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Abstract

The study of traffic flow as given rise to many models aiming to realisti-

cally predict the behaviour of traffic. Here we discuss a macroscopic method,

closely related to the Bando [1] microscopic model. A similarity solution is

found for the inhomogeneous case and the homogeneous case is solved for a

Riemann problem. We use Roe decomposition with the first order upwind

scheme to find a numerical solution and investigate the effect of the source

and relaxation terms on the system.
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Chapter 1

Introduction

Much interest has been focused on traffic flow models over the last few

decades as the amount of traffic on the roads continues to increase. Conges-

tion is becoming more of a problem and as a consequence the accident rate is

also increasing. Today there exist many schemes which not only aim to safely

control the traffic but also to maximise its flow. Consider, for example, the

variable speed limits on motorways. Information of the amount of vehicles

and the traffic conditions on the road is recorded and the speed restrictions

altered accordingly. Such schemes depend on the realistic modelling of the

flow of traffic, given certain road conditions, in order to accurately predict

the behaviour of the traffic over time.

Similarities can be drawn between the flow of traffic and that of a shallow

fluid and as such many models have been based on the shallow water equa-

tions. Chapter 2 describes some of these models and outlines the drawbacks

of such an assumption. Furthermore, we see in Section 3.1 that granular

avalanche flow can be described by similar means, and we can apply some of

the techniques involved in this field to our traffic model. Chapter 2 continues

with the derivation of the continuum BMW [5] model from the car-following

Bando [1] model.

In Chapter 3 we derive an alternative continuum model and, by introduc-

ing a moving coordinated system, we find a similarity solution to the system.
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The behaviour of this solution, as time increases, is discussed and we later

use this information as a comparison to our numerical scheme.

In Chapter 4 we consider the homogeneous system. Given sets of ini-

tial data with a single discontinuity we solve the Riemann problem of the

homogeneous system to determine the behaviour and type of discontinuity.

Chapter 5 develops the First Order Upwind Scheme with Roe decomposi-

tion and we use the results of the Riemann problem to compare the programs

output for the homogeneous system. The results for the homogeneous system

and the inhomogeneous system, including the similarity solution, follows in

Chapter 6.

Lastly, we draw conclusions on the method from the numerical results

and suggest improvements and areas of further study.

Throughout the text we take the word car to be synonymous with vehicle.
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Chapter 2

Traffic Models

There are two main techniques used to describe the flow of traffic; mi-

croscopic models and macroscopic models. Section 2.1 gives an overview of

the microscopic approach, in particular the Bando [1] model. Section 2.2 is

concerned with macroscopic methods and the derivation of the Berg, Mason

and Woods [5] model from the Bando model.

2.1 Microscopic Models

The Car-Following, or microscopic methods, are a car-by-car Lagrangian

like approach. In effect, we consider the traffic as seen from a moving vehicle.

These methods consider each vehicle separately and model its behaviour as

it reacts to vehicles in front. Traffic flow is anisotropic, that is each car reacts

to only those in front. The velocity of each vehicle is modelled by an ordinary

differential equation dependent on its velocity and headway, where headway

is the distance between the front of the vehicle and the front of the preceding

vehicle. Since this method generates as many ordinary differential equations

as the number of vehicles in the system, this number must be small enough

in order for the solution of the system to be computationally feasible.
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2.1.1 The Bando Model

In 1995 Bando et al. [1] published a paper on The Dynamical Model

of Traffic Congestion and Numerical Simulation which aims to model the

“dynamical evolution of congestion”. Here they refer to a type of congestion

caused by a small perturbation in the initial data rather than a specific

source. In other words, they are not concerned with congestion caused by

familiar occurrences such as a road accident or traffic lights changing.

Firstly they make the assumption that each vehicle travels at a certain

legal velocity which is dependent on the headway b. An alternative assump-

tion, often made in earlier models, is that a vehicle must keep a safe legal

distance between itself and the car in front. These assumptions are made so

that the vehicles avoid traffic accidents.

Bando et al. propose the following model for the acceleration of a car at

x = xn

ẍn = a (V (∆xn)− ẋn) , (2.1)

where ẋn(t) is the velocity and V is the optimal legal velocity, of car n,

dependent on the headway bn = ∆xn = xn+1 − xn. The relaxation constant

a represents the driver’s sensitivity, defined as the inverse of the driver’s

reaction time. They assume that each driver has the same sensitivity and

leave as further work the situation where an is individual to each driver, and

possibly dependent on ẋ or b as well. Without loss of generality they set

a = 1. The model describes the acceleration and deceleration of a vehicle as

its headway increases or decreases respectively. However, a vehicle cannot

accelerate to a velocity greater than V , which is monotonically increasing

and bounded above.

Two models are discussed; a simple model where

V (bn) = tanh(b) (2.2)

and a realistic model where

V (∆x) = V (bn) = tanh (bn − 2)− tanh (−2). (2.3)
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Both models are studied with the initial data L = 200 and N = 100 where L

is the length of the circuit (assuming periodic boundary conditions) and N is

the number of cars on the road, and b = L
N

. This initial data produces a stable

model. The conditions for stability are analysed in [1]. A small perturbation

is introduced in the movement of the first vehicle and the solution is advanced

with time. The model with the optimal velocity function (2.3) generates

spontaneous congestion and appears to realistically describe actual traffic.

2.2 Macrosopic Models

Alternative models come from a continuum or macroscopic approach

which is an Eulerian, fluid-like approach. These models describe the av-

erage velocity and density of the traffic at a point. Unlike the car-following

method the movement of all the vehicles is described by two coupled partial

differential equations (except for the LWR model, see below), and is therefore

less computationally expensive to solve.

All continuum models consist of a conservation equation, namely

ρt + (ρv)x = 0, (2.4)

where v(x, t) is the velocity. The density ρ(x, t) of the traffic is the mass

of vehicles per kilometre at time t. This conservation equation conserves

the mass of vehicles in the system which is dependent on the flow (flux) of

cars entering, leaving and already in the system. It amounts to saying that

vehicles cannot appear or disappear. The conservation of mass equation is

then coupled with a second conservation of momentum equation (or dynamic

equation) dependent on the characteristics of the traffic. The non-linearity of

such a system automatically generates congestion given smooth initial data.

There are many macroscopic models that have been developed over the

last fifty years. In 1955 Lighthill and Whitham published two papers on kine-

matic waves. The latter paper [2] models the traffic solely by the conservation

law (2.4) where the velocity v is assumed to be a decreasing function of the
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density ρ. In the following year a similar paper was published by Richards

independent of Lighthill and Whitham, and the single equation model,

ρt + (ρV (ρ))x = 0,

is known as the LWR model. Zhang [6], who gives a clear introduction to

macroscopic modelling, states that the LWR model is capable of describ-

ing some features of traffic such as vehicles approaching and leaving traffic

congestion where a shock forms, and the anisotropic nature of real traffic.

However, due to certain assumptions, the LWR model is incapable of de-

scribing other aspects of traffic flow, in particular flow through narrow spaces

(bottlenecks) or when the traffic stops and starts.

In the 1970s Payne and Whitham [3] developed a different approach to

the macroscopic model. They drew similarities between the flow of traffic and

fluid and based their model on the Navier-Stokes equations of incompressible

flow. The PW model is

vt + vvx =
V (ρ)− v

τ
− c(ρ)

ρ
ρx (2.5)

where τ , the relaxation term, is the driver’s reaction time, V (ρ) is a velocity

function of the density and c(ρ) is an anticipation term as described in [8].

However, the PW model can give negative speeds allowing the cars to travel

backwards. Also the assumption that traffic flow is fluid-like does not agree

with the anisotropic nature of physical traffic flow. This is because fluid

particles are isotropic and as such react equally to information from behind

as well as from in front.

The following years saw several attempts to improve the PW model. Mod-

ifications have been made by, amongst others, Kerner and Konhäuser [4] who

included a viscosity term to stop the formation of unrealistic shocks,

vt + vvx =
V (ρ)− v

τ
− c2

0

ρ
ρx + µ

vxx

ρ
, (2.6)

and Zhang who replaced the constant, c2
0 in (2.6) with the function c(ρ) in

order to solve the problem of negative velocities. These models all yield some
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unrealistic traffic properties due to the close link with fluid flow. Aw and

Rascle [7] develop a different second equation, Lagrangian in nature, in an

attempt to overcome this problem.

2.2.1 The BMW Model

In 2000 Berg, Mason and Woods [5] (BMW) proposed a continuum model

derived from the Bando car-following model (2.1) written in terms of the

density ρ rather than the headway b. Usually the density is defined as

ρ =
1

b
. (2.7)

Berg et al., however, state that this definition is inaccurate. They consider

the open interval (1, y) with cars at positions x = 1, 2, 4, 8, . . . , n, . . . so the

car at the point x has a headway b = x.

Assuming that (2.7) holds, ρ = 1
x

and thus the number of cars in the open

interval (1, y) is ∫ y

1

1

x
dx = logey. (2.8)

From the above diagram we see that the headway of car n is b = y =

2n. Therefore, the number of cars in the interval is n = log2y. Hence the

assumption that ρ = 1
b

is, in fact, incorrect by a factor of loge2. As illustrated

below, Berg et al. find an alternative definition relating the density to the

headway by calculating a higher order approximation to ρ(b).

Berg et al. state that a more accurate relation between ρ and b is
∫ xn+b

xn

ρ(x, t)dx = 1,
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for all i where xi is the position of car i at a given time. They set up a

consistent mapping between the positions of the vehicles, {xi}, and their

associated density function, ρ(x). This mapping is not unique. However,

given the position of the first car the inverse mapping is unique and it is this

which is required to derive a macroscopic momentum equation from (2.1).

Considering all cars on a road, Berg et al. expand (2.8) as

∫ x+b(x,t)

x
ρ(x

′
, t)dx

′
=

∫ b

0
ρ(x + y, t)dy ≡ 1 (2.9)

using the change of variable x
′

= x + y. This is expanded in powers of y

giving ∫ b(x,t)

0
(ρ + yρx +

y2ρxx

2!
+ . . .)dy = 1,

and integrating,

bρ +
b2ρx

2!
+

b3ρxx

3!
+ . . . = 1. (2.10)

The series is expanded to this order so as to produce a macroscopic model

that describes the desired traffic attributes and keeps the same stability cri-

terion as (2.1). The stability of the BMW model is analysed clearly in [5].

Since (2.10) is an asymptotic series the cubic term is small compared to the

preceding terms and Berg et al. seek an initial approximation to a solution

of the quadratic

bρ +
b2ρx

2
≈ 1 (2.11)

to the same order, in small quantities, by setting b ≈ 1
ρ

+ Aρx giving

(
1

ρ
+ Aρx

)
ρ +

1

2!

(
1

ρ
+ Aρx

)2

ρx ≈ 1.

Solving this quadratic

b ≈ 1

ρ
− ρx

2ρ3
.

This is extended further, as a perturbation series, using (2.10) in the form

b = −1

ρ

(
b2ρx

2!
+

b3ρxx

3!
+ . . .

)
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and substituting in (3.8) to give

b ≈ 1

ρ
− ρx

2ρ3
− ρxx

6ρ4
+

ρ2
x

2ρ5
(2.12)

as an approximation to the headway in terms of the density.

Taking the derivative of (2.9) using Leibnitz’s Rule gives the conservation

equation (2.4) and hence v is consistent in the model. Equation (2.12) is then

applied to the Bando model (2.1) using

VB(bn) = VB

(
1

ρ
− ρx

2ρ3
− ρxx

6ρ4
+

ρ2
x

2ρ5

)

= VB

(
1

ρ

)
+

(
− ρx

2ρ3
− ρxx

6ρ4
+

ρ2
x

2ρ5

)
V
′
B

(
1

ρ

)

= V̄ (ρ) + V̄ ′(ρ)

(
ρx

2ρ
+

ρxx

6ρ2
− ρ2

x

2ρ3

)
,

where V̄ (ρ) = VB

(
1
ρ

)
which gives a second dynamic equation of type (2.1)

in the form

vt + vvx = a[V̄ (ρ)− v] + aV̄ ′(ρ)

[
ρx

2ρ
+

ρxx

6ρ2
− ρ2

x

2ρ3

]
, (2.13)

to be coupled with (2.4). Here the pressure-like term ρx (cf. gas kinetics)

causes the traffic flow to become unstable and so the diffusive term ρxx is

included to cancel its effects and smooth traffic density. The accuracy will

increase if further terms of the asymptotic series are included in the derivation

of ρ.

Setting a = 1
τ

the BMW model is analogous to the Kerner and Konhäuser

model (2.6) where − V̄ ′(ρ)
2

is analogous to c2
0 and the coefficients of the higher

order terms are assumed to be dependent on ρ rather than constant. Berg et

al. compare their model with numerical simulations of the Bando equation

(2.1) which show these coefficients (2.13) must depend on ρ in order for the

shock wave solutions to agree. They state that, under certain circumstances,

traffic shocks are modelled well by travelling waves using the continuum

model. It has also been shown in [8] that the BMW gives reasonably good

results for modelling traffic flow.
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This chapter has given a brief insight to the car-following and continuum

methods of traffic modelling and, in particular, the derivation of the BMW

model from the Bando model. In the next chapter we discuss a limitation in

this derivation and consider a new conservation of momentum equation also

based on the Bando model.
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Chapter 3

A New Macroscopic Model

One criticism with the BMW model is that there exists some weakness in

its derivation if it is to be applied at shocks. Equation (2.10) is assumed to

be an asymptotic series. That is, each term is of a smaller magnitude than

the preceding term. However, if the model is applied at a discontinuity where

the density ρ changes rapidly, the equation will not be a valid asymptotic

series. We, therefore, aim to develop an alternative system which is also

derived from the microscopic Bando model.

We make the assumptions that a driver wishes to travel at the optimal

velocity V̄ but to accelerate if bx, the change in the headway, is positive and

decelerate if bx is negative. As such, an extra term is added the Bando car-

following model giving a new dynamic equation

vt + vvx = a(V̄ (ρ)− v) + Cbx, (3.1)

where C is a positive constant which governs the effect bx has on the equation.

As with all continuum models this is coupled with a conservation of mass

equation, namely (2.4), to give

ρt + (ρv)x = 0

vt + vvx = a(V̄ (ρ)− v) + Cbx.
(3.2)

In Chapter 5 we model the solution of the system with a numerical

scheme. However, we first seek an exact solution to compare with the re-

sults of the numerical scheme.

11



3.1 A Similarity Solution

In 2001 Tai et al. [10] published a paper concerned with the modelling

of granular avalanche flow. They consider a granular material of finite mass

moving along a flat surface and, by the introduction of a moving coordinate

system they find a similarity solution to their problem. It is this method of

change of variables that we implement here to find a similarity solution to

the new macroscopic system (3.2)

ρt + (ρv)x = 0

vt + vvx = a(V̄ − v) + Cbx,
(3.3)

where the optimal velocity V̄ is assumed to be constant.

We set v = v0 + v̆, where v̆ is a relative velocity and v0 is a base velocity

which satisfies

v0t = (V̄ − v0).

Now v0 can be found by solving

∫ dv0

V̄ − v0

=
∫

a dt

with the initial condition v0(0) = 0 giving

v0 = V̄ (1− e−at).

We change the variables of the system from x and t to ξ and τ using the

transformation

ξ = x−
∫ t

0
v0(t

′)dt′. (3.4)

Applying this to the conservation of mass equation gives

∂ρ

∂τ

∂τ

∂t
+

∂ρ

∂ξ

∂ξ

∂t
+

∂(ρv)

∂τ

∂τ

∂x
+

∂(ρv)

∂ξ

∂ξ

∂x
= 0

where ∂τ
∂t

= 1, ∂ξ
∂t

= −v0,
∂τ
∂x

= 0 and hence

∂ρ

∂τ
− v0

∂ρ

∂ξ
+

∂(ρv)

∂ξ
= 0.
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Substituting for v and replacing τ with t

∂ρ

∂t
− v0

∂ρ

∂ξ
+

∂(ρv̆)

∂ξ
+

∂(ρv0)

∂ξ
= 0

which reduces to
∂ρ

∂t
+

∂(ρv̆)

∂ξ
= 0 (3.5)

since v0 does not depend on ξ.

We substitute for v in the second equation (3.2) of the system to give

v̆t + v0t + vvx + v0v̆x = a(V̄ − v̆ − v0)

and, using the relation for v0t above, this reduces to

v̆t + v̆v̆x + v0v̆x = −av̆ + Cbx.

After applying the transformation of variables (3.4)

∂v̆

∂τ
− ∂v̆

∂ξ
v0 + v̆

∂v̆

∂ξ
+ v0

∂v̆

∂ξ
= −av̆ + C

∂b

∂ξ

and, again setting τ = t,

∂v̆

∂t
+ v̆

∂v̆

∂ξ
− C

∂b

∂ξ
+ av̆ = 0. (3.6)

To obtain a similarity solution we suppose that v̆ varies linearly with ξ, i.e.

v̆ = ξf(t) and as such (3.6) becomes

ξf ′ + ξf 2 − C
∂b

∂ξ
+ aξf = 0. (3.7)

We then find an expression for the headway b by integrating the above with

respect to ξ and, with the initial condition b = b0(t) when ξ = 0,

ξ2

2

(
f ′ + f 2 + af

)
− Cb = Cb0(t).

This is rearranged to give

b =
ξ2

2C

(
f ′ + f 2 + af

)
+ b0(t). (3.8)
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Recall the conservation of mass equation after the change of variables

(3.5)
∂ρ

∂t
+

∂(ρv̆)

∂ξ
= 0.

We replace ρ by 1
b

giving

∂b

∂t
− b

∂v̆

∂ξ
+ v̆

∂b

∂ξ
= 0 (3.9)

and then substituting in for b, given in (3.8), where

∂b

∂t
=

ξ2

2C
(f ′ + f 2 + af)′ + b′0

and
∂b

∂ξ
=

ξ

C
(f ′ + f 2 + af),

we next make our substitution for v̆ to obtain (3.9) in the form

ξ2

2C
(f ′ + f 2 + af)′ + b′0 +

fξ2

2C
(f ′ + f 2 + af)− fb0 = 0.

This holds for all ξ if

b′0 = fb0 (3.10)

and

(f ′ + f 2 + af)′ = −f(f ′ + f 2 + af) (3.11)

Rewriting equation (3.10) in terms of ρ0 where b0 = 1
ρ0

gives

ρ′0 = −fρ0 (3.12)

which we substitute into (3.11) and integrating with respect to t, we arrive

at

f ′ = Aρ0 − f 2 − af (3.13)

where A is a positive constant of integration. This system of two ordinary

differential equations has a fixed point at (ρ, f) = (0, 0). We plot ρ0 against

f to investigate their behaviour as time t → ∞. Hence we can deduce the

behaviour of the system as time evolves.
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rho 0

f

rho 0

f

Figure 3.1: Plot of f ′ = A
ρ0
− f2 − af = 0. The shaded region indicates where f ′ < 0.

Since both f and ρ0 are positive ρ′0 is always negative. The shaded area in

Figure 3.1 indicates the region where f ′ < 0. Given any initial point within

this region, the solution will tend towards the fixed point as t →∞. This is

easily seen for small initial values of f . However, if f is large in comparison

to ρ0 the gradient of the solution is steep and in time will cross the curve

where f ′ = 0 into the region where f ′ > 0. At this point its gradient becomes

positive and it will cross the curve again. The curve f ′ = 0 is an attractor

and as such any solution in the shaded region will tend to the fixed point.

Moreover, any initial point will also tend to this fixed point. As t →∞ both

f → 0 and ρ0 → 0 and so v = (v0 + v̆) → V̄ the optimal velocity. These

findings are later compared to the solution of the numerical scheme for the

similarity solution.

Having investigated the behaviour of a similarity solution to the inhomo-

geneous system, we now consider an analytic solution of the homogeneous

system.
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Chapter 4

The Homogeneous System

In this chapter we look at the case when a = 0. This homogeneous

sub-problem of (3.2) is

ρt + (ρv)x = 0

vt + vvx = Cbx

, (4.1)

where the zero relaxation term a means there is no source term (V̄ − v) . In

Section 4.1 we find a solution to a Riemann problem of the system. In order

to do this we start by writing the system in conservation form

ut + f(u)x = R(u).

In Chapter 5 we require the full inhomogeneous system in conservation form,

consequently we shall consider (3.2) here and substitute in a = 0 later to

give the homogeneous case.

We multiply the conservation of mass equation by v, the inhomogeneous,

dynamic equation (3.1) by ρ and using the product rule of partial differenti-

ation

vρt + v2ρx + ρvvx = 0 (4.2)

and

ρvt + ρvvx = ρa(V̄ − v) + ρCbx. (4.3)

Adding these two equations,

vρt + ρvt + v2ρx + 2ρvvx = ρa(V̄ − v) + ρCbx

16



and simplifying, we obtain

(ρv)t + (ρv2)x = ρa(V̄ (ρ)− v) + ρCbx.

We now assume that the usual relation between the density and the headway

holds, i.e. b = 1
ρ
. Therefore, bx = −ρx

ρ2 and so ρbx = (ln ρ)x. Substituting

this into the above gives

(ρv)t + (ρv2)x + C(ln ρ)x = ρa(V̄ (ρ)− v)

which is our dynamic equation where the left hand side is in conservation

form and the right hand side is a source term. We write the system in vector

form as

 ρ

ρv




t

+


 ρv

(ρv)2

ρ
+ C ln ρ




x

=


 0

aρ(V̄ (ρ)− v)


 .

The solution of the system consists of two waves travelling in different

directions. To find the speeds of these waves we next write the system in

quasi-linear form
∂u

∂t
+

∂f

∂u
ux = R(u)

where

A =
∂f

∂u
=


 0 1

C
ρ
− v2 2v


 . (4.4)

The wave speeds are given by the eigenvalues of the Jacobian matrix A.

These are found by solving the characteristic equation of A

|A− λI| = 0,

giving eigenvalues

λ1 = v −
√

C

ρ
, λ2 = v +

√
C

ρ

and corresponding eigenvectors

r1 =


 1

v −
√

C
ρ


 , r2 =


 1

v +
√

C
ρ



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such that (A − λkI)rk = 0, for k = 1, 2. The system is non-linear and, in

general, an analytic solution of such is not possible. However, we can find

an exact solution of the Riemann problem, consisting of initial data giving a

single discontinuity between two constant states.

4.1 The Riemann Solution

We now consider the non-linear, homogeneous system (4.1) which gives

R = 0 in the conservation form. The eigenvalues are real and distinct thus

ensuring strict hyperbolicity.

Given the initial data at time t = 0

u =





uL x ≤ 0

uR x ≥ 0

there is a discontinuity at the origin. We decompose the initial discontinuity

into n (here n = 2) separate waves between n + 1 constant states. Each new

k-wave, with k = 1, . . . , n is one of the following three types of discontinuity.

Hugoniot Curve This is a genuinely non-linear discontinuity with shock

speed s. It satisfies both the jump condition and the entropy

condition (given below). The characteristic go into the shock.

Contact Discontinuity These are discontinuities of linearly degenerate

fields. Here the characteristics are parallel to the discontinuity.

Rarefaction This is a simple wave solution joining two constant states.

The k-Riemann invariants are constant on the characteristics.

The solution is then constructed in phase space by linking the constant

end states uL and uR by a path of valid waves via the intermediate states.

We consider our non-linear, homogeneous system (4.1) in conservation

form with initial data

uL =


 ρL

(ρv)L


 =


 0.2

0.12



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uR =


 ρR

(ρv)R


 =


 0.6

0.09




where 0 ≤ x ≤ 30 so the discontinuity lies at x = 15. This initial data is used

in [8] to test the Riemann problem for the PW, Zhang and Aw and Rascle

models. Here we have normalised ρ and v such that ρ ∈ [0, 1] and v ∈ [0, 1].

The initial data models a situation where traffic travels from low density to

high density, for example when approaching congestion.

The Rankine-Hugoniot jump condition is

f(u)− f(û) = s(u− û),

where the fixed state û is either uL or uR, f is the flux and s is the shock

speed. Applying this to our system yields the two equations

ρv − ρ̂v̂ = s(ρ− ρ̂)

ρv2 + C ln ρ− ρ̂v̂2 − C ln ρ̂ = s(ρv − ρ̂v̂),

giving shock speeds

s =
ρv − ρ̂v̂

ρ− ρ̂
,

where v is given by solving the quadratic

(ρv − ρ̂v̂)2 − (ρv2 + C ln ρ− ρ̂v̂2 − C ln ρ̂)(ρ− ρ̂) = 0.

Hence,

v = v̂+
−

√
C(ln ρ− ln ρ̂)(ρ− ρ̂)

ρρ̂
(4.5)

gives the Hugoniot curves. Figures 4.1 and 4.2 show plots of v at û = uL and

û = uR where the green lines represent v = v̂−
√

C(ln ρ−ln ρ̂)(ρ−ρ̂)
ρρ̂

and the blue

lines where v takes the positive sign. We see that if either sign is chosen for

all ρ, then v is not a smooth curve as one would except. In fact, v switches

between the two Hugoniot curves at û. The modified equation

v = v̂+
−sgn(ρ− ρ̂)

√
C(ln ρ− ln ρ̂)(ρ− ρ̂)

ρρ̂
(4.6)
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Figure 4.1: The two curves given by (4.5)

through uL.
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Figure 4.2: The two curves given by (4.5)

through uR.

will, therefore, ensure smooth Hugoniot curves by selecting the correct sign.

At each state, uL or uR, there are two possible Hugoniot curves. We

require the k-Hugoniot curve, vk, that is tangent to the k-eigenvector, rk, at

û. Figures 4.3 and 4.4 show the two possible smooth Hugoniot curves and

the eigenvector, rk, at each end state û. The red lines show the eigenvector,

rk, the green and blue lines show the Hugoniot curves where v takes the

negative and positive signs respectively.
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Figure 4.3: The solid green line indicates

the correct 1-Hugoniot curve which is tan-

gent to the 1-eigenvector at uL.h
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Figure 4.4: The solid blue line indicates

the correct 2-Hugoniot curve which is tan-

gent to the 2-eigenvector at uR.

The 1-Hugoniot curve at uL is

v1 = v̂ − sgn(ρ− ρ̂)

√
C(ln ρ− ln ρ̂)(ρ− ρ̂)

ρρ̂
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and at uR the 2-Hugoniot curve is

v2 = v̂ − sgn(ρ− ρ̂)

√
C(ln ρ− ln ρ̂)(ρ− ρ̂)

ρρ̂
.

Since the two states do not lie on the same Hugoniot curve the discontinu-

ity is not a single shock, but rather the end states uL and uR are connected by

valid waves via uM some intermediate state. In order for the Hugoniot curves

to be valid we require the k-characteristic fields to be genuinely non-linear,

that is

(∇uλk).rk(u) 6= 0

for all u. The system yields

(∇uλ1).r1(u) =

(
1

2

√
C

ρ3

1

ρ

)
.

(
1 v −

√
C

ρ

)T

= −1

2

√
C

ρ3
.

Similarly

(∇uλ2).r2(u) =
1

2

√
C

ρ3

and hence it is genuinely non-linear. Incidently, if (∇uλk).rk(u) = 0 then we

have a contact discontinuity. We now calculate where the Hugoniot curves

are valid by using Lax’s entropy condition at each constant end state

λ1(uL) > s > λ1(u) and λ2(uR) < s < λR(u)

which holds for hyperbolic, genuinely non-linear conservation laws. Figures

4.5 an 4.6 are plots of λk(û) (in red), s (in green) and λk(u) (in blue). Figure

4.5 shows the 1-shock is entropy violating to the left of uL, where the lines

are dashed, and a valid shock to the right where the lines are solid. Figure

4.6 shows a similar situation for 2-shock at uR.

We also find the k-Riemann invariants and thus the rarefactions/ simple

waves at û. The k-Riemann invariants are smooth functions wk(u) such that

∇uwk(u).rk = 0

giving for the 1-shock

∂w1

∂(ρv)
+

∂w2

∂(ρv)

(
v −

√
C

ρ

)
= 0. (4.7)

21



0.2 0.4 0.6 0.8 1
rho

-0.2

-0.1

0.1

0.2
lambda or s

Figure 4.5: The entropy condition holds

to the right of uL
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Figure 4.6: The entropy condition holds

to the right of uR

We seek solutions of (4.7) such that w1 is constant on the characteristics, i.e.

d(ρv)

dρ
− ρv

ρ
+

√
C

ρ
= 0.

This is solved using the integrating factor e
∫

1
ρ
dρ = 1

ρ
, to give the 1-Riemann

invariant

w1 = v − 2

√
C

ρ
.

We can solve for v by setting

w1 = v − 2

√
C

ρ
= constant = v̂ − 2

√
C

ρ̂

which gives v at uL as

vw1 = λ1(uL) + 2

√
C

ρ
.

Similarly the 2-Riemann invariant is

w2 = v + 2

√
C

ρ

and v at uR is given by

vw2 = λ2(uR)− 2

√
C

ρ
.
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In the figures below the rarefactions are represented by dashed curves and

the shocks by solid curves. The 1-shock and vw1 are in green and the 2-

shock and vw2 are in blue. The black points give the end states. Figure 4.9

shows the admissible rarefactions, given by vwk, and shocks, vk, and where

they cross at uM the red point. Figure 4.10 is an enlargement of the region

containing uM and uL where Mathematica finds uM = (0.62 0.10)T . The

left hand state uL is connected to the right hand state, uR by two Hugoniot

curves which intersect at uM .

0.2 0.4 0.6 0.8 1
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0.2

0.3

0.4

0.5

rho v

Figure 4.7: The intersection of the valid

Hugoniot curves and rarefaction waves con-

necting uL to uR via uM .
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Figure 4.8: Close up of the intersection at

uM .

4.1.1 Different Initial Data

We consider the situation where traffic moves away from congestion and

high density towards lower density, for example when leaving a traffic jam or

as traffic lights turn green. This circumstance uses the initial data where uL

and uR are reversed, and so

uL =


 ρL

(ρv)L


 =


 0.6

0.09


 and uR =


 ρR

(ρv)R


 =


 0.2

0.12


 .

The Riemann problem is solved as before but now the end states are con-

nected via two rarefaction waves and uM = (0.195 0.11)T as seen in Figure

4.9.
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Figure 4.9: The intersection of the valid

Hugoniot curves and rarefaction waves con-

necting uL to uR via uM .
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Figure 4.10: Close up of the intersection

at uM .
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Chapter 5

The Numerical Method

We have found the Riemann solution to the homogeneous system and

also a similarity solution to the inhomogeneous system. We now wish to

apply a numerical scheme and compare the results to the analytic solutions.

We consider the Roe scheme in Section 5.2 but first we describe the Roe

decomposition for the inhomogeneous system.

5.1 Roe Decomposition

In order to write the numerical Roe scheme we first consider the Roe

decomposition of the non-linear, homogeneous system (3.2). Roe decomposes

the system into scalar problems by locally approximating the Jacobian matrix

A as constant over discrete cells.

With the system written in conservation form

 ρ

ρv




t

+


 ρv

(ρv)2

ρ
+ C ln ρ




x

=


 0

aρ(V̄ (ρ)− v)


 .

we seek Ã(u) such that

Ã∆u = ∆f. (5.1)

This is the shock capturing property where ∆u = uR−uL is a small difference

over an interval (xL, xR) and uL and uR are taken at the left and right ends

of the cell resepectively.
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Recall (4.4) giving the Jacobian matrix A, we set

Ã =


 0 1

C
ρ̃
− ṽ2 2ṽ




where we assume ṽ2 = ṽ2 and find expressions for the averages ṽ and ρ̃ in

terms of v and ρ. The method considers average values, denoted by tilde,

which satisfy the discrete system taken in each cell. These averages are not

unique and therefore the above assumption need not hold. It can, however,

be shown to be correct for our system. Equation (5.1) then gives

∆(ρv) = ∆(ρv)

and (
C

ρ̃
− ṽ2

)
∆ρ + 2ṽ∆(ρv) = ∆(ρv2 + C ln ρ).

The second equation holds if

C

ρ̃
∆ρ = C∆(ln ρ)

giving

ρ̃ =
∆ρ

∆(ln ρ)
,

and if

ṽ2∆ρ− 2ṽ∆(ρv) + ∆(ρv2) = 0 (5.2)

where

∆(ρv) = ρ̄∆v − v̄∆ρ = ρRvR = ρLvL

and ρ̄ = 1
2
(ρL + ρR). From the above quadratic (5.2)

ṽ =
2∆(ρv)+

−
√

4∆(ρv)2 − 4∆(ρv2)∆ρ

∆ρ

which reduces to

ṽ =
(ρRvR − ρLvL)+

−
√

(
√

ρRvLvR −√ρRvLvL)2

(
√

ρR −√ρL)(
√

ρR +
√

ρL)
.
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Expanding (ρRvR − ρLvL) and taking the negative root we obtain

ṽ =

√
ρRvR −√ρLvL√

ρR +
√

ρL

.

Next we seek the Roe averages α̃k and β̃k where k = 1, 2, such that

∆u = Σ2
k=1α̃kr̃k and ∆f = Σ2

k=1α̃kλ̃kr̃k (5.3)

and the right hand side vector

R(u) = Σ2
k=1β̃krk (5.4)

where

R(u) =


 0

aρ(V̄ (ρ)− v)




and λk = ṽ+
−

√
C
ρ̃

are the eigenvalues and rk =
(
1, λ̃k

)T
are the correspond-

ing eigenvectors. From the first equation of (5.3) we obtain

α̃1 + α̃2 = ∆ρ

and

(α̃1 + α̃2) + (α̃2 − α̃1)

√
C

ρ̃
= ∆ρv.

Therefore, the α̃k are

α̃1

√
C
ρ̃
∆ρ− ρ̄∆v

2
√

C
ρ̃

and α̃2 =

√
C
ρ̃
∆ρ + ρ̄∆v

2
√

C
ρ̃

(5.5)

and, from (5.4) the β̃k are

β̃1 =
a(ρ̄V̄ − ρ̄v)

2
√

C
ρ̃

and β̃2 =
a(ρ̄v − ρ̄V̄ )

2
√

C
ρ̃

(5.6)

We are now in a position to use the Roe Scheme to calculate the component

by component discrete problem in each cell. Then the results are recombined

to give the full solution to the non-linear system.
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5.2 The Roe Scheme

The first order upwind scheme with Roe decomposition is known as the

Roe scheme. A numerical scheme approximates the solution to a problem in

(x, t) space. We decompose the data over discrete, uniform cells of dimensions

∆x in space and ∆t in time. The information is given at the end points of each

cell such that the approximation un+1
j ≈ u(j∆x, n∆t) the exact solution.

Here j denotes the point in x-space and n in t-space, where j = 0, . . . J and

n = 0, . . . N .

The first order upwind scheme approximates the time derivative by the

one-sided difference

ut ≈
un+1

j − un
j

∆t
.

Coupled with the Roe averages the conservation form can be written

un+1
j = un

j −
∆t

∆x
∆f + ∆tR

which is

un+1
j = un

j −
∆t

∆x

2∑

k=1

α̃kλ̃kr̃k + ∆t
2∑

k−1

β̃kr̃k.

The update over the jth cell depends on the wave speeds λk such that

un+1
j = un

j+1 −
∆t

∆x
α̃kλ̃kr̃k + ∆tβ̃kr̃k.

if λ̃k < 0, and

un+1
j = un

j −
∆t

∆x
α̃kλ̃kr̃k + ∆tβ̃kr̃k.

if λ̃k > 0.

5.2.1 Accuracy and Stability

Roe uses the first order upwind scheme to approximate the data, and so

is first order accurate in both time and space. A solution will have an error of

order ∆t in time and order ∆x in space. The accuracy is found by expanding

the one sided approximations to the derivatives using Taylor series about the

point (xj, tn).
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In order for the numerical method to be stable we require

∆t

∆x
|maxk=1,2λk| < 1

over all j. This ensures that any wave will only travel through a single cell

at each time step.

5.2.2 Boundary Conditions

We need to impose boundary conditions at the left and right ends where

the waves travel out of the domain. At the left hand end j = 0 and un+1
0 will

not be updated by a downwind wave from the previous cell as this cell does

not exist. Since the data is constant here we can update un+1
0 by overwriting

it with un+1
1 . Similarly we set the boundary condition at j = J by overwriting

un+1
J with un+1

J−1.

5.3 The Data

In Section 4.1 we used initial data given in [8]. We again use these step

functions for initial ρ and v, but now we must find suitable values for a, C, V̄

and ∆x and ∆t.

We take the relaxation term a to be small, about 0.1 as this governs how

much effect the large optimal velocity V̄ ≈ 1 (in the case where V̄ is constant)

has on the system. The values of C was chosen by running the homogeneous

program and comparing the results with the Riemann solution. After some

trial and error C = 0.05, since this generated results closest to what was

expected.

The following chapter discusses the numerical results of the homoge-

neous program and the inhomogeneous programs with V̄ constant, ¯V (ρ) =

tanh(ρ− 2)− tanh (−2), as in Bando [1], and the similarity solution.
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Chapter 6

Numerical Results

6.1 The Homogeneous System

Firstly we consider the numerical results of the homogeneous system

ρt(ρv)x = 0

vt + vvx − Cbx = 0.

The program was run with a = 0 for varying values of ∆x and ∆t. As in the

Riemann solution we expect to see two shocks travelling with different speed

and direction. Figure 6.1 shows the 2-shock in front of the discontinuity

moving to the right with a greater speed than the 1-shock (only just visible)

moves to the left. The over-shoot in initial ρ represents the point ρM , as

in uM . We see that the 2-shock is slightly diffused, probably due to the

low accuracy of the first order scheme. We re-run the program with the

larger space step ∆x = 0.5. This gives a better indication of the 1-shock

moving quickly, backwards to the left and the other shock, in front of the

discontinuity. This is shown in Figure 6.2 and Figure6.3 where ∆t = 0.01.

What does this tell us in terms of the vehicles on the road? To the

left of the discontinuity the headway is large and so all the cars are able to

travel with a high constant velocity. As these cars approach the congestion

(represented by the discontinuity) they are forced to slow down rapidly. More
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cars approach from behind and must slow down sooner, thus we see the

congestion (high density) propagates backwards along the road. As the cars

enter the congested region the density increases slightly, where drivers ‘ease

off’ on the brakes, so deceleration is slower, and thus the headway of the cars

approaching from behind decreases. The cars then slow down to the lower

constant velocity. At the right hand end all the cars are travelling at a low

speed because the headway is small.
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Figure 6.1: a = 0, ∆x = 0.1, ∆t = 0.001. Every 200th time step to t = 1.
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Figure 6.2: a = 0, ∆x = 0.5, ∆t = 0.01. Every 200th time step to t = 10.
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Figure 6.3: a = 0, ∆ x = 0.5, ∆t = 0.01. Every 2000th time step to t = 100.

6.2 The Inhomogeneous System

Now we consider the inhomogeneous system

ρt(ρv)x = 0

vt + vvx − Cbx = a(V̄ (ρ)− v).

We run two programs, one where V̄ is constant and the second where it is a

function of ρ.

6.2.1 Constant V̄

The program was run with ∆t = 0.01 for 1000 time steps and various

values of V̄ and a. Figure 6.4, where a = 0.1, V̄ = 0.9 and ∆x = 0.3

(therefore, only 60 space steps), shows the constant velocity to the left of the

discontinuity increasing with time as cars here can accelerate, uniformly in

space, with each time step to the optimal velocity, V̄ , since there is no change

in the headway. Here the density is low and so the headway is large. When

the vehicles reach the congestion they decelerate rapidly as before. Now,

however, the density does not propagate backwards. The cars at the right

hand state increase their constant velocity, with each time step, towards V̄

The cars behind these adjust their speed and start to accelerate to reach the
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same velocity. This causes the region of high density to move forward with

each time step.

Figure 6.5 refines the space step size of the previous figures and gives a

smoother representation. Figure 6.6 is the case when a = 0.5 and so the

source term has a larger effect on the solution. The density behaves like

the previous situation after a large time, as we would expect. The smooth

curve represents a uniform change in the headway as cars in low density meet

those in high density. The velocity plot shows the cars are indeed reaching

the optimal velocity. Figure 6.7 is the case where a = 0.1 and V̄ = 0.5. If the

optimal velocity is small compared to the initial velocity the cars in constant

density decelerate with each time step. The cars with smaller initial velocity

will accelerate to reach V̄ at a faster rate.
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Figure 6.4: a = 0.1, V̄ = 0.9, ∆x = 0.3, ∆t = 0.01. Every 200th time step to t = 10.

6.2.2 Function V̄ (ρ)

The program was also run with the dynamic equation

¯V (ρ) = tanh(ρ− 2)− tanh (−2).

However, the numerical scheme fails here giving increasing values of v and

ρ. Figure 6.8 shows the solution when ∆x = 0.3, ∆t = 0.02 and a = 0.1 so

the contribution from the source term is small. Recall that the initial data

33



0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

ρ

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

v
Figure 6.5: a = 0.1, V̄ = 0.9, ∆x = 0.1, ∆t = 0.01. Every 200th time step to t = 10.
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Figure 6.6: a = 0.5, V̄ = 0.9, ∆x = 0.3, ∆t = 0.01. Every 200th time step to t = 10.

has been normalised and so ρ < 1 is not a physically possible solution. As a

increase the maximum values of v and ρ do also.

6.3 The Similarity Solution

We run the inhomogeneous program with x = ξ and v = v̆. This gives

the system

ρt + (ρv)ξ = 0

vt + vv̆ξ − Cbξ = a(V̄ − v̆)
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Figure 6.7: a = 0.1, V̄ = 0.5, ∆x = 0.3, ∆t = 0.01. Every 200th time step to t = 10.
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Figure 6.8: a = 0.1, V̄ = 0.9, ∆x = 0.3, ∆t = 0.01. Every 200th time step to t = 10.

and setting V̄ = 0 we can compare the results with the similarity solution.

In Figure 6.9 we see that given any initial data the solution of v̆ → 0. This

confirms our previous solution that the system tends towards the optimal

velocity as t → 0.
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Figure 6.9: a = A = 1, V̄ = 0, ∆ξ = 0.1, ∆t = 0.01. Every 200th time step to t = 10.
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Chapter 7

Conclusions and Further Work

The aim of this dissertation has been to develop a macroscopic traffic

flow model from a microscopic model and to solve it numerically. We based

our dynamic equation on Bando [1] and introduced an extra term governing

change in the headway.

A moving coordinate system is used to find a similarity solution to the

inhomogeneous model. The behaviour of the solutions approach the fixed

point (ρ0, f) = (0, 0) as t → 0. Thus the source term has a large effect on

the model causing the speed of the cars to approach the optimal velocity V̄ .

These results are also given by the numerical method.

The homogeneous system is considered with initial data giving a single

discontinuity. This Riemann problem gives two shock waves. The Roe de-

composition coupled with the first order upwind scheme allows us to write

a program to numerically model the homogeneous system accurately. The

inhomogeneous system contains some instability probably due to the first

order accuracy yet still shows the cars reaching the optimal velocity when

the density is constant.

The Roe scheme was not able to cope with the situation where the optimal

velocity is dependent on the density as in Bando. It would be of interest to

use higher order numerical schemes to model the system more accurately.

Overall, the model works well if there is no source term. However, real-
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istically the optimal velocity is dependent on the density. Since, in constant

density, it would be foolhardy to drive at the same optimal velocity for con-

gested traffic as one would in light traffic flow.

Another refinement is to assume that C is also a function of the density ρ

and to develop a system that switches between two sub-problems at a defined

value of the headway. By these means we would hope to model the way the

traffic accelerates in low density and maintains a lower steady speed in high

density.
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