterion (2.12) is used throughout. See e.g. [1, 2] for some other

stopping criteria and investigations into their behaviour.

Connection between CG and Lanczos Algorithm

CG is based on three-term recurrence relations, e.g. from Algorithm 2.2,

T = (1 — oA+ O,éi 52') R Biri_z

(o7 ] (o7 ]

and
D1 = (1 — oA+ 52’4—1)172' — Bip;_y.-

Because information is held implicitly in these recurrence relations, the vectors
which span the Krylov subspace do not need to be stored. This property makes
the algorithm economical in terms of both computing time and storage. The
three-term recurrence relations arise from the connection between the CG algo-
rithm and the Lanczos tridiagonalisation process for symmetric matrices. A brief
description of this connection follows; for full details see [26] and [31] (Chapters
7,9 and 10).
From [31] (Theorem 9.1-1), the Lanczos procedure is such that, if an initial

vector,

To ~

U1 = = (50 = H7°0H2)

Bo

and symmetric matrix, A, are supplied, then after ¢ steps of the process, an

orthogonal basis for K;( A, vq) is generated and the following relationships hold,
AV = ViTi + Biprvia(e))”

where eé is the ' column of the (i x 7) identity matrix (not to be confused with
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the error associated with the " iterate, e;),

o B

B dy B

L 1—1 Qg
Vi = [vy,vg,...,v;] € R"™™" has orthonormal columns,
and
T
Vivg =0

Range(V;) = Ki(A, ro).

From [59], an approximation to the solution of (2.1) can be constructed from
the Lanczos coefficients in T; and the orthonormal basis which is spanned by the
columns of V; in the form

z, =xo+ Viy,,

where @g 1s the vector associated with the residual vector ro and y, € IR’ arises

from solving
Tiy; = Brel. (2.13)

The matrix, T; = VT AV; is SPD if A is SPD. In this case, the Cholesky
factorisation

T; = L;D; LT (2.14)

exists (L; € IR is a unit lower triangular matrix and D; € IR is a diagonal
matrix). The factored system (2.14) is used in the solution of (2.13).

If the Cholesky factorisation is performed in such a way that Viy, can be
accumulated as ¢ increases (see e.g. [59]), and the Lanczos process is performed
with overwriting so that the Lanczos vectors, vy, vs,...,v;_1, do not need to be
stored (e.g. as in [31] Algorithm 9.1-1), then this approach is equivalent to CG
as given in Algorithm 2.2.
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Theoretical Convergence Results for CG

By recasting the minimum residual property (2.11) as a minimisation of the resid-
ual polynomial (Definition 2.4) over the set of all possible polynomials, and ap-
proximating this minimum by a Chebychev polynomial of the first kind on the
interval [Anin, Amaz], 1t can be shown (see [4, 31]) that, in exact arithmetic, a

bound on the error in the :*® CG iterate is given by

ledla < 2leol (%) . (215)

This bound is quite loose and faster convergence is obtained in practice. It is
possible to make the bound tighter by including more information about the
eigenspectrum of A in the approximation to the minimum polynomial (see e.g.
3))

The finite precision behaviour of CG has recently been analysed (see e.g.
[32, 34, 57, 77]) with the conclusion that the effect of finite precision arithmetic
is to “smear” the eigenvalues around their true position so that finite precision

CG solves exactly an equivalent larger system
Ak =b AcR"™ & becR" (n >n)

where the eigenvalues of the SPD matrix A are clustered around those of A.
From (2.15), the convergence rate of CG is very fast for matrices with con-
dition number near unity, but slow for matrices with large condition number.
Matrices with large condition number as said to be poorly conditioned. When
CG i1s applied to a system with a poorly conditioned matrix, many iterations are
needed to reduce the error in the solution to an acceptable level - this makes the
method expensive in terms of the required number of operations. This drawback
nearly led to the demise of the method until, in [67], it was demonstrated that
a technique called preconditioning can be used to transform the system into one
which has a matrix with a smaller condition number. This technique is described

in the following section.
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Preconditioning

The system to be solved (2.1) can be transformed into another system (with the
same solution) that has a matrix which is better conditioned than the original
matrix by pre- or post-multiplying the system by a preconditioning matrix 7.

Pre-multiplying the system in this way is termed “preconditioning from the left”,
7 Axe = 77,

while post-multiplying by the preconditioner is termed “preconditioning from the
right”,
AZ7'y=b |, =7y

Only preconditioning from the left is used in this thesis. The ideal preconditioning
matrix gives Z7'A to be the identity matrix (since x3(I) = 1), in which case,
77! = A~!. However, the computation of the action of A™! is the same as a
computing a solution of the original problem (2.1).

In practice, Z7! is taken to be a matrix which is close, in some sense, to the
inverse of A, and which is relatively trivial to compute. It is rarely computed

explicitly. Instead preconditioner systems of the form
Ju=v

are solved at each iteration to produce w = Z7'v. Algorithm 2.3 is the precon-

ditioned form of Algorithm 2.2.

Algorithm 2.3 PCG

Given an initial iterate, &y € IR”, and an SPD preconditioning matrix, Z € IR"*",
this algorithm generates iterates, #; € IR", for the solution of (2.1) where A is
SPD by preconditioned CG.

rog:=b— Axg

for e = 1,2,... until satisfied
ziq =7y
Bei= (zlimin)/(zlyrin) (B :=0)
P =z + Bipiy (Py :=70)
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a:=(zLri)/(pl Ap)
;= T+ ap;
T =17 — aAp;

end for

It this algorithm is compared with Algorithm 2.2, it can be seen to require
one extra n-vector of storage and the only extra work involved is the solution of
the preconditioner system at each iteration.

There are many different forms of preconditioners in the literature. A recent
overview of the state-of-the-art in preconditioning is given in [3]. It is possible
to use information on the problem to build preconditioners dedicated to systems
for that problem, e.g. the use of Green’s functions in [14]. Most general precon-
ditioners are based on incomplete forms of matrix factorisations (Section 2.1),
matrix splittings (Section 2.2), or truncated forms of polynomial expansions for
the matrix inverse [43].

In this thesis the general, rather than problem-dependent, preconditioning
approach is taken. Only splittings and incomplete factorisations are used as
preconditioners - these methods are described in the rest of this section. For
generality, the matrices are not assumed to be SPD during this description of

preconditioning.

Splitting-based Preconditioners

7 is the matrix from a splitting in Section 2.2. For example, from Table 2.1
Z =D
is the diagonal (or Jacobi) preconditioner, while the lower triangular matrix

7=Lp-un)

w
is the SOR preconditioner. The SOR preconditioner is not symmetric. If a sym-
metric preconditioner based on SOR is required, the matrix which is inverted
in symmetric successive over-relaxation (SSOR) [31] can be used. Provided the

original matrix has non-zero entries on the diagonal, the existence of the inverse
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of these preconditioning matrices is guaranteed. If A is SPD, then the Jacobi and

SSOR preconditioning matrices are SPD.

Incomplete factorisation-based Preconditioners

Rather than computing the full LDM7 factorisation from Section 2.1 (which has
the disadvantages given in that section), it is possible to compute unit lower

triangular matrices L, M € IR"*" | and a diagonal matrix D € IR™*" such that
LDM" = A—E.

where £ € IR"*" is an error matrix. The factors L, D and M7 give the incom-
plete LDMT factorisation (ILDMT). One of the simplest forms of the ILDM?T
factorisation is one where L and M7 retain the sparsity pattern of the lower-
and upper-triangular parts of the original matrix, i.e. during the factorisation,
an entry in the matrix is only modified if it is non-zero.

The existence of the incomplete factorisation is shown for the class of M-

matrices in [53].

Definition 2.8 A matriz A = (a;;) is an M-matrix if a;; < 0 fori # 3, Ais

nonsingular, and A=* > 0.

Establishing this result involves showing that no breakdown in the algorithm
occurs due to the generation of a zero diagonal entry. The essence of the existence
proof is that the application of an incomplete factorisation step to an M-matrix
results in another matrix in the same class. The class of M-matrices is not
particularly useful in the field of finite elements. Fortunately, the existence of the

incomplete LDM? is shown for the wider class of H-matrices in [51].

Definition 2.9 A matrizx A = (a;;) is an H-matrix if the comparison matriz

B = (b”) with b“ = Uy, bij = —|Cl2']‘| NZ 7£ j), ts an M-matrix.

From [87] (Theorem 3.11 Corollary 2), all (irreducible) SPD matrices are H-
matrices, so incomplete factorisations exist for this class of matrix.

However, in the SPD case, the preconditioner must be SPD also (to ensure that
the preconditioned matrix, Z ' A, is similar to an SPD matrix). This requires that

the entries in the diagonal matrix D are positive. In [48, 54], this requirement is
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achieved by neglecting operations which cause the diagonal entry to become non-
positive. This “fix” can be applied to the non-symmetric algorithm to ensure that
no zero entries are generated on the diagonal (which would lead to a breakdown).

One possible incomplete form of the LDM7 factorisation is given by Algo-
rithm 2.4.

Algorithm 2.4 [LDM?" FACTORISATION

Given A € IR™ ", this algorithm computes the incomplete factorisation LDMT =
A — F such that A and L+ M7 have the same sparsity pattern. A is overwritten
by L'+ M'T where L' and M’ are the strictly lower triangular parts of L and M,

and the diagonal matrix D is stored in the vector [dy,ds, ..., d,]T .

fork=1,...,n—1
forp=1,....k—1
rp 1= dplpk
w, = agpd,
end for
d = apy
forp=1,...,k—1
if (de > appry) di := dy — agpry
end for
fore=k+1,....n
if (aix #0) aip == (aik - az’prp) /d
if (ari #0) ap; == (aki - wpapi) /d
end for

end for

In practice, A is held in sparse storage so the “for” and summation loops in
Algorithm 2.4 take on a very specialised structure to exploit the sparsity.

In some cases, the ILDM? factorisation as described is not powerful enough
to yield an adequate rate of convergence. It can be made more powertul by

allowing fill-in of some non-zero entries (e.g. those in the matrix positions which
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neighbour the non-zero entries in the original matrix). This modification is not

used in this thesis as it is not deemed necessary for the systems which arise.

2.3.2 Non-symmetric Matrices

The CG solver for systems with a SPD matrix has the desirable properties that
e it uses a low amount of storage (by virtue of the recurrence relations),
e it possesses a minimisation property (so convergence bounds exist),

e it does not require any external parameters (although the preconditioning

matrix has to be selected), and

e the most computationally expensive operations required (i.e. matrix-vector
multiplications and the solution of preconditioner systems) are relatively

easy to implement on parallel architectures.

Ideally, a solver for systems with a non-symmetric matrix should possess all these
properties. Unfortunately this is not possible. This is shown in [24] where the

class of residual methods is considered. These methods are based on the iteration

eipn =2+ ) Ty (r;=b— Awj).

=0
By looking at the existence of methods of this form that use at most s-term re-
cursion relations and possess either a minimum residual or orthogonal residual

property, the following result is obtained.

Theorem 2.2 (Faber and Manteuffel [24]) :  Fucept for a few anomalies,
ideal CG-like methods, defined as methods that
1. either possess a minimum residual or orthogonal residual property, and

2. can be implemented based on short vector recursions,

exist only for matrices of the form

A=’ (T +ol), where T=T7" 6cIR, ocC.
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Proof : See [24, 26]. O

Property 1 of the Faber and Manteuffel theorem means that the algorithm
is robust and convergence bounds can be obtained, while property 2 means that
work and storage requirements per iteration are low and roughly constant.

General non-symmetric matrices do not fall into the class of matrices identified
in Theorem 2.2, so CG-like methods for non-symmetric matrices possess either
property 1 or property 2, but not both. This provides the basic distinction

between current popular non-symmetric iterative methods.

Methods Possessing a Minimal Residual Property

The most successful method of this type for non-symmetric matrices is General-
ized Minimal Residual (GMRES) [70]. This method involves two stages, the first
stage generates an ly-orthonormal basis, Vi = [v1,vs,...,v.], of Ki(A, 7o) by
the Arnoldi process [70] with initial vector vy = ro/||7o|[2. The Arnoldi method

generates the orthonormal basis using Gram-Schmidt orthogonalisation (see e.g.

[31]).

If the matrices,

Vi = [vi,vq,...,v;] € IR™**

Hy = [hijlij=1...k € [RF*k (upper Hessenberg),

are defined (where the h;; are scalar values generated by the Arnoldi process)

then, from [70], these matrices satisfy the relationship

Hy, = VkTAVk
AVy = Vi Hy,
where
H, = Hi c Rk,
o’ Py g
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In the second stage of GMRES, an approximation to the solution is generated
from the orthonormal basis by imposing a minimisation condition. In the SPD

case (CG), the minimisation is carried out in the A-norm,
|lw]|a = VwT Aw.

For general non-symmetric A, this does not define a norm so the minimum residual
condition is imposed in the 2-norm, i.e.

Il = min b Azl
Z—X()E}Ck(A,I'())

= o min b — Al@o + 2)]

= min HT‘O—AZHQ.
ZE}Ck(A,I'())

From [69], this is equivalent to
vy L span(Arg, A*rg, ..., Akro) = AKi(A, ro).

Defining 3 = ||7o]|2, then after k steps of the Arnoldi process,

min ||[ro — Az = min ||fv, — AV,
zeK,(A,rg) H 0 H2 vERF Hﬂ 1 k’sz
= min |[Vip (8™ — Hyy)|l2
yER?
= min ||per*’ — Hyyl;
yER?

since the columns of V11 are orthonormal in the 2-norm.

Algorithm 2.5 GMRES
Given an initial iterate, &y € IR", this algorithm generates iterates, @, € IR", for

the solution of (2.1) by the generalized minimal residual method.

rg:=b— Axg
vy = 7o/|[7oll2
Generate orthonormal basts using Gram-Schmidt orthogonalisation:
for j = 1,2,..., until satisfied (at j = k)
fore=1,...,3
hi;:=v!Av;

end for

29



N , J .
V1= Avy — 30 hijvs

hivi = 1[04l
Vi1 = Ui/ hj
end for
Form the approximate solution:

@), ;= xo + Viy, where y, minimises ||feft — Hy||, over y € IR¥

There are two questions that need to be addressed on the operation of Algo-

rithm 2.5. These are

e how is the convergence monitored if the solution is only constructed after

the process is stopped 7

e how is the minimisation problem solved in the formation of the approximate

solution 7

The latter question is addressed first.

Solution of the Minimisation Problem

The method suggested in [70] involves the () R-factorisation of the upper Hessen-
berg matrix, Hj,. This can be computed efficiently by Givens plane rotations or
fast Householder transformations (see [31] for more detail on these methods) -
the latter method is used in the implementation in this work. These methods
allow the factorisation of Hj, to be updated progressively as each column appears
(i.e. at every step of the Arnoldi process).

The progressive () R-factorisation generates,
Hy = Qr Ry

where @y € R* X+ Yas orthonormal columns (ie. QTQ, = I) and Ry, €
IRFHD** ig an upper triangular matrix. With this factorisation, the minimisation

problem becomes

min ||fey* — Myylls = min [|Q (Bey™ — Hyy)lls
eR YER

= min [lg; — Reyll2
yeER
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where g, = QY8 = [g1, 92, . ... gr1]”. Due to the structure of Hy, the last

row of Ry is zero so the solution of the minimisation problem is
_ p-1-
Y, =Ry gy,

where R}, is the leading principal (kx k) submatrix of By, and g,, = [g1, 92, - - -, gk

Monitoring of Convergence

As already stated, a stopping criterion such as (2.12) is used with iterative meth-
ods to determine whether the current iterate is satisfactory. GMRES appears to
have the drawback that & must be selected, the orthonormal basis which is the
set of columns of Vi must be generated, and the minimisation problem on this
basis must be solved in order to generate the iterate so that the residual can be
computed (for use in the convergence test). This suggests that unnecessary com-
putations are performed if k is not chosen correctly. However, as a progressive
() R-factorisation is used, it is possible to monitor the size of the residual (at no

extra cost) during the Arnoldi process since the 2-norm of the residual is given

by

[rellz = min [lg; — Ryl
yeR
= llgr — Bryill2

lgrreidills

= |gk+1|-

The classical Gram-Schmidt method is used to generate the orthonormal basis
in Algorithm 2.5. In practice, the modified Gram-Schmidt method [31] is preferred
due to better numerical stability (each old vector is subtracted from the new
vector as soon as its component is computed, rather than being accumulated into
a sum and then subtracted - see Algorithm 2.6).

With either implementation, a consequence of the use of Gram-Schmidt or-
thogonalisation to generate a basis of Kr(A, 7o) is that all the vectors in the basis

must be stored in order to generate the next one, and also the work requirement
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for generating the next vector in the basis grows as the size of the basis increases.
The size of the least squares problem in the minimisation also grows with itera-
tion count. Apart from a matrix-vector product and a preconditioner solve, in the
! iteration, this algorithm requires approximately (7 + 1) vector-vector products
and (¢ + 1) SAXPYs. Apart from A, & and b, the storage requirement is (¢ + 3)
n-vectors.

Both the operations count and the required storage become prohibitive if a
large number of iterations is required. As stated in [70], it is possible to avoid
these problems by using a restarted version of the method (see Algorithm 2.6).

Given a fixed integer m and an initial iterate, the restarted GMRES method
computes a solution with minimal 2-norm over K,,(A,ro). If this is not suffi-
ciently accurate, then the process is restarted using the previous solution @, as

the initial iterate.

Algorithm 2.6 GMRES(m)
Given an initial iterate, g € IR", this algorithm generates iterates, ; € IR", for
the solution of (2.1) by the restarted generalized minimal residual method with

restart period m.

rg:=b— Axg
vy = 7o/|[7oll2
label RESTART
Generate orthonormal basis using modified Gram-Schmaudt:
fory=1,2,....m
V41 = Av;
fore=1,...,7—1
hi ;= 'fi;r_'_lvi
Vi1 = Vg — hyjo;

end for

hiva = |42
Vi1 =1/ hjs
end for

Form the approximate solution:
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®,, = xy + Viy,, where y, minimises ||fef™ — H,,y||, over y € IR™

r, =b— Az,
if not satisfied
Ty =T,
vy =T/ |7l
goto RESTART
end if

Algorithm 2.6 has the same work and storage requirements per iteration as
Algorithm 2.5 but there is a controllable upper limit on these quantities over the
whole process.

In [70], a bound on the value of m which guarantees convergence of the
restarted method is given. This bound is impractical to use because it involves
spectral data of the coefficient matrix. Also, it is generally not sharp, so it is
likely that convergence takes place for a much lower restart parameter. In prac-
tice, the choice of m is usually based on experience and on such factors as the

size of available fast memory.

Methods Based on Short Term Recurrences

Since, from Theorem 2.2, methods based on short term recurrences cannot possess
a minimum residual property or an orthogonal residual property, they are con-
structed so that the residuals in the Krylov subspace satistfy the Petrov-Galerkin
condition,

r; 1 {7207 (AT),'AQ07 (AT)Q,'AQ(J? cee (AT)i_l,’AQO}v

where 7¢ is an initial pseudo-residual vector.

As shown in Section 2.3.1, the conjugate gradient method (for A SPD) is
related closely to the symmetric Lanczos tridiagonalisation process. A possible
approach, when A is non-symmetric, is to base the solver on the non-symmetric
Lanczos tridiagonalisation process - this leads to the bi-conjugate gradient method
(Bi-CQG) [25, 49]. A brief description of the relevant properties of the non-
symmetric Lanczos process is included for use later in the thesis.

Given initial vectors, vi,w; # 0, after the :'! step of the process, the vectors

33



{v;} and {w;} are generated and the following relationships hold,

AV = Vil vipe]’ = Vg Higy

- (2.16)
ATW; = WHT +wiiei” = Wi H
where
& B
oGy P
ice Gi1 Pioa
L ’N}/z—l 652 1
‘/Z - [’171,’02, 7vi]€IRnXi
VVZ = [w17w27' 7wi]€IRnXi
and

Viwiy, = 0

VVZ»T'vH_l = 0
Range(V;) = Ki(A,v1)
Range(W;) = Ki(AT w,).

As noted in [92] (p389), the non-symmetric Lanczos process encounters a
fatal breakdown if wlv; = 0 with neither v; = 0 or w; = 0. Except in the very
special case of an incurable breakdown [80], this problem can be overcome by
using block pivots in the algorithm whenever the use of scalar pivots would be
dangerous, this is the same as performing the bi-orthogonalisation on blocks of

vectors. This approach is known as the look-ahead Lanczos method [60]. It can

T

also be used to avoid near-fatal breakdown, i.e. w; v; ~ 0 without either v; ~ 0
or w; & 0 - see [27].

In Bi-CG, the non-symmetric Lanczos process is used to construct approxi-
mations so that the residual vector, r;, is orthogonal to a set of pseudo-residual
vectors {#;}(j=o,..i—1) and, vice versa, ¥; L {r;}(j=0,.,i—1). Since the underlying

non-symmetric process is based on two three-term recurrence relations (2.16),
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then the Bi-CQG iteration also uses two three-term recurrence relations for the
rows r; and #;. As with CG, the Bi-CG residual and pseudo-residual vectors can

be expressed in the residual polynomial form as,
ro=@i(A)pe , P= %’(AT);“O?

where ¢;(+) is a polynomial of degree < .

In the case of convergence, both these vectors tend towards zero but only
the convergence of r; is exploited, #; only being required for the calculation of
iteration parameters. The iteration parameters in Bi-CG are generated by inner

product relations such as the bi-orthogonality condition

(ri,7) = (@il A)ro, 0 (AT)Po) =0 (i #j), (2.17)

where (a,b) = a’b is the standard inner product. This inner product relation

can be written as

(ri,75) = (pj(A)pi(A)ro, Po) =0 (1 # J). (2.18)

Bi-CG has been superseded by a faster converging variant - the conjugate
gradient-squared method (CG-S) of Sonneveld [76]. In CG-S, all the convergence
effort is directed to r; by constructing the iteration parameters using the bi-
orthogonality condition in the form (2.18). In this way, the #; do not need to be
formed and there is no requirement for A7 which would require lots of memory

Jumping in e.g. compressed row storage [5].

Algorithm 2.7 PRECONDITIONED CG-S
Given an initial iterate, &y € IR", and a preconditioning matrix, Z € IR"*", this
algorithm generates iterates, &; € IR", for the solution of (2.1) by the precondi-

tioned conjugate gradient squared method.

rog:=b— Axg

o is an arbitrary vector such that (rl#q) # 0
po:=1p:=¢q:=0

for e = 1,2,... until satisfied

pi = (Foriy)
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B = Pz’/l)z’—1

u=r7r,_1+/q
p:=wu+f3(q+fp)
y:=2""p

v:= Ay

a = pi/(#)
qg:=u—qu
z:=7Z (u+gq)
x;, = x,1+az
roi=r,_ — oAz

end for

In this thesis, #q is taken as rq. Apart from A, @ and b, the preconditioned
CG-S algorithm requires 9 n-vectors storage. At each iteration, it requires 2
matrix-vector multiplications, 2 preconditioner solves, 2 vector-vector products
and 7 SAXPYs.

The CG-S residual vectors are given by,
ri = @?(A)T‘O,

s0, if ©;(A) is viewed as a Bi-CG contraction operator (in the case of convergence),
then the CG-S contraction operator, ¢7(A), is twice as effective.

However, situations arise in the iteration process where ¢;(A) is not a con-
traction operator and spikes occur in the convergence history. In practice CG-5
is found to have a rather erratic convergence behaviour, particularly when the
starting iterate is close to the solution (as is the case in many transient and non-
linear problems). Although this tends not to slow the overall convergence rate of
the method, it can allow rounding errors to cause a breakdown in the method in
finite precision.

Bi-CGSTAB [84] is a variant of CG-S which has a more smoothly varying
convergence history. This method comes from a generalisation of the Bi-CG and
CG-S methods; the orthogonality conditions (2.17) and (2.18) are imposed in

those methods, but other iteration methods can be generated by choosing
: 5 ATV
ri L {L’QJ(A )ro}(]‘:o,...,i—l)7
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where ¢;(-) is another polynomial of degree < j, (in Bi-CG, ¢;(-) = ¢;(+) ).

The choice of @;(-) means that there is a degree of freedom with which to ob-
tain a more smoothly varying iteration history. The only constraint on the choice
of this polynomial is that it should allow the use of short recursion relations in
the resulting algorithm to keep the computational work and storage requirements

small at each iteration.

In Bi-CGSTAB, ¢;(-) is of the form
Qi(A) = (1 —w A)(1 —waA) ... (1 —w;A), (2.19)

where w; (j = 1,...,7) are constants determined by a local steepest descent step.

As with CG-S, inner product conditions such as

(@i(A)pi(A)ro, 7o) =0 (17 )

are used to avoid the need to store the pseudo-residual vectors and compute with

AT,

Algorithm 2.8 PRECONDITIONED BI-CGSTAB-P
Given an initial iterate, &y € IR", and a preconditioning matrix, 7 € IR"*", this

algorithm generates iterates, &; € IR", for the solution of (2.1) by the precondi-
tioned Bi-CGSTAB method.

ro:= b — Axg;
7o 1s an arbitrary vector such that ﬁOTro # 0
poi=a:=w:=1;p = (Fire);v:=p:=0
for e = 1,2,... until satisfied

B = (pi/ pim1)(/w)

p:=ri1+B(p—wv)

y:=7"'p

v := Ay

a:=pi/(rov)

s:=7r,_1 —av

z:=7"1s

t:= Az
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w:= (t's)/(tTt)
pist i= —w(igt)
;=% +oy +wz
r;, ;=8 —wt
end for
Algorithm 2.8 is similar to the one given by van der Vorst [84], and incorpo-
rates some of the modifications suggested in the original paper. In this thesis, ¢

is taken as 7.

Because of the form of the computation of w; used, i.e.

o t’'s
P = tTt7
this is the Bi-CGSTAB-P variant. The full Bi-CGSTAB algorithm has
o (Z71)T 7 1s
(2T ZE

Obviously the P-variant is computationally less expensive than the full algorithm,
and practical experience has shown this variant gives a smoother convergence
behaviour; for these reasons it is the preferred algorithm in this work.

Apart from A, ® and b, it requires 8 n-vectors of storage. FEach iteration
requires 2 matrix-vector multiplications, 2 preconditioner solves, 4 vector-vector

products and 6 SAXPYs.

An apparent exception to Theorem 2.2 is the quasi-minimal residual method
(QMR) [28] which is based on three-term recurrence relations and also performs a
form of minimisation on the norm of the residual. Using the notation from the un-
derlying non-symmetric Lanczos process previously described, an approximation
to the solution of (2.1) can be obtained at the ' iteration as

x, =z + Viy,
for some y; € IR*. Hence
b—Ax;, = b— Axy— AVjy,
ri = ro— AViy,

= Vin (5163 - Hz’+1y¢)
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When this stage is reached in the GMRES method, the 2-norm of the residual
is minimised and V1, being a unitary matrix generated by the Arnoldi process,
drops out of the 2-norm. In the Lanczos procedure, V;11, is not a unitary matrix
so it cannot be taken out of the 2-norm. Instead, to minimize in the 2-norm
here would require V;1; to be stored and used explicitly, which is costly both
in terms of storage and number of floating point operations. To avoid this, the
QMR approach is to minimise the 2-norm of the “quasi-residual” Vl_l__;llrZ at the

h iteration i.e.,

Vil (= 1w, +mH)—mmHﬂlel Hirylla

which is equivalent to minimising the residual in a norm that changes with iter-
ation number. Hence this is not a true minimisation and, because of this, QMR

does not contradict Theorem 2.2.

2.4 Closing comments

This chapter is by no means exhaustive. It only covers the methods used later
in the thesis, and the relevant theory for these methods. Among the methods
for the solution of linear systems that have not been described are those using
Chebyshev acceleration [37] and the normal equations [39].

The preconditioned CG method is used to solve all the SPD systems in this
thesis. The particular type of preconditioning used is determined by numerical
experiment in Chapter 5.

The main non-symmetric solver used is Bi-CGSTAB. Chapter 6 is devoted to
investigating its performance and selecting a preconditioner. Also in Chapter 6,
some techniques for enhancing the performance of iterative solvers are described.

The next chapter describes the origin of the linear systems which arise in this

thesis.
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Chapter 3

Governing Equations and their

Numerical Solution

The purpose of the first section of this chapter is to introduce the governing
equations for non-passive transport of a single-species, non-reactive contaminant
by a fluid in a saturated porous medium. The meaning of the hydrological terms

in the preceding sentence is as follows:

e non-passive transport - the properties of the fluid (e.g. density, viscosity)

are affected by the presence of any contaminants.
o single-species - there is only one contaminant in the system.

e non-reactive - the contaminant does not undergo any chemical reactions
with the fluid or the solid “matrix” of the porous medium. This is also taken

to mean that the contaminant does not undergo any radioactive changes.

e saturated - the pore space (i.e. the space not occupied by the solid “matrix”
of the porous medium) is completely filled by the fluid. (In an unsaturated

porous medium, the pore space is occupied by fluid and air.)

In order to model this system mathematically, a continuum approach (see e.g.
[52]) is adopted. In the continuum approach, the fluid is treated as a contin-
uous distribution of matter with no empty space. This is normally justifiable
because the number of molecules involved is vast and the distance between them

is very small. The continuum approach fails when either of these conditions is
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not satisfied, e.g. in a gas at extremely low pressure. Properties of the fluid
such as pressure and viscosity, although molecular in origin, are ascribed to the
continuum.

The governing equations which constitute part of the mathematical model are
derived by applying basic physical laws such as conservation of mass, momentum
and energy, as well as constitutive relations which define the behaviour of the
particular fluid and contaminant involved.

Due to the continuous interaction of the entities in the system, the governing
equations are coupled together, i.e. they cannot be solved independently of each
other. A technique that allows the individual equations in the system to be solved
separately is described in Section 3.2.

In general the governing equations are partial differential equations which
cannot be solved analytically, so they must be solved approximately by numerical
means. This involves replacing the equations by discrete analogues and solving
these instead. In Section 3.3, methods for discretising the governing equations are
described, together with some properties of these methods. Finally, in Section 3.4,

the discretisation methods are applied to the governing equations.

3.1 The Governing Equations

Since the contaminant is a single-species and non-reactive then, assuming that
the porous medium is fixed, there are only two entities in the system - fluid and
contaminant.

The transport is non-passive. In this work it is assumed that only the density
of the fluid is affected by the presence of the contaminant. An example of this
kind of interaction is salt in water - pure water has a density of 1000kg/m?, while
fully saturated salt-water has a density of 1024.99kg/m?>. This is a useful example
since it involves precisely the entities (water and salt) in the physical system for
saline intrusion, and a saline intrusion problem is used as a major test case in
this thesis. From this point on, the term “fluid” is used to denote water with
dissolved contaminant.

An additional assumption in the model is that the effect of any temperature
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variations is negligible.
From [6], a mathematical model for the type of transport previously described

can be formulated in terms of
e Darcy’s law (a form of the momentum balance equation) for the fluid,
e a mass balance equation for the fluid,
e a mass balance equation for the contaminant,

e a constitutive equation relating the fluid density to the contaminant con-

centration,

together with a definition of the geometry of the domain (and its boundaries)
and the relevant initial and boundary conditions.
It is convenient to write the governing equations in terms of either the pres-

sure or the piezometric head defined as

hzﬁ—l—z,
Py

where h is the piezometric head (L)
p is the pressure (ML™'T~?)
p = p(c) is fluid density (ML)
¢ is the dimensionless contaminant concentration?
g is acceleration due to gravity (LT™?)

z is the elevation above a datum (positive upwards) (L) .

The variables p and h are convenient since they are continuous across the interface
between the contaminated and contaminant-free regions and so apply as single

state variables over the whole domain.

3.1.1 Darcy’s Law

If it is assumed that the porous medium is non-deformable, and that the internal

friction inside the fluid and inertial effects are negligible, then the application of

IThe dimensionless contaminant concentration is the actual contaminant concentration di-

vided by the maximum contaminant concentration.
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conservation of momentum to a representative volume of the fluid gives a general

form of Darcy’s law [6],

qg=—-k(Vp+p9Vz)/p,

where g is the Darcy velocity vector (LT1)
k is the permeability tensor (L?)
1t is the dynamic viscosity of the fluid (ML™'T™1) .

This equation indicates that the fluid moves under the influence of pressure differ-
ences (represented by the Vp term) and gravity (represented by the ¢V z term).
In this work, it is assumed that variations in the viscosity of the fluid are negli-
gible. Therefore p is constant and equal to the viscosity of the non-contaminated
fluid, po. Hence, the form of Darcy’s law used in this thesis is
g=—-K (EJer) (3.1)
Pg

where K = kpg /o is the hydraulic conductivity tensor (LT™1).

3.1.2 Fluid Mass Balance Equation

Mass balance equations are usually derived by conservation of mass considerations
on a relative effective volume of the continuum. From [6], in the absence of source

terms, the fluid mass balance equation for saturated flow is
0
gba—;) + V.pq =0, (3.2)

where ¢ is the porosity of the porous medium.

3.1.3 Fluid Continuity Equation

In practice, the fluid continuity equation is solved for the pressure. This is ob-

tained by eliminating the Darcy velocity vector from (3.2) using (3.1) to give

9 _ V.K (E + pVZ) = 0. (3.3)
ot g
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3.1.4 Contaminant Mass Balance Equation

Assuming dispersion is adequately modelled by Fick’s law then, from [6], the
contaminant mass balance equation for saturated flow (in the absence of source

terms) is

d(pc)
Tar

where D = D(q) is the dispersion tensor (L*T~!). The (i,7) entry in the dis-

+ V.(pcqg — ¢DV (pc)) =0, (3.4)

persion tensor is related to the ¢ and j components of the fluid velocity vector, v

(=q/9), by

Di; = (ar|v| + D) 6: + (ar — ar)

) (3.5)

0]

where ar is the transverse dispersivity (L)
ag, is the longitudinal dispersivity (L)
D,, is the coefficient of molecular diffusion (L*T~1)

0;; = 1 for © = j, zero otherwise.

ay, indicates the amount of dispersion which occurs in the direction of flow, «ay,
indicates the amount of dispersion which occurs transverse to the direction of
flow, and D,, represents the amount of dispersion which occurs due purely to
molecular diffusion.

Equation (3.4) indicates that the contaminant is transported by the processes
of advection (represented by the V.pcq term) and diffusion (represented by the
V.¢DV (pc) term).

In [82] it is noted that the contaminant mass balance equation (3.4) is unde-
fined when the Darcy velocity is zero due to singularities in the dispersion tensor
(3.5). In practice, the dispersion tensor is unlikely to be evaluated at a stagnation
point, but the possible existence of a problem is acknowledged (particularly at

interfaces in a highly heterogeneous medium).

3.1.5 Constitutive Equation

The constitutive equation relates the fluid density to the contaminant concentra-
tion. The actual constitutive equation depends on the fluid, the contaminant and

the conditions.
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In this work, the fluid is water, the contaminant is salt and the conditions are
typical coastal ones. Common forms of the constitutive equation in this case are,

from [72], a linear relationship,

P = po + €c, (36)

where pg is the density of the non-contaminated fluid (ML)

€ is a constant (ML™3) |
or, from [82], a logarithmic relationship,
p = poexp(yc),
where v is a constant obtained from laboratory experiments.

In this work, the linear relationship (3.6) is used.

3.1.6 Initial and Boundary Conditions

For the fluid continuity equation (3.3), the initial condition is
h = hg on {2,
where € is the spatial domain and the boundary conditions are

h=h on Ty (prescribed head)

—qn=gq, on Iy (prescribed fluid flux),

where n is the unit outward normal vector and I' = I'y 4+ I'y is the boundary of

Q. For the contaminant continuity equation (3.4), the initial condition is

and the boundary conditions are

c=¢ on I (prescribed concentration)

—¢DV (pc)m=¢q° on TY (prescribed dispersive solute mass flux)

(where I'} + T =T').

The convention used for the sign of both the prescribed fluid flux and the pre-
scribed dispersive solute mass flux is that they are positive if the flow is directed

into the region, ().
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3.2 Coupling of the Governing Equations

Due to the nature of the interaction between the fluid density (p), the Darcy
velocity (q) and the contaminant concentration (¢), the governing equations in
Section 3.1 are coupled and cannot be solved independently of each other.

However, it is possible to treat the equations individually by the use of an
iterative approach. In such an approach, an initial approximation is made for
one of the state variables, then the governing equations are solved in such an
order that the other state variables are generated and finally an approximation is
made to the original state variable. Repeating this process restores the coupling
and, assuming the iteration converges, a valid solution state (in which the fluid
density and contaminant concentration match) is obtained.

The coupling iteration approach in this work is one which is commonly used

in the literature e.g. [29, 40].

Algorithm 3.1 COUPLING OF GOVERNING EQUATIONS
This algorithm is an outline of the iterative approach used to couple the governing

equations so that they can be solved independently of each other.
1. Make an approximation for the fluid density.

2. Using the approximation for the fluid density, solve the fluid continuity

equation (3.3) for an approximation to the pressure.

3. Calculate an approximation to the Darcy velocity vector using the approx-

imations to the fluid density and pressure in (3.1).

4. Calculate an approximation to the entries in the dispersion tensor using the

Darcy velocity vector.

5. Using the approximations to the fluid density, pressure, Darcy velocity and
dispersion tensor, solve the contaminant mass balance equation (3.4) for an
approximation to the contaminant concentration. Because approximations

are available for p, ¢ and D, this equation is now linear in c.
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6. Calculate a new approximation to the fluid density from the approximation

to the contaminant concentration using the constitutive equation (3.6).

7. Compare the new approximation to the fluid density with the previous one
to see if a valid solution state has been achieved. If such a state has not been
achieved (i.e. the approximation to the fluid density has changed during
Stages 2 to 6), repeat from Stage 2.

Practical experience has shown that this coupling iteration approach con-
verges, the maximum pointwise relative difference in the density over a coupling
iteration decreasing monotonically. The coupling iteration is examined in more

detail in Chapter 7.

3.3 Discretisation Techniques

In general, due to irregular geometry of the domain, spatial variability of physical
properties such as porosity and conductivity, non-uniformity of initial conditions,
and non-analytic forms of source and sink terms, analytic solutions of the gov-
erning equations are only possible for very simple problems. Also, due to lack of
information, complete data for physical properties is not available so it must be
approximated - hence an exact solution is a pointless luxury. Solutions of most
problems can only be obtained in approximate form, and then only by numerical
methods.

In general, these numerical methods consist of discretisation procedures which
replace linear partial differential equations by linear systems of algebraic equa-
tions. The final solution is obtained by solving this system of equations.

In this section, discretisation methods are described. These are applied to the

governing equations in the next section.

3.3.1 Spatial Discretisation

The first step in spatial discretisation is to construct a mesh on the region of
interest. The finite number of nodes in this mesh are the positions at which

discrete approximations to the solution variable are calculated.
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The Finite Difference Method

The finite difference method [68, 75] is probably the oldest spatial discretisation
technique. The meshes used with this method are usually regular (i.e. rows and
columns of nodes aligned with the axis system).

In this method, the partial derivatives which appear in the differential equa-
tion are replaced by an algebraic approximation, with a quotient of two finite

differences of the dependent and an independent variable replacing the differen-

tial quotient. The basic idea is that the derivative j—; of a function u(z) evaluated

at z; is defined as

du

dul u(xy + Ax) — u(xq)
dx

Az—0 Az

Y

71
so an approximation to the derivative is obtained by omitting the limiting process,
ie.

du

dul u(xy + Ax) — u(xq)
de| ~

Az

(3.7)

T

In the finite difference method, approximations such as (3.7) are applied to
the differential equation at each grid point, with Az being the mesh size in the x-
direction. This results in an equation for each node, involving the approximation
to the solution variable at that node and the approximations to the solution
variables at some (or all) of the neighbouring nodes. Hence all the equations are
linked together (i.e. a matrix system is obtained for the unknowns at the nodes).
The influence of one node is limited to those nodes connected to it directly via
the mesh so the overall matrix system is sparse. The nodes at which values are
used in the approximation of the derivatives at a point constitute the local stencil
of the discretisation scheme.

The error in the approximation (3.7) is termed the truncation error, 7. An
expression for this is calculated by performing a Taylor series expansion on the
u(xy + Az) term about xy. For example, assuming that the function w is suffi-
ciently differentiable, the truncation error in approximation (3.7) is

u(xy + Ax) — u(xq) d_u
Az dx

(Az)* d*u
21 d?z

1 du

(z1+0Ax) ) dx

T
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Az d*u
x (z1+0Ax)
= O(Aux).
Hence, the truncation error tends towards zero as the mesh size is decreased - an
approximation possessing this property is called consistent.

Approximation (3.7) is known as a forward difference. Other finite difference

approximations are the backward difference,

d_u
dx

N u(xy) —ulxy — Ax)
- Az ’

T

which also has 7 = O(Aux); and the central difference,

du| u(xy + Ax) — u(x; — Ax)
dx o - 2Ax ’
which has 7 = O ((Axz)?). As can be seen from the respective truncation er-

rors, as the mesh size is decreased the truncation error in the central difference
approximation tends to zero faster than that in either the forward or backward

differences.

Definition 3.1 A discrete approvimation to a derivative has an order of accuracy

of p if the leading terms in the truncation error are of order (Ax)P.

Due to the (Az)? leading term in the truncation error, the central discretisa-
tion is second order accurate, while the forward and backward discretisation are
both only first order accurate.

Finite difference approximations also exist for higher derivatives. For example,
a central difference approximation to the second derivative of the function u(x)
evaluated at xy is,

dz_u N u(xy + Ax) — 2u(xy) + u(ay — Ax)
d2z| (Az)? ’

T

which has 7 = O ((Az)?) provided the function is sufficiently differentiable.
In order to apply the finite difference method to partial differential equations,
the first stage is to define a grid on the domain of interest. Then a discrete

approximation to the partial differential equation is generated by replacing each
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term in the equation by its discrete approximation on the (previously defined)
grid.

Theoretically, the finite difference method only gives discrete solution values,
i.e. the solution is not defined between nodes; a solution covering the whole

domain may be recovered by interpolating between the nodal values.

The Finite Element Method

In the numerical solution of differential equations arising from the modelling of
hydrological systems, the finite element method [19, 78] is a very popular spatial
discretisation technique.
In the finite element method, the domain is divided into elements, typically
triangles and/or quadrilaterals in 2-D, or tetrahedra and/or “bricks” in 3-D.
The solution variable is approximated by a finite dimensional expansion,

nodes

u(x) ~ ZJ: UyNy(x), (3.8)

where Uy is the approximate solution at node J

Ny(x) is the basis function associated with node .J.

The basis function is defined so that

1 at node J
Ny(x) =

0 outside the support of node J,

where the support of a node is the part of the domain encompassed by the el-
ements that possess that node. Nj is usually chosen to be a simple low order
polynomial (e.g. linear, bi-linear, quadratic). An example basis function is shown
in Figure 3.1.

If linear basis functions are used in (3.8), the approximate solution is piecewise
linear. In general, the differential equation to be discretised has a solution which
is more differentiable than the approximate solution. If piecewise linear basis
functions are used, the approximate solution has an undefined second derivative
and the first derivative is only defined uniquely inside each element.

To overcome this problem, the differential equation is replaced by a weak form

which admits solutions that are less differentiable than the classical solution of
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Figure 3.1: A linear basis function at node J in a 2-D mesh of triangles

the differential equation. A weak form is obtained by multiplying the differential
equation by a test function, w, and integrating over the whole spatial domain, i.e.

if the differential equation is
Lyu=f on{)
where £ is a differential operator in space on u, then a weak form is

/Qw(ﬁu ~ F)dQ = 0. (3.9)

If a function satisfies this weak form for all w, then the function satisfies the
differential equation at all points of the domain ([96] p210), i.e. it is the classical
solution.

A solution satisfying (3.9) must be as differentiable as the classical solution.

However, it is often possible to use Green’s first identity,
/(vV.Vw + Vo.Vuw)dQ = / vVw.ndl (3.10)
Q r

(where v and w are scalar functions and n is the unit outward normal vector at
the surface I') to transfer part of the differential operator onto the test function -
this generates another weak form, solutions of which can be less differential than

the classical solution. For example, for the Poisson equation, (3.9) is
/ W(V.Vu— f)dQ =0 (3.11)
Q
and Green’s first identity applied to the differential operator gives

/Fqu.ndF — /Q(Vw.Vu + wf)dQ = 0. (3.12)
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While (3.11) requires u to have an integrable second derivative, the equivalent
equation (3.12) only requires u (and w) to have an integrable first derivative.
The weak form is approximated discretely by requiring that it is only satisfied

for a finite set of n test functions,

so that the approximation to the weak form (3.9) is
/ wi(Lu—fdQ=0  I=1,2,....n. (3.13)
Q

Since the approximation to u given by (3.8) involves a number of unknowns
equal to the number of nodes in the mesh (these unknowns being the nodal
values), then the same number of independent equations is required to define
these unknowns uniquely.

Common choices for the test functions are:
e Dirac delta functions i.e.
wy =05 1=1,2,... nodes
where 67 = 0 everywhere apart from at node I and [, 6;dQ2 = 1. This choice

results in the collocation method.

o The basis functions already used to generate the finite dimensional approx-

imation to the solution i.e.
wr = Ny(x) 1 =1,2.... nodes.

This is known as the Bubnov-Galerkin method, commonly abbreviated just

to the Galerkin method.

o A generalisation of the Galerkin method in which the test function is not
necessarily from the same space as the basis function (e.g. the basis function

could be linear while the test function is constant), i.e.
wr = My(x) I =1,2,... nodes

where

Mi(e) 1 at node I
r(x) =
0 outside the support of node [

This is known as the Petrov-Galerkin method.

52



In practice, the basic steps in a finite element discretisation are:
o Generation of weak form:

— Multiply the differential equation by a test function and integrate over

the whole spatial domain.

— Bearing in mind that the solution will be replaced by an approximation
which has limited continuity of derivatives, use Green’s first identity to
replace derivatives of the solution in the weak form by lower derivatives

plus a boundary integral term.
e Discretisation steps:

— Generate a mesh comprising elements covering the whole domain.
— Approximate the solution variable by a finite dimensional expansion.
— Approximate the general test function by a set of nodal test functions.

— Split the integral in the weak form into the sum of integrals over ele-

ments which can be evaluated separately.

o Perform element integrals and assemble contributions to nodal equations
from all elements in the support of each node. The influence of one node is
limited to those elements in its support - hence, as in the finite difference

method, the matrix systems which arise are sparse.

Compared with the finite difference method, the finite element method has
the advantages that it allows flexible representation of features, it copes natu-
rally with Neumann and Dirichlet boundary conditions, physical properties can
be defined on each element and the solution exists everywhere. Hence it is the pre-
ferred spatial discretisation method for hydrological problems, and is the spatial

discretisation method used in this thesis.

3.3.2 Temporal Discretisation

Since the finite element method is used to discretise in space, there are two obvious

approaches for the time variable :
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e Treat time as just another dimension and use test and basis functions in
both space and time. The problem is usually an initial value problem in time
(rather than a boundary value problem) for which test and basis functions
are difficult to define. This approach leads to very large systems for 2-D

(and more-so 3-D) time dependent problems.

e Treat the nodal variables as functions of time, and only use the space vari-
ables in the finite element analysis, i.e. (3.8) becomes
nodes
u(z,t)~ > Us(t)Ny(z). (3.14)
J
This leads to a system of ordinary differential equations in time which can

be solved by a finite difference or finite element approach.

The latter approach is the one used here, with finite difference techniques used
to discretise in time.

There are two main distinctions to be made between different finite difference
techniques for discretisation in time. The first is whether the discretisation is
explicit or tmplicit. This denotes the discrete time-level at which the spatial
derivatives are approximated. The second distinction is whether the discretisation
is based on the Fulerian or Lagrangian methodology. These distinctions are

discussed separately in the following two sections.

Explicit versus Implicit - Convergence and Stability

In an explicit temporal discretisation, each nodal value at the new (i.e. un-
known) time-level is given explicitly in terms of known nodal values (i.e. those
at previous time-levels and boundary conditions); while in an implicit tempo-
ral discretisation, each nodal value at the new time-level depends implicitly on
other (unknown) nodal values at the new time-level, as well as on known values
from previous time-levels and boundary conditions (hence a matrix system must
be solved to determine these implicit values). To illustrate this, consider the

constant coefficient linear advection equation,

ou ou
E—I_a@_x =0. (315)
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A basic two-level temporal discretisation (with a three-point central finite dif-
ference spatial discretisation) for (3.15) on a regular (i.e. equally spaced) mesh,
is

Untt —uy Un., = Uy Upt = U3t}
1-0 +1 J-1 0 J+1 J-1 ) <h<1
VRO LN Sy vl I S v 0 (0=f=1
(3.16)

where U} is the approximation to the true solution u at time-level n and grid
point J, At is the size of the time-step and Ax is the spatial mesh size. This
approximation is fully explicit if § = 0 and fully implicit it § = 1. The degree of
implicitness (i.e. the choice of #) governs the properties of the discrete solution.
A Taylor series expansion in both space and time shows that the discretisation
(3.16) is second order accurate in time for § = 1/2 and first order for all other
choices of 6.

Two major aspects of the quality of a numerical solution are convergence and
stability. A numerical solution is said to be convergent if it tends to the true
solution along a fixed time-level as Ax and At both tend to zero. A numerical
solution is linearly stable if it is bounded, at a fixed time-level T', as At — 0
(assuming that At and Az are related so that Az — 0 as At — 0).

Fully explicit methods usually require a time-step restriction to ensure a con-
vergent approximation, while this is often achieved without such a restriction with
implicit methods. In order to explain this, the origin of the numerical solution
must be considered in conjunction with the idea of the characteristics of the true
solution.

The total derivative of a variable u(x(t),?) with respect to ¢ is

Du  Ou dz Ou

Again using the scalar wave equation for illustration, comparing (3.15) and (3.17),
it 1s easily seen that the solution is unchanged, i.e.

Du

=0,

Dt
along the paths, x(¢) given by the ordinary differential equation,

dx
=a.

i
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These paths are known as characteristics. They are the paths along which the
true solution data is transferred. In the numerical scheme, if the characteristic
through node J at time-level (n41) comes from outside the local stencil or support
of node J at time-level n, then the transfer of information through time along
the characteristics which drives the true solution cannot be modelled numerically
by an explicit scheme. Hence an explicit scheme can only be convergent if the
spatial and temporal mesh sizes are restricted so that the characteristic stays
within the local stencil. Hence, for the approximate solution given by the fully
explicit discretisation ((3.16) with # = 0) to be convergent to the solution of
(3.15),
At
|a|ﬂ < 1.

The requirement that the characteristic stays within the local stencil of the scheme
is known as the Courant-Friedrichs-Lewy (commonly abbreviated to CFL) con-
dition.

Apart from the time step restriction required to ensure a convergent approxi-
mation, fully explicit methods usually also require a time-step restriction to ensure
stability, while fully implicit methods often have unconditional stability (giving a
stable solution with arbitrarily large time-steps). A rigorous approach to stability
is provided by Fourier analysis, this involves putting a general Fourier mode into
the scheme and looking for conditions such that this mode cannot grow over a
time-step. For the discretisation scheme (3.16), Fourier analysis shows that the

stability properties are

At
<1/2 stable if |a|—A <1
x

>1/2 unconditionally stable

Since it combines unconditional stability with second-order accuracy, the
choice § = 1/2 is popular; the resulting temporal discretisation is known as
the Crank-Nicolson method.

The quality of the numerical solution is not the only consideration in the
temporal discretisation - the speed of the method is another important factor.
Explicit methods tend to be much cheaper per time-step than implicit methods

since no matrix inversion is required. In practice, the relative speed of the two
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approaches (i.e. explicit or implicit) also depends on the size of the largest accept-
able time-step needed for other solution quality considerations such as accuracy

and monotonicity.

Eulerian versus Lagrangian

Eulerian methods are based on the description of fluid flow which monitors the
fluid behaviour at a fixed point by observing different fluid particles passing
through that point. The focus of this approach is the fluid properties at the
fixed point - not the fluid particles themselves. The stability discussion for ex-
plicit and implicit schemes earlier in this section is tacitly Eulerian (being focused
on node J). In that description, the equation for a fluid property is discretised by
approximating the equation at particular points (these points being the nodes).

In the Lagrangian approach, the focus is on “particles” of the fluid. The
fluid is described by following these particles as they flow through the domain.
A property of the fluid at a point is determined by the history of the particle
currently at that point.

Mathematically, the Lagrangian description involves recasting the inertial and
advective terms as a combined, or total, derivative which holds along character-

istics, 1.e.

Hence, in a Lagrangian framework, the advection-diffusion equation,

g—?—l—a.Vu =bV.Vu (b>0)
becomes

Du de

T =bV.Vu on ) =a.

So a temporally discretised equation (obtained by the backward Euler method)
is
u(y,t+ At) = u(e(t),t) + At{bV.Vu(y,t + At)},

where the position vector y is the approximate solution of the Cauchy problem

for the characteristic (obtained again by the backward Euler method)
y =x(t) + a(t + At)At.
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Even explicit Lagrangian methods can be unconditionally stable since the
solution is followed along characteristics.

The simplest way to implement a Lagrangian method numerically is to specify
initially a discrete set of “particles” in the fluid, then trace the positions of these
particles in time by solving the equations for the characteristic, and modify the
properties of the fluid “particles” by spatially approximating the total derivative
equation. This approach is known as particle tracking. In its simplest form, it

has some problems :

e The solution only exists at discrete points, i.e. the “particles”; however,
as with the finite difference spatial discretisation, a solution over the whole

domain can be recovered by interpolation.

o The chosen set of points may represent the fluid adequately throughout
the region at the start of the process, but once they are allowed to move
they may not necessarily do so. This can make the spatial derivatives (e.g.
diffusion terms) difficult to approximate - particularly in regions where there

are few particles.

In the worst scenario, all the “particles” leave the region and there are no
discrete solution values - this can only be avoided if the set of “particles” is
redefined after each time-step. One method for doing this is to have a prescribed
grid, perform a Lagrangian time-step on the nodes, and interpolate the solution
back onto the nodes in the prescribed grid.

This fixed grid method is called semi-Lagrangian if the underlying spatial
discretisation is finite difference with an interpolation operator, and Lagrange-

Galerkin if it is finite element with a projection operator.

3.3.3 Closing Comments

There are other discretisation approaches e.g. finite volume [41, 42], boundary
element [7], spectral [79]; these are not described or used here. In general, the
Galerkin finite element method is used to spatially discretise the governing equa-
tions in this thesis. Implicit Eulerian methods are used to perform the temporal

discretisation where appropriate.
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3.4 Discretisation of the Governing Equations

Because of the coupling iteration approach outlined on Section 3.2, each of the
governing equations in the system can be considered in isolation for the purposes

of the discretisation.

3.4.1 Discretisation of the Fluid Continuity Equation

Step 2 of Algorithm 3.1 requires the solution of the fluid continuity equation. For
convenience, the first steps of the Galerkin finite element spatial discretisation
of the fluid continuity equation (3.3) are performed on the fluid mass balance
equation (3.2). A weak form is obtained by multiplying by a test function, w,

and integrating over the whole spatial domain, €, i.e.

0
/ (qﬁ—p + V.pq) wdQ = 0.
o\ ot

Applying Green’s first identity (3.10) to the advective term gives,

dp

/ wp— — Vw.pq | dQ + / wpg.ndl’ =0
Q ot r
and then imposing the prescribed fluid flux boundary condition gives,
dp
/ wop— — Vw.pq | dd = / wpqpdl. (3.18)
Q ot r

In order to generate a weak form of the fluid continuity equation, substitute for

q from (3.1),

/ {wqﬁ% + V. K (E + pVZ) } dQl = / wpq,dl.
Q ot g r

This weak form is spatially discretised by the Galerkin finite element method, i.e.

w = Ny I =1,...,nodes,
and
nodes
pr Y, piNy
J=1

where the p; are the nodal approximations to p, to give the system

1 nodes

S Y [ VNLEV N
9 =1 e /0

=3 [ Nipgudr =Y [ (quﬁ% + VNI.K/)VZ) 40
€ Fe € Qe
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(for I =1,...,nodes) where Y. denotes summation over all the elements in the
support of node I and e superscripts denote element domains or boundaries.

The % term is discretised temporally by the backward Euler method, i.e.
n+l _ o

| _p ="
|, . At

where the superscripts denote the discrete time-level. This discretisation is only
first order accurate. It is deemed to be sufficient for this term since the density
(7) has already been approximated as part of the coupling iteration and (¢7) is

assumed not to vary quickly. This gives the linear system

n+1_n+1 __ n+l i n+l n
Kmtlprtl = gF N (G G") (3.19)
where
K= {Ki )71, nodes F' = {F}}iz1,. nodes
pi — {pf]}J:L...,nodes GZ = {Glj}lzl,...,nodes

with the matrix and vector entries given by
Ki, = S Kii= Z/Qe VNLK VN, dQF
Fio= ZFI =3 ( /F Npplglidre — /Q e VNI.EpivdeS)
Gpo= Sa =% /Q Npgplder.

In practice, the element integrals are simplified by approximating known mate-
rial and fluid properties by their average values on elements (or element faces
depending on the region of integration) denoted by (-). Hence the matrix and

vector entries in (3.19) are given by
K, = YK=Y / VN (K YV N, d0e
€ € Qe

Fo= Y=Y ()6 [ Nt = () () [ 9Ny

€

Gy = G = )0) [ Vg,

After the Dirichlet boundary conditions are applied, the matrix in this system
is SPD if the tensor (K"t} is SPD ([19], p212). For a reasonably fine spatial

discretisation, the system is also large and sparse.
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3.4.2 Discrete Darcy Velocity Vector Calculation

Once the discrete fluid continuity equation from the previous section has been
solved, it is possible to evaluate the Darcy velocity by taking derivatives of the
calculated pressure field. However, as shown in [93], this approach leads to a
discontinuity in the velocity at nodal points and a violation of the conservation
of mass in a local sense. This can be avoided by evaluating the Darcy velocities

using a Galerkin finite element spatial discretisation of (3.1),

nodes

> @Y [ NiNgder
J=1 e Qe
1 nodes 1
=3 pJZ/ Ny =K.V N d —Z/ NI K.V 2d0"
g J=1 e YO P . JQ°
where
nodes nodes
q%ZqJNJ and p= ZpJNJ.
J=1 J=1

Evaluating this at the (n+ 1)th discrete time-level (temporal discretisation is not

required for this equation) gives the set of linear equations

Mq" = —;V”Hpnﬂ — ! (3.20)
where
M = {Mys}1i=1.. nodes q' = 1{q}s=1....nodes
V=V e nodes P = {Py} izt nodes
F' = {FY} o1 nodes
with

My = S M, =% /Q NN
€ Z KZ e
VIJ = Z VI:] = Z —<<p2>> /Qe NIVNJdQ
Fy = Y F{ =Y (K)V: [ Ndor.
€ € Qe

The angled brackets in have the same meaning as those in the discrete fluid
continuity equation (3.19).

There is no need to impose the Dirichlet flow boundary conditions in this
system as these are already incorporated in the pressure solution that is obtained
from the fluid continuity equation (where they are imposed as Neumann condi-
tions).

The matrix in this system is the finite element mass matrix. It is SPD.
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3.4.3 Discretisation of the Contaminant Mass Balance
Equation
Substituting (3.2) into (3.4) leads to the following form of the contaminant mass

balance equation,

de
pog; +rg-Ve=V.0DV (pc).

Due to the constitutive relation (3.6),

Vipe) = V (poc + ecz)
= (po+2¢ec)Ve

= (p+ec)Ve

For the system in this thesis where the contaminant is salt and the fluid is water,

ec is small compared to p, (in fact ec < 0.02499p) so the approximation
V(pe) ~ pVe

is reasonable. With this approximation, the contaminant mass balance equation

becomes

pqﬁ% +pq.Ve=V.0DpVe. (3.21)

This is an advection-diffusion equation, the pg.Ve¢ term is the advection part and
the V.9 DpVc term is the diffusion part. In order to apply the Galerkin finite

element method to (3.21), it is replaced by the weak form

/Q (wpqﬁ% + wpq.Ve+ Vw.ngch) dQ) = — /qu;df

where Green’s first identity is used to transfer part of the second order spatial
differential operator to the test function.

This weak form is discretised spatially by using a discrete set of test functions,
w = Ny I =1,...,nodes,

and a finite dimensional expansion for the dependent variable,
nodes

C~ Z CJNJ

J=1
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to give a system of ordinary differential equations in time,

Mfl—; +(V+Dje=—F (3.22)
where
M = {Mys}1i=1.. nodes ¢ ={cs}i=1.. nodes
V =A{Vis} 1021, nodes F = {Fr}i=1.. nodes
D =A{Ds}11=1. . nodes
with

Mig = My = o)) [, NiNgdor

Vo = X Vi =Sl [ NV Nader

Diy = ZB:D?J = ZS:<P><¢> /Q VNI(D)V NdQ*
o= ng;:gxqg/reNldre.

Again, the angled brackets have the same meaning as in the discretisation of the
fluid continuity equation. An average value of the Darcy velocity of the fluid on
each element is needed in this part of the numerical solution method. This is
obtained by averaging the nodal approximations to the Darcy velocity vector on
each element.

A suitable method for the temporal discretisation of this equation in an im-
plicit Eulerian manner is the Crank-Nicolson method from Section 3.3.2. Apply-
ing this to (3.22) gives the fully discretised equation,

(LMTH—I 4 %Vn-l—l n an-H) pUEs|

At 2

1 1 1 1
B ) LR NS VO —D”) n_ Z(prt 4 P 3.23
(At 5 57 )¢ T3 ( +F") (3.23)

Again, the superscripts denote the discrete time-level.

The relative proportion of the physical processes is characterised by two di-
mensionless parameters: the Courant number, C'o, and the Peclet number, Pe.
The Courant number measures the proportion of advection to inertia in the prob-

lem, e.g. for a 1-D form of (3.21),

vl
Co=—
0 %
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where X is a representative length and T is a representative elapsed time. The
Peclet number measures the proportion of advection to diffusion in the problem,
e.g. for the 1-D form of (3.21),

vX

o

The physical Courant and Peclet numbers are not used in this work. Instead,

Pe =

Co and Pe are used to indicate the discrete versions of these numbers (e.g. Co
indicates the proportion of the discrete advection term to the discrete inertia
term). In these discrete versions, the representative length is the mesh size, Az,
and the representative elapsed time is the time-step, At.

From [56], the approach used to obtain (3.23), i.e. the Crank-Nicolson method
in time combined with Galerkin finite element method in space, gives the same
discrete equation as that obtained where the contaminant mass balance equation
is discretised by an implicit Taylor-Galerkin method [20, 21]. The Taylor-Galerkin
method uses (3.21) to replace the temporal derivatives in an approximate Tay-
lor series expansion by spatial derivatives, and then performs a finite element
discretisation in space.

The matrix in system (3.23) has three components, the mass matrix M"*!
which is SPD, the stiffness matrix D"** which is SPD (with the same assumptions
on the structure of (D)"*! as for (K)"™' in Section 3.4.1) and the advection
matrix V"t which is non-symmetric (and little can be said about its definiteness).
Some examples of advection matrices for some simple elements are shown in
Figure 3.2. The system (3.23) is therefore non-symmetric and, as with the discrete
fluid continuity equation, it is large and sparse.

The origin of the non-symmetry is the advection term. This is the term which
contains first spatial derivatives of the solution variable. A term of this form is
not present in either the fluid continuity equation (when solved for p) or Darcy’s
law (when solved for q).

Central discretisations - either finite difference or Galerkin finite element - of
first derivatives lead to non-symmetry in the system matrix. The reason for this
is most easily seen when a 1-D central finite difference framework is considered -
relative to the centre of the local stencil, advection is an inherently non-symmetric

process (as opposed to diffusion, for instance).
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(b) Linear triangle
Figure 3.2: Advection Matrices for Some Simple Elements

The problems which arise in the solution of large, sparse non-symmetric linear
systems are outlined in Section 2.3.2. Ideally, the matrix should be SPD rather
than non-symmetric. Achieving this requires the elimination or reformulation of
the V"t term in (3.23).

There are numerous techniques in the literature which are used to generate

SPD matrices for advection-diffusion problems.

e Explicit treatment of advection - in this approach, the non-symmetric com-
ponent appears in the RHS vector rather than the matrix. This approach
leads to a restriction on the maximum allowable time-step for stability rea-

SOI18S.

o Lagrangian schemes - the advection part of the problem is dealt with in the

solution of the trajectory, so there is no advection component in the matrix.
e Non-central schemes i.e. upwind or Petrov-Galerkin methods.

None of these approaches is used here - they are outside the scope of the discreti-
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sation approach chosen in Section 3.3.1 and 3.3.2.
Another approach for advection diffusion equations, which loosely fits the
chosen discretisation approach is known as the Leismann-Frind scheme [50]. This

is described in the following section.

Leismann-Frind Scheme

This scheme is based on an operator splitting in which the advection and the
diffusion are treated differently. The method follows from work in [85, 86] where
schemes for the discretisation of advection-diffusion equations with high orders of
accuracy are generated by modifying the diffusion coefficient in order to eliminate
terms in the truncation error. In the Leismann-Frind scheme, the terms in the
dispersion tensor are modified to give unconditional stability.

The modification involves adding some artificial diffusion, D" so that the

dispersion tensor (3.5) becomes

Q =D+ D* where D*= %va.
The advection term is treated fully explicitly (# = 0 - removing the source of the
non-symmetry from the matrix) while the physical diffusion term (D) is treated
fully implicitly (§ = 1) and the artificial diffusion term (D”) is treated in a
Crank-Nicolson manner (§ = 1).

The resulting scheme possesses unconditional stability at the expense of ac-
curacy - it is only first order in time. The amount of artificial diffusion depends
on the size of the time-step so it doesn’t affect the consistency of the approxi-
mation. In effect, this method converts the advection that needs to be treated
implicitly (for stability) into an approximately equivalent amount of diffusion.
This is possible due to the directionality of the dispersion tensor.

Applying the Leismann-Frind scheme to the contaminant mass balance equa-

tion gives the following fully discrete system,

1 1 1 1
—M Dn—l—l _D*,n—l—l) n+1 — <—M o Vn o _D*,n) no__ F
(At + +3 © At 2 ©
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where

M = {MIJ}I,J:L...,nodes ci — {CS}J:L...,nodes
Vi - {WJ}I,J:L...,nodes F = {FI}I:L...,nodes
Di — {D?]}I,J:L...,nodes D*7i — {D;j}I,J:L...,nodes

with

My = S M, =% /Q NN

Vi, = Y=Y <‘;> NIV Nder

Di, = S DY = Z/Qe VN, (D')V N, dor
Dy o= YD =% /Q VNL(D) VN9

") {g2")

B i {45
Fr = ZS:FI =2 ((p”+1><¢> T3 NG T 2]

€

S {

) Npdl®
Te

Here, ¢ = —¢D*V (pc).n on I, in the style of the prescribed dispersive solute
mass flux boundary condition described in Section 3.1.6.

Of the two components in the matrix of this system, the mass matrix (M)
is SPD, while the positive definiteness of the stiffness matrix (D" + %D*’”"’l)

depends on whether the modified dispersion tensor is still positive definite. Now

1 At
! (Q—I— §Q*) xr = a:T(Q—I— Zva)a:

= "Dz + %(’UTQZ)(’UTQZ)

> 0 O%wEIRd (since D is SPD and At > 0)

Hence the stiffness matrix is SPD (after boundary conditions have been imposed)
so the matrix which results from the Leismann-Frind discretisation is SPD. This
means it can be solved by the conjugate gradient method.

The Leismann-Frind scheme is a very elegant solution to the problem of com-
bining symmetry and stable central discretisation of advection terms. However,
the overall goal is to develop a solution approach which is capable of operating
in a wide range of flow regimes. The Leismann-Frind scheme is first order in
time with the coefficients of the leading error term dependent on the size of the

physical diffusion - hence the scheme will not perform well in diffusion dominated
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problems. The Crank-Nicolson Galerkin finite element scheme is formally second
order in time and, for this reason alone, it is the preferred discretisation approach
for the contaminant mass balance equation.

The Crank-Nicolson Galerkin finite element scheme and the Leismann-Frind
scheme are compared in [62]. In that work, the Leismann-Find scheme is found
to give essentially the same results, but in less CPU time, for the particular case
study used. However the flow regime (i.e. Courant and Peclet numbers) in the
case study is not specified so it cannot be determined whether the results of the

comparison are generally true.

3.5 Overview of Numerical Solution Approach

In summary, the governing equations in Section 3.1 must generally be solved
approximately by numerical methods.

The overall solution approach used for the governing equations at each time-
step in this work is given in Algorithm 3.2. This is an expanded version of

Algorithm 3.1.

Algorithm 3.2 OVERALL APPROACH FOR THE GOVERNING EQUATIONS
This algorithm is an outline of the iterative approach used to couple and solve

the governing equations.

1. Make an approximation for the fluid density at the nodes of the mesh by

linear extrapolation from the nodal densities at the two previous time levels,

p‘]—l—l:p‘]—l—ﬁ(ﬂ]_p‘] h J=1,...,nodes.

2. Generate element densities from the nodal ones by simple averaging,

<P> = iipl

e I=1

where n. i1s the number of nodes in element e.

3. Using the approximation for the fluid density on elements, generate the dis-

crete fluid continuity equation (3.19) and solve this for the nodal pressures.
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The matrix in this system in SPD so the preconditioned conjugate gradient

method is used to solve it.

. Evaluate an approximation to the Darcy velocity vector at each node by
generating the discrete Darcy law (3.20) using the approximations to the
fluid density on elements and pressure at nodes. The matrix in this system
is the SPD finite element mass matrix, hence this system is also solved by

the preconditioned conjugate gradient method.

Generate element Darcy velocity vectors by simple averaging in the same

way as the element densities are evaluated.

. Calculate an approximation to the entries in the dispersion tensor on ele-

ments using the Darcy velocity vector on elements.

. Using the approximations to the fluid density, Darcy velocity and disper-
sion tensor on elements, generate the discrete contaminant mass balance
equation (3.23) and solve for an approximation to the concentration by one

of the non-symmetric iterative methods described in Section 2.3.2.

. Calculate a new approximation to the fluid density on nodes from the ap-

proximation to the contaminant concentration using the constitutive equa-

tion (3.6).

. Compare the new approximation to the fluid density with the previous one

to see if the process has converged. If converged stop, else return to Stage 2.

This discretisation approach is used on two test problems in the next chapter

with all the linear systems involved being solved exactly. The exact solution

of the linear systems is impractically expensive and unnecessary since there are

already errors in the solution process due to the approximations made in the

discretisation. Exact solution is only carried out in the next chapter so that the

performance of the discretisations can be examined in isolation (without any need

to consider the effect of the approximate solution of the resultant linear systems).

In practice, linear solvers are only used to generate an approximate solution of

the system. The details of the linear solvers are investigated in Chapters 5 and 6.
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Chapter 4

Discretisation Performance

The overall numerical solution approach is a combination of the discretisation
applied to the governing equations and the solution of the resulting linear systems.
In this chapter, the performance of the discretisation is examined in isolation; in
order to facilitate this, all linear systems are solved exactly (to within the accuracy
of the machine used). At this stage, no consideration is given to the expense this
incurs.

Two tests cases are used to examine the performance of the discretisation - a
1-D tracer problem for which the analytic solution is known, and a 2-D problem
which is a common test case in the literature. A tracer is a contaminant that
does not affect the physical properties of the fluid so, in the 1-D tracer test case
problem, only the contaminant mass balance equation needs to be solved so the
discretisation of that equation can be examined in isolation.

A computer program was written in (double precision) FORTRAN 77 in order
to carry out the numerical experiments. The two test cases serve partly to validate
the program (e.g. solving a 1-D problem on 2-D meshes in order to confirm
that the numerical results are 1-D) and partly to illustrate the behaviour of the
discretisation and confirm that the overall approach solves the coupled system

correctly.
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4.1 1-D Passive Transport in a Column

This problem involves the 1-D transport of a tracer in a vertical column through

which there is a constant fluid flow rate.

4.1.1 Specification of the 1-D Tracer Test Case

The transport is passive so p is constant and cancels from (3.1), (3.3) and (3.4);
hence the density does not affect the problem so it can be given an arbitrary
value.
This problem is 1-D but it is solved in a 2-D code. The physical data for this
problem is :
Kpp=K,..=K,=0, K,.=10""m/s

qﬁ:OQ, OéL:5H17 oq«:()7 D, =0.

The physical region for the equivalent 2-D problem is shown in Figure 4.1. The

notation is consistent with that in Section 3.1.6.

h=700m ¢=1
A
q,=0 q,=0
2 , ,
000m =0 40
42
A x
4%

h=500m ¢,'=0

— 10m —]

Figure 4.1: Physical domain and boundary conditions for 1-D problem

These conditions give rise to the constant flow field,
g =0 , 4. = —10_5m/s.

Only the contaminant mass balance equation (3.4) needs to be solved (for the

dimensionless contaminant concentration ¢). In the tracer test case, (3.4) reduces
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to the 1-D equation,

Jde Jde 0%

where v, is the z-component of the fluid velocity vector This is discretised by the
Crank-Nicolson Galerkin finite element method described in the previous chapter.

The Courant and Peclet numbers for this problem are

:@£—5x10_5£ , pe:g g

C = =
¢ o Az Az ar, 5

where At is the time-step and Az is the mesh size in the vertical direction.
Initially, the concentration of the tracer is zero everywhere in the region. The

tracer front moves down the column under the action of gravity and disperses as

it moves. Until the tracer reaches the bottom of the column, this problem can be

treated as being on a semi-infinite domain for which the boundary conditions are

¢(x,2000,1) =1 qc(0,z,t) =
é(x,—00,t) =0 ¢5(10,z,t) =

The analytic solution to this semi-infinite domain problem is derived in [58] as

( ) 1 v,z . 7 — v, oerd 2ol (4.2)
clx,z,t) = =qexp | — | erfc | —=——= erfc | ——— :
2V TP\ D 27/D-..1 2/ D..1

where 2’ = 2000 — z and erfc is the complementary error function, given by

2 o0 2
erfc(s) = —/ e " du.
Vs

In the results given in this work, the complementary error function is computed

using the SUNOS C library intrinsic function erfc on a SPARCstation 1+.

4.1.2 Results for 1-D Tracer Test Case

A uniform mesh of bilinear rectangular elements with 2 nodes in the z-direction
(and a varying number of nodes in the z-direction) is used for this problem.
Although the experiments were carried out on a 2-D grid, the results are one-

dimensional through symmetry. This is a good test case for the program - the
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Figure 4.2: Solution and error at Co =1, Pe =1
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required symmetry is achieved in practice. For clarity, the results are presented
in 1-D form.

Figure 4.2 shows both the approximate (dotted line) and analytic (solid line)
solutions, and the error in the solution (defined as the approximate solution minus
the analytic solution) for Az = 5m and At = 5 x 10* s after 150, 300 and 450
time-steps respectively. This corresponds to a Courant number of 0.5 and a Peclet
number of 1.0. Due to the accuracy of the approximate solution, it is hard to
distinguish it from the analytic one at each of the times shown. The graphs of
the error show the difference more clearly.

Table 4.1 shows the behaviour of the approximate solution as the Courant
number is increased with the same spatial mesh. The minimum and maximum
values in the numerical solution during the time-stepping, ¢,.;, and ¢4, respec-

tively, are shown in this table, as is the relative error in the approximate solution

defined as,

>les —cl(zs)}?
Ste(zg)}?

where the subscripts denote nodal values and ¢y is a discrete approximation to

Relative Error = \l

c(ay).

Co |t (x10°) | ¢pin | Cmaz — 1 | Relative Error
7.5 0 0 4.61 x 1072
0.5 15 0 1.92 x 1072
22.5 0 0 8.74 x 1073
7.5 0 0 4.59 x 1073
1.0 15 0 0 1.18 x 1072
22.5 0 0 8.62 x 1073
7.5 0 [3.12x107%| 1.90 x 1072
5.0 15 0 [8.86x1072| 1.07 x 1072
22.5 0 [244 x1073| 7.67x1073

Table 4.1: Error and Extrema at Pe =1

The relative error is approximately the same at the different Courant numbers
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(the spatial mesh is fixed while the time-step is coarsened to increase the Courant
number).

The minimum and maximum of the analytic solution for the dimensionless
contaminant concentration are 0 and 1. Hence the maxima that occurs in Ta-
ble 4.1 at C'o = 5 are unphysical - they are not features of the true solution and are
caused by the numerical solution technique. The Crank-Nicolson Galerkin finite
element scheme is not a monotonicity preserving scheme, i.e. it admits unphysical
oscillations in the numerical solution. This is typical of a higher than first order
scheme. The unphysical maximum appears to decay with time, suggesting that

it is caused by conditions at the beginning of the simulation.

Co |t (x10°) | ¢min | Cmaz — 1 | Relative Error
7.5 0 0 2.22 x 1072
0.5 15 0 0 2.23 x 1072
22.5 0 0 1.64 x 1072
7.5 0 [3.05x107*| 2.07 x1072
1.0 15 0 [1.43x107%] 1.98 x 1072
22.5 0 0 1.45 x 1072
7.5 0 [2.85x1071| 214 x 107!
5.0 15 0 [221 x107t| 1.41 x107!
22.5 0 [1.93x107t| 1.11 x107!

Table 4.2: Error and Extrema at Pe = 5

Table 4.2 shows the same solution properties as Table 4.1 but at a higher
Peclet number (Pe = 5), i.e. on a mesh which is five times coarser. Comparing
these two tables, the relative errors are larger and the unphysical maxima are
more pronounced at the higher Peclet number. Again, the unphysical maxima
are decaying with time.

The unphysical extrema that occur in the numerical solution are an unde-
sirable feature as they can interfere with any subsequent chemical or physical
processes which are applied to the transported quantity. In the next section, the

flow regimes where unphysical oscillations can occur are discussed and ways of
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removing or controlling them are described.

4.1.3 Unphysical Oscillations and their Control

The steady-state form of the 1-D advection-diffusion equation (4.1) is

0 0?
vZ—C—D ¢

When this is discretised by the Galerkin finite element method, it is known (see
for example [18, 91]) that unphysical oscillations occur in the discrete solution
unless Pe(= v.Az/D.,) < 2. Time dependent problems are the subject of this
work so the steady state constraint only applies as the time-step tends to infinity.

For the time dependent case, it is noted in [50] that the discretisations based
on the Crank-Nicolson method are prone to oscillations behind steep fronts when
the Courant number exceeds unity. This is supported by analysis in [18] (with
a lumped finite element mass matrix') which leads to the additional constraint
that C'o <1 for there to be no unphysical oscillations. The analysis is not valid
for the distributed mass matrix used in this thesis; schemes with the distributed
matrix being less diffusive and hence more prone to unphysical oscillations.

Even though the analysis doesn’t apply to the method here, these constraints
(Co <1, Pe <2) are generally accepted as reasonable guidelines. The results in
Tables 4.1 and 4.2 support this.

Figure 4.3 shows unphysical oscillations in the numerical solution. In case (a),
the oscillations are caused by the extremely steep initial gradient as the tracer
enters the region - these oscillations remain close to the inflow boundary. As the
front diffuses, it “appears” less steep (to the mesh) and the extrema near the
front are hardly visible. In case (b), the mesh is five times coarser so the front
appears to be five times steeper (to the mesh) - hence the unphysical oscillations

are more pronounced.

!The element mass matrix given in Chapter 3 is the distributed one - the lumped element
mass matrix 1s the diagonal matrix obtained by summing entries in the rows of the distributed
element mass matrix and putting these sums on the diagonal. Lumping the mass matrix gives

a formally less accurate scheme.
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Figure 4.3: Sample solutions to illustrate unphysical oscillations
There are numerous ways to control these oscillations. For example

e mesh refinement - the size of the space and time-steps can be varied either
() to bring the Courant and Peclet number within the bounds for which no

unphysical oscillations occur or (i) to reduce the size of the oscillations.

e artificial diffusion - extra diffusion is added to the numerical scheme to

damp out the unphysical oscillations.

o flux-corrected transport - local averaging of a monotonicity preserving

and a non-monotonicity preserving scheme to generate a new monotone
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solution.

The remainder of this section is devoted to descriptions of these techniques.

Mesh refinement

This method for the control of unphysical oscillations involves varying the size of
the space- and time-steps. Decreasing the size of the mesh decreases the trunca-
tion error in the discretisation, but it also increases the computational expense
required to generate the solution. Hence global refinement of the discretisation
is avoided and local refinement is used; that is, a small time or space step is used
only when or where it is deemed necessary.

Local refinement in time - the unphysical maxima in Tables 4.1 and 4.2 decay
with time so they must be caused by some feature of the initial conditions. As
appears to be the case here, many unphysical oscillations are caused by steep
profiles being introduced into a region through a boundary.

In this problem, the steep front which exists early in the simulation is diffused

as time progresses. Hence a time-stepping strategy of the form
Atip1 = min(aAt;, Atpas), (4.3)

where the subscripts denote time levels, allows control of oscillations during the
initial phase when the front is very steep. This time-step control relaxes with
time, i.e. as the front spreads. Here, the parameter a > 1, Aty and At,., are
user specified.

Table 4.3 shows solution features obtained when the time-stepping strategy,
Aty = min(1.2A¢4,2.5 x 10%)  Atg = 0.25 x 10%,

is used. As expected (since the Courant number is smaller during the critical
initial stages of the simulation), the unphysical oscillations are smaller than in
the corresponding cases with a uniform time-stepping (c.f. Tables 4.1 and 4.2).
The errors are also smaller due to the (on average) finer temporal discretisation.

Local spatial grid refinement - oscillations occur when the mesh Peclet number
is too large i.e. when the grid is not sufficiently fine to resolve local features (e.g.

shocks and steep fronts) in the solution. In practice, as it is wasteful to refine
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Pe |t (x10°) | ¢min | Cmaz — 1 | Relative Error

7.5 0 |7.49x107*| 1.38 x 1072
1.0 15 0 [234x107*| 1.03 x 1072
22.5 0 |7.02x107°| 7.52x107°
7.5 0 [6.29x107%| 4.77 x 1072
5.0 15 0 [1.32x107"| 6.99 x 1072
22.5 0 148 x 1071 | 7.43x107?

Table 4.3: Error and Extrema at C'o,,,, = 5 with progressive time-stepping

globally, an adaptive local refinement strategy based on the solution is used.
Nodes are moved or added in order to evenly distribute a strictly positive weight
function such as the arc length. In this way, there are few computational points
in regions where the solution is “uninteresting”. The use of local spatial grid
refinement for the control of unphysical oscillations is not investigated in this

thesis.

Artificial Diffusion

In this method, extra diffusion is added to the numerical approximation to the
problem to damp out the unphysical oscillations. The amount of this artificial
diffusion decreases as the spatial and/or temporal mesh is refined so that the
discretisation remains consistent with the original governing equation.

In [91], this is implemented as an addition to the coefficient of longitudinal
dispersion in (3.5); and in [47], it is introduced as “anisotropic balancing dissipa-
tion” in the form of an extension of a Petrov-Galerkin method to 2-D. As with
local spatial grid refinement, this method is not investigated in this thesis.

This approach is not to be confused with the Leismann-Frind scheme in which
artificial diffusion is added to give stability with an explicit central discretisation

of the advection term, not to control unphysical oscillations.
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Flux-corrected Transport

Flux-corrected transport [9, 94] (FCT) uses local averaging of a monotonicity
preserving and a non-monotonicity preserving scheme to generate a new monotone
solution. In this section, the phrase “monotonicity preserving” is taken to mean
that the scheme does not introduce unphysical new extrema to the numerical
solution.

As the monotonicity preserving scheme is usually low order and the non-
monotonicity preserving scheme is usually high order, these solutions are denoted
by ¢ and ¢! respectively. The FCT method finds a weighted average of ¢ and
e which uses ¢/ almost everywhere and uses ¢” only in places where the high
order approximation struggles for monotonicity (e.g. due to steep fronts).

M

The (monotone) weighted approximation to the solution at the J* node, ¢},

is written as

c]y = OJJCIJI + (1 - on)c]:; (0 <ay<1), (4.4)

where a suitable averaging is achieved by choosing each of the ay such that ¥
is monotone and the proportion of the high order approximation is maximised.

Note that it is always possible to ensure that ¢¥ is monotone by taking ay =
ys p J y g

0v.J.)

Local bounds on the solution values at node J, ¢7% and 7", are required
in order to determine «;. Here these values are taken as the maximum and
minimum solution values at the previous time level on the element which contains

the trajectory from node J. Since the fluid velocity is constant for this test case,

this element is the one which contains the point, z, given by
z = z5 — v, Al

Since it follows the trajectory, this process for determining the local bounds is a
Lagrangian technique. FCT is most easily used with Lagrangian schemes because
the local bounds are available as a natural part of the scheme. Here, the scheme
is Eulerian and the Lagrangian process is used purely to determine bounds for

use in the application of FCT.
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For monotonicity, i.e. in order to ensure that no new unphysical extrema are
created,
min(ch. ") < e}t < max(ch, 5.

i.e.

L max

min(ch, ¢7™) < agef 4+ (1 — ay)ch < max(c, 7).
Subtracting ¢4 (where ¢§ > 0) gives,
min(ch, ¢7™) — 5 < ay(f] — %) < max(ch, 7y — 5.

Useful bounds can be generated from this two-sided inequality by considering the
three possible scenarios which can arise at each point.

Case I: If cfl > cb, the left inequality is redundant since min(c}, 7)) < k)

hence,
max(cy, cj**) — ¢
ar = H_ L
€ —<
Case 11: If ¢/ < %, the right inequality is redundant since max(c}, 7)) > k.
hence,
min(ch, i) — ok
ar = H_ L
€5 — ¢

Case 11T: If ¢ff = ¢k, then ¢ takes the same value regardless of the choice of a;.

To maximise the amount of the high order approximation in the weighted
average, the largest possible values of vy must be taken. Hence, the value of oy

(enforcing the positive weighting 0 < ay < 1) is,

L _maxy _ L
min{l max(c{q,cj L) CJ} (C? > c{j)
c;g — ¢

L _mwmnyN _ L
ay = min{l mm(ccﬁcj CL) CJ} (e < ) (4.5)
J J

Hence the FCT method is defined by the weighted average (4.4) with the
weights given by (4.5). In order to demonstrate this method, FCT is applied to

numerical solutions of (3.4). The non-monotonicity preserving scheme used to
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generate ¢/ is the Crank-Nicolson Galerkin finite element method (3.23). The
only requirements of the scheme for generating ¢y are that it should produce a
monotone solution and not add significantly to the overall cost of the solution of
the advection-diffusion. Next, a suitable scheme is presented and analysed.

The low order monotone solution is generated by a simple 1-D implicit upwind
finite difference discretisation of (4.1), i.e.

o)y, (G L (AR AAR)
At Az (A2)?

where ¢/ is the approximation to the solution at (interior) node .J and time level
n and the node index increases in the direction of v,. Fourier analysis shows that
this scheme is unconditionally stable, and a Taylor series expansion shows it to
be first order accurate in both space and time. The implicitness of the method is
important as it ensures stability at Courant numbers exceeding unity i.e. in the
regime where the high order scheme (3.23) is not monotonicity preserving.

This implicit upwind scheme is monotonicity preserving. In order to demon-
strate this, first consider the difference between the discretisation at node J and
node (J + 1), (i.e. the difference between (4.6) and the corresponding equation
centred at node (J + 1)), this is

iy — dj . At Ay D dipy =245 + 55 _ 0
At : Az ~ (Az)? '

where d} = ¢/, | — ¢jj. The matrix system for the differences is

Mdt =d"
where typically, the Jt% equation, with C'o = Uz% and % =D.. (AAZt)27 s
o)
( e (=Co—£2) (14 Co+252) (-%2) - ) ot | =
i
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The matrix M is real and square. Since C'o > 0 (due to the assumption on
the ordering of the nodes) and Pe > 0, then M has non-positive entries on the
off-diagonals, and positive entries on the diagonal. Hence, from [87] (Theorem

3.11 Corollary 1), M~! is positive (i.e. contains only positive elements). Now,
dn—l—l — ]\4—1dn7

so if the solution is monotone at time level n (i.e. all the entries in d” have
the same sign), then since M~ > 0, the solution at time level (n + 1) is also
monotone. Hence this scheme is monotonicity preserving.

(Note: For a multidimensional problem, a suitable low-order positive? discreti-
sation is an operator splitting method in which the advection is approximated
by a Lagrangian method (i.e. tracing particle trajectories) and the diffusion is
approximated using the Galerkin finite element method with a lumped mass ma-
trix. However, in the simple 1-D test case here, the particle trajectories are known
straight lines so the approximation to the advection is exact. Hence, this simple
Lagrangian method is not used here to illustrate FCT because it is too good for
this particular problem, i.e. it does not provide a suitable low order solution.)

In order to avoid the effects of the initial stiffness on the convergence rates,
the numerical experiments on the FCT method are run with initial data obtained
from (4.2) at some time, t, > 0, after the contaminant has entered the region.
This ensures that the initial profile is smooth and monotone. All the tests are
run to the same end time, ¢y, to allow comparisons of errors.

Table 4.4 shows some solution features at Courant number, Co = 5 (above
unity so oscillations are expected near steep fronts) for the low order scheme (4.6),
the high order scheme (3.23) and the FCT scheme (4.4). The refinement factor
is defined as

Relative error at time ¢y with discretisation (Az, At)
Relative error at time ¢; with discretisation (2Az, 2A¢)

Refinement Factor =

The refinement factor can be used to determine the practical order of accuracy
of the scheme.
The high order scheme is more accurate (i.e. has lower relative error) than the

low order scheme for each of the discretisations used. The low order scheme has a

2 Positivity is a multi-dimensional form of monotonicity preservation.
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Scheme || Az At Crmin Crmaw — 1 Relative | Refinement
(m) | (x10°s) error at t; Factor
50 50 2.69 x 1072 0 1.29 x 107! —
Low 25 25 6.87 x 1072 0 8.90 x 1072 0.69
order || 12.5] 125 7.04 x 1074 0 5.70 x 1072 0.68
6.25 | 6.25 2.19 x 107° 0 3.40 x 1072 0.60
50 50 1.22 x 1072 [ 7.92 x 1072 || 6.17 x 1072 —
High 25 25 4.91 x 107° [ 2.15 x 1072 || 2.49 x 1072 0.40
order || 12.5| 125 | 4.78 x 1077 [2.59 x 10~* || 7.63 x 1073 0.31
6.25 | 6.25 0 2.48 x 1078 | 2.03 x 1073 0.27
50 50 1.23 x 1072 0 5.08 x 1072 —
FCT 25 25 4.92 x 107° 2.10 x 1072 0.41
125 125 | 4.77 x 1077 0 7.29 x 107? 0.35
6.25 | 6.25 0 0 2.03 x 1073 0.28

Table 4.4: Performance of FCT at C'o =5 with to =2 x 107s, {; = 2.5 x 107s

refinement factor that tends towards 0.5 (= (3)') as the space and time-steps are

refined - typical of a scheme that is first order in space and time. The high order

scheme has a refinement factor that tends towards 0.25 (= (3)?), as expected
from a scheme that is second order in both space and time. Overall, the FCT
scheme has slightly lower relative errors than the high order scheme, and it also
appears to have a refinement factor that tends towards 0.25.

The high order scheme has unphysical maxima while these are not present
in either the low order or the FCT scheme. Figure 4.4 shows the solution for
the low order, high order and FCT schemes and the variation of the weighting
factor across the region at time t; for the discretisation with Az = 25m and
At = 25 x 10°s . FCT removes the unphysical maximum which is clearly visible
in Figure 4.4(b).

The FCT scheme is obviously more computationally expensive to implement

than the high order scheme. However, in the numerical experiments conducted

here, the FCT scheme requires less than 10% extra CPU time than the high
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Figure 4.4: Tlustration of FCT with Az = 25m, At = 25 x 10°s at ¢ = ¢;

order scheme alone (with exact solves on all the linear systems involved) so the
overhead is not great.

The weights used to make the FCT weighted average are optimal in the sense
that they maximise the amount of high order scheme in the solution while en-
forcing monotonicity. It is possible to recover other desirable properties in the
solution by selecting sub-optimal weights; this technique is used to recover con-

servation in [65].

4.1.4 Concluding Remarks

The Crank-Nicolson Galerkin finite element method gives good results (i.e. sec-
ond order in space and time and unconditionally stable) for the numerical solution

of the contaminant mass balance equation. Putting aside accuracy considerations,
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the unconditional stability allows arbitrarily large time-steps to be used. How-
ever, the method is prone to unphysical oscillations when the Courant number
exceeds unity. The techniques described in the Section 4.1.3 can be used to

control these unphysical oscillations.

4.2 The Henry Problem

The Henry problem is a 2-D saturated groundwater flow problem which involves
fresh-water in a confined aquifer® discharging to a vertical open sea boundary over
a diffuse wedge of sea-water that has intruded into the aquifer. An approximate
analytic solution to the Henry problem was given in the original paper [38], but
no known numerical model matches this solution.

In [88], it is suggested that there is an inaccuracy in the approximate analytic
solution caused by missing higher-order terms which were originally discarded to
reduce computation time. Since a large number of numerical models give nearly
identical results, this problem has been widely adopted for validation of variable
density transport models by comparison with accepted results from the literature.

The first numerical solution of this problem [63] used a finite difference method
to solve the fluid continuity equation and the “method of characteristics” (a La-
grangian approach) to solve the contaminant mass balance equation. Subsequent
solution approaches have employed other Lagrangian methods (e.g. [30]) and the
Galerkin finite element method (e.g. [40, 72]).

This test case is non-passive so, apart from the discretisation of the con-
taminant mass balance equation already examined in the tracer test case in the
previous section, it allows the discretisation techniques for both the fluid continu-
ity equation and components of the Darcy velocity vector to be examined. The

overall solution technique is that given in Algorithm 3.2.

3An aquifer is a geological formation that contains water and permits significant amounts
of this water to move through it under ordinary field conditions. A confined aquifer is one

bounded above and below by impervious formations.

86



4.2.1 Specification of the Henry Problem

Figure 4.5 shows the physical domain and boundary conditions for the Henry
problem (where p; is the density of pure sea-water). The notation is consistent
with that in Section 3.1.6. The confined aquifer is a 2mx1m rectangular region,
fresh-water enters on the right side and sea-water enters from the sea boundary
on the left side. There can be no flow of water or salt through the horizontal
faces.

q.=0 q,=0

A -
q,=0 -
~ 47 6
pez q,=6.6 x 10°m/s

la— =0

X
— -
—\

4.=0 q,=0

20m —————————— ™

Figure 4.5: Physical Domain and Boundary Conditions for the Henry Problem

In the original problem, the dimensionless salt concentration is set to unity (i.e.
pure sea-water) on the whole of the coastal boundary (the left face). However,
this causes a conflict when the freshwater flowing into the region tries to exit at
the Dirichlet sea-water face. In accordance with other authors [10, 30, 40, 72],
this problem is avoided by changing the coastal boundary condition so that it
consists of two components as shown in Figure 4.5. On the inflow part of the
coastal boundary (0 < z < z1) the dimensionless salt concentration is set to unity,
while on the remainder of the coastal boundary (z; < z < Im) the prescribed
dispersive solute mass flux, ¢¢, is set to zero.

Now z; is not known a priori. In the literature, there are two methods used
to determine this value. In the first (used in e.g. [40]), an initial iterate for z is
made and the problem is solved to the desired time with the position of z; fixed
at the initial iterate. This solution is analysed and the problem is reformulated,
but this time with z; at the position where the flow on the sea face boundary

changes direction from inflow to outflow, and the problem is solved again to the
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desired time. By repeating this procedure iteratively, the correct position of z;
can be obtained. In [40], convergence of this process is assumed, not proved.
In the second method, the position of zy is determined dynamically (i.e. while

the time-stepping is being performed) according to

G >0 for 0<2< 2,

g <0 for z;<z<1m

where ¢, 1s the horizontal component of the Darcy velocity vector, gq. Hence,
when the flow is directed into the region, there is a Dirichlet boundary condition
on the dimensionless salt concentration, but when the flow is directed out of the
region, a Neumann boundary condition applies. Forms of this dynamic boundary
condition can be found in [30, 72].

The second method for determining z; is used in this thesis because its flexi-
bility allows transient features which depend on the position of z; to be modelled
and only requires that the problem be solved once. In all tests, the value of z;
used at the start of the simulation is 0.5m.

The values of the fluid, material and physical properties for the Henry problem

test case are :

Physical : ¢ =9.81 m/s’
Fluid g =0.001 Pas, po = 1000 kg/m’ , ¢ = 24.99 kg/m”
Material : ¢ =0.35, k = 1.0193681 x 107% m?

(where I is the 2 x 2 identity matrix).

There are two standard Henry problem test cases in the literature, the first (and
original) is the constant dispersion coefficient case. In [29], it is noted that con-
stant dispersion coefficients are not sufficient to represent the dynamics that oc-
cur in saline intrusion, so the second (more physical) case has velocity dependent
dispersion coefficients. The dispersion parameters for these cases are given in
Table 4.5.

In this test case, a uniform triangular grid is used with 21 nodes in the z-
direction and 11 nodes in the z-direction (giving a total of 400 elements). The

grid is shown in Figure 4.6.
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Case ar(m) | ar(m) | D,,(m?/s)

Constant dispersion coefficient 0 0 6.6 x 107°
Velocity dependent dispersion coefficient | 0.035 | 0.035 0

Table 4.5: Values of parameters in dispersion tensor for Henry problem test cases

Figure 4.6: Grid for Henry problem

For this problem, the Courant number is

q| At
Co=——
0 oA
and Peclet number is
o - lal 2
¢ [|ID]2’

assuming Vp and VD are negligible. Here A is a representative spatial mesh
size. There are many ways of defining a representative mesh size which give

different Courant and Peclet numbers for the same problem. The actual forms

AL g\ qz)Z
Co= o (A:L') +<AZ

o V@A) + (A2
4 DJ

used in this thesis lead to

and
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Initially, the salt concentration everywhere inside the region is taken to be
zero. As with the 1-D tracer test case, when the salt initially enters the region,
the problem is quite stiff so unphysical extrema are expected. In order to control

these unphysical extrema, the progressive time-stepping strategy,
At;p1 = min(1.2A¢%;,600s) Aty = 15s

is used (where the subscripts denote successive time levels). This is similar to
the time-stepping approach used in [30]. The other oscillation control techniques
described in Section 4.1.3 were not found to be necessary for this problem.

As it is the properties of the discretisations that are being examined in this
chapter, the tolerance used in the coupling convergence criterion (Step 8 of the
coupling iteration given in Algorithm 3.2) is set impractically low. The purpose
of this is to remove any errors the iteration introduces. The actual convergence
criterion used is that the pointwise relative difference in the fluid density between
two successive coupling iterations changes by no more than 107!5. The effect of

the coupling on the overall process is considered in Chapter 7.

4.2.2 Results for Constant Dispersion Case

In this section, the performance of the overall numerical solution approach on the
constant dispersion coefficient case from Table 4.5 is examined.

Using the mesh and time-stepping strategy already described, the initial
Courant number and Peclet numbers are 0.18 and 13.01 respectively. At time
t=100 min., the maximum Courant number which has occurred during the time
history is 6.65 and the maximum Peclet number is the initial value.

The pressure at time t=100 min. (which results from Stage 2 of Algorithm 3.2)
is shown in Figure 4.7(a).

The horizontal isobars indicate that gravity, rather than the pressure gradient
arising from the boundary conditions, is the predominant influence in this system.

The resulting Darcy velocity field (from Stage 3 of Algorithm 3.2) is shown
in Figure 4.7(b). The size of the arrows in this figure indicate the magnitude of
the velocity. Due to the wide range of velocities which exist in the solution, the

direction of these velocities is hard to see and the unscaled Darcy velocity field is
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Figure 4.7: Pressure and Darcy velocity at t=100 min.
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included in Figure 4.7 in order to show the flow direction more clearly.

From the plots of the velocity field, the intrusion of the salt-water into the
region at the lower part of the left boundary can be seen, as can the entry of
freshwater at the right boundary. Most of the freshwater leaves at the upper part
of the left boundary but some mixing of the two fluids occurs in the region of
varying salt concentration. The position of z; on the dynamic sea boundary (see
Figure 4.5) at time t=100 min. is z; = 0.5m.

Figure 4.8 shows the positions of the salt isochlors (lines of constant concen-
tration) at time t=100 min (resulting from Stage 5 of Algorithm 3.2). The set of
isochlor contours that are plotted is {—0.1,0.1,0.3,0.5,0.7,0.9,1.1} - this is the
standard set of contours used in the literature for the Henry problem. The salt

forms the expected wedge shape.
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Figure 4.8: Salt isochlors at t=100 min.

In the literature, Henry problem results are given for the positions of the
salt isochlors only. The isochlors produced by the methods used in this thesis
are compared to some of those from the literature for verification of the overall

model.

92



Comparisons of the position of the 0.5 isochlor at various times with results
from [29, 72] are shown in Figures 4.9 and 4.10 - there is good agreement, showing

the transient accuracy of the whole discretisation approach for this problem.

Horizontal distance from sea-wall, x Horizontal distance from sea-wall, x
(m) (m)
m 00 025 05 075 10 125 15 1.75 20 m 00 025 05 075 10 125 15 1.75 20
P N A A A I A AR AR PPN 1 B A A H A S AT N AP
0754 o - Frind Fors 0754 o - Frind Fors
N r N b r
c ] N c ] N
s 1 r s 1 r
T 05 05 T 05 05
g j t g j t
K ] F K ] F
[} ] [ [} ] [
025+ o 025 025+ 025
] o L ] L
] o [ ] [
L o e L L L0 A e e e O L o L L A e e e O
00 025 05 075 1.0 1.25 15 1.75 20 00 025 05 075 1.0 125 15 1.75 20

(i) t=100 min. (ii) At equilibrium (¢ = 300 min.)

Figure 4.9: Comparison of position of 0.5 isochlor with [29]
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Figure 4.10: Comparison of position of 0.5 isochlor with [72]
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4.2.3 Results for Velocity Dependent Dispersion Case

In this section, the performance of the numerical discretisation approach on the
velocity dependent dispersion coefficient case from Table 4.5 is examined.

The initial Courant number and Peclet numbers are 0.18 and 6.36 respec-
tively. At t=360 min., the maximum Courant number which has occurred during
the time history is 6.59 and the maximum Peclet number is the initial value.
Figure 4.11 shows the pressure, direction of Darcy velocity vector and position of

the salt isochlors at time t=360 min.
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Figure 4.11: Solution at time ¢=360 min. in Velocity Dependent Dispersion Case
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Compared with the constant dispersion coefficient test case in the previous
section, there are fewer results for the velocity dependent case in the literature.
Figure 4.12 shows a comparison of the position of the 0.5 isochlor at equilibrium

(taken to be when ¢ = 720 min.) with results from [29].
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Figure 4.12: Comparison of position of 0.5 isochlor with [29]

As noted in [29], in the physical problem, there is a stagnation point at the
bottom of the aquifer at the dynamic equilibrium. This phenomenon cannot be
modelled in the constant dispersion coefficient case as there will always be dif-
fusion even when the flow is zero. However, the velocity dependent dispersion
coefficient is a mechanism which allows this feature to be modelled. In the numer-
ical solution of the velocity dependent dispersion coefficient case, the minimum
nodal velocity that occurs at equilibrium is 107°m/s and occurs at (0.9m,0.1m).
This can be compared with the constant dispersion coefficient case where the
minimum nodal velocity is 1.077 x 10™°m/s at (0.8m,0.1m) - i.e. the minimum

velocity in the velocity dependent case is an order of magnitude smaller.

4.3 Concluding Remarks

The tracer test case gives quantitative results for the discretisation of the con-

taminant mass balance equation. The discretisation method is demonstrated to
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give a solution that is second order accurate in both space and time and uncondi-
tionally stable. Its only disadvantage is that it is prone to generating unphysical
oscillations in the solution. Techniques for the control of unphysical oscillations
have also been given (with particular attention being paid to the flux-corrected
transport method).

The results from the Henry test case are more qualitative, and show that the
numerical solution approach used gives results that are in good agreement with
those from the literature for a more realistic saline intrusion problem.

In the following two chapters, the performance of the iterative methods that

are used to solve the discretised governing equations is examined.
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Chapter 5

Performance of the Symmetric

Positive Definite Solver

In the previous chapter, all the linear systems which occurred were solved “ex-
actly” (that is, to the limits allowed by finite precision arithmetic) since it was
the properties of the discretisations that were being examined. No consideration
was given to the cost this incurs. As stated in Chapter 2, this approach is not
feasible for very large sparse systems and, in general, iterative methods must be
used to solve these systems approximately.

The focus of this chapter (and the next one) concerns the performance of the
iterative solvers. This part of the work is divided into two chapters in order to
allow the symmetric and non-symmetric solvers to be examined separately. In
the current chapter, the performance of the preconditioned CG iterative solver
(Algorithm 2.3) on the linear systems with SPD matrices is examined. These
matrices arise during the computation of the fluid continuity and Darcy velocity
vector. The theoretical and practical properties of the solver are well understood
and documented in the literature (see Section 2.3.1) - the main purpose of this
chapter are to illustrate these properties, and to introduce the types of tests
that are carried out in the investigation of the performance of the non-symmetric
solvers in Chapter 6.

The matrices used in the tests in the following two chapters are taken from the
same problems as the discretisation test cases in Chapter 4. However, as the 1-D

tracer test case is passive, it does not require the discrete fluid continuity equation
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(3.19) nor the discrete Darcy velocity vector equation (3.20) to be solved. Hence
it does not require the solution of any systems with symmetric matrices, so the
systems used in the tests on the symmetric solver are representative ones taken
from the Henry problem.

Since the matrices in the discrete fluid continuity equation and the discrete
Darcy velocity vector equation have different properties, the tests are carried out
separately on the matrices from these equations.

To generate “representative” matrices, the constant dispersion Henry problem

test case (Section 4.2) is run under the following conditions :
e The variable time-stepping (4.3) is used with g = 0, Aty = 15s, a = 1.0 .

e The convergence criterion on the coupling iterations is the same as that
used in the previous chapter, i.e. the pointwise relative difference in the

density from one coupling iteration to the next is less than 10715,

e The mesh is the one shown in Figure 4.6 i.e. 21 x 11 (resulting in a matrix

of size n = 231).

e Alllinear systems (apart from the one being examined) are solved “exactly”,

i.e. 7 =107, Again, no consideration is given to the cost this incurs.

The representative matrix system is taken as the one generated in the first cou-
pling iteration of the 10th time-step. Variations around this “representative”
matrix system are taken to investigate behaviour further.

In order to exploit the sparsity in the matrix, the system used to hold and

access the sparse matrix is compressed row storage [5].

5.1 Matrix from Fluid Continuity Equation

The matrix in the discrete fluid continuity equation (3.19) is the finite element
stiffness matrix. This is symmetric and semi-definite but, with the imposition
of the physical boundary conditions associated with the problem, is SPD. It is
therefore a candidate for solution by CG.
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5.1.1 Low Tolerance Test

The convergence criterion is (2.12) applied to the preconditioned system, that is

convergence is taken to have occurred when
127 rill2 < 71277 B2

As a first test, a tolerance, 7 of 107 is requested and the diagonal preconditioner
is used. A typical convergence history for CG on the representative matrix system

is shown in Figure 5.1. This figure shows the preconditioned recurrence residual

o

| | | | | 1
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Mv
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log (12" r )

Figure 5.1: Iteration history for CG solver with low tolerance

which is obtained automatically during the iteration, i.e. from Algorithm 2.3,
Z_l’l"i = Z_l’l"i_l — OéiZ_lApi

as the solid line, and the preconditioned true residual (which must be generated

at the extra expense of another matrix vector multiplication) i.e.
Z_l’l"i = Z_l(b — sz)

as the dotted line - this second line is not visible because the two residuals are
in good agreement. The target residual for convergence (= 7||Z7'b||,) is also
shown in the iteration history in Figure 5.1 - this is the horizontal dashed line at
approximately -4.7.

Matrix-vector multiplications are generally the most expensive part of the al-

gorithm. Hence these residuals are plotted against the number of matrix-vector
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multiplications performed (Mv) (not including extra ones used to calculate true
residuals). For CG, since there is one matrix-vector multiplication per iteration,
Muv is equivalent to the number of iterations. However, some of the iterative
solvers used on the non-symmetric matrices in the next chapter use two (or more)
matrix-vector multiplications per iteration. In that case Mv is a better measure
than the number of iterations for the relative performance of the iterative meth-
ods, hence Mwv is used as the abscissa on iteration histories in this thesis.
Convergence is quite slow considering the size of the system (n = 231) and it
does not appear to be monotone (a local maximum at Mv = 37 is clearly visible).
This lack of monotonicity is not surprising since (from Section 2.3.1) it is the A™*-
norm of the residual, ||7;||4-1(= ||e;||4) that is minimised in CG, not the 2-norm
||7||2. In order to illustrate this, Figure 5.2 shows the iteration history of ||e;||4

on the same case as Figure 5.1. The error is calculated by comparing each iterate

o
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Figure 5.2: Iteration history (showing A norm of error) for CG solver with low

tolerance

with an “exact” solution (e.g. the one used was the result of a successful iteration
with 7 = 107'%). In agreement with theory, monotone convergence is achieved.
If the representative matrix is taken at a point later in the time history,
convergence is faster, e.g. only 34 iterations are required at the 100th time-step.
This is due to the smaller distance from steady state; that is, at later points in the

time history, the initial iterate (taken as the solution at the previous time-step)
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is “closer” to the required solution at this time-step.

5.1.2 High Tolerance Test

To fully test the solver, the convergence tolerance is tightened to 7 = 1075, This
tolerance is much harsher than would usually be requested in practice. It is used
to test the solver near the limits of the finite precision arithmetic used.

The resulting iteration history is shown in Figure 5.3.

0.0 T T T T T |
] 13 28 43 58 73 88
. Mv
2.5
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g |
7.5
-10.0—

Figure 5.3: Iteration history for CG solver with high tolerance

The recurrence residual deviates slightly from the true residual near the con-
vergence tolerance (due to rounding error in the recursion process becoming more
important in that regime). Apart from the lack of monotonicity in the 2-norm,
convergence is still relatively direct, if somewhat slow. A more effective precon-
ditioning matrix can be used to accelerate the convergence - this aspect of the

solver will be returned to later in this chapter.

5.1.3 Mesh Dependence of Convergence

It a finer mesh is used in the high tolerance test in the previous section, more
iterations are needed. This appears to scale proportionately to \/n (where n is
the number of nodes in the mesh) for this problem, e.g. the problem on an 11 x 6

mesh needs 42 iterations for convergence, on a 21 x 11 mesh it needs 88, while on

a 41 x 21 mesh it needs 177.
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The dependence of the convergence rate on the size of the elements (i.e. the
number of nodes in the discretisation) has already been noted. Practical problems
usually involve non-uniform meshes and spatially variable physical properties.
Both of these effects can lead to difficulties for conjugate gradient-type solvers.
To illustrate this, some high tolerance tests are run on distorted meshes. The
standard mesh for the Henry problem (Figure 4.6) with n, X n. nodes has its
(¢,7)th node at

(-1

— 1
(l’min + m(l’mm& - wmzn) s Zmin + (] )

m(zmax - Zmzn)) .
This mesh is distorted by keeping the same connectivity between nodes but tak-
ing the (¢, 7)th node to be at

(t—1)"

-1
(:z;mm + m(l’max - xmm) s Zmin + W(Zmax - me)

where p(€ IN) = 1 gives the standard (linear) mesh, p = 2 gives a quadratic
mesh, p = 3 gives a cubic mesh, etc. The quadratic and cubic meshes are shown
in Figure 5.4.

Most of the important activity in the Henry test case occurs in the bottom
left corner of the domain (in the orientation shown in Figure 4.5). Hence, the
distorted meshes used here are similar to those that would be used if spatial mesh
refinement was deemed necessary to increase accuracy or control oscillations in
the regions of steep solution gradient (as described in Section 4.1.3).

Figure 5.5 shows the iteration histories for the representative problem on
the distorted meshes. The harsh convergence criterion is used for these tests
(i.e. 7 =107 in (2.12)). The rate of convergence decreases as the amount of
distortion increases, and the lack of monotonicity in the iteration history becomes

more apparent.
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(a) Quadratic mesh

(b) Cubic mesh

Figure 5.4: Distorted meshes
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Figure 5.5: Iteration histories on distorted meshes
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5.1.4 Preconditioning

Mesh dependent convergence rates are undesirable as they mean that any mesh
refinement used to improve the quality of the numerical solution has a detrimental
effect on the performance of the linear solver.

The usual way of overcoming mesh dependent convergence is to incorporate
information on the irregularity of the mesh (or the physical properties) into the
formulation of the preconditioning matrix. At the very least, this involves the
use of off-diagonal terms in the matrix. A simple example of a suitable precon-
ditioning matrix is the Incomplete LDLT (or ILDLT) factorisation which is the
symmetric version of the factorisation given by Algorithm 2.4. As already stated,
preconditioning is also used to accelerate the convergence.

The properties of the ILDLT preconditioner depend on the ordering of the
equations in the system. Natural ordering is used to label the nodes in the meshes
in this thesis with the nodes being numbered fastest in the vertical direction.
Figure 5.6 shows the iteration histories for the representative problem on the
distorted meshes with an ILDL”T preconditioner. As in the previous section, the
harsh convergence criterion is used (i.e. 7 = 107'% in (2.12)).

Comparing Figures 5.5 and 5.6, convergence is much smoother and acceptably
faster (in terms of the number of matrix-vector multiplications) with an ILDLT
preconditioner. In both cases, convergence is achieved in fewer iterations than
with the diagonal preconditioner.

ILDLY preconditioned CG achieves a convergence rate for this problem which
is reasonably mesh-independent; that is, the number of matrix-vector multiplica-
tions required to achieve convergence stays approximately constant as the mesh
changes, only varying from 15 to 20 iterations as the mesh is distorted. In fact,
the number of iterations required by the ILDM?' preconditioned CG decreases
as the mesh is distorted, this may be because the distorted meshes are more able
to represent the “interesting” part of the region so that the initial iteration at a
given time step is more accurate.

This discussion of mesh independent convergence only considers the distortion
of the mesh. The rate of convergence still varies quite markedly with the number

of points in the mesh, even with the I LD LT preconditioner (e.g. the problem on
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Figure 5.6: Iteration histories with ILDLT preconditioner
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an 11 x 6 mesh needs 12 iterations for convergence, on a 21 x 11 it mesh needs
20, while on a 41 x 21 it needs 35). If truly mesh independent convergence is re-
quired, a more powerful preconditioner must be used; for example, an incomplete
factorisation which allows some degree of fill-in. The use of such a preconditioner
is not examined here.

Given that the ILDLT preconditioner is more expensive to compute (and
“invert”) at each iteration than a diagonal preconditioner, it is an issue whether
its use leads to a faster approach. Table 5.1 shows the CPU time spent in the
solver routines for both the diagonal and ILDLT preconditioners. These solver

timings indicate that ILDL” is indeed faster for this particular problem.

Mesh Number of Mvs | Time in solver!'/ seconds
type Diagonal | ILDL™ | Diagonal ILDLT
Linear 88 20 0.93 0.56
Quadratic 136 17 1.42 0.48
Cubic 191 15 1.99 0.43

Table 5.1: Performance of diagonal and ILDLT preconditioners

5.1.5 Comparison of CG with SOR

In order to compare the performance of CG with the classical splitting iterative
methods (Section 2.2), successive over-relaxation (SOR) is used to solve an “easy”
test case (7 = 1077 on a 21 x 11 linear mesh) and a “hard” test case (7 = 107'°
on a 21 x 11 cubic mesh). The results are shown in Tables 5.2 and 5.3 respectively
for different values of the SOR relaxation parameter, w.

Note that preconditioning is not used in SOR but the (diagonally) precondi-
tioned residual is monitored to allow comparison with diagonally preconditioned
CG. In order to facilitate this comparison, one SOR iteration is taken to require

the same amount of computation as one matrix-vector multiplication.

!These and, unless otherwise stated, all subsequent solver timings were carried out using the

SUN OS ForTRAN library (4.1) routine dtime on a SPARCstation 1+.
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w | Iterations required to achieve convergence
1.00 453
1.10 359
1.20 282
1.30 216
1.40 158
1.50 105
1.60 48
1.65 32
1.70 27
1.75 44
1.80 71
1.90 92

Table 5.2: Performance of SOR on “easy” test case

w | min|[Z7 ]|, after 462 (= 2n) iterations
1.00 7.42 x 107*
1.10 5.14 x 10~*
1.20 3.54 x 10~*
1.30 2.42 x 10~
1.40 1.63 x 1074
1.50 1.08 x 1074
1.60 7.51 x 1073
1.70 6.00 x 10~°
1.80 4.73 x 107°
1.85 3.33 x 10~°
1.90 1.28 x 1073
1.95 1.24 x 1077
1.99 2.66 x 1073

Table 5.3: Performance of SOR on “hard” test case
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From Table 5.2, the optimum SOR relaxation parameter for the matrix from
the easy test case is w ~ 1.7. When 1.6 < w < 1.8, convergence is faster
than diagonally preconditioned CG on the same problem (that taking 55 matrix-
vector multiplications). Techniques exist for generating approximations to the
optimal SOR parameter which suggests that SOR(w,,) is a strong rival to CG
for this problem. However, from Table 5.3, SOR does not achieve the required
convergence tolerance for the hard test case with any value of the relaxation
parameter so SOR is not as effective on problems with distorted meshes. Also,
due to the asymptotic nature of its convergence, SOR struggles on problems
where a tight tolerance is requested. Diagonally preconditioned CG converges in
191 iterations in this case and the use of an ILDL"T preconditioner dramatically

reduces this (to 15 iterations).

5.2 Matrix from Darcy Equation

The matrix in the discrete Darcy velocity vector equation (3.20) is the finite
element mass matrix which, even before the imposition of physical boundary
conditions, is SPD. As with the matrix from the discrete fluid continuity equation
in the previous section, it is a candidate for solution by preconditioned CG.
There are two velocity systems to solve, one for each component of the 2-D
velocity. Arbitrarily, the representative system is taken to be the one for the
z-component. As before, this representative system is taken as the one generated

in the first coupling iteration of the 10th time-step.

5.2.1 Low Tolerance Test

Figure 5.7 shows the same information as Figure 5.1 but for the representative
matrix system of the z-component of the Darcy velocity vector equation. As in
Section 5.1.1, a tolerance of 1077 is requested in the convergence criterion (2.12)
and a diagonal preconditioner is used.

Again, there is no visible difference between the preconditioned recurrence
residual and the true preconditioned residual. Convergence is obtained in a rea-

sonable number of iterations and is quite direct.
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Figure 5.7: Iteration history with CG solver - low tolerance

As with the system from the fluid continuity equation, if the representative
matrix is taken at a point later in the time history, convergence is faster (e.g. at
the 100th time-step, 12 iterations are needed for convergence) due to the smaller
distance from steady state.

If different mesh sizes are used, approximately the same number of iterations
are required by the solver (e.g. 14 iterations are required for convergence for the
problem on each of the 11 x 5,21 x 11 and 41 x 21 meshes).

In [89], it is shown that

o for any symmetric fully assembled finite element matrix, the eigenvalues of
the diagonally preconditioned matrix are bounded by the eigenvalues of the

diagonally preconditioned element matrices, and

e it is possible to bound the upper and lower eigenvalues of certain diago-
nally preconditioned element mass matrices independently of the size of the
elements or the mesh irregularity. This result applies to a wide range of
commonly used elements, including the linear triangles and bi-linear rect-

angles used in this thesis.

In [89], these results are used to derive mesh independent bounds on the conver-
gence rate of the diagonally preconditioned conjugate method (via (2.15)) applied
to the global finite element mass matrix. This explains the behaviour of the solver

described in the previous paragraph.
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Due to the way physical properties such as porosity, conductivity and dis-
persivity are treated as constants on elements, their presence does not affect
the eigenvalues of the diagonally preconditioned element matrix. Hence mesh
independent convergence for the diagonally preconditioned mass matrix is also
expected for systems with variable coefficients.

These element bounds are not as useful for the global finite element stiffness
matrix which occurred in the previous section because the element stiffness matrix
is always singular. Hence the lower eigenvalue is always zero and there is no bound

on the condition number.

5.2.2 High Tolerance Test and Preconditioning

Figure 5.8 shows the iteration history for the same representative Darcy velocity

vector equation with the harsher convergence criterion of 7 = 107'*. Convergence

0 T T T T T |
1 2 7 12 17 22 27
: Mv
-5—
N |
= 10—
(@)
g |
-15_

Figure 5.8: Iteration history with CG solver - high tolerance

is still acceptably fast and direct.

As already stated, the diagonal preconditioner gives mesh independent con-
vergence for a system in which the matrix is the finite element mass matrix.
Hence a more sophisticated preconditioner is not necessary for this matrix sys-
tem. However it is possible that a more powerful preconditioner leads to a faster
solver.

In order to investigate this possibility, an /LD L” preconditioner is also used to
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solve the representative matrix (with the three different meshes). Results which
allow a comparison of the speed of the two different preconditioned methods are

shown in Table 5.4. The ILDL" preconditioned CG consistently requires fewer

Mesh Number of Mvs | Time in solver / seconds
type Diagonal | ILDLY | Diagonal ILDLT
Linear 27 10 0.80 1.12
Quadratic 27 10 0.80 1.14
Cubic 29 10 0.85 1.12

Table 5.4: Performance of diagonal and ILDL" preconditioners

matrix-vector multiplications to reach convergence than the diagonally precon-
ditioned version. However, due to the extra expense of computing the ILDLT
factorisation and then solving the upper and lower triangular systems at each it-
eration, the diagonally preconditioned CG method spends less time in the solver.

So the diagonal preconditioner is more effective for this system.

5.3 Concluding Remarks

The preconditioned conjugate gradient method is a good solver for the SPD linear
systems that arise in the discrete solution of the fluid continuity equation and the
Darcy velocity vector equation. It is robust and efficient and requires a relatively
small amount of storage. The experimentsin Section 5.1.5 indicate that CG more
effective than classical iterative methods such as SOR.

The experiments conducted in Sections 5.1.4 and 5.2.2 indicate that the di-
agonal preconditioner is more effective than the ILDLT preconditioner for the
systems for the Darcy velocity vector components, while the /LDLT precondi-

tioner is more effective for the system which has to be solved for the pressure.
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Chapter 6

Performance of Non-symmetric

Solvers

In this chapter, the performance of some non-symmetric linear solvers (described
in Section 2.3.2) on the system (3.23) are examined. As in the previous chap-
ter, this is done by numerical experiment. The test cases are generated by the
problems which were used to examine discretisations in Chapter 4.

In Chapter 5, which dealt with the performance of solvers for the linear sys-
tems with SPD matrices in the model, only CG was used (apart from the brief
use of SOR for comparison purposes). Preconditioned CG is generally accepted
as the most effective solution technique for large sparse SPD systems. When the
class of matrices in question is large, sparse and non-symmetric, there appears to
be no such obvious best (at the moment). Due to the success of CG in the SPD
case, much recent research on solvers for large sparse non-symmetric systems has
concentrated on Krylov subspace methods (for example the methods described
in Section 2.3.2).

There have been many comparative studies on non-symmetric Krylov sub-
space methods in the literature. In [55], each of a selection of these methods
is shown to have the best performance on some carefully constructed examples,
and the worst on others. More empirically based studies, where various meth-
ods are compared in practical situations (e.g. plasma turbulence modelling [11],
groundwater flow [61], semiconductor device modelling [66]), have also shown

that the relative performance of these methods depends on the situation (and the

113



hardware constraints, e.g. fast memory).

Since so many comparisons of the different methods already exist then, in
the early part of this chapter, a representative of each of the two main classes
of non-symmetric Krylov subspace methods (i.e. one possessing a minimisation
property and one based on short term recurrences) are used on the non-symmetric
linear system (3.23). The two methods compared are GMRES and Bi-CGSTAB.
Comparisons with other methods can then be made by the use of results from

the literature.

6.1 Comparison of Bi-CGSTAB and GMRES

In this section, the performance of GMRES (Algorithm 2.5) and Bi-CGSTAB
(Algorithm 2.8) are compared on the linear systems arising in the solution of
the discrete contaminant mass balance equation in the 1-D tracer test case from
Section 4.1. As in Section 4.1, this 1-D test case is solved on a 2-D mesh. A mesh
of linear triangles is used (a single column of rectangles with the same diagonal
connected in each).

In all the tests involving the 1-D test case (i.e. the whole of this chapter apart
from Section 6.6), the preconditioning matrix, 7, is the diagonal of the system
matrix. As in the tests on the SPD solver in the previous chapter, convergence

is taken to have occurred when
1727 il < 7| 2710 2,

and, for these tests, the tolerance is 7 = 1075,

The matrix in this problem is completely characterised by the Courant and
Peclet numbers (which were defined in Section 3.4.3). The Courant number
(C'o) measures the proportion of the advection matrix to the mass matrix, while
the Peclet number (Pe) measures the proportion of the advection matrix to the
diffusion matrix. In order to examine the effects of varying these parameters,
two different mesh sizes are used to give different Peclet numbers, and different

(constant) time-steps are used to give different Courant numbers.
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The test case is run from the initial condition for 10 time-steps and the average
performance is assessed over this period. Table 6.1 shows the average number of
matrix-vector multiplications used to reach convergence per time-step for the two
solvers. For both solvers, the average number of matrix-vector multiplications
increases with increasing Courant number i.e. as the mass matrix becomes less

dominant.

Average Mwvs to convergence

Pe| n |Co| Bi-CGSTAB GMRES
0.5 13.2 11.5
1 18021 1 20.0 17.2
3 61.4 54.6
0.5 10.2 8.3
5 1162 1 18.0 13.4
3 96.4 33.9

Table 6.1: Average Mwvs to convergence over first 10 time-steps

Bi-CGSTAB always requires more matrix-vector multiplications to reach con-
vergence, the difference being greatest at high Courant number. This is as ex-
pected since GMRES is the optimal Krylov subspace method in terms of min-
imising the norm of the residual over a given number of iterations. Hence, if
the selection of the non-symmetric solver is based purely on the matrix-vector
multiplication count, GMRES is the best Krylov subspace method for use on
non-symmetric systems. However, as already stated in Section 2.3.2, the amount
of work and storage required in GMRES increases with each iteration (whereas
the amount of work and storage per iteration remains fixed with Bi-CGSTAB)
so the matrix-vector count is not the fairest comparison of the two methods.

In order to allow a fairer comparison to be made between GMRES and Bi-
CGSTAB, the average CPU time in the solver per time-step for the set of problems
from Table 6.1 is shown in Table 6.2. Due to the greater average work per iteration
for GMRES, Bi-CGSTAB is consistently faster for these problems (and it requires

a known, relatively small, fixed amount of storage).
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Average time in solver / seconds

Pe| n | Co| Bi-CGSTAB | GMRES | GMRES(10)
0.5 0.68 0.76 0.71
11802 1 1.01 1.26 1.01
5 3.03 7.13 3.21

0.5 0.13 0.14 0.14

5 1162 1 0.22 0.24 0.22
5 1.08 1.63 0.80

Table 6.2: Average time in solver over first 10 time-steps

As already stated in Section 2.3.2, the restarted version of GMRES is used to
control the storage required by the method and limit the average amount of work
per iteration. In order to compare the performance of restarted GMRES and
Bi-CGSTAB, Table 6.2 also shows the average time in the solver for GMRES(m)
(Algorithm 2.6) with m = 10.

GMRES(10) and Bi-CGSTAB require approximately the same time to achieve
convergence. GMRES(10) requires an external parameter, namely the restart
period. The restart period used here (m = 10) is chosen so that the storage
required to hold the search vectors is of the same order as the storage required
to hold the matrix.) It is possible to get better performance from GMRES(m)
by choosing an optimal restart period but this is not investigated here. The need
for an external parameter is an undesirable feature of a solver.

Since it takes approximately the same amount of CPU time as GMRES(10)
(and does not require an external parameter) then, from these simple tests, Bi-
CGSTAB appears to be more promising for the systems that are generated by
discretising the contaminant mass balance equation. However, Bi-CGSTAB does
not have the stable, monotonic convergence properties of GMRES (or its restarted
version). For this reason, there is a need to examine the performance of Bi-
CGSTAB under harsher conditions to assess its robustness - this is the subject

of the next section.
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6.2 Tests on the Robustness of Bi-CGSTAB

In order to test the robustness of Bi-CGSTAB, the same test cases as in Section 6.1
are used, but an extreme tolerance is requested in the convergence criterion. The

tolerance requested, 7, is the machine round-off unit.

Definition 6.1 The machine round-off unit, ey, is the smallest floating point

number such that,
fl(@) :=2(1 + em)

where fl denotes a finite precision operation.

For the machine and compiler used (SUN £77 on a SPARCstation 1+4) the
round-off unit is

ey & 2.22045 x 10716

in double precision.

The condition number of a matrix measures the sensitivity of the solution of
the system of linear equations to errors in the data. In finite precision, these
errors are caused by machine rounding. A combination of the machine round-off
unit and the condition number of the matrix indicate size of the smallest residual
norm that can be achieved. Hence, if the matrix is ill-conditioned (i.e. has
large condition number), it will be impossible to achieve the tolerance required
in these tests (i.e. the machine round-off unit). However, for all the matrices
in the robustness tests, the condition number is of O(10') (e.g. for the matrix
generated with Co = 0.5 and Pe = 1, the condition number! is ry(A) = 4.2847;
while for the matrix with C'o = 20 and Pe = 5, ky(A) = 37.4391. Hence it should
be possible to achieve, or get close to, the required tolerance.

Some additional tests at larger Courant numbers are also included. Increasing
the Courant number increases the contribution of the advection matrix (the source
of the non-symmetry) to the overall properties of the matrix in the system.

Due to the harshness of these tests, there is a likelihood that the linear solver

will fail to converge. The use of a non-converged solution in a subsequent time-

!The condition numbers quoted for these matrices was obtained using the cond function in

MATLAB.
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step would make analysis of the results difficult so, in order to avoid this scenario,
the simulation period for the robustness tests is a single time step.

Also, to reduce the effect of initial stiffness in the test case, the tests are
started from time tq = 7.5 x 10° seconds. The initial profile is generated by the
analytic solution, i.e. (4.2).

Table 6.3 shows the minimum residual which occurs during the iteration his-
tory, and the corresponding matrix-vector multiplication count at which this min-

imum occurs (Mwv). A maximum of 2n matrix-vector multiplications are allowed.

- NZ 7 el
Pe| n |Co|| min-————| Mv
© |1Z7b,

0.5 | 4.66 x 107'% | 32

1 5.39 x 1071 | 52
2 1.86 x 10712 | 66
1 1802 5 1.60 x 107! | 126
10 || 1.85 x 1072 | 166
20 || 3.21 x 1077 | 200
40 | 1.14 x 107* | 236
0.5 3.74 x 107 | 30
1 3.95 x 1071 | 42

2 4.08 x 107 | 60
5 |1162] 5 1.12 x 1077 | 118
10 || 855 x107% | 178
20 || 243 x 1072 | 194
40 || 413 x 1072 | 228

Table 6.3: Performance of Bi-CGSTAB in robustness tests

Convergence to the required tolerance is not achieved in any of the test cases.
In all but two of the cases, the minimum residual norm achieved is not even
within three orders of magnitude of convergence. The condition numbers of the
matrices (as already quoted) suggest that a much smaller residual norm can be

achieved in most cases.
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Figure 6.1 shows the iteration histories for two of the cases in Table 6.3.
In both graphs, the decrease in the residual norm is steady and (reasonably)
fast in the early stages of the iteration. However, this good early convergence
behaviour stops at some stage and the norm of the residual shows a general trend
of increasing - this is representative of the behaviour in most of the robustness
tests. Note that, as with the iteration histories in the previous chapter, the
true residual is also shown in Figure 6.1, as a dotted line (not to be confused
with the dashed line which represents the required convergence target). It is
indistinguishable from the recurrence based residual.

Table 6.4 shows the maximum relative error between the recursion-based pre-
conditioned Bi-CGSTAB residuals, Z7'7;, and the true preconditioned residuals,
Z=tplrue (= Z71(b— A=) ), and also the matrix-vector multiplication count when

this maximum occurs.

Z7Hrlirve —p;
Pe| n |Co max | ||Z(_211°5T“6||2)Hz Mwv
0.5 5.30 x 1072 32
1 8.64 x 10~* 52
2 4.47 x 107 66
1 1802] 5 1.55 x 1074 126
10 2.47 x 107 166
20 2.37 x 1078 200
40 7.66 x 107 236
0.5 5.28 x 1072 30
1 4.61 x 10~* 44
2 1.62 x 107° 60
5 [162| 5 1.16 x 1078 118
10 2.29 x 10710 178
20 1.28 x 10712 194
40 2.03 x 10713 290

Table 6.4: Relative error in residuals
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Figure 6.1: Sample iteration histories for Bi-CGSTAB in robustness tests
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Considering the size of the residuals involved, the relative errors are quite
small. This indicates that a fatal or near-fatal breakdown (see Section 2.3.2) has
not occurred in the underlying nonsymmetric Lanczos process. But the small
discrepancy between the true and recursion residuals suggests that the recursion
process has been spoiled, leading to the convergence difficulties. Indeed, compar-
ing Tables 6.3 and 6.4, the onset of divergence coincides with the largest relative
error in the computed residual (apart from one case).

Hence, the cause of the convergence difficulties must be the rounding errors
that occur in finite precision arithmetic. Since Bi-CGSTAB is based on three-
term recurrence relations and possesses no quasi-minimisation property, there are
no bounds on its rate of the convergence. Because a finite precision phenomenon
is occurring in this case, the lack of convergence theory is compounded.

As this point, due to the convergence problems with Bi-CGSTAB, an option is
to return to GMRES(m ) and accept the need for an external parameter in order to
gain the monotone, robust convergence. Apart from the exact arithmetic theory
on the convergence of GMRES (see Section 2.3.2), recent work [35] has developed
theory for the finite precision behaviour of methods of this type.

Despite all the theory supporting GMRES, due to the promise shown by
BiCGSTAB in Table 6.2, the option to use GMRES(m) is not taken here. In-
stead the convergence difficulties of Bi-CGSTAB are examined in an attempt to
overcome them.

Current knowledge of the practical behaviour of Bi-CGSTAB falls into three

main categories:

e Investigations on the effects of the presence of extreme (large, small and
negative) eigenvalues in the eigenspectrum of the coefficient matrix (e.g. for
a comparison of this type with Bi-CG and CG-S, see [12]). These studies

tend to use matrices constructed to generate a particular eigenspectrum.

o Comparisons with other solvers on matrices arising from the solution of

practical problems (e.g. Peters [61]).

e Examination of performance on a parameterised family of matrices, an ex-

ample of which can be found in [73] where the parameters in a discretised
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reaction-diffusion equation are varied to control the eigenspectrum of the
matrix, and the effect of asymmetry and dynamic instability (eigenvalues

with both positive and negative real parts) on the performance of CG-S and

Bi-CGSTAB is examined.

By necessity, due to the lack of convergence theory for Bi-CGSTAB, all these
investigations rely on numerical experiment. The tests conducted in this work
most closely resemble the last of these categories, the matrices used being param-
eterised by the Courant and Peclet numbers.

In the following section, techniques for improving the finite precision behaviour
of Krylov subspace methods are investigated by numerical experiment on the set

of problems used in the robustness test cases in this section.

6.3 Improving the Robustness of Bi-CGSTAB

In this section, techniques for improving the convergence behaviour of Krylov
subspace methods are examined in an attempt to prevent the divergent behaviour
in the robustness tests highlighted in Figure 6.1. Some techniques for improving
convergence behaviour of Krylov subspace methods currently in the literature

are:

e residual smoothing [90] - an auxiliary sequence of vectors, ®;, is generated
from non-monotonic iterates, @;, by the recursion
g = X9
r, = (1_77i)§3i—1‘|‘77iwi (Z = 1,2,...),
where each 7; is chosen to minimise

b — A{(1 —n)x;1 +nx} |2,

over n € IR. The parameter 7, is given explicitly by
siy(ri — si1)

= s

=

where s,_1 = b — A®;,_;. The vectors in the auxiliary sequence, &;, are

iterates with monotone non-increasing residual.
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e random initial iterate - the Mismatch Theorem [80] indicates that a
breakdown in the Lanczos process can be caused by “irregular” left- and

right-eigenvector distributions in rg.

Joubert [46] suggests that this problem can be overcome by using an appro-
priately scaled initial vector consisting of random entries. Since good initial
iterates are often available in time-dependent and non-linear problems, it is

more suitable in these cases to add a perturbation to the initial vector.

e restarting - if the recursion process is spoiled by rounding errors then, by
restarting the iteration with a new initial iterate (e.g. the latest one), the
current numerical Krylov subspace is discarded and with it all the rounding

errors thus far. This method is advocated (although for other reasons) for

Bi-CGSTAB in [84].

o look-ahead Lanczos - as already described in Section 2.3.2, the non-
symmetric Lanczos process (which underpins the three-term recurrence re-
lation for the methods described in Section 2.3.2) can suffer fatal or near-
fatal breakdown. To remedy this, the look-ahead Lanczos process [27, 60]
allows the use of block pivots in the iteration steps where the scalar piv-
ots of the standard Lanczos process are expected to encounter difficulties.
This approach is used in practical versions of the QMR method described
in Chapter 2.

e partial orthogonalisation [13]. In the Lanczos process, after an eigen-
vector is accurately determined, loss of orthogonality (or bi-orthogonality
in the non-symmetric case) due to rounding errors causes the creation of
copies of the same eigenvector. These repetitions in the underlying Lanczos
process slow the convergence of the iterative method. In order to overcome
this problem, it is possible to explicitly impose full orthogonality by per-
forming a Gram-Schmidt orthogonalisation on the vectors of the Krylov
subspace as they are produced, e.g. GMRES. However this is expensive in
terms of both computing time and storage, particularly if a large number

of iterations are required.
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In [13], a partial orthogonalisation approach is introduced and investigated
for CG and Bi-CG. In this method, a new vector r; is orthogonalised with
respect to the previous normalised vectors r;/||7;||2 (j < k) of the base and
added to this base until a given iteration. After this, each new vector is only
orthogonalised with respect to the base without increasing its dimension.
Note that this requires that, once constructed, the base is kept until the

process is converged.

e variants of Bi-CGSTAB (e.g. Bi-CGSTAB2 [36], Bi-CGSTAB(() [74] ) allow
quadratic polynomials in the construction of @;(A) in (2.19) rather than
the linear components, (1 —w;A), used in the original van der Vorst version.
These methods attempt to avoid stagnation in the Bi-CGSTAB iteration
history which occurs when the eigenvalues of the matrix are almost purely

imaginary.

Look-ahead Lanczos is not investigated in this thesis as the convergence prob-
lems are not caused by fatal or near-fatal breakdown. The partial orthogonali-
sation looks promising and should be investigated for systems which suffer from
the problems highlighted in this thesis, but this avenue of research has not been
pursued here. Conversely, the random initial iterate approach is not expected to
improve the convergence behaviour, but results are given for this approach for

completeness.

6.3.1 Residual Smoothing

Rather than the residual smoothing algorithm already described, the following
one (from [95]), which is the same in exact arithmetic but has better numerical

rounding properties, is used in this section.

Algorithm 6.1 RESIDUAL SMOOTHING
This algorithm performs single parameter residual smoothing on the iterates pro-
duced by the Bi-CGSTAB method of Algorithm 2.8 to produce a sequence of

iterates with monotone (non-increasing) residual norm.

To :=7To
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530 = &9

Ar =0
Ax:=0
fore =1,2,...,

Generate a, w, t, v, y and z by a Bi-CGSTAB iteration (Algorithm 2.8)
Ar = Ar + av + wt

Az = Ax + oy + wz
L (?i—lvAr)

"= (Ar, Ar)

’Fi = "72'—1 — UAT‘

532' = 532'_1 + UAQZ

Az = (1 —n)Ax

Ar = (1 —n)Ar

Table 6.5 is the residual smoothed equivalent of Table 6.3, showing the mini-
mum preconditioned residual achieved.

Comparing the two tables, the residual smoothing produces residuals that
are smaller (in the pre-conditioned 2-norm sense) than the Bi-CGSTAB residuals
from which they are generated. However, in general, the improvement is not
enough to warrant even the small amount of extra work involved.

The residual smoothing does not improve convergence significantly because
the original Bi-CGSTARB iterates on which the smoothing is based are still prone
to the same problems as before; hence the residual smoothing algorithm stagnates
(i.e. n = 0) when Bi-CGSTAB stops converging.

Figure 6.2 is the residual smoothed equivalent of Figure 6.1. An obvious
advantage of the process is that the solution is monotone non-increasing, but the
effect is only marginally better than the cheaper method of storing the iterate
corresponding to the smallest residual norm thus far.

In [95], it is shown that the QMR method (described on page 38 of this
thesis) is equivalent to a residual smoothing process applied to Bi-CG iterates.
From [16, 28], using the notation already introduced for QMR, the quantity that

is minimised in the QMR algorithm at the ‘" iteration,
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Figure 6.2: Sample iteration histories for residual smoothing in robustness tests
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. NZ7 7]
Pe| n |Co m}nﬁ
0.5 3.59 x 107'?
1 3.08 x 10712
2 1.09 x 10712
1 |802| 5 || 4.44 x 10712
10 || 1.47 x107?
20 || 2.05 x 1077
40 || 4.66 x 107°
0.5 | 8.89 x 107'?
1 1.33 x 10713
2 1.45 x 10711
5 [ 162 5 2.76 x 1078
10 || 2.93 x 107
20 || 7.86 x 107*

40 1.54 x 1072

Table 6.5: Robust test performance with residual smoothing

QMR _ 5 _i
2; = prey — Hiny;

is related to the Bi-CG residual at the 7*® iteration, »27°% by

MR
Bi-CGH - HZ? IE
i 2=

2
(WD

I

From this relationship, it can be seen that fast convergence of QMR corre-
sponds to fast convergence of Bi-CG, and slow convergence of QMR corresponds

to Bi-CG spikes (i.e. QMR stagnation corresponds to Bi-CG breakdown).
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6.3.2 Random Initial Iterate

As the convergence difficulties are not caused by breakdown, it is not anticipated
that the technique of using a random initial iterate will improve the convergence
behaviour of Bi-CGSTAB. These tests are only included for completeness.

Since a good initial iterate, &, is available in this problem, a vector of random
entries (xp) is added to perturb it (to disrupt irregular left and right eigenvector
distributions) and generate a new initial iterate @o. The size of the random

perturbation is controlled by scaling and a factor, y, i.e.

- £ .
Ty = &g + XHonzﬁ with &p = {xz}ZZIn and —1<uz; <1.

Table 6.6 shows the minimum residual achieved and the corresponding matrix-

vector multiplication count for the robustness tests with different perturbation

sizes.
Pe|Co x =1073 x = 1072 x = 1071
. NZ7 s . 27l . 127
min +————— | Mv || min +—=——--—— | Mv || min ——————~ | Mv
Mz " 7] " 7]

0.5 2.59 x 10712 | 46 || 5.03 x 107! | 34 2.03 x 1072 | 26
1 1.10 x 107 | 40 || 5.47 x 1071 | 38 || 1.97 x 1071 | 44
2 4.05 x 1071 | 72 || 9.68 x 10~ | 120 || 2.09 x 107% | 122

115 2.04 x 107 | 128 || 7.52 x 107% | 144 | 1.61 x 1077 | 146
10 1.14 x 1072 | 230 || 4.21 x107® |230| 3.32x107% | 230
20 1.92 x 1072 | 404 | 1.81 x 107% | 360 | 2.82x 1077 | 342
40 || 5.55 x 1078 | 474 | 4.63 x 1077 | 442 || 1.34 x 1075 | 488

0.5 834 x107" | 42 || 9.19 x 107" | 34 | 1.65 x 107'° | 34
1 2.83 x 107 | 40 || 6.20 x 1071 | 32 3.19 x 1072 | 36
2 6.73 x 1071° | 64 8.08 x 1072 | 50 1.03 x 1077 | 60

51 5 2.74 x 1078 | 120 || 1.51 x 1077 [ 146 | 3.95 x 1077 | 126
10 || 443 x1077 196 || 7.23 x 1077 [ 204 || 1.31 x107¢ | 222

20 || 3.75 % 107% [ 300 || 9.73 x 107 | 300 | 2.06 x107° | 290

40 || 8.86 x 107° 322 | 1.23 x107* |312| 3.36 x 107* | 324

Table 6.6: Bi-CGSTAB robustness test performance with random initial iterate
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If the results in Table 6.6 are compared with those in Table 6.3, it can be seen
that applying a random perturbation to the initial vector improves the robustness
of the Bi-CGSTAB iteration (in the sense that the minimum residual is closer to
the robustness test convergence criterion) for high Courant numbers, but it has a
detrimental effect for low Courant numbers. The most effective perturbation (in

terms of achieving the lowest minimum residual) is the smallest, y = 1072 (i.e.

0.1 %).

54
~ 0 T W T T T ]
= ] 264 800 1068 1336 1604
i T Mv
g *]
.10a
(a) Co=0.5, Pe=1
0.0
2.5
5.0
N ]
= 7.Sj
g
'1O-Oj
-12.5]
-15.0-

(b) Co =20, Pe =5

Figure 6.3: Sample iteration histories for random initial iterate (y = 107)

Figure 6.3 is the equivalent of Figure 6.1 with a random perturbation (with

x = 107%) to the initial iterate. The underlying trends in the convergence histories
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in both these figures are the same. In general, as expected, this technique does

not overcome the convergence difficulties in the robustness tests.

6.3.3 Restarting

The original Bi-CGSTAB paper [84] recommends that practical implementations
of the method should monitor sensitive values and, if any of these become too
small, the iteration should be stopped and Bi-CGSTAB should be restarted with
a new choice of initial iterate. The suggested sensitive values are the scalars
pit1 and (79, v) (see Algorithm 2.8). These values are highlighted because they
can be close to zero without convergence having taken place, and are used as
denominators in the algorithm (so are particularly sensitive to round-off error).
If these sensitive values become equal to zero, they cause a division by zero which
leads to a total breakdown in the algorithm - this is known as a fatal breakdown.

The logical choice of new initial iterate is either the last iterate produced
before the restart, or the iterate corresponding to the smallest residual achieved
thus far.

Note that, in practice, a trap must be included in the restart algorithm to
ensure that, after a restart has been performed, another one is not attempted
immediately as this would lead to a fixed cycle of producing the same iterate
repeatedly.

Due to the cost of re-calculating the initial residual and initialising vectors,
each restart requires approximately half the computational expense of a Bi-
CGSTAB iteration. Restarting is often used in the literature (e.g. [45, 46, 84])

but the criteria tend to be heuristic and of the form,
Restart if monitor < tolerance.

In most cases, no guidance is given on the origin of the monitor or the sensitivity
of the criterion to the tolerance.

It the restart criterion is not severe enough, then restart is premature and
good convergence behaviour can be interrupted and spoiled. This is similar to the
problem that can arise in the practical implementation of GMRES (GMRES(m))

which, in order to decrease the storage requirements and average work per it-
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eration, restarts after every m iterations. If the restart criterion is too lenient,
rounding errors can build up and cause the divergent behaviour demonstrated in

Figure 6.1. In this section, various forms of restart criteria are examined.

Restart monitors based on sensitive values

In the first criteria examined, the two sensitive values recommended in [84] are
used as the monitors, and the round-off unit definition is the basis of the tolerance.

The operation in the Bi-CGSTAB algorithm (Algorithm 2.8) where p is used

as a denominator is

pi «
—(p —wv).
Pi-1 W

p:=ri1+

From Definition 6.1, serious rounding errors are expected to occur in this partic-

ular operation if,

‘ Jpl) —we |
ri—l(])
or (1 <j < n)v (6-1)
‘ﬂ{po) —w;v(j)}‘ L
7“2'—1(]) €M

where 8 = (pi/pi—1)(a/w) and v(j) is the j*® component of v. The expression
is undefined when an entry in the residual vector is zero so these cases must be

excluded. Hence a more suitable form of (6.1) is

5{p(7) —wv(G)}] < enrlria()]

ri—1(j) #0 and or (1 <j5<n) (6.2)

5pU) — <o)} > —— [riali)

This restart criterion requires no external parameters other than the easily avail-
able round-off unit. However, experimental investigations show that in all the
robustness tests, the monitor value is always well within the bounds in criterion
(6.2). This is not surprising since an event such as (6.2) indicates a fatal or near-

fatal breakdown, while the results from the previous robustness tests indicate
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that the convergence difficulties are caused by a gradual corruption rather than

a total breakdown.

By performing numerical experiments and observing the monitor value over

the set of robustness tests, it was noticed that the breakdown in convergence

coincides with the monitor growing larger than 10* in many of the cases. This

suggests that, in practice, the restart criterion (6.2) should be modified to

ric1(g) #0

and

15{p(s) —wo(5)}] >

1

10-1

rica(d)]

(1 <j<n). (6.3)

Table 6.7 shows the performance of Bi-CGSTAB restarted by criterion (6.3) for

the robustness tests.

7 Tp,

Pe| n |Co m}nﬁ Mo
0.5 < €p 42
1 < €pm 70
2 < em 118

1 {8021 5 < em 294
10 < em 600
20 < em 2326
40 < em 6364
0.5 < €p 42
1 < €nm 38
2 < em 150

5 1162] 5 < em 310
10 < em 578
20 < em 978
40 < em 1424

Table 6.7: Performance of Bi-CGSTAB restarted by criterion (6.3)

Convergence is achieved in all the cases. Hence it appears to be possible to
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monitor and control the gradual build up of the rounding errors with (6.3). How-
ever, the tolerance (10?) is an external parameter so the overall restart criterion
is not ideal.
Figure 6.4 shows the iteration histories for two of the cases in the table. On
the graphs in this figure, the symbol () denotes a restart due to criterion (6.3).
In the same way as the round-off unit definition is used to generate the pos-

sible restart criterion (6.1), the operation

gives rise to

lav(j)] < emlria(j)]

ri—1(j) #0 and or (1 <j<n), (6.4)

@v()] > —lriili)

where o = p;/(#lv). Again (as expected since fatal or near-fatal breakdown
is not the difficulty in these problems) experimental investigations show that
this monitor is always well within the bounds for all the tests, and there are no
significant features in the monitor near the onset of convergence difficulties, so
this restart criterion is also not effective.

As before, by tracking the monitor value in numerical experiments, restarting

based on the criterion,

ric1(g) #0

and (1<j5<n), (6.5)
1
5 x 10>

av(j)] > ri1(J)]

in which the tolerance is again an external parameter, is found to have some suc-
cess in adding to the robustness of the method. Table 6.8 shows the performance
of Bi-CGSTAB restarted by criterion (6.5) for the robustness tests.

Comparing the results in Table 6.8 with those in Table 6.7, in most cases

the criterion (6.5) is more effective than the restart criterion (6.3) as it leads to
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Figure 6.4: Sample iteration histories of Bi-CGSTARB restarted by criterion (6.3)
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7 Tp,
Pe| n |Co m}nﬁ Mo
0.5 < €p 44
1 < enm 116
2 < €nm 98
1 802 5 < em 192
10 || 2.77 x 1077 (fixed cycle) | 116
20 < em 660
40 || 7.35 x 1077 (fixed cycle) | 534
0.5 < €p 42
1 < €pm 76
2 < enm 148
5 | 162 ] 5 < em 246
10 < em 458
20 < enm 622
40 < em 946

Table 6.8: Performance of Bi-CGSTAB restarted by criterion (6.5)

convergence in fewer matrix-vector multiplications. However, convergence is not
achieved in two of the cases due to “fixed cycles”, i.e. a restart is attempted on
the iteration immediately following a restart.

The graphs in Figure 6.5 show the iteration histories of two of the cases in
Table 6.8 - again, () denotes a restart.

It is possible to use restart tests based on both criterion (6.3) and (6.5) at
the same time. However, as has already been seen, it is not the breakdown of
either monitor value that is tested for in the effective restart criteria; rather the
monitor values are being used to monitor the build up of rounding error in the
whole process. Hence there is little advantage to be gained by combining these
restart criteria as each one performs precisely the same task.

In summary, restarting using monitors based on sensitive values can be used

to improve the robustness of Bi-CGSTAB in these cases, but it is not an ideal
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Figure 6.5: Sample iteration histories of Bi-CGSTARB restarted by criterion (6.5)
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solution as fixed cycles occur and there is a requirement for an external parameter.

Restart monitors based on inner product denominators

In [45], restart criteria based on the occurrence of inner products as denomina-
tors in Bi-CG and CG-S are used. The general form of these criteria are that if

(a, Ab) is used as a denominator in the algorithm then restart if

aab) _ .
lalllAb]; = /()

1
In [45], the tolerance has the form, f(exr) = 10%€3,, where a is an integer.
Since the inner product (rg,v) is used as a denominator in Bi-CGSTAB in

the calculation of « (see Algorithm 2.8) then a possible restart criterion is

(7o, )| <7 (6.6)

l2]|v][2 ~

7o

A Joubert inner product test can also be used as a possible restart criterion for
the sensitive value (#g,t) which is generated during Algorithm 2.8. The form of
this test is

(,'Aqovt)|
l2l[t]]2 —

3. (6.7)

7o

By experiment, the monitors in (6.6) and (6.7) are found to become very small
near the on-set of divergence. This indicates that these monitors can be used to
signal when to restart in these problems.

Table 6.9 shows the robustness test performance with (6.6) and (6.7) used as
restart criteria and 71 = 7 = 107 - the selection of these restart tolerances being
based on experience gained by conducting numerical experiments. The required
convergence tolerance is achieved in all cases.

As with the requirement for the user defined restart tolerances in the previous
section, the requirement for the parameters 7, and 75 violates the desired property

of no external parameters.
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7 Tp,

Pe| n |Co m}nﬁ Mo
0.5 < em 80
1 < €nm 60
2 < em 100

1 {8021 5 < em 200
10 < em 370
20 < em 666
40 < em 1102
0.5 < €p 44
1 < €nm 68
2 < em 100

5 1162] 5 < em 256
10 < em 456
20 < em 714
40 < em 886

Table 6.9: Performance with inner product criteria based restarts

Figure 6.6 corresponds to Figure 6.1 with restarts based on the criteria (6.6)
and (6.7). In these convergence histories, () denotes restart due to (6.6) and O
denotes restart due to (6.7).
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Figure 6.6: Sample iteration histories of Bi-CGSTAB restarted by criteria (6.6)
and (6.7)
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Fixed Period Restart

It is possible that the restart criterion used in the previous two sections are only
effective because the tolerances are tuned to the problems so as to be triggered
intermittently to flush out the rounding errors in the recurrence.

A primitive restart criterion, based on the idea of intermittently discarding the
recurrences (and the associated rounding errors) is investigated in this section.
In this restart criterion, the process is restarted periodically after a fixed number
of iterations. This is similar to GMRES(m) but, where a restart is performed to
avoid impractical storage requirements and work per iteration in that case, here
it is performed at regular intervals to try to prevent the build-up of rounding
errors spoiling the recursion process.

Table 6.10 shows the minimum residual achieved and the corresponding it-
eration number for the Bi-CGSTAB robustness tests with different fixed restart

periods, k. The convergence criterion is met in all but one of the robustness tests.

Pe | Co k=5 k=20 k=40
. 1727, . 1727, 77,
m}nH Mo m}nH Mo m}nH Mo
0.5 < em 44 < em 48 < em 96
1 < em 66 < em 60 < em 106
2 < em 116 < em 96 < em 114
115 < €M 320 < €M 204 < €epm 200
10 < €M 752 < €M 370 < €M 370
20 < em 1270 < em 730 < em 734
40 < €M 2230 < €M 1540 < €epm 1204
0.5 < em 44 < em 50 < em 92
1 < €pp 68 < €pp 54 < €pp 102
2 < em 160 < em 96 < em 126
515 < €M 282 < €epm 258 < €epm 238
10 < €pm 442 < €pm 490 < €pm 470
20 < €pm 766 < €pm 778 < €pm 732
40 || 3.93 x 107¢ 11030 < €epm 1080 < €epm 1038

Table 6.10: Robustness test performance with fixed restart period
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Comparing the number of iterations required for convergence in Tables 6.9

and 6.10, the restart strategy based on (6.6) and (6.7) is more effective over the

range of cases than a strategy based on any of the fixed restart periods. This

is not surprising since the inner product based restart is effectively an adaptive

strategy - only restarting when it senses the need for such action - while the fixed

period strategy restarts regardless of whether it is required or not.
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Figure 6.7: Sample iteration histories for fixed restart period in robustness tests

The value of the restart period k£ has a significant effect on the number of
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iterations required to achieve convergence - practical implementations of a fixed
restart period should choose & based on the expected susceptibility of the recur-
sion process to corruption by rounding errors.

Generally, larger linear systems are more susceptible to rounding errors due
to the number of computational operations involved in each iteration. From
Table 6.10, the optimum restart period decreases as Co is decreased, indicating
that the more non-symmetric the matrix, the more sensitive the process is to
rounding errors. Thus, the optimum value of k£ for this problem is expected to
decrease with n, C'o and Pe (the latter is included because it also affects the
amount of non-symmetry in the matrix).

Again, the requirement for the value k violates the desired property that the
solver should require no external parameters (see Section 2.3.2).

Figure 6.7 corresponds to Figure 6.1 for a restart of fixed period k = 20.
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6.3.4 Quadratic Bi-CGSTAB Polynomials

In the problems examined so far in this chapter, when the advective part of the
matrix is dominant, the complex part of the eigenspectrum becomes comparable
in magnitude to the real part. This can be seen in Figure 6.8 where Graph (a)
has a relatively low Courant number and hence is the low advection case and
Graph (b) is the high advection case.

The (exact arithmetic) performance of Krylov sub-space methods depends on
the eigenspectrum of the matrix. From [12], the Bi-CGSTAB error polynomial is
N N SN = A
ri = @i(A)di(A)ro = ; prPi(Ak) 1:[1 (T) Uk

— =

where Avy, = A\pvy and v = 3°7_ prvi. This means that, for the error mode in
the direction vy to be damped by the iteration process, either A; or a root of ¢;
must be close to Ay. The ¢, defined in (2.19) can only produce real roots, i.e.
witwyt, . o wit. Hence it cannot contribute to the convergence of the method
when the eigenvalues of the matrix A have a significant complex part. In this
case, Bi-CGSTAB computes w; which are close to zero and therefore very sensitive
to rounding error.

In [36], the problem of Bi-CGSTAB not being capable of representing complex
eigenvalues is tackled by the use of a quadratic polynomial for the building blocks
of ¢; in (2.19) i.e.

Gi(r) = (1 —wix —v2?)@ica(x), wi, v € R.

Each factor can have complex roots so the Bi-CGSTAB part of the error poly-
nomial can have roots near complex eigenvalues. This method is known as Bi-
CGSTAB2. In practice, an iteration with this method consists of two stages; in
the first, a linear polynomial such as that in Bi-CGSTAB is used, while in the
second stage, the linear polynomial from the first stage is corrected to a quadratic
polynomial. This approach does not address the problem of a breakdown in the
convergence history arising during the first stage of each iteration.

A more general approach for producing complex eigenvalues is taken in [74].
In this approach, a general degree { factor is used to construct the @; in (2.19).
The resulting method is known as Bi-CGSTAB(/). For ¢ = 2 this approach
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Figure 6.8: Eigenspectra of preconditioned matrices in sample robustness tests
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gives the same results as Bi-CGSTAB2 (in the absence of rounding errors), but
the Bi-CGSTAB(2) implementation is numerically more stable (never using the
usual Bi-CGSTAB linear factors) and more efficient, requiring 14 SAXPYs and
9 vector-vector products per 4 matrix-vector multiplications, as opposed to the
22 sAXPYs and 11 vector-vector products of Bi-CGSTAB2. Due to its better
efficiency and stability properties (and ease of extension to even higher order
polynomials) this implementation is the one used here. The code used in the
numerical experiments on this method was written by Diederik Fokkema and
obtained from Gerard Sleijpen.

The method used in the preliminary tests is Bi-CGSTAB(2) - Bi-CGSTAB
based on quadratic polynomials - since it is the lowest polynomial required to

generate complex roots.

Z 1y,
Pe| n |Co m}nH Mo
0.5 < em 36
1 < €nm 56
2 < €nm 96
1 1802 5 < em 196
10 < €pm 372
20 < em 632
40 < em 924
0.5 < em 36
1 < €nm H2
2 < €nm 38
5 1162 5 < em 180
10 < em 256
20 < em 336
40 < em 368

Table 6.11: Performance of Bi-CGSTAB(2) in robustness tests

Table 6.11 shows the performance of Bi-CGSTAB(2) in the robustness tests.
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Convergence appears to be fully robust, i.e. convergence is achieved in all cases.
Also, comparing these results with those from the restart criteria in Section 6.3.3,
it can be seen that the Bi-CGSTAB(2) convergence is appreciably faster, even
taking into account the small amount of extra work required to perform the two
parameter minimisation in the quadratic steepest descent step.

Figure 6.9 shows the iteration histories for two of the cases in Table 6.11.
Since a two parameter local steepest descent step is performed in Bi-CGSTAB(2)
the resulting iteration history is smoother than standard Bi-CGSTAB (c.f. Fig-
ure 6.1).

In [74], the use of “higher-than-quadratic” order polynomials is advocated
as an efficient acceleration method. Table 6.12 shows the performance of Bi-

CGSTAB(() based on cubic and quartic polynomials.

Bi-CGSTAB(3) Bi-CGSTAB(4)
71y, 177,
Pe| n |Co m}nH Mo m}nH Mo
0.5 < em 36 < em 40
1 < em 60 < €m 56
2 < em 90 < €m 88
1 1802 5 < em 192 < em 192
10 < em 366 < em 360
20 < €nm 642 < €nm 624
40 < em 882 < em 888
0.5 < em 36 < em 40
1 < €nm 48 < €nm 48
2 < em 84 < em 80
5 1162 5 < em 174 < em 168
10 < €nm 252 < €nm 264
20 < €nm 324 < €nm 344
40 < em 372 < em 424

Table 6.12: Performance of Bi-CGSTAB({) (¢ = 3,4) in robustness tests
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Figure 6.9: Sample iteration histories of Bi-CGSTAB(2) in robustness tests
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Again, the convergence is smooth, fast and robust in all the cases presented
in Table 6.12. However, on comparison with the results in Table 6.11, it can be
seen that the extension to higher order polynomials does not result in a general
increase in the rate of convergence for these cases examined.

Back-tracking slightly, since CG-S (the Bi-CGSTAB predecessor) does not
use linear factors in the underlying polynomials, it should also perform well on
advection dominated problems where Bi-CGSTAB fails. Table 6.13 shows the
performance of CG-S on the robustness test cases. By comparison with the
matrix-vector multiplication count in Table 6.11, CG-S requires approximately

the same amount of work to achieve convergence as Bi-CGSTAB(2).

7y,
Pe| n |Co m}n% Mo
(true value in brackets)
0.5 || < en (< em) 40
1 |[<en (6.49 x 10719) 66
2 | <emw (7.03x107') | 100
1 |802] 5 || <enw (245 x1071) | 228
10 | < e (137 x107%) | 502
20 || < ear (404 % 1071) | 716
10 || < enr (5.05x107°) | 882
0.5 || < en (< em) 42
1 || <enm (< em) 48
2 | <enr (377 x 10716) | 92
51162 5 | <enr (144 x 10713) | 196
10 | <en (370 x 1071) | 250
20 || < ear (281 x 10719) | 304
40 || <en  (1.89 x 107%) | 338

Table 6.13: Performance of CG-S in robustness tests

The 2-norm of the true preconditioned residuals at convergence are also shown
in Table 6.13. In many of the cases, this norm is a long way from the con-

verged recurrence value. Note that for all the previously converged examples
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with other iterative methods, the norm of the true preconditioned residual is at
most O(107%%).

Figure 6.10 shows iteration histories for CG-S on some of the robustness test
cases. The second graph gives an indication of the cause of the difference be-
tween the true and recurrence residuals at convergence. The norm of the true
preconditioned residual (dotted line) stagnates at & 9.57 x 107% and owing to its
irregular convergence behaviour, CG-S produces a peak of ~ 9.68 x 10° earlier in
the iteration history. In all the cases where the true residual stagnates, the ratio
of the minimum residual norm achieved to the maximum one generated is of the
order of the machine round-off unit, ¢p;. This coincides with the theory for the
finite precision behaviour of other methods given in [33].

Owing to its irregular convergence behaviour (i.e. generating large spikes in
the iteration history) causing the true residual norm to stagnate before conver-
gence while the recurrence based residual continues to decrease, CG-S is not as
robust as Bi-CGSTAB(2).

Note, spikes also occur in some of the iteration histories of restarted Bi-
CGSTAB when the restart tolerance is too tight, but this does not lead to a
stagnation of the true residual for that method as the spikes, although part of

the iteration history, are not part of the recurrence relation after a restart.
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Figure 6.10: Sample iteration histories for CG-S in robustness tests
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6.4 Robustness Tests on a Similar Matrix

In order to confirm the theory that the divergent behaviour apparent in Figure 6.1
is caused by rounding errors corrupting sensitive values that are generated when
Bi-CGSTAB cannot cope with complex eigenvalues, tests are carried out on a

diagonal matrix which is similar to one from the robustness tests.
Definition 6.2 Two matrices A and B are similar if

B=WAW™!
for some nonsingular matriz W. Similar matrices have identical eigenvalues.

Given the eigenspectrum of a matrix {A;}, it is relatively trivial to generate
a similar 2 x 2 block diagonal matrix by setting the diagonal entry of the similar

matrix to Ay for A\;x € IR and placing a 2 x 2 block

ar by
—by  ag

on the diagonal for Ay = ay b € C.

In this section, such a matrix is generated to be similar to the matrix with the
eigenspectrum shown in Figure 6.8(b). The divergent behaviour of Bi-CGSTAB
for the tracer system possessing this eigenspectrum has already been shown in
Figure 6.1(b).

As the similar matrix is a (2 x 2 block) diagonal matrix, hardly any rounding
errors occur in the underlying Lanczos process, so the divergent behaviour should
not occur with Bi-CGSTAB, even though the matrix has an eigenspectrum with
a strong complex component.

A dummy system is used to test this. The matrix is the 2 x 2 block di-
agonal similar matrix, the right-hand side vector is a vector of ones i.e. b =
[1,1,1,...,1]F € IR" and the initial iterate is taken to be the vector &, € IR with

entries xo(j) = j'/*.

The same preconditioner and convergence tolerance as for
the previous robustness tests is used (i.e. the diagonal preconditioner and the

round-off unit respectively).
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The iteration history for Bi-CGSTAB on the similar matrix robustness test

is shown in Figure 6.11. The residual norm stagnates but does not diverge. The
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Figure 6.11: Iteration history for Bi-CGSTAB on 2 x 2 block diagonal matrix

stagnation shows that Bi-CGSTAB still cannot cope with the complex compo-
nents in the eigenspectrum. The lack of divergence suggests that any round-off
errors which occur are far less critical when the matrix is diagonal.

Since rounding errors do not appear to be a problem in this case, restarting
(i.e. discarding the Krylov subspace to flush out any rounding errors in the
recurrence relation) is not expected to be of any benefit. In fact, it is likely to
cause a degradation in the performance as it discards a good Krylov subspace
at each restart. The iteration histories for Bi-CGSTAB restarted after a fixed
number of iterations (as in Section 6.3.3) are shown in Figure 6.12 with two
different restart periods. The restart has, as expected, a detrimental effect which,
at best, leaves the iteration history unaffected.

If the stagnation in Figure 6.11 is due to Bi-CGSTAB not being able to pro-
duce approximations to complex eigenvalues, Bi-CGSTAB(2) and CG-S should
both converge without problems. The iteration histories for these methods are
shown in Figure 6.13, both perform well as expected.

The results in this section reinforce the theory that the cause of the divergence
is sensitive values (which occur when there is a large complex component in the
eigenspectrum) being corrupted by rounding error and perturbing the recurrence

relations.
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Figure 6.12: Iteration histories for restarted Bi-CGSTAB on 2 x 2 block diagonal

matrix
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6.5 Efficiency of Bi-CGSTAB(2)

Of all the Bi-CGSTAB extensions described and investigated in this section, the
Bi-CGSTAB(2) method is considered to be the most effective at overcoming the
divergence problems encountered in the robustness tests.

In order to compare the computational efficiency of this method with that of
Bi-CGSTARB, it is applied to the tests cases from Section 6.1.

As before, the test cases are run from the initial condition for 10 time-steps
and the average performance is assessed over this period. The same grids, time-
step sizes and convergence tolerance as in Section 6.1 are used. The average

number of Mvs to convergence and the average time spent in the solver routine

are both shown in Table 6.14.

Pe| n | Col| Muvs to convergence | Time in solver / seconds
0.5 14.0 0.72
11802 1 20.0 0.99
5 61.2 2.86
0.5 12.0 0.13
5 1162 1 17.6 0.18
5 61.2 0.56

Table 6.14: Average Mwvs to convergence and time in solver

The results for Bi-CGSTAB(2) in Table 6.14 can be compared with those for
Bi-CGSTAB, GMRES and GMRES(10) in Tables 6.1 and 6.2. Bi-CGSTAB(2)
takes approximately the same number of Mus to achieve convergence as Bi-
CGSTAB, and spends less time in the solver than both Bi-CGSTAB and GM-
RES(10). Hence Bi-CGSTAB(2) is more robust than Bi-CGSTAB and is also

more efficient on these test problems.
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6.6 Preconditioner for Bi-CGSTAB(2)

As with the CG method used to solve the linear systems with SPD matrices in
Chapter 5, the preconditioning technique used is an important feature of the over-
all performance of the solver. Selection of the appropriate preconditioner can lead
to an acceleration of the method (both in terms of the number of iterations and
the required computational time), and also allow mesh independent convergence
to be achieved.

In the 1-D problem used to test robustness and efficiency in this chapter,
the structure of the matrix is such that there is no fill-in with Gaussian elimi-
nation. So there is not much flexibility to examine preconditioning matrices for
the method on the 1-D problem since a preconditioner as basic as the incomplete
factorisation is, in effect, the inverse.

Hence, in order to examine preconditioning of the Bi-CGSTAB(2) solver, the
constant dispersion coefficient Henry problem test case from the tests on the
performance of the SPD solver in Chapter 5 is used. A representative matrix is
generated with the same conditions as in the SPD tests but time-step is changed
to 300s (so that the maximum Courant number on the linear mesh is typical of
that which would be encountered in practice).

As in Section 5.1.3, three grids (of varying distortion) are used to investigate
the dependence of the convergence of the preconditioned method on the mesh.

The performance of Bi-CGSTAB(2) with diagonal and I LDM? factorisation
preconditioners on the representative matrix generated at the first coupling iter-

ation of the 3rd time-step is shown in Table 6.15.

Mesh Comar | Pepar | Number of Mvs | Time in solver / seconds
type Diagonal | ILDM?" | Diagonal I1LDMT
Linear 3.58 12.80 36 12 0.68 0.71
Quadratic | 70.43 | 14.31 112 12 2.01 0.71
Cubic 5047.23 | 26.37 260 12 4.67 0.72

Table 6.15: Comparison of diagonal and /LDM? preconditioners
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As with the matrix from the fluid continuity equation, the convergence de-
pends on the mesh when the diagonal preconditioner is used. The theory from
[89] (described in Section 5.2.1) for bounding the condition number of the diag-
onally preconditioned matrix (and hence the convergence rate) does not apply
to non-symmetric matrices. However, the convergence rate does appear to be
mesh-independent with the ILDM? preconditioner - requiring 12 Muvs to achieve
convergence regardless of the amount of distortion. Unlike the results with the
ILDLT preconditioner used with CG on the matrix from the fluid continuity
equation in Section 5.1.4, this apparent mesh independence applies as the num-
ber of points in the mesh varies (e.g. the problem on an 11 x 6 mesh needs 8 Mwvs
for convergence, on a 21 x 11 mesh it needs 12, while on a 41 x 21 mesh it still
only needs 12).

For the cases considered, the use ILDM? preconditioner is generally more
efficient (in terms of less time in the solver) than the diagonal preconditioner.
This, combined with the apparent mesh independent convergence, indicates that
the ILDM? preconditioner is the better preconditioner for the Bi-CGSTAB(2)
method.

6.7 Concluding Remarks

Two non-symmetric iterative solvers, Bi-CGSTAB and GMRES, have been com-
pared. Bi-CGSTAB performs as well as GMRES in terms of the CPU time
required to achieve convergence. However, in harsher tests (i.e. when the non-
symmetric part of the matrix dominates), Bi-CGSTAB does not converge due
to sensitive values in the iteration process being corrupted by rounding errors.
These sensitive values are generated due to the lack of a facility for representing
complex eigenvalues in the method.

Of the remedies examined, only restarting and the use of higher order poly-
nomials have any degree of success.

Restarting keeps the build-up of rounding errors in check. However, all the
restart criteria tested in this thesis require the use of an external parameter to be

effective. Another drawback is that restarting treats the problem by addressing
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its symptom, it does not eliminate the cause.

Quadratic polynomials, i.e. Bi-CGSTAB(2), allows the complex eigenvalues
to be represented. Hence the sensitive values do not occur and the convergence
problem is solved. As this remedy treats the cause of the problem, it is the
approach selected in this thesis. An added advantage is that Bi-CGSTAB(2) is
smoother and converges quicker than (the linear polynomial based) Bi-CGSTAB.

The numerical experiments in Section 6.6 indicate that the ILDM?" precon-
ditioner is more effective, both in terms of computational effort and the mesh in-

dependence of convergence, than the diagonal preconditioner for Bi-CGSTAB(2).
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Chapter 7

Coupling of the Governing

Equations

The governing equations described in Section 3.1 are coupled together and cannot
be solved independently of each other. The source of the coupling is the depen-
dency of the fluid density (p) on the dimensionless contaminant concentration
(¢) in the constitutive equation (3.6). Two approaches for solving such a system
of coupled equations are (i) to use a coupling iteration and (ii) to solve the full
system.

In a coupling iteration, the equations are solved individually and sequentially.
An initial approximation is generated for one of the variables (the iteration vari-
able) at a particular instant in time. By careful selection of the order in which
the equations are solved (and which variables are solved for in these equations),
it is possible to remove any non-linearity in the system and generate a new ap-
proximation for the iteration variable. One possible coupling iteration approach
is given in Algorithm 3.2. That particular algorithm is the method used to solve
the coupled system of equations in the previous chapters of this thesis.

In the full system approach, the equations are solved simultaneously - all
the unknown variables are treated as a single unknown vector and the system is
written in matrix operator form. A full system approach is used in [72] for the
fluid mass balance equation and Darcy’s law. There are many ways of writing

the full system for the governing equations in the system. One of these is shown

in (7.1).
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When discretised, this system is 3d+1 (where d is the dimension of the physical
problem) times the size of the individual systems solved in the coupling iteration
approach.

As the governing equations are non-linear, the full system is invariably non-
linear. Hence a large sparse non-linear solver is required.

Non-linear solvers operate by iteration. These can have a quadratic rate of
convergence, e.g. the Newton method which uses the Jacobian of the matrix in
the system, but if this is not computable (as is the case in (7.1)), then approximate
derivatives must be used and the convergence rate is closer to linear. Hence it is
just as reasonable to use the coupling iteration approach. The coupling iteration
resembles a non-linear Gauss-Seidel-type iteration applied to the full system, with
any variables causing non-linearity in the matrix updated (to the most recently
calculated value) as they are required.

The full system approach is not investigated in this thesis. Instead, some

coupling approaches are investigated in the remainder of this chapter.

7.1 Coupling Iteration Approaches

The coupling iteration approach, apart from decreasing the size of the discrete
systems being solved, and removing the non-linearity, allows the properties of
the discrete systems for the individual equations to be exploited. An example
of this is the use of the CG solver with different preconditioners for the SPD
systems arising from the discretisation of the fluid continuity equation and the
Darcy velocity vector components.

There are other options for the coupling iteration, i.e. the governing equations
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can be solved in a different order and with a different subject variable. In order
to decide which coupling iteration option is the most effective, analysis is needed
on the rate of convergence of the various coupling iteration approaches. However,
such theory is difficult due to the nature of the governing equations e.g. the lack
of a maximum principle for many of the differential operators involved. Such
analysis is not attempted here - the coupling iteration given in Algorithm 3.2 is
used throughout without consideration given to the other options; no convergence
theory is given for this algorithm for the reasons already given in this paragraph,
it is assumed to converge as it is the method used in the literature e.g. [30].

In the physical systems considered in this thesis, the maximum fluid density
is not very different from freshwater density po i.e. in (3.6) € = 0.02499p, so
p = 1.02499py when ¢ = 1. Hence, the coupling in the system is of a relatively
weak nature. An insight into the behaviour of the system can be gained by
examining the tracer case where the fluid density is unaffected by the contaminant
concentration (i.e. € = 0).

In the tracer case, the governing equations reduce to

V.qg=0, (7.2)
g=-K (E + VZ) , (7.3)
Pog
dc
qﬁa +q.Vec—V.0DVe =0, (7.4)

so that the full system can be written as

V. 0 0 q 0

pog KV 0 p | T | —pogKV=
0

0 0 |65, +aV-V.oDV ¢ 0

This system can be seen to be reducible. The leading principal 2 x2 matrix can
be used to form an independent system - this reflects the fact that the governing
equation for the contaminant does not influence the governing equations for the
fluid. However, the reverse is not true as the governing equations for the fluid
influence the governing equation for the contaminant through the Darcy velocity

field they generate.
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Due to the reducibility of the system, (7.2) and (7.3) can be solved in isolation
to give the Darcy velocity (in fact (7.2) is only needed in order to incorporate the
Dirichlet pressure boundary conditions). If the boundary conditions are indepen-
dent of time, then the Darcy velocity is independent of time so this only needs to
be calculated once at the beginning of the simulation. After this has been done,
the tracer concentration can be obtained at all required times by solving (7.4).
This is essentially the approach used in the 1-D case examined in Section 4.1.

Returning to the case of interest in this thesis (non-passive transport), the
full system can not be reduced in the same way as the tracer system due to the
non-zero off-diagonal entry in the constitutive equation part of (7.1). However, as
already stated, the coupling is of a relatively weak nature, so this value is nearly
zero. Hence the non-passive case in this thesis is “close” in some sense to the
(reducible) tracer case. This suggests a spectrum of approaches for the coupling
iteration which mimic, to varying degrees, the tracer system approach.

A selection of these approaches follows, with the cheapest approach being first

and the most computationally demanding approach last.

1. No coupling. In this approach, the contaminant is treated as a tracer,

the fluid density is taken as the freshwater one at all times, and the sys-

tem (7.2), (7.3) & (7.4) is solved rather than (3.1), (3.2) & (3.4).

2. Segol coupling [72]. In Segol coupling, a large (or macro-) time-step (of size
AT) is performed on (3.1) and (3.2) using the most recent concentration
and assuming the transport to be passive. Then smaller time-steps (of size
At where AT = mAt for some positive integer m) are performed on (3.4)
using the most recently calculated fluid density and values interpolated from

the Darcy velocity vector at the macro-time-step.

3. Partial coupling [30]. In this approach, the transport is treated as passive
within a time-step so that, once the fluid density is approximated at the
beginning of the coupling process, it is assumed to be correct during the
current time-step. This corresponds to Algorithm 3.2 with Stage 8 omitted.
In this approach, the dimensionless concentration calculated at the end of

the time-step, and the density for the time-step (calculated at the beginning
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of the time-step) do not match.

4. Full coupling. This approach is Algorithm 3.1 in its entirety. It is the only
coupling iteration technique which guarantees a valid solution state (i.e.
one in which the fluid density and dimensionless contaminant concentration
match) at the end of all time-steps. This is the coupling approach that has

been used so far throughout this thesis.

The uncoupled and Segol coupling approaches are not investigated in this
thesis. The use of no coupling has been investigated briefly in [30] where it is
shown to lead to unreliable results. Segol coupling is used in [72] but it is not
compared with any other approaches. A comparison of partial and full coupling

is made in the remainder of this chapter.

7.2 Comparison of Partial and Full Coupling

This work is presented last because it involves comparisons that use timing data
from numerical experiments on long term simulations, so the details of the meth-
ods used to solve the individual governing equations had to be finalised first.
These details were examined in Chapters 4-6.

The purpose of this part of the thesis is to look briefly at the strength and effect
of the dependency of p on ¢ in the coupling iteration. Logically, the fully coupled
approach (assuming convergence occurs) should lead to the most accurate and
reliable results, but any loss in accuracy incurred by only using partial coupling
may be compensated by the lower computational expense involved.

Partial and full coupling are compared in [30] where partial coupling is demon-
strated to give results which are acceptably close to those from full coupling. How-
ever, that work does not give a quantitative comparison of the two approaches
in terms of either accuracy or computational cost. In order to allow such a
comparison in this thesis, an “exact” solution is generated for the dimensionless
contaminant concentration in the Henry problem (Section 4.2) at time ¢ = 500s.

A true exact solution is not feasible. Instead, a solution on a much finer

spatial grid (a 81 x 41 linear mesh) and with a very small time-step (At = 1s
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throughout the simulation) is generated, the relative convergence tolerance for all
the linear solvers is 7 = 1071® and a full coupling iteration is used with a pointwise
convergence tolerance of 1071, This solution is very expensive to generate; its
only purpose is to provide a benchmark in which as many of the sources of error
as possible have been minimised. A sample time of 500s is used because it is
relatively early in the simulation, hence it is sufficiently far from the steady state
solution to give a representation of the temporal errors.

After the “exact” solution is generated, more computationally feasible solu-
tions are generated for comparison. These are less accurate solutions, they are
obtained on coarser meshes, with the tolerances for the linear solvers and the
full coupling iteration being 107%. In order to allow comparison with the “exact”
results, adaptive time-stepping strategies are not used so the time step is kept
constant during the simulation.

As already stated, the fully coupled approach is expected to be more accurate
as it reduces the coupling error. The difference between the concentration at the
end of a simulation and the “exact” solution is measured by the relative error.
This is obtained as follows. The nodal values of the “exact” solution, ujme, are
projected onto the coarse grid where the nodes coincide, the other nodal values
from the “exact” solution are ignored. Then the 2-norm of the difference between
the projected nodal values and the ones from the simulation on the coarse grid,

ug?"¢, is calculated. This is normalised by the 2-norm of the projected “exact”

solution to give the relative error. i.e.

J

coarse nodes 2
fine
> Uy

J

coarse nodes ) 9
Z (choarse . uﬁzne)

Relative error =

This measure discards the information in the “exact” solution at nodes that do
not coincide the coarse mesh nodes. Rather than just examining the difference
between nodal values, a better approach would be to examine the difference in

the continuous finite element solutions over the whole domain, i.e.
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where N; are the finite element basis functions introduced in Section 3.3.1. Al-
though this second measure is better, the first approach for measuring the relative
error is used in these tests due to its simplicity. Another issue concerning the
measurement of the error is which norm should be used, e.g. an energy norm
may be a better representation of the error. This issue is not addressed here and
only the 2-norm is used.

Table 7.1 contains the results for simulations on the constant dispersion coef-
ficient case with a 21 x 11 linear mesh. Recorded in this table are the size of the
time-step used for that particular simulation, the maximum Courant and Peclet
numbers that occurred during the simulation and, with both partial and full cou-
pling, the total CPU time required for the simulation program and a measure of

the error when compared to the exact solution.

At [ sec | Comay | Pémar | CPU time!/ sec Relative error
Partial | Full Partial Full

125 1.52 | 13.01 8.8 25.6 1.35 x 1071 | 4.82 x 1071
100 1.21 o 10.7 30.6 1.30 x 1071 | 4.57 x 1071
50 0.61 o 20.2 49.1 1.26 x 1071 | 4.29 x 1071
25 0.30 o 39.1 81.0 1.25 x 1071 | 4.24 x 1071
20 0.24 o 47.1 97.6 4.41 x 1072 | 1.50 x 107¢
10 0.12 o 91.8 181.3 | 4.52 x 1072 | 1.53 x 1071
) 0.06 " 175.3 344.0 || 4.53 x 1072 | 1.53 x 107!
1 0.01 o 845.8 | 1263.0 || 4.57 x 1072 | 1.54 x 1071

Table 7.1: 21 x 11 mesh - constant dispersion coefficient

!These and all subsequent simulation timings were carried out using the SUN OS command

time on a SPARCstation 1+.
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The simulations using partial coupling are between 1.5 and 3 times faster than
those using full coupling. This indicates that the full coupling iteration takes, on
average, between 1.5 and 3 iterations to converge - a similar figure is noted in
[30].

Surprisingly, partial coupling appears to give generally lower relative errors
than full coupling for this problem. This is probably because the errors introduced
by not performing full coupling counteract some of the error caused by using a
coarser discretisation and looser tolerances than those used to obtain the “exact”
solution.

The values in the Table 7.1 indicate that, with either coupling approach, it is
pointless to use a small time-step as this does not drastically reduce the errors.
This suggests that the temporal error is small compared to the other errors in
the system. It is likely that the spatial error is the dominant source of error for
the particular discretisation sizes used in space and time.

Table 7.2 contains the same information as Table 7.1, but for the velocity

dependent dispersion coefficient Henry problem.

At [ sec | Comas | Pémar || CPU time / sec Relative error
Partial | Full Partial Full

125 1.52 6.36 8.7 27.1 1.52 x 1071 | 1.56 x 1071
100 1.21 o 10.4 30.8 1.52 x 1071 | 1.54 x 1071
50 0.61 o 19.5 49.2 1.52 x 1071 | 1.51 x 1071
25 0.30 o 37.3 89.4 1.51 x 1071 | 1.51 x 1071
20 0.24 " 46.5 96.7 1.51 x 1071 | 1.51 x 1071
10 0.12 o 88.9 179.7 || 1.51 x 107t | 1.51 x 107!
) 0.06 " 176.5 338.8 || 1.51 x 1071 | 1.52 x 1071
1 0.01 o 845.3 | 1284.4 || 1.51 x 107! | 1.52 x 107!

Table 7.2: 21 x 11 mesh - velocity dependent dispersion coefficient

The results in this table show the same trends as the results from the constant
dispersion case. There is no noticeable loss of accuracy by using partial coupling

and this approach is between 2 and 3 times faster for a given time step. Again,
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the error is not reduced as the time-step is refined so the use of a small time-step
is pointless. As before, it is likely that spatial errors dominate.

The lack of variation in the relative errors suggest that the temporal compo-
nent of the error is dominated by the other errors in the process for the range of
time-steps investigated. Hence the optimum time-step for this problem on this
mesh (i.e. the one which balances the temporal discretisation errors with the
rest of the errors in the process) is greater than 125 seconds and corresponds
to a maximum Courant number which is greater than unity. Thus an implicit
discretisation scheme, as used here, is more appropriate for this problem than an
explicit one due to its stability in this flow regime.

In order to investigate the role of the spatial errors, the simulation tests are
repeated with a finer mesh. Tables 7.3 and 7.4 correspond to Tables 7.1 and 7.2

but on a 41 x 21 linear mesh.

At [ sec | Comas | Pémar || CPU time / sec Relative error
Partial | Full Partial Full

125 3.80 8.14 40.2 140.9 7.17 x 1072 | 8.49 x 1072
100 3.04 o 49.0 173.7 ||4.98 x 1072 | 6.32 x 1072
50 1.52 " 91.1 267.1 2.05 x 1072 | 2.68 x 1072
25 0.76 " 173.7 435.6 1.30 x 1072 | 1.46 x 1072
20 0.61 " 211.1 529.5 1.20 x 1072 | 1.30 x 1072
10 0.30 " 395.1 845.5 1.19 x 1072 | 1.21 x 1072
5 0.15 " T47.8 | 1524.8 || 1.25 x 1072 | 1.26 x 1072
1 0.03 o 3465.2 | 5318.5 || 1.33 x 1072 | 1.33 x 1072

Table 7.3: 41 x 21 mesh - constant dispersion coefficient

The pattern of the results is similar to that observed on the 21 x 11 mesh. The
use of partial coupling does not noticeably degrade the accuracy of the results
and leads to a solution 1.5 - 4 times quicker than full coupling.

The reduced spatial error on this finer mesh allows the variation in the tem-
poral error as the time-step is refined to be observed. For these simulations, there
is little point in using a time step of less than 50 seconds as the temporal errors

are dominated by the other errors in the process. Hence there is no benefit to
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At [ sec | Comas | Pémar || CPU time / sec Relative error
Partial | Full Partial Full

125 3.80 4.26 41.7 188.5 1.16 x 1071 | 6.02 x 1072
100 3.04 " 419.3 197.2 6.61 x 1072 | 4.27 x 1072
50 1.52 o 90.8 293.9 |1 1.69 x 1072 ]1.99 x 1072
25 0.76 o 168.6 469.1 1/ 9.93 x 1072 | 1.13 x 1072
20 0.61 o 202.4 556.9 7.97 x 1073 | 8.84 x 1073
10 0.30 o 383.3 899.1 | 8.80 x 1072 | 8.91 x 1073
) 0.15 o 736.2 | 1545.0 || 9.31 x 1072 | 9.34 x 1072
1 0.03 o 3434.1 | 5550.1 |[9.92 x 1072 ]9.93 x 1073

Table 7.4: 41 x 21 mesh - velocity dependent dispersion coefficient

be gained by the extra computational work involved in the use of a smaller time-
step. At At = 50 seconds, the maximum Courant number is 1.52 so, as with the

21 x 11 mesh, an implicit discretisation is more appropriate than an explicit one.

7.3 Concluding Remarks

The tests in this chapter suggest that partial coupling is a reasonable approach
for this problem. For a particular size of time step, partial coupling is between 1.5
and 3 times faster than full coupling. The use of partial coupling does not lead to
any noticeable degradation in the quality of the solution. Based on the success of
partial coupling, it is reasonable to suggest that the next weakest coupling in the
spectrum of approaches (Segol coupling) should be investigated for this problem.
Such an investigation has not been carried out in this work.

However for more complicated flows, e.g. ones with more dynamically chang-
ing boundary conditions or systems in which the fluid properties are more sensitive
to the contaminant concentration, the results on the coupling iteration approach
may not be true.

As the optimal time step gives a maximum Courant number which exceeds
unity in all the cases presented here, these results vindicate the use of a method

that has no restriction on the size of the time-step for stability.
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Chapter 8

Summary and Suggestions for

Further Work

In this thesis, some of the implications of using an implicit Galerkin discretisation
approach in the numerical solution of the governing equations for contaminant
transport in porous media have been examined.

Conceptually this is a relatively simple discretisation approach. Theoretically,
it is unconditionally stable and second order accurate in both space and time. In
Chapter 4, this discretisation was shown both qualitatively and quantitatively to
be in practical agreement with theory. The problem of unphysical extrema in the
approximate solution which is caused by the discretisation used was highlighted.
These extrema can have disastrous consequences if the resulting solution is used to
drive a chemical or physical process in the model. Some techniques for the control
of unphysical extrema (including mesh refinement and flux corrected transport)
were given and demonstrated to be effective.

The results on the Henry problem test cases in Chapter 4 were shown qualita-
tively to be in agreement with those obtained by other authors who used different
discretisation approaches, e.g. Lagrangian and mixed explicit-implicit methods.

Most of these other approaches generate linear systems with symmetric pos-
itive definite matrices for which an established cheap and reliable method of so-
lution is available - namely the preconditioned conjugate gradient method. The
discretisation method used in this work has notable positive features (e.g. sim-

plicity, accuracy, stability), but it generates a non-symmetric matrix; there is
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no established equivalent of PCG for non-symmetric matrices. However, due to
recent developments in applied linear algebra, there are some solvers available for
non-symmetric systems which appear to be just as effective without possessing
all the benefits of PCG. Examples of these are Bi-CGSTAB and GMRES.

The original purpose of this thesis was to re-appraise the non-symmetric ap-
proach in the light of these solvers and compare this approach with some of the
techniques which give symmetric matrices for all aspects of the solution process
e.g. accuracy, stability, memory requirements, CPU time. However, in the course
of the study on the non-symmetric solvers, a problem with the robustness of Bi-
CGSTAB was un-covered. At this stage, the purpose of the work became one of
investigating this problem.

The cause of the lack of robustness was identified as being rounding errors
corrupting sensitive values. The accumulation of these rounding errors spoils the
underlying recursion process. These sensitive values are generated because the
Bi-CGSTAB method is not capable of representing the eigenvalues of the matrix
when these have a significant imaginary part.

Methods for overcoming the robustness problem were given and tested and
two were found to be effective. The first of these involves restarting the iteration
process at points indicated by various monitor functions and tolerances, which
has the effect of discarding rounding errors in the process so that they do not
accumulate and lead to convergence difficulties. The second remedy avoids the
generation of the sensitive values by modifying the underlying recursion process
so that it can generate complex eigenvalues. This second approach, known as Bi-
CGSTAB(2), is preferred here because, unlike the method of restarting, it does
not require any external parameters and treats the cause, not the symptom. In
Section 6.5, the Bi-CGSTAB(2) method was demonstrated to give convergence
histories that are smoother than those of Bi-CGSTAB. It was also shown to be
at least as efficient in practice.

Other possible remedies for the problem with the robustness of Bi-CGSTAB
include partial orthogonalisation and the use of a quasi-minimal residual type
approach. These methods were outlined in Chapter 6 but they were not investi-

gated. The deficiencies of the solver these methods concentrate on suggest that
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they show enough promise to warrant investigation in the context of Bi-CGSTAB
robustness.

As the robustness of Bi-CGSTAB is being discussed, it should be noted that
even with Bi-CGSTAB(2), the problem of a fatal or near-fatal breakdown of the
underlying Lanczos process is not addressed. For the solver to be truly robust, a
look-ahead Lanczos approach must also be incorporated as a contingency against
such a breakdown (and even this method fails in the very special case of an
“incurable breakdown” [80]).

The tests on the performance of the linear solvers used for each of the gov-
erning equations suggest the use of the following. The ILDL” preconditioned
conjugate gradient method for the solution of the discrete fluid continuity equa-
tion, the diagonally preconditioned conjugate gradient method for the discrete
Darcy velocity vector component equations, and the ILDM?™ preconditioned Bi-
CGSTAB(2) method for the discrete contaminant mass balance equation.

A breakdown of the CPU time typically spent in each of these linear solvers

over a single step of the coupling iteration is shown in Table 8.1.

Origin of linear system Time in solver / sec
Fluid continuity equation 0.40
Darcy z-component equation 0.14
Darcy z-component equation 0.14
Contaminant mass balance equation 0.12

Table 8.1: Breakdown of time in solvers over a single step of a coupling iteration

From the results in this table, it can be seen that the current bottle-neck
in the whole process is the solution of the stiffness matrix system arising from
the discretisation of the fluid continuity equation. The solver for this system
consumes as much CPU time as the total for the solvers for the other three
systems. This suggests that a more powerful approach is required for the discrete
fluid continuity equation e.g. a more effective preconditioner or a fast elliptic
solver. A candidate for the fast elliptic solver is multigrid which has already been
used successfully on problems from flow in porous media, e.g. [71, 81].

The governing equations for the fluid and the contaminant cannot be solved
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separately due to the dependency of the fluid density on the contaminant con-
centration. In this thesis, a coupling iteration is used to allow the (inter-linked)
governing equations to be solved individually. Since the dependency of the fluid
density on the contaminant concentration is relatively weak, it is possible to use
a partial coupling approach which does not iterate between the equations to cou-
ple them within a time step. This approach was compared with full coupling in
Chapter 7 and shown quantitatively to give results which show no appreciable
loss of accuracy but are obtained at approximately a quarter to a half of the
computational expense of the fully coupled solution.

There is no theory given for the convergence of the coupling iteration in this
work - such theory needs to be provided before the method can be considered
fully trustworthy.

In order to make the work on the effectiveness of preconditioners in Chapters 5
and 6 more applicable to practical problems involving flows in porous media,
the investigations on preconditioners needs to be extended to include problems
where, due to impermeable formations in the porous medium for instance, there
are rapidly changing coefficients in the governing equations.

Another aspect of practical problems involving flows in porous media is that
the unsaturated region is of interest also. Hence, the mathematical model should
be extended to include unsaturated (and combined saturated-unsaturated) flows.
The extension of the model is a relatively simple step - the porosity is replaced by
a moisture content variable. The value of this is bounded between zero and the
porosity, and it varies with the fluid pressure. However, the introduction of this
variable results in highly non-linear equations for the fluid, making the solution
procedure more difficult and the requirement for a fast solver for the discrete
fluid continuity equation even more of a necessity. The effect of the presence
of this extra flow-dependent variable on the coupling iteration would have to be
determined by performing tests similar to those in Chapter 7.

Apart from the further work already suggested in this chapter, it is noted
that a comparison with the symmetric approach is still needed to determine if

the non-symmetric discretisation is a viable alternative.
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