Block Iterative Methods for

Three-Dimensional Groundwater Flow Models

K.J.Neylon

September 1991

Submitted to the
Department of Mathematics,
University of Reading,
in partial fulfilment of the requirements for the

Degree of Master of Science

Abstract

Some block iterative methods which are applied to the matrices resulting from the
finite element approximation of a three dimensional non-linear partial differential
equation are compared. The nodal ordering is shown to have an important impor-
tant effect on the convergence of these methods. The possibility of implementing

the methods on a transputer system is discussed.

Acknowledgements

I would like to thank Dr.M.J.Baines and Dr.N.K.Nicholls, of the Mathematics
Department, University of Reading, for their help, support and advice during
this work.

I would also like to acknowledge the financial support of the SERC.

Contents

Notation
1 Introduction

2 Generation of Matrix Systems
2.1 Governing Equation oo
2.2 Finite Element Approximation

2.3 Sample Problem o0 o

3 Matrix Theory and Sequential Algorithms
3.1 Background Theory and Definitions
3.2 C(lassical Iterative Methods for Block Matrices

3.3 Block Preconditioned Conjugate Gradient Method

4 Investigation of Nodal Ordering
4.1 Discretisation of Region oL
4.2 Investigation of Convergence
4.3 Examples of Block Diagonal Dominance

4.4 Recommendations for Nodal Ordering Approach

5 Comparison of Block Matrix Iterative Methods
5.1 Practical Application of Block Matrix Methods

5.2 Performance of Block Matrix Methods

i

10

11

13

17

22

22

24

28

30

32

6 Parallel Implementation of Block Matrix Algorithms
6.1 Description of Transputer Architecture

6.2 Parallelisation of Block Matrix Algorithms

7 Conclusions

A Influence Coefficients for Linear Rectangular Prism Element
A1 Influence Coefficients for Element Seepage Matrix.

A.2 Influence Coefficients for Element Right Hand Side Vector

B Small Example Matrices

Bibliography

i1

38

38

41

48

49

49

51

52

57

List of Figures

2.1

2.2

2.3

4.1

4.2

4.3

4.4

6.1

6.2

6.3

Dimensions and Orientation of Elements
Geometry of Sample Problem

Pressure Head Distribution on Top Surface of Region

Vertical Slicing Nodal Ordering Using 3 x 2 x 2 Elements
Horizontal Slicing Nodal Ordering Using 3 x 2 x 2 Elements
Effect of K;; on number of iterations,

Effect of k,,, on number of iterations

Transputer Network Topologies
Single Instruction-stream Multiple Data-stream

Communication Between Processors Via Local Memory

v

23

23

List of Tables

2.1

4.1

5.1

5.2

3.3

5.4

Boundary Conditions for Sample Problem 8
Degree of Block Diagonal Dominance for Example Matrices. . . . 30
Number of Iterations for Problem 1 36
Number of Iterations for Problem 2 36
Number of Iterations for Problem 3 37
Number of Iterations for Problem 4 37

Notation

Symbol Meaning

€; unit gravitational vector

h size of element as proportion of whole region

H size of rectangular prism element in the z-direction

k iteration number

ko relative permeability with respect to the water phase
K;; saturated hydraulic conductivity tensor

) size of rectangular prism element in the x-direction
Ny three dimensional linear basis function

m size of rectangular prism element in the y-direction
P number of processors in transputer network

s number of diagonal blocks in the matrix system

Sw water saturation

X1, T, T3 Cartesian co-ordinate directions

Ty, 2 Cartesian co-ordinate directions

P pressure head

Py approximate nodal pressure head on the finite element grid
p(M) spectral radius of matrix M

w over-relaxation parameter

R set of real numbers

vi

Chapter 1

Introduction

In general, there are two approaches when solving matrix problems - direct
and iterative. Direct methods solve the problem in a known (finite) number of op-
erations and errors in the solution arise entirely from rounding errors introduced
in the computation. Iterative methods generate a sequence of approximate solu-
tions (iterates) which tend towards the solution of the problem; these methods
usually exploit any sparsity in the matrix more than direct methods.

This dissertation is concerned with block iterative methods for the solution of
large sparse systems of equations arising from a three dimensional finite element
model of groundwater flow, consideration is given to the possibility of implement-
ing these algorithms on a parallel computer. The investigations carried out can
be divided into three main areas.

The first area of investigation is the choice of node numbering scheme. At
present, many three dimensional finite element models use a single node num-
bering scheme over the whole region, chosen without any consideration given to
the predominant direction of flow in the region (e.g. the vertical slicing approach
employed in [9]). It is conjectured that the block diagonal dominance governs

the asymptotic rate of convergence of block iterative methods so the effect of

the orientation of the node numbering scheme with respect to the predominant
direction of flow on the block diagonal dominance is examined.

The second area of investigation is the performance of some block matrix iter-
ative methods on the type of matrix generated in the first part of the dissertation.
The final area of investigation is the possibility of implementation of the block
iterative methods in a parallel computing architecture. The target machine is
a transputer system which is currently at Reading University on loan from the
Rutherford Appleton Laboratory as part of the D.T.I./S.E.R.C. Initiative in the
Engineering Application of Transputers. The standard block algorithms will be
presented in such a way as to be executable on this type of system.

In Chapter 2, the governing equation for groundwater flow is presented, the
finite element approximation is described and a sample problem is given. In
Chapter 3, some background matrix theory and the sequential iterative block
matrix methods are described. In Chapter 4, the effect of different nodal or-
dering approaches is investigated for sample matrix problems generated by the
techniques in Chapter 2. The performance of the block matrix methods described
in Chapter 3 is examined for some of the sample problems in Chapter 5, and in
Chapter 6 these block iterative methods are directed at a transputer system. Fi-
nally, in Chapter 7 closing comments are made and some conclusions are drawn

about nodal ordering and block iterative solution methods.

Chapter 2

Generation of Matrix Systems

The matrix systems used during the course of this project are generated by
finite element approximations to simple three dimensional groundwater flow prob-
lems. The approach used is based on the work outlined in [8, 9]. A description
of the process of matrix generation is given in this chapter and a sample problem

(which is used throughout the dissertation) is presented.

2.1 Governing Equation

From [8] the governing equation for three dimensional flow in a variably satu-

rated porous medium is

e o B ds,,\ 9 S
aixi [[Xz]krw (ax] + 6])] = (Swss + ¢d¢)) E - 1,] = 1,2,3 (21)

where ¢ is the pressure head

K;; 1s the saturated hydraulic conductivity tensor

k.., 1s the relative permeability with respect to the water phase
; 1s the unit gravitational vector
g is the volume flow rate via sources (or sinks)

S, 18 the water saturation

Ss 1s the specific storage coefficient
¢ 1is the porosity
t is time
and xy, ¥y, ¥3 are Cartesian co-ordinate directions.
In order to simplify this equation, the range of problems considered is re-

stricted to those which are in steady state (i.e. no time dependence) and have no

sources or sinks. Under these conditions (2.1) becomes

o[(o0 o
aixi [[XZ]kTw (ax] —I‘ 6])] = 0 1,] = 17273 (22)

This equation is non-linear since both the relative permeability and the saturated
hydraulic conductivity tensor are functions of the solution (the pressure head) in

the unsaturated part of the region [4].

2.2 Finite Element Approximation

The standard Galerkin method [2, 12] is used to generate the three dimensional
finite element approximation to (2.2). A trial function, ;/N), approximating the

unknown, %, is selected of the form
D) = Y yNy(x;) i=1,2,3
J=1

where v, is the approximate nodal value of ¢ on the finite element grid
Nj 1is a three dimensional linear basis function

n is the number of nodes in the finite element grid
The partial differential equation (2.2) is multiplied by a test function, w, where
w= Ny(a;) +=1,2,3 [=1,2,..,n

is the same basis function as for the trial space, and then integrated over the

whole region. Green’s theorem is applied to transform the second derivative term

4

(which is not defined for linear basis functions) to a first derivative term (which
is defined inside each element) and finally, ¢ is replaced by . The end result of

the finite element approximation is a system of equations,

S Appy = Fi I=1,2,..n (2.3)
J
where
Apy = Z/R Kijkmaa]xaaj;[jd]% (2.4)
Fr=— Z/R]&’Z'jkTwaa];[jede (2.5)

where Ajy is the (I, .J) th entry in the global seepage matrix

F7is the [th entry in the global right hand side vector

and the summations are performed over all the elements in the region. Note
that since Az is a function of ¢y then (2.3) is non-linear. From [12], the error
between the approximate solution given by the finite element method with linear
basis functions and the exact solution to the problem is 0(h*) where h represents

the size of the largest element. e.g.

_ Size of Largest Element

Size of Region
So the finite element method will give an approximate solution which converges
to the analytic solution as h — 0 (i.e. the method is consistent).

In practice, the global matrices and vectors in a finite element program are
generated by assembling the element matrices and vectors. The positions of the
entries in the element matrices correspond to the local node numbering within
an element (see Figure 2.1). For example, the (%1ocat, Jlocal) entry in an element
matrix represents the connection between local node 7;,.,; and local node j;,.4; in
the discrete approximation of the differential equation. In order to place an entry
from an element matrix in the corresponding position in the global matrix, the

local node numbering is converted into global node numbering.

le. (ilocalajlocal) = (iglobalajglobal)

Since a node at position (¢10bat, Jgiobat) Will be a part of more than one element,
the contribution from each element must be combined to give the global matrix

entry.

2.2.1 Computation of Element Matrices

Only rectangular prism elements are used in the discretisation of the region
- hence only rectangular regions can be modelled. These elements are chosen
so that they are all of the same size and are aligned with the global Cartesian
coordinates (with the y-direction taken as vertically upwards). A typical element

is shown in Figure 2.1. The element seepage matrices, [A]?, and element right

Figure 2.1: Dimensions and Orientation of Elements

hand side vectors, {F'}¢, are generated using the influence coefficient technique
described in [9]. This technique uses the fact that the elements are simple and
regular to calculate the coefficients in the element matrices and vectors for a

general element. It cannot be used effectively on regions with more widely varying

types of element geometry where numerical quadrature must be used to generate
the coefficients for each element independently.

The expressions for the seepage matrix and right hand side vectors (2.4),(2.5)
are simplified by taking the hydraulic properties to be constant within each ele-
ment (and equal to the centroidal value). This corresponds to one-point three-
dimensional Gaussian quadrature on a rectangular region which introduces an
error of 0(h?) i.e. the same order of accuracy as the finite element approxima-

tion. The element seepage matrix is given by

mH R [H
7[‘4] ‘|'<Ayyk7°w>%

[m H
o zzle ” - ryle
S TAT] (o) A

[
(k) SIAYT 4 (K ooke) SIA™T

(A" = (Kowkpu) [A¥]°

+ <[(zz krw>

where (-) denotes the centroidal value and, because the global coordinate system
is oriented such that y is vertically upwards, then the element right hand side

vector is given by
{3 = = (R [(Bay)Y 4 (K) {3+ (B) L7},

The influence coefficient matrices and vectors are as given in Appendix A.

2.3 Sample Problem

The problem used to examine the nodal ordering and block iterative methods
in this dissertation is a modified form of an unsaturated flow example given
in [3]. This example is essentially a two-dimensional problem, to be solved by a
three-dimensional finite-element package by keeping all the characteristics of the

problem constant across the width of the region and using a single element across

the width.

Boundary Condition
r = 0cem |Y =yl+z)em (y>6)
No flow (y < 6)
z = 1bcm 1 = —180 cm
y = 0cm No flow
y = 10em No flow
z = 0cm No flow
z = 10 em No flow

Table 2.1: Boundary Conditions for Sample Problem

In order to make this problem fully three-dimensional, one of the boundary
conditions is altered from being constant across the width to one in which the
prescribed pressure head is dependent on the position across the width (i.e. in

the z-direction). The geometry and boundary conditions for the sample problem

are shown in Figure 2.2 and Table 2.1 respectively.

10 cm

15 cm

10 cm

Figure 2.2: Geometry of Sample Problem

The following constitutive relationships are used for the soil moisture charac-

teristics,
Sw - SwT 1 - Sw ¢a

o, = 2w P _
" 1_Sw7° 7 1_Sw7° ¢a

P
r

where 1, 1is the air pressure head entry value

Y, is the residual pressure head

S, 1s the residual water saturation

and Y,=0cm , ¥,=-200cm , S5, =0.333

The solution on the top surface of the region (i.e. at y = 10 cm) with nine

elements in each direction is shown in Figure 2.3.

Figure 2.3: Pressure Head Distribution on Top Surface of Region

Chapter 3

Matrix Theory and Sequential

Algorithms

In this chapter, the block matrix theory used during the dissertation is out-
lined. Some standard sequential iterative block matrix algorithms are given and
the performance of these is compared for some sample problems.

Where appropriate, the theory is directed at a symmetric, block tri-diagonal
matrix, since this is the type of matrix generated by the finite element approxi-
mation described in Chapter 2 in conjunction with the slicing discretisation ap-
proaches described later in this dissertation. An example of a system involving

this type of matrix, with s x s blocks, is shown in (3.1).

A B 4 by

BI' A, B, Zy b,
_ (3.1)

B, A1 By, Tsq by

BL, A x by

10

3.1 Background Theory and Definitions

Spectral Radius

In general, if A is an n X n complex matrix with eigenvalues, A;;, ¢ =1,...n
then
p(A) = max |\

is the spectral radius of the matrix A.

Asymptotic Rate of Convergence [13]
The asymptotic rate of convergence of a linear stationary iterative method

(such as those described in Section 3.2) with iteration matrix A, R.(A), is
Roo(A) = —In{p(A)}

It is a measure of the rapidity of convergence of the iterative method.

Condition Number

For a square matrix, A, the condition number, x(A), is
w(A)=[Al AT

with the convention that x(A) = oo for singular A. The condition number quan-
tifies the sensitivity of the Az = b problem to numerical solution, the larger the
condition number the more sensitive the problem to numerical inversion. Note
that x(-) depends on the underlying norm, when this norm is to be stressed

subscripts are used, i.e.

ra(A) =[All2ll A7V 2

if the underlying matrix norm is the 2-norm.

11

Consistent Ordering [6]

The s x s block matrix, A, consisting of blocks A;; (¢,7 = 1,...,s) is consis-
tently ordered if for some ¢ there exist disjoint non-empty subsets Sy,...,5; of
{1,2,...,s} such that

t
UsSi={1.2,....s}
=1
and such that if A;; # 0 with ¢ # 5 and S is the subset containing 7, then

]E Sk_|_1 lf] >i, andj € Sk—l lf] <Z

p-cyclic Matrix [13]
An n x n complex matrix A is weakly cyclic of index k (> 1) if there exists an

n x n permutation matrix, P, such that PAPT is of the form

0 0 0 0 Aq g
Asn 0 0 0
PAPT — 0 Asp ™ 0
0 0 App—r O

If the block Jacobi matrix of A (Section 3.2.2) is weakly cyclic of index p (> 2)

then A is a p-cyclic matrix. It can be shown that a block tri-diagonal matrix is

a consistently ordered 2-cyclic matrix [13].

Block Diagonal Dominance

An s x s block matrix, A, consisting of blocks A;; (7,7 = 1,...,s) is block

12

diagonally dominant [5] if, fori =1,...,s

S

AT Mo 22 1A jlloe <1
=1

i#i
This definition can be modified to give an expression for the degree of block

diagonal dominance, o, of a block tridiagonal matrix as follows.
o = max {| A7 (1 Aiim oo + [Aripallee)] Aro = Asaa =0

The smaller the value of o, the stronger the block diagonal dominance.

3.2 Classical Iterative Methods for

Block Matrices

The classical iterative techniques [13] for solving the linear system,
Ax =15 beR", Ae R™™" (3.2)
are based on splittings of the matrix, A. The standard notation for a splitting is
A=M-N (M invertible) (3.3)
giving rise to the iterative method

Mz* = NzF + b k>0 (3.4)

k

F+1 i the next iterate based on the previous iterate, 2*.

where z
M™'N is the iteration matrix and it can be shown [5] that p(M~'N) < 1is a
necessary and sufficient condition for the method to converge to the true solution,
x = A71b, for any initial iterate, 2°.

The matrix A may be decomposed as follows.

A=D—-L-U (3.5)

13

where D consists of the diagonal blocks of A
L consists of the sub-diagonal blocks of A

U consists of the super-diagonal blocks of A.

The relationship between the splitting (3.3) and the decomposition (3.5) of

the matrix A governs which of the classical block iterative methods is used.

3.2.1 Block Jacobi Method

It the relationship between the splitting and the decomposition of the matrix
is

M=D , N=L+U

then (3.4) becomes the block Jacobi (BJ) method.
D"t = (L+ U)z" +b

Using the notation from (3.1), applying this iteration technique to the i"* row of

blocks gives

Ai&fﬂ =b; — (Bzr—lif—l + Bz@f—u) i=1,.,s (3.6)

The finite element approximation for the examples used in this dissertation gives
rise to strictly diagonally dominant diagonal blocks, A;, hence these are invertible
and each of the ¢ block matrix equations (3.6) has a unique solution.

This method is the simplest, and slowest to converge, of all the block iterative
methods. It has recently returned to favour with the widespread commercial
availability of parallel computers, since each of the ¢ sets of equations can be

solved independently of the others.

14

3.2.2 Block Gauss-Seidel Method

If

M=D-L , N=U

then (3.4) becomes the block Gauss-Seidel (BGS) method.
(D — L)a"*' = Uz* + b
Applying this iteration technique to the :"* row of blocks in (3.1) gives

Ailfﬂ =b, — (Bilf-u + BT—1QE—11) i=1,..,s (3-7)

K3

Since the block tridiagonal matrix is a consistently ordered p-cyclic matrix (Sec-
tion 3.1) and the diagonal blocks are non-singular then, from [13], if A is a non-zero
eigenvalue of the BGS iteration matrix (£;) and p? = A, then g is an eigenvalue
of the BJ iteration matrix, B. Thus the BJ method converges if and only if the

BGS iteration method converges, and if both converge then

p(L1) = {p(B)}* <1

and consequently

Roo(L1) = 2R (B) (3.8)

so in order to achieve the same accuracy, roughly twice as many iterations of the
BJ method are required as for the BGS method.

The BGS method (3.7) is much less amenable to parallelisation than the BJ
method because the right-hand side has a term from the current iteration, hence

the ¢ block systems must be solved in sequence.

3.2.3 Block Successive Over-Relaxation Method

k+1

If the solutions from the previous iteration, x;, and the latest iteration, "7,

in the BGS method are combined with the use of an over-relaxation parameter, w,

15

then the result is the next iterate in the block successive over-relaxation (BSOR)
method, 2" i.e.

xk-l—l — (1 o w)gk _I_wik-l—l

This is equivalent to the relationships

M = l(D—cuL) : N:i{(l—w)D—l-wU}

w

so applying this iteration technique to the i** row of blocks in (3.1) gives
Azt = wb; — {(1- W)Ailf + W(Bz@f-u + B?—1§fj1l)} i=1,.,5 (3.9

If the value of the over-relaxation parameter is set to one, i.e. w = 1, then the
block successive over-relaxation method is the same as the BGS method. As with
the BGS method, this method is not easily parallelised because the right-hand
side has a term from the current iteration so the 7 block systems must be solved
in sequence.

From [13], if A is a consistently ordered p-cyclic matrix then the corresponding

BSOR iteration will only converge if

0<w<(p)
p—1

so since a block tri-diagonal matrix is a consistently ordered 2-cyclic matrix then

the BSOR method (3.9) will only converge if
0<w<?2

The value of w which gives the fastest rate of convergence is w,,, 1i.e.

min{p(Lu)} = p(Lu)

where L, is the BSOR iteration matrix. Since BGS is a special case of BSOR

then
p(Loy,) < p(Ly)

16

i.e.

RclLy) > Rl 1) (3.10)

Combining (3.8) and (3.10),

ReolLo,) = RooLy) > Ro(B) (3.11)

Wopt

i.e. BSOR (with the optimum over-relaxation parameter) converges at least as

fast as BGS, and both converge faster than BlJ.

3.3 Block Preconditioned

Conjugate Gradient Method

The conjugate gradient (CG) method for solving (3.2) when A is symmetric
and positive definite is introduced by considering the minimisation of the func-

tional,

2TAz—2"h (3.12)

DO | —

p(z) =

The minimum of this functional is —% ' A= b and is achieved by setting x =

A~1h.

Proof : 6(A~'b) = L((A~')T A(A71b)) — (A~10)Tb

1
2

T 4 — — T 14—
= LT AT AATIY) — (7 AT

Since A is positive definite then
(z— A7) T A(z — A7) > 0

17

so ¢(x) is minimised when
(z— A7) Az — A7) =0
i.e. x=A"1

and the minimum value of the functional is

Thus minimising the functional (3.12) and solving (3.2) are equivalent problems.
It is possible to minimise ¢(z) by the steepest descent method [5]. At a point, z*,

the functional ¢* (= ¢(z")) decreases most rapidly in the direction of —V¢*

k

which is the residual, r* = b — Az*. The new iterate, 2"*!, is given by

2" = 2F 1 ar® a € R

where « is chosen such that ¢**! is minimised. This is achieved by setting

a¢k+1

Jda 0

which gives
(r*)Trk
(r*)T Ar*k

o=
However, if the condition number of A, x(A), is large then the level curves of ¢ are
very elongated hyperellipsoids and minimisation corresponds to finding the lowest
point on a relatively flat, steep-sided valley; in the steepest descent method, we
are forced to traverse back and forth across the valley rather than down the valley,
the gradient directions that arise during the iteration are close thus making the
progress towards the minimum point slow.

To overcome this problem, we successively minimise ¢ along a set of search

directions {p°, p',...} which do not necessarily correspond to the residual vectors
{r°r',...}. Then

gk-l—l _ Qk —|—Oépk

18

and again ¢**! is minimised when

which gives

and the search directions are taken as A-conjugate to all the previous search

directions in order to ensure convergence [5].
ie. P,;‘F_IABIg =0 where P,y ={p°,. ..,Bk_l} e Rk

This is the basis of the CG method. From [5], the required search directions, Bk,

are found by taking

where

3.3.1 Convergence

In exact arithmetic, the solution is obtained in at most n steps so the method
has the property of finite termination (and would then be considered a direct
method as opposed to an iterative method). However, in the practical situation
of finite precision arithmetic, rounding errors lead to a loss of orthogonality among
the residuals and finite termination is not mathematically guaranteed.

In any case, when the CG method is applied, n is usually so big that O(n)

iterations represents an unacceptable amount of work. Hence it is customary

19

to regard the method as a genuinely iterative technique with termination based
upon an iteration maximum, k,,,, and the residual norm.
From [5] an error bound on the CG method can be obtained in terms of the

A-norm which is defined as follows,
| w [la= v/ w! Aw

After k iterations, a bound on the error is given by

KQ@ﬁ__l) (3.13)

VVkEa(A) + 1

where ry(A) is the condition number of the matrix A with the underlying 2-

z—a|la < 2Hx—ﬁHA(

norm (Section 3.1). In practice, this bound is too pessimistic and the accuracy
of the {z*} is often much better than this predicts. However, it is useful to note

from (3.13) that the CG method converges very fast in the A-norm if ky(A) =~ 1.

3.3.2 Pre-conditioning

The main idea in pre-conditioning is to convert (3.2) into a related

Az =

|~

(3.14)

problem with A being close to the identity so that /432(121) is close to unity. The
pre-conditioner, M € R"*" is symmetric and positive definite. Pre-multiplying

the original system by M~! gives

SO

A=M1A i=z b=M1'b

and the standard CG method is applied to (3.14). The requirements for M are

that

20

e M~1is a good approximation to A™! so that A is “close” to the identity

e M is computationally simple and inexpensive to invert due to the occurrence

of M~ in the preconditioned CG algorithm.

In this dissertation, the pre-conditioner is taken as the diagonal blocks of
the matrix A to enable the BCG method to be compared to the classical block
iterative methods (which can be viewed as having the same diagonal block pre-

conditioner) in Chapter 5.

3.3.3 Pre-conditioned Block
Conjugate Gradient Algorithm

Applying the preconditioned CG method to the block tri-diagonal structure (3.1)

leads to the following pre-conditioned block conjugate (BCG) algorithm.

B? = (M_lto)i = (M_I(Q_Ag))l i = 17"'73
k=0
while || 7% || # 0 and k < kypas
k=k+1
> () (MY,
ap = i:15
> ()" (Ap);
=1
xf—l—l:&f—l_akgf T = 17 B
rkHZEf—Oék(A}jk)i v = 1,....s
> (A,
ﬂk — i:ls
> () (MY,
=1
Bf-l—l = (MR, 4 51&3? v = 1,...,s

21

Chapter 4

Investigation of Nodal Ordering

In this chapter, the effect of the nodal ordering on the matrix structure gen-
erated by the finite element approximation described in Chapter 2 is examined.
Two different ordering approaches are investigated on a sample problem which is
solved by a block Jacobi iteration (Chapter 3). Using the results of this investiga-
tion, some recommendations are given for the nodal ordering in the discretisation

of the region.

4.1 Discretisation of Region

In order to investigate the effect of the orientation of the node numbering
scheme with respect to the predominant direction of flow, two different ordering
approaches are used.

The first is a vertical slicing method. In this method, the region is divided by
equally spaced vertical slices; then the vertical block sub-regions between pairs
of adjacent slices are divided into equally sized rectangular prism elements. The
nodes in the region are numbered on each slice in turn by natural ordering with
the incrementation being faster in the vertical direction. An example of this is

shown in Figure 4.1.

22

Slice 3
Slice 2

Slice 1 . .
Node numbering on slice 1

3 6 9 12

y
Té 2 5 8
; y 1 4 71 10

Figure 4.1: Vertical Slicing Nodal Ordering Using 3 x 2 x 2 Elements

The other ordering approach is a horizontal slicing method. The procedure is
essentially the same as for the vertical slicing method except that the slices are
taken horizontally and the nodes on each slice are numbered in natural ordering
with the incrementation being faster in the z-horizontal direction, as shown in

Figure 4.2.

Slice 3
| Node numbering on slice 1
Slice 2
3 6 9 12
2 5 8 1
Slice 1
z 1 4 7 10

X

Figure 4.2: Horizontal Slicing Nodal Ordering Using 3 x 2 x 2 Elements

23

4.2 Investigation of Convergence

The system of equations (2.3) is non-linear. In order that this system can be
solved by matrix methods, a non-linear iteration technique is used. The system
is linearised about the latest non-linear iterate to generate the matrix system to
be solved.

The area of interest in these tests is the solution of the linearised system.
Hence the non-linear iteration is not performed to convergence, only a single
non-linear iteration being used and the convergence of the inner iteration method
(used to solve the linearised system) is examined.

Due to the slicing methods used for the nodal ordering in the region, the
global seepage matrix will have a symmetric and block tridiagonal structure as
shown in (3.1). The connection between nodes on a slice in the approximate
equation (2.3) appears as an entry in the diagonal blocks. The connection between
nodes on adjacent slices appears as an entry in the super- and sub-diagonal blocks.
It the direction of flow is in the direction of the slicing then the entries in the
diagonal blocks will be large relative to those in the off-diagonal blocks and vice-
versa.

The problem described in Section 2.3 is selected because it is an example of
unsaturated flow. From [1], flow in the unsaturated region is predominantly in
the vertical direction (as opposed to saturated flow which is predominantly in the
horizontal direction). Hence, the block diagonal dominance should be stronger
with the vertical slicing and so the convergence of block iterative methods should
be faster with this slicing.

From (2.4), it can be seen that the two main influences on the relative sizes
of the entries in the seepage matrix are K;; and k. The effects of these two are

examined independently.

24

The region is discretised by the same number of elements in each direction
i.e. n xn X n elements. The resulting linearised matrix systems are solved by
a block Jacobi iteration (Chapter 3). The initial pressure head iterate for the
block Jacobi iteration is taken as —180 cm throughout the region. The criterion
for convergence of this iteration method is that none of the entries in the most
recent iterate change by more than 0.1 cm from the corresponding entry in the

previous iterate.

4.2.1 Effect of Lk;

In order to eliminate the effects of k,, from these tests, a constant initial

(non-linear) iterate is taken to linearise the problem. This is
Vinitiar = —180 cm

This ensures that k., is constant throughout the region during the block Jacobi
iteration.
The hydraulic conductivity is taken to be anisotropic in the region. The compo-

nents of K;; are taken as

K, = 1.0 cm/day

K,, = 04 cm/day

K.. = 0.1 ecm/day

K,, = 0.0 cm/day

K,, = 0.0 cm/day

K.. = 0.0 cm/day
The results of the tests are shown in Figure 4.3. This test case will be used
to generate matrices in later parts of this dissertation; the test case with vertical
slicing will be referred to as Problem 1 and the test case with horizontal slicing

will be referred to as Problem 2.

25

100
75—
o |
C
8 7 Horizontal slicing
= |
-.GL-:’ |
= 50_
\46 _
5 |
9 |
25+
] Vertical slicing
O||||||||||||||||||||

0 1 2 3 4 5 6 7 3 9 10
No. of elements in each direction

Figure 4.3: Effect of K;; on number of iterations

The entries in the diagonal blocks for the vertical slicing depend on the x
and y components of K;; whereas they depend on the x and z components of
K;; for the horizontal slicing. Hence the vertical slicing should have a faster
convergence rate, as borne out by Figure 4.3. It is a difficult task to measure
the components of the saturated hydraulic conductivity tensor in practice so the
porous medium is often taken to be largely isotropic. Also, unless there exists
some form of discontinuous heterogeneity (e.g. faults or large scale stratigraphic
features) or layered heterogeneity (caused by layers of individual beds each with
its own homogeneous conductivity value), then regions are usually taken to be
largely homogeneous. Under these isotropic and homogeneous conditions, there
is no difference between the convergence rate given by the two slicing techniques

on this problem.

26

4.2.2 Effect of k,,

In order to eliminate the effect of A; in these tests, its components are taken

as

K, = 1.0 cm/day
K,, = 1.0 cm/day
K.. = 1.0 em/day
K,, = 0.0 cm/day
K,. = 0.0 cm/day
K., = 0.0 cm/day

Since k,,, manifests itself as a non-linear effect, then a non-linear iteration
must be performed to produce the second non-linear iterate (which more closely
resembles the true form of the solution) and this is used to generate the linearised
matrix system to be solved by the block iterative algorithm. The results of the
tests are shown in Figure 4.4. This test case will be used to generate matrices in
later parts of this dissertation; the test case with vertical slicing will be referred
to as Problem 3 and the test case with horizontal slicing will be referred to as
Problem 4.

From Figure 4.4 it can be seen that, again, the vertical slicing gives a faster
rate of convergence. The difference in convergence rates is an indirect result of the
boundary conditions imposed on the problem. For this problem, the boundary
conditions cause the vertical flow to dominate. During the non-linear iteration,
the flow from the previous iteration is used to calculate the linearised relative
permeability throughout the region. The magnitude of this effect is governed by

the non-linearity of the constitutive relations.

27

Horizontal slicing

o]
o
|

No. of iterations

50 Vertical slicing

o

0 1 2 3 4 5 6 7 3 9 10
No. of elements in each direction

Figure 4.4: Effect of k., on number of iterations

4.3 Examples of Block Diagonal Dominance

Consider the s x s block tridiagonal system (3.1) with the inverse of the diagonal

blocks used as a pre-conditioner. Using the notation of (3.5),
D Az = D71

ie. (I—=D'L—D"a=D"b

The degree of block diagonal dominance, o, (see Section 3.1) of the pre-conditioned

matrix, using the notation of (3.1), is
o = max {147 Bl + 1A Billee) } - Bo=B. =
and, since ||/]|c = 1, then
o = max {| AT BL || + |AT Billeof Bo =B, =0 (4.1)
Note that this is the norm of the block Jacobi iteration matrix, B, i.e.
B=DYL+U)=D"'L+ DU

[Blloe < ID7 Lo + 1D U]l

28

or, in the notation of (3.1),
|Bllse = max {J|47 B lloo + A7 Billo) Bo= B, =0
so, comparing with (4.1), it can be seen that
[Blloe =

Therefore the stronger the block diagonal dominance of the pre-conditioned ma-
trix, the smaller the oco-norm of the block Jacobi iteration matrix. It is conjec-
tured that, for the types of matrices generated in this dissertation; the smaller the
oo-norm of the block iteration matrix, the smaller its spectral radius and hence
the faster the asymptotic rate of convergence of the classical iteration methods.

The direct connection between the norm of the iteration matrix and its spec-
tral radius is not proved in this dissertation, however some examples are given
to support the belief that stronger block diagonal dominance should imply a
greater asymptotic rate of convergence. The matrices resulting from Problems
1-4 (see Section 4.2) with 2 x 2 x 2 elements used in the discretisation of the
region (Aq, Az, As, Ay respectively) are given in Appendix B. The degree of block
diagonal dominance, spectral radius of the corresponding block Jacobi matrix
and number of iterations of the block Jacobi method to convergence, N, for these
matrices are given in Table 4.1.

From this table it can be seen that the spectral radius of the Jacobi iteration
matrix is smaller (and the number of iterations required for convergence is less)
for stronger block diagonal dominance of the pre-conditioned matrix (i.e. smaller
o).

Matrices A; and Aj are the result of vertical slicing node ordering approaches
and matrices A and A, are the result of horizontal slicing approaches. This

confirms (at least numerically for these examples) that vertical slicing leads to

29

Matrix o p(B) | N

Ay 0.8859 | 0.4382 | 6

Ay 0.9648 | 0.5957 | 12

As 0.9746 | 0.7215 | 17

Ay 1.0069 | 0.8147 | 27

Table 4.1: Degree of Block Diagonal Dominance for Example Matrices

stronger block diagonal dominance and faster convergence, as expected from the

previous results in this chapter .

4.4 Recommendations for Nodal Ordering

Approach

Plane slicing techniques (with the same number of nodes on each slice) are used
in this project primarily because of coding convenience. As stated in [9], mesh
grading capability is somewhat limited with this approach, particularly when the
flow region contracts or expands in the direction normal to the plane of the slice.

In practice, a more general spatial discretisation will be required to model

complex geometries and flows. The generalisations required would be to have
e a varying number of nodes on each slice
e various different types of geometry of element (e.g. tetrahedral)

e no requirement that the faces of an element which lie on adjacent slices be

parallel.

With these generalisations (particularly the last one), the horizontal and ver-

tical slicing terminology loses meaning. However the convergence concepts out-

30

lined in the previous sections still apply. In order that the following discussion has
meaning, the term “slicing” will now be taken to mean a discretisation approach
with a nodal ordering method which gives rise to a block tridiagonal matrix. The
results of the previous section will be generalised to these more relaxed discreti-
sation approaches.

From the previous sections, it can be seen that the direction of slicing can
have a significant effect on the rate of convergence of block iterative methods
applied to the linearised problem. This effect can be caused by heterogeneity and
anisotropy of the material properties (e.g. the saturated hydraulic conductivity
tensor) and also by the boundary conditions (manifesting themselves through the
non-linear material characteristics).

The effect of the boundary conditions will be most pronounced in combined
saturated-unsaturated flow where (as already stated in Section 4.3) flow is pre-
dominantly vertical above the water table in the unsaturated region and pre-
dominantly horizontal below the water table in the saturated region. Hence if
the nodal ordering method employed is a single slicing technique over the whole
region then this will lead to weaker convergence of a block iterative method in
the part of the region where the flow is not aligned with the direction of slicing.

It is clear that different node ordering approaches should be used in different
regions. The simplest and most obvious possibility is to use a vertical slicing
approach above the water table and a horizontal one below it. However, con-
sideration should also be given to the heterogeneity and anisotropy of material

properties when choosing the ordering approach.

31

Chapter 5

Comparison of Block Matrix

Iterative Methods

In this chapter, the performance of the block iterative methods described in

Chapter 3 on the problems described in Chapter 4 is discussed.

5.1 Practical Application of Block Matrix

Methods

It has already been stated that the matrices generated by the methods de-
scribed in Chapters 2 and 4 give rise to symmetric block tridiagonal matrices
(3.1). Hence only the diagonal and super-diagonal blocks need be generated and
stored in the program.

Also, there is more structure to be exploited within each of the blocks because
these are banded. From [5], the matrix A = (a,;) has upper bandwidth ¢ if a;; =0
whenever j > 2+ ¢ and lower bandwidth p if a;; = 0 whenever ¢« > j 4+ p. For the

matrices generated by the slicing techniques in Section 4.1,

g=p=N+2

32

where N is the number of elements in the y-direction for vertical slicing, and the
number of elements in the z-direction for horizontal slicing. This is not easily
seen from the example matrices given in Appendix B because these are too small.

When applying the block iterative methods of Chapter 3, there is a matrix
system corresponding to each of the s diagonal blocks to solve at each iteration.
The only difference between these systems at each iteration is the right hand side
vector so it is most efficient to compute the LDLT decomposition of each of the
diagonal blocks during the first iteration. Then each of the systems can be solved
by forward substitution, division by the diagonal and backward substitution.
Since the factors of a banded matrix are themselves banded then a banded LDL”
decomposition algorithm and banded forward and backward solvers can be used

for these computations (e.g. those given in [5]).

5.2 Performance of Block Matrix Methods

In this section the block iterative methods are applied to the matrix systems
arising from Problems 1-4 (Chapter 4) with n x n X n elements used in the
discretisation of the region. Both the BSOR method with w = 1.5 and with
W = wypt (With w,,: found to 2 decimal places by repeated running of the BSOR
algorithm with different values of w) are included.

The initial pressure head iterate is taken as —180.0 cm. The criterion for
convergence is that none of the entries in the most recent iterate change by more
than 0.1 ecm from the corresponding entry in the previous iterate.

The number of iterations to convergence for each of the four problems is given
in the four Tables later in this section. The data for Figures 4.3,4.4 and Table
4.1 in the previous chapter is given in the BJ columns in these tables.

If the BJ, BGS and BSOR(w,,;) columns are compared in the four tables, it

33

can be seen that the BGS method converges more quickly than the BJ method
and that the BSOR(w,,:) method converges at least as fast as the BGS method
as predicted by (3.11).

The BSOR method with w = 1.5 converges faster than BGS for the larger
cases in all four problems indicating that the matrix systems given by these
problems are relatively insensitive to the choice of over-relaxation parameter and
that BSOR is more effective than BGS for a reasonable choice of w.

The methods which converge fastest are BSOR(w,,;) and BCG. For Problems
1 and 2, BSOR(w,,;) converges slightly faster than BCG while for Problems 3
and 4, both methods require approximately the same number of iterations for
convergence.

If the BSOR and BCG algorithms (Chapter 3) are examined, it can be seen
that during an iteration, apart from the shared computations (LDLT decompo-
sition, forward and backward solver, etc.), BCG requires an additional matrix-
vector multiplication, two additional vector-vector multiplications and three ad-
ditional vector-vector additions. Hence BCG requires more work per iteration
than BSOR.

However, the use of BSOR(w,,:) requires w,,: to be determined. This can
either be done by an a priori method (e.g. estimating the spectral radius of
the corresponding Jacobi iteration matrix which is related to w,,;) or adaptively
(e.g. the adaptive SOR algorithm given in [6] which uses the difference between
successive iterates to repeatedly refine w towards w,,: during the iteration). The
BCG method does not require any parameter to be supplied.

It the number of extra calculations required by the BSOR method to calcu-
late w,pe 1s greater than the number of extra calculations required by the BCG
method then the BCG method will be the most effective. However, if w,,; can be

calculated relatively cheaply then the BSOR method will be the most effective.

34

It is noted that if the results from Problem 1 and Problem 2, and the results
from Problem 3 and Problem 4, are compared for each of the block iteration
methods, then the matrices arising from the vertical slicing node ordering con-
verge faster than those from the horizontal slicing nodal ordering, showing that
the results of Chapter 4 apply to all the iteration methods and not just the block

Jacobi method.

35

Size of Problem Number of iterations
nXnxn BJ BGS BSOR BSOR(wopt) BCG

w=1.5 W = Wopt

2 6 4 11 4 (1.00) 4

3 7 5 13 5 (1.00) 5

4 11 8 12 6 (1.11) 7

5 16 11 13 7 (1.19) 8

6 20 13 14 8 (1.23) 9

7 26 17 14 9 (1.30) 10

8 30 20 15 10 (1.33) 11

9 37 24 15 11 (1.39) 13
Table 5.1: Number of Iterations for Problem 1

Size of Problem Number of iterations
nXnxn BJ BGS BSOR BSOR(wopt) BCG

w=1.5 W = Wopt

2 12 8 12 5 (1.12) 6

3 19 12 13 T (1.22) 8

4 32 20 12 9 (1.35) 11

5 46 29 13 12 (1.42) 14

6 57 35 15 13 (1.48) 16

7 78 46 18 16 (1.53) 19

8 89 54 21 17 (1.56) 21

9 104 66 27 18 (1.62) 24

Table 5.2: Number of Iterations for Problem 2

36

Size of Problem

Number of iterations

nXnxn BJ BGS BSOR BSOR(wopt) BCG
w=1.5 W = Wopt
2 17 11 12 6 (1.20) 5
3 27 17 12 8 (1.29) 9
4 48 29 13 11 (1.43) 10
5 74 45 15 13 (1.53) 13
6 90 55 21 16 (1.57) 16
7 121 74 30 18 (1.64) 18
8 139 86 35 21 (1.66) 22
9 172 107 46 24 (1.69) 24
Table 5.3: Number of Iterations for Problem 3
Size of Problem Number of iterations
nXnxn BJ BGS BSOR BSOR(wopt) BCG
w=1.5 W = Wopt
2 27 14 12 7 (1.34) 6
3 43 24 12 9 (1.40) 9
4 80 43 15 13 (1.53) 12
5 111 64 25 16 (1.62) 15
6 142 76 31 18 (1.64) 18
7 184 99 42 21 (1.70) 21
8 200 112 48 23 (1.72) 24
9 225 136 61 27 (1.75) 27

Table 5.4: Number of Iterations for Problem 4

37

Chapter 6

Parallel Implementation of

Block Matrix Algorithms

Block algorithms access data from memory in large chunks or blocks; in parallel
computer architectures, input/output is usually more expensive than floating
point computations, making block algorithms attractive for these machines. In
this chapter, the possibility of parallel implementation of some of the block matrix
methods described in Chapter 3 is discussed.

The block matrix algorithms are directed at a transputer type architecture.
In the first part of this chapter, the transputer is described and some of the
important properties required for the design of algorithms for this type of machine

are identified.

6.1 Description of Transputer Architecture

6.1.1 The Transputer

A transputer (INMOS 1985) is a single chip microprocessor [7], designed as

a building block for parallel processors. To facilitate this it has memory and

38

four links to connect one transputer to another, all on a single VLSI chip. One
important feature of VLSI technology is that communication between devices is
very much slower than communication within a device. In transputer parts, all
components execute concurrently; each of the four links and the floating point
co-processor can all perform useful work while the processor is executing other
instructions.

Transputers are designed to implement the parallel programming language
OCCAM very efficiently. However, due to the large amount of resources resid-
ing in FORTRAN code, parallel FORTRAN is available, e.g. the 3L Parallel

FORTRAN package [11].

6.1.2 Transputer Networks

The four links on a transputer allow several interconnection topologies to be
implemented. Some examples of these are shown in Figure 6.1. The network
topology of a system is a hardware feature. In a network, one transputer functions
as the ‘host’, by which the network is directed. The host is installed in a PC and
does not take part in the computational process itself.

Pipeline
\ \

Tree

Figure 6.1: Transputer Network Topologies

39

The macroscopic structure of a parallel computer can be classified according
to Flynn’s tazonomy [7]. This system is based on the way in which the machine re-
lates its instructions to the data being processed. If the 2-D array network topol-
ogy is used, then the transputer system resembles a Single Instruction-stream
Multiple Data-stream (SIMD) architecture in which several processors simultane-
ously execute the same instruction on multiple data streams (e.g. the ICL DAP).
This type of architecture is represented in Figure 6.2, which appears amenable to

block matrix algorithms.

Arithmetic Data stream 1
processor 1

Arithmetic Data stream 2
processor 2

Inst{uction
Control stream
unit

Arithmetic Data stream n
processor n

Figure 6.2: Single Instruction-stream Multiple Data-stream

However, it is possible to use a pipeline of transputers in a pseudo SIMD
mode. This is the type of architecture considered for the implementation of
the block matrix algorithms, since the hardware configuration of the available
transputers is a pipeline. Note that an open-ended n-stage pipeline network has
(2n + 1) free (or unused) links and therefore does not make optimum use of the
transputer communication facilities. The processors communicate via access to an
adjacent processors local memory (see Figure 6.3). This type of communication
is inefficient with a pipeline network since data required by a transputer from a
non-adjacent transputer must be passed along the chain through the intermediate

transputers.

40

4{ Processor }—{ Processor }—{ Processor }7
Memory Memory Memory

Figure 6.3: Communication Between Processors Via Local Memory

The pipeline will be implemented as a systolic network [5]. In a systolic
network the processors operate in a completely synchronous fashion. During a
“tick” of a global clock, each processor communicates with its neighbours and

then performs some local computation.

6.2 Parallelisation of Block Matrix Algorithms

In this section, the possibility of implementation of the sequential block itera-
tive methods described in Chapter 3 on a transputer system is discussed. It will
be assumed that there are p transputers in the network (where p is less than the

number of blocks on the diagonal, s).

6.2.1 Software Model

There are two main types of software parallelisation available in 3L Parallel
FORTRAN [11], tasks and threads.

A task is a FORTRAN program. Task structure is static (i.e. tasks are not
created and destroyed dynamically during execution) and no hierarchy exists (i.e.

there is no facility for “sub-tasks” within tasks). There is no memory sharing

41

between tasks, they communicate via channels which are one way communica-
tion paths with a fixed starting point and a fixed finishing point. A complete
application is viewed as a collection of one or more tasks, a single transputer can
execute more than one task. A task may contain several concurrent threads.

A thread is a FORTRAN subroutine. Threads are dynamically created and
destroyed during execution and are potentially heirarchical (i.e. a thread may be
created from within another thread). Threads have shared common blocks.

Since tasks are the main type of parallelisation in 3L Parallel FORTRAN,
only these will be considered in the formulation of possible parallel algorithms.
The task structure has the advantage that it is easy to adapt the application if
more transputers are added to the system since the distribution of tasks on the
available processors is controlled by a piece of software called the configuration

file and it is relatively simple to alter this.

6.2.2 Block Jacobi Method

As stated in Section 3.2.1, this method is easily parallelised since each of the
block matrix equations which result from the method are independent from the
others. Hence each of the s block matrix equations can be coded as a separate
task, and the s tasks can be distributed among the p processors. The algorithm
for task ¢ in the middle of the system, is given after the end of this paragraph.
It will be assumed that initially, every task contains its own part of the initial
iterate, x, ,, its own part of the right hand side vector, b; and its own sub-, super-
and diagonal blocks, BY |, B; and A;.

Block Jacobi Method : Task ¢ Algorithm

1. k=0

2. Send z¥ to neighbouring tasks (i.e. task : — 1 and task 7 + 1).

42

3. Receive z¥ | from task i — 1 and 2, from task 7 + 1.

4. Modity the right hand side vector, i.e.

by = b, — (B?—1§f—1 + Bﬁfﬂ)

=1 =

using banded matrix-vector multiplication.

5. Perform a banded Cholesky decomposition on A; i.e. A = LDLT

(unless this has already been computed at a previous iteration).

6. Solve
LDLT zF' = b,

‘3

for 25*! by banded forward substitution, division by the diagonal and

banded backward substitution.
7. k=k+1

8. Return to step 2.

In the neighbouring tasks, the receive steps would have to be performed before
the send step.

Note that no detail is given on the termination of the process. The termination
criterion has to be global (i.e. the whole solution vector is tested for convergence
at the same time) so all the results have to be assembled in one memory location
at some stage during the iteration process and the convergence test is performed
there.

One way of achieving this is to have all the transputers in the chain also
connected to a single transputer (which itself is directly connected to the host
processor). This enables the system to be tested for convergence at the end of
each iteration, but means that the hardware configuration of the existing network
has to be changed by adding extra wires and also limits the length of the chain to

four transputers (including the host processor), hence this approach is rejected.

43

Another possibility is to pass all the results along the chain to a single transputer
(where convergence is tested) after each iteration. However, this means that the
bulk of the execution time of the program is consumed by the communication
and so is not efficient.

Another approach is to pass the results along the chain to the first (non-host)
processor where the convergence test is applied by a separate task - if convergence
has occurred then this task informs the host to terminate the process and output
the results. Since each transputer communicates with its neighbours at the end of
each iteration then convergence is only tested after every (p—1) iterations so some
unnecessary iterations can be performed. In order to implement this approach,
the block iteration task algorithm would have to be altered to incorporate the
passing of data along the chain after each iteration; this is omitted from the task
algorithm given for the block Jacobi algorithm so that the parallelism of the block
iterative method is more clear (for this reason, no termination criterion will be

given for the other parallel block iterative methods described in this chapter).

6.2.3 Block Gauss-Seidel Method

This method is not as easily parallelised since each of the block matrix equa-
tions uses the latest iterate from the previous block matrix equation. However,
adapting the parallel point GS method from [10] for a block algorithm gives a
possible approach for the parallel implementation of the BGS method.

Consider a general task in the middle of the chain of tasks. The previous
task calculates its (k + l)th iterate and passes it to this task. This task then
calculates its own (k + 1) iterate and passes it onto the next task. Up to this
point there has been no departure from the sequential BGS method described in
Section 3.2.2. However, the current task also passes its (k + 1) iterate back to

the previous task which can now calculate its (k + 2)" iterate. In this way, more

44

than one task is active at any particular instant with different iteration levels
being performed concurrently.

In this approach, some of the blocks will do extra iterations after the iteration
which gives the solution to the required tolerance, so it appears that some pro-
cessor time is wasted. However, in a parallel applications, the execution time is
the chief measure of performance and, since the extra iterations are done at the
same time as the required iterations then these extra iterations do not represent
any waste in the parallel performance of the method. The algorithm for task :
in the middle of the system, is given after the end of this paragraph; the same
assumptions as for the BJ method in Section 6.2.2 are made here.

Block Gauss-Seidel Method : Task : Algorithm

1. k=0
2. Receive 21} from task 1 — 1.
3. Receive 2, from task 7 + 1.

4. Modity the right hand side vector, i.e.
=b; — (BZT—1§51—11 + Bz@f—u)

using banded matrix-vector multiplication.

5. Perform a banded Cholesky decomposition on A; i.e. A = LDLT

(unless this has already been computed at a previous iteration).

6. Solve
LDLTzH = b,

‘3

for zf+! by banded forward substitution, division by the diagonal and
banded backward substitution.

7. Send gf"'l to task ¢ + 1.

45

8. Send 2! to task i — 1.
9. k=k+1

10. Return to step 2.

See Section 6.2.2 for the termination criterion for the method.

6.2.4 Block Successive Over-relaxation Method

The approach used for the parallelisation of the BGS method in the previous
sub-section can also be used for the parallelisation of the BSOR method. The

only difference in the task algorithm will be in step 4 which now reads as follows.

e Modify the right hand side vector, i.e.
Ei = wb; — {(1 — W)Aiif + W(Bilf-u + Bzr—llfjf)}

using banded matrix-vector multiplication.

6.2.5 Block Conjugate Gradient Method

If the sequential preconditioned BCG algorithm given in Section 3.3.3 is examined
it can be seen that, during each iteration, the calculation of the parameters «
and 3 require the results from all the blocks to be assembled in a single sum. To
implement this algorithm in its current form on the type of transputer network
available would cause the same difficulties as those described for the convergence
test (see Section 6.2.2). Since the choices of a and 3 in the sequential algorithm
ensure local minimisation of the functional over the space of A-conjugate search
directions then any departure from these values will cause the method to lose
this property. However, the iterated sequence generated by the BCG method

with different choices of « and 3 may still converge to the solution of the system.

46

One possible approach is to have separate o and 3 for each block. In this case

the algorithm becomes

while || 7% || # 0 and & < kypax

k=k+1
ap; = () (M), = 1,...,s
TG, o
gf"'l:zf—l-oék,z’}jf = 1,...,s
ritt =k — g (Aph); v=1..,s
5 IO, .
T EHT O, o
Bf-l—l = (M~ 4 5&2.}2? = 1,...,s

Note this this is no longer the conjugate gradient method but instead is a related
method based on that procedure. This algorithm was found to converge only for
the small test cases (e.g. 3 elements in each direction) indicating that the loss of
conjugacy in this new method is too great.

The pre-conditioner, M, is the diagonal blocks of the original matrix; better
performance may be obtained for this algorithm if the pre-conditioner contains
some connection between adjacent block in the matrix e.g. the incomplete block
Cholesky pre-conditioner given in [5] - this requires further investigation.

Another possible approach is one in which each task keeps a record of the most
recent values of oy ; and B3y, available to it for all the tasks and communicates
its oy and B to its neighbours at each iteration. In this algorithm, values of
ay,; and B ; from different iteration levels, &, would be in use at the same time -

again, this requires further investigation.

47

Chapter 7

Conclusions

The matrix systems resulting from a finite element approximation (with slicing-
type discretisation) to a three dimensional groundwater flow problem have been
examined. It has been shown that the nodal ordering which leads to the fastest
convergence rate of block iterative methods applied to these matrices is one in
which the predominant direction of flow coincides with the direction of slicing.

When tested on example problems, the block successive over-relaxation method
with optimum over-relaxation parameter, BSOR(w,:), and the block conjugate
gradient method with diagonal block pre-conditioner, BCG, gave the fastest rate
of convergence. Unless a cheap technique for determining the optimum over-
relaxation parameter is used, BCG will be more efficient (even though BCG
requires more floating point operations than BSOR).

It has been shown to be relatively simple to parallelise the classical block
matrix iterative methods on a transputer system as long as modified convergence
criteria are applied. However, since BCG involves some global iteration dependent
parameters, then it cannot be parallelised in its current form on the type of
transputer network available. Instead some modified “BCG” algorithms have

been proposed but further investigation is required on these.

48

Appendix A

Influence Coefficients for Linear

Rectangular Prism Element

A.l Influence Coefficients for

Element Seepage Matrix

T 1 zz vy 1 vy
[Aamc]e — g “ 2a [Ayy]e — g “ 2a
3 %al’l’ a®® 3 %ayy ay

49

where

zZ

Nl

a¥V = —
. 1
a™ = =

2
avc = -
NEZT 1
a*t = -

3

-1

-2

A.2 Influence Coefficients for

Element Right Hand Side Vector

{Fx}e { f } {Fy}e i { f } {FZ}B { f }
I IY —f

where

51

Appendix B

Small Example Matrices

In this appendix, the global seepage matrices arising from the test problems
described in Chapter 4, with 2 x 2 x 2 elements used to discretise the region, are

given. (The entries in these matrices are only given to 2 decimal places.)

Matrix A; is the result of Problem 1 (Section 4.2.1)
Matrix Az is the result of Problem 2 (Section 4.2.1)
Matrix Az is the result of Problem 3 (Section 4.2.2)

Matrix Ay is the result of Problem 4 (Section 4.2.2)

These matrices are used in Chapter 4 to illustrate the effect on the block diag-
onal dominance and asymptotic rate of convergence of different node ordering
approaches. The matrices are also used to illustrate the structure of the global

seepage matrices in Chapter 5.

52

910 ¢00— 000 €0°0— 000 |S00 <¢00— 000 <¢00— 000 (000 000 000 000 000
¢00— 1¢€0 ¢00— €00— €00—|co0— I1o <¢00— €0— ¢00—|(000 000 000 000 000
000 ¢00— 910 €00— <¢00—|000 <¢00— <00 <¢00— T1000—|(000 000 000 000 000
€00— €00— €0— 910 T00—|c00— €00— <¢00— <00 T100—(000 000 000 000 000
000 €00— ¢00— T100— 8OO |000 <¢00— T100— T100— €0 |[000 000 000 000 000
¢«00 ¢00— 000 <¢00— 000 |10 ¥OO— 000 LOO— 000 |90 <¢00— 000 <¢00— 000
¢00— I1o ¢00— €00— <¢00—|¥v00— €90 ¥00— 900— LOO—|¢00— TI0 <¢O0— €00— <¢00—
000 ¢00— 900 <¢00— T100—]000 ¥OO— T€0 LOO— €00—]000 <¢00— G000 <¢00— T00—
¢00— €00— ¢00— <00 T00—|L00— 900— LOO— T1€0 ¢00—|¢00— €00— ¢00— GO0 T00—
000 ¢00— T100— T00— €00 |000 LO0O— €00— <¢00— 910 |[000 <¢00— T0O0— TO0— €00
00’0 000 000 000 000 |S00 <¢00— 000 <¢00— 000 |90 <¢00— 000 €0°0— 000
000 000 000 000 000 |¢O0— TII'0 @¢00— €0— ¢00—|¢00— T€0 <¢00— €00— €00—
000 000 000 000 000 |000 <€¢00— 400 <¢00— T100—]000 <¢00— 9I'0 €00— <¢00—
000 000 000 000 000 |¢O0— €00— ¢00— <00 T100—|€00— €0°0— €00— 910 T0°0—
00’0 000 000 000 000 |000 €00— T100— TI00— €0 000 €00— ¢00— T00— 800

'V

910 <0 000 |<¢00— ¢00— 000 €00— <¢00— 000 |000 000 000 000 000 000
o0 1€0 900 |<¢00— ¥00— <¢00— <¢00— LOO— <¢00—|000 000 000 000 000 000
000 90 910 {000 <¢0O0— <¢O0— 000 <¢00— €00—|000 000 000 000 000 000
¢00— ¢00— 000 |T1€0 TI°0 000 €00— €00— 000 |¢00— ¢00— 000 €00— <¢00— 000
¢00— ¥00— <¢00— {110 €90 110 €00— 900— €0—|c¢00— ¥00— <¢00— ¢00— L00— <¢00—
000 ¢00— ¢00—1{000 TI'0 TE0 000 €00— €0— (000 <¢00— ¢00— 000 <¢O0— €00—
€00— ¢00— 000 |€00— €00— 000 910 <00 000 |€0— ¢00— 000 TOO0— TOO— 000
¢00— L00— ¢00—|€00— 900— €00— <00 T1€0 <00 [¢00— L0O0— <¢00— T00— <¢00— T00—
000 ¢00— €°0—1|000 €00— €00— 000 <00 910 (000 <¢00— €00— 000 TOO0— TO0—
000 000 000 |<¢00— ¢00— 000 €00— <¢00— 000 |9T0 9O 000 <¢00— TOO0— 000
000 000 000 |¢00— ¥0OO0— <¢00— ¢00— LOO— <¢00— |90 T€0 <00 T00— €00— T00—
000 000 000 {000 <¢0O0— <¢00— 000 <¢00— €0— (000 SO0 910 000 TO0— <€O0—
000 000 000 |€00— ¢00— 000 T00— T100— 000 |¢00— T1T00— 000 8OO €00 000
000 000 000 |<¢00— L00— ¢0O0— T100— <¢00— T100—|T100— €00— T00— €00 910 €00
000 000 000 {000 <¢O0— €00— 000 T100— T100—|000 T00— ¢00— 000 €00 8O0

v

ee 9¢0— 000 0¢0— 000 |9¢0— ¥80— 000 G&¢0— 000 |000 000 000 000 000
9¢0— ¥¥v ¥¢0— 1¥0 GI°0—|¥P80— 090— 8L0— ¢€0— 0¢0— (000 000 000 000 000
000 ¥¢0— €I'¢ SI'0— R8I0 |000 8L0— ¥¢0— 0¢0— <T°0— (000 000 000 000 000
0¢0— 1¥0 SI'0— I8T 600—| 40— <€0— 0¢0— TI¢0— 6¢0—(000 000 000 000 000
000 4¢r0— 810 600— 6.L0 000 00— <I0— 6¢0— 600— (000 000 000 000 000
9¢'0— ¥80— 000 4¢0— 000 |19¥% ¢<0— 000 6€0— 000 |9¢0— ¥80— 000 G¢0— 000
¥80— 0¢0— 8L0— G€0— 0¢0—|¢¢0— 688 6F0— €0 T€0—|F80— T¢0— B8LO— G&E0— 0¢0—
000 8L0— ¥¢0— 0¢0— GI'0—|000 6¥0— &¥ T1€0— 9¢0 000 8L0— ¥¢0— 00— 90—
¢¢0— 40— 0¢0— T¢0— 6¢0—|6E0— €80 T€0— €9¢ 8I0—]%0— €0~ 0¢0— T¢0— 6¢0—
000 0¢0— 4SI'0— 6¢0— 600—|000 T€0— 9€0 80— 09T 000 0¢0— 9I'0— 6¢0— 600—
000 000 000 000 000 |9¢0— ¥80— 000 40— 000 |0€¢ 9¢0— 000 00— 000
00’0 000 000 000 000 |¥80— T190— 8L0— ¢€0— 0¢0—|9¢0— S¥v¥ ¥¢0— I¥0 9I0—
00’0 000 000 000 000 |000 8L0— ¥¢O0— 0¢0— 9T°0— (000 ¥¢0— SI'¢ 9I'0— 8I0
000 000 000 000 000 |G0— C€0— 0¢0— TI¢0— 6¢0—(0¢0— I¥0 90— ¢&8T 60°0—
00’0 000 000 000 000 |000 00— 9I'0— 6¢0— 600— 000 9T°0— 8I'0 600— 080

ey

et yro— o000 |{¥1°0— 4¥0— 000 ¥I0O— 80— 000 |00 000 000 000 000 000
¥1°0— 9v¢ ¥I0— |GV 0— 8¢0— 4¢%0— &T'0— 60— 61°0—]000 000 000 000 000 000
000 ¥ro— €1 (000 S¥0— ¥I0— 000 6I'0— <T°0— 000 000 000 000 000 000
¥1°0— Sv'0— 000 |&€8¢ <¢€0— 000 O0FO0 ¥€0— 000 |8I0— 8GO~ 000 00— 9¢°0— 000
90— 80— 90— |ct0— TLG €0~ 7E0— €0 9€0— [84°0— LEO— 090— 9¢0— ¢v0— 8¢0—
000 9%0— F¥I'0—|{000 €€0— 8¢ 000 9€0— ¢<¢¥0 (000 090— 60— 000 80— T&0—
¥1°0— 81°0— 000 |O¥0 ¥EO0— 000 < 00— 000 |0¢0— 9¢0— 000 <€I10— 8EO— 000
80— 6¢0— 6I0—|FE0— €80 9€0— 0¢0— €9¢ 1¢0—|[9¢0— ¢¥0— 80— B8EO0— ¥¢0— 0V 0—
000 60— SI°0—{000 9€0— ¢¥0 000 T¢0— 98T (000 80— T¢0— 000 OFV0— €I0—
000 000 000 |8I0— 8¢0— 000 00— 9¢0— 000 |09T 8I'0— 000 F¥¢0 00— 000
0000 000 000 |8¢0— LEO— 090— 9¢0— ¢¥0— 80— 80— S€& 60— 060— 670 T1&0—
000 000 000 {000 090— 6I'0— 000 80— TI¢0— 000 60— 99T 000 T¢0— G¢0
000 000 000 |0¢0— 9¢0— 000 <¢I0— 80— 000 |¥¢O0 00— 000 <O <¢I'0— 000
000 000 000 |9¢0— ¢v0— 80— 8€0— ¥¢0— 0F0— 00— 670 1¢0— ¢I'0— GI'¢ €I0—
000 000 000 {000 80— T¢0— 000 OFO0— €I0— (000 T¢0— S¢0 000 €10— OI'T

v

Bibliography

1]
2]

3]

D.M. Cooper (Institute of Hydrology), Private Communication, (1991)

A.J. Davies, The Finite Element Method : A First Approach, OUP,

(1936)

FLAMINCO Documentation : A Three-Dimensional Finite-
Element Code for Analysis Water Flow and Solute Transport in

Saturated /Unsaturated Porous Media, Geo. Trans., Inc., (Sept. 1987)
R.A. Freeze and J.A. Cherry, Groundwater, Prentice-Hall, (1979)

G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd Ed., John

Hopkins University Press, (1989)

L.A. Hageman and D.M. Young, Applied Iterative Methods, Academic

Press, (1981)

R.W. Hockney and C.R. Jesshope, Parallel Computers 2 : Architecture,

Programming and Algorithms, Adam Hilger, Bristol, (1988)

P.S. Huyakorn and B.M. Thompson, Techniques for Making Finite
Elements Competitive in Modelling Flow in Variably Saturated

Porous Media, Water Resources Research. 20, pp. 1099-1115, (Aug. 1984)

P.S. Huyakorn, E.P. Springer, V. Guvanasen and T.D. Wadsworth, A

Three-Dimensional Finite Element Model for Simulating Water

57

Flow in Variably Saturated Porous Media Flow Systems, Water Re-

sources Research. 22, pp. 1790-1808, (Dec. 1986)

[10] J.J. Modi, Parallel Algorithms and Matrix Computation, Clarendon

Press, Oxford, (1988)

[11] Parallel FORTRAN User Guide, 3L Ltd., Software Version 2.1.3, (Dec.

1990)

[12] G. Strang and G.S. Fix, An Analysis of the Finite Element Method,

Prentice-Hall Int., (1973)

[13] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall Int., London, (1962)

38

