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Abstract

The main objective of this dissertation is to present a finite element method to compute
the price of knock-out barrier options that are depended on the price of two underlying
assets. The price evolution of the assets is assumed to follow a geometric Brownian motion
and priced by using the Black-Scholes model. The value of the option is formulated within
the framework of the Nobel Prize work of Robert C. Merton, Fischer Black and Myron
Scholes.

The partial differential equation form of the Black-Scholes model is discretized using a
P1

NC finite element method and the numerical result is presented using the finite
element mesh generator program called Gmsh.

Different types of call, put and basket options are simulated using the P1
NC finite

element method. Neumann and Dirichlet boundary conditions are use to examine the
effect of applying different types of barriers on the prices for each of the options.
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Notations

The following notations are used throughout the dissertation:

α - basket constant
c - scaling parameter
i - underlying asset (where i = 1,2 to denote each of the asset)
t - current time
K - strike price
V - option price (option premium)
T - exercise date (expiry date)
τ - backward time point
te - time to expiry
Si - price of underlying asset i
C - price of call option
P - price of put option
σi - volatility of the asset i
ρ - correlation of the underlying asset
r - risk free interest rate
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Chapter 1

Introduction

Aim
The aim of this dissertation is to numerically compute the price of knock-out barrier
options that depends on two underlying assets using the P1

NC finite element method.

Background

The trading of options has grown dramatically over recent years and now plays an
important role in the financial world. The first national options exchange, the Chicago
Board Options Exchange (CBOE), was opened in 1973. According to Higham (2004) there
are now over 50 official options exchanges. Significant amount of options is now traded
globally on exchanges (such as the European Options Exchange (EOE), American Stock
Exchange (AMEX), International Securities Exchange (ISE) and London International Fi-
nancial Future exchange (LIFFE)). Options can also be traded between two independent
parties, for example financial institution such as banks. This is known as over the counter
(OTC) trading. In many cases, there are more money invested in options then the money
invested in the underlying assets itself (see Higham (2004)). Furthermore, it is recog-
nised that the options market can help market completeness by providing informational
efficiencies (see Figlewski (1993)).

The Black-Scholes model is a well-known model use to price options. The model was
discovered by Fischer Black and Myron Scholes (see Black et al (1973)), and developed
further by Robert C. Merton (see Merton (1973)). The foundation for their research has
its roots going back to works by Boness (1964), Samuelson (1965), Thorp and Kassouf
(see Thorp et al (1967)). The Black-Scholes formula essentially tells investors what value
to put on a financial derivative, such as a call option on a stock. This model is based on
a number of assumptions such as the price of the underlying assets following a geometric
Brownian motion.

Many numerical methods have been used to price options. Scwartz (1977) and Cour-
tadon (1982) both used a finite difference scheme to compute the numerical solutions
for the options. Another popular numerical scheme is the finite element method (FEM).
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For a barrier option, the existing option will ceases to exist, if the asset price crosses a
specified barrier level during the lifetime of the option. FEM has many advantages over
other numerical schemes such as finite difference (FD). A key advantage would be that
irregular and complex shapes caused by barriers can be more accurately represented by
unstructured mesh used by FEM. For FD, it is harder to set the grid points to deal with
the complex shapes. FEM has been used by Topper (2000) to price options with two
underlying assets, and Pooley et al (2000) uses the FEM to compute the price of two
assets barrier options.

A P1
NC finite element scheme is used in this dissertation to compute the Black-Scholes

partial differential equation. P1
NC is use to simulate different types of option (call or put)

with Neumann and Dirichlet boundary conditions to examine the effect of the barrier on
the cost of the option.



Chapter 2

Financial background and
terminology

In this chapter the background, the terms and the motivation for this project is explained
in more details. Many of the financial terms and background explained in this chapter
are taken from the books by Higham (2004), and Hull (2006).

2.1 Financial Instrument

The term financial instrument is use to describe any form of funding medium that has a
monetary value. For example, financial instrument such as bonds are use for borrowing
in the markets. There are two types of financial instrument:

• Derivative instruments are financial instruments whose values are derived from
some financial instrument. A stock option is an example of a derivative instrument
because its value is derived from the value of a stock.

• Cash instruments are financial instruments whose values are derived directly from
markets. This would include loans, bonds, deposits and stocks.

2.2 Asset

An asset is used to describe any financial object whose value is currently known but may
change in the future. An underlying asset is an asset for which the price of an option is
depended on. Examples of assets include:

1. Commodities: These are physical objects which can be directly purchase or sold.
This would include: crude oil, iron ore, electricity, silver or gold.

4
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2. Currencies: For example the value of $100 in pound Stirling.

3. Shares in a company: The value of shares would reflect how well the company is
doing. If the company is successful, the value of its share will rise, on the other
hand if the company is not doing so well, then the value of the share will drop.

2.3 Derivative

In mathematics, the term derivative means an instantaneous change of a quantity with
respect to some variable. In finance, derivative is an instrument whose value is derived
from, or is depended on the value of some underlying asset.

As an example, suppose an investor wishes to buy 100 shares in a company in three
months time. The current price (also known as the spot price) is £1 per share. Suppose
that the price of the share will increase within the next three month. Clearly, the investor
would not wish to buy the share for a higher price then the price it was before. There are
three choices in which the investor can keep the price at £1 per share.

1. Buy the share immediately, by paying the spot price.

2. Make an agreement with the company to buy the share at a pre-agreed point in the
future for a pre-agreed price. With this agreement, the investor will be obliged to
buy the share at that date. This is called a forward contract.

3. Make an agreement with the company to have the right but not the obligation to
buy the share at a pre-agreed point in the future. This is called an option.

Choices 2 and 3 are financial derivatives because the price of each contract is depended
upon the values of the underlying assets.

2.4 Options

An option is a contract or agreement which would give the holder the right but not the
obligation to buy or sell a specified asset at a fixed price (strike price, denoted by K )
up to a fixed period of time (exercise date T ). The exercise date is the date at which the
option expires.

Since the options gives the buyer a right and the seller an obligation, the buyer
will paid an option premium V, to the seller (writer) for the privilege of purchasing and
holding the option. The premium (cost of purchasing an option) of the option is agreed
between the buyer and seller of the option. Options have become popular in the financial
world, for the following reasons:
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1. Options are cost efficient

For example, an investor may want to purchase 100 shares of a stock with spot
price at £150. In total, the investor will have to pay £15,000 for all of these shares.
Options provide the opportunity for the investor to purchase the same amount of
share exposure but at a much reduced price. The investor can use the options
market to choose an option which would mimic and recreate the situation of the
stock closely.

Suppose there is such an opportunity such that the investor can purchase a call
option for £50 with a strike price at £50 for each of the 100 shares. The investor
would only paid £5000 in total (representing 100 shares). If at the exercise date,
the investor would like to exercise their rights to buy all the share at the strike price
of £50, then the investor only needed to paid £10,000 (option price + strike price
of 100 shares) rather then the £15,000 paid for direct investment.

2. Higher Potential Gain

The potential gain in using options can be much higher then the potential gain
with the usual investment in stocks. This is known as the leverage effect. But a
consequence of the leverage effect will be the increase risk of losing all investment.
Therefore for options, risks become more important.

3. More flexibility

Options offer more variety of investment alternatives. Options can be used to recre-
ate many different situations.

4. Opportunity for hedging and speculations

Hedging is an investment technique that is use with the aim of cancelling or reduc-
ing the risk of another investment. Options allow investors to protect their position
against price fluctuation and minimised the lost caused by unwanted risks. Spec-
ulation involves the trading of any financial assets in an attempt to profit from
any price fluctuations. Options are popular with investors because it allowed the
opportunity for greater potential gain (but at the risk of magnifying the loss).

5. Systematic method for pricing options

The price of options can be computed by using the well-known Black-Scholes Model
(more details on this model later). Therefore options can be traded with some
confidence.
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The value S, of a stock is driven by supply and demand. According to Higham (2004)
and Hull (2006), the value of an option is influenced by the following five principal
factors:

1. The strike price K.

2. The price of the underlying asset Si in relation to the strike price.

3. The cumulative cost to hold a position in the security. This would include interests
and dividends.

4. The time to expiry of the option given by te.

5. The estimation of the future volatility σi of the asset price.

The majority of options can be classified as either European or American options:

• European Option: This option allowed the holder to exercise their right to pur-
chase or sell an asset at the strike price only on the exercise date.

• American Option: This option allowed the holder to exercise their right to pur-
chase or sell an asset at the strike price any time up to the exercise date.

American options are more expensive then European options because they give the holder
the right to exercise at any time up to the exercise date. Therefore it has more flexibility
than European options. This dissertation will focus only on European options.

2.5 Vanilla Options

Vanilla options are normal options with no special or unusual features. The name Vanilla
is used to distinguish them from more exotic option (see section 2.6). Vanilla options are
very popular and the vast majority of options are of this type. There are two main types
of vanilla options, depending on whether the holder has the right to purchase or sell an
asset.

2.5.1 Call Option

A call option gives its holder the right (but not the obligation) to purchase an agreed
quantity of a prescribed asset for the strike price at the exercise date. The writer of
the option is obliged to sell the prescribed asset at the strike price, should the holder
exercise their right to buy. For this right, the buyer of the option will pay a premium
to the seller for the privilege of holding the right but not the obligation to purchase the
stock for the strike price on the exercise date.
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The buyer of a call option expects the price of the underlying asset to rise by the
exercise date. The seller will received the premium, and will be oblige to sell the asset at
the strike price, should the buyer exercise the option to do so. Figure 1 shows the payoff
diagram when buying a call option, as viewed by the buyer.

Figure 1 - Payoff Diagram for buying a European call option (source: http://en.wikipedia.org/wiki/Call
option)

The buyer of the call option will make the most profit when the value of the underlying
asset is increasing and exceed the strike price plus the price paid for the option premium.
To illustrate the idea, a simple example is given below:

A simple example of a European call option on a stock

Suppose the price of a stock in a company is currently £40. An investor expects the
stock price to rise in the future. The investor buys a call option with the strike price set
at £40 with the exercise date 15th November 2007. For this right, the investor will paid
the company a premium of £10 for this call option. Now consider the following two
scenarios:

1. Stock price rises above the strike price (£40)

Suppose the stock price rises to £60 on the exercise date. The investor will exercise
the option to buy the stock for £40. When the stock is purchase, the investor can
either keep the stock or sell the stock on for £60. By selling the stock, the investor
will have made a profit of £20. The net profit will now be £10, when the cost of
the premium of £10 is subtracted.

2. Stock price stay below the strike price

Suppose the stock price never rises to £40. The holder would not exercise the option
therefore the option would expire worthless. The investor would have made a loss
of £10 (i.e., the premium paid).
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The investor can theoretically make unlimited profit. Profit is only made when Si >
K + V . This is represented by the profit line in figure 1. The lost to the investor will
be limited to the price of the premium initially paid for the call option. In the view of
the seller “writer” of the call option, he or she will expect the price of the stock to not
rise. Figure 2 shows a graphical interpretation when selling a call option, as viewed by
the writer.

Figure 2 - Payoff Diagram for writing a European call option (source:
http://en.wikipedia.org/wiki/Call option)

Now consider the following two scenarios:

1. Stock price rises above the strike price

The writer of the option will make a profit as long as the price of the stock does
not exceed the strike price plus the premium received. After that, the writer could
theoretically suffer unlimited losses.

2. Stock price stay below the strike price

The profit for the writer will be the premium paid by the buyer for the call option.

A Summary of a Call Option

Let C(Si,T) denote the value of a standard European call option, with strike price K and
exercise date T. Also let Si denote the current value of the underlying asset and t the
current time. If Si(T ) < K, the holder would not exercise the option because the holder
would not want to pay more then the current price of the asset. Otherwise if Si(T ) ≥ K,
then the holder will exercise the option and buy the asset for K, and sell it in the market
for Si(T ). This gives the expression for the payoff as

C(Si,T)= max(Si(T )−K,0)
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2.5.2 Put Option

A put option gives its holder the right (but not the obligation) to sell an agreed quantity
of a prescribed asset at the strike price at the exercise date. The writer of the option is
obliged to purchase the prescribed asset at the strike price from the holder, should the
holder decide to sell. The holder will paid the writer the option premium for the privilege
of holding the option.

The buyer of a put option expects the price of the underlying asset to fall by the time
of the exercise date. Another reason would be that the buyer wants to protect the price
of the asset (generally term a protective put strategy). Figure 3 shows the payoff diagram
when buying a put option, as viewed by the buyer.

Figure 3 - Payoff Diagram for buying a European put option (source: http://en.wikipedia.org/wiki/Put
option)

The buyer of the put option will make the most profit when the value of the underlying
asset is decreasing. Therefore a lower stock price means a higher profit. To illustrate the
idea, a simple example is given below:

A simple example of a European put option on a stock

Suppose the price of a stock in a company is currently £60. An investor expects the
stock price to drop in the future.

The investor buys a put option with the strike price set at £50 with the exercise date
15th November 2007 from a put writer. For this right, the investor will paid the put
writer a premium of £10 for this put option. Now consider the following two scenarios:

1. Stock price drops below the strike price

Suppose the stock price drops to £30 on the exercise date. The investor will
purchase the stock for £30, and then exercise the put option to sell the stock for
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£50 to the put writer. By selling the stock, the investor will have made a profit of
£20. The net profit will now be £10, when the cost of the premium of £10 is
subtracted.

2. Stock price stay on or above the strike price

Suppose the stock price never drop to £50. The investor will clearly not buy the
stock for more then £50 and sell it to the put writer for £50. Therefore the option
is not exercised and would expire worthless. In this scenario, the total loss for the
holder is limited to the cost of the option premium of £10.

For the put holder, profit is only made when Si < K + V . This is represented by the
profit line in figure 3. In view of the put writer, profit is maximised when the price of the
underlying asset exceeds the strike price. Figure 4 shows the payoff diagram when buying
a put option, as viewed by the writer.

Figure 4 - Payoff Diagram for writing a European put option (source: http://en.wikipedia.org/wiki/Put
option)

A Summary of a Put Option

Let P (Si, T ) denote the value a standard European put option, with strike price K and
exercise date T. Also let S denotes the current value of the underlying asset and t the
current time. At the expiry date T, if K > Si(T) the option holder will buy the asset at
Si(T) in the market and then exercise the option to sell the asset at K therefore making
a profit from the fall in the stock price. On the other hand, if Si(T) ≥ K, then the
holder is not expected to exercise the right to sell the asset for K, since the market price
to buy the asset is much higher. This gives the expression for the payoff as

P(Si,T)= max(K-Si(T),0)
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2.6 Exotic Options

Exotic options are alternatives to Vanilla options (see Higham 2004). Exotic options are
options with some special features. There are many types of exotic options, each type is
characterised by:

• The nature of its path dependency. This is the path taken by the price of the
underlying asset between time 0 ≤ t ≤ T .

• Whether early exercise is allowed.

An example of an exotic option is a basket option. Basket option is an option with a
collection of options, assets or stocks as its underlying assets. The payoff of the basket
option depends on the value of a portfolio (or basket) of assets. Buying a basket option is
usually cheaper then buying options on each of the individual components that make up
the same basket option. Basket option also more accurately replicates the changes in the
price of the portfolio of the options then any combination of options on the underlying
assets. Other examples of exotic options are Look backs, Binary, Spread , Rainbow and
Barriers options.

2.6.1 Barrier Option

A common method to reduce the cost of options is the inclusion of barriers. According to
Hsu (1997), barrier options are becoming more popular, mainly due to the reduced cost
to hold a barrier option when compared to holding a standard call/put options. Barrier
option is a path dependent option, which implies that the payoff depends on the path
followed by the price of the underlying asset. Barrier options can be classified into two
types:

• A knock-out feature causes the option to immediately expire worthless if the asset
crosses a specified barrier level during the life of the option.

• A knock-in feature causes the option to immediately become effective only if the
asset crosses a specified barrier level during the life of the option.

By putting a limit on the maximum payoff, the writer charges a reduced price for the
option.

For example, a European call option may be written with the value of Si at £80 and
a knockout barrier at £100, where Si denotes the current value of the underlying asset
i. This option behaves like a vanilla European call option provided Si never reaches or
crosses the knockout barrier level. If Si is over the barrier level, then the option expires
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worthless. After reaching the knockout barrier, any value for Si will be ignored and the
option ceases to exist.

Barriers are usually observed at some discrete barrier observation dates. For example
the barrier can be applied for one day every week.

Barrier Shape

According to Pooley et al (2000), for problems with one underlying asset, barriers are
typically ’points’. For problems with two underlying assets, the barriers can be any shape
in the 2D plane. The shape of the barrier will depend on the problem in consideration.
For example aligning the barrier to Basket payoff function would lead to parallel sloped
lines. The slopes of these lines are determined by the asset weighting ratio. Another
example would be aligning the barrier with anticipated asset price movements.

2.7 Other financial terms

Further theory and financial terms that would be use in the dissertation are express in
this section. Some of the ideas will be used in the Black-Scholes Model, which is described
in more detail in the next chapter.

• Return: Profit or loss from an investment

• Rate of return: The gain or loss of an investment over a specified period of time,
usually expressed as a percentage over the initial investment cost

• Risk-Free Interest Rate: The rate of interest that can be earned without assum-
ing any risks

• Short Selling: Selling asset that has been borrow from another investor, in antic-
ipation of the price of the asset dropping

• In-the-money: For a call option, this is when Si(T) > K. For a put option, this
is when Si(T) < K. In both cases the holder will make a profit when each of the
option is exercise

• At-the-money: When Si(T ) = K

• Out-of-the-money: For a call option, this is when Si(T ) < K. For a put option,
this is when Si(T) >K. In both cases the holder will not make any gain in exercising
the option.



14 CHAPTER 2. FINANCIAL BACKGROUND AND TERMINOLOGY

2.7.1 Portfolio

The term portfolio is usually used to describe a collection of investments held by a financial
organisation or a private individual. Portfolio may consist of the following combinations:

• assets

• options

• cash invested in a bank

2.7.2 Volatility

Volatility is a measure of the risk and uncertainty of future price movements of an asset.
For example, the volatility of a stock price is a measurement of the risk and fluctuation
concerning future stock price movements. An asset with a high volatility will be more
likely to increase or decrease its value, then an asset with a low volatility. Large volatility
will be beneficial to the holder of the options. The holder of a call option will benefits
from the increase of the asset price and can only lose at most the premium paid for the
call option. Similarly the holder of a put option will benefits from the decrease of the
asset price and will lose at most the premium paid for the put option.

Volatility is most frequently referred to as the standard deviation of returns of a
financial instrument over a time period and is commonly denoted by σi. Volatility (σi) is
measured in years (i.e. per annum). Its values are usually given as a fraction with typical
values between 0.05 and 0.6 (between 5% and 60% volatility) according to Hull (2006).

2.7.3 Arbitrage

A key concept used for the valuation of options is arbitrage. Arbitrage is defined as the
ability to make profits without risk by attempting to capitalise upon any imbalance in
the price of some underlying asset. The investor (arbitrageur) will make a risk free profit
without the investment of any of their money. Arbitrageurs can be small investors or
large investment banks.

Suppose, for a simplified example, a situation where the price of the underlying asset
Si, is higher then the strike price K at the expiration date. A holder of a call option
can purchase the stock (for example for £40) and immediately sell the stock on the open
market for more then £40 (for example £45). The holder will make a risk-free profit of
£5, in this example - ignoring the cost of the option.

A consequence of arbitrage will ensure that the ”law of one price” will hold. This law
implies that all identical assets will have the same price. If this is not the case then the
arbitrageur will take advantage of the imbalance of price by applying the same method
as given in the example (i.e. by exploiting price discrepancies). An arbitrage free or no
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arbitrage market is where the market offers no opportunities for arbitrage. Arbitrage will
occur in practice, but will not remain in existence for very long as many arbitrageurs will
make use of computer systems to take advantage of any arbitrage opportunities that may
arise. Due to more buying pressures, this will push up the lower price and due to selling
pressure, will lead to a reduction of the higher price. Therefore any price differences will
be soon be eliminated.

2.7.4 Correlation

In the financial world, correlation is used to show how two assets moves in relation to
each other. Correlation is usually given as a single number which indicates the strength
of a linear relationship between two assets. This number will have a value between -1 and
+1. The closer the value of the correlation is to the number 1 or -1, the stronger their
linear relationship.

A positive correlation means that an increase in the underlying asset S1 would generally
lead to an increase in asset S2 also. If the correlation is +1, this would mean perfect
positive correlation. Therefore as one asset moves up or down, the other asset will move
in the same amount in the same direction. A negative correlation means that an increase
in the underlying asset S1 would generally lead to a decrease in asset S2. If the correlation
is -1, this would mean perfect negative correlation. Therefore as one asset moves up or
down, the other asset will move in the same amount in the opposite direction. If there is
no relationship in the movement between the two assets, then the value is given as zero.
This means that the movement of each of one asset is random and independent from the
movement of the other asset.



Chapter 3

Black-Scholes Equation

An important model use for pricing European call and put options on stocks is the Black-
Scholes Model. In this chapter the background, the derivation and the key ideas of the
Black-Scholes model are explained in more details. Many of the descriptions in this
chapter are taken from the books by Chriss (1996) and Hull (2006).

3.1 Black-Scholes Model

The Black-Scholes model is a well-known and popular model use to calculate the value
of a European option. Ever since its development in 1973 by Fischer Black and Myron
Scholes, the model still remains one of the most preferred models and provides the basis
of options theory. To compute the value of an option, the model requires the following
information for the problem in consideration:

1. The strike price of the option, K

2. The price of the underlying assets, Si

3. The risk-free rate of interest, r

4. Volatility of the stock price, σi

5. Duration until the exercise date, T

The model uses the following assumptions:

• Volatilities σi remains constant

• The price of the underlying asset follows a geometric Brownian motion

• The risk free rate of interest r remains constant

16
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• There are no transaction costs in trading

• Underlying asset can be traded continuously

• There are no dividends during the life of the derivative

• Arbitrage free market, therefore no arbitrage opportunities

• Short selling of the asset is permitted

The Black Scholes model can be derived from the Black-Scholes partial differential
equation (PDE). The PDE provides the framework to compute a fair price for options.

3.2 Deriving the PDE form of the Black-Scholes Model

In order to value an option, a mathematical description of how the underlying asset
behaves must be developed. The price of the asset is assumed to follow a stochastic
process. This means that the price of the asset will change randomly over time. An
example of a stochastic process is the Markov Process. In this process the past history
of the asset will be ignored and consider irrelevant. Therefore predictions for the future
price will be unaffected by any past price of the asset, as the behaviour of the asset over
a short period of time depends only on the current value of the asset.

The asset price is usually assumed to follow a Wiener process, which is a more specific
type of Markov process. The Wiener process is a stochastic process where the change in a
variable over a short period of time ∆t has a normal distribution with zero mean and unit
variance. An Itō process is a generalised form of the Wiener process where the random
fluctuation is following a normal distribution. For further theory and results regarding
Markov, Wiener and Itō processes, we refer to the book by Hall (2006).

The Wiener process is also called Brownian motion. The geometric Brownian model
originated in the study of a physical model for the motion of heavy particles suspended
in a medium of lighter particles. In Brownian motion, the faster lighter particles will
randomly collide with the heavier larger particles, with each collision observed to be
random and independent. According to Chriss (1996), for a longer period of time, the
particle displacement will be normally distributed, where the mean and standard deviation
depends only on the amount of time that has passed. The geometric Brownian motion
model can be used to describe the probability distribution of the future value of the
stock. In his work, Osborne (1964) showed that the movement of stock prices shared
many similar characteristics with the movement of molecules in the Brownian motion
model. The derivation of the PDE form of the Black-Scholes Model for one underlying
asset is shown in the next section. The same idea is use to derive the PDE form for two
underlying assets.
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3.3 Deriving for one underlying asset

Using the assumption that the price of the underlying asset follows a geometric Brownian
motion, will give the expression

dS

S
= µdt+ σdW

dS = Sµdt+ SσdW (3.1)

where S denotes the underlying asset, µ is the drift term (the average rate of increase
per unit time of the asset), σ is the volatility of the stock, and dW is a random term with
a Wiener process distribution (dW has zero mean and unit variance). The drift term
causes the underlying assets to move in a certain direction (see Pooley et al (2000)).

Equation (3.1) also follows the Itō process. This process was name after the discoverer,
Kiyoshi Itō. An important result from the Itō process is the Itō’s Lemma. This lemma
is used to find the differential of a function that follows a stochastic process and plays
a very important role in the pricing of derivative. The informal proof of this lemma is
shown in Hull (2006). Itō’s Lemma is stated as follows:

Suppose a variable x follows the Itō process. Then dx is given by

dx = a(x, t)dt+ b(x, t)dW (3.2)

Now consider a function G(x,t), which is some function that is at least two times differ-
entiable. Then the function G(x(t),t) would also follow the Itō’s process. Therefore for a
function G(x(t),t) we have

dG(x(t), t) =

(
∂G

∂t
+ a(x, t)

∂G

∂x
+

1

2
b(x, t)2∂

2G

∂x2

)
dt+ b(x, t)

∂G

∂x
dW (3.3)

The equation given by (3.3) is the specialisation of Itō’s Lemma. Now the stock price
follows the process given by (3.1). This is similar to equation (3.2), with a(S,t) = Sµ
and b(S,t) = Sσ respectively.

Now let V(S,t) denote the value of some particular option with asset of price S and for
some time t, where t ≤ T (expiration date of the option). Applying the Itō’s Lemma to
V(S,t), will gave

dV (S(t), t) =

(
∂V

∂t
+ a(S, t)

∂V

∂S
+

1

2
b(S, t)2∂

2V

∂S2

)
dt+ b(S, t)

∂V

∂S
dW (3.4)
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Now applying a(S, t) = Sµ and b(S, t) = Sσ from equation (3.1) to equation (3.4)
gives

dV (S(t), t) =

(
∂V

∂t
+ (Sµ)

∂V

∂S
+

1

2
(Sσ)2∂

2V

∂S2

)
dt+ (Sσ)

∂V

∂S
dW (3.5)

Now consider a portfolio Π composing of a long option and a short portion of the
underlying asset denoted by ∆S. The value of the portfolio is then given by

Π = V −∆S (3.6)

In an infinitesimal time step dt, the change in the value of the portfolio is given by

dΠ = dV −∆dS (3.7)

Substituting (3.1) and (3.5) into (3.7) will gives

dΠ =

((
∂V

∂t
+ (Sµ)

∂V

∂S
+

1

2
(Sσ)2∂

2V

∂S2

)
dt+ (Sσ)

∂V

∂S
dW

)
−∆ (Sµdt+ SσdW )

dΠ =

(
∂V

∂t
+ (Sµ)

∂V

∂S
+

1

2
(Sσ)2∂

2V

∂S2
−∆Sµ

)
dt+ Sσ

(
∂V

∂S
−∆

)
dW (3.8)

Now in equation (3.8), set ∆ = ∂V
∂S

to remove the Wiener random term dW. This will
gives

dΠ =

(
∂V

∂t
+ (Sµ)

∂V

∂S
+

1

2
(Sσ)2∂

2V

∂S2
− ∂V

∂S
Sµ

)
dt

dΠ =

(
∂V

∂t
+

1

2
(Sσ)2∂

2V

∂S2

)
dt (3.9)

With the absence of the random term, the portfolio is now deterministic and risk free
during the time increment dt. Another assumption of the Black-Scholes formulation is
the requirement of an arbitrage free market. By using the no arbitrage assumption, it
given that

dΠ = rΠdt (3.10)
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where r is the risk-free interest rate.

Now by substituting (3.6) and (3.9) into (3.10), we have(
∂V

∂t
+

1

2
(Sσ)2∂

2V

∂S2

)
dt = r

(
V − ∂V

∂S
S

)
dt (3.11)

Dividing both sides of (3.11) by dt, and rearranging gives

∂V

∂t
+

1

2
(Sσ)2∂

2V

∂S2
+ r

∂V

∂S
S − rV = 0 (3.12)

The equation given by (3.12) is the Black-Scholes partial differential equation (PDE) for
the option price V for one underlying asset. This equation can be used to compute the
price of a European option with one underlying asset. For a European option, only the
final price of the option at expiration is known. This implies that the Black-Scholes
PDE must be solved backward in time to find the initial price of the option. In order to
achieve this, it would be necessary to replace the time t by τ using the expression

τ = T− t (3.13)

where τ denotes the backward time point of the option.

3.4 Black-Scholes Model PDE for Two Asset Barrier

Option

The PDE form of the Black-Scholes PDE for a European option for two underlying assets
S1,S2 with a knock-out barrier can be expresses as

∂V

∂τ
− r

2∑
k=1

Sk
∂V

∂Sk

=
2∑

kl=1

Dkl(t, S1, S2)
SkSl

2

∂2V

∂Sk∂Sl

− λ1I×(<2\Ωb)V − rV (3.14)

where V denotes the price of the option, r the risk free interest rate, and λ is some
given (large) constant used to set the option price to zero when the barrier is applied.

Equation (3.14) is a two dimensional version of (3.12) with additional source terms to
represent the effect of the barrier. Equation (3.14) can also be viewed as an advection-
diffusion equation with some source/sink terms.

In this form, the volatility matrix D is given by
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[
σ2

11(t, S1, S2) ρσ11(t, S1, S2)σ22(t, S1, S2)
ρσ11(t, S1, S2)σ22(t, S1, S2) σ2

22(t, S1, S2)

]
(3.15)

This matrix depends on the volatilities of the two assets, σ11 , σ22 and their correlation ρ.

The term λ1I×(<2\Ωb)V in equation (3.14) represents the barrier of the option which is
applied at some discrete time intervals. Inside the barrier λ is equal to zero, and outside
the barrier the value of λ is equal to 1.

Using equation (3.14) the numerical solutions for the price of many types of European
option for two underlying assets can now be computed. Because (3.14) is solved backward
in time, the initial conditions for the equation are determined by the option payoff func-
tion. Let C and P denotes the price of the call option and put option for two underlying
assets S1 and S2 respectively. According to Hull (2000), the price of the option can be
expressed by the following types of option payoff:

For the call options:

• Max Call: V (τ = 0, S1, S2) = 1Ωmax(max(S1, S2)−K, 0)

• Min Call: V (τ = 0, S1, S2) = 1Ωmax(min(S1, S2)−K, 0) (3.16)

• Basket Call: V (τ = 0, S1, S2) = 1Ωmax(αS1 + (1− α)S2 −K, 0)

where α denotes the basket constant with its value given as between 0 and 1, and S1, S2

are on the boundary of the computational domain.

For the put options:

• Max Put: V (τ = 0, S1, S2) = 1Ωmax(K −max(S1, S2), 0)

• Min Put: V (τ = 0, S1, S2) = 1Ωmax(K −min(S1, S2), 0) (3.17)

• Basket Put: V (τ = 0, S1, S2) = 1Ωmax(K − αS1 − (1− α)S2, 0)

The boundary conditions imposed for each of the initial condition will first be
investigated using the homogeneous Neumann boundary condition given by

∇V · n = 0

on the computational domain boundary.

The Dirichlet boundary conditions will be determined by the option payoff used by
each type of options. For the call options, the Dirichlet boundary conditions would be
given by equations (3.16). For put options, the Dirichlet boundary conditions would be
given by equations (3.17).



Chapter 4

Discretization and solving the
Black-Scholes Equation

In general, the Black-Scholes PDE cannot be solved analytically for exotic options (e.g.
Barrier Options). Therefore numerical methods are use to compute the numerical solu-
tions to the PDE equation given by (3.14). This dissertation will use a finite element
method to compute the numerical solution to the Black-Scholes PDE (3.14).

4.1 Introduction to Finite Element Method

What is the finite element method (FEM)?

The finite element method is a numerical method that is generally used to numerically
solve for the solution of partial differential equations.

Advantages of using FEM for pricing options

When pricing options, the FEM has several advantages over other numerical methods, for
example finite difference (FD) methods.

1. Irregular and complex shapes caused by barriers can be more accurately represented
by unstructured mesh used by FEM. For structured mesh, it is harder to set the
grid points to deal with the complex shapes.

2. FD requires a higher resolution across the domain, and therefore will take longer to
compute the numerical solutions. FEM only have high resolution in the domain of
interest, such as near the barrier. Away from the barrier, a lower resolution is used.

3. It is harder to incorporate the boundary conditions using FD than by using FEM
(see Topper (2000)). Neumann boundary conditions can be naturally incorporated
in the FEM formulation.

22
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4.2 FEM discretization of the Black-Scholes PDE equa-

tion

This section discusses the finite element method, the barrier and the mesh used to dis-
cretized and solve the Black-Scholes PDE.

4.2.1 P1
NC Finite Element Scheme

In this dissertation, the P1
NC scheme is the finite element scheme that was chosen to solve

the Black-Scholes PDE given by (3.14). The P1
NC scheme is a discontinuous finite element

scheme that has been shown to work well when dealing with advection equations (Hanert
et al (2004)). This scheme is able to deal with discontinuous solutions that are caused by
imposing the knock-out barrier on the equation. The P1

NC scheme discretizes the domain
of interest Ω by using triangles. The Black-Scholes PDE given by equation (3.14) can
be viewed as an advection-diffusion equation with the addition of discrete barrier terms.
To formulate the finite element method, we are going to consider an advection-diffusion
equation given by equation (4.1).

∂V

∂t
+ a · ∇V = ∇ · (D∇V ) (4.1)

where a is a given velocity field, and D is a diffusion coefficient. The finite element method
is formulated using weak formulation and Galerkin formulation.

Weak formulation

Consider a two dimensional computational domain Ω partitioned into sub domains Ωe.
These sub domains are usually the elements of a triangulation of Ω. Then∫

Ω

dΩ =
∑

e

∫
Ωe

dΩ (4.2)

From equation (4.1), we obtain the weak form∫
Ω

∂V

∂t
V̂ dΩ +

∫
Ω

a · ∇V V̂ dΩ =

∫
Ω

∇ · (D∇V )V̂ dΩ (4.3)

where V̂ is a test function. Substituting equation (4.2) into equation (4.3) to obtain∑
e

∫
Ωe

∂V

∂t
V̂ dΩ +

∑
e

∫
Ωe

a · ∇V V̂ dΩ =
∑

e

∫
Ωe

∇ · (D∇V )V̂ dΩ (4.4)
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By integrating by parts both the advection and the diffusion terms, we obtain∑
e

∫
Ωe

∂V

∂t
V̂ dΩ +

∑
e

∫
Ωe

∇ · (aV V̂ )dΩ−
∑

e

∫
Ωe

V∇ · (aV̂ )dΩ

=
∑

e

∫
Ωe

∇ · (DV̂∇V )dΩ−
∑

e

∫
Ωe

D∇V · ∇V̂ dΩ (4.5)

By using the Gauss theorem on equation (4.5) we obtain∑
e

∫
Ωe

∂V

∂t
V̂ dΩ +

∑
e

∫
∂Ωe

a · nV V̂ dΓ−
∑

e

∫
Ωe

V∇ · (aV̂ )dΩ

=
∑

e

∫
∂Ωe

DV̂∇V · ndΓ−
∑

e

∫
Ωe

D∇V · ∇V̂ dΩ (4.6)

Galerkin formulation

We now introduce a discrete approximation V h of the exact solution V

V ≈ V h =
n∑

i=1

Viψi (4.7)

where ψi is a P1
NC shape function. See figure 4.1 for the shape of the function:

Figure 4.1 - P1
NC shape function
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The Galerkin formulation is obtained by replacing V by V h and V̂ by ψi in equation
(4.6). ∑

e

∫
Ωe

∂V h

∂t
ψidΩ +

∑
e

∫
∂Ωe

a · nV hψidΓ−
∑

e

∫
Ωe

V h∇ · (aψi)dΩ

=
∑

e

∫
∂Ωe

Dψi∇V h · ndΓ−
∑

e

∫
Ωe

D∇V h · ∇ψidΩ (4.8)

where
∑

e

∫
∂Ωe

a ·nV hψidΓ is the advective flux and
∑

e

∫
∂Ωe

D∇·nV hψidΓ is the diffusive
flux. When the P1

NC scheme is used, then the diffusion flux is equal to zero (Hanert et
al (2004)). The advective flux is computed in an upwind fashion.

For time integration, a 3rd order Adams-Bashforth scheme is used to solve the
Black-Scholes PDE (3.14). The Adams-Bashforth scheme of order 3 can be written as

V n+1 = V n + ∆t

(
23

12
F n − 16

12
F n−1 +

5

12
F n−2

)
(4.9)

where ∂V
∂t

= F (V, t)

4.2.2 Barrier Shape

The shape of the barrier is determined by the problem in consideration. For problems
with two underlying asset, the barrier can be represented by any shape in the 2D plane
according to Pooley et al (2000). The movements of the asset prices would be affected by
diffusion. Diffusion itself is caused by the volatilities of assets S1 and S2. If σ11 = σ22 then
the diffusion would have an annular shape. The annular barrier use in this dissertation is
given by

Ω =
{
K1 <

√
σ1

2 + σ2
2 < K2

}
(4.10)

which represents an annular barrier with inner and outer radii equal to the strike price
of the assets given by K1 and K2 respectively. An annular barrier is used because the
volatilities are identical for S1 and S2, as seen later in chapter 5. This barrier is shown in
the figure below.
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Figure 4.2 - An example of an annular barrier with inner and outer radii equal to the strike price of the
assets given by K1 and K2 respectively

Inside the barrier (shown in black), the price of the options may have some positive
values. But when the asset prices is outside the annular barrier, then the option would be
knock out and immediately and ceases to exist. Therefore outside the barrier, the value
of the option would be zero.

In chapter 6, an elliptical barrier is used to reproduce the numerical results computed
by Pooley et al (2000). An elliptical barrier was chosen because when the assets have
different volatilities (as seen in chapter 6), the barrier shape would have an elliptical shape.
Otherwise for assets with identical volatilities, the barrier shape would have an annular
shape. This elliptical barrier has major and minor axis proportional to the volatilities of
the underlying assets. An example of this barrier is shown in figure 4.3 below:

Figure 4.3 - An example of an elliptical barrier shape with major and minor axes (source: Pooley et al
(2000))
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The length of the major and the minor axis is determined by major = cσ11 and minor
= cσ22 where c is some scaling parameter. In this dissertation, the elliptical barrier is
horizontal, with the centre located when the price of the assets are both £100. The shape
of the barrier is shown in the figure below:

Figure 4.4 - Elliptical barrier shape applied on the basket call option

Inside the barrier (shown in black), the price of the options may have some positive
values. But when the asset prices are outside the elliptical barrier (shown in white), then
the option would be knock out and immediately ceases to exist. Therefore outside the
barrier, the value of the option would be zero.

4.2.3 Mesh

As mentioned earlier, one of the most attractive features of using FEM is its capability
to deal with irregular and complex shapes caused by the barrier with high accuracy. This
can be done by using a two dimensional unstructured mesh. Options price exhibits a
discontinuity near the barrier edge. Therefore a high resolution is required to ”capture”
this discontinuity. This is done by placing extra nodes closer to the barrier and fewer
nodes away from the barrier, where the option value is zero. For an annular barrier, an
example of an unstructured mesh that is used to discretized the domain to solve equation
(3.14) is shown in the figure 4.5.
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Figure 4.5 - Unstructured mesh use to discretized the Black-Scholes PDE, with knock out barrier set
between £20 and £35 (generated with Gmsh (http://www.geuz.org/gmsh/)

In figure 4.5, the unstructured mesh uses 8004 elements, with maximum resolution of
£0.34009 and minimum resolution of £19.1459. The mesh has high resolution near the
boundary edge to capture the discontinuity of the solutions. Therefore extra nodes are
placed closer to the barrier and fewer nodes away from the barrier, where the option
value is zero. The barrier is set to be between £20 and £35. The figure below shows the
unstructured mesh used to compute the numerical solutions when an elliptical barrier is
imposed on the options.

Figure 4.6 - Unstructured mesh use to discretized the Black-Scholes PDE with elliptical barrier imposed
on the option (generated with Gmsh (http://www.geuz.org/gmsh/)
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In figure 4.6, the unstructured mesh uses 10638 elements, with maximum resolution of
£0.279404 and minimum resolution of £11.8018. The mesh has high resolution near the
boundary edge to capture the discontinuity of the solutions. As can be clearly seen in the
figure above, the barrier option requires fine mesh spacing near and on the barrier to ensure
more accurate solutions. Fine mesh spacing is required to capture the discontinuities
introduced at each barrier observation dates. Therefore extra nodes are placed closer and
inside the barriers to ensure higher resolution inside the domain. Outside the barrier the
option price would be zero everywhere, because when the asset price crosses outside the
barrier, the option would immediately cease to exist. Therefore fewer nodes would be
required outside the barrier.

Chapter 6 will compare the numerical solutions produced using the unstructured mesh
shown in figure 4.6 with the numerical solutions produced using the structured mesh shown
in figure 4.7 below:

Figure 4.7 - Structured mesh use to discretized the Black-Scholes PDE with elliptical barrier imposed
on the option (generated with Gmsh (http://www.geuz.org/gmsh/)

In figure 4.7, the structured mesh uses 10658 elements, with resolution of £2.739. There-
fore the mesh has the same resolution all over the domain.
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4.3 Computing the solutions of the Black-Scholes PDE

equation

A program has been written in C++ which is used to compute the solution for pricing
barrier option given by equation (3.14). This program computes the numerical value of
the option at the exercise date of the option (when t = T ) and then solves backward the
Black-Scholes PDE (3.14) to compute the price of the option at the initial time (when t
= 0). The program Gmsh is used to display the graphical output of the solutions for each
type of options. The numerical solutions of pricing options are shown in chapter 5 for an
annular barrier and in chapter 6 for an elliptical barrier.



Chapter 5

Numerical Solutions of Pricing
Options

In this chapter, the numerical solutions for max, min and basket put for two assets barrier
option is shown. This chapter will show the effect of applying an annular barrier on each
type of put option given by equation (3.17). The shape of the knock out barrier imposed
on the options is shown in figure 4.2, and the unstructured mesh used is shown in figure
4.5.

Parameters

The following parameters are used:

• volatility of asset S1: σ11 = 20% per annum

• volatility of asset S2: σ22 = 20% per annum

• risk free interest rate: r = 5% per annum

• correlation: ρ = -0.6

• time to expiry of option: Te = 8.64 × 106s (100 days)

• strike price: K = £25

• time interval between discrete barrier observation dates: t = 8.64 × 105s (10 days)

• barrier applied once every ten days

• basket constant: α = 0.5

Each figure in this chapter shows the numerical solution for each option, and the price of
the option can be read off by the horizontal bar shown below each of the grid.
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5.1 Neumann Boundary Condition

In the first section the options are computed using the homogeneous Neumann boundary
condition given by ∇V · n = 0 . All figures shown in this section is produced using the
program Gmsh (source: http://www.geuz.org/gmsh/). The numerical solutions for each
type of option are shown below.

5.1.1 Max Put Option

The figure at time t = 0 in figure 5.1 shows the numerical solution for the max put option
at the start of the lifetime of the option. This is when the barrier is first applied to the
max put option. As expected for a put option, the option is not exercised when the asset
price for both of the asset S1 and S2 is more then the strike price of K = £25). This
means that the option expires worthless and have the value of zero in this region. This
can be clearly seen in the larger blue space. It can also be observe that when the value
for both of the assets crosses the lower barrier level of £20, then the option immediately
expires worthless. This is because the knock-out barrier causes the option to immediately
expire worthless as soon as the value of the underlying asset crosses the barrier. The
effect of the barrier can be clearly seen in the lower left corner of the figure. It can also
be observed that the cost of the max put option is highest when the price of both the two
underlying asset is between £17.50 and £20. This occurs very close to the lower limit of
the barrier. The peak value of the option at this time is £7.21. This occurs when the
values of both assets are between £15 and £17.50.

The figure at time t = T
3

in figure 5.1 shows the max put option at a third (at time
t = T

3
) of its lifetime. It can be seen that the peak value for the price for the option has

slightly increased from £7.21 at the start of the option to the value of £7.87, at t = T
3
.

The location for higher values for the option remains near the lower limit of the barrier,
with the values of both assets between £15 and £17.5.

The figure at time t = 2T
3

in figure 5.1 shows the max put option at a two-third of its
lifetime. Comparing the results, it can be seen that the peak value for the price for the
option has increased from £7.87. at the third of the lifetime of the option to the value of
£8.70, at two-third of the lifetime of the option. This is a slight increase in the price of
the option. The highest values for the max call option occur when both of the assets has
values between £15 to £17.5. This region is located near the lower limit of the barrier.

The figure at time t = T in figure 5.1 shows the numerical solution for the max put
option on the exercise date of the option. When S1 and S2 > £25 the price for the max
put option is zero because both of the assets prices S1, S2 > K, therefore nothing will be
gained from exercising the option. Because the option is not exercised, the option expires
worthless. But when either of the asset prices S1 and S2 is less then the strike price K
(£25), then the cost of the option will increases for smaller S, until both values of the
assets are around £15. This is where the peak value of the option £10 is located. As
expected for a put option, the highest values for the option occurs when the assets price
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Figure 5.1: Max Put Option
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are as close as possible to the lowest limit of the barrier.

5.1.2 Min Put Option

The figure at time t = 0 in figure 5.2 shows the numerical solution for the min put option
at the start of the lifetime of the option. This is when the barrier is first applied to the
min put option. The min put option is greatly affected by the barrier because when the
values for the assets are below the lower limit of the barrier (£20) or above the upper
limit of the barrier (£35) the option is knock out by the barrier and immediately ceases
to exist. It can also be observed that the cost of the min put option is highest when the
price of one of the asset is between £25 and £27.50 and the other asset is between £1
and £5. This is concentrated near the lower barrier limit as expected for a put option.
The peak value of the option at this time is £23.70.

The figure at time t = T
3

in figure 5.2 shows the min put option at a third (at time
t = T

3
) of its lifetime. It can be seen that the peak value for the price of the option has

slightly increased from £23.70 at the start of the option to the value of £24.30, at t = T
3
.

The location for higher values of the option remains located where the price of one of the
asset is between £25 and £27.50 and the other asset has the value between £1 and £2.50.

The figure at time t = 2T
3

in figure 5.2 shows the min put option at a two-third (at
time t = 2T

3
) of its lifetime. As comparison, it can be seen that the peak value for the

price for the option price has increased from £24.30. at the third of the lifetime of the
option to the value of £24.60, at two-third of the lifetime of the option. This is a slight
increase in the price of the option. The highest values for the min call option occur when
one of the assets has values between is between £22.50 and £30 and the other asset has
the value between £1 and £2.50.

The figure at time t = T in figure 5.2 shows the numerical solution for the min put
option on the exercise date of the option. The option price has increased from £24.60,
at two-third of the lifetime of the option to the peak option price of £24.70. This is the
highest price for the option in its whole duration of its lifetime. This value is located
when the value of one asset is between £20 and £35, with the value of the other asset
between £1 and £5. When S1 , S2 > £25 the price for the min put option is zero because
both of the assets prices S1, S2 > K, therefore nothing will be gained from exercising the
option. Because the option is not exercised, the option expires worthless.

5.1.3 Basket Put Option

The figure at time t = 0 in figure 5.3 shows the numerical solution for the basket put
option at the start of the lifetime of the option. This is when the barrier is first applied
to the basket put option. The basket put option is greatly affected by the barrier because
the option is exercised from £0 to £45. The location for the highest values of the basket
put option occurs when the price of one of the asset is close to £25 with the other asset
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Figure 5.2: Min Put Option
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Figure 5.3: Basket Put Option
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close to zero. This is concentrated closer to the lower limit of the barrier. The peak value
of the option at this time is £11.30.

The figure at time t = T
3

in figure 5.3 shows the basket put option at a third (at time
t = T

3
) of its lifetime. Comparing the results, it can be seen that the peak value for the

price of the option has slightly increased from £11.30 at the start of the option to the
value of £11.90, at t = T

3
. The location for higher values of the option remains located

when the price of one of the asset is close to £25 with the other asset close to zero.

The figure at time t = 2T
3

in figure 5.3 shows the basket put option at a two-third (at
time t = 2T

3
) of its lifetime. For comparison, it can be seen that the peak value for the

price for the option has increased from £11.90 at the third of the lifetime of the option
to the value of £12.70, at two-third of the lifetime of the option. This is a slight increase
in the price of the option. The location for the peak value has slightly moved to between
£22.50 and £25 for one asset, with the other asset close to zero.

The figure at time t = T in figure 5.3 shows the numerical solution for the basket
put option on the exercise date of the option. The basket constant α= 0.5, therefore this
means the option is only exercised when both of the assets price is below £30. Otherwise
when K − αS1 − (1 − α)S2 < 0, the option is not exercised. The highest values for the
basket call option occur when one of the assets price is very low with values between £0
and up to £5, with the other asset having values between £20 and £22.50. It can be
observed that the peak value for the basket put option is located in this region, with the
option price £14.20. This price for the option is the highest price during its lifetime.

In the case when S1 = 0, then the option would ceases worthless whenK−(1−α)S2 < 0.
Otherwise the option is exercised. In the case when S2 = 0, then the option would ceases
worthless when K − αS1 < 0. Otherwise the option is exercised.

5.2 Dirichlet Boundary Condition

In this section the options are computed using the Dirichlet boundary conditions which
are determined by the option payoff used by each type of options given by equation (3.17).
Dirichlet boundary condition will impose the final option price on the boundary at time
t = T , to the boundary at all time.

5.2.1 Max Put Option

The numerical results computed using Dirichlet boundary conditions shown in figure 5.4
has many similarities with the numerical results computed using Neumann boundary
conditions shown in figure 5.1. For example, the highest values for the option price are
located very close to the lower limit of the barrier.

The option price on the boundary at time t = T is zero. This value is imposed on
the boundary for all time for Dirichlet boundary conditions. Imposing this value on the
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Figure 5.4: Max Put Option
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boundaries is found to have no impact on the numerical values for the option during
the option lifetime. As a result, the peak value for the option price is the same as the
peak value produced using Neumann boundary conditions (see figure 5.1). Therefore for
the max put option, there is no effect when imposing Dirichlet or Neumann boundary
conditions

5.2.2 Min Put Option

The numerical results computed using Dirichlet boundary conditions shown in figure 5.5
has many similarities with the numerical results computed using Neumann boundary
conditions shown in figure 5.2. For example, the highest values for the option price are
located near both the S1 and S2 axis.

The option price on the boundary is £25 at time t = T . This value is imposed on
the boundary for all time. But imposing Dirichlet boundary conditions on the min put
option is not realistic because it implies that the option peak price remains at £25 for all
time. As a result the peak option is higher then the peak option obtain using Neumann
boundary conditions (see figure 5.2).

5.2.3 Basket Put Option

The numerical results computed using Dirichlet boundary conditions shown in figure 5.6
has many similarities with the numerical results computed using Neumann boundary
conditions shown in figure 5.3. For example, the peak value for each figure is the same.
The option price on the boundary at time t = T is imposed on the boundary for all time.
The effect of imposing Dirichlet boundary conditions has no impact on the numerical
solutions of the basket put option. The peak option value for t = 0, t = T

3
, t = 2T

3
and

t = T are £11.30, £11.90, £12.60 and £14.20 respectively.
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Figure 5.5: Min Put Option
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Figure 5.6: Basket Put Option
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5.3 Summary

It is clearly shown that the peak option price is lowest at the start of every option. This
is because there would be a higher risk that the price of the assets will be more likely
to change by the time of the exercise date. Due to this increased risk, an investor would
have little information on the future unknown path that each asset would take until the
exercise date. Therefore with little information, a buyer would be less likely to buy the
option. Therefore the writer of the option will charge a lower option price to try to entice
an investor to buy the option. As the time to expiration is reduced, the option price
gets higher. Therefore at the end of the option, the price of the option would be at its
highest value in its lifetime. The price of the asset is not likely to change much just
before the exercise date, therefore an investor will be confident in buying the option at
this time. As a consequence, the price of the option will be at its highest in its lifetime.
This is one of the reasons for the use of barriers. Barriers help to reduce the cost of
purchasing the option, especially at the start of the option. The annular barrier is not
suited for computing call options. Since call options is only exercised S > K, then this
occur outside the upper limit of the barrier (£35). Therefore for call options, the barrier
would knock out the options. As a consequence, call options will have the values of zero
everywhere. This is the reason for the omission of computing call options in this chapter.

The annular barrier is suited for computing put options. For put options, the options
is exercised only when S < K. Therefore all the put options are affected by the barrier.
As seen earlier, when the values for the underlying assets is below the lower barrier limit
(£20), or higher then the upper barrier limit (£35), the option immediately expiries
worthless. Most of the higher values for occurs when S1, S2 is very small or near the lower
limit of the barrier when the barrier is applied.

Min Put option is the only option that was affected by the use of Dirichlet boundary
conditions. For the Min Put option, imposing Dirichlet boundary conditions leads to an
increase of the option price to £25 for all time. This peak price is higher when compared
with Neumann boundary conditions.



Chapter 6

Investigation into the effects of
barriers in pricing options

In chapter 5, the numerical solutions for max, min and basket types of put options are pro-
duced using a annular barrier with inner and outer radii equal to K1 and K2 respectively.
This barrier can be seen in figure 4.2. This chapter will reproduce some of the numerical
results shown in the paper by Pooley et al (2000), where the results are computed using
an elliptical barrier as seen in figure 4.4.

6.1 Background

Option

Although in this chapter the basket call option is chosen to reproduce the result, others
options can also be computed. The basket call option is given by equation 3.16.

Parameters

For following parameters is used in the paper by Pooley et al (2000):

• volatility of asset S1: σ11 = 40% per annum

• volatility of asset S2: σ22 = 20% per annum

• risk free interest rate: r = 5% per annum

• correlation: ρ = -0.5

• time to expiry of option: Te = 5.4 × 106s (621
2

days or 1
4

of the financial year)

• strike price: K = £100

43
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• barrier applied daily

• basket constant: α = 0.5

6.2 Numerical Results

All figures shown in this section is produced using the program Gmsh
(source: http://www.geuz.org/gmsh/). The numerical solutions for the basket call are
shown in figure 6.1.

6.2.1 Numerical Results using unstructured mesh

An unstructured mesh (see figure 4.6) is used to compute the numerical solution for the
basket call option in this section.

The figure at time t = 0 in figure 6.1 shows the numerical solution for the basket call
option at the start of the lifetime of the option. The basket constant α is taken to be
0.5. This is when the barrier is first applied to the basket call option. The peak value of
the option is £0.14 which is located where the price of assets S1 and S2 are both between
£100 and £102.50. Moving away from this region, the option price decreases until it is
knock out by the barrier and immediately ceases to exist.

The figure at time t = T
3

shows the basket call option at a third (at time t = T
3
) of its

lifetime. Comparing the results, it can be seen that the peak value for the price of the
option price has slightly increased from £0.14 at the start of the option to the value of
£0.40, at t = T

3
. The location for higher values of the option is located where the price

of asset S1 is between £100 and £105, and the price of asset S2 is around £100.

The figure at time t = 2T
3

shows the basket call option at a two-third (at time t = 2T
3

)
of its lifetime. The peak value for the price for the option price has increased from £0.40
at the third of the lifetime of the option to the value of £1.27, at two-third of the lifetime
of the option. This is a slight increase in the price of the option. The location for the
peak value of the option has shifted slightly to the right of the centre of the elliptical
barrier. This occurs when S1 has values between £102.50 and £105 with the value of S2

is around £102.50.

The figure at time t = T shows the numerical solution for the basket put option on the
exercise date of the option. The basket call option, is only exercise when αS1+(1−α)S2 >
K. Therefore when the value of αS1 +(1−α)S2−K > 0 increases, the option price would
also increases. But when the value of the assets crosses the elliptical barrier, then the
option is knock out and immediately ceases to exist. Therefore the highest values for the
option can be found near the barrier limit. This occurs when S1 has values between £105
and £107.50 with the value of S2 is around £102.50. The peak option price at this time
is £8.
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Figure 6.1 - Basket Call Option using unstructured mesh
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Also the figure shows that when both of the assets have values less than £100, the
option price has the value of zero. A reason for this price would be that when the barrier
is lifted, the basket call option is not exercised in this region, therefore the option expires
worthless.

Summary

The maximum option price is located at the centre of the elliptical barrier during most
of the option lifetime because at the centre, the price of the assets S1 and S2 are both
furthest away from the edge of the barrier, therefore it is less likely to be knock out by
the barrier. The peak option price of the basket call option is lowest at the start of its
lifetime. As before, this is because there would be a higher risk that the price of the
assets will be more likely to change by the time of the exercise date. As a consequence
of this risk, the writer of the option will charge a lower option price to try to entice an
investor to buy the option. Otherwise the buyer would be less likely to buy the option.
As the time to expiration is decreasing, the option price gets higher, since the risk of the
assets changing its values is decreasing. Therefore at the end of the option, the price of
the option would be at its highest value in its lifetime. The price of the asset is not likely
to change before the exercise date, therefore an investor will be confident in buying the
option at this time. As a consequence, the price of the option will be at its highest in its
lifetime.

6.2.2 Comparison of the numerical results with Pooley et al
(2000) results

The result computed in the paper by Pooley et al (2000) is shown in the figure below:

Figure 6.2 - Result for the basket call option produced in the paper by Pooley et al (2000)
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When comparing the result produced in figure 6.2, with the results produced in figure
6.1, the two results shares similar characteristics.

• Both results shows the option would be knocked out if the values of the underlying
asset crosses the barrier

• The peak option values for both results are both concentrated near the centre of
the barrier

• There is a similar pattern in the distribution for the price for the options. Ap-
proaching the centre of the barrier from the barrier edge would lead to an increase
in the option price.

• Both results shows elliptical contour levels of option price

6.3 Numerical Results using structured mesh

A structured mesh (see figure 4.7) is used to compute the numerical solution for the
basket call option in this section. The same parameters are used and the numerical
results are shown in figure 6.3.

The numerical results computed using a structured mesh shown in figure 6.3 has some
similarities with the numerical results computed using an unstructured mesh shown in
figure 6.1. For example, the highest values for the option price are located at the centre
of the elliptical barrier.

But there are also some notable differences between the two results. In figure 6.3, the
shape of the elliptical barrier is distorted during the lifetime of the option. The reason
for this distortion is because setting the nodes to capture the discontinuity caused by
elliptical shape of the barrier is difficult using structured mesh. The peak option shown
in figure 6.3 for time t = 0, t = T

3
and t = 2T

3
is much higher then the results shown in

figure 6.1 for the same time. The differences between the option prices of both results can
be explained by the use of equal spacing of the structured mesh. Therefore the accuracy
of capturing the shape of the barrier is reduced. Using an unstructured mesh will have
the benefit of having smaller nodes spacing on and inside the barrier. This would provide
a higher resolution to capture the shape of the barrier more accurately, which would lead
to more accurate solutions.
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Figure 6.3 - Basket Call Option using structured mesh
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Conclusion

Barriers introduced discontinuities in the solution at each discrete barrier observation
dates. FEM allows the use of an unstructured mesh to accurately compute the solutions
by adding extra nodes with smaller spacing near the barrier limits, to capture the
discontinuities. Adding extra nodes will improve the accuracy of the solutions in the
regions of interest.

This dissertation looked at the results computed by imposing two different types of
barrier shapes on the options. It is found that put options are more suited to the annular
barrier imposed on the options. The put options are computed using both Neumann and
Dirichlet boundary conditions. Imposing Dirichlet boundary condition on the boundary
of the S1 and S2 axis can affect the peak option price of the Min Put option during its
lifetime. But there are minimal impact on the numerical values produced by the Max Put
and the Basket Put options.

Results for the basket call option computed by Pooley et al (2000), was successfully
reproduced using the P1

NC finite element method and applying an elliptical barrier. When
the barrier shape is reduced, more area of the option would have a higher chance of
breaching the barrier. Therefore it can be expected that there would be a decrease in the
option prices, due to this higher risk. Also if the barrier is rotated, there could also be a
higher chance of breaching the barrier. This can lead to a reduction in the prices of the
options. Conversely, the option prices would increases if there is a lower risk of breaching
the barrier.

Also this dissertation looked at the accuracy of the option price by comparing the
numerical solutions produced using structured and unstructured meshes. It is found that
using a structured meshes will gave higher values for the option price, when compared
with the option price computed on an unstructured mesh.

For further research, I could look the effects of changing the size and rotation of the
barrier in more detail.
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