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ABSTRACT

ABSTRACT

Advances in numerical ocean modelling have led to increasing interest in data

assimilation for the purpose of ocean forecasting. The majority of current assimi-

lation techniques ignore the integral constraints inherent in ocean dynamics, and

instead locally insert information from observations in an Eulerian sense. It has

been shown that such methods can generate spurious circulations by affecting the

balance of dynamic ocean tracers.

In this thesis techniques are presented which solve a rearrangement problem

to perform data assimilation under an integral constraint, effectively performing

assimilation in a Lagrangian sense to correct for an assumed initial phase error. A

descent algorithm equivalent to three dimensional variational assimilation is devel-

oped for the pure rearrangement problem, based on an advective process acting in

pseudo-time. This method is shown to assimilate direct observations successfully,

even when observations are only available on a limited subdomain. Two novel

modifications which improve the rate of convergence are also discussed.

The method is extended to perform in model time, allowing the use of obser-

vations valid over a time window, analogous to the behaviour of four-dimensional

variational data assimilation. Comparing this technique to a traditional strong for-

mulation 4D-VAR algorithm shows that the displacement method is superior when

errors are due to adiabatic forcing or the effects of model resolution, although

strongly limited by the coverage and frequency at which observations are available.

Overall this thesis shows that rearrangement methods are a viable and, poten-

tially, beneficial method for ocean data assimilation, provided suitable data sources

can be found.
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INTRODUCTION AND MOTIVATION CHAPTER 1

CHAPTER 1

INTRODUCTION AND MOTIVATION

“A man with one watch knows what time it is.

A man with two watches is never sure.”

“Segal’s Law”

1.1 MOTIVATION

Ocean data assimilation is a general methodology for estimating values for dy-

namically evolving oceanic variables by combining the information contained in

dynamical ocean models and in observational data. This combination of informa-

tion generates an estimate of the current state of these variables – an analysis –

which may then be used as an initial condition for later numerical forecasting of

future ocean conditions. The complex relationship between the various relevant dy-

namic variables in the ocean produces a chaotic pattern to the growth, with time, of

measured differences between forecasts generated from similar initial conditions.

Hence the accuracy of analyses is one of the key factors limiting the accuracy of

ocean forecasting as a predictive tool.

Many current data assimilation methods are based upon the concept of a ‘most-

likely’ estimate, a representative state that has the greatest probability of having

occurred, given previous forecasts and the result of all available observations. The

analysis thus represents the modal state of any forecast ensemble and, it is argued,

the best viable choice for an initial condition for future deterministic forecast. Anal-

ogy can be drawn with the parameterization of small scale mixing processes. There

exist myriad possible arrangements of a dynamic variable on scales well below that

being modelled. However if an assumption is made as to the probability density of

the various arrangements (as is made for example in the mathematical modelling of

Brownian motion) and the most likely estimator of the states assumed true (in this

case through application of the central limit theorem), then a modelling assump-

tion is generated (Fickian diffusion) which is applicable on the scales of interest.

1



INTRODUCTION AND MOTIVATION CHAPTER 1

Such statistical methods require assumptions on the distributions to be represented.

In the case of data assimilation this requires the spatial covariances within variable

fields and the correlations in the behaviour between different variables. Generally

there is not enough data to estimate these accurately. Often these distributions

are chosen on an ad hoc basis to represent known physical relationships, such as

geostrophy.

An alternative approach is to apply these relationships directly, as expressed

in the dynamic equations, when creating an assimilation method. This is similar to

the philosophy behind the introduction of a variety of ‘adiabatic’ techniques for sub-

grid parameterizations, such as the Gent and McWilliams (1990) method. These

adiabatic parameterization methods have been found (Danabasoglu et al., 1994;

Böning et al., 1995) to give better fit to observations and more stable results when

used for large-scale ocean modelling than schemes which pay less heed to con-

served properties. The subject of this thesis is a discussion of a similarly adiabatic

approach in the context of ocean data assimilation and the ocean inverse problem.

This chapter begins with a short summary of the history of the ocean inverse

problem and the methods that have been applied for its solution. There follows

a review of the various sources of data for the Global Ocean Observing system,

with particular reference to those currently applied for the ocean data assimilation

problem. Some of the current open topics of research in the field of ocean data

assimilation are then listed. Finally the key questions to be addressed within this

thesis are stated and the format of the thesis as a whole laid out.

1.2 INVERSE PROBLEMS IN THE OCEAN

For a more comprehensive overview of traditional data assimilation methods, with

particular reference to the atmosphere, see the textbooks of Daley (1991) or Kalnay

(2002). Ghil and Malanotte-Rizzoli (1991) contains a detailed, if slightly dated, dis-

cussion of current methods in data assimilation for geophysical fluids. A book by Wun-

sch (1996) develops the discretized inverse problem in the context of ocean dynamics

and discusses the difficulties of the state estimation problem.

1.2.1 DISCOVERING THE OCEAN

The primary interest of meteorologists, dating back to the first synoptic charts

drawn up by Admiral Robert Fitzroy in the 1860s, was to accurately determine the

transient state of the atmosphere. Climatological data represented primarily a use-

ful ‘first guess’ for the more important question of the current weather patterns. In

2



INTRODUCTION AND MOTIVATION CHAPTER 1

keeping with this philosophy, the goal in atmospheric data assimilation has typically

been to use the information contained in meteorological observations to produce

an accurate estimate of the current state of the atmosphere - an analysis field.

In contrast with this, work in the oceanographic community was historically

directed towards coupling modelling, theory and observations to determine an es-

timate of the mean state of the ocean, often termed state estimation or inverse

modelling. The difference between these two viewpoints is predominantly in terms

of timescale. The aim of state estimation is to recover the long-term time average

of the ocean state from long, gappy, series of ocean observations, with the avail-

able observations often widely separated in space and time. A necessary condition

for this method to succeed is the existence of a well-defined stationary mean state,

upon which intra-decadal variations appear as small-scale noise. Data assimilation

is intimately coupled with the idea of forecasting the magnitude of the transient

magnitudes of these small-scale deviations. Early oceanographic work was focused

on the area of state estimation for several principle reasons:

(i). Accurate measurements of dynamically important oceanic variables such as

temperature and salinity were (and to a certain extent remain, see section

1.4) difficult and expensive to obtain, hard to record and time-consuming to

collate. This means that the historical data set available to investigators is

small, with poor temporal and spatial coverage, especially in the Southern

Ocean.

(ii). It was for a long time believed, following the theory of Ekman (1905), Sver-

drup (1947), Munk (1950) and others, that the observed ocean state could

be almost entirely explained through a combination of largely static flow in

the interior maintaining geostrophic and hydrostatic balance, with primar-

ily wind driven circulations near the surface. This concept of steady ocean

currents, “Rivers in the Sea”1, assumes that the transient signal is small and

dynamically unimportant, except possibly for the case of the external wind

forcing, which may itself be derived from meteorological observations.

(iii). The ocean has a much smaller Rossby number than the atmosphere in most

areas and situations. This non-dimensional number governs the length scale

at which geostrophic balance holds. This means that significantly higher spa-

tial resolutions are required to model important mesoscale features, such as

1The use of this analogy has become something of a cliché in oceanography. Although featured by

as illustrious a figure as Fitzroy (1861) in explaining ocean currents to a general scientific audience

it was equally criticized by Nanson (1907) as naive. The modern consensus is uniformly negative
(Parker, 1998).

3



INTRODUCTION AND MOTIVATION CHAPTER 1

mesoscale eddies or transient displacements of the thermocline, which are of

interest to end-users such as fisheries and navies. Until recently limitations

on available computing resources were such that standard models could not

run with grid spacing such that they could resolve these length-scales.

(iv). The observational and model data available at the time supported the idea

of a quiescent ocean. In fact the ocean was typically believed laminar in its

interior, until this assumption was cast into doubt by accumulated observa-

tional data in the 1970s. The unprecedented large-scale and near synoptic

observations of the World Ocean Circulation Experiment (WOCE) from 1990

until 1998 exploded this myth, with turbulent structures and great temporal

and spatial variability being detected with ubiquity.

1.2.2 A BRIEF HISTORY OF STATE ESTIMATION

Among the earliest attempts at what may be termed ocean state estimation,

aiming at determining the long term ocean state, are the discovery of the location

and approximate strength of the ocean surface currents by various groups of seafar-

ers, starting with the discovery of the Canary and Guinea Currents by Portuguese

sailors in the 15th century (Krauss, 1996). Differences were observed between a

ship’s apparent positions calculated from their course and speed through the water,

‘dead reckoning’, and the ship’s actual position, as derived from celestial observa-

tions. These differences were then ascribed to drift due to surface currents, with

repeated observations allowing the flow to be mapped.

This is a specific example of the general class of inverse problems. Both the

data assimilation problem for ocean forecasting and state estimation of the ocean

fall into this classification. Given a general mathematical operator, the black box of

high school mathematics, accepting inputs from one set of data and mapping them

in some fashion consistently to another, the outputs, we may define two different

classes of problem:

Problem 1.1 (The forward problem) Given a known input, derive the expected out-

put.

In the case of the Portuguese sailors this would be the navigational problem

of calculating an estimate of the ship’s course from the known currents and the

observed bearing. Depending on the complexity of the operator in question such

problems may be computationally expensive. Nevertheless provided that the oper-

ator is known over the whole range of possible inputs, is not pathologically badly

4



INTRODUCTION AND MOTIVATION CHAPTER 1

behaved and that the input in question lies in this domain then a unique solution is

guaranteed to exist. If our knowledge of the operator is incomplete or approximate

then there may exist multiple consistent solutions, but a probabilistic or partial so-

lution may still be found. If the input in question lies outside the domain of the

operator then an extension to a larger domain may be chosen and a value still

recovered.

Problem 1.2 (The inverse problem) Given a known output, find the input(s) which

generate(s) it.

This is the problem of calculating the currents from time series of navigational

data. For a non-trivial, non-linear operator this is typically much harder, both com-

putationally and philosophically than the forward problem. If, as is typical in phys-

ical oceanography, the dimension of the output (the observations) is smaller than

the dimension of inputs (the ocean condition) then the problem will be under-

determined and there may exist multiple consistent solutions. If the output lies

outside the range of the operator then there may be no consistent solutions at all.

In either of these cases the problem must be modified before it can be solved and

in general only weak solutions will exist. For example, in the case of linear maps it

is possible to find an input which maps to a point nearby to any output in a least

squares sense. In this sense any form of data assimilation or state estimation may be

viewed as a suitably constrained regression, fitting a curve representing the analysis

trajectory through the points provided from observations under some goodness-of

fit criterion, which commonly depends on previous analyses.

Among the earliest rigorous inversions in modern oceanography were the box

inversions of Wunsch (1977), and others. The equation set inverted here consists

of steady state conservation equations for mass, salt and heat, as well as the inte-

grated thermal wind equations, where the vertical integration has been performed

assuming a reference level where horizontal density gradients vanish. These equa-

tions are applied across pairs of station observations, where stations are situated

along survey lines forming a boundary to the ‘box’ of interest. The aim is to ob-

tain an estimate of the reference level velocity (and thus through the thermal wind

relation the full velocity field) as well as the balancing tracer distribution.

A similar method originating at around the same time is the β-spiral method of

Stommel and Schott (1977) and others, which uses the same basic equation set, but

instead rearranges these into equations for potential density and relative vorticity.

These equations are imposed as local, horizontal constraints to give a series of 3D

velocity vectors at the reference level. See Olbers and Willbrand (1985) for a review

of the various flavours in which the method came.
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1.2.3 OCEAN DATA ASSIMILATION

Recently the advances in computer power, coupled with improvements in pa-

rameterizations of sub-grid processes and improvements in the physical under-

standing of ocean dynamics have led to the creation of successively more realistic

ocean General Circulation Models (GCMs). There have been a series of attempts

at ocean state estimation through the application of adjoint models for the steady

part of ocean GCMs (Martel and Wunsch, 1992; Marotzke and Willebrand, 1996;

Stammer et al., 2002) using a variety of models and techniques in order to iterate

to a steady solution.

In particular, the consortium Estimating the Circulation and Climate of the

Ocean have attempted a concerted effort at exploiting new data sets from the

WOCE using an advanced Massachusetts Institute of Technology Ocean Model (Mar-

shall et al., 1997) to coupled to automatic differentiation tool to generate the ad-

joint code. Wunsch and Heimbach (2007) provides an overview of both the math-

ematical techniques and assumptions involved and the various key results and ap-

plications the code has been put to. These range from regional studies (Ayoub,

2006) to estimates of the errors in the model and observations (Stammer, 2005) to

estimates of internal mixing in the ocean (Ferreira et al., 2005).

At the same time methods have been developed for data assimilation in ocean

forecasting, in analogy with modern weather forecasting through Numerical Weather

Prediction (NWP). Interest has grown in the forecasting problem with the realisa-

tion that the ocean represents the long-term memory of the climate system and as

such the best hope for accurate long-range weather forecasts. It is this interest in

deriving the transient state of the ocean system at high resolution from limited data

in the near past which we term Ocean Data Assimilation, following the terminol-

ogy of Wunsch (1996) and by analogy to the nomenclature used in atmospheric

science.

In fact, many of the techniques used to provide initial and boundary conditions

to these forecasting systems are derived from the Data Assimilation techniques de-

veloped for NWP, particularly variations on the Best Linear Unbiased Estimator

(BLUE) analysis and three or four dimensional variational methods, based on a sta-

tistically optimal minimization of predicted error variances. In the following section

we discuss the basis of these techniques.
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1.3 TRADITIONAL DATA ASSIMILATION METHODS

The theory behind the derivation of the BLUE equation forms the basis for many

modern assimilation techniques, including the Kalman filter, Kalman smoother, 3D-

VAR and 4D-VAR techniques. Many operational ocean forecasting centres use vari-

ations on these methods. For example, the UK Met Office Forecasting Ocean Assim-

ilation Model (FOAM) uses an Analysis Correction Method (ACM) (Lorenc et al.,

1991) to assimilate temperature and salinity profiles. The basis of the ACM is an

iterative approximation converging to the BLUE analysis described below. The Eu-

ropean Centre for Medium-range Weather Forecasting (ECMWF) uses a 4D-VAR

scheme for its operational ocean model, run to assimilate observations over a ten

day time window.

No single standard exists for notation in the combined context of data assim-

ilation and numerical modelling. The notation used in this section is based on

that prescribed in Ide et al. (1997)2 and a similar ethos is used when describing

assimilation methods in succeeding chapters.

1.3.1 THE BEST LINEAR UNBIASED ESTIMATOR

At a given time, define the (discretized) state of the system of interest, rep-

resented by a finite dimension state vector, xt, over the spatial domain of interest.

This is the ‘truth’ which we wish to find. In the case of ocean forecasting this may be

the three dimensional velocity, pressure, density, temperature and salinity given at

points corresponding with the model grid of an ocean GCM. Suppose too there ex-

ists an initial guess at this state, perhaps from a previous run of the forecast model.

Denote this background state by the state vector xb. Finally let vector, y, contain

all available observations assumed valid at the time of interest. Here we assume

that the observed variables represent a simple linear combination of the quanti-

ties contained in xb. The background and observation error vectors ǫb, ǫo,represent

2The primary difficulties in standardizing notation between the two fields are:

i. The tendency of dynamicists and modellers to express equations in the continuous notation
of partial differential equations, even when it is discretizations of these which are solved,

whereas data assimilation is usually presented in the language of linear algebra.

ii. The tendency to use x as a variable in Cartesian or locally Cartesian space when in the Ide

notation this is reserved for the system state.

An entirely consistent and unambiguous notation remains difficult, but the lack of such notation may

be limiting the understanding of the data assimilation process in the general scientific community.
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differences from the true state,

xb = xt + ǫb,

y = Hxt + ǫo,

where H : R
n → R

m is the observation operator giving the observational data

expected for a given state vector. Under certain conditions Bayes’ Theorem allows

us to relate a prior estimate of the probability of an event occurring to the posterior

conditional probability of the event having occurred, given the result of some set of

observations.

Theorem 1.1 (Bayes’ Theorem) For stochastic events X,Y providing the marginal

probability of a given observation, P (Y = y), is non-zero, then the posterior probabil-

ity distribution P (Y = y|X = x) satisfies the relation

P (X = x|Y = y) =
P (Y = y|X = x)P (X = x)

P (Y = y)
,

given a prior probability distribution for the state x, P (X = x), and a conditional

probability for detecting given observations from a state x, P (Y = y|X = x).

This result may be derived directly from the definition of conditional probability. A

full discussion of Bayesian statistics lies outside the scope of this thesis, but for fur-

ther details the reader is directed to, for example, Lee (1989). Using Bayes theorem

it is possible to find a state which represents the maximizer of the posterior prob-

ability density. Given unbiased data (so that the expectation of the error for both

background and observation vectors is zero) this state minimizes the variance of

the analysis error, independently of the data themselves. For suitable distributions,

such as Gaussian error distributions, this will be the maximum likelihood estimator

for the analysis state.

Introducing the notation B, R for the covariance matrices of the background

and observation states respectively this analysis state is found (Daley, 1991)[Sec-

tion 2.2] to be the solution of the BLUE equation,

xa = xb +BHT
(
HBHT +R

)−1
(y −Hxb) . (1.1)

Calculating this state thus requires knowledge of the error covariances (as well as

expectations, to ensure the data is unbiased). The uniqueness of xa as a minimizer

of the error variance depends on whether the observation operator can distinguish

between any two model states. Note that there will not generally be enough in-
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formation a priori to determine R and B accurately. Instead these are either cal-

culated from model data (especially common in the meteorological community)

or are assumed to act only as a smoothing operator to spread the information in

limited observational data across some limited local region, weighting towards the

location of the observation, that is it acts as a regularization term in a generalized

least squares regression. This second view is probably the more common in the

oceanographic community, see for example Bennett (1992).

1.3.2 RELATED METHODS

A family of algorithms such as the Successive Correction method (Daley, 1991)[Chap-

ter 3] and the Met Office’s ACM reformulate the BLUE analysis as the limiting so-

lution of a set of iterable equations. This allows an incomplete, non-converged,

solution to be applied as an initial condition for forecasting, sacrificing accuracy

for speed. The Kalman filter method extends the function of the BLUE analysis

state into the problem of finding choices for the covariance matrices based on data.

These matrices themselves become variables in the system with a new matrix cal-

culated on each assimilation cycle, as new model and observational data becomes

available. Sorenson (1970) has a nice discussion of the filter’s connection with least

squares regression, while Evensen (1994) discusses the basic filter as well as sev-

eral extensions in an Oceanic context. The Kalman Filter can itself be extended into

the Kalman Smoother (Cohn et al., 1994), which sweeps over data available over

multiple time levels and thus assimilates observations backwards in time using past

information as well as forwards.

The BLUE solution can also be viewed as the minimiser of a function represent-

ing the logarithm of the analysis error probability density function,

J := logP (ǫa) = (xb − x)TB−1(xb − x)
︸ ︷︷ ︸

Jb

+ (y −Hx)TR−1(y −Hx)
︸ ︷︷ ︸

Jo

.

The 3D-VAR assimilation methods attempt to find this minimizing state directly us-

ing gradient information on J [x]. For systems with linear observation operators

the solution found is identical to the BLUE solution and the method is another it-

erative algorithm for the BLUE analysis; however, the variational approach allows

more readily for the extension to cases with non-linear observations than the equiv-

alent extension of the BLUE method, the Extended Kalman Filter. By extending the

definition of the observational error density into one including a temporal factor

we obtain the 4D-VAR method. Under certain conditions this produces identical
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analysis fields over a particular set of data to the Kalman filter. A limit to the utility

of this approach is that these variational methods do not produce explicit updates

to the covariance or weighting functions, as the Kalman Filter methods do.

1.4 THE OCEAN OBSERVING SYSTEM

A key ingredient in the cookbook of both data assimilation and state estima-

tion, that is estimating the transient and time mean ocean state, is the available

observational data set itself. For an assimilation scheme to be effective it is impor-

tant to understand the source of the data which is to be assimilated and possible

sources of error in the data stream. Traditionally observations of the ocean have

been far more scarce than those of the atmosphere. This is partly because humans

are land-dwelling, with a resultant interest in extremes of weather, while distant

from the deep ocean. Moreover the extreme pressures of the ocean deeps and the

difficulty and expense of transit over much of the ocean has hampered maritime re-

search. Long-term data sets are limited to tide-gauges and ship-based temperature

measurements from naval vessels and voluntary observing ships (VOS).

1.4.1 SHIPBOARD OBSERVATIONS

The greatest proportion of the ocean data available from the VOS consists sur-

face measurements, especially of surface water temperature. This form of data

makes up approximately 90% of the historical ship-borne temperature record. Mea-

surement technology has improved markedly from the days when temperatures

were collected by a sailor using a bucket and thermometer3. Advances in instru-

mentation and communications technology now allow the automated recording of

the temperature of water drawn in to cool the ship’s engine, with measurements

having a claimed random error of roughly 1.0◦C and systematic biases of 0.5◦C

(Kent et al., 1999). This provides a measure of sea-temperature at depths of 3–10m

in the shallow, well-mixed layer immediately below the surface.

The development of the inverting thermometer allowed VOS to measure ocean

temperature profiles accurately at depth. This technology has improved to the level

of the expendable bathythermograph (XBT), a single use probe used in the Ship

of Opportunity (SOOP) scheme. As the XBT descends it collects measurements of

the vertical temperature profile and pressure which it then transmits back to the

launching ship. Approximately 7000 VOS and 140 SOOP currently contribute to

3Differences in the method of collection and even the type of bucket used have caused consider-
able difficulties in studying trends in these records (Smith and Reynolds, 2002).
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the Global Ocean Observing System (GOOS). The reported positions of XBT de-

ployment in the month of June 2006 is shown in Figure 1.1A. While lying predom-

inantly along popular shipping routes these do also partition many of the oceans,

notably with measurements across the North Atlantic and Drake’s Passage. This

allows for estimates of inter-ocean transports though inversion of the thermal wind

equations.

Shipboard, indeed any, salinity measurements are much scarcer, reflecting pri-

marily the unavailability of suitably simple measurement technology. Historically

studies have required collection of water samples at depth and then processing

through evaporation to determine the total dry salt content. Modern techniques

rely on changes to the electrical conductivity of sea-water with ion-content, allow-

ing for in situ salinity measurements. The use of conductivity, temperature and

depth (CTD) probes have increased the accuracy of measurement and the speed of

processing so that measurements are available in near-real time. These probes are

predominantly deployed from research vessels and the number of CTD probes de-

ployed as part of the regular observation network remains small and almost exclu-

sively deployed along prescribed hydrographic sections, in-keeping with the state

estimation methodology.

1.4.2 FIXED BUOY, DRIFTER AND FLOAT MEASUREMENTS

The majority of in situ measurements in the GOOS now come from unmanned

systems, both arrays of fixed buoys and fleets of mobile Lagrangian floats and

drifters (see plots B and C of Figure 1.1). The ATLAS moorings of the TAO/TRITON

array provide the basis of the equatorial observing system. They provide accu-

rate temperature measurements at ten levels, from near-surface bulk temperatures

at 0.3–1 m to measurements below the thermocline at 500m depth. A few fixed

moorings also provide sea-surface salinity measurements.

Fleets of drifting buoys give data on the wind-driven circulation in the mixed

layer. The surface-floating buoy is typically attached to a kite-like drogue, so that

the path of the buoy is primarily controlled by the near-surface currents, rather than

the wind conditions at the surface. The drifter reports near-surface temperature and

location via a satellite link. Drifter performance is dependent on the precise type of

drogue fitted (Monahan and Monahan, 1973) and a necessary stage of blacklisting

is to remove those drifters which appear to have lost their tails.

The ARGO network (Gould and Turton, 2006) will soon be complete and will

consist of approximately 3000 free-floating probes. Each float passively tracks with

the local flow at a prescribed depth for a preset time period, before returning to
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the surface to report its position using the global satellite positioning system. While

surfacing the probe records depth profiles of temperature and salinity, available on

the timescale of once a fortnight.

Time-integrated information on the flow fluid parcels at the float’s prescribed

depth of operation is potentially available through tracking the probe’s reporting

positions. Similarly a variety of sonar tracked passive float systems give information

on smaller time and spatial scales. However due to the difficulty of instrumentation

there is very little direct information available on real-time Eulerian currents in the

GOOS, apart from the five Acoustic Doppler current profilers and the neighbouring

point Doppler current meters deployed along the equatorial Pacific in the TAO array.

These profilers and meters provide column current information at accuracies of up

to ±5 cm s−1.

1.4.3 REMOTE SENSING OBSERVATIONS

As well as providing communications links with other systems, satellites provide

remote sensing information on the ocean state. Due to the high rate of attenuation

of the electromagnetic spectrum by liquid water, satellites are limited to surface

observations of the ocean. Microwave and Infra Red systems provide complemen-

tary methods for detecting the skin sea surface temperature (or more accurately the

induced brightness temperatures), with near global coverage and at varying resolu-

tions. The first proper climatological satellite records of SST date back to the launch

of the first Advanced Very High Resolution Radiometer (AVHRR) instrument on the

TIROS-N satellite in October 1978 (Barton, 1995). This instrument and its suc-

cessors allowed algorithms based on differential absorption by water vapour to be

used to correct for the moist atmosphere. Current claimed accuracy is a root mean

square error of ±0.5◦C for the AVHRR/3 instrument on NOAA-15 (Li et al., 2001)

or ±0.3◦C for nighttime SSTs on MODIS. Coverage is near global though containing

holes in places due to cloud coverage or other processes. The bottom plot of Figure

1.2 shows the number of observations available in a 5 day period on 1◦ binned grid-

boxes, which shows the tropics notably better sampled than mid-latitudes. Diurnal

processes can cause large differences between the observed skin temperatures and

the modelled bulk temperatures, perhaps as large as 1◦C (Katsaros, 1980). Re-

trieval systems and cloud detection algorithms to remove contaminated signals can

also lead to large biases in satellite observations (Uddstrom et al., 1999).

Satellite measurements in the visible spectrum and near infra-red provide in-

formation on the concentrations of oceanic chlorophyll and thus of ocean primary

production. Instruments such as the SeaWiFS sensor (Lavender and Groom, 1999)
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provide global coverage over a two-day interval at a resolution of up to 1.1 km.

Approximate conservation of chlorophyll then gives data on surface currents and

conditions. Scatterometer instruments allow the retrieval of surface wind condi-

tions over the ocean.

Future satellite missions also promise microwave detection of sea surface salin-

ity(SSS). The European Soil Moisture and Ocean Salinity and US Aquarius satellites

claim (Koblinsky et al., 2003) a potential accuracy of 0.2 psu at resolutions of 50

km by inverting the relation between the 1.4 GHz brightness temperature, SSTs,

surface roughness and SSSs.

Radar altimeters deployed on the ERS, TOPEX and JASON-1 systems provide

information on the variation with time of sea surface height and may also allow

diagnosis of the steady component, provided the geoid can be estimated with more

accuracy by programs such as the CHAMP, GRACE and GOCE projects. The first

radar altimeter tests were performed from Skylab in 1973. The basis is simply that

the return time of an earthwards directed microwave pulse from space is depen-

dent on the height of the transceiver above the reflecting surface. Later advances

provided improvements in orbital tracking and the removal of artifacts due to sur-

face conditions such as wind speed, tidal effects and surface waves. See Wunsch

and Stammer (1998) for a detailed discussion of the issues involved. Currently the

estimated uncertainty in a single altimeter pass is 4.1 cm for TOPEX or 2.5 cm for

JASON-1. The top plot of Figure 1.2 shows 10 days worth of altimetry data from a

single instrument, illustrating the near global coverage of the data, particularly in

comparison to the in situ data sources.

1.5 CURRENT ISSUES IN OCEAN DATA ASSIMILATION

Any academic thesis must address its topic in relation to the other open ques-

tions of research in the field of work in question. To this end this section consists of

a survey of current work in some areas of ocean data assimilation and the questions

that remain unanswered.

1.5.1 ASSIMILATION OF SATELLITE ALTIMETRY

As can be seen in Table 1.1, remote sensing data from satellites now repre-

sents by far the greatest proportion of observational data in the GOOS and, as may

be seen in Figures 1.1 and 1.2, has the nearest approximation to global, differen-

tiable, coverage of any data source. Although the opacity of seawater to EM radia-

tion limits observations to the sea-surface, satellite altimetry data contains, through
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XBT tracks, June 2006

A

Reported positions of moored and drifting surface buoys, June 2006

B

Reported positions of ARGO profiling floats, June 2006

C

Figure 1.1: Distribution of in situ observations provided to the GOOS

Plots of the locations of individual observations from various sets of instrumen-
tation for one month in 2006.

Data and figures taken from the NOAA Office of Climate Observation
http://www.oco.noaa.gov/
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A

B

Figure 1.2: Distributions of satellite observations in the GOOS

One weeks worth of satellite data: (A) sea surface altimetry from a single
satellite (B) sea surface temperature from multiple satellites. Compare the
global coverage with the gappy information from in situ instruments of Figure 1.1.

Figures generated from data taken from the NOAA Satellite and Information
Service (JASON data) and National Oceanographic Data Centre (AVHRR data)

http://ibis.grdl.noaa.gov/SAT/SAT.html

http://www.nodc.noaa.gov/woce V2/disk13/index.htm
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Observation Platform Variables No. of units No. of Obs.

(Monthly)

DBCP drifting buoys SST+SLP 1,242 821,413

Moorings - coastal Temperature profiles 104

-Tropical Temperature profiles 78

+ADCP current profiles 5

VOS SST + meteorology 1,070 52,338

SOOP - Ships 62

High density lines T profiles, SSTs 22

Frequently occupied lines T profiles, SSTs 17

Total XBTS Deployed 1088

ARGO Floats T, S profiles 2,483

JASON altimeter SSH 1 1,600,000

AVHRR obs SSTs 5 2,800,000

Table 1.1: Approximate number of observations from various sources in the GOOS
This table again shows the vastly greater number of satellite observations available in
comparison to the in situ data. Note that a single satellite provides twice the number
of observations of sea surface height as the fleet of drifting buoys provides sea level
pressure, although obviously at a significantly increased unit cost.

Data collated from http://www.oco.noaa.gov/,

http://www.bom.gov.au/jcomm/vos/ and

http://www.metoffice.com/ravi/networkperf vosships.html/

geostrophic and hydrostatic balance, valuable information on both the near-surface

currents and the horizontal gradient of the column density profile. Unfortunately

most modern ocean models are ‘primitive equation’ level models which generate

SSH (or equivalently surface pressure for those models run in ‘rigid-lid’ configura-

tion) only as a diagnostic variable. This means the observation operator, as intro-

duced in Section 1.3.1 becomes a nonlinear function of the state variable and the

assumptions of the iterative approximations to the BLUE analysis may fail.

Because of this status as a non-model variable, altimetry data is not usually be

directly assimilated into models in the manner of temperature and salinity obser-

vations. Instead the data must be viewed as a proxy for density errors which are in

turn partitioned into increments in the temperature and salinity states, again based

on an assumed relationship between temperatures and salinities. A number of dif-

ferent approaches have been suggested in the literature. One approach follows

variations of the same statistical optimality argument as that of the BLUE equa-

tion. These methods are based on various local (Oschlies and Willebrand, 1996)

or non-local (Hurlbert et al., 1990) correlation matrices, which relate SSH to the

model prognostic variables of temperature, salinity, pressure and current velocities,

with different studies assuming different relative importance of the various rela-
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tionships. Without very large numbers of observations of the prognostic variables

in relation to the altimetry measurements these static correlations must themselves

be derived from numerical models, with attendant possibility of bias.

An alternative approach is to insert either a pressure or current correction solely

on the surface level (at the point of validity of the altimeter measurement) and

let the model dynamics themselves transfer the surface anomaly into the ocean

interior (Haines et al., 1993). This approach is suited to the aims of state estimation

but leads to large spurious signals during the model adjustment which introduce

added noise into the system and can even destroy the model circulation pattern.

The Cooper and Haines (1996) method, described in detail in section 3.3.1, is an

extension of this approach, in which an adjustment is found that generates the

full pressure increment required at the top layer, while preserving both column

water mass properties and the deep geostrophic structure. The work in this thesis

is related to this issue, which is one of assimilation under an integral constraint,

in attempting to propagate the observational information available at the surface

down into the ocean interior. It is these very ideas which are discussed from Chapter

3 onwards.

1.5.2 ASSIMILATION OF LAGRANGIAN FLOAT DATA

Growing use of, and interest in, Lagrangian floats and drifters such as the Data

Buoy Cooperation Panel (DBCP) surface and ARGO subsurface float networks has

significantly increased the number, accuracy and spread of SST measurements and

of assimilated ocean temperature and salinity profiles. Simply assimilating this

data, however, neglects much of the information contained within the reports of

probe location returned with the instrument data. Tracking this data provides

(time-integrated) information of the Lagrangian currents and transports on the

neutral ‘parking’ density surfaces which the sub-surface probes track.

Such data has historically been used in statistical studies to investigate the mean

flow and variance of currents in the deep ocean. However, developments in model

resolution and physics now allow the use of this data in correcting subsurface ve-

locity and density fields. Researchers at the University of Miami have directly as-

similated information on probe locations through an iterated optimal interpolation

technique based on forecast model particle trajectories over a single observation

time-step. This has been implemented as a method to increment model thickness

in both a quasi-geostrophic layer model (Molcard et al., 2003) and in a more com-

plex primitive equation model (Özgökmen et al., 2003).

In general approaches based on observation linearizations may be expected to
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hold when the timescale on which observations of float position are available is

small compared to the natural Lagrangian time-scales of the system being observed

(Taillandier et al., 2006). For probes such as the ARGO network this ratio is typi-

cally of order unity and such linearizations may fail. An alternative approach ex-

tends the model equations to include explicit advection equations for the location of

each drifter. Under this framework and given the tangent linear model assumption

holds (i.e. that locally to any point in time the behaviour of the model trajectory

can be accurately described by a linear function) then any number of linear or near-

linear assimilation algorithms will hold. This is the basis of the extended Kalman

filter technique of Kuznetsov et al. (2003) and a family of techniques based on a

4D-VAR style time dependent variational approach (Kamachi and O’Brien, 1995;

Nodet, 2006). Although not directly addressed in the course of this thesis there

is an implicit connection between the concepts of assimilating the positional data

reported by floats and probes and the rearrangement approach followed in the

succeeding chapters. This point is raised again in the future work section of the

conclusion.

1.5.3 ASSIMILATION OF SALINITY DATA

Historically salinity observations have only been available from research vessels,

due to the complex and expensive instrumentation necessary to obtain uncontami-

nated water samples and to process them accurately to find their salt content. For

this reason updates in salinity values during data assimilation have typically come

from either a forced regression towards climatology or from a multivariate assim-

ilation approach, correcting salinity based on the relations with observed errors in

other variables, for example the variational approach to correcting salinity from

SSH observations and satellite altimetry data of Vossepoel and Behringer (2000) or

approaches using SSS and temperature–salinity (T–S) relations based on correla-

tions from climatological data (Vossepoel et al., 1999) or CTD studies (Troccoli and

Haines, 1999). This potential under-constraint of a dynamically important variable

has been found to lead to the generation of spurious overturning circulations in

runs with univariate assimilation, although this effect is reduced under assimila-

tion schemes which preserve the model T–S relationship (Troccoli et al., 2002).

Recent advances in satellite instrumentation and the deployment of the ARGO

float fleet have lead to a growing interest in methods for the direct assimilation of

SSS and salinity profile data, especially in the presence of temperature data. The

surface and near surface observations are particularly valuable, firstly because it is

in the mixed layer where salinity can control convection and secondly due to the
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current poor representation of mixing and freshwater flux in ocean models. A paper

by Haines et al. (2006) describes a method for assimilating salinity profiles onto the

salinity fields on isotherms rather than constant depth surfaces. Their argument is

that salinity on height surfaces is affected by the fast dynamical processes which

move isopycnal surfaces, whereas on isotherms only the slow diffusive processes

are important. This method is found to work well when combined with a separate

increment from a T–S preserving technique. The conservation approaches discussed

in this thesis suggest another approach which we claim should have similar benefits.

1.6 ASSIMILATION OF OBSERVED DISPLACEMENT ERROR

As major motivational factor assimilation of observed displacement error will be

discussed in depth. Much of the dynamic activity in the ocean results in coherent

structures, for example the separation of warm- and cold-core eddies along western

boundary currents such as the Gulf Stream. Due to inaccuracies in both initial con-

ditions and the physics of numerical ocean models these features, when they exist

in forecasts, are often displaced spatially from their observed positions. This phase

or displacement error is hard to remove using standard Kalman filter techniques

(see section 3.1.1), especially in the case of limited observations, so common in

physical oceanography. It is the study of this problem and possible solutions which

forms the main content of this thesis, although the issues of the previous section,

particularly the concept of the T–S relationship from salinity assimilation and the

near global coverage of the altimetry observations, help motivate ideas in various

sections.

1.6.1 MESOSCALE OCEANOGRAPHY

A wide variety of methods have been created which attempt in various ways

to correct errors ascribed to displacement. In oceanography the Cooper & Haines

method mentioned in the previous section can be interpreted as reducing the one-

dimensional, vertical, displacement error in each water column. The ‘contour meld-

ing’ assimilation routine derived by Mariano (1990) acts by repositioning a finite

number of nodal position points which in turn define the shape of contours at vari-

ous levels of the field being assimilated. The repositioning occurs through a simple

weighted sum of the values obtained from a background representation and obser-

vations, assumed to cover the entire domain, so in fact likely to be obtained from

a retrieval. The ‘feature models’ of Robinson et al. (1988) act, at the point of ini-

tialization of the model only, to insert observed features (primarily jets and eddies)

19



INTRODUCTION AND MOTIVATION CHAPTER 1

at the locations found in observational data by inserting objects of a prescribed,

analytic, structure with values determined by a limited number of free parameters

chosen to match the observations.

1.6.2 THUNDERSTORM MODELLING

Much of the interest in displacement assimilation in the atmosphere has been

in models running at what is termed the storm scale, namely at model resolutions

of about 1km. On these scales the smoothing effect of traditional data assimilation

methods can severely effect the growth and location of extreme features such as

convective storms.

The Hoffman et al. (1995) method introduces a separate explicit penalty term

governing phase errors due to displacement into the cost-function for data assim-

ilation of SSS/I microwave retrievals of integrated water vapour into a spectral

model. This is then minimised with respect to all possible displacements by a varia-

tional method similar to 3D-VAR, along with a smoothness term to ensure physical

realism of the solution and a ‘barrier’ term which acts to penalize large scale dis-

placements. Experimentally, (Hoffman and Grassotti, 1996) the method was found

to lead to a greater than 45% reduction in the variance of differences against ob-

servations when assimilated into ECMWF reanalysis fields.

Ravela et al. (2004) perform a similar displacement assimilation to the Hoffman

method, which they term ‘Field Alignment’. This again adds specific displacement

terms to a 3D-VAR cost function, this time in a spatial formulation, with an explicit

smoothness term which penalises the gradient and divergence of the displacements

in a Tikhonov (See e.g. Wu (2003)) style formulation. They claim that this ar-

rangement obviates the need for a penalty on the final magnitude of the resultant

displacements. In identical twin runs assimilating pressure and velocity into an

idealised model the method is found to improve on both the control and runs with

3D-VAR alone in preserving geostrophic balance in the assimilated field and avoid-

ing the spreading of fronts.

Brewster (2002a,b) also attempts to assimilate information on phase through

the minimization of a cost-function. Here, however, the minimization is achieved

through a ‘brute force’ shifting method which tests the local effect on the fit with

observations of shifting the centre of a control volume of data by a limited amount

in all directions. To minimise the shock to the system when the derived optimal

displacement field is applied it is introduced as an additional compressible pseudo-

wind field which is fixed with respect to time. The method is applied to assimilate

Doppler radar readings, radiosonde measurements and surface data into a model of
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a severe storm outbreak. Even on this fine scale and considering the compressible

nature of the atmosphere it is impressive that the method assimilated information

which remained in the system for 3 hours. This suggests that displacement error is

a robust concept, even in unlikely geophysical situations.

1.7 KEY THEMES

1.7.1 OVERALL FOCUS

Currently the majority of data assimilation techniques used for ocean forecast-

ing, particularly those in use at operational centres, are Eulerian in nature. That is,

they estimate the behaviour of relevant ocean variables at a specific points in space

based on the observed behaviour of variables at nearby points and statistical or

physical correlations between pairs of locations or variables. This thesis considers

the utility of alternative approaches based on Lagrangian arguments regarding wa-

ter mass properties and the assimilation of information contained in observations

of the topology of the flow.

The overall focus of this thesis is:

To understand the benefits and issues involved in using phase error assimilation

methods in a general, mathematically rigorous and physically consistent ocean fore-

casting system.

Here phase error is used to denote, at its most general, errors in the position

of features and signals in oceanographic model data, where the magnitude of the

feature agrees with observed data.

1.7.2 KEY QUESTIONS CONSIDERED

Within this theme, the key scientific questions which will be addressed in the

body of the thesis are:

(i). To what extent is it feasible to decouple the observed error signal in ocean anal-

yses consistently into signals due to pure phase error and amplitude error?

We aim for a better understanding of the differences in growth and behaviour

of error signals in the phase and amplitude of features present in ocean gen-

eral circulation models. We hope to diagnose the extent to which the two sig-

nals can be quantitatively separated by simple error diagnostics. It is known

that many popular Eulerian-based state estimation schemes, including the

Kalman filter and BLUE analysis, act to smear extreme features when used to

21



INTRODUCTION AND MOTIVATION CHAPTER 1

assimilate data representing phase errors, while most phase correction meth-

ods conserve errors in signal amplitude. This separation of signals is thus

important since a well-posed method to decouple the two signals allows each

form of error to be corrected by an appropriate technique.

(ii). Given that real oceanographic observations are noisy and limited in scope and

number, can a study of novel phase correction algorithms give a quantitative

understanding of how observations relate to model data in such methods and

what constraints on observations are required?

We aim to understand how observations combine with the information con-

tained in the background in phase correction methods. This allows compari-

son with the behaviour of more traditional techniques, which is important in

understanding the potential new benefits of applying phase correction tech-

niques in an advanced ocean forecasting system. An understanding of the

utility of currently available observational data in phase error correction also

tests the feasibility for using phase error correction methods in current opera-

tional centres and is important in the planning of future instrumentation and

observational networks.

(iii). Is it possible to develop efficient algorithms which maximise the utility of dis-

placement assimilation techniques, for example in terms of the use of the infor-

mation contained within observations, in the same way that 4D-VAR methods

allow the use of multiple nonlinear observations taken at different times?

Given that the optimal choice of forecasting technique represents a balance

between the cost of forecast production against the value of the information

contained within it, it is important to maximise the benefit of any data as-

similation method and minimize its cost. For phase error correction methods

this requires both the development of efficient algorithms and techniques to

maximise the useful information extracted from available observations and a

consideration of possible sources of observation.

1.8 THESIS OUTLINE

To consider these questions we investigate the behaviour of various phase cor-

rection assimilation methods when applied to idealized problems in a simple Quasi-

Geostrophic (QG) ocean model. This simple model allows simulation of mesoscale

features and unobserved dynamical variables. We present a variety of new phase er-

ror assimilation methods and compare them to traditional techniques. We find that
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for suitable assimilation problems these new techniques do indeed provide some

benefit. To quantify this improvement new error measures are also developed.

Chapter 2 presents a discussion of the principles, advantages and limitations of

the identical twin methodology for investigating data assimilation techniques, re-

views the general issues involved in numerical ocean modelling and introduces the

particular implementation of a quasi-geostrophic two layer ocean model used for

the experimental data presented in this thesis. The equation set is described with

reference to its ability to represent real, or realistic, structures and features of the

large-scale ocean circulation, thus presenting its suitability as a testbed for oceano-

graphic data assimilation techniques. Different methods for generating model runs

with qualitatively differing features are discussed, including both the relevance to

current issues in operational oceanography and the relation to the theoretical dis-

placement assimilation techniques discussed in succeeding chapters.

Chapter 3 begins by presenting a discussion, linked to the adiabatic assumption

introduced in the previous chapter, for the use of assimilation techniques which

conserve the integral material properties of ocean fluid parcels when performing

assimilation with limited data. These conservation constraints are then connected

to the related problem of assimilating phase errors into a system. Metrics on the

relative magnitude of amplitude and phase errors in fully observed fields are devel-

oped and the behaviour of the metrics investigated for the QG ocean model under

the application of a variety of traditional and novel assimilation schemes. An exam-

ple of one operationally active adiabatic assimilation method, the Cooper & Haines

scheme, is implemented in the context of the QG layer model and results are shown

for the effect on observed and unobserved variables of assimilating surface stream-

function. The effect of smoothed observations on small-scale features is discussed,

with reference to feedback on large-scale circulation.

Chapter 4 introduces a new direct iterative method for phase correcting assimi-

lation, comparable with 3D-VAR. The method is first derived theoretically, then im-

plemented for a hierarchy of idealized ocean problems. Convergence is discussed,

with reference to the theoretical limits available through rearrangement theory and

an improved ‘multigridding’ algorithm developed. Finally the dependence of the

method on observations is considered.

Chapter 5 considers the extension of phase correction methods into problems

with observations available at multiple times. Current 4-dimensional Eulerian as-

similation schemes are discussed, with reference to possible adaptation to phase

error assimilation. A method similar to 4D-VAR but optimizing an extra advective

term is then developed. This method is implemented into the QG model of chapter

2 and the implementation of the resultant adjoint model described, with results of
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a suite of model tests.

Chapter 6 discusses the results of more realistic experiments with the 4D phase

correction method. These are then compared with analyses derived from a more

traditional 4D-VAR scheme, with specific reference to the differing treatment of

phase errors. The analysis dependence on observations and initial conditions is

discussed. Final results show the improvement possible in these techniques is highly

dependent on the source of the initial error in the forecast to be corrected through

assimilation.

Chapter 7 considers the key questions involved in this thesis once more and

discusses how far they have been answered. The chapter concludes with a discus-

sion of the remaining open questions in phase error correction and a plan for future

work that may come from this thesis.
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CHAPTER 2

OCEAN MODELLING

“We were the first that ever burst

Into that silent sea”

Samuel Taylor Coleridge

The Rime of the Ancient Mariner, 1798

To reduce the complex set of equations assumed to govern oceanic flows into a

smaller and more easily soluble set, a number of approximations must be made. These

approximations inevitably act to filter the possible dynamics of the reduced model and

to decrease the number of processes represented compared to the real ocean. One such

approximation is the adiabatic condition, which notes that under normal conditions

quantities in the ocean are predominantly transported though advection. This leads to

key integral constraints on the motion of fluid properties that motivate an interest in

phase or displacement error.

This chapter goes on to discuss the identical twin methodology to be used to investi-

gate these methods and then details the approximations made in the quasi-geostrophic

model used in the numerical experiments in this thesis. Following the derivation of

the model and a description of its behaviour we conclude by justifying the choices and

methods to be used to generate the numerical model and initial conditions used to form

‘true’ and ‘observational’ data in the data assimilation experiments presented in this

thesis.

2.1 THE ADIABATIC CONDITION IN OCEANOGRAPHY

The modelling and study of a time-evolving physical system through partial dif-

ferential equations requires the choice of an integrable equation set in model space.

Since it is not technically feasible to model the various interactions of the approxi-

mately 1037 molecules which make up the ocean, oceanographers commonly make

a series of approximations to produce suitable conceptual and numerical models.

For a fuller discussion of the methods involved in general model derivation the
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reader is directed towards any number of textbooks in geophysical fluid dynamics,

particularly that of Pedlosky (1987). Two of the most important and general of

these approximations are :

i. The continuum approximation. Rather than modelling individual molecular

motions, the fluid is modelled as a continuous medium and it is assumed that

the Navier-Stokes equations apply.

ii. Incompressibility. On the horizontal and length-scales of interest to oceanog-

raphers changes in density due to pressure variations are negligible. This

means the velocity field in the flow is effectively solenoidal (Batchelor, 1967).

These approximations reduce the dynamics down to what are known as the primi-

tive equations:

∂u

∂t
+ u.∇u+ 2Ω × u = −∇p

ρ
+ ga + ∇.(ν∇u) + Fu, (2.1)

∂Θ

∂t
+ u.∇Θ = ∇.(κΘ∇Θ) + FΘ, (2.2)

∂S

∂t
+ u.∇S = ∇.(κs∇S) + FS, (2.3)

∇.u = 0, (2.4)

ρ = ρ(Θ, S, p). (2.5)

Here the momentum term (2.1) is given in terms of u = (u, v, w)T , the full three-

dimensional velocity, Ω is the planetary angular velocity, p denotes the dynamic

pressure field, ρ the local density and ga the apparent gravitational acceleration.

The effective kinematic viscosity is denoted by ν and Fu is a residual term contain-

ing all sources and sinks of momentum. The two equations following denote ap-

proximate Lagrangian conservation of potential temperature, Θ and salinity, S, with

diffusion coefficients κΘ, κS and forcing terms FΘ, FS respectively. Equation (2.5)

represents a closure of the equation set, relating density to temperature, salinity

and pressure.

The penultimate terms on the right hand side of equations (2.1),(2.2) and (2.3)

represent diffusive mixing processes acting on momentum, heat and salt content

respectively. These terms are necessary both to parameterize processes which oc-

cur on length-scales smaller than those on which our approximations hold and for

numerical modelling purposes to maintain numerical stability under the model dis-

cretization. Unlike in atmospheric modelling the heat and salinity forcings (more

generally all material tracer forcings) and momentum forcing term, Fθ, FS, and

Fu vanish, except on boundaries, primarily the upper boundary, since the ocean is
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forced from above. This means that over the majority of the ocean the behaviour of

material tracers is governed by a pure advection-diffusion equation. Assuming that

the diffusive process is isotropic in the horizontal and that horizontal and vertical

diffusion are uncorrelated we may may express this constraint for a general tracer,

τ by an evolution equation

∂τ

∂t
+ u · ∇τ = κH∇2

Hτ + κV
∂2τ

∂z2
,

where ∇2
H denotes the horizontal part of the Laplacian operator,

∇2
Hf =

∂2f

∂x2
+
∂2f

∂y2
,

and the isotropic assumption and lack of correlation have been used to replace the

diffusivity tensor with the two scalar coefficients. There are two key dimensionless

parameters controlling such a flow, the vertical and horizontal Peclet numbers,

PH =
UL

κH
,

PV =
WH

κV
,

where U andW are horizontal and vertical velocity scales, L andH are respectively

horizontal and vertical length scales. This form of diffusive process, although a

common modelling assumption is physically unrealistic, assuming a truly random

exchange of tracer particles between fluid parcels. Nevertheless, it is sufficient for

our purposes.

The value of the vertical diffusivity coefficients, κV has important consequences

for the nature of the observed mean ocean stratifications and the processes which

act to maintain it. This value has been a topic of discussion in the literature for

many years. The seminal paper, “Abyssal Recipes”, of Munk (1966) represented the

best estimate of the time based on the average value required to maintain the ob-

served abyssal stratification, with later developments discussed in the sequel (Munk

and Wunsch, 1998). The present consensus appears to require a global figure of

κV = 10−4m2s−1, averaged across the entire abyssal ocean, with a lower diffusivity

of κV = 10−5m2s−1 in the pelagic ocean. This lower figure is supported by both

theoretical studies considering the required steady state heat flux across isopycnal

surfaces to maintain equilibrium (Walin, 1982) and practical studies considering

the rate of mixing of released passive tracers (Ledwell et al., 1993; Polzin et al.,

1997), as well as studies considering the microscale structure of turbulence. The
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apparent contradiction between these two values is partially closed by the greatly

increased mixing observed to occur near ocean boundaries and in ocean canyons.

In these areas diffusivities of up to 10−1m2s−1 are estimated to exist, with tracer

properties often observed as near uniform. Estimates for horizontal (more correctly

along isopycnal) diffusivities are primarily from tracer studies and are typically of

order κH = 1m2s−1. Note that these figures are all eddy diffusivities, taking finite

volume fluid parcels as the unit of diffusion, rather than the far smaller molecular

diffusivities governing chemical processes. The observed value thus depends on the

length scale assumed in the problem.

Considering the mesoscale flow in an ocean basin such as the North Atlantic,

where the other dimensional scales may be chosen as

U = 0.1ms−1 W = 2 × 10−3ms−1

L = 5.0 × 104m H = 1 × 103m,

gives estimates for horizontal and vertical Peclet numbers of PH = 5 × 104, PV =

2 × 103. Both of these are significantly greater than unity; in fact these numbers

are so large that even considering the hundred-fold bigger diffusivities required by

numerical models for stability (Bell, 1998) these ratios are still greater than order

one.

The dominant process acting on ocean tracer fields in the ocean interior is thus

shown to be advection by the mean velocity, both in reality and in numerical mod-

els. This suggests that the concept of water mass properties, that is atomic units of

fluid, which carry their tracer values with them as markers, is valid and, provided

the surface forcings can be observed or modelled accurately, a leading cause of er-

ror will be the phase or displacement errors of section 1.6. If this constraint holds,

it is questionable whether traditional data assimilation techniques, based on local

modifications of tracer fields (and hence effectively a diabatic forcing, especially in

the case of univariate assimilation), remain an optimal use of the limited available

information in oceanographic observations. It is this constraint, coupled with the

availability of integrated information from satellite altimetry, which justifies our in-

terest in conservative assimilation and the linked issue of displacement and phase

error, as will be discussed in Chapter 3.

2.2 THE TWIN EXPERIMENT PHILOSOPHY

We now discuss the methodology to be used to investigate these possible new

data assimilation methods. One of the fundamental assumptions made in any data
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assimilation method is the existence of the underlying, and dynamically evolving,

‘true’ state, of which both the background forecast and observational data represent

estimates. For the Earth’s climate system this true state is of course the unknown

transient state of the atmosphere and ocean, defined at some semi-arbitrary reso-

lution determined by the forecast model grid or the density of observations1. Since

the final analysis state represents a combination of the information contained in the

background and the observations (a spatially pointwise linear combination in the

case of the BLUE analysis of section 1.3.1, from the functional and mapping por-

tions of the respective polar factorizations in the case of the rearrangement theory

approach) neither estimate can be reliably used to verify that the resultant analysis

lies close to the true state in the appropriate metric. Validation of techniques and

approximations becomes difficult without either independent, unassimilated obser-

vations or alternative forecasts, generated using intrinsically different approaches

to modelling. In oceanography the scarcity (an large spatial separation) of inde-

pendent observations limits application of the first technique, while habits among

oceanographic modellers, coupled with the nature of the dynamical equations be-

ing modelled, hinder the second2.

One technique which avoids these issues when first investigating a new data

assimilation method for use in forecasting the climate system is to begin by as-

similating only synthetic data from numerical model runs rather than actual mea-

surements. These are the twin experiments, where ‘observations’ are actually noisy

realizations of the model variables from the ‘true’ run. If the same model is used

for the true state and forecast (the perfect model scenario) then this is an identical

twin method. The advantages of such methods follow from complete knowledge of

the true state, plus the model producing it, as well as control over the sources of

noise in the assimilation system. This makes a study of the use of data assimilation

methods practical by giving some notion of falsifiability, in the Popperian sense,

while still allowing the methods to be applied to realistic problems. Although suc-

cess in a twin experiment does not guarantee success with real data, the causes for

failure are more amenable to study. This is the approach followed in this thesis.

Criticism for twin experiments concentrates on the level of idealization intro-

duce. Any added noise must be drawn from a distribution with prescribed param-

1This section ignores the twin questions regarding whether such a resolution dependent true dy-

namic state exists and, if it does, whether such a state is representative of anything in particular. The
first question depends upon the philosophical meaning of ‘truth’ and the second is easily answered

by assessing the perceived value of forecasts of this state to interested parties.
2The reductio ad absurdem of the verification process is to remove all observations from the data

assimilation routine. There will then always be exact agreement between forecast, analysis and the

zero available observations. This is of course facile.
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eters. If these parameters are then used in statistical tests methods may appear

more successful in the experiments than they later prove in reality. This partic-

ular problem may be alleviated by ‘forgetting’ the actual noise distribution used

in the experiments and approximating it in any other tests. However no twin ex-

periment will have the number of degrees of freedom found in real life and the

behaviour of models assimilating simulated data may be quite different from that

seen when assimilating observations. For example Tziperman et al. (1992a,b) find

greater ill-conditioning of the inverse problem using atlas and hydrographic data

for assimilation into a GCM than in twin mode.

Twin experiments are no longer as popular as they once were, with research

concentrating on the application of novel methods and techniques to assimilate

real data and on assimilating new sources of data using standard techniques. This

represents the demands of operational centres for methods which, while sufficiently

accurate, are guaranteed not to fail catastrophically, as well as the natural human

preference for the novel or unusual. This does not obviate the important role for

twin experiments however in identifying methods that will fail. A system which

cannot, even with tuning, assimilate synthetic data is highly likely to fail when

‘released from captivity’ and used in operational models.

2.3 QUASI-GEOSTROPHIC THEORY

Following the twin experiment philosophy all data used in assimilation experi-

ments in this thesis, both forecast and observational, are derived from an idealized

model, rather than direct simulation and observations of the real ocean. The ocean

model used henceforth solves numerically a discretization of the two layer ocean

Quasi-Geostrophic (QG) equations in a parameter and forcing domain suited to

modelling a large-scale ocean basin, such as the North Atlantic. Such simple mod-

els have been well studied in the past three decades in an effort to understand

qualitatively the large-scale behaviour (Bryan, 1963; Holland, 1978) and energet-

ics (Berloff and Meacham, 1998; Berloff and McWilliams, 1999) of wind-forced

ocean gyres. Since this model is employed as a proxy for the full ocean dynamics it

would be well to understand the underlying approximations and assumptions made

in its derivation and how these differ from more complex models of behaviour. As

such the derivation of the model equations will be discussed in some depth in the

following sections.
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2.3.1 THE SHALLOW WATER EQUATIONS

The starting point of this derivation is the Navier-Stokes momentum and volume

conservation equations for an incompressible, viscous fluid, given in a frame of

reference rotating locally with an angular velocity, Ω which may vary with latitude,

∂u

∂t
+ u.∇u+ 2Ω × u = −∇p

ρ
+ ga + Fu + ν∇ · (∇u), (2.6)

∇ · u = 0. (2.7)

Where u(r, t) denotes the full three-dimensional velocity field given in an Eulerian

coordinate system3 r and at time t, p is the dynamic pressure, ρ the fluid density, ν

the kinematic viscosity, ga the apparent gravity (including the effects of centripetal

acceleration) and Fu the sum of all other body forces acting on a fluid parcel.

The first important assumption to be made is the shallow water approximation.

In the schematic given in Figure 2.1 the horizontal length scale of interest for the

basin, L, is on the order of thousands of kilometres, versus a vertical length scale

(D) of thousands of meters. The aspect ratio, δ = D/L, is therefore small compared

with unity. A first order balance of terms in the expansion in δ of equation (2.7)

requires that

W ≤ O(δU)

where f = O(g) denotes the usual Landau notation (Marsden and Hoffman, 1999)

for functions f, g, which implies that the ratio f/g remains bounded in the limit g →
0. Using this information to get a scale balance on the pressure term in equation

(2.6) gives the relation
∂p

∂z
= −ρg + O(δ2). (2.8)

This result is effectively a restatement of the hydrostatic approximation, but here

expressed with an explicit limit on the magnitude of the error term4. If the remain-

der term is assumed to vanish and the system is exactly hydrostatic then quickly

propagating, small magnitude, vertical inertia-gravity waves are filtered in the pos-

sible dynamics, through a modification to the primitive equation dispersion.

Layer models, as the name suggests, simulate the two dimensional evolution of

vector fields defined on fixed surfaces, the layers, rather than solving equations for

values at grid-points or for elements on a fixed level of a vertical coordinate system.

3Although, strictly speaking, these equations should be applied in spherical coordinates, locally
these can be approximated by Cartesians. Since this is the frame in which the equations are to be

solved numerically in the final model, it is in these coordinates the derivation will be presented.
4In fact, for the small Rossby numbers common for geophysical flows, the remainder term may

be far smaller than this upper bound suggests.
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Due to the extremely stable stratification of the ocean and the fact that density is a

good proxy for entropy in the ocean, these layers are normally defined as parallel

to isopycnal surfaces, allowing across isopycnal (i.e. co-ordinate vertical) diffusion

to be neglected. In Section 2.1 the magnitude of this diffusive effect was discussed

and shown to be small. Due to the effects of pressure at depth and the slightly com-

pressible nature of seawater it is strictly speaking the relative potential densities

of pairs of water parcels (derived from potential, rather than in situ, temperature)

that determines the stability of the water column. This means that the locus of

the stable heights of a fluid parcel away from its local region, the neutral surfaces,

are a complex function of the global density structure and are impossible to find

in the real ocean. Jackett and McDougall (1997) derive a practical neutral density

variable suitable for model verification and inverse modelling. Figure 2.1 shows a

schematic of the difference between layer and coordinate approaches to modelling

the vertical structure of fields in an ocean basin. In layer models data is stored

on the solid lines bounding the grey domain, while in level models data is stored

on the dotted lines. Layer models thus better preserve isopycnal integral and vol-

ume properties, but suffer from variable, and thus possibly large, error in vertical

resolution.
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Figure 2.1: Layer systems versus vertical coordinates

A simple schematic showing the difference between layer models, in which the
thicknesses of layers, such as the one shaded in grey are stored along with other
dynamical properties on a horizontal discretization structure, and level models
where properties such as vertical velocity are stored on a vertical discretization
divided as by the dotted lines.

The domain of the ocean basin, D, (assumed to be simply connected) is parti-
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tioned into N layers, Di with i ∈ [1, . . . , N ], each with boundaries delineated by

interfaces ηi(x, y), ηi+1(x, y) and it is assumed that within each layer the potential

density is constant, so that

ρ(r) = ρi ∀ r ∈ Di, i.e. ∀r := (x, y, z) ∈ D such that ηi < z < ηi+1.

Integrating the relation, (2.8), for pressure change with depth gives, in the limit

δ → 0, an iterative formula for the pressure field at any height within each layer,

pi(x, y, z) = ρig (ηi − z) + p(i−1)[ηi], ∀r ∈ Di. (2.9)

Since this equation is linear in z there is no height dependence in the horizon-

tal pressure gradient terms present in the momentum equations. Velocity fields

which are initially depth independent remain depth independent and the equation

set within each layer reduces consistently to two z-independent equations for the

horizontal components of the velocity in the layer, ui = (ui, vi, wi)
T ,

∂ui
∂t

+ ui
∂ui
∂x

+ vi
∂ui
∂y

− fv = − 1

ρ0

∂pi
∂x

+ ν

(
∂2

∂x2
+

∂2

∂y2

)

u, (2.10)

∂vi
∂t

+ ui
∂vi
∂x

+ vi
∂vi
∂y

+ fu = − 1

ρ0

∂pi
∂y

+ ν

(
∂2

∂x2
+

∂2

∂y2

)

v. (2.11)

In generating these equations the Boussinesq approximation has been assumed,

that is, variations in density are assumed small compared to some reference density,

ρ0, while the product of density differences and gravitational acceleration remains

comparable to unity.

Considering the total mass flux through a small cylinder the height of the layer

and of fixed cross-sectional area gives a layer mass conservation equation,

∂Hi

∂t
+
∂(uiHi)

∂x
+
∂(viHi)

∂y
= 0, (2.12)

where Hi is the layer column thickness, Hi := ηi − ηi+1. The three coupled equa-

tions (2.10), (2.11) and (2.12) are the layer rotating fluid shallow water equations.

Although the original five independent dynamic variables (u, v, w, ρ, p) have been

reduced to three (u, v,H) in each layer and the problem set reduced from span-

ning three spatial dimensions to two5, this still represents a more complex equation

set than can conveniently be solved. Taking the curl of the momentum equations

5The reduction of dimension within each layer is compensated by a corresponding increase in

the total number of equations to match the number of layers.
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(2.10), (2.11) removes the gradient term and gives an evolution equation in terms

of the vertical component of relative vorticity, ξi := ∂vi/∂x− ∂ui/∂y,

∂ξi
∂t

+ ui
∂ξi
∂x

+ vi
∂ξi
∂y

= (ξ + f)

(
∂ui
∂x

+
∂vi
∂y

)

+ ν∇H · (∇ξi). (2.13)

Comparing the shallow water vorticity equation (2.13) with the layer mass conti-

nuity equation (2.12) shows the existence of a quantity,

qi :=
ξi + f

Hi
,

which is materially conserved in the inviscid limit,

lim
ν→0

Dqi
Dt

≡ ∂qi
∂t

+ u
∂qi
∂x

+ v
∂qi
∂y

=
ν

Hi

∇2
Hξi = 0.

Although technically accurate only up to a factor of the (constant) layer density, the

quantity qi is usually termed the potential vorticity (PV) of the flow. This conserved

quantity replaces the thermodynamic evolution of the primitive equations (2.2–2.3)

in the role of a dynamically active tracer of fluid motion.

2.3.2 THE QUASI-GEOSTROPHIC EQUATIONS

ρ1

ρ2

ρN

h2

H1
η′2

0

100

η1

z(m)

Figure 2.2: Schematic of various height quantities in the QG derivation

The schematic shows the relation of the various height and thickness quantities
(Hi,η

′
i, etc.) in the derivation of the quasi-geostrophic ocean model

Aside from the ocean aspect ratio, δ, the other important non-dimensional pa-
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rameter governing the flow is the Rossby number,

ǫ :=
U

fL
,

where U is a horizontal velocity scale and f is the local value of the Coriolis param-

eter. This parameter, ǫ, represents a comparison of the magnitude of inertial and

Coriolis accelerations in the horizontal momentum equations (2.6). This parameter

is small for both atmospheric and oceanic large-scale (L ∼ 106m) flows in middle

latitudes, typically:

ǫatmos ∼
[10ms−1]

[10−4s−1][106m]
= 10−1,

ǫocean ∼ [10−2ms−1]

[10−4s−1][106m]
= 10−4.

In boundary layer flows such as the Gulf Stream the increased flow rates and re-

duced spatial scales give a larger value for the relevant dimensionless number, per-

haps nearly of order unity, thus it is here that non-linear effects contribute. We

therefore expand equations in ǫ and expect from scaling arguments that the lead-

ing order behaviour can be described by truncating at first order in ǫ. From O(1)

balance in the momentum equations (2.10-2.11) we obtain geostrophic balance,

fvi =
1

ρ0

∂pi
∂x

+ O(ǫ), fui = − 1

ρ0

∂pi
∂y

+ O(ǫ). (2.14)

Since the flow is locally two-dimensional it is possible to define a layer streamfunc-

tion, ψi(x, y), such that

u = −∂ψ
∂y
, v =

∂ψ

∂x
. (2.15)

The relative vorticity is thus given by

ξi =
∂

∂x

(
∂ψ

∂x

)

− ∂

∂y

(

−∂ψ
∂y

)

+ O(ǫ2) = ∇2ψ + O(ǫ2).

From (2.14), (2.9) and (2.15) we find that in the limit of small ǫ

ψi =
1

ρ0f
[pi + ρigz] + Ci,

with Ci an arbitrary constant of integration. Dividing the interfaces into their neu-

tral rest and dynamic parts , ηi = ηi + η′i (see Figure 2.2) and defining the stream-

function to vanish at rest gives allows the streamfunction in layer i to be written
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as

ψi =
1

ρ0f

(
p(i−1)[ηi + η′i] + ρigη

′
i + ρig (ηi − z)

)
= ψi−1 +

g(ρi − ρi−1)

ρ0f
η′

and hence, on defining the layer reduced gravity, g′i = g(ρi − ρi−1)/ρ0 the deviation

in the interface height and the streamfunctions in successive layers are connected

through equations,

η′i =
f(ψi − ψi−1)

g′i
.

As previously stated the Coriolis parameter is latitude dependent, due to the Earth’s

spherical geometry. This effect can be simply approximated in Cartesian coordi-

nates by a constant gradient with respect to the Cartesian latitude coordinate y in

the f value used,

f = f0 + βy.

This approximation is good provided f does not vary significantly over the domain,

that is provided βLy is small. Comparing the magnitudes of terms for a typical

mid-latitude basin (β = 10−11m−1s−1) we see that βL is O(ǫ) for much of the basin

and thus quadratic terms can be assumed to vanish. Provided that the magnitudes

of the deviations in interface height, η′i remain small compared to the resting layer

thickness then the shallow water potential vorticity may be expanded in terms of

the ratio η′i/H i, of interface deviations compared to the average layer depth, H i,

qi =
(∇2ψi + f0 + βy)

Hi

(

1 − f0 (ψi − ψi−1)

g′iH i

− f0 (ψi − ψi+1)

g′i+1H i

)

+O
(

η′i
2

H
2

i

, ǫ2

)

(2.16)

Provided that our assumption that the quadratic terms in ǫ and η′/H are negligible

holds, two terms remain. Firstly, the total column relative vorticity,

∇2ψ ∼ Ψ

L2
,

for a length-scale, L and streamfunction anomaly, Ψ, and secondly a term repre-

senting the stretching and compression of vortices as the layer interfaces move in

geostrophic balance,
f 2∆ψ

g′H
∼ Ψ

L2
D

,

where LD is the Rossby deformation radius of the system, LD :=
√
gH
f0

and g′ =

g(ρ2 − ρ1)/ρ the ‘reduced gravity’. If the atmospheric pressure is assumed constant,

the bottom interface coincides with flat, frictionless, bathymetry then, on ignoring

constant terms, the final equation set for a wind forced two layer model (N=2) QG
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model is

dq1
dt

:=

(
∂

∂t
+
∂ψ1

∂x

∂

∂y
− ∂ψ1

∂y

∂

∂x

)

[ξ1 + βy] =
1

ρ1H1

(
∂τ (y)

∂x
− ∂τ (x)

∂y

)

+ ν∇4ψ1

(2.17)

dq2
dt

:=

(
∂

∂t
+
∂ψ1

∂x

∂

∂y
− ∂ψ1

∂y

∂

∂x

)

[ξ2 + βy] = ν∇4ψ2 (2.18)

The potential vorticity anomalies (ξ1, ξ2) are related to the layer stream-functions

(ψ1, ψ2) through coupled elliptic equations

ξ1 := ∇2ψ1 −
f 2

0

g′H1
(ψ1 − ψ2), (2.19)

ξ2 := ∇2ψ2 −
f 2

0

g′H2
(ψ2 − ψ1). (2.20)

The natural condition of no normal flow at material boundaries demands that

these form streamlines, i.e that ψi is constant on boundaries for all i,

ψi|δDi = Γi(t) (2.21)

The lateral boundary condition may be either free slip, expressed as

∂2ψi
∂n2

= 0 n ⊥ δDi, (2.22)

for n a unit normal on the boundary, δD, or no-slip,

∂ψi
∂n

= 0 n ⊥ δDi. (2.23)

The second condition is the one observed to hold in laboratory experiments, while

the first version assumes that boundary processes occur on very fine scales which act

to shield the interior flow from frictional effects at the boundary. For low resolution

runs modelling flows including western boundary currents then it is possible for

the boundary flow to be resolved in as little as two longitudinal grid points. Under

these circumstances the free-slip condition (or even one of the many ‘hyper-slip’

conditions) may be justified. All experiments in this thesis are, however, performed

under a non-slip condition.

Regardless of which boundary condition, (2.22) or (2.23), is used, the two equa-

tions are both in Von Neumann form and there remains a free system parameter,

namely the constant value of the stream function, ψi = Γi, equivalent to layer pres-
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sure, which is attained on boundaries. This indeterminacy is removed by including

a mass conservation equation for each layer,

∂

∂t

∫

Di
, ψidS = 0 i ∈ {1, 2}, (2.24)

which follows directly from the definitions of ψi and η′i chosen in the derivation. The

algorithms and techniques employed for the numerical solution of this equation set

are detailed and discussed in Appendix A.1.

2.3.3 FORCING FIELDS

The QG layer model formulation assumes constant density within each layer.

Moreover distortions of interface height from the neutral position with flat isopyc-

nal surfaces are considered small. This means that the total thickness of any layer

cannot vanish and only the top density layer is allowed to outcrop at the surface.

It is thus impossible to impose a meridional temperature or salinity gradient across

the basin and the model cannot be simply thermodynamically or freshwater forced.

This means that the model cannot represent deep density-driven circulations such

as the thermohaline circulation in the North Atlantic, or gravity currents such as

the Gibraltar overflow but can be forced so as to adequately represent the shal-

low wind-driven circulations which dominate the balanced flow over much of the

North-Atlantic.

The structure of this forcing depends on the applied windstress at the ocean

surface. This variable is in reality a complex function of the (time varying) wind-

speed, the surface currents themselves and the transient condition of the sea surface

and is not currently well understood. In this thesis we assume a time-constant

wind forcing with variation in the meridional direction only. The forcing has a

predominantly symmetric sinusoidal form, with a slight asymmetric component to

break the meridional symmetry of the system. This avoids potential problems due

to bifurcation of the system behaviour under the symmetry breaking which can be

triggered by the accumulation of numerical errors. This in turn reduces the initial

spin-up time required by the model from rest towards the point when transfer of

vorticity by mesoscale eddies occurs. The precise form of the wind stress, τ =

(τ (x), τ (y)) is then

τ (x)(x, y) = τ0

[

λ cos

(
πy

Ly

)

− cos

(
2πy

Ly

)]

, τ (y)(x, y) = 0, (2.25)

where the amplitude parameter τ0 is chosen to be 0.1 Nm−2. This value for τ0
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is close to that typically assumed for both the North Atlantic and North Pacific

(Böning et al., 1991), while slightly smaller than the typical value used in most

numerical simulations. The value of the asymmetry parameter used here is λ =

0.5, which produces a moderately small displacement of the zero windstress line

along which the jet has a tendency to form. Here as elsewhere in this chapter,

y is the (dimensional) distance from the southern boundary and Ly denotes the

longitudinal width of the basin. Figure 2.3 shows a plot of this vector field with,

for comparison, a plot of the average wind stress data from an ECMWF reanalysis

project. The similarity in form between the idealized field and that in effect over

the North Atlantic is plain.

In all the experiments that follow Ly = Lx = 2560km. This is similar to the

configuration used in in Berloff and McWilliams (1999), although in a smaller basin

(which offsets the smaller choice of τ0, maintaining a strongly eddying regime) and

with a smaller asymmetric component.
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Figure 2.3: Model Wind Stress field and ECMWF ERA40 Climatography

The left hand plot shows the horizontal wind speeds at 10m which, under a
typical formula for wind-stress would produce the forcing field, (2.25) used in the
QG model. The right hand plot shows an ECMWF ERA40 reanalysis of the 10 m
wind climatography on a similar scale. The predominantly zonal pattern shown
on the left appears over most ocean basins and the North Atlantic basin has a
very similar zonally sinusoidal pattern to it, as well as the slight asymmetry.

ECMWF reanalysis data taken from http://www.ecmwf.int/research/era/
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Figure 2.4: Long term mean state and standard deviations of qi, ψi

mean : x =
∑800

i=1
x(t0+12i hours)

800
(SN−1(x))

2 =
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(x(t0+12i hours)−x)2

799
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2.4 MODEL BEHAVIOUR

2.4.1 PARAMETER SPACE

The precise model behaviour depends on both the imposed forcing and the var-

ious free model parameters. These (dimensional) free parameters can be set by

defining the various dimensionless parameters for the system. One possible com-

plete set is determined by giving the various layer aspect ratios, and the Froude,

Reynolds, Munk and Rossby numbers of the flow. The aspect ratios are determined

entirely by the geometry to be modelled. Here the basin is taken as perfectly square

with sides of length L = 2560km, the shallow surface layer is assumed to have a

depth of 500m and the deep bottom layer a depth of 3, 500 m, for a total basin depth

of 4km. The Coriolis and β parameters are chosen to model a typical mid-latitude

basin, with f0 = 0.7 × 10−4 s−1, β = 2 × 10−11 m−1s−1. The density difference be-

tween the layers is assumed as ∆ρ = 1 kg m
−3

, equivalent to a vertical temperature

gradient of approximately 2.5 × 10−3 K m−1. The only remaining free parameter is

the viscosity, η.

For low Reynolds number (highly viscous) flow the equation set has been shown

(Bryan, 1963) to rapidly approach a steady state solution with a stable cyclonic sub-

polar gyre in the north of the basin and counter-rotating anti-cyclonic subtropical

gyre in the south (see the mean state images in Figure 2.4) . The precise latitude

of the strong eastward jet separating the two gyres is dependent on the magnitude

of the asymmetry parameter in the forcing equation. If the Reynolds number of

the flow is increased by decreasing viscosity then the steady solution eventually

becomes unstable and patterns of mesoscale eddies form along the jet acting to

transfer vorticity between the gyres. The location of the main zone where these ed-

dies form clearly shown in the standard deviation field for the top or bottom layer

streamfunction in Figure 2.4. Note, however, that the standard deviation in the top

layer potential vorticity is dominated by excursions in the separation point of the

jet and the bottom layer by variations caused by the slow meanders in the return

circulations.

2.4.2 ENERGETICS

We briefly discuss the energetics and conserved and bounded quantities present

in the model, to link back to the initial motivations of data assimilation in the

presence of conserved quantities and their effects on large scale circulation. The

energetics of the model can be bounded by considering the volume integrated be-
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Parameter Value Notes

Fri :=
U√
g′Hi

6 × 10−2 Interior

0.8 Jet
Flow near critical at jet

separation point, flow

subcritical elsewhere.

Re :=
UL

ν

100 Interior

2000 Jet
Flow is turbulent every-

where

Mo :=
U2

νβL
1 × 108 Boundary Layer is poorly

resolved

Ro :=
U

f0L

1 × 10−3 Interior

2 Jet
Rossby number is order

unity or less everywhere

Table 2.1: Dimensionless parameters used for the QG basin model

haviour of some model quantities, in the manner of Wu (2001). Consider first the

volume integral of the first moment of total vorticity,

Q =

∫

layer 1

q1dV +

∫

layer 2

q2dV,

= H1

∫

DH

∇2ψ1 −
1

L1
(ψ1 − ψ2) + βydS +H2

∫

DH

∇2ψ2 −
1

L2
(ψ2 − ψ1) + βydS,

= β(H1 +H2)
L2

2
,

where the final result follows from mass conservation and the non-slip boundary

condition. This states simply that under the non-slip boundary condition the total

circulation is conserved. This in turn means that the total PV in the system is

conserved, with the forced negative anomaly in the north of the basin balanced by

a similar positive anomaly in the south.

We now define inner products for scalars, α, γ and 2-dimensional or layer, vec-

tors, F ,G, defined over the area of the base of the domain of interest, DH ,

〈α, γ〉 =

∫

DH
αγ dS,

〈F ,G〉 =

∫

DH
F ·G dS,

and the resultant metrics on scalars and vectors,

‖α‖2 = 〈α, α〉,
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‖F ‖2 = 〈F ,F 〉.

These are simply the L2 metrics over DH for scalar and vector fields respectively.

This notation allows us to define several physical properties of the model. Firstly

we have the total kinetic energy,

K := ρ0H1
‖u1‖2

2
+ ρ0H2

‖u2‖2

2
,

= ρ0H1
‖∇ψ1‖2

2
+ ρ0H2

‖∇ψ2‖2

2
.

.

The next quantity is the available potential energy, A, stored in the displacement of

the density interface from its neutral position,

A = g(ρ2 − ρ2)‖η′2‖2 =
ρ0f

2
0 ‖ψ1 − ψ2‖2

g′
.

Finally there is the total model (relative) enstrophy Q and B, a measure of the

kinetic energy trapped in the baroclinic mode, defined for layer vorticity fields, ζi,

by

Q = ρ0H1‖ζ1‖2 + ρ0H1‖ζ2‖2

= ρ0H1‖∇2ψ1‖2 + ρ0H2‖∇2ψ2‖2,

B =
ρ0f2

0 ‖∇(ψ1−ψ2)‖2

g′
.

Using the adjoint nature of the gradient and divergence operators we find evo-

lution equations for K + A and for Q + B,

∂(K + A)

∂t
= H1

〈

ψ1,
∂τ (x)

∂y

〉

− 2νQ, (2.26)

∂(Q + B)

∂t
=

〈

∇2ψ1,
∂τ (x)

∂y

〉

− 2νS, (2.27)

where we define a new functional containing the squares of the third order deriva-

tives in the system,

S =
ρ0

2

(
H1‖∇

(
∇2ψ1

)
‖2 +H2‖∇

(
∇2ψ2

)
‖2
)
.

The first equation states that the total energy in the system is forced by resonance

between the surface wind-forcing and pressure fields and reduced through viscous

dissipation of the relative enstrophy field. The second equation states that relative

enstrophy is forced by baroclinic effects and the resonance between the surface

vorticity field and wind forcing and reduced by dissipative effects at higher order.

On application of the Cauchy-Schwartz inequality and then Young’s inequality
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upper bounds may be placed on the forcing part of the growth rates of (2.26-2.27),

H1

〈

ψ1,
∂τ (x)

∂y

〉

≤ H1‖∇2ψ1‖
∥
∥
∥
∥
∇−2∂τ

(x)

∂y

∥
∥
∥
∥
≤

∥
∥
∥∇−2 ∂τ (x)

∂y

∥
∥
∥

2νρ0

+ νQ,

H1

〈

∇2ψ1,
∂τ (x)

∂y

〉

≤ ‖∇(∇2ψ1)|
∥
∥
∥
∥
∆−1/2 ∂τ

(x)

∂y

∥
∥
∥
∥
≤

‖∆−1/2 ∂τ (x)

∂y
‖

2νρ0

+ νR,

where ∇−2f and ∆−1/2f denote the solutions to

{

∇2g = f, r ∈ Ω,

g = 0, r ∈ δΩ

and {

∇.G = f, r ∈ Ω

G = 0, r ∈ δΩ

respectively. Combining these results with equations (2.26-2.27) and assuming the

existence of an asymptotic mean allows the derivation of a bound on the asymptotic

behaviour of Q and S,

Q ≤ 1

ν2

∥
∥
∥
∥
∇−2∂τ

(x)

∂y

∥
∥
∥
∥
,

S ≤ 1

ν2

∥
∥
∥
∥
∆−1/2∂τ

(x)

∂y

∥
∥
∥
∥
.

This gives three quantities, one of which is globally conserved by the equation

set and two more which have their asymptotic behaviour bounded by the forcing

conditions. Similarly there exists a quantity (PV itself) which is a dynamic tracer

obeying an advection-diffusion equation. We can identify these with the total ocean

heat content and salt content and the local entropy variable. As such the behaviour

of PV under assimilation can be expected to be a suitable sand-box test for effects

on conservative properties of the various assimilation algorithms and a proxy for

the behaviour of variables such as potential temperature and salinity under the

application of such methods to more realistic ocean models and to layer GCMs,

even though the QG model does not contain any terms representing thermodynamic

forcings.
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2.5 GENERATING DIVERGENT MODEL TRAJECTORIES

Coupling the conserved properties discussed in the previous section to the ideals

of the identical twin experiments philosophy of section 2.2 we conclude this chapter

with a discussion of possible methods to generate the separate ‘truth’ and ‘obser-

vation’ data, noting their effects on conservation and justifying our final selections.

Since the applied wind field is time constant and non-random the QG model which

has been presented is entirely deterministic. For a given set of initial conditions,

ψ(to, r) = ψ0(r),

and set of model parameters, (τ, ν), the model trajectory,

mτ,ν(t, ψ0),

is determined for all time intervals, regardless of the initial time and dependent

only on the time interval from the start of the run,

∆t = t− t0.

Generating a differing trajectory to run experiments under the identical twin phi-

losophy described in Section 2.2 thus requires perturbing either the initial con-

ditions or the model itself through the model parameters or equations. Random

perturbations to the initial conditions on the model grid-scale added to the vortic-

ity or streamfunction fields introduce unphysical transient motions and may upset

prescribed global conditions such as mass balance. Since observations of such tran-

sients may adversely affect any assimilation scheme it is necessary to allow a period

following the insertion of perturbations for the model to adjust and for dissipation

to dampen transients.

One technique to generate physically consistent differences, the singular vec-

tor (SV) method (Buizza and Palmer, 1995) is to consider the linearization of the

discretized model,

Mij =
∂m(ψj)

∂ψi
,

where ψi represents the ith element of the vector of grid-point streamfunction val-

ues. This matrix represents the sensitivity to perturbations in ψ of the discretized

model and has a singular value decomposition,

M = UDV T ,
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such that the matrix D is positive definite and diagonal and the columns of U and

rows of V T each form an orthonormal basis,

UTU = Idim(U), V
TV = Idim(V ).

If D has the natural ordering such that D11 > D22 > . . .Dnn then the leading rows

of V T represent the spatial structures which grow fastest at the time of linearization

and thus the physical modes of the model which will dominate at the end of the run

under any random perturbation of the conditions at the initial time. This method

is used to populate many Ensemble assimilation and prediction schemes, including

that of the ECMWF (Molteni et al., 1996). In the context of adiabatic assimila-

tion however it is not clear that the resultant fields will satisfy the rearrangement

condition at any order.

An alternative method, suitable for the generation of phase error is to consider

the realization of model trajectories for a single set of initial conditions and param-

eters values, but valid at two different model times, ttrue and tbackground. When these

times are close, the background state is also a fair representation of the model state

at time ttrue, but with differences between the states generated by the advective and

diffusive processes in the model itself. In the low Peclet number regime this will be

dominated by advection, ensuring that differences will be mostly in the position of

features, rather than their amplitude.

The experiments presented in this thesis concentrate primarily on differences

under variations in the wind forcing and using the advective method. Variations in

the diffusivity constant, ν, are avoided due to the strong variability in the transient

model dynamics this can generate as well as the possibility of forcing the model

towards the steady-state regime. The SV method is not used due to the relatively

high cost of generating the perturbations and the question regarding the effect on

conservation properties.

2.6 CHAPTER SUMMARY

In this chapter we have built a basis for the numerical and philosophical meth-

ods to be presented in the succeeding chapters of this thesis. The chapter began

by deriving a conservation principle limiting the motion of material fluid properties

across ocean isopycnal surfaces which is found to hold well for large-scale ocean

circulations, both in theory and in practice. It is this adiabatic condition which

justifies practically our interest in conservative data assimilation, particularly the

concepts of rearrangement assimilation to be discussed in the next chapter
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We then introduced and defended the identical twin experiment methodology

which is to be used later to investigate and quantify the behaviour of the data as-

similation schemes under study and the two-layer quasi-geostrophic ocean model

which is to form the work-horse for the numerical twin experiments comparing our

new and unusual data assimilation techniques with more traditional methods, both

conservative and non-conservative, such as are currently used at operational ocean

forecasting centres. The behaviour of the model was investigated and shown to

present many of the features observed in the real ocean, both qualitatively, in terms

of fine scale structure and theoretically in terms of presenting a number of con-

servation properties, important in light of the previous discussion of the adiabatic

condition and our general interest in conservative data assimilation.

The chapter concludes with a discussion of possible choices for a methodology

for generating the necessary divergent model trajectories for use in identical twin

experiments. We have show that the usual method of insertion of random pertur-

bations is not suitable as a sole choice when a conservative principle is held to exist

and have derived several alternative methods. We now move on to the topic of

constrained data assimilation in the presence of constraints, particularly integral

constraints of the manner of the adiabatic condition.
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CHAPTER 3

DISPLACEMENT ASSIMILATION

“. . . because as we know, there are known knowns; there are things we know

we know. We also know there are known unknowns; that is to say we know

there are some things we do not know. But there are also unknown unknowns

- the ones we don’t know we don’t know.”

Donald Rumsfeld

Department of Defense news briefing

12th February 2002

It is necessary to place the original work contained herein within the context of the

wider study of adiabatic assimilation. This chapter details the assumptions required

for such assimilation methods to be physically consistent and the basic conditions for

such methods to be more successful than approaches based on direct modification of

Eulerian variables, such as the BLUE equation introduced in Chapter 1. The underlying

mathematical theory, known as rearrangement theory, is then introduced together

with the related Monge-Kantorovich transport problem. This section is presented in a

notation consistent with that used here for the more general data assimilation. Also

discussed are the situations in the area of ocean data assimilation in which the formal

rearrangement approach is not valid, namely the cases of severely limited or noisy

observations.

Following this a new metric on phase/displacement error is presented and discussed

with comparison to the standard quadratic cost function, representing an Eulerian

measure of distance between points in the function space. The behaviour of the metric is

investigated for the quasi-geostrophic ocean model introduced in the previous chapter.

We also investigate the quantitative and qualitative behaviour of the model under the

assimilation using the Cooper & Haines method under the identical twin philosophy.
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3.1 ASSIMILATION AND CONSERVATION PROPERTIES

3.1.1 CONSTRAINTS AND THE BLUE ANALYSIS

The BLUE analysis of section 1.1 is the statistically optimal solution to the näıve

data assimilation problem, in the sense of generating an analysis which is the most

likely estimator of the true state of the system, only if knowledge of the error statis-

tics of the noise in the system is available, or at least can be accurately estimated.

Formally this requires the elements of the background and observation error co-

variance matrices to determined. In practice these data are still poorly understood

and very simple approximations are made in order to speed calculation. Typically,

the observations are assumed independent, giving a diagonal observation covari-

ance matrix. The background error covariance matrix is frequently used to spread

the information contained in observations into neighbouring grid-points, with the

elements of the matrix chosen to reduce in magnitude in proportion to the physical

separation of model grid points.

Consider the case of a simple one dimensional model in a periodic domain of

length L, discretized into the values at 99 equally spaced grid-points, x ∈ R
99. If

the true state of the system is a simple sine wave function of period L/2, so that the

individual components of the true state vector xt are given by

[xt]i = sin

(
4πi

100

)

,

then two obvious sources of background error may be considered:

i. Amplitude error, where the background is in phase with the truth, but incor-

rectly scaled by a constant factor, A 6= 1, giving components

[xA
b ]i = A sin

(
4πi

100

)

= A[xt]i,

ii. Phase error, where the magnitude of the signal is correct, but leads or lags the

truth through a phase difference, s,

[xphase
b ]i = sin

((

4π
i

100
+ s

))

≈ [xt]i+25s/π.

Suppose there are a number, m < 99, of direct observations of the true state xt

available on an ordered grid, with larger grid spacing than the model, and that we

estimate the observation and model error covariance matrices in a manner consis-
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tent with the typical approach, by

R = σ2
oIm, ,

Bij = σ2
b exp

(

−d(i, j)
2

λ2

)

.

Here σ2
o , assumed in the BLUE as the variance of the error assumed for the obser-

vations is instead simply a weighting function, d(i, j)2 = (i− j)2∆x2 is the Eulerian

distance between data points and λ is a length-scale weighting the distance over

which information may be expected to be spread.

We may now apply the BLUE equation (1.3) to examples of each type of er-

ror and generate analyses. The result of two such applications is shown in Figure

3.1. When presented with amplitude error the method proceeds as one might ex-

pect, generating an analysis which lies somewhere between the observed values

(and therefore in this case the truth) and the background first guess. The initial

amplitude error is also reduced, without introducing significant phase error.

The qualitative behaviour of the analysis in the initial presence of phase error is

different. The analysis still lies between the observations and background, which

is in fact enforced by the BLUE assimilation algorithm and the initial phase error

has been reduced, but a significant amplitude error has also been introduced. To

capture information on phase error requires many accurate observations to repre-

sent the signal without aliasing problems. A standard rule of thumb from numerical

modelling suggests 10 observations per wavelength are required to represent a sine

wave in a dispersive model (Stephen and Bolmer, 2006) and a similar result is

likely to occur here. This problem can be even more serious in the more realistic

case when observations are only available on an irregular grid, since this can give

a much larger typical spacing for observation grid over much of the domain.

In practice, extra information is available in the form of physical constraints on

the relationship between variables, for example the relationship through geostrophic

balance between density and velocity fields in the ocean. It is possible to represent

some relationships by modifying the choice of the covariance matrices used or by

transforming variables before the assimilation step. To apply other constraints it

becomes necessary to consider other assimilation techniques.

3.1.2 ASSIMILATION THROUGH REARRANGEMENTS

This section presents the method and notation of rearrangement theory as it ap-

plies to the constrained assimilation problem of inserting observational data while
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Figure 3.1: A traditional DA method applied to amplitude and phase errors

We apply the optimal interpolation method (Daley, 1991) to generate the BLUE
analysis for cases of amplitude error (top plot),

[xA
b ]i = A sin

(
4πi

100

)

= A[xt]i,

and of phase error (bottom plot),

[xphase
b ]i = sin

((
4πi

100
+ s

))

≈ [xt]i+100s.

For these plots A = 1.5 , s = 0.1 , σb = σo = 1 and λ = L/25. Note particularly
that there is minimal phase error introduced in the presence of amplitude error,
with a maximum lead of about 3 grid-points around grid points 80-90, while in
the second case there is an amplitude error of roughly 10-20% introduced across
the entire signal, as well as he obvious deformation to the form of the signal.

51



DISPLACEMENT ASSIMILATION CHAPTER 3

conserving the original material properties present in the background field. See

Douglas (2002) for a much fuller discussion of the mathematics behind rearrange-

ment theory and for a fuller list of references. Cullen (2002) discusses the use of

rearrangement theory in meteorology in general, as well as in assimilation specifi-

cally.

Consider the problem of tracking the evolution of a passive tracer field in the

ocean, for example the concentration of a chemical following a diffuse spillage.

Let C(r) denote the concentration of the chemical at a point r inside the domain

of interest D. Suppose there is no flux of the tracer across the boundary of the

domain, δD, that there are no new sources or sinks of the chemical and that mixing

processes are no longer significant on the time and length scales being modelled1.

Given a background or hindcast estimate of the initial concentration field, C0, valid

at a time t0 for all of D and a forecast for the velocity field, ub(t, r) which applies in

D over a time window [to, tf ], then a forecast Cb(t, r) for the concentration field in

[to, tf ]×D can obviously be calculated directly by integrating the (forecast) chemical

conservation equation for Cb,

∂Cb
∂t

+ ub · ∇Cb = 0, (3.1)

forwards in time starting from the known estimate of initial conditions,

Cb(t0, r) = C0(r).

If the equation (3.1) accurately describes the physics of the true system, that is

if the assumptions of no mixing and no forcings are accurate, and the true flow

velocity field is incompressible then the real chemical concentration field satisfies

the conditions of the following proposition :

Proposition 3.1 (The rearrangement condition) Let τ be an unforced tracer field

on a domain D, which satisfies a simple advection equation,

∂τ

∂t
+ u · ∇τ = 0, (3.2)

where u is an incompressible velocity field,

∇ · u(r) = 0, r ∈ D,
1Of course if the original release was from a point source then mixing must dominate over the

short time and length scales of the initial release. The case considered here is the one after these

initial effects no longer control the flow.
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and there is a no normal flow condition on the physical boundaries of D,

u · n = 0, n ⊥ δD.

Further, let the state of the tracer be defined at some time by the state τ0,

τ(t0, r) = τ0(r).

Then the condition

∫

D
(τ − α)H[τ − α]dV =

∫

D
(τ0 − α)H[τ0 − α]dV, (3.3)

holds for any choice of t and for any real number, α. Here H[x] simply denotes the

Heaviside function applied pointwise to the field x,

H[x(r)] =

{

1 x(r) ≥ 0

0 x(r) < 0.

The proof of this assertion is simple and follows directly from equation (3.2) plus

the incompressibility condition on u.

Proof :

d

dt

∫

D
(τ − α)H[(τ − α)]dV=

d

dt

∫

D(α)

(τ − α)dV,

=

∫

D(α)

∂(τ − α)

∂t
dV +

∫

δD(α)

(τ − α)u · dS,

=−
∫

D(α)

u.∇(τ − α)dV +

∫

δD(α)

(τ − α)u · dS,

=−
∫

δD(α)

(τ − α)u · dS +

∫

δD(α)

(τ − α)u · dS = 0.

Here D(α) denotes that subset of D over which H[τ−α] is non-zero, hence the space

over which the integral must be evaluated. The domain of the surface integrals,

δD(α), is the boundary of this subset. The first term in the expansion comes directly

from the time dependence of τ as it appears in the integrand and the second term

arises from the application of Leibnitz rule required, since the limit of the integral,

D(α), is itself an implicit function of time.

The rearrangement condition, one form2 of which is given in equation (3.3), is

2Other possible forms for the condition include the condition that the integrals of any moment

of τ and τ0 must balance, ∫

D

τndV =

∫

D

τn
0 dV ∀n ∈ N

+,
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a relation operator on the set of all possible tracer fields on D. The fact that it is

satisfied by all fields generated from equation (3.2) can be viewed as stating that

the total mass of any material tracer contained within any level set of a tracer field

is conserved during advection by an incompressible velocity field. This property

follows directly from volume conservation in a Lagrangian interpretation of fluid

dynamics. More generally any field on a measurable space which satisfies an equiv-

alent condition in the form of equation (3.3) with respect to a test field is termed

(Douglas, 2002) a rearrangement of the test field, that is the equivalence classes of

the test field under the relation is the set of its rearrangements. See Figure 3.2 for

an example of two functions on the real line which satisfy the condition, as well as

a graphical representation of the meaning of the integrals.

Returning to our hypothetical chemical tracer field, if observational data is avail-

able to correct the forecast, it is natural (and desirable) to seek to preserve the total

mass of the chemical in the system, assuming that the mass contained in the ini-

tial estimate was accurate3. If it is known that the true velocity field advecting

the tracer is incompressible then it follows from assertion 1 and our assumption

that the initial concentration pattern is accurate that any analysis field, Ca, over

the course of the time window must be a rearrangement of the initial field. More-

over, since the rearrangement property is transitive and the forecast also satisfies

the conditions of Proposition 3.1 it is clear that Ca must also be a rearrangement

of Cb. Given full, but possibly noisy, observations, Cy, of the true field, Ct, then

rearrangement theory provides a method to find an analysis field, Ca, which solves

a problem closely related to the standard problem in data assimilation, namely:

Problem 3.1 Given a background estimate, Cb(tf , r), of a scalar function on D and

full, noisy observations, Cy(tf , r), of the true state of the field, find an analysis state,

Ca(tf , r), which minimizes a quadratic cost function,

J (C) :=

∫

D
(C − Cy)

2 dV,

subject to the condition that Ca is a rearrangement of Cb.

The solution depends on being able to find what Brenier (1991) has termed a ‘po-

lar factorization’ of both Cb and Cy. This method of factorization represents an

as well as a number of versions given in the formalism of measure theory, see Douglas (2002) and
references therein.

3This condition that the mass densities are accurately known, even if their locations are poorly

understood is a strong, but key assumption in the entire theory that follows. We argue that in

general surface fluxes are more easy to ascertain than the subsequent distribution of tracers with
depth, justifying our interest in assimilation methods which work when the assumption holds.
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Figure 3.2: Figure denoting a rearrangement of a 1D function

The shaded areas in the two plots are equal. These represent
∫ 1

0
(f−α)H[f−α]dx

and
∫ 1

0
(g − α)H[g − α]dx respectively, for α = 0.4. This property remains true

regardless of the actual choice of α made. Hence, by our definition in equation
(3.3), g(x) is a rearrangement of the function f(x). Figure after Douglas (2002).
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arbitrary scalar or vector-valued function by the convolution of a convex function

acting on a sphere, S, of the same volume as the domain, D and a measure pre-

serving mapping from D to S. For a scalar function, C, the new convex function, f

satisfies a modified, spherical rearrangement condition,

∫

S
(f − α)H[f − α]dV =

∫

D
(C − α)H[C − α]dV ∀α ∈ R,

a symmetry condition,

f(r1) = f(r2), ∀‖r1‖ = ‖r2‖ , r1, r2 ∈ S,

and a radius-wise monotonicity condition,

f(r1) ≤ f(r2), ∀‖r1‖ < ‖r2‖ , r1, r2 ∈ S.

The convex function produced is unique almost everywhere, up to a change in

value at a set of points of zero measure. See Figure 3.3 for an example of the two-

dimensional spherically symmetric rearrangement of an SST field. The mapping,

s, from D onto S is non-unique in that any mapping such that f(s(r)) = C(r)

will suffice. The mapping thus contains all the positional information about the

field, while the convex function provides amplitude information about the values

the field attains.

The formal solution to Problem 3.1 is that given the polar factorizations for Cy

and Cb,

Cy(r) = fy(sy(r)),

Cb(r) = fb(sb(r)),

we may form a new analysis function,

Ca(r) = fb(sy(r)).

This inherits the rearrangement properties of fb and hence is a rearrangement of

Cb, but it is also shown in e.g. Douglas (2002) that this achieves the minimum of

J (f, g) over all rearrangements of fb. We may thus identify Ca with the desired

analysis field.

Note that although advection by an incompressible velocity will always gener-

ate a field which is a rearrangement of the initial conditions, not all fields which

are rearrangements of each other can be achieved through a period of advection.

A simple counter-example considers the functions of Figure 3.2, which cannot be
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Figure 3.3: Polar factorization of an SST field

The plot on the top left shows an analysis SST field for the North Atlantic from
the UK Met Office FOAM model. The plot on the top right shows an increasing
rearrangement of the first field, calculated using a simple Matlab algorithm to
reorder the data from the first plot under the assumption that the data represent
area integrated values. The increasing rearrangement is plotted on a disc of the
same surface area as the North Atlantic domain. The complete polar factorization
consists of both the increasing rearrangement and the invertible, measure preserving
mapping which takes points on the image top left to that on to those top right
or vice versa. The plots on the bottom illustrate this; points of equal colour are
mapped onto each other under s.
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generated by advection by a spatially constant velocity, the only possible choice for

an incompressible velocity field in one dimension in a periodic domain. In higher

dimensions then we assert that given initial and final conditions which satisfy the

rearrangement condition then the transformation of one to the other can weakly be

achieved by non-divergent advection, in the sense detailed below. This proposition

is important in justifying the use of transport processes for data assimilation in the

chapters which follow, particularly Chapter 4, since we show that all rearrange-

ments may be achieved in this way. A key point, however is that the proof does not

provide a simple way to find the necessary advection field, at least in finite time.

The assimilation algorithms we will later present are all attempts to address this

problem efficiently.

Proposition 3.2

Given two square-integrable density functions, f, g on a closed domain D of di-

mension greater than one, such that f is a rearrangement of g, (denoted from here

onwards by f ∼ g) it is possible to find a state that is the limit of advection over

an infinitely long period (or, equivalently, infinitely energetic advection over a finite

period), where the advection maps an initial state f to a state ĝ, and ĝ satisfies the

equation

J (g, ĝ) :=

∫

D
(g − ĝ)2dV = 0. (3.4)

An outline for a pictorial proof is given in Figure 3.4 and the basic steps are given

in the following section.

OUTLINE PROOF OF PROPOSITION 3.2

Suppose we have two real-valued, bounded, integrable scalar functions, f, g on

a domain ,D, which is a simply connected, closed subset of R
d with d > 1 and that

f and g are rearrangement of each other. For any integer N we may partition a

subset of the interior of D into N d-dimensional sub-domains of equal measure,

δDi. Define a function on R × R × R,

W[a,b](x) =

{

1 a < x < b,

0 otherwise,

for a, b, c ∈ R and consider the domains U[aj ,aj+1](f), U[aj ,aj+1](g) defined by,

U[aj ,aj+1](f) =

{

r ∈
N⋃

i=1

δDi

∣
∣

∫

δDi
W[aj ,aj+1](f)dV = V (δDi) :=

∫

δDi
dV

}

,
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Figure 3.4: Graphical Representation of the algorithm in Proof of Assertion 3.2

1. Two two-dimensional input functions, f and g, to be identified with a
model background field and full observational data are provided.

2. The domain of the two functions is quantized into boxes.

3. Digital values are assigned to the boxes, depending on whether the volume
of the portion of the box the function maps to a particular interval is equal
to the box volume. One particular interval digitization is shown.

4. For each interval of the function co-domain the digitized ‘true’ areas of the
background field are rearranged through the advective process of Brenier
and Gangbo (2003) to match the digitized ‘true’ areas of the observed
field.

5. This generates an output analysis field.

As the grid length of the boxes in step (2) and the size of the intervals in step
(3) are reduced, then successively better approximations to the observations are
produced. For vanishingly small steps the limit of equation (3.4) is achieved.
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for some chosen partition, P = {a1, a2, . . . , aM+1}, of the bounded co-domain of f

and g, with the ai a set of M + 1 monotonically increasing real numbers. From

Lemma 1.3 of Brenier and Gangbo (2003) there exists a flow field which in unit

time exchanges the contents of neighbouring domains and, by extension, one which

attains any arbitrary reordering of the material contained in the δDi, up to a remain-

der space of arbitrarily small measure, R. It follows that we may produce from f

a new state, g(N,M,R), through advection, with maximal intersection of U[aj ,aj+1](g)

and U[aj ,aj+1](g(N,M,R)), for all j = 1, . . . ,M . Denote the domain over which the

mapping occurs by UN . Consider the value of the cost function,

J(g, g(N,M,R)) :=

∫

D

(
g − g(N,M,R)

)2
dV < JN + JM + JR,

where JN is an upper bound on the difference between f and g integrated over the

space not included in UN ,

JN =

[

sup
x∈D/UN

{f, g} − inf
x∈D/UN

{f, g}
]2

V (D/UN),

the second term, JM , is a bound on the discrepancy between g and g(N,M,R) over

the space contained in UN :=
⋃M
j=1U[aj ,aj+1](g(N,M,R)), using the definition of the

U[aj ,aj+1] to note that the volume of the integrand can be bounded by the aj,

JM = max
j∈[1,...,M ]

|aj − aj+1|2
∑

δD∈UN
V (δDi),

and JR is the remainder term from the space in UN unchanged by the flow,

JR =

[

sup
r∈UN

{f, g} − inf
r∈UN

{f, g}
]2

V (R).

As M → ∞, P the partition of the bounded codomain may be chosen so that

maxP |aj − aj+1|2 → 0, while the total volume contained in
∑N

i=1 δDi remains

bounded by volume of the full domain D, hence JM → 0. Similarly, for fixed

M , integrability ensures that as N → ∞, UP(g) → D, while the rearrangement

condition ensures UN → UP(g). Hence V (D/UN) may be made arbitrarily small

through the choice of N , giving JN → 0. Finally, the volume of the space R is arbi-

trary, by the definition of the theorem given above and by taking a suitable long or

energetic integration of the flow field we may take JR → 0. Combining these sep-

arate processes we may chose a sequence of (N,M,R), increasing monotonically

in N and M and choosing R of successively smaller volume, such that the limit of
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J (g, g(N,M,R)) vanishes.

3.1.3 THE MONGE-KANTOROVICH PROBLEM

The algorithm presented for the polar factorization approach to data assimila-

tion with conservation properties is direct, in the sense of immediately producing

an analysis field, given inputs of full observations and a background field. Unfor-

tunately, the method as presented is also univariate, assimilating only the observed

field. Although the rearrangement condition (3.3) can be extended into a con-

sistent condition on vector fields and thus to assimilating multiple observed fields

over a single domain4, of itself the method cannot be made truly multivariate, in

the sense of generating increments of fields in the null space of the observation

operator. Such increments must be generated, either through assumed statistical

relations with the observed changes, or derived physical correlations. One physical

argument, implicitly assumed in the rearrangement of vector fields, is that a single

mapping must be applied concurrently to all material variables, i.e. that the rear-

rangement is applied as a displacement of fluid parcels, rather than to atoms of the

individual variable fields.

If the rearrangement of fluid parcels in question is to be assumed the result of

a physical process, i.e. the result of advection by an assimilation velocity field, ua,

then the problem becomes one of determining a suitable value for this ua. This

has an obvious connexion with a class of transport problems known as the Monge-

Kantorovich problems. The original physical problem Gaspard Monge considered in

his 1781 monograph “Memoire sur la théorie des déblais et de remblais” was the rear-

rangement of a collection of rubble (reblais) to fill an equally sized space (déblais)

in another location, while minimizing the effort (defined as the distance an indi-

vidual particle of reblais must travel) involved in the process. Monge’s proof was

geometric, based on the existence of a single shortest line tangent to both spaces.

Kantorovich formulated a relaxed and more general form of this problem in the

more modern language of measure theory.

The Monge-Kantorovich formulation is widely discussed in the literature (see

for example Gangbo and McCann (1996)) and has a clear structure for existence

arguments, as well as uniqueness for certain choices of distribution. The connection

with rearrangement theory comes when these distributions are identified with the

background and analysis variable fields respectively. This then shows that, given a

4Similarly the polar factorization can be extended for functions f : D → R
n to become a convex

function ψ on Rn plus a mapping s : D → R
n such that f = ∇Rnψ ◦ s almost everywhere (Brenier,

1991).

61



DISPLACEMENT ASSIMILATION CHAPTER 3

suitable choice for the penalty on the possible rearrangements which generate the

assimilation field, a unique choice of the mapping, s, may be chosen. This in turn

allows for multivariate assimilation in all material model variables.

Algorithm 3.1 (Multivariate rearrangement assimilation)

1. Calculate (non-unique) polar factorizations of observed and background fields.

2. Calculate analysis state for observed variables using formula

Ca(r) = fb(sy(r)).

3. Calculate mapping sK : D → D which minimises relevant Kantorovich problem

(see below).

4. Calculate the new multivariate analysis using formula

xa(r) = xb (sK(r)) .

The resulting Kantorovich problem may be solved numerically in a number of ways.

The technique presented here, from Benamou et al. (2000), is chosen due to its sim-

ilarity to the 4D-VAR data assimilation method and its relevance to later work from

chapter 4 onwards. The Kantorovich problem, when written in the standard form

in terms of the marginals of a joint distribution, has no explicit time component.

However, one may be introduced by restructuring the problem in the terminology

of fluid dynamics.

Problem 3.2 (A fluid-dynamical transport problem) Given a measure of the work

done by an advective process,

E(ρ,u) =

∫ 1

0

∫

D
F (u, ρ)dV dτ, (3.5)

for F some integrable function of the velocity field and density, find the (ρ∗,u∗) which

achieves the infimum of E over the set of all ρ,u which satisfy the boundary value

problem,
∂ρ

∂τ
+ u · ∇ρ = 0, in D,

with end conditions
ρ(0) = ρ0,

ρ(1) = ρ1.
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The technique operates by iteratively minimizing (a discretization of) the above

cost function using an augmented Lagrangian method (Benamou and Brenier, 2001)

to impose the constraints. The desired mapping can then be found either by fol-

lowing the Lagrangian path of fluid parcels under this velocity, or by the direct

advection of model fields by the u∗.

This type of method has three difficulties as a solution of the oceanographic data

assimilation question :

(i). As formulated, the method is univariate, generating an improved analysis

field only for the variable for which observations are available. To gener-

ate corrections for other variables it is necessary to find a way to generate

a unique mapping and apply some physical argument to give a relationship

between variables.

(ii). The method works only for variables which are directly observed. Often, par-

ticularly with satellite data, the observation obtained is5 a non-linear function

of the physical variable of interest.

(iii). The method requires a full observation field. The typical oceanographic data

field is extremely sparse, with many ‘data holes’ where observations are not

available or are not reliable. See the example fields presented in Figure 1.1

in Chapter 1.

3.2 A METRIC ON PHASE AND DISPLACEMENT ERROR

The Monge-Kantorovich techniques discussed above illustrate the dependence

of all data assimilation methods on the cost function or metric chosen to measure

the disparity with observations and the assumed cost to the integrity of the back-

ground solution in modifying it. Comparing the QG layer model developed with the

original motivation for the use of adiabatic assimilation methods for ocean assim-

ilation, as related in section 2.1, it is obvious that layer vorticity will play the role

of the advected tracer, forced only in the top layer. It is no longer clear however

that the rearrangement condition is a useful approximation to the tracer behaviour

on short time periods. In this section a metric or index on displacement error is

introduced with the metric behaviour discussed in relation to the standard L2 norm

on functions. This metric will then be used to test the approximate conservation of

the QG vorticity field under various conditions.

5At least, is usually assumed to be.
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3.2.1 A REARRANGEMENT CONDITION METRIC

As defined previously, two fields f and g on a domain D are termed rearrange-

ments if the quantity,

I(α) :=

∫

D
(f − α)H [f − α]dV −

∫

D
(g − α)H [g − α]dV, (3.6)

vanishes for all real α, with H [x] the Heaviside function as before. This is simply

a shuffling of the terms of the rearrangement condition, (3.3). More generally

however, provided f and g are bounded, integrable functions and both contain the

same mass, that is provided ∫

D
fdV =

∫

D
gdV,

then I(α) has bounded support in α and the quantity

M :=

∫ ∞

−∞
|I|dα (3.7)

is finite. The proof of these claims is simple. Let a = infD{f, g}, b = supD{f, g}.

Then for α < a we have

H(f − α) = H(g − α) = 1.

For α < a we may thus rearrange I(α) to give

I(α) =

∫

D
(f − α) − (g − α)dV =

∫

D
)f − g)dV = 0,

where we have used the equal mass condition. Similarly and more trivially, for

α > b

H(f − α) = H(g − α) = 0

and the integrands in I(α) vanish. Therefore the support in I is only in the interval

[a, b].

The quantity M vanishes for the case of f ∼ g and is otherwise non-zero for

most non-pathological pairs of fields. As such M(f, g) represents an alternative

function for the (non-local) difference between fields of equal mass on a domain,

or alternatively a measure of the minimum magnitude of the difference between the

two fields, where differences in phase are disregarded. Using the bounded support
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of I the integral in the definition of M may be defined equivalently as

M :=

∫ b

a

|I|dα.

Using the integral identities

∣
∣
∣
∣

∫

D

∫ b

a

w(α)dαdV

∣
∣
∣
∣
≤
∫

D

∣
∣
∣
∣

∫ b

a

w(α)dα

∣
∣
∣
∣
dV ≤

∫

D

∫ b

a

|w(α)|dαdV

we may define upper and lower bounds for the magnitude of M. Defining new

functions by pointwise comparison of f and g,

c(r) = min{f(r), g(r)},

e(r) = max{f(r), g(r)},

and assuming without loss of generality that a = 0, so that f and g are positive

functions6. The upper bound is then given by

M(f, g)≤
∫

D

[∫ c

0

|f − g|dα+

∫ e

c

|e− α|dα
]

dV

≤
∫

D
c|f − g| + e(e− c) − e2 − c2

2
dV.

It follows that M is finite.Using the trivial identities

|e± c| = |f ± g|,

e2 − c2 = (e+ c)(e− c),

we see that

M(f, g) ≤
∫

D

|f − g||f + g|
2

dV.

Considering the application of this bound to M(f, f + δf) for an otherwise

arbitrary perturbationδf which satisfies

∫

D
δfdV = 0

we obtain

M(f, f + δ) ≤ ‖δf‖2

2
+ ‖f‖ ‖δf‖, (3.8)

6Generality follows from the fact that M(f, g) = M(f − k, g − k) for any constant function k,
including the function with k=a.
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so that as the standard quadratic cost function,

J (f, f + δf) :=
1

2

∫

D
(f − [f + δf ])2 =

‖δf‖2

2
, (3.9)

vanishes for fixed f as ‖δf‖ → 0, so does M, although possibly more slowly. In

other words, any method which reduces the total error present in the system, as

measured by the metric J , will naturally reduce the total amplitude error, measured

by our new metric, M. The converse of this, that J cannot vanish for non-zero M,

is simply a restatement of the property that rearrangement methods (which by

their very nature will preserve M) cannot reproduce perfect fields in the presence

of pure amplitude error. The lower bound on M is derivable by a similar analysis;

however, this proves simply that

M(f, g) ≥
∣
∣‖f‖2 − ‖g‖2

∣
∣ ,

which is less edifying.

We now have sufficient results to prove the following result :

Theorem 3.1 M is a mathematically well defined metric on the set of equivalence

classes of the rearrangement operator on continuous functions over bounded subsets of

R
n.

Proof: We will simply show by direct calculation that M is positive definite,

is zero only for identical inputs, is symmetric and satisfies the triangle identity by

applying it to fields f, g over some fixed domain.

(i). M(f, g) ≥ 0 follows trivially from the modulus sign in the definition of M.

(ii). M(f, g) = 0 if f ∼ g follows directly from the definition of I(α). The converse

follows from continuity of I in α. If M = 0 then I = 0 almost everywhere

and from the definition of M there exists an open neighbourhood round any

non-zero point where I must vanish. So for any point which has I(α0) = K

we know that for small enough δ

|I(α0) − I(α0 + δ)| = |I(α0) − 0| = K.
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Hence, on rearranging terms,

K =

∣
∣
∣
∣
∣
∣
∣

∫

D
(f − α0) (H(f − α0) −H(f − α0 − δ)) + H(f − α0 − δ)δdV

−
∫

D
(g − α0)(H(g − α0) −H(g − α0 − δ)) + H(g − α0 − δ)δdV

∣
∣
∣
∣
∣
∣
∣

≤ 4|δ|
∫

D
dV → 0 as δ → 0,

thus I(α) = 0 everywhere and f ∼ g as claimed. This means the measured

distance between two fields is zero if and only if they are in the same equiva-

lence class. That is, identical under rearrangement.

(iii). M(f, g) = M(g, f), again trivially from the definition.

(iv). M(f, h) ≤ M(f, g) + M(g, h) follows directly from the standard triangle in-

equality,

|I(α; f, h)| = |I(α; f, g) − I(α; g, h)| ≤ |I(α; f, g)| + |I(α; g, h)|.

So M is a metric as claimed.

3.2.2 METRICS BASED ON MINIMIZATIONS

The quantity M is conserved over rearrangements of f and g, a property inher-

ited from I. This means that the ‖δf‖2/2 = J terms in the bound (3.8) can be

replaced by the tighter limit

M(f, g) ≤ J ∗ +
√

2‖f‖
√
J ∗,

where J ∗ is the limit on the magnitude of J as defined in equation (3.9) over

rearrangements found, for example, by the method of polar factorization,

J ∗(f, g) = min
f̂∼f

J (g, f̂).

Therefore the metric defined by ‖f−g‖2
∗ = J ∗(f, g) is stricter than M7. Calculating

J ∗ requires the generation of the polar factorization of both f and g however,

whereas M may be found by direct evaluation of the relevant integrals.

We have already met a class of phase error metrics in section 3.1.3. For suitable

concave functions, F (ρ,u), the minimum of the quantity, E , from (3.5) over the

7The proof that the norm given by J also defines a metric over the rearrangement classes is
trivial; all results are inherited from J .
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relevant constraints defines the square of a metric over the set of rearrangements

of f . For F = ρ|u| this metric is the mass weighted sum of the Eulerian distance

fluid parcels must travel,

d1(f, g)
2 = inf

γ∈Γ

∫

|x− y|dγ(x, y),

in the measure notation of Section 3.1.3. This quantity is known as the 1st Wasser-

stein distance. Similarly minimizing F = ρ|u|p/p gives the pth Wasserstein distance,

dp(f, g)
2 = inf

γ∈Γ

∫

|x− y|pdγ(x, y).

Applying any of these distance functions to calculate the distance between f and f̂ ,

where f̂ is the minimizer of J (g, f̃) for f̂ a rearrangement of f found though the

polar factorization method of Section 3.1.2 gives a definition of a unique phase er-

ror metric. However, it does not automatically follow that states with large J (f, g),

but small J ∗(f, g), will have large E(f, f̂). Similarly, the two metrics E(f, f̂) and

E(g, ĝ), may differ, except in the trivial case when f and g satisfy the rearrangement

property.

When used to diagnose phase and amplitude errors in practical data assimila-

tion problems, all the metrics discussed here have two main limitations. They all

require full knowledge of the functions f and g and they implicitly assume that any

error that it is possible to ascribe to phase error must be due to phase error. The

first issue may be relaxed by only considering retrievals (that is, entire data fields

obtained through post hoc transformation and extension of observed data through

other means) rather than observations in the case of limited observations. Such an

approach would on the other hand be likely to contribute to the second problem.

J (f, g) low J (f, g) high

M(f, g) low Errors small
Error probably

in phase

M(f, g) high Impossible
Difference probably

in amplitude

Table 3.1: Behaviour of system for various magnitudes of M, J .

A simple truth table for identifying sources of error from the respective magnitudes
of J and M. Note that from the bounds found on M we know one case cannot
occur. Properly the two cases in the right hand column test the hypothesis that the
discrepancy can be represented as a phase error, rather than determining that it is. If
M is large we know phase error is present, if M is small then phase error may exist.
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3.2.3 APPLYING THE NEW METRICS TO THE QG MODEL

The behaviour of the metrics M and J differ in the presence of amplitude

and phase errors, as described in Table 3.1. Using M and J ∗ as metrics on the

differences ascribable purely to amplitude between various pairs of states generated

the plots shown in Figure 3.5. The two functions were applied to pairs of top level

vorticity fields, q1(r, t) generated by the QG model of Section 2.3 and differing

in various ways. In the first three experiments the difference was in the times at

which the states were valid (i.e. the times at which the run was stopped), with

a difference of 1, 10 and 100 days respectively in validation time. As may be

expected through the presence of both a diabatic forcing term and a mixing term

in the evolution equation for q1 the phase difference under both metrics appears to

increase with time. The fourth experiment considers two states valid at the same

time and both generated by a 100 day evolution of the same initial conditions but

with a 10% difference in the value of τ0 used in the definition of the wind stress,

as per equation (2.25). This experiment shows a significantly larger difference in

both M and J ∗ than in any of the experiments based on validation time. This is in

contrast to the standard L2 cost function, J , which is actually smaller in the case

of differing forcing than for validation times differing by 100 days.

In all plots the final bar on the histogram shows the result of applying the metrics

to two fields chosen to satisfy the rearrangement condition. Under this limit both

M and J ∗ vanish, while J may obviously remain non-zero. Comparing the two

distance metrics provided by ‖qA− qB‖ =
√

J (qa, qb) and ‖qA− qB‖∗ =
√

J ∗(qa, qb)

it appears that even in the case of differing forcing, phase error explains 80% of the

differences between fields. This supports the previous assertion that phase error

correction methods are suitable for assimilation in the QG model.

Note that all results presented are in consideration of the top level vorticity field

only. The results for the bottom layer field appear less clear. This seems to be in

part due to the generally smaller values of J leading to greater numerical issues in

the calculation of the two amplitude metrics. The routines used to calculate M and

J ∗ numerically are discussed in the appendix, section A.3.

3.3 COOPER & HAINES FOR THE QG MODEL

3.3.1 THE COOPER & HAINES ALTIMETRY ASSIMILATION METHOD

The Cooper and Haines (1996) (CH) method is a standard data assimilation

technique which attempts to apply the idea of rearrangement of fluid parcels, but
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Figure 3.5: Plot showing I,M,J ,J ∗

These plots show examples of (a) I(α; f, g), (b) M(f, g)/J (f, g),
(c) J (f, g) and (d) J ∗(f, g)/J (f, g) for five pairs of vorticity fields:

(i). An initial condition and final state evolved by 1 day.

(ii). An initial condition and final state evolved by 10 day.

(iii). An initial condition and final state evolved by 100 day.

(iv). Two final states evolved by 100 day from the same initial
condition but with the models having a 10% difference in τ0.

(v). two fields which satisfy f ∼ g.
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in a simplified one-dimensional sense. We now discuss this method in the context

of the QG model presented in chapter 2, before investigating the behaviour of our

new metrics under CH assimilation. Given observations of sea surface height (or,

equivalently of the ocean pressure field at mean sea-level) from satellite altimetry

data, the method attempts to find a vertical shift to the water column below the

mixed layer to compensate the observed surface pressure anomaly but such that

the pressure, and thus the balanced part of the velocity field, remains unchanged

on the lowest dynamic depth level.

Since the CH method is one-dimensional, conservation of water mass properties

cannot be maintained on the surfaces where water is entering or leaving the system,

(the lowest level above the bottom topography and the first dynamic level below

the mixed surface). Instead water properties must be extrapolated from the values

and gradients at the ocean floor and mixed layer. It is this, unphysical, change to

the column mass which produces the desired correction to pressure at the mixed

layer. The CH method can reproduce the observed out-cropping of cold isopycnals

in cold core eddies without unduly affecting the (near constant) tracer properties

of the deeper layers. Column lowering, however, requires adjustment of the mixed

layer properties since the CH method naturally preserves the (too cold) mixed layer

temperature and thus presents a cold bias.

3.3.2 SATELLITE ALTIMETRY - OBSERVING THE STREAMFUNCTION

The Cooper and Haines (CH) method was originally derived from considering

the behaviour of layer models (Haines, 1991), assimilating information on the be-

haviour of the top layer streamfunction, ψ1, using the notation introduced in Sec-

tion 2.3. This means that the algorithm to apply the CH method to an N -layer

quasi-geostrophic (QG) model is far simpler than applying it in a level model with

an explicit z component. The condition that bottom-level pressure remains unper-

turbed is simply

ψanalysis
N = ψbackground

N ,

where the subscript denotes level number. Similarly the constraint that the top

level pressure field should be matched to the observed variations in surface height

requires simply

ψanalysis
1 =

ρ1g

ρ0f0
η′1

observed
.
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Figure 3.6: Application Of Cooper and Haines Method

A cartoon of the application of the CH method to correct an observed 1000 Pa
low pressure anomaly in sea-surface pressure in a layer model. The profile on
the left represents the unperturbed model profile of potential density. This is
then shifted vertically by 165 m to produce the profile on the right. This profile
matches the observed surface pressure field but leaves the pressure on the lowest
level (z=-3000 m) unchanged. Thus the lowest 165m of this profile represent an
extrapolation of the density at the base of the model. In this case (equivalent to
assimilation of a cold core eddy) the vertical shift is larger than the mixed layer
depth and new cold isopycnals out-crop at the surface. Circles mark the new and
old positions of various fluid parcels; note that the top two parcels are lost.
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The changes in other levels follow from the requirement that the shift in interface

height be constant at all levels and the equation

∆η′i =
f∆(ψi − ψi−1)

g′
= ∆η′1,

holds for each i. Therefore at each level the new analysis streamfunction is given

by the relation

ψanalysis
i = ψbackground

i +

∑N
j=i g

′
j

∑N
j=1 1/g′j

ρ1g

f0

(

η′1
observed − η′1

background
)

.

For a two layer model this algorithm simplifies further to the one step process

ψanalysis
1 = ψobserved

1 ,

ψanalysis
2 = ψbackground

2 .

Hence, in this model, the CH framework is identical to direct insertion of the ob-

served top layer streamfunction into the analysis field, leaving the bottom layer

unchanged. This is also related to an algorithm which assumes that the stream-

functions in the top and bottom layers are uncorrelated while applying a 3D assim-

ilation scheme such as optimal interpolation or 3D-VAR to observations of the top

layer streamfunction only.

3.3.3 CASE STUDY: ASSIMILATING FULL OBSERVATIONS

The QG CH algorithm was used in twin mode to assimilate the run initialized

under a different wind-stress, as used in the metric experiments of Section 3.2.3,

into a run starting from the same initial conditions. Both the ‘true’ and ‘background’

models were run out for 100 days, to generate a model trajectory discrepancy, as

discussed in Section 2.5. The two systems were then run on for a 10 day period,

assimilating observations every 24 hours. Three different observation systems were

considered, along with a control run with no assimilation:

(i). Full, perfect observations with observations available everywhere,

ψobs
1 = ψtruth

1 .
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(ii). Full, imperfect retrieval available everywhere,

ψobs
1 =

1

2
ψtruth

1 +
1

2
ψbackground

1 .

Note that we have chosen an unfeasibly small weighting on the observations

to make the differences between the true state and analysis more obvious.

This is balanced by the assumption of full observations.

(iii). Smoothed retrieval available everywhere,

ψobs
1 =

1

2
ψtruth

1 +
1

2
ψbackground

1 ,

where f(r) denotes a spatial averaging function on f , with a length scale of

approximately 2 grid lengths.

(iv). The control run assumes no observations available,

ψobs
1 = ψbackground

1 .

The results, in terms of the evolution of the usual quadratic cost function, J , of

these experiments are shown in Figure 3.7, with results for the top and bottom

layers plotted separately.

As is to be expected, both layers however show eventual convergence towards

the true values, as shown by the reduction in J . The saw-toothed pattern in the

top-layer cost function represents the points at which the assimilation occurs, when

this field is directly forced towards truth. This also explains the rapid convergence

towards truth in this layer, even in the cases of non-perfect observations. The be-

haviour of the bottom layer function is less trivial, showing a lessening in J in

all cases over the course of the assimilation that is more marked than the natural

variance shown by the control run8.

The ‘worst case’ with only a smoothed retrieval assimilated has almost exactly

the same behaviour as the run in which a non-smoothed retrieval is assimilated.

This suggests that, at least when such large volumes of data are assimilated, the

small scale structures contained in the true field are relatively unimportant com-

pared to the large scale dynamics. Note however that the rate of convergence of

the bottom layer streamfunction slows towards the end of the experiment and that

8That the control run shows also shows a decay in J is not surprising. This partially represents

the decay of the transient mean state signal from the brief perturbation in windstress, used to gen-

erate the dissimilar initial states for the assimilation run. This decay occurs because this particular
experiment is run under the perfect model assumption.
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the final value is higher for both experiments assimilating retrievals. This suggests

that the model is settling towards a new dynamic equilibrium in which the assim-

ilation increments act like an additional periodic forcing term. The effects of this

on the small scale structure of the model were investigated in a longer term passive

tracer experiment.

3.3.4 EFFECTS ON FINE SCALE STRUCTURE

As was previously stated the CH algorithm is not conservative in the QG con-

text. This means that the reduction in J of the previous section may be achieved

through a reduction in amplitude rather than phase error. To illustrate the effect

of this on the resulting fine-scale structure, particularly of unassimilated fields and

to investigate the relative unimportance of small scales noted in the previous sec-

tion a passive tracer experiment was performed. Truth and background states were

designated as before from a difference in wind stress over a 100 day run. The

CH algorithm was then used to assimilate one full smoothed retrieval of top layer

streamfunction every 24 hours over a full 30 day period. At the end of this period it

was assumed that the transients due to the change in wind forcing would have died

out so that any remaining differences represented equilibrium with assimilation.

Two new passive tracer fields were then initialized to be spatially identical in both

the background and true model states,

τx(x, y)1,2 =
x

Lx
,

τy(x, y)1,2 =
y

Ly
.

Each τ variable was assumed to satisfy an evolution equation exactly equivalent

to the equations for q1, q2 so that to a high order, limited only by numerical effects,

the q − τ relations were conserved in each layer. Each run was then continued

for a period of 60 days, with continued CH assimilation into the background state

every 24 hours, but no assimilation of the τ . The plots in Figure 3.9 shows the

result of this experiment in terms of the evolution of a cost function on discrepancy

streamfunction and of the tracer fields respectively.

The first point of interest in the graph of |J /J′|1/2 (the top plot of Figure 3.9)

in the top and bottom layers is that over this longer run there is no obvious conver-

gence in the bottom layer (indeed J at the end of the experiment is in fact larger

than at the beginning), while |J |1/2 converges in the top layer to around a quarter

of its initial value. Comparing this with the 50% reduction which applies on each
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Figure 3.7: Convergence of (a) upper and (b) lower layer J under CH

The measure of convergence used in each layer is

J (ψai , ψ
t
i) :=

∫

DH
(ψai − ψti)

2dS.

Circles denote cost function values following CH assimilation steps, when there
is an obvious discontinuity in the top layer cost function. The case of full obser-
vations is constrained to converge to zero in the top layer, but other assimilation
runs show a lack of convergence and a persistent error. The behaviour in the
bottom layer is similar in all cases, a slow improvement in the error, levelling off
towards the end of the run. Unsurprisingly the case with full observations does
best. Note too that the unassimilated control run also shows a natural reduction
in the lower layer cost function over the course of the run.
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Figure 3.8: Initial τx, τy

The plots show passive tracer fields, with a zonal and meridional gradient respec-
tively, which are initialized identically in the top and bottom layers of both the
true run and the forecast system. This initialization happens after the 100 day
spin up period in which trajectories are allowed to diverge and a 30 day initial
assimilation period. The final ‘truth’ and ‘analysis’ fields are shown in Figure
3.10.

assimilation step gives an error growth rate of d|ǫ|
dt

= J0/8 day−1, i.e. a doubling

time of one day.

Considering the cost functions for the growth of errors in the tracer fields we

see that in both cases differences are greater in the bottom layer than in the top, as

may be expected since the velocities in the top layer are corrected when the stream

function is assimilated. The initial growth of error is faster for the zonal tracer

field, τy, due to the strong differences in the western boundary current between

the true and analysis runs. The errors in each field saturate after 20–50 days, with

saturation quicker in the top layer. The final, saturated, value is greatest for the

bottom layer of the meridional tracer field, τx, again due to the effects of the jet.

Looking at the plots of the true and analysis states at the end of the 60 day

experiment we see that the large scale structure of the fields is well represented in

all cases. This is in part a result of the relatively small magnitude initial differences

between the mean states of the true and background model trajectories. However

the small scale structure shows some obvious examples of phase error in the po-

sitions of filaments of the tracers in all fields, particularly in the bottom layer, but

also notable in the top layer field for τy. Amplitude errors are small, a direct result

of the way the experiment was designed. This shows that there is a role for dis-
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placement assimilation methods in the case of unobserved fields when observations

are available on small spatial scales, as is the case in satellite altimetry.

3.4 CHAPTER SUMMARY

In this chapter we have introduced the key theory behind data assimilation in

the presence of integral constraints, including presenting the key ideas of rearrange-

ment theory, with regard to assimilating phase errors. These methods were shown

to work extremely well in the limited case of pure phase error in fully observed

vector fields.

In an attempt to extend these concepts to the more realistic case when only

limited observations are available several new metrics have been introduced which

quantify the magnitude of the phase, or conservation, error and amplitude, or non-

conservative error. Testing these metrics on the two-layer QG model allows limits

to be placed on the improvement to be expected under an application of such meth-

ods. These are found to be good for small enough space and time-scales (on the

order of ten days), but to fail when forcing fields are not known accurately.

For comparison we then presented a data assimilation method for the QG model

exactly equivalent to the Cooper and Haines method for assimilation of satellite al-

timetry. This method was further shown to be derivable from a rearrangement

assumption under a constraint on possible movement of fluid parcels. These two

derivations show both the useful relative simplicity of this technique and the im-

portant limitations that come from the limiting assumption. Finally we presented

evidence that such limitations have important damaging effects on small scale fluid

structures when the method is applied for cases of noisy or limited data. From

these ideas we will now move to developing a similar technique based on instead

limiting motions to physical flows along isopycnals.
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Figure 3.9: Graphs of (a) J (ψai , ψ
t
i) and (b) J (τa, τ t)

The plots show the variation of the quadratic cost function applied to the evolu-
tion of (a) top (TL) and bottom (BL) layer streamfunction and (b) the passive
tracer fields from Figure 3.8 in the assimilation experiment. In (a) the time level
-30 denotes the start of the assimilation experiment and 0 the time level at which
the tracer fields are initialized. These longer runs show the same convergence
pattern as the runs in Figure 3.7. Note too the large variation in the cost function
in the bottom layer. From (b) we see the saturation of errors in the tracer fields,
with the bottom layer saturating more slowly, but with a larger discrepancy.
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Figure 3.10: Plots of true and analysis tracer fields under CH assimilation

Plots show τx and τy fields from Figure 3.8 after 60 days, from both the ‘true’
run and the assimilated analysis field. The top layers appear nearly identical, as
may be expected from cost function behaviour. Differences are primarily on the
Rossby length of the system. The bottom layer shows more coherent structure
to the difference between truth and analysis.
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CHAPTER 4

3D DISPLACEMENT ASSIMILATION

“Now here, you see, it takes all the running you can do, to keep in the same

place. If you want to get somewhere else you must run at least twice as fast

as that!”

Lewis Carroll

Alice Through the Looking Glass, 1872

The formulation of the displacement assimilation problem in terms of the rear-

rangement theory of section 3.1.2, coupled to a Monge-Kantorovich transport problem,

as in section 3.1.3 gives an example of an algorithm for an adiabatic displacement

scheme. Unfortunately this method is useless for most practical applications in ocean

data assimilation. This is due to the twin requirements of full observations and an

invertible observation operator. Both these assumptions can fail catastrophically in the

real world. This leaves the algorithm suitable only for toy studies or problems where

other, non-adiabatic techniques have been previously used to obtain retrievals.

This chapter instead considers a method which retains the adiabatic philosophy of

the full rearrangement technique, but which can be consistently applied in the case

of limited observations with non-linear, singular observation operators. A family of

techniques are developed, based on the use of advection as the adiabatic process which

generate paths between rearrangements of a function. This allows the generation of

successive rearrangements of an initial field, which tend to minimize an objective cost

function based on the difference against observations, similar to the quadratic cost

function in standard techniques such as 3D-VAR, or the BLUE equation of Section 1.3.

The methods are investigated for simple toy problems and the QG ocean model of

Section 2.3.2. Several techniques to increase the algorithm’s rate of convergence are

found and the behaviour of the scheme is investigated through use of unassimilated

passive tracers and through mapping particle trajectories under assimilation. The

scheme is found to be closely related to the Cooper and Haines scheme for stratified

data, but behaves markedly differently when assimilating data on isentropic surfaces.

Finally the rôle played in the assimilation by the observation field itself is considered,

with reference to the cases of limited, noisy and non-model observations.
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4.1 ITERATIVE METHODS FOR DISPLACEMENT

ASSIMILATION

This section begins with a review of the notation to be used in the discussion

of pure adiabatic data assimilation and with a discussion of the natural connection

of this concept with the duality between the Lagrangian and Eulerian perspectives

of fluid dynamics. This leads naturally to an iterative data assimilation method

exactly equivalent to forced advection of a vector field so as to extremize a penalty

functional.

4.1.1 THE MINIMIZATION PROCESS

Suppose that there exists some first guess prediction for the value of some given

(possibly continuous) vector-valued model state variable, xb : D → R
n of dimen-

sion n, which is valid at some chosen time t and defined over the whole domain

of interest, D. Since D will later be taken to represent the ocean we assume it is

closed and simply connected1. The notation here maintains the use of bold charac-

ters for consistency with Section 1.3 when discussing discrete data assimilation and

to make obvious the difference from the Cartesian coordinate system of Chapter 2;

however, it is important to realise we may still be dealing with infinite dimensional

vector spaces rather than limiting ourselves to finite dimensional vectors as in the

discrete case. For any particular choice of xb ∈ X, where X is the set of suitably

smooth fields over D, it is possible to define the set R(xb) ⊂ X, resulting from the

partition of X into equivalence classes of a relation operator, ∼,

R(xb) = {x ∈ X : x ∼ xb},

where x ∼ y denotes equality in the rearrangement condition of section 3.1.2,

namely x ∼ xb if and only if for all α ∈ R
n the vector field x ∈ X satisfies element-

wise the condition

∫

D
(x−α)H [x−α]dV =

∫

D
(xb − α)H[xb −α]dV. (4.1)

1Studies of regional oceans introduce the complication of open boundaries. This allows the
propagation of information into and out of the domain of interest. This is a valid limitation in

what follows, but the issue may be addressed by considering the use of nested models to provide

boundary information. If the domain considered is not simply connected it should be partitioned
into subdomains which are.
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with H[x] = Πn
i=1H[xi] is a multidimensional extension of the Heaviside function,

equal to unity only when all components in the x are positive. Given this notation

then the general rearrangement problem to be solved in order to perform adiabatic

data assimilation may be expressed succinctly as a simple minimization problem

over R(xb). If the fit of an arbitrary vector field against known observations can

be measured by a quadratic cost function with nonlinear observation operator, as

in many standard data assimilation techniques, then we may write this problem in

the following form:

Problem 4.1 (The displacement assimilation problem) Assume we are given a back-

ground state, xb, on the domain D and observations, y : DH → R
m, taken on a do-

main DH , together with an associated observation operator, h[x] which maps the state

vector x onto a function h : Dh → R
m. Define the quadratic cost functional

J (x;y,h) =

∫

DH

∫

DH
(y − h[x])r′w(r′, r)(y − h[x])rdV dV ′, (4.2)

given by weights, w : DH×DH → R, and suppose that J defines a measure, statistical

or otherwise, of fit of the state x ∈ X to the observed data. Find the state, x∗, which

minimizes J over all possible rearrangements of the background state, x ∈ R(xb).

When the domains or dimensions of the background state and observations are

different, DH 6= D, n 6= m, or the observation operator is not an isomorphic map

then h−1[R(y)] and R(xb) are not over conformable spaces and the polar factor-

ization technique described in section 3.1.2 must fail. Indeed, in the latter case

only weak forms of h−1[R(y)] may exist, as in the case of the pseudo-inverse of

non-invertible matrices. Failure here means the inability to generate a unique solu-

tion, x = g(xb), even in the limited sense of the polar factorization solution. There

will indeed exist an x∗ which minimizes J (x;y,h) over R(xb) but, unlike in the

case of full observations, there may exist many other x which also achieve the in-

fimum of J , but which are not identical under an L2 norm, that is which fail to

satisfy J (x∗
1;x

∗
2,h) = 0. We have lost any sensible definition of uniqueness and the

problem is now severely ill-posed.

Rather than regarding the entire question as insoluble and admitting defeat, we

instead follow one of the standard techniques in optimization theory as an alter-

native to the attempt at direct solution of the minimization problem followed by

polar factorization; develop an algorithm which generates successive vector fields

which are elements in (some approximation to) the set, R(xb), which form a se-

quence which iteratively minimizes the cost functional J . This is the same as the

philosophy behind such commonly used techniques in numerical optimization as
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the steepest descent method or the conjugate gradients method (Gill et al., 1981).

Variations on these two techniques are frequently chosen when assimilating to min-

imize functions on R
n, as for example in discrete implementations of the 3D-VAR

and 4D-VAR data assimilation algorithms.

In general in terms of practical calculation it is neither feasible to generate the

full set R(xb), nor to calculate J over it. Nor can we be certain of spanning it to any

great degree by any kind of low dimension trial and error, Monte Carlo approach.

Instead, by analogy with the steepest descent method, we seek some definition

of a search path in R(xb) and use this to generate the sequence in R(xb) which

minimizes J .

Considering the previous implementations of (quasi-)adiabatic rearrangement

techniques of Section 1.6 we see that the methods discussed all operate in this fash-

ion. That is, they find an analysis field which achieves a good fit to observations

over some relaxed definition of a rearrangement, be it the box shifts (implemented

as compressible velocity fields, but viewed as displacements of Brewster) the spec-

tral displacements of Hoffman, or the limit to purely vertical shifts and open bottom

boundary of the CH method. One advantage common to this approach and thus

possessed by all the above techniques is that it disallows from consideration states

generated by unphysical mappings, such as those consisting of a finite number of

interchanges of pairs of points in space.

While strictly such bijective mappings do generate adiabatic rearrangements,

since they satisfy the rearrangement condition (4.1), they are not one of the forms

we are interested in for multivariate data assimilation, since they do not represent

physical processes, but instead are mathematical artifacts of the spaces over which

we are working. Indeed the existence of such mappings may disappear under alias-

ing when the problem is discretized for numerical solution.

4.1.2 A QUASI-STEEPEST DESCENT DISPLACEMENT METHOD

To exclude the particle exchange rearrangements discussed above, by physical

argument, from this section onward interest is limited to spatially differentiable

measure preserving mappings from D to D which also have continuous inverses,

that is diffeomorphisms of the domain D. Denote the set of these mappings by

G†(D) and suppose there exists some unique g† ∈ G† which generates the state

x†(r) = xb(g
†(r)) which minimises J over all the states generated by the rear-

rangement

x(r) = x(g(r)), g ∈ G†.
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The concept of path between xb and x† may be made concrete by an extension

of the mapping function, g into an additional, time-like, dimension. Let gs be the

extended, pseudo-time dependant mapping , gs(r, s) : D × R → D, which satisfies

the boundary conditions,

gs(r, 0) = r,

gs(r, 1) = g†(r),

with gs differentiable in s and gs ∈ G† for all s. This is a smooth curve through

the set of diffeomorphisms on D, with endpoints lying respectively on the identity

mapping and the generator for the infimum of J . Provided such a curve gs exists,

then it is possible to prove the existence of a couple of conditions on the form that

it must take.

Theorem 4.1 (Spatial Boundary Condition) Points in space which are mapped to

the boundary of D, δD under the action of gs for some value of s must initially lie on

the boundary of D and hence must remain on the boundary for all s.

Proof of Theorem 4.1 Consider a point r1 ∈ D, such that gs(r1, s) ∈ δD, the

boundary of D, for some s. Suppose that r1 ∈ D \ δD. Then there exists an open

ball, B, centred on r1, with B ⊂ D, or otherwise r1 would have to lie on δD. Now

by continuity in s the image gs(B, s) of B under gs at time s is an open subset

of D. But r1 ∈ B, so that g(r1, s) ∈ gs(B, s) and there exists an open subset of

D containing g(r1, s). Hence, g(r1, s) /∈ δD . This is a contradiction so therefore

r1 ∈ δD. Applying the same argument to the inverse mapping, g−1
s , shows that

all points initially in δD for s = 0 must remain in δD and thus proves the final

statement of the theorem.

This constraint can be expressed as a condition on the rate of change of gs at

the boundary and n, a unit normal to the boundary,

∂gs
∂s

∣
∣
∣
∣
r

.n = 0 ∀r ∈ δD.

Theorem 4.2 (The incompressibility condition) Any invertible mapping, gs(r, s),

from a set Ω ∈ R
n onto itself which is differentiable in both r and s and which has the

properties that

(i). At s = 0 gs is equivalent to the identity mapping,

g(r, 0) = r, (4.3)
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(ii). The mapping gs is measure preserving on subsets of D, for the chosen measure.

∫

V

dV =

∫

gs(V )

dV, (4.4)

where V is an arbitrary volume in D and gs(V ) is the image of that volume

under gs,

must satisfy the incompressibility condition,

∇ · ∂gs
∂s

= 0 ∀r ∈ D.

Proof of Theorem 4.2

From property (4.3) we know that at s = 0, gs(V ) = V and hence (4.4) is

initially trivially satisfied. So to satisfy the condition for all s from differentiability

we obtain the condition that

dV

ds
:=

d

ds

∫

gs(V )

dV = 0

for any arbitrary volume V ⊂ D. But this can be evaluated explicitly using the

volume form of Leibniz’s Integral Rule to differentiate under the integral,

dV

ds
=

∫

g(V )

∂gs
∂s

· dS = 0.

Applying the divergence theorem then gives the condition

dV

ds
=

∫

g(V )

∇ · ∂gs
∂s

dV = 0

but since we have assumed gs invertible this must hold for any volume in D and

hence the condition becomes as required

∇ ·
(
∂gs
∂s

)

= 0 ∀r ∈ D.

With these results in mind consider again how rearrangement theory was in-

troduced in section 3.1.2. For a field ρ(r, s) : D × R → defined by the evolution

equation
∂ρ

∂s
+ u · ∇ρ = 0, (4.5)
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along with an initial condition,

ρs(r, 0) = ρb(r), (4.6)

we have ρ ∼ ρb, provided that

∇ · u = 0,

u · n = 0,

that is provided the flow is incompressible and has no flow through material bound-

aries. The obvious connexion between the viewpoints of mappings gs and velocity

fields u is the definition that

∂gs
∂s

= u(gs(r), s),

the statement linking the Lagrangian and Eulerian definitions of velocity.

Following these ideas we define a new equivalence relation, similar to the rear-

rangement condition, relating scalar fields over D. Let us say that ρa evolves from ρb

if there exists a velocity field, u(r, [0, 1]), and a scalar field, ρ(r, [0, T ]), defined over

the finite interval [0, T ] in the time-like variable s, such that ρ satisfies equations

(4.5–4.6) and the boundary condition in s,

ρ(r, T ) = ρa(r). (4.7)

Like the rearrangement condition this is again an equivalence relation. Moreover,

the equivalence class of that contains the field ρb (the set of fields that evolve from

ρb) is denoted by the notation W(ρb) is, from the results of this section, a subset

of the set of rearrangements of ρb. From Proposition 2 of Section 3.1.2 we know

too that if states which are equal almost everywhere in a Lebesgue measure sense

are considered the same, then the set of rearrangements is a subset of the states

achievable from evolution and in this definition of path connectedness the two

classes are the same. For any ρ1 which can evolve from ρb it is now possible to

define a path P from ρb to ρ1, lying entirely within the set of rearrangements,

with the path defined in terms of the various ρ(r) generated by any of the possible

velocity fields u(r, s) which allow an advected field to attain ρ1 in finite time.

Since the time-like variable s is arbitrary it may be rescaled at will without

affecting the path P, provided only that T and u are rescaled as well. That is,

given that u(r, s) generates P over the interval [0, T ] then so does u′(r, s) over the
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interval [0, T ′] where u′, T ′ are defined by

u′(r, s′) =
u(r, λ[s])

λ′
, T ′ = λT,

and s′ = λ[s] is a new time-like variable. Given this property the definition of

path length may be made less ambiguous, though still not unique, by an additional

constraint on u, namely that

‖u‖ = 1, (4.8)

for all s ∈ [0, T ] and for some chosen norm, ‖ · ‖ on vector fields over D. This

condition fixes the time scale over which the path is traversed (effectively giving

a parametrization of the path length in terms of T ). We may thus discount the

possibility of paths which traverse the same point more than once in the same

direction, by always choosing the shortest path out of all those which traverse the

same points.

With a definition of a path over rearrangements it becomes possible to define

a methodology for a minimization technique, exactly analogous with the steepest

descent technique in regular space. Let J (ρ, ρo, h) be a cost functional on ρ, defined

as in equation (4.2). We aim to find a ‘local’ minimum of J (x) over R(ρb) from

the starting state defined by ρb. The general algorithm to be used over successive

values of the time-like variable s is:

Algorithm 4.1 (Displacement Steepest Descent Method)

1. Given a current estimate ρ(s) for the field ρa minimizing J over the set of all

states which evolve from ρb, find the u∗ (i.e. the search direction in R) which

produces the maximum rate of change in J (ρ) with respect to s, given that ρ

satisfies equation (4.5) and that u∗ must satisfy the normalization condition

(4.8).

2. Set u(r, s) = −u∗(r).

3. Integrate equation (4.5) forward in time to generate a new test state ρ for the

succeeding time level.

4. Check for convergence.

The analogy with the steepest descent method follows from considering the

behaviour of a cost function J (x) under an evolution equation,

∂x

∂s
= d,
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with d an arbitrary function on D to be determined. The rate of change of J with

time s is thus given by the equation

dJ
ds

=

〈

∇xJ ,
∂x

∂s

〉

= 〈∇xJ , d〉 ,

which for finite d is minimized when

d = −∇xJ ,

that is when the descent direction is parallel to the gradient of J with respect to s,

the steepest descent path.

4.1.3 THE TWO DIMENSIONAL APPROACH

In preparation for the use of synthetic data from the quasi-geostrophic ocean

model introduced in Chapter 3 the descent algorithm is here derived in full in the

case of two-dimensional observational data and background fields and assuming

a streamfunction formulation for the assimilation velocity ua. Let J be explicitly

defined here as a continuous version of the standard quadratic cost function,

J (q) =
1

2

∫

D
(qo − q)2dV,

where full observations, qo, of the conserved variable of potential vorticity, q, are as-

sumed available everywhere and thus D ≡ DH is the (two-dimensional) domain of

interest. Since in this context the assimilation velocity ua is both two-dimensional

and incompressible it may be represented by an ‘assimilation streamfunction’, ψa

where

ua =

(

−∂ψa
∂y

,
∂ψa
∂x

)T

.

The boundary condition, u · n = 0 on δD, may be expressed by setting ψa to a

constant, ψa = 0 on δD. The evolution equation for q expressed in terms of ψa is

thus
∂q

∂s
+
∂ψa
∂x

∂q

∂y
− ∂ψa

∂y

∂q

∂x
= 0, (4.9)

and hence the rate of change of J with respect to s is given by

J ′(s) :=
dJ
ds

=

∫

D
(qo − q)

(
∂ψa
∂x

∂q

∂y
− ∂ψa

∂y

∂q

∂x

)

dV. (4.10)
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Choosing a normalization condition of ψa,

∫

D
‖L(ψa)‖2dV = 1 (4.11)

for some function, L, on scalar fields and applying a Lagrange multiplier approach

and the usual variational principle to minimize the extended cost function,

Ĵ ′ = J ′ + λ

[

1 −
∫

D
‖Lψa‖2dV

]

,

using the boundary condition on ψa we see J ′ is extremized over permissible ψa

when ∫

D
δψa

(
∂(q0 − q)

∂x

∂q

∂y
− ∂(q0 − q)

∂y

∂q

∂x
+ λL†Lψa

)

dV = 0

where we have defined the adjoint function L† given by

〈α,Lγ〉 =

∫

D
αL[γ] =

∫

D
γL†[α] = 〈L†α, γ〉.

For arbitrary δψa, q this is true if

L†Lψa =
1

λ

(
∂q

∂x

∂(q0 − q)

∂y
− ∂q

∂y

∂(q0 − q)

∂x

)

, (4.12)

where the Lagrange multiplier λ is given by equation (4.11) as

λ =

√
∫

D

(
∂q

∂x

∂(q0 − q)

∂y
− ∂q

∂y

∂(q0 − q)

∂x

)2

.

4.2 APPLICATIONS TO TOY PROBLEMS

4.2.1 NUMERICAL IMPLEMENTATION

Following the methodology of the identical twin problem as a test and verifica-

tion method for data assimilation schemes the displacement descent technique was

implemented numerically and applied to a series of toy problems, initially highly

idealized and building to the use of data from the quasi-geostrophic ocean model.

For full details of the numerical methods used in implementing the displacement

descent algorithm see section B.1 in the Appendix. Briefly, a spatially-centered finite

difference approximation to the continuous evolution equation (4.9) was made

and used to step the state field q forwards in the time-like variable s, under the

action of the advection caused by the test assimilation streamfunction ψa. This time
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integration step was performed using a fourth order accurate Runga-Kutta method.

A fixed time-step was used and the descent of the finite difference approximation

to the cost function, J , tested at the end of each time integration step. When the

method no longer descended another ‘search velocity’ was chosen by solving the

finite difference approximation of the equation (4.12). In this sense the method is

a true steepest descent algorithm.

The evolution equation (4.9) includes no explicit diffusion term. Nevertheless,

both the spatial and temporal discretization methods used are known to be slightly

dispersive. This effect, coupled with the extreme dependence of ψa on the fields q

and qo, plus the requirement of descent in the cost function J appeared to be suffi-

cient to maintain numerical stability of the algorithm in most cases without explicit

diffusion. Such an additional mixing term would indeed mean that over long inte-

grations the method would no longer generate rearrangements of the background

field in the continuous limit, as required by the initial adiabatic assumption. No

explicit testing for issues such as CFL criteria were found necessary, once the choice

of the initial time-step had been tuned to the magnitude of the various problems.

4.2.2 RELATIVE COMPUTATIONAL COST

In order to quantify the relative efficiency of the new method we are introduc-

ing we will briefly discuss the expense of the method in terms of computational

resources (primarily computer memory, either as RAM or disc space) and CPU time

required by the algorithm, in comparison to standard variational assimilation tech-

niques, namely 3D-VAR and an iterated approximation to a BLUE solution.

In terms of disc space, both the new displacement assimilation and the 3D-VAR

techniques rely on the explicit formulation of a gradient term, either the assimila-

tion velocity/streamfunction for the new displacement method, or ∇xJ for 3D-VAR.

Since this is to be passed to a minimization routine, it must be store separately from

the data on the current analysis state. For the 3D-VAR method this effectively dou-

bles the storage requirements of the original model, since the gradient contains

information on the update to every model variable, assuming that the assimilation

is multivariate. For our new displacement algorithm we have the lesser cost of an

additional model field, either vector (when generating assimilation velocities), or

scalar (for cases using a streamfunction). Iterative methods typically have smaller

storage requirements than either method, since the new analysis state is found

without a minimization step and can overwrite the old one.

In terms of CPU time, the addition of the advection step, effectively requiring

the running of a forward model for each calculation of the cost function in the mini-
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mization, makes the displacement algorithm much more expensive than traditional

3D methods. Effectively, the cost of a single step becomes similar to that of a single

iteration of a 4D-VAR method, even though data at only a single timestep is being

assimilated. This additional modelling step will also impact on memory, since the

overheads of the advection scheme must be stored, meaning that here both the

3D-VAR and displacement algorithms require space for twice the variables in the

original model, with the displacement scheme having the additional over head of

the assimilation advection fields, plus the various costs imposed by the numerical

advection mode. Note, however, that since the objective function can be tested

at each stage there is no requirement to store additional intermediate steps in the

advection routine.

4.2.3 ONE-DIMENSIONAL PROBLEMS

We now consider the behaviour of the advective minimization approach on a

hierarchy of problems, in an attempt to understand its peculiar advantages and

limitations. We commence with a brief discussion of displacement assimilation in

a one-dimensional domain. In such domains the only velocity field satisfying the

relevant version of the incompressibility condition,

du

dx
= 0,

is one with u constant everywhere. If the domain is also bounded then the no

flow condition requires that u = 0 everywhere. For our minimization scheme this

means the assimilation velocity is static and the method cannot converge. This links

back to the lack of a connectivity condition for the rearrangement problem in one

dimension. In a periodic domain then u is no longer constrained by boundaries,

while under the rescaling argument of the previous section only the sign of the

constant ua is important, determining whether the direction of the shift is positive

or negative. Given an accurate line search method the algorithm will thus converge

to a local minimum of J (x), with only one calculation of a search direction re-

quired. That the algorithm may not find a global minimum and may not choose the

direction of shortest path length is obvious from consideration of the behaviour of

the functions of Figure 4.1, in which the algorithm is applied for a 1-D function on

a periodic domain in six different cases:

(a). Full, perfect observations, with the correct form for the background (error

takes the form of a periodic shift in position, the rearrangement condition

with respect to the true function is satisfied).
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Figure 4.1: The steepest descent algorithm in a 1D periodic domain

In each case a simple iterative algorithm minimizes (green) the square of the
residual for observations, y (red), from a background function, fb (blue). Also
plotted is the direction of the assimilation velocity, ua. (a) Perfect observations
everywhere. (b) Limited, perfect observations. (c) Limited, noisy observations.
(d) Limited, observations, large initial error, correct. (e) Full observations, incor-
rect background. (f) Limited perfect observations, fixed bias in background.
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(b). Very limited, perfect observations (the number and range of oscillations is

sufficient to track the function turning points), correct form for background.

(c). Limited, noisy observations (unbiased Gaussian noise on all observations),

correct form for background.

(d). Limited, perfect observations, large initial displacement error, correct form

for the background.

(e). Full, perfect observations, incorrect form for background (error includes both

phase and amplitude components, the rearrangement condition with respect

to the true shape is not satisfied).

(f). Limited perfect observations, fixed bias in background (there is a single val-

ued amplitude error across the whole domain,the background state satisfies a

modified form of the rearrangement condition on the true state).

Among these examples only in the case of the large initial error, (d), did the

scheme fail to converge to the global minimum of the cost function. In this case

the scheme instead found a local minimum with respect to the observations, found

by initially minimizing in the opposite direction to that which would have provided

the correct analysis solution. This possibility of finding a local minimum is true for

any iterative scheme.

Perhaps the most impressive case is that of plot (c), in which the true state is

found to with-in a one grid-point lag, even though the form of the solution is not at

all obvious from the noisy observations. This case is another example of a problem

for which displacement techniques are ideally suited. The final two problems, (e) in

particular, show examples of success in situations less appropriate for displacement

techniques. In both cases the phase error is corrected for in the final solution, but

the initial amplitude error is retained, as is clear from plot (f) where the turning

points of the analysis and true functions match one-to-one but are separated by the

constant bias. Note that, as was discussed in Section 3.1.2, the one dimensional

problem is an extremely special case for the rearrangement technique.

4.2.4 A TWO-DIMENSIONAL PROBLEM FROM AN ALGEBRAIC INITIAL

CONDITION

Once again, as in Chapter 3, more complex behaviour develops when consid-

ering assimilation problems in domains of two or more dimensions. Consider two
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different ‘density’ fields, ρb, ρo defined by

ρb = f(x, z),

ρo = f(x+ θ, z),

in the unit square D = [0, 1] × [0, 1] and with f the semi-periodic function

f(x, z) = sin(2πx) + kz.

This choice is such that the continuous background and observation fields are adi-

abatic rearrangements of each other2, ρb ∼ ρo. Moreover, for θ = k/∆x, the same

property holds when discretized, with the quantity inside the volume integral of

the rearrangement condition replaced by any quadrature function dependent only

on the nearest nodal values. Assuming a nearest-node value approach henceforth

the discretized cost function, J (ρ), may be defined as

J (ρ) =
1

2

∑

i∈[1,nx]




∑

j∈[1,nz]

[
(ρ[nz×(i−1)+j] − ρo[nz×(i−1)+j])

2∆zj
]
∆xi



 ,≈ 1

2

∫

D
(ρ−ρo)2dS,

where ρ is a vector of nodal values ρ((i+ 1
2
)∆x, (j + 1

2
)∆z) under natural ordering.

Here the ∆x,∆z denote the discretization step lengths and the nx, nz denote the

total number of nodal points in the x and z directions respectively.

From the fact that the discretized rearrangement condition is satisfied it is clear

that J has a unique global minimum of J = 0 over all discretizations of adiabatic

rearrangements. This occurs in the simple case of ρ = ρo. If a monotonically de-

creasing search path exists in the discretization of R(ρb) which contains the element

ρo then the algorithm should converge to this state, up to the limits of machine nu-

merical precision and discretization truncation error; otherwise a more local limit

will be found.

Running the two-dimensional steepest descent algorithm on this algebraic prob-

lem with an L2 norm on the magnitude of the ψa,

∫

D
ψ2
adS = 1,

the scheme was experimentally found to converge, slowly, to a higher limit. The

2This would of course be true for any semi-periodic or periodic function on D. The form given

here is chosen as an idealized representation of a problem in which an anomaly in mixed layer depth
has become displaced in a model versus observations and must be corrected through assimilation.

This is a natural problem, similar to the one for which the CH method was devised.
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Figure 4.2: Convergence of J /J0 for variable θ, k = 3, nx = 64, nz = 64

(b)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration Number

J/
J 0

n
x
=32,n

z
=32

n
x
=64,n

z
=64

n
x
=128,n

z
=128

n
x
=32,n

z
=64

n
x
=64,n

z
=32

Figure 4.3: Convergence of J /J0 for variable nx, nz, k = 3, θ = 0.25
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Figure 4.4: Convergence of J /J0 for variable k, nx = 64, nz = 64, θ = 0.25

The plots above show the variation in J /J0 :=
∫

D(ρ− ρo)
2dV/

∫

D(ρb− ρo)
2dV

against iteration of the descent routine with changes in (a) initial phase error,
(b) grid step length, (c) density stratification.
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precise asymptotic value of this limit and rate of convergence towards it is depen-

dent on the values of the parameters θ, nx, nz and k.

As seen in Figure 4.2, the θ dependence expressed itself as a slowing in the rate

of convergence and an increase in the value to which the scheme converged as θ

was increased over the range [0, 1
2
]. By symmetry values in the range (1

2
, 1) above

this again reduced the limit and increased the rate of convergence, since they were

equivalent to a problem in the range [0, 1
2
] with the x-axis reversed. This behaviour

is easily explained by noting that the value of the cost function at the beginning

of the integration, J(ρb) is predominantly determined by the θ value used. The

problem becomes ‘harder’, in the sense of containing a greater phase error, which

in turn leads to a longer path, a longer integration and thus more accumulation of

errors from the numerical schemes used for the advection term. For some values of

θ, notably θ = 0.5, the curve for the convergence of J /J0 appears to ‘step’ down

towards its final value, with periods of fast convergence, followed by long plateaux

where the scheme nearly stalls. It appears these are a function of the poorly con-

ditioned descent problem, where in some sense the method tracks narrow valleys

or passes near local minima, before finding steep, straight paths where long steps

may be taken. This behaviour is repeated for variations in nx, nz and k.

The general form of the dependence upon nx and nz was that as the number

of points over which the problem was calculated increased the rate of convergence

decreased and the limiting value increased. This is plotted for a variety of values in

Figure 4.3. This behaviour can easily be explained as an effect of the change upon

the CFL limit again causing a longer integration. However this was not symmetric

in the two axes, with an increase in nx (the direction containing the phase error)

having more effect than an increase in nz. This suggests there are genuine effects

on the minimization routine due to the difficulty in propagating information across

multiple grid points by advection.

The effect of changing k, as shown in Figure 4.4 was initially difficult to explain.

Convergence seemed to degrade as k grew, both in the reduction achieved with

successive iterations of the routine and the final value which the method appears to

attain. This suggested that some process other than the simple transport of fluid in

the direction of the phase error was taking place. To investigate the processes the

fluid underwent in greater detail two further systems were coupled to the velocity

fields generated by the data assimilation scheme.

Specializing to the case θ = 0.1, nx = nz = 64, k = 3 we present the initial

discrepancy between the background and observation fields , ρb − ρo as plot (1) in

Figure 4.5, with plot (2) showing the final anomaly between the analysis field after

convergence and the observations, ρa−ρo. Note that, while the measure of the total
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discrepancy has been shown in Figure 4.2 to reduce to roughly 0.2 of its original

value, the local discrepancy in many places around the boundary has increased. It

is in these areas that any further advection leads to increases in the cost function

and the method stalls. As a test of the magnitude of this effect we introduce a new

metric, J [box], which calculates the usual quadratic measure of discrepancy, but

over a limited rectangular domain with a centre coincident with that of the full

domain,

J [box] =
1

2

∑

i∈[1+ℓx,nx−ℓX ]




∑

j∈[1+ℓz,nz−ℓz]
(ρ− ρo)2∆zj∆xi



 ,

where ℓx, ℓz denote the ’margins’ left unexamined under the metric.

Using this new metric we can investigate two different effects, the proportion

of the discrepancy between analysis and observation which lies in a box of vary-

ing size, and the extent to which the algorithm has successfully matched the con-

tents of the box, neglecting any data outside it. This gives two new functions,

J [box](ρa)/J (ρa) and J [box](ρa)/J [box](ρb), which we plot against the area of

the box as plots (3)–(4) in Figure 4.5.

Considering J [box](ρa)/J (ρa) we see that the proportion of the discrepancy in

the box does not decrease linearly with area, but instead initially decreases rapidly,

dropping to half its value with a box of 0.8 the original area. This is restating

the point above that it is the boundary layers which limit the assimilation method.

The graph can in fact be split into three roughly linear sections. For boxes of area

0.8–1.0 the change is fast than unit, since it is over this range we are ignoring

the boundary layer. For boxes of area 0.1–0.8 the change is slower, since this is

integrating over the area where the assimilation method has been most successful.

As the box area drops below 0.1 then numerical artifacts of the integration and

assimilation methods dominate and the rate of change again approaches unity. For

a square domain with nx = nz = 64 an area of 0.8 corresponds to a boundary layer

of roughly 3 grid points on each boundary. Looking now at J [box](ρa)/J [box](ρb)

we see that, while over the whole box we have achieved an 80% reduction in

cost function, the centre of the box has obtained a better fit, reducing to 0.14 of its

original value. While this is still significantly greater than unity, it is still a significant

improvement, when viewed as an extra 30% reduction in the cost function.

Studying the form of the final analysis discrepancy we note the obvious grid-

scale striations introduced along the vertical boundaries by the numerical advec-

tion routine. In some cases these are are locally very large, probably as dominant

as the more physical anomalies along the x-axis. To test the role of numerics in

this problem we performed a series of tests in the regime nx = nz = 64, k = 3
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but allowing θ to tend to zero. The result in terms of reduction in cost function is

shown in plot (1) of Figure 4.6, with a log scale for θ. The U shaped curve towards

the extreme left of the plot, with oscillations for small θ ( the right hand side of

the graph) is typical of a minimization problem in the presence of numerical error.

Initially as the problem becomes simpler the method improves, but then errors due

to the numerics dominate and the code begins to stagnate rapidly, giving the 0.2 re-

duction in cost function achieved at the end of the window. To illustrate that these

are numerical effects, we apply the new rearrangement metric, M, introduced in

Section 3.2. We calculate M/J for the pairs of fields [ρa, ρb] and [ρa, ρo], shown

in plots (2)–(3) of Figure 4.6. In the continuum limit with perfect advection these

functions should both be zero for all θ, since all functions are rearrangements of

each other. Instead, both functions grow rapidly with θ as the noise from the ad-

vection routine, shown by the computational mode in the discrepancy field, begins

to dominate the minimization problem.

In principal the advection method used could be chosen from those, eg. con-

tour advection, which are strictly conservative in the sense of the rearrangement

condition. However this would add additional overhead in reverting to a scalar

field form to obtain a value for the cost function, and hence we view this as too

expensive. In the more physically realistic assimilation experiments which follow

boundary effects appear small, suggesting we lie near the minimum of the U shown

in plot (1) of Figure 4.6.

4.2.5 UNOBSERVED TRACERS

The first system was an unobserved tracer field, advected using the same scheme

as ρ, but not contributing to the value of ψ. In effect the scheme adds extra equa-

tions
∂τi
∂s

+ ua · ∇τi = 0 (4.13)

to the assimilation evolution equations. These tracer equations are discretized

and solved numerically using the same approach as in the passive tracer for the QG

model of Section 2.3.2. Experiments with this system show several of the advan-

tages of the adiabatic data assimilation philosophy when compared with standard

assimilation techniques. There is no spreading of fronts, and no creation of double

maxima, even when assimilating data with large gradients. Moreover the scheme is

now implicitly, rather than explicitly, multivariate. Rather than requiring statistics

on the correlation of variations in τ and ρ, the scheme inverts an assumed τ(ρ)

relation, in the same manner as the salinity assimilation methods of Section 1.5.3.
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Figure 4.5: Role of boundaries in the 2D algebraic problem

(1) shows the initial discrepancy between background and observation for the
case nx = nz = 64, θ = 0.1, k = 3. (2) Final discrepancy between analysis and
observations after application of the displacement assimilation technique. (3)
Proportion of total costfunction contained in a square coincident with the full
domain and of the indicated area. (4) Relative reduction in costfunction for a
square coincident with the full domain and of the indicated area.
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Figure 4.6: Numerical error and the 2D algebraic problem

(1) Analysis reduction in cost function for the problem nx = nz = 64, k = 3
against choice of θ. (2) Proportional value of the displacement error metric
M over the discrepancy metric, J for the analysis state, ρa and background
state, ρb. (3) Proportional value of the displacement error metric M over the
discrepancy metric, J for the analysis state, ρa and observation state, ρo.
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The effect of the scheme on the discrepancy in the τ field is dependent on how ac-

curately the background field represents the evolution of the true τ(ρ) relation and

how well the scheme can identify the correct destination of water masses from just

the ρ field. Figure 4.7 shows the behaviour of two passive tracer fields under one

instance of the two-dimensional algebraic problem of Section 4.2.4 (here k = 3,

θ = 0.25 so that the effective displacements are large). The first tracer, τ1, has a ver-

tical stratification, and thus a suitable approximate τ(ρ) relation. This tracer shows

a physically sensible analysis field, in which the horizontal displacement between

background and observation introduced by the phase shift is observed as a vertical

shift in tracers as fluid is moved to balance the density differences. This is precisely

the principle behind the CH algorithm of Section 3.3.1. The second tracer field, τ2,

has a horizontal stratification. The resulting analysis field shows the effect of the

boundary return currents on the field, producing an image with strong gradients

along the top and bottom surfaces. This is the type of effect the CH algorithm could

not capture, but which could be argued as unphysical.

As a more general example, consider a fully observed field ρ1 which contains

two features consisting of two water masses V1, V2 of equal volume with

∫

V1

δ(ρ1 − α)dV =

∫

V2

δ(ρ2 − α)dV ∀α ∈ R.

Then the field ρ2 which has V1 mapped to V2 (and vice versa) is an adiabatic re-

arrangement of ρ1, in the sense of section 3.1.2. If we suppose there is a further

tracer field, τ over the domain, with

∫

V1

δ(τ1 − α)dV 6=
∫

V2

δ(τ2 − α)dV

for at least one α then the masses can be differentiated by their τ properties. The

question is whether incompressibility of the assimilation velocity alone is sufficient

additional constraint on the system to force the scheme to find the correct physical

choice of rearrangement, mapping V1 to V1 and V2 to V2, rather than visa-versa.

As will be shown in the following section by tracking the paths of individual fluid

parcels, it may not always be enough.

4.2.6 TRACING THE PATH OF FLUID PARCEL REARRANGEMENT

To investigate the question posed in the previous section, and to better visualize

the path of fluid elements under the scheme, a basic particle scheme was coupled

to the velocity fields calculated in the assimilation method. For a particle P at a
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Background Observation

ρ

Background Analysis

τ1

τ2

Figure 4.7: Background and Analysis fields for observed and unobserved tracer fields

The top line shows two fields provided as background and observations to the
displacement assimilation routine. The other plots show the effect on two un-
observed tracer fields, τ1 with a gradient perpendicular to the direction of the
required displacement, τ2 with a gradient perpendicular to it, advected along
with the assimilation . The first field shows a smooth evolution consistent with
a dipole-like circulation configuration with lines of no vertical motion at x = 0.2
and x = 0.6. The second shows more obvious small scale and boundary effects,
particularly in the bottom left and top right corners. This shows both the mul-
tivariate nature of the assimilation routine as well as providing a visualization of
the assimilation process.
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point rk at time step k the local velocity field ua(r
k) was calculated by linearly

interpolating the four nearest velocity points in each direction. The position of the

particle is evolved using the simple scheme

rk+1 = rk + ua∆t,

so that in the continuum limit a particle initially within an arbitrary fluid parcel is

transported with it and remains within it for all time. This allows the path of fluid

parcels under the assimilation to be tracked. Seeding the system with a regular grid

of particles and assimilating one of the 2 dimensional algebraic problems (nx =

nz = 32, k = 10, θ = 0.25) produces he particle (and hence fluid parcel) paths

shown in Figure 4.8.

This appears to show that the particles follow generally vertical paths, i.e. that

the scheme operates mainly by generating overturning circulations similar to the

method of Cooper and Haines. This has an obvious connection with the link be-

tween the rate of convergence of the method and the k value chosen, since for k

large a relatively small (and thus easy to generate) vertical displacement gives a

large change in ρ. This means that small vertical displacements fit the model isopy-

cnal layers to the observations well, significantly reducing the cost function, hence

giving fast convergence. It does however still leave the scheme open to the po-

tential ‘identification’ errors as posed in section 4.2.5. This issue can be examined

by introducing into the background and observation fields an identifiable ‘bulge’

of fluid, such that the isopycnal height of the fluid is not a constant in x as in the

previous case, while still ensuring that the relationship ρb ∼ y holds. Since the fluid

‘bulge’ is a local phenomenon we would expect that the scheme would move parti-

cles which started within the bulge close to its final position. The simplest method

to achieve this is using images from the QG model of Section 2.3.2, as shown in

Figure 4.9.

The most obvious effect of in this more complicated case is the sharp increase in

the complexity of particle paths, compared with those in the symmetric case. This

is linked to a slower convergence rate, bearing in mind the originally higher value

for the cost function due to the extra discrepancy caused by the bulge. Although

the paths do show some movement of particles to follow the bulge the total extent

of horizontal motion is limited. This is to be expected since most of the fluid to

supply the bulge in the analysis will have started in the area the bulge was to be

created in the background.

104



3D DISPLACEMENT ASSIMILATION CHAPTER 4

Observed field Analysis field
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Figure 4.8: The particle system in action for θ = 0.25, k = 10, nx = nz = 32

The main plot has the background state as the coloured plot. The observed
and analysis fields are show above. Superimposed are the paths of the particles
during the assimilation process. Crosses mark the initial seeding of the particles,
with tails marking the subsequent path of the particle under the integration of
the assimilation velocity up to its final position, marked by the open circles at
the head.
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Observed field Analysis field

Figure 4.9: The particle flow for a non-symmetric problem

As in Figure 4.8 the main plot shows the background field, with the observations
and analysis above. Crosses mark initial particle positions and circles their final
location. Note that for this problem, as is typical with the QG model differences
between the background state and observations were concentrated around the
jet and eddies in the centre left of the basin, exactly where particles have been
transported furthest. The curved particle paths at the local the eddies show
clearly the rotation the assimilation velocity applies. Note that most of the basin
is stagnant under the assimilation however.
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4.3 IMPROVING THE RATE OF CONVERGENCE

Although the method successfully reduces the cost function over the course of

the iteration, thus implying data assimilation is being performed, and successfully

generates an adiabatic rearrangement of the initial background field, the rate of

reduction in J and the tendency to converge to local rather than global minima are

both disappointing, compared with the typical behaviour of methods such as 3D-

VAR when applied to traditional problems, which can achieve near total reduction

in cost function measurements in only a few iterations. To generate an efficient

method for adiabatic data assimilation a method must be found to speed conver-

gence and reduce the likelihood of converging to local minima.

Traditionally the steepest descent algorithm is seen as the most basic and little

used member of a family of gradient descent, or ‘hill-climbing’ optimisation tech-

niques such as the family of conjugate gradient method and the Broyden-Fletcher-

Glodfarb-Shannon method. Unfortunately these methods are not greatly suitable,

due to the extreme non-linearity of the optimization problem in question and the

difficulty of mapping to the spaces in question. Alternative, stochastic based meth-

ods such as simulated annealing are also inappropriate due to the large dimension

of the problem being solved. Instead modifications to the original algorithm are

considered, with the aim of finding the most efficient method.

4.3.1 CHOICE OF NORMALIZATION FACTOR

The condition in equation (4.11), with L the identity operator, represents a re-

striction on the L2 norm of the streamfunction. This imposes only a weak constraint

on ψa while allowing point and line discontinuities which represent local failures

in the incompressibility condition. These discontinuities can cause unacceptably

large values for the resulting velocity field after the problem is discretized and thus

impinge on the CFL limit for the assimilation and on the length in pseudo-time for

which the derived search direction for the velocity field ua actually represents a

descent path for the cost function. An obvious alternative choice for L is to directly

constrain the L2 norm on the assimilation velocity field itself,

∫

D
ua · ua dV ≡

∫

D
∇ψa · ∇ψa dV = 1,
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i.e to apply Lφ = ∇φ. Under this modification the change to the optimality condi-

tion on ∂J/∂s is such that instead of obtaining

ψa =
∂((ρo − ρ), ρ)

∂(x, y)
,

with the streamfunction equal to the Jacobian operator applied to the innovation

vector and the background field we obtain an elliptic equation for ψa,

∇2ψa = −∂((ρ
o − ρ), ρ)

∂(x, y)
.

This elliptic problem must be solved under the imposed no-flow boundary condition

on ψa,

ψa = 0 on δΩ.

This choice of norm represents a bound on what may be called the ‘kinetic energy’

of the assimilation step at any pseudo-time level, which is perhaps the most nat-

ural choice for a normalization condition, although in principal any normalization

condition of the form

∫

D

∞∑

n=1

m2n(∇(2n)ψa)
2 +m2n+1(∇(2n+1)ψa · ∇(2n+1)ψa) dV,

for a set, mi, of real, positive constants. In other words any Sobelov norm on ψa,

may easily be applied.

Investigating the behaviour of the two norms showed that, as might be ex-

pected, the numerical method based on the elliptic problem generated significantly

smoother streamfunction fields and thus in turn much smoother velocity fields.

This was found to lead to significantly longer integration times in s before descent

failed for any given search direction and thus a noticeably faster rate of conver-

gence in J . Running the algorithm with norms on ψa, ∇ψa, ∇2ψa and ∇3ψa on

the algebraic two dimensional problem produced the results shown in Figure 4.10.

As predicted, the ∇ψa shows best convergence properties, although the ∇2ψ norm

(an enstrophy norm on the assimilation velocity field, ua) showed very similar be-

haviour. In comparison a Sobelov norm on both ∇ψ and ψ together, (labelled

‖∇ψ‖ + ‖ψ‖2/L2
D, where LD = 30, 000m is the Rossby radius of deformation for

the system) produced behaviour only slightly better than for a norm on ψ alone.

In this instance the highest order norm tested failed to converge. This may be due

to the necessity of specifying three sets of boundary conditions for this problem,

since the method requires the integration by parts of the variational term derived
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from the normalization function, as well as the usual boundary condition from the

underlying transport process.

4.3.2 A MULTISCALING DESCENT ALGORITHM

The implementation of the descent algorithm represents a discretization of the

continuous equations presented in Section 4.1.1, which are in turn applied to the

discretized source data for observations and an initial background field. There

is, however little coupling between the length scales used in the discretization of

the source data and those required for numerical implementation of the algorithm

itself, apart from the necessity for the final assimilation analysis to lie on the back-

ground model grid if it is to be used as an initial condition for further model runs.

There is moreover absolutely no coupling between the time discretization used for

the model chosen to provide the background field and the discretization chosen for

the time-like variable contained in the descent algorithm. Hence although it is nat-

ural to choose the same grid structure for the descent algorithm as was used in the

original model generating the background field and thus to use an identity mapping

to interpolate one field onto the other, this is a choice made of convenience and not

a technical requirement.

This suggests it is feasible to apply to the descent method a technique for speed-

ing the convergence of the analysis field equivalent to the use of multigridding

methods in the application of minimization techniques such as the conjugate gradi-

ent method (Elman, 1998). The underlying idea is to perform the calculation of ψa

and the accompanying minimisation of J (ρ) on a coarse, large scale (and thus re-

duced dimension) grid. In the context of displacement methods this should capture

the large-scale shifts required to move water masses into the same vicinity, thus re-

ducing the cost function, without necessitating the small scale shifts needed to cap-

ture the fine-scale positioning of filamentary structures. Such methods should also

lead to smooth, numerically stable velocity fields allowing longer time-integration

steps without failing stability criteria such as the CFL condition.

Evidence of the potential of such a technique can be found by considering a low

pass3 operator, f , on fields over D, with complementary eddy fields, f ′ = f − f . We

3The nomenclature of the low-pass filter has been inherited into climate science from the field

of signal processing, unfortunately without any firm definition of what such a filter actually means,

beyond the general assumption that fast, high frequency signals are attenuated, while low, slow
frequency signals pass though. For a signal, f(t) and a scale τ , one such operator is

f(t) =
1

τ

∫ t+τ/2

t−τ/2

f(t′)dt′.
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assume that the operator f satisfies the usual properties,

(f)′ = f ′ = 0,

((f)) = f, (f ′)′ = f ′.

The quadratic cost function, J for states f and g may then be expressed as

J (f, g) =
1

2

∫

D
(f − g)2 + 2(f − g)(f ′ − g′) + (f ′ − g′)2 dV,

hence, assuming that ‖f ′ − g′‖ is initially small (i.e. that displacement errors are

initially large scale,)

J (f, g) = J (f, g) + O(‖f ′ − g′‖).

Considering the rate of change of J with s, under the assumptions

∂f

∂s
+ ua · ∇f = 0,

∂f ′

∂s
+ ua · ∇f ′ = 0,

we obtain the equation

∂J
∂s

=

∫

D

[
(f − g) + (f ′ − g′)

]
ua · ∇

[
(f − g) + (f ′ − g′)

]
dV. (4.14)

Comparing the magnitude of terms in the equation (4.14), changes due to the low

pass terms marked with overbars dominate if the two conditions

‖f − g‖ ≥ ‖f ′ − g′‖, (4.15)

‖f‖
L

≫ ‖f ′‖
L′ , (4.16)

are satisfied, where L and L′ are length scales for the mean and eddy fields respec-

tively, so that for example ∇f ′ ∼ ‖f ′‖/L′.

Equation (4.15) is assumed satisfied naturally, at least initially, for most geo-

physical fields for suitably small L. Plotting a graph of the terms in (4.16) for

This attenuates signals on significantly faster than τ , without affecting the amplitude of the long
scales and is perhaps the simplest filter in use within the oceanographic community. More com-

plex definitions based on various transform methods are possible however, for examples see Lynch

(1997).
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Figure 4.10: Convergence rates for various choices of norm

The plot shows the normalized cost function, J /J0 := ‖ρ− ρo‖/‖ρb − ρo‖, for
the shifted sine curve problem of Section 4.2.4. For these runs nx = nz = 128,
k = 10 and θ = 0.25. The colours denote the relevant function used for the
normalization condition, ‖Lψa‖2 = 1. The two functions involving linear terms
in ψa show no convergence on the first iteration due to problems with the initial
choice of step size and are clearly less successful than norms on higher derivatives.
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Figure 4.11: Graph of mean and eddy ‖q‖2/L for QG model

The plot shows terms ‖qi‖2/L, ‖q′i‖2/L against length scale, L, for mean and
eddy vorticities calculated from qi = (∇2 − f 2

0 /g
′Hi)ψi +βy, under the low pass

filter of Section 4.3.2. Filtered terms contain more energy for L < 300km, in part
due to the β term. From equation (4.16) this justifies the multiscale approach.
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vorticity data taken from a realization of the QG model produces the results shown

in Figure 4.11. This shows that for this case both conditions are initially satisfied for

low pass filters acting over the order of eight grid points (80 km) since in both the

top and bottom layers the mean function significantly exceeds the eddy function,

hence under these conditions the search direction is at first dominated by f , so that

ua ≈ ∇ · [(f − g)f ].

Consider now the rate of change of ua itself with s by considering the leading

order term in acceptable second order variations of J ,

∂ua
∂s

= ∇ · (g − 2f)ua · ∇f
∼ (‖δ‖ + 2‖f‖)‖f‖/L2

. (4.17)

This limit will generally decrease with increasing L, hence the multigrid approach

will usually generate more stable search directions than a code based on iterating

at only one length scale, again aiding convergence.

Unfortunately a naive approach based purely on mapping the initial background

field to a coarse grid alone and performing all calculations there will in general fail

to generate an analysis that satisfies the discretized version of the rearrangement

condition when re-interpolated back onto the model grid of the background field

for outputting analysis states. This is due to the large implicit mixing involved

in such an interpolation step. The effect would be to spread fronts and mix water

masses defeating the original goal of an adiabatic assimilation method. The obvious

compromise is to perform the assimilation using a coarse grid to calculate the ψa

while retaining information on model variables on a fine-scale grid of the same

resolution as the original data. Two approaches are possible, a simple spline fit to a

coarse ψa field and a scheme based on advecting the mean field through large scale

fluxes, while retaining the fine scale structure in situ. The precise numerical details

of the implementations of such routines are given in section B.2 in the appendix

but a short description is given here.

The first technique involves simply ‘super-obing’ observations, ρo, (that is the

grouping together of nearby observations into one smoothed or averaged obser-

vation) and smoothing the current analysis state, ρ, onto a coarse grid using the

values from square sets of neighbouring grid boxes. This is performed, for data

with observations available on a regular grid, using the operator

f I,J =
1

hI,J

(m+1)∗N
∑

i=m×N+1





(m+1)∗N
∑

j=m×N+1

[fi,j]



 ,

112



3D DISPLACEMENT ASSIMILATION CHAPTER 4

where hI,J is a term, introduced in anticipation of the case of limited observations,

equal to the number of observed elements in the relevant coarse scale grid-box

for ρo and to the number of background data points (i.e. N2) in the case of the

current iteration of the analysis state, ρ. From these fields a coarse ψa is calculated

using the two-dimensional form of equation (4.17), which is then re-interpolated

down to the data grid for the evolution time step, which uses the same approach as

before. In this case while the returned velocity field is smooth and large scale, the

dimension of problem for the advection step, under which the bulk of the work is

done in the method, remains unchanged.

The second technique represents a true multigrid approach to the problem. The

same approach as in the first technique is used to generate coarse-scale observa-

tions, ρo, analysis, ρ and optimal search path stream function ψa. This ψa is then

used to calculate a coarse scale velocity field to be used to evolve the pair of state

vectors, (ρ, ρ′), through two independent evolution equations,

∂ρ

∂s
+ ua · ∇ρ = 0,

∂ρ′

∂s
= 0,

where ρ′ = rho−ρ is the remaining eddy, or noise field left when the coarse density

field is advected. This approach is naturally slightly diffusive on scales below the

coarse grid, however the lack of dependence on the eddy terms and the smaller

dimension of the advection problem make the code quick both to run and to con-

verge.

Denoting the number of fine scale grid-boxes included in one side of the square

coarse scale grid-box by N the method was applied at a number of resolutions to

the algebraic problem of Section 4.2.4. Runs at constant N = 2 showed improved

rates of convergence, but tended to converge to a higher limit than the high res-

olution N = 1 limit. Both the value and rate of convergence of the cost function

J tended to lie somewhere close to that found for the single scale problem of the

same dimension, that is discretized with both nx and nz halved.

The scheme may also be run with a variable value for N = Nk, that is as a true

multiscale method. Under certain conditions on both the problem and N we may

then see not only an improved rate of convergence, but a reduction in the magni-

tude of the value to which J converges. In general, the optimal setup appeared

to use a saw-tooth or W algorithm acting over the values N = 1, 2, 4. Significantly

larger choices for N showed little improvement. This suggests that the multigrid

method produces a better fit to the global minimum of the system, possibly because
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Figure 4.12: J /Jo for various multigridding techniques

The lower plot shows the change in normalized cost function with iteration num-
ber for an application of the displacement technique to the asymmetric problem
of Figure 4.9, with a linear normalization function, ‖ψ‖2 = 1 for the multigrid-
ding technique of Section 4.3.2. We plot two instances of the velocity method,
for grid switching patterns we term as ’saw tooth’ and ‘W’, with the number of
grouped grid points shown in the top plot. Both methods are superior to the con-
trol run, with the ‘saw tooth’ superior for most iteration numbers. We also show
one instance of the flux method. This more diffusive method achieves reductions
in cost functions even faster, although does not generate a true rearrangement.

114



3D DISPLACEMENT ASSIMILATION CHAPTER 4

it allows a better propagation of information across the various length scales on

which the scheme operates. Figure 4.12 shows the improvement achieved in the

convergence of one particular problem, under both the flux averaged method of

super-obing and the velocity averaging method and for both the ‘W’ and ‘saw tooth’

algorithm for the grid smoothing/coarsening. For this particular problem, similar

to the asymmetric problem illustrated in Figure 4.9, the super-obing flux averaged

technique achieves the fastest convergence at nearly three times the rate of the

control run.

4.4 DEPENDENCE ON OBSERVATIONS

All previous work has been based on the assumption that values for y were avail-

able on all ρ points and at resolution at least equal to the model grid spacing, so

that the field may be considered differentiable. In this section we consider the gen-

eral dependence of adiabatic assimilation methods on observations, particularly in

the case where observations are available only at a smaller number of points, which

may lie off the model grid or be observations of variables not directly modelled.

4.4.1 ASSIMILATING POINT OBSERVATIONS

The vast majority of real ocean observations are modelled as point observations,

that is they represent the value of the observed quantity averaged over length and

time scales much smaller than the grid-length and time steps of numerical models.

In fact these scales are so small that they can be well approximated as Dirac delta

functions in space and time, so that for an observation yi[ri, t] of a model variable,

valid at at point ri at time t the observation operator hi acting on a model state x(t)

is

hi[x] =

∫

Ω

xδ(r − ri)dV. (4.18)

Combining such discrete data with a continuous constraint is fraught with difficulty

so instead in this section we consider the behaviour of a spatially discretized version

of the auxiliary equation governing the evolution of the assimilated field,

∂X

∂s
= ua · ∇X,

when deriving the assimilation cost function.

The model field x(r, s) is replaced with a model vector x(s) constrained element-
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wise by the evolution equation

∂xi
∂s

= −Jijkψjxk = −Ji[ψ,x],

here Jijk is the tensor operator representing the numerical discretization of the

Jacobian advection operator, J(ψ, x). The discretized cost function becomes

J (s) =
1

2
(y −HX(s))T (y −HX(s))

so that the rate of change of J with respect to s is

∂J
∂s

= (y −HX(s))THJ [ψ,x].

The normalization condition, equation (4.11), must also be discretized. AllowingV

to be a diagonal matrix containing the element volume values of the discretization,

Vij =

{

∆Vi i = j

0 i 6= j
,

we may write ∫

Ω

u.udV ≈ ψTDTV Dψ = 1,

where D is the discretized matrix operator representing the gradient operator. Us-

ing the method of Lagrange multipliers and once again seeking the streamfunction

that causes the greatest rate of descent in J we find

ψ = λ(DTV D)−1J [HT (y −Hx),x].

The major difference between this form and the form with full observations is the

introduction of the two observation operator terms, HTy and HTHx. For point

observations on grid nodes the latter term has the extremely simple form

[
HTHx

]

i
=

{

xi point ri observed

0 otherwise.

The precise form of the elliptic problem, (DTV D)−1, to be solved is highly de-

pendent on the discretization chosen for the operator J [ψ,x]. If the energy and

enstrophy preserving Arakawa Jacobian formulation is used (see Appendix A.1),

then the operator acts to spread and weight a single observation over neighbour-

ing grid-points, such that the implied direction of flow for such a streamfunction
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lies parallel to the spatial gradient of the field x. This agrees well with our natu-

ral instinct for how to correct an error at a single point though an advective dis-

placement, by shifting tracer properties down-gradient to match the observation.

Although the precise numerics are dependent on our choice of D the effect is to

smooth this initial guess. In general the streamfunction produced will have non-

zero curl everywhere and thus induce a displacement across the entire basin. This

is a consequence of the global nature of the incompressibility and rearrangement

conditions. Nevertheless, the majority of the ‘assimilation’ energy, ψTDTDψ, and

the largest displacements both remain close to the observation point.

4.4.2 ASSIMILATING LIMITED OBSERVATIONS

The question remains as to whether the method can successfully generate re-

arrangements of a field to match to observations when given limited observational

data, without significantly degrading the structures in the analysis field, without

large unphysical displacements and without introducing spurious assimilation fea-

tures. To investigate this the algorithm was run repeatedly using the same states

as background and truth each time, but varying the spacing of the assumed ob-

servational network, so that we have observations at every nth grid-point, where

n ∈ 1, 2, 4, 8, 16. Although this setup is an unrealistic model of the actual GOOS,

as shown in Chapter 1, we choose a regular grid structure so that the induced pat-

tern in the analysis field is regular, and thus clearer to the naked eye. Even with a

globally irregular grid of random observations there will exist local regions of ob-

servations on which an approximately regular grid structure can be imposed. The

normalized rate of convergence for these experiments is shown in Figure 4.13, with

the final analysis fields plotted in Figure 4.14. Studying these it is obvious that :

(i). In all cases the method successfully reduces the cost function over the course

of the assimilation step. In this sense the algorithm is successfully assimilating

the data provided to it.

(ii). The rate of convergence is generally slower as the network becomes more lim-

ited, except for the case of the very coarse network, which has fewer observa-

tion points than the coarsest model grid used in the multigridding routine.

(iii). As the grain of the observational network coarsens then the magnitude of the

spurious displacements introduced increases.

To demonstrate the second point we refer to Figure 4.15. This shows the com-

plex modulus of the result of the two-dimensional Fast Fourier Transform (FFT)
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Figure 4.13: J /J0 for limited observational networks

The lower plot shows ‖q−qo‖/‖qb−qo‖ against iteration number for applications
of the displacement technique to the problem shown in Figure 4.14 for some
choices of limited observations on regular grids. We use a gradient normalization
, ‖∇ψa‖2 = 1 and the multigridding scheme shown on the top plot. Here n∆x
denotes the length of separation between observations, where ∆x is the base
model grid length. The fine scale and very coarse observations show the same
limit of convergence, although the coarse grid initially converges more quickly.
The intermediate grids show both slow and poorer convergence under the scheme.
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Figure 4.14: Plots of truth, background and analysis for limited observations

Plots showing final analysis fields for the displacement technique under the methods
described in Figure 4.13. Note the qualitative successes of the problems with
n = 1, 2, 32 as well as the ‘crinkling’ which occurs on the length scale on which
observations are available, particularly clear for n = 3.
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algorithm (Ramirez, 1985) applied to the full final analysis error field , xa − xt.
This algorithm separates the energy contained in the signal into its different (in

this case spatial) frequencies. For comparison the FFT of the function

g(x, y) = sin(
πx

Lx
) sin(

πy

Lx
),

is also shown. Initially the field shows the majority of its energy concentrated on

mesoscale eddy scales and below. As n increases there is a noticeable shift in energy

to scales proportional to n∆x, visible as the crossed yellow bars in the 2D FFTs. This

shows the features of the analysis generated by the assimilation method are directly

dependent on the density of the observation network.

4.4.3 THE EFFECT OF NOISY OBSERVATIONS

It is necessary to consider the effect of noise on observations, since in real life

observations are prone to error, whether it be truncation of a decimal expansion,

the use of a measurement of the temperature of one bucket of water to represent

the temperature of an ocean bulk surface temperature or the uncertainty of an al-

timeter measurement caused by drift in the satellite platform’s orbit. In standard

assimilation techniques such as 3D-VAR estimates of this error are compared with

uncertainties in the forecast of the background state to produce an average state

compatible with both. In general such an approach is not compatible with the phi-

losophy of displacement assimilation, where observations are assumed to represent

a measure of the Lagrangian, rather than Eulerian, flow pattern, since the obser-

vations are assumed to contain a much more accurate representation of true phase

than the background field.

In this interpretation noise represents (ideally) small scale false displacements

on the back of the large scale true displacement required to assimilate the obser-

vations4. The errors become important when the magnitude of the displacements

required to match to the errors in the observations become larger than those re-

quired to correct the difference between the background state and the truth.

It is unfeasible to study the whole gamut of behaviour exhibited by the errors

in oceanic observations, however we may show that the issue does not in principle

cause all displacement assimilation methods to fail. Considering the highly ide-

4We assume here that the registered locations of all observations are accurate. If these are

not then the observations themselves contain significant displacement errors and any assimilation

scheme is likely to fail. This is unlikely with modern data however, due to the very high order
accuracy of satellite positioning systems such as GPS, relative to the significant length scales in the

ocean. Regular quality control checks at operational centres act quickly to black-list observational
sources which regularly mis-report their locations.
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Figure 4.15: FFT analysis of analysis errors

Plots shows 2D FFTs for analysis errors of the plots in Figure 4.14. The obvious
horizontal yellow peaks, particularly for n = 2, 6, 32 are another example of the en-
ergy the assimilation introduces on the wavelength of the observations, the number
of peaks increasing in line with n. The asymmetry in the pattern is inherited from
the system itself, with strong western boundary currents and weak return flows.

121



3D DISPLACEMENT ASSIMILATION CHAPTER 4

alised situation of the effects of Gaussian noise on the one dimensional problem

of Section 4.2.3 produces the results of Figure 4.16, in which noise from a variety

of distributions, both biased and unbiased is added to the observations before they

are assimilated. In this case the algorithm is particularly insensitive to the noise,

since in one dimension the scheme is unable to change the Lagrangian value of the

spatial derivative of the background,

d

ds

(
dρ

dx

)

:=

(
∂

∂s
+ ua

∂

∂x

)
dρ

dx
= 0.

This means that the fitting is, in some sense, the matching, through phase shifts,

of the two shapes, background and observed, by minimizing some measure of the

difference. Large errors are thus only possible when they can be aliased to the

shape of the background field, as in the case of large errors, like the second plot of

the figure.

In two dimensions the flow field may modify the local gradient of the tracer,

since for any scalar field, f , we have

d

ds
∇f :=

(
∂

∂s
+ ua · ∇

)

∇f = ∇f(∇× ua) = ∇f∇2ψa,

and the assimilation velocity field is not constrained as irrotational. As such the

algorithm may modify the shape of the background field to fit any noise in the ob-

servations. This makes it necessary to consider the noise introduced not only into

the observed field itself but also into the derived discretized derivative fields. An

error of magnitude order ǫ in a discretized field ρt can introduce an order ǫ/∆x

absolute error into the predicted gradient given by a simple finite differences ap-

proach. The relative error is thus 2ǫ/‖∆ρ‖ which may be very large in areas of small

‖∆ρ‖. Fortunately, provided the background field is close to the truth, these areas

of large relative error in observed gradient will be areas of small contribution to ψa,

since these will be weighted by terms of order ‖∆ρb‖.

4.4.4 ASSIMILATING NON-TRACER OBSERVATIONS

The algorithm used is easily modified to consider the question of multiple vari-

ables, again following the approach of 3D-VAR algorithms. The matrixH of section

4.4.1 can be replaced by a general non-linear observation operator on X, with H t

replaced by the operator adjoint. This approach is described in more detail in the

next chapter, in the context of assimilating stream-function observations to correct

vorticity fields.
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Figure 4.16: The effect of noise on a 1D rearrangement problem
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4.5 CHAPTER SUMMARY

This chapter has introduced a family of algorithms which directly minimise a

3D-VAR style cost-function with respect to displacements which can be generated

through incompressible advection. This represents an attempt to limit the set of re-

arrangements over which the field is minimized to a set of diffeomorphisms of the

original field, retaining a physical basis for the displacement. Existence of solutions

and convergence properties are discussed. The method does suffer from issues re-

lated to non-uniqueness of solutions and the existence of local minima, plus some

instability with respect to small changes in the observations provided. The method

is applied to a series of progressively more complex problems, culminating in syn-

thetic data representing the distribution of a tracer field in an idealized ocean basin.

We find a strong dependence on the form, accuracy and number of the observations

supplied to the routine in the ability of the method to generate a successful analysis

field.
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CHAPTER 5

4D DISPLACEMENT ASSIMILATION

“Time, like an ever-rolling stream

Bears all its sons away;

They fly forgotten, as a dream

Dies at the opening day.”

Isaac Watts

Man Frail and God Eternal, 1719

Both four dimensional variational assimilation (4D-VAR) and Kalman smoother

(though not the Kalman filter, which only carries forward information on the error co-

variances) make simultaneous use of observations valid at multiple observation times

while calculating an analysis state. In this way they extract the maximum information

from the assumed coupling between data in observations and the equations of motion

of numerical models. The model equations act to transport information through ‘data

holes’ within observations and thus increase the effective domain, in both space and

time, over which observations are valid.

Given the dependence on high-density or full observations of the displacement tech-

niques demonstrated in the previous chapter and the near adiabatic nature of oceanic

flows over short time periods it is hypothesised that applying a similar ‘time-windowed’

approach to the development of a displacement technique may generate an efficient al-

gorithm for displacement data assimilation with operational data. A method is here

suggested which achieves this goal through the introduction of an additional ‘assimi-

lation velocity’ term directly into the tracer equation of a numerical model, which is

then used to evolve the analysis state over the time-window within which information

contained in observations is assumed relevant to subsequent forecasts.

By choosing this assimilation velocity term to minimise a 4D-VAR style cost-function

applied across the whole time window the method is found to generate a final time

model analysis state which lies closer to the assumed identical twin true state, as well

as generating an augmented model trajectory which converges towards that of the true

state over the course of the time-window. In this sense the algorithm may be thought

of as correcting for both the initial background error and correcting that fraction of
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the model error which may be parameterized through the advective term.

5.1 OBSERVATIONS, INFORMATION AND TIME

Previous implementations of displacement techniques, such as Cooper & Haines

or the methods of Brewster and Hoffman presented in Section 1.6, as well as the

QG implementation of CH demonstrated in Section 3.3.1, operate only on data

available at a single verification time. These methods are generally derived based

on an assumption that full observations, or a retrieval thereof, are available over

the entire domain of interest at that time, on scales comparable with model reso-

lution. On the other hand, the new generation of data assimilation methods used

at operational centres work on the assumption of an interval, or time window, over

which spatially separated observations are fitted, using a dynamical model for state

evolution. An obvious question is whether this four-dimensional viewpoint can be

naturally extended into the philosophy of displacement assimilation while preserv-

ing some notion of the rearrangement condition of Section 3.1.2. In this chapter

we demonstrate that it can, at the notable disadvantage of linearizing the velocity

fields which generate the displacements with respect to the model time step.

5.1.1 AN OBSERVATION MEMORY TIME

Consider a general dynamical system, evolving a state vector, x, over a set of

discrete times, t1, . . . , t∞. Let F be the functional such that

x[tn] = F(tn,x[t1], . . . ,x[tn−1])
1.

Provided that the evolution functional F(tn) is not a totally random process at any

time level, it has some memory of all its previous states. That is, denoting the

a priori probability distribution of state x[tn] by P (x[tn]) and the resulting condi-

tional probability distribution of state x[tn] given the state x is known at time tm by

P (x[tn]| x[tm]), there exists a relation

P (x[tn]|x[tm]) 6= P (x[tn]) .

This relation holds, through symmetry, regardless of whether tm lies to the future or

past of tn. In light of the Bayesian assumption of Section 1.3.1 this means that the

1We have assumed causality in the development of the system. This does not affect the eventual

dependence of state estimates on observations which lie in the relative future however.
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posterior estimate of the distribution of the state x[tn] is therefore dependent, not

only on observations taken at time tn, but also on observations of the states lying

in the past and future. In general if the combined system and observations are

not entirely deterministic, as has been assumed in any formulation of statistically

optimal data assimilation methods, then there will exist a ‘memory’ timescale, T ,

over which the utility of observations will fade. This property is illustrated for a

simple three state system in Figure 5.1.

The magnitude of this timescale depends on the precise structure of the dynam-

ics of F and on the predictability of the stochastic part of the system. Typically

there will exist markedly different time-scales for different modes in the state, for

example the fast and slow modes (labelled inertial gravity and Rossby waves re-

spectively) excited in a geophysical fluid under perturbation.

In a famous paper, which later formed the basis for the development of much

of modern chaos theory, Lorenz (1963) posited the existence of a timescale after

which two different climate conditions end up statistically as similar to a randomly

chosen third state of the system as to each other, regardless of how small the initial

anomaly between them was. This timescale, derived in Lorenz’s analysis from a

numerical implementation of a heavily simplified model of atmospheric convection

in a box, represents one method for obtaining an estimate of T for the climate

system. Further estimates for this parameter have since been derived by studying

the behaviour of perturbed trajectories of more advanced and realistic GCMs. The

precise values vary from the widely quoted figure of two weeks (actually 19 days)

from Charney et al. (1966) from a selection of then current atmospheric GCMs to

5 months for the doubling time in the growth of fast mode of errors in a large-scale

coupled ocean-atmosphere model (Goswami and Shukla, 1991).

Notwithstanding the variability in such estimates, these figures are, for both

the atmosphere and ocean, comparable with the longest scales on which numerical

forecasts are currently made. They are moreover far longer than the time-scales

at which the models themselves operate and over which new observations become

available. Equally importantly in the context of displacement theory, the obser-

vation memory scales are shorter than the time-scales over which mixing effects

dominate, both in the real ocean (see Section 2.1) and for the QG model used

here (see Section 3.2). This means there is information on displacement error con-

tained in both past and present observations of the ocean. This information can be

extracted, given a proper understanding of the relevant dynamics.
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Figure 5.1: Example of observation memory for a simple system

Consider a system with three possible states, controlled by a simple discrete
Markov process with an evolution matrix given by

A =





1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

0



 .

so that the evolution of the probability distribution xn+1 := Pn+1(X = x)
depends on Pn(X = x) through the relation

xn+1 = Axn.

The long-term probabilities of such a model existing in each of its states is
shown in the left hand plot above. These represent the best probabilities for
a guess for the state of the system when no other information is available.
The right hand plot shows the probabilistic evolution of the system after a
(perfect) observation,

x0 =
(

1,0,0
)T

This is the PDF given in black. Succeeding PDFs in red, green, yellow,
magenta and blue converge back towards the mean state as the system
‘forgets’ the information contained in the observation.
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5.1.2 ASSIMILATION UNDER A TIME WINDOW

Of the assimilation methods which make use of observations at multiple times,

including the previously introduced Kalman Smoother (Li and Navon, 2001), as

well as the ‘Timely’ Optimal Interpolation method in use for ocean data assimilation

at the UK Met Office2, perhaps the simplest in form is four dimensional variational

data assimilation (4D-VAR). This is also among the most commonly used, being the

form of assimilation algorithm used operationally at the ECMWF for ocean data

assimilation of most in situ data (Weaver et al., 2003; Vialard et al., 2003), as well

as at both the UK Met Office and ECMWF for atmospheric data assimilation. The

method is described in some detail here, using the discrete Ide notation of section

1.3.1 and letting x[tn] denote a system state valid at model time tn.

Problem 5.1 (Strong Formulation 4D-VAR) Given vectors of observations y[tn], tn ∈
[t0, . . . , tf ] and a background state for x at time t0, find the initial condition analysis

state vector xa[to] which minimizes a cost function, J (x[t0];y,xb) defined over a time

interval [t0, tf ] by

J (x;y,xb) = Jb + Jo,

Jb =
1

2
(x[to] − xb)T B−1 (x[to] − xb) ,

Jo =
1

2

tf∑

ti=t0

(y[ti] − h(x[ti], ti))
T
R−1[ti] (y[ti] − h(x[ti], ti)) ,

(5.1)

whereB andR are, as in Chapter 1, the background and observation error covariance

matrices, subject to a strong constraint that the individual states satisfy the prescribed

discretized nonlinear model equations exactly,

x[tn+1] = M(x[tn], tn). (5.2)

In the weak formulation the condition (5.2) is relaxed by allowing for a small

discrepancy between the derived analysis state at times greater than t0 and the state

calculated from the model trajectory. This extra parameter is assumed to be able to

correct for model errors between the prescribed numerical model, M, and the evo-

lution operator for the true state vector. In both weak and strong formulations the

model condition may be enforced using a Lagrange multiplier approach, including

2the TOI scheme combines the speed of 3D data assimilation with the maximal use of data of 4D
methods. Observations are assimilated in a 3D sense, but also evolved with the model and weighted

depending on their closeness to the validation time of the relevant analysis (Davey, 2005).
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an extra penalty term in the cost function to be minimized;

Strong Formulation : JM=

tf∑

ti=t0

[θ[ti] · (x[ti+1] −M(x[ti], ti))] .

Weak Formulation : JM=

tf∑

ti=t0

[
θ[ti] · (x[ti+1] −M(x[ti], ti) + d[ti]) + ‖d[ti]‖2

]
.

Extremizing the cost function with respect to the adjoint variable, θ, thus enforces

(5.2), up to the minimal discrepancy, d, in the weak case.

The minimization problem is typically solved by using an adjoint to the lin-

earized model equations, M ∗, to calculate the local gradient of the cost function

with respect to variations in the initial conditions,

∇x[t0](J + JM) = b−1(x0 − xb) + θ[t0],

where the adjoint variable θ satisfies the equations

θ[ti] = M ∗(θ[ti+1], ti+1) +HR−1[ti](y[ti] − h(x[ti], ti), i ∈ [t0, . . . , tf−1],

θ[tf ] = HR−1[tf ](y[tf ] − h(x[tf ], tf),

where H is the local linearization of the non-linear observation operator. The

calculated gradient is used as a search direction in a suitable descent algorithm.

Under this approach analysis (and of course forecast) states at times greater

than t0 are always calculated directly from the model, M, so that the contribution

from the JM term is implicitly set to vanish. The values of the θ are calculated

by backwards integration of the adjoint model from the terminal condition under

the necessary forcings from the observed innovation vectors, y− h(x). This cycling

between backwards integration of the adjoint model to obtain a descent path, fol-

lowed by forward integration of the model equations to find a new approximation

to the state trajectory corresponds to the backwards and forwards sweeps of the

Kalman Smoother algorithm in that information in the mismatch between obser-

vations and background is carried in the positive and negative directions of model

time respectively.

When the 4D-VAR scheme is applied operationally approximate or linearized

forms of the cost function or adjoint are frequently used to reduce the computa-

tional expense of the full algorithm or to speed convergence towards a limiting

solution, at the cost of a possibly sub-optimal final analysis state. For example the

ECMWF NWP assimilation system operates at half the model resolution of the full
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deterministic forecast when assimilating data. The final model trajectory generated

can be evolved using the model operator to times greater than the final time of

the time window in order to generate a new forecast state. The conceptual differ-

ence between using a four dimensional (4D-VAR) and three dimensional (3D-VAR)

algorithm to assimilate observations over a short time window in a simple model

is illustrated in Figure 5.2. This does not show clearly the advantages of the al-

gorithm though, since in general 4D-VAR algorithms are more suited to problems

with limited or noisy observational data. This is because observations valid over

a wide range of verification times may be assimilated and the analysis trajectory

is constrained to lie on (in the case of strong formulation 4D-VAR) or near (in the

case of the weak formulation) a model trajectory.

5.2 A 4D DISPLACEMENT ASSIMILATION TECHNIQUE

5.2.1 TIME WINDOWS AND REARRANGEMENTS

The question remains as to how to combine the advantages of methods based on

the ‘time window’ and ‘rearrangement’ interpretations of the data assimilation prob-

lem consistently. One hypothetical approach would be to couple the increments to

the model initial conditions to the three dimensional rearrangement techniques of

Chapter 4, constraining the actual applied correction to be in the form of a rear-

rangement. The method would require both calculation of a 4D-VAR analysis and a

rearrangement of the background state that was closest to it, while hoping that the

rearrangement state calculated actually represented a better fit to observations than

the initial background. Such an approach would be both computationally compli-

cated and inefficient, with no guarantee that the method would actually reduce any

objective function.

These issues may be resolved if we remember that the rearrangement condition

applies at a single time, whereas the time-dependent nature of algorithms (such as

4D-VAR) is inherited from the form of the cost function to be minimized. By re-

laxing the rearrangement condition to allow the limit of rearrangements generated

by infinitesimal displacements the advective step of the previous chapter may be

assumed to occur in model (rather than pseudo) time and the assimilation forcing

can thus be represented as an additional advective term in the evolution equation

of all material variables of the system.

Under this assumption the evolution equation for an arbitrary model tracer vari-
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Figure 5.2: Cartoon showing 3D and 4D data assimilation methods

The top plot shows the result of repeated data assimilation on data along a
single spatial dimension in a simple model. At each observation time the model
is corrected towards the observed value, however none of the information in
observations at other times is used at each individual correction. The bottom
plot shows the result of a method equivalent to 4D-VAR, fitting not only in the
function value, but also across a time window. A single increment is found at the
start time, which matches the observations, but is not far from the initial value
of the background trajectory. This means that the entire path of assimilated
run is one model trajectory (the ‘strong’ formulation) unlike in the case above.
For this particular data set the 3D method shows a terminal undershoot, the 4D
method an overshoot. The mean residual over the entire window is better for
the 4D case. This is partly due to the large model sensitivity near t = 0.0.
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able τ(x, y, z, t) in the domain of interest, D, becomes

∂τ

∂t
+ (u+ ua) · ∇τ = F (τ), (5.3)

where u is the standard velocity field derived from the model momentum equation,

ua is the new additional assimilation velocity and F (τ) denotes the diabatic pro-

cesses affecting τ , which are assumed small, but non-zero. This is a generalization

of the concept of displacement assimilation in what is essentially a nudging of the

model, or weak model formulation, while retaining the conception that adiabatic

rearrangements through advection dominate the problem.

As suggested previously the new variable, ua, is chosen to minimize a time-

windowed observation cost functional,

J (y, τ) =

∫ tf

t0

∫

DH
(y − h[τ ])2dV dt, (5.4)

where the evolution of τ(t,x) is governed exactly by equation (5.3), y(t,x) are

the observations on the domain [t0, tf ] × DH to be fitted and h[τ, t] is as before the

observation operator mapping a model state τ to the quantity that it is expected

would be observed. The key advantage of this formulation is in its simplicity; the

minimization process is for a single function only, guaranteeing that the fit with

data, as measured by the cost functional, improves, and removing the “two-step”

structure of the hypothetical 4D-VAR plus 3D rearrangements idea suggested above.

5.2.2 CONDITIONS ON THE ASSIMILATION VELOCITY

The minimization problem, as presented thus far is seriously ill-posed due to

the lack of constraints and the large number of degrees of freedom of even the

discretized problem. To alleviate this issue and to reduce the dimension of the space

over which the minimization must take place it is possible to list some physically

necessary constraints on the chosen form of ua.

(i). The assimilation velocity is assumed incompressible,

∇ · ua = 0.

Firstly this means in the adiabatic limit, where F (τ) = 0, the assimilated

model continues to satisfy the rearrangement condition for the entire time-

window. Secondly, given that the displacements of interest are slow (by as-

sumption comparable with the timescale on which the model states them-
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selves evolve) and of large-scale (again comparable with the model), the as-

similation flow itself satisfies the conditions required for the flow velocity field

to be assumed solenoidal (Batchelor, 1967, section 3.6). This follows from an

assumption that high frequency oscillations, whether in time or space, in the

position of a feature can be ascribed to noise in the observations and model.

(ii). The rearrangement assumption requires that the net mass transfer through

material boundaries must be zero,

∫

δD
ua · dS = 0,

with δD the boundary of the domain. A consideration of the effects of the

displacements at material surfaces (Batchelor, 1967, section 3.3) suggests

that this may be achieved through the normal condition of no-normal flow on

material boundaries,

ua · n = 0 on δD,

with n any vector normal to δD. In principle other choices for the flow bound-

ary condition are possible, for example a sponge condition with inflow along

one section of δD balanced by outflow of fluid with identical water mass prop-

erties along another section. Whether such a process, for example the removal

of excess warm water from the Gulf Stream and its re-introduction near the

Mediterranean, has any physical meaning in a data assimilation context for a

real ocean model seems unlikely however3.

(iii). There is no direct physical argument concerning the choice of lateral bound-

ary conditions to apply to ua. Probably the most suitable choice is to apply the

same lateral conditions in the data assimilation scheme as are applied to u in

the forward ocean model, since it may be argued that the same physics are

assumed to apply and this should limit the possible number of extra modes of

variability that the assimilation scheme may excite.
There is also the question of what behaviour is to be expected when the obser-

vations alone do not contain enough information to make the minimising velocity

field unique, as will generally be the case considering the observational data pre-

sented in Section 1.4 . In fact, even in the case of full observations of a single tracer

field there may exist displacements which leave the cost function (5.4) unchanged,

3This is certainly obvious for cases with closed boundaries. It could be argued that such a process

would represent the required behaviour on open boundaries of a regional model. Nevertheless we
would not expect the information present in the outflow region of a regional model to match the

information in the inflow region with respect to the existence of eddies, etc.
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Figure 5.3: Example of a cost-function preserving rearrangement

The field on the right represents the field on the left rotated anticlockwise about
its centre by 90◦, as indicated by the motion of the symbols representing tracer
particles. This rearrangement generates no change in any metric on the observed
variable, however metrics on particle displacement will show a large signal. It
is important that any displacement assimilation method not generate such large
scale displacements when not evidenced in data.

for example rearrangements of level sets of the tracer (see Figure 5.3 for an exam-

ple). This issue cannot be resolved by use of a background term in the manner of

the Jb term of 4D-VAR since this would restrict the ability of the scheme to match

with observations without preventing displacements along combined level sets of

the background and observations. Similarly, a normalization term, as in Section

4.3.1, would unfairly penalise large displacements in those situations when they

are necessary. Instead the problem may be alleviated by initializing the descent

routine in a state with zero displacements everywhere and aiming to minimize the

excitation of modes orthogonal to the descent direction while gradient sliding.

5.2.3 THE SOLUTION ALGORITHM

By exact analogy with the solution of the 4D-VAR algorithm we couple the evo-

lution constraint, (5.3), to the minimization problem using a Lagrange multiplier

approach. Introducing adjoint variables θ(t, r) and an extended cost function,

J (ua, y) :=

∫ tf

t0








∫

DH
(y − h(q))2

︸ ︷︷ ︸

Jo

+

∫

D
θ ·
(
∂

∂t
[q,u] −M[q,u,ua]

)

︸ ︷︷ ︸

JM







dV dt. (5.5)

Where here M denotes the extended non-linear model evolving the state of the

system with time, that is to say the standard model together with the extra forced
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advective term containing the assimilation velocity. This requires the specification

of an initial condition on q and u at some point in the time window,

q(tb,x) = q0, tb ∈ [t0, tf ],

u = u0.

The effects of this choice are discussed in section 5.2.5. This method in fact repre-

sents a particular form of weak 4D-VAR, in which the form of the discrepancy term

is forced to be equal to ua · ∇q for some vector field, ua. In this way the method

can be thought of as correcting for the adiabatic part of the model error term in the

tracer equations, though not transferring any additional momentum to the system.

5.2.4 BASIS FUNCTIONS

The continuous formulation of the four dimensional displacement assimilation

(4DDA) algorithm should in theory find instantaneous velocity fields of any mag-

nitude (in the energy norm of Chapter 4) that are sufficiently continuous to satisfy

the variational principle of section 5.2.3, so long as they act to extremize the cost

function, J . This means that the algorithm is in turn free to generate displacements

of multiple different frequencies, including very high ones. This contradicts one of

the original assumptions made in the formulation of the incompressible advection

term approach, namely that all the assimilation displacements are large-scale and

slow, at least in comparison to the standard model dynamics.

In fact in the continuous limit with temporally discrete observations 4 and van-

ishing diabatic forcings there will exist multiple different choices for the assimila-

tion velocity which will all produce the same final fit to the available observations,

but of varying energies. The locally most energetic states correspond in the limit

to repeated application of the three dimensional method of Chapter 4, assimilating

only at those time levels when observations are available. In this sense the four

dimensional algorithm acting in the ‘no model’ case, when both the forward model

velocity and diabatic forcings vanish, and with observations available only at the

end of the time window represents a Benemou & Brenier space-time style approach

to the case of the three dimensional assimilation problem.

To a certain extent the discontinuity problem vanishes when the problem is dis-

cretized for numerical calculation, since the representation then has no dichotomy

between a continuous model and discrete data, while the numerical scheme em-

ployed makes some sort of assumption about the continuity of the imposed fields.

4That is the point observations in time, as well as space, as in situ observations often are.
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Nevertheless the issues surrounding the time-level of the assimilation velocity do

not disappear. Instead a new difficulty arises concerning the dimension of the fields

to be stored. Under the time window approach the assimilation velocity field to be

applied must be available over the entire time window, but cannot be calculated in

the forward model step. Instead the result of the adjoint model must be stored at

each intervening time level.

This data storage issue may rapidly exceed available computer capacity, espe-

cially in the high resolution, short time-step models for which the adiabatic assimi-

lation routines are most appropriate. In the case of the two layer QG model a single

assimilation run at 10km resolution and a one hour time-step to assimilate the data

available over a 10 day time-window requires storage for an array of approximately

224 floating point numbers for both the current assimilation streamfunction and its

search direction. This represents an over a hundredfold increase on the 216 ele-

ments required in storage for the initial value increments generated from the weak

4D-VAR formulation.

Fortunately, a method exists which obviates both the theoretical inconsistency of

the continuous model and the practical handicap of the numerical method. Regard-

less of the physical model chosen the momentum equations in the extended cost

function contain no dependence on the rate of change of the assimilation stream-

function with time, i.e. that terms in ∂ψa/∂t never appear in M. If we consider, for

example, a Fourier expansion of the assimilation streamfunction,

ψa(t,x) =
1

2π

∞∫

−∞

ψ̂a(k,x)eiktdk. (5.6)

It will be noticed that the new definition of the cost function, J = J (ψ̂a), is purely

linear in terms of the Fourier modes of the streamfunction, ψ̂, and, by considering

a variational principle for those terms and reversing the order of the integrations in

t and s, we obtain the new search direction,

∇ψ̂aJ =

∫ tf

t0

[

−∂(θ, ζ)
∂(x, y)

− β
∂θ

∂x

]

eikt dt.

This linear dependence on k implies that the gradients of the different modes can

be calculated separately. Moreover, the cost function may be further extended by

adding an explicit term penalizing the energy contained in the various frequencies,

Jk =
1

2

∫

Ω

∫ ∞

−∞
F (k)∇ψ̂a · ∇ψa dk dS.
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The magnitude of the weighting term F (k) then determines the relative magnitude

to which modes at different frequencies are allowed to grow. The most severe

possible function is a strict cut-off above some critical frequency, K,

F (k) =

{

0 |k| ≤ K

∞ |k| > K.
(5.7)

This prohibits the existence of valid solutions with energies at frequencies above K.

Alternatively some other monotonic function in |k| could be envisioned, with the

growth of some modes unconstrained, some penalised and some forbidden so that

F (k) =







0 |k| ≤ K1

g K1 < |k| < K2

∞ |k| > K2

(5.8)

with g an increasing function of |k| which satisfies

g(K1) = 0, g(K2) = ∞.

If g is chosen so that F is smooth in K, then this would be expected to generate

solutions which demonstrate less sinusoidal behaviour near high frequency signals.

Under discretization the Fourier integrals become summations. Expressing these

for some generalized basis functions, fj(t), by means of the equation

ψa(t,x) =

∞∑

j=1

fj(t)Ψ
a
j (x),

we see that the spatial gradients of the cost function are calculated by the discretiza-

tion of

∇Ψa
j
J =

∫ tf

t0

[

−∂(θ, ζ)
∂(x, y)

− β
∂θ

∂x

]

fj(t) dt.

The constraint (5.7) is equivalent to truncating the set of basis functions to operate

only at certain frequencies,

ψa(t,x) =

K∑

j=1

fj(t)Ψ
a
j (x),

and then solving using the general method. Under the alternative constraint (5.8)
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then the basis functions are again truncated,

ψa(t,x) =

K1∑

j=1

fj(t)Ψ
a
j (x) +

K2∑

k=K1

fj(t)Ψ̃
a
j (x).

The gradient of the cost function with respect to the penalized modes, Ψ̃a, is then

∇Ψ̃aj
J =

∫ tf

t0

[

−∂(θ, ζ)
∂(x, y)

− β
∂θ

∂x

]

f(t) dt+ gj∇2Ψa
j . (5.9)

Since most minimization schemes which use gradient information work on the basis

that the new guess Ψn+1 is given by an equation similar to

Ψn+1 = Ψn − α∇ΨnJ ,

the extra linear term in (5.9) acts like a linear friction term, damping the energy

contained in all those modes which are not excited by the forcing from the Jacobian

term between the adjoint variable and vorticity.

5.2.5 TIME PIVOTING AND INITIAL CONDITION ERRORS

As discussed above the solution algorithm requires a choice of initial condition

to be defined at some point in the time window, from which the system may be

integrated, forwards or backwards. Typically, due to the numerical constraints of

the models which are used5, this point will be the starting time of the window, t0.

Since the assimilation forcing term appears in the evolution equation for the tracer

rather than as a step change in its value the variable is constrained locally to remain

close to the background trajectory (see Figure 5.4). This means that in cases of

large initial condition error the method cannot correct the error fully, even if totally

adiabatic and will instead tend to create large, numerically unstable, signals around

the initial part of the window. This issue can be avoided by coupling the 4DDA

method to a 3D method, which is run to correct initial condition errors before the

time window is fitted, or by coupling to another 4D method which corrects initial

condition errors, such as the 4D-VAR method itself.

Coupling the method directly, with a 4D-VAR algorithm through the use of twin

control variables, x0 and ua represents the approach of Hoffman and Grassotti

(1996) and Ravela et al. (2004) in four dimensions. As such, it requires assump-

tions about the magnitudes of the phase and amplitude errors in the data, in the

5The forward model is typically only stable integrated forwards, due to diffusion terms. Similarly
the adjoint model may be unstable forwards in time, but stable when integrating backwards.
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case when both approaches can explain the observed discrepancy. Provided the

background conditions are close, in the sense of the rearrangement metrics intro-

duced previously, to the true system state, then this should not be a great issue.

When the background and truth differ greatly then the original assumptions used

in justifying the use of rearrangement theory are broken and it is justifiable in using

methods which only correct for amplitude error.

5.3 ADJOINT MODELS

5.3.1 DISCRETE VERSUS CONTINUOUS ADJOINTS

There currently exist two extremely distinct philosophies among modellers for

dealing with the question of numerical calculation of the adjoints to systems based

on geophysical fluid flow. The first approach asserts that the continuous equations

must be discretized in order to be solved, so that it is the adjoint to the discretization

to the tangent linear model, M which must be calculated. This can be achieved by

replacing line by line the linearized forward operators by their adjoint equivalent,

for example transposing the arrays used in matrix multiplication. This is naturally

the approach followed by the various modern automated systems for calculating

adjoint codes, such as that of the Tangent linear and Adjoint Model Compiler, or

TAMC (Giering and Kaminski).

The major advantage of this method is that the final gradient thus calculated

is the best possible representation of the rate of change of the implemented nu-

merical model around the linearization state. Provided the linearization is a good

representation of the non-linear dynamics then this maximizes the magnitude of the

descent possible on each iteration of the descent step. This approach also allows for

the transparent treatment of discontinuous behaviour caused by conditional state-

ments and switches within the forward model, see for example the discussion in

Akella and Navon (2006).

The second approach is to consider the implementation of the tangent linear

model as an approximation to the genuine continuous tangent linear model which,

provided sensible numerics are used, will be re-obtained in the limit of infinitely

fine resolution. In this case the discrete adjoint is calculated by first generating the

continuous adjoint of the continuous linear model and then discretizing the result

using some appropriate technique. For simple model dynamics or small problems

this produces easily comprehensible and efficient code and allows the use of differ-

ing approximations in the adjoint model from those that are used in the forward
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Figure 5.4: Cartoon showing effect of 4DDA on model trajectories

Data is assimilated into a simple one-dimensional model by modelling the evolu-
tion equation, in this case through a simple additional linear forcing,

dx

dt
= M(x, t) + α,

with α chosen to minimize the r.m.s. error compared to observations. It will be
noted that the correction due to forcing is most accurate in the centre of the
window. The lack of correction near the beginning of the time-window is typical
of approaches based on modifying solely the evolution equations.
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model when appropriate. More iterations of the chosen descent algorithm may be

required than in cases using the first technique to achieve a given reduction in cost

function, but with each iteration cheaper to perform the final result may be com-

putationally more efficient. A study by Schiller (1995) found that the accuracy of

calculated gradients was relatively unimportant when attempting state estimation

in the North Atlantic using the steady state version of an ocean GCM. Sirkes and

Tziperman (1997) find that, while both approaches are appropriate for the gener-

ation of gradient information, the “adjoint of finite differences” approach shows a

large, strongly non-physical computational mode over intermediate timesteps.

In what follows it is thus the “finite difference of adjoint” approach which is

taken. The precise numerical implementation of the adjoint models used here are

described in detail in section C of the appendix. However for comprehension it

should be noted that the code steps four adjoint model variables, θ1, θ2, φ1, φ2 back-

wards in time from an initial zero state. These variables correspond to the four

Lagrange multipliers applied to maintain the evolution of the forward model quan-

tities, ζ1, ζ2, ψ1, ψ2 in the QG two layer equations,

θ1 :
da1
dt

[ξ1 + βy] − 1

ρ0H1
∇× τ − ν∇4ψ1 = 0,

θ2 :
da2
dt

[ξ2 + βy] − ν∇4ψ2 = 0,

φ1 : ξ1 −∇2ψ1 +
f 2

0

g′H1
(ψ1 − ψ2) = 0,

φ1 : ξ2 −∇2ψ2 +
f 2

0

g′H2
(ψ2 − ψ1) = 0,

as described in Chapter 3. The resulting adjoint optimality equations are

ξ1 : −d
a
1θ1
dt

+ φ1 +H1(y − h[ξ1, ξ2]) = 0,

ξ2 : −d
a
2θ2
dt

+ φ2 +H1(y − h[ξ1, ξ2]) = 0,

ψ1 : −∇2φ1 +
f 2

0

g′H1

φ1 −
f 2

0

g′H2

φ2 +
∂(θ1, ξ1 + βy)

∂(x, y)
+ ν∇4θ1 − a1,

ψ2 : −∇2φ2 +
f 2
o

g′H2
φ2 −

f 2
0

g′H1
φ1 +

∂(θ2, ξ2 + βy)

∂(x, y)
+ ν∇4θ2 − a2,

plus boundary conditions, discussed in more detail in the Appendix, Section C. Ex-

actly as with the forward model these form a pair of evolution equations and a

pair of elliptic equations and similarly these four equations in fact represent the

evolution of two variables, nominally the adjoint vorticity variables, θ1, θ2. The

solution algorithm is also very similar to that for the forward model. The adjoint

vorticities are back-stepped using spatially and temporally centrally differenced fi-
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nite difference methods, making use of a co-ordinate transformation to solve the

elliptic equations for two uncoupled modes, analogous to the barotropic and baro-

clinic modes of the two layer forward model. The linearization state in the forward

variables at each time level is calculated using linear interpolation between values

stored at regular intervals larger than the timestep of either the forward or adjoint

models (one hour in each case) to save on storage requirements for data, which can

otherwise prove excessive, while avoiding the necessity of recalculating intermedi-

ate values using the forward model. This represents another major approximation

in the system, particularly when the time interval between storage steps is long.

Experimentally the effect on accuracy of this approximation over shorter storage

intervals of 4–6 hours seems small however, see Section 6.1.

5.3.2 THE OBSERVATION OPERATOR

The forcing provided by the observations depends on what variables are ob-

served and on how the measurements are chosen to represent data within the

model6. The observation method that produces the simplest problem is to as-

sume that observations are available of the vorticity field over a set of continuous

connected domains at a scale larger than the discretized model resolution. The

observation operator can then be represented in continuous space as the identity

operator over the observation domain. This means the observation penalty function

of equation(C.4) can be replaced by an identically valued function

Jξobs =
1

2

∑

i=1,2

∫ tf

t0

∫

Ω

Hi[r, t] (y
ext
i − ξi)

2
dSdt (5.10)

where H [r, t] is a step function with

Hi[r, t] =

{

1 observations of ξi are available

0 no observations of ξi are available
(5.11)

and yext[r, t] is any extension of the field of observations to the entire domain, i.e.

any function that satisfies the condition

yext[r, t] = y[r, t] ∀r ∈ Ωobs (5.12)

6A measurement in a grid box may be assumed to represent the average value of the variable
across the whole box, or the value of a interpolating values at the grid points.
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Under these conditions the evolution equations for θ1, θ2 become

da1θ1
dt

= −φ1 +H1 (y − h[ξ1, ξ2]) ,

da2θ2
dt

= −φ2 +H2 (y − h[ξ1, ξ2]) .

An obvious alternative linear function that may be observed is the streamfunc-

tion. The top level streamfunction under the model assumptions, specifically the

rigid lid assumption, is almost exactly equivalent to the observed sea surface height

of the real ocean multiplied by a constant conversion factor. This variable may

observed by satellite altimetry as described in Section 1.4.3. Under the same as-

sumptions as for vorticity this means that the observation may be written as

Jξobs =
1

2

∑

i=1,2

∫ tf

t0

∫

Ω

Hi[r, t] (y
ext
i − ψi)

2
dSdt (5.13)

this gives a revised elliptic set of equations,

∇2φ1 −
1

L2
1

φ1 +
1

L2
2

φ2 =
∂(θ1, ξ1)

∂(x, y)
+ ν∇4d1 − a1 +H1 (yext

i − ψ1) ,

∇2φ2 +
1

L2
1

φ1 −
1

L2
2

φ2 =
∂(θ2, ξ2)

∂(x, y)
+ ν∇4d2 − a2 +H2 (yext

i − ψ2) .

since the observation operator appears only acting on the innovation vector, these

may be solved in the same way as previous sections.

5.4 CHAPTER SUMMARY

Due to the limited ocean data available over short validation windows tech-

niques for spreading data in time are required. Previously such techniques have not

been combined with the rearrangement type theory due to possible issues with val-

idation times. Here one method has been documented for applying such a scheme

in model time by modifying the original model equations to include an assimilation

term. A 4D-VAR style adjoint method is used to choose this term optimally so as to

minimise an observation cost-function.
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CHAPTER 6

TIME WINDOW EXPERIMENTS

“All life is an experiment. The more experiments you make the better.”

Ralph Waldo Emerson

(Attributed)

The behaviour of the four dimensional displacement assimilation scheme is investi-

gated by running it over a series of test cases and comparing these with the results of

a traditional 4D-VAR algorithm . Firstly the numerical implementation is investigated

by using a series of adjoint tests to test the scheme for basic convergence properties and

to check that the various approximations made hold.

6.1 ADJOINT MODEL VERIFICATION TESTS

As discussed in Chapter 5, at the heart of both the 4D-VAR method and the new

four dimensional displacement assimilation scheme lies a model adjoint code used

to calculate a search path for the gradient descent routine used to minimise the tar-

get cost function. To test whether the two adjoint models, coded as in the Appendix

C, successfully generated (an approximation to) the gradient of the discretized cost

function with respect to changes in initial conditions (for the standard 4D-VAR rou-

tine) or assimilation streamfunction (for the displacement method technique) a

suite of tests were carried out using a simple finite difference gradient approxima-

tion.

6.1.1 THE GRADIENT TEST

Consider the general Taylor series expansion of the perturbation of the observa-

tion part of the cost functional,

J (ξ) =
1

2

∫

D
(ξo − ξ)2 dV,
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about a state ξ due to a perturbation ǫg, where ǫ is a small parameter and g is an

arbitrary (steady) field on D. The leading order terms in the expansion in ǫ are

J (ξ + ǫg) = J (ξ) + ǫ

∫

D
∇ξJ gdV + O(ǫ2),

where ∇ξJ denotes the local variation of the functional with respect to variation

in ξ, equivalent to the 4D-VAR gradient of the cost functional,

∇ξJ =
∂

∂ξ

(ξo − ξ)2

2
= − (ξo − ξ) .

If the arbitrary field is now chosen so that g = ∇ξJ then it follows that the func-

tional, G, defined by

G(ǫ) :=
J (ξ + ǫg) − J (ξ)

ǫ

∫

D
g2dV

,

=

∫

D
∇ξJ gdV
∫

D
g2dV

+ O(ǫ),

(6.1)

will converge to unity as ǫ vanishes. More generally any approximation to the first

order variation of a cost function with respect to a given parameter may be tested by

plotting G against log(ǫ) and checking for convergence. A logarithmic axis is chosen

for ǫ since it clearly demonstrates the behaviour over several orders of magnitude.

For any numerical implementation of this test there are typically four phases of

behaviour:

(i). For very large ǫ the leading order truncation of the Taylor series is a very poor

approximation. The behaviour of the function appears essentially random,

governed by the coefficients of the higher order terms in the expansion.

(ii). As ǫ vanishes the function rapidly converges towards its limiting value. Unless

the adjoint model is perfect and the forward model is linear, discretized over

only a single time-step, or the length of the model time step is allowed to tend

to zero, then this will not be precisely unity, but should lie close to it, with

methods which give a smaller difference preferred.

(iii). There will be an interval of ǫ over which the curve is essentially flat. This

is the range of linearization over which the numerical approximation to the

gradient of the cost functional has converged towards the analytic solution.

Ideally the range of this plateau will be large, allowing for large stepping in

the gradient sliding method to be used to minimize J .
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(iv). Finally, once ǫ drops below a critical value dependent on the model the curve

will produce another series of essentially random oscillations about unity. The

critical value depends on the choice of numerics and the floating point rep-

resentations used in the underlying computer architecture. This fluctuation

is due to the accumulation of truncation errors in the forward and adjoint

models, as well as in the calculation of G itself.

Plotting the relevant functions for the 4D-VAR and displacement adjoints to the QG

model for various choices of data and parameters produces the graphs shown in

Figure 6.2.

6.1.2 RESULTS FOR 4D-VAR METHOD

Application of the gradient test to the 4D-VAR code embedded within the 4DDA

method showed accurate generation of the correct gradient with respect to varia-

tions in initial condition over almost five orders of magnitude, with typical errors in

G(ǫ) of order 0.01 relative to unity. The range of ǫ demonstrating convergence was

− log10 ǫ = 7.5 − −12.5, with divergence of the gradient, shown by a tendency to-

wards large negative values of G(ǫ) for larger values of ǫ and the oscillations typical

of numerical truncation errors for smaller values.

Compared with the behaviour found for 4D-VAR codes in operational numerical

weather prediction models this represents a relatively small range of convergence,

a factor of the use of discretized versions of the continuous adjoint rather than the

true discrete adjoint code, coupled with the relatively noisy linear interpolations

used to find values for the forward model vorticity in between stored values. Since

however the code was developed towards the 4DDA method and was only to be

used for generating an initial search direction it was felt that this deficit would be

of little relevance.

6.1.3 RESULTS FOR 4DDA METHOD

Compared with the results for the 4D-VAR method the 4DDA gradient tests show

a larger domain of convergence, but worse achievement of unity, with convergence

for − log10 ǫ = 6–13, but a consistent low bias of 0.1 in the value of G(ǫ). Since

the 4D-VAR code appears relatively accurate we ascribe this to inaccuracies in the

temporal part of the problem, possibly in part the basis function representation of

the continuous gradient, which has not been optimised, but is instead chosen for

ease of application. It is possible it may also partly represent the larger dimension
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Figure 6.1: Gradient Test for 4D-VAR adjoint code

6 7 8 9 10 11 12 13 14
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

−log
10

(ε)

(J
(ε

g
)−

J(
0)

)/
ε

Gradient Test for 4DDA method

Figure 6.2: Gradient Test for 4DDA adjoint code

The figures show the result of plotting the finite-difference gradient test G given
by (6.1) against step size, ǫ, for the 4D-VAR and 4DDA methods. Both plots
show the typical band of convergence bounded for small ǫ by truncation error
and for large ǫ by the behaviour of higher order terms. Note that the range over
which G is is constant is actually larger for the 4DDA code, although the method
only generates an approximate gradient and thus does not achieve unity.
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of the 4DDA problem and thus the increase in the number of small truncation er-

rors in the numerics, which accumulate under the summations implicit in the code

integration. Assimilation experiments later in this section show the method is still

capable of generating a useful descent direction, and shows not clear bias in the

form of the solution produced, hence we accept the code as practicable, while not-

ing that any inefficiency in the 4DDA descent routine as compared to the 4D-VAR

method may be partly ascribed to this cause.

6.1.4 RELATIVE COMPUTATIONAL COSTS

As in Section 4.2.2 we briefly discuss the cost of the new 4DDA method in terms

of physical computational resources and CPU time. We choose for comparison 4D-

VAR, as the obvious choice of another method using data at multiple times. We also

briefly discuss the hypothetical method introduced in Section 5.2.1.

As was shown in the development of the 4DDA method in Chapter 5, the 4DDA

algorithm generates both the assimilation streamfunction and the 4D-VAR gradient,

with only one additional matrix calculation required at each model timestep during

the adjoint run, of a cost equivalent to one application of a derivative operator in the

forward model. As such, and since there will be many such operations in a single

step of the adjoint code, the two methods are effectively equal in computational

cost for a single calculation of the descent direction. The hypothetical quasi-3D

rearrangement code, however requires one full run of one of the 3D methods of

Chapter 4. For a typical situation, in which the number of assimilation steps was of

order the number of model timesteps in the assimilation timewindow, this would

effectively double the CPU time required in a single iteration of the assimilation

code.

In terms of memory usage, the requirement to store the increments from the as-

similation streamfunction on multiple timelevels leads to potentially much greater

requirements for the 4DDA, than for traditional variational assimilation methods.

For a ten day timewindow with a model timestep of an hour, this would be a massive

240-fold increase in memory usage, compared with the requirement for univariate

4D-VAR data assimilation. Following the Fourier series reduction method of Sec-

tion 5.2.4 we reduce this to a five-fold increase, when storing data on the constant

mode and the first two leading order sine and cosine coefficients in the Fourier se-

ries representation. This makes the code roughly as memory efficient as 4D-VAR for

multivariate assimilation, assuming the number of physical quantities in the model

is likely to be of order ten. Since the hypothetical quasi-3D assimilation code re-

quires both the increment retrieved from the adjoint code and the result of the 3D
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displacement step, it would represent a tripling of the memory requirements of the

forward model.

Since the two methods, 4DDA and 4D-VAR are similar in computing require-

ments for the process of generating a single line search along a descent direction,

we will use the iteration count of these searches in examining the efficiency of the

two methods in the test-cases which follow. The codes are run until the length

of the normalized line search, drops below a level, 1 × 108, where we expect the

numerical truncation errors to dominate.

6.2 TRACER FIELD EXPERIMENTS

Identical twin experiments were performed using both the 4D-VAR and 4DDA

methods to attempt to assimilate errors due to

• Adiabatic model errors,

• Adiabatic errors in initial conditions,

• Non-adiabatic (amplitude) errors in initial conditions,

• Different model resolution (model errors).

6.2.1 A TRIVIAL EXAMPLE : PSEUDO-CURRENTS

The most trivial test case for inter-comparison of the 4DDA and 4D-VAR methods

is to assimilate full data from a run which has been forced by a similar pseudo-wind

field to that which the 4D-VAR method introduces, that is to say we consider as the

true state the entire data field from a run of a model, with equations

dqi
dt

+ uf · ∇qi = Fi.

The qi, i = 1, 2 are the relevant layer vorticities, uf is the applied pseudo wind

forcing and d/dt and Fi denote the standard model total advection operator and

forcings, so that the standard model is denoted in this shorthand notation by

dqi
dt

:=
∂qi
∂t

+ ui · ∇qi = Fi.

This is the problem to which the adiabatic assimilation method is naturally most

suited, and the 4D-VAR method least, in that we are actually attempting to retrieve

a model error parameterized as an advection, violating some of the assumptions
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for success of the 4D-VAR algorithm. For such problems the 4D-VAR algorithm will

produce an analysis state for the initial condition at the start of the time window

that differs from the truth, while 4DDA will attempt to converge towards the model

bias.

For the results presented here the forcing field was determined by a relation,

uf = ∇× ψfk, k = (0, 0, 1)T ,

so that the additional current was given by a forcing stream function defined as

ψf(x, y)i = −A
(
r3

3
− B r2

2
+ B3

6

)

H [r2 − B2] , i = 1

ψf (x, y)i = 0 i = 2,

where r2(x, y) = ((x− xc)
2 + (y − yc)

2), with H the Heaviside function as before

and the parameters chosen as xc = yc = 1280km, B = 250km2 and A = 1 ×
10−12m−1s−1. The resulting ‘hump’ streamfunction generates rotation around the

point (xc, yc) in the region r ≤ B without causing discontinuities at the edge or

centre of the rotation.

The streamfunction is plot (1) of Figure 6.3, with the second plot showing the

mean top vorticity layer vorticity field in the unforced control field used to provide

the background first guess of the model trajectory, and the third and fourth show

respectively the difference between the forced ‘true’ and unforced ‘background’ top

layer vorticity fields at the end of the time window in the experiment, T = 24 hours,

and the variance in the same field over the entire window. Both these plots show

that the effect of the forcing is predominantly concentrated over the area of forcing,

r < B and the variance field shows that the dominant effect is in the position of the

divide between the high and low vorticity gyres.

Observations at 6 hourly intervals of the resultant vorticity field over the time

window of one day were then presented to both the implementations of the 4DDA

and 4D-VAR methods. The goal was to achieve the best possible fit to the model

trajectory, as measured by the (observation) cost function

Jo =
∑

t∈T

∫

DH
(qobs

1 [t] − qback
1 [t])2 + (qobs

2 [t] − qback
2 [t])2dS, T = [0, 6, 12, 18, 24] hours.

The growth with time in the individual terms in this summation is shown as plot (1)

of Figure 6.4. As may be expected the graph initially shows exponential growth as

small errors are amplified. However, the sharp downturn at the end of the window

shows that the time window is long enough that small errors have saturated and
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are now interacting with the large-scale flow.

As may be expected, given the nature of the error being assimilated (model error

directly ascribable to an advective term), the 4DDA method is much the better of

the two methods for retrieving the original solution. After only one iteration the

method returns an assimilation streamfunction which represents a 70% reduction

in Jo. Further gains are however small (see plot (3) in Figure 6.4). In contrast

the 4D-VAR Algorithm stagnates immediately, with a neglible reduction in the cost

function (∼ 1 × 10−4%), see plot (4) of Figure 6.4.

The returned assimilation streamfunction (plots (5)–(6) of Figure 6.3) is no-

ticeably different from the forcing applied; there is a tripole rather than mono-pole

structure to the function in the top layer, which appears on all four frequencies

for which basis functions are prescribed on this run, as well as an induced dipole

signal in the bottom layer, which is unforced in the run designated as truth. This

demonstrates both the non-linear nature of the induced errors, which induces the

bottom layer signal, and the non-uniqueness inherent in the problem, since neither

of these two significant differences in streamfunction severely affects the initial re-

duction in cost function. The induced 4D-VAR increment to the streamfunction also

has a multipole structure, but here it appears to contain a sharp wavelike signal

(plot (2) in Figure 6.4). The wave structure arises from the inversion of the elliptic

operator in the adjoint model. This form of increment is hard to correlate with ei-

ther the induced forcing or the resultant anomaly. This illustrates how unsuited the

strong formulation 4D-VAR system is to problems with an incorrect model, where

the assumptions of the assimilation method are invalid.

As stated at the beginning of this section, this test case represents the most triv-

ial problem to which this method may be applied; a well observed system acting

under a forcing which is perfectly represented by an advection term. The short-

comings of the method in this situation, failing to retrieve the forcing perfectly and

generating signals in locations and on frequencies which are unforced, represent an

important limit on the skill of the method in the more realistic cases which follow.

In this respect this is a recursive realization of the ideal twin philosophy discussed

in Section 2.2. We investigate this further by examining the behaviour of the al-

gorithm over a series of similar test problems in which a forcing streamfunction of

a similar form, but of varying amplitude, are used to generate observation states.

More precisely we set A = ǫ× 10−12m−1s−1, with ǫ a scaling parameter.

Plotting the final fractional reduction in cost-function the method achieves against

the magnitude of the forcing streamfunction produces plot (1) in Figure 6.5. We

see that for large amplitude signals the reduction is marginal, while it reaches lev-

els of an 80% reduction, as ǫ is reduced and the effect of the forcing becomes more
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linear, in terms of the form of the displacements imparted to features. Once ǫ drops

below a critical level, however the method no longer converges and no reduction is

possible, as numerical errors once again dominate. This behaviour is familiar from

the experiments with very close displacements shown in Section 4.2.4 and Figure

4.6 in particular. Examining the form of the returned assimilation streamfunction

at the value of ǫ which maximizes the costfunction reduction (plots (2) – (3) in

Figure 6.5) we see that the tripole structure shown in plot (5) of Figure 6.3 is re-

tained in the top layer streamfunction, with only a slight increase in the strength of

the centre pole suggesting a better fit to the imposed forcing. In the bottom layer

streamfunction however the magnitude of the observed signal is much reduced,

and a new 4-pole structure is seen. This is a visible representation of the simpli-

cation of the assimilation problem with smaller magnitude forcing. The existance

of this window over which the 4DDA method works well to assimilate the trivial

forcing problem gives jusification for testing the behaviour in the more complicated

assimilation problems to which we will now apply it.

6.2.2 ADIABATIC INITIAL CONDITION ERROR

The second test case considered is the one in which the perfect model assump-

tion is assumed to hold, but the true run differs from the background run in the

initial conditions used, which are assumed to differ in such a manner as to approx-

imately satisfy the rearrangement condition on all material tracer variables.

This difference between truth and models is generated using the methods dis-

cussed section 2.5, i.e. the (perfect) model itself is used to create data so that truth

and background come from the same model trajectory but at different validation

times (in fact, strictly speaking over different time windows, since we are now as-

similating temporal information). This is a case to which the 4D-VAR algorithm is

ideally suited, while it is one for which the 4DDA technique may easily fail com-

pletely, for the reasons discussed in section 5.2.5. The correct modification to initial

conditions will give a perfect fit with the true model trajectory, but this modification

may be poorly approximated by boosts to the model velocity field. This makes the

results for the 4DDA method highly dependent on the form of the basis functions to

be fitted, particularly the maximum frequency on which the assimilation velocity is

allowed to vary, and on the relative magnitude of the phase shift between truth and

background compared to the time window over which the observations are to be

fitted. Counter-intuitively, small shifts in validation time may lead, over medium-

length time windows, to the more difficult assimilation problems than larger shifts.

Here difficulty of observation is measured in terms of the fractional reduction in
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(3) (4)

(5) (6)

Figure 6.3: Results for trivial forcing problem

(1) Forcing field applied to generate discrepancy. (2) Mean top layer background
vorticity. (3) Mean top layer anomaly with observations. (4) Variance of anomaly
with observations. (5) Mean top layer assimilation streamfunction. (6) Mean
bottom layer assimilation streamfunction.

If the scheme worked perfectly then (1) and (5) would be identical and (6)
would be zero everywhere. The actual zonal pattern shown in (5) appears to be
inherited from the vorticity field, (2) with the stronger eastern signal appearing
in both the mean and variance of the anomaly (3)–(4).
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Figure 6.4: Results for trivial forcing problem

(1) Growth with time of the discrepancy between the unforced (background) and
forced (observed) fields. (2) Retrieved gradient/sensitivity streamfunction field
for the 4D-VAR method. (3) Reduction in cost function under the assimilation
4DDA method, (4) Reduction in cost function under the 4D-VAR assimilation
method.

Plot (1) shows that the growth in errors due to the forcing saturates in approx-
imately 22 hours, very near the end of the time window. Comparing (2) to the
mean and variance of the anomaly between the fields, plots (3)–(4) of Figure
6.3 shows a wave pattern, inherited from the inversion of the elliptic operator
required in the adjoint equations, see Section 5.3. Plot (3) shows both that the
4DDA method rapidly finds a good approximation to the constant forcing field
and that the code stagnates at a local minimum after one step. Plot (4) shows
simply how unsuited the strong 4D-VAR method is to this type of forcing problem
as the cost function refuses to descend.

155



TIME WINDOW EXPERIMENTS CHAPTER 6

(1)

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

J a/J
0

−logε

Cost function reduction against forcing magnitude

(2)

(3)

Figure 6.5: Results for trivial forcing limit tests

(1) Analysis reduction in cost function against magnitude of forcing (2) Mean
top layer assimilation streamfunction in most reduced limit. (3) Mean bottom
layer assimilation streamfunction in most reduced limit.

(1) shows that there exists a middle-scale of forcing problems for which the 4DDA
method can obtain a good fit to observations. For large magnitude and small
magnitude problems the method fails for numerical reasons. The form of the
returned streamfunction in the top layer, (2) remains fixed across this window
(compare with Figure 6.3) while form of streamfunction in the bottom layer, (3)
shows an increase in the number of extreme points, coupled to a reduction in
the relative magnitude of the signal.
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cost function achieved. This appears to be due precisely to the issues of divergence

in model trajectories discussed in section 2.5, coupled to the small denominator

in the function J0/J 0
O given by the initial difference from truth in this case. Over

longer time windows there is less need found for very large initial assimilation ve-

locities, cf. Figure 5.4 and these problems are alleviated.

The results of an example of this form of experiment is summarized in Figure

6.6. The first plot shows an example of the initial discrepancy in the vorticity fields,

qbackground[to] − qtruth[t0]. Plot (2) shows the reduction in cost function, defined as

in the previous section. In none of our experiments did the method achieve a 1%

reduction in streamfunction, despite the presence of full observations. The third

and fourth plots show respectively the assimilation streamfunctions obtained for

the constant part of the basis functions. Both fields are heavily dominated by the

location and direction of the jet separation, with the top-layer setting up an across

jet flow and the lower layer a flow increasing the strength of the jet. Considering

the effectiveness of the 3D schemes when applied to similar problems it appears

the issue is with the non-linear nature of the ideal paths of fluid parcels which lead

to the ideal displacements. This is supported by plot (5) in the figure, a histogram

showing the integrated kinetic energy equivalent,

K =
2∑

i=1

∫ tf

t0

∫

D
ρi∇ψai dxdydt,

stored in each of the three modes in question. These modes, a time-constant field,

a field varying as a period one sine function over the course of the time window

and a field varying like a period one cosine function, are the ones used as temporal

basis functions in the assimilation experiment. While over two thirds of the energy

lies in the constant mode the sine mode is non-negligible especially compared with

the results in the experiments with diabatic error, below. This is an example of

failure precisely analogous to Figure 5.4, where attempting to fit to observations

across the time window leads to overshoots. There is significantly less energy in

the cosine wave field, than in the sine wave even though the periods are the same.

This suggests that it is the behaviour in the middle of the time window which is

being controlled most closely. This again ties to the impression that the model

trajectory has ‘overshot’ the ideal analysis path at the end of the window and is

thus insensitive to variation at the ends of the time window.
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Figure 6.6: Results for adiabatic initial condition error

(1) Initial anomaly in the top layer vorticity field. (2) Reduction in cost function
under the 4DDA method, (3) Mean top layer assimilation streamfunction. (4)
Mean bottom layer assimilation streamfunction. (5) Energy in the various modes
of the assimilation basis functions.

From the time stepping method used to generate the trajectories the anomaly
shows the phase error in westward propagating waves. The streamfunctions
returned, (3)–(4) are predominantly organized around the position of the jet on
the western boundary with the energy almost exclusively in the time-constant
mode (see (5)). This sensitivity to the jet means the cost function, (2), does
not descend significantly.
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6.2.3 DIABATIC INITIAL CONDITION ERROR

The third case considered consists of true and background runs from differing

initial conditions with a large diabatic component to the error. This was achieved

by using as initial conditions the two differently forced runs of Section 3.2.3. This is

the problem to which the 4DDA algorithm is least suited and conversely one which

satisfies all the conditions for which the strong-formulation 4D-VAR technique was

designed. Errors are large and predominantly in the existence and amplitude of

features, rather than in the displacement of their location. The results are shown

in Figure 6.7. Plot (1) shows the initial vorticity difference for the experiment. The

second shows the reduction in cost function obtained by the displacement assimi-

lation. Although the reduction is greater than in the adiabatic case, it is still small,

bearing in mind the quadratic nature of the cost function in question and that for

this case the denominator, the initial cost-function, J0 = J [qbackground].

Plotting the constant part of the obtained top-layer assimilation stream function

gives (3), with contours from the mean of the background top-layer streamfunc-

tion superimposed for reference. This shows that the assimilation, or at least the

assimilation velocity, is still dominated by features around the jet, although now

principally forced by a large meander roughly 400km east of the jet separation

point. This feature is also obvious in the vorticity anomaly field. The streamfunc-

tion shows a dipole flow, attempting to reduce the meander and move it south.

For this problem the 4D-VAR algorithm rapidly reduces the objective cost func-

tion to a level less than 20% of its inital value, as show in plot (5). This rapid

reduction is unsurprising. Since the test case is run over a relatively short time win-

dow, while the background errors are large and diabatic, the observed difference

between background and observations at the points, within the time window, when

observations are taken are very similar to the differences between background and

truth at the beginning of the window, namely the field the assimilation method is

trying to find. This can be observed by studying the form of the gradient search

direction supplied by the 4D-VAR algorithm and comparing it with the vorticity

anomaly in plot (1). It will be readily observed that many features around the

middle left of the box appear prominantly in both plots, with only the finer scale

structures absent in some places. The excellent behaviour of the 4D-VAR algorithm

is to be expected for what is in many respects a trivial problem for this method.
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Figure 6.7: Results for diabatic IC error

(1) Initial top layer vorticity anomaly, (2) 4DDA Reduction in cost function, (3)
Top layer assimilation streamfunction (colour plot) with mean background top
layer streamfunction (contours) (4) 4D-VAR reduction in cost function, (5) Initial
4D-VAR vorticity increment field .
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6.2.4 IMPERFECT MODEL EXPERIMENTS

As a final test case dealing with direct observations of tracers themselves we

consider the case of more general model errors, which may include an explicit di-

abatic component. To generate these errors we consider the case of two runs from

models based on different discretizations, initialized from the same initial condi-

tions. In this experiment the truth is assumed to be the discrete model based on a

10km grid-point separation distance, ∆x, as used in the other sections of this chap-

ter. The background run is from an otherwise identical model with a 20km value for

∆x, a value which means that both the westward boundary currents and mesoscale

eddies in the system are poorly resolved, but below the Rossby radius of deforma-

tion for each layer in the interior of the basin, the scenario commonly termed ‘eddy

permitting’. The coarse scale model is initialized so that each grid point holds the

value of the equivalent fine-scale ‘truth’ run. This means that gradient information

is lost and the interpolation of the coarse-scale grid onto the fine scale no longer

satisfies the discretized version of the rearrangement condition. The approach of

viewing a fine-scale model as truth in forcing a coarse run has a long history, par-

ticularly in studies concentrating on methods for increasing the variability between

members of ensemble forecast predictions, in order to better give a larger spread

to the model trajectories and cover a wider selection of possible model trajectories

near bifurcation paths.

Figure 6.8 shows the results of an experiment assimilating full observations at

6 hourly intervals over a 72 hour time window, fitting in the 4DDA experiment to 7

basis functions, one constant function, 3 sine functions and 3 cosine functions over

the time window. Plots (1) and (2) show the initial anomaly, qtruth[tf ]−qbackground[tf ],

and the final analysis anomaly, qtruth[tf ]−qbackground[tf ] following an application of the

4DDA algorithm. The initial anomaly between the two runs represents primarily the

difference in the magnitude of the frictional term, ν∇Hψi, caused by the smoothing

of sharp gradients. This is shown by the large-scale, filamentary, structure of the

signal, which is concentrated along the western boundary and, in particular, around

the cut-off eddy and meander visible in the top-layer vorticity, plot (8). Plots (3)–

(4) show the time-constant mode of returned assimilation streamfunction in colour,

with superimposed contour lines from the model streamfunction. In the top layer

this shows the assimilation forcing acting to reduce and shift north the strength of

the jet, shown by the large positive signal along the jet contour, and to encourage

the eddy to move south and roll up, shown by the dipole structure over the centre

of the eddy.

Returning to the analysis anomaly, plot (1), we see this approach is successful
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in reducing the magnitude of the difference from the fine run, but retains almost

exactly the same structure, not introducing any obvious noise. Looking once more

at the energy stored in the various modes, plot (6), we see that the time-constant

mode contains more than three times the energy of the next largest mode, the

period one sine function. This energetic time-constant mode is typical of situations

in which the method has converged successfully to an improved analysis solution,

as shown by the cost function convergence, (5). Here the cosine modes contain

almost as much energy as the sine functions of the same period. This is a signal of

a problem for which the code has avoided the overshooting so plain in the previous

problem.

For this class of problem the 4D-VAR algorithm fails to descend to an improved

analysis. The increment field, plot (7) of Figure 6.8, has a sharp dipole structure

centered over the cut off-eddy. Unfortunately, it seems to be too smooth for the

gradient descent algorithm to operate successfully, since the maximum step allowed

before the increment field is no longer a descent direction is too small.

6.2.5 ASSIMILATING NON-MODEL VARIABLES

We conclude this section of this thesis by returning to the question of the realistic

case of assimilating limited, noisy observations. More particularly to the question

of assimilation of the satellite altimetry proxy of upper layer sea surface height. As

discussed in section 5.3.2, assimilating this form of observation, although linear in

the model variables, introduces another pair of elliptic operators into the calcula-

tion of the adjoint model. In particular the near singular discrete operator ∇−2,

arising from solving for the baroclinic mode, adds appreciably to the run time of

the code. In fact we find that generally the code refuses to descend more than min-

imally in either 4DDA or 4D-VAR formulation. This is disappointing, but suggests

there may be insufficient information in such surface observations to perform dis-

placement assimilation without additional regularization terms. This is a possible

topic for future study.

6.3 CHAPTER SUMMARY

The validity of the model adjoint codes used in the presented 4D-VAR and 4DDA

technique has been tested through comparison with a finite-difference gradient test.

The 4DDA code is found to generate a less accurate, but more robust search direc-

tion than the same routine in 4D-VAR mode which, it is argued, is due to the rep-
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Figure 6.8: Results for model error

(1) Background & (2) Analysis vorticity anomalies. (3) Top layer & (4) Bottom
layer assimilation streamfunction (colour) & mean background streamfunction
(contours). (5) Reduction in cost function under 4DDA. (6) Energy in basis
modes, (7) 4D-VAR gradient. (8) Top layer background vorticity.
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resentation of the temporal variation of the assimilation streamfunction allowed

through the basis function approach.

Both algorithms were then applied to a series of test problems and the behaviour

compared. The 4DDA algorithm was found superior in the cases of model and

forcing error, while failing for errors in initial conditions, with broadly the opposite

behaviour for the 4D-VAR algorithm. This is understandable given the motivations

behind the different formulations, but it is unfortunate that the 4DDA method was

relatively poor in the case of adiabatic initial condition error for which it might be

considered suitable.
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CHAPTER 7

CONCLUSIONS

“Now this is not the end. It is not even the beginning of the end. But it is,

perhaps, the end of the beginning.”

Winston Churchill

Speech following 2nd Battle of El Alamain

10th November 1942

Conservation properties and phase error are closely related areas in which stan-

dard data assimilation algorithms may fail. There are several approaches which

can act to alleviate this problem. The aim of this thesis has been to understand the

benefits and issues involved in using phase error correction methods in a general,

mathematically rigorous and physically consistent ocean forecasting system.

Most previous development in this area has been based in the context of ex-

tremely well observed systems. Here the approach has been to extend towards

problems with limited observations and to examine destructively under what con-

ditions such approaches fail. This is first performed for an algorithm based on the

descent of a spatial cost-function analogous to 3D-VAR.

A novel approach based on a four dimensional algorithm equivalent to a mod-

ified version of the weak constraint 4D-VAR algorithm was developed and applied

in the context of a quasi-geostrophic two-layer ocean model. This included the

development of the forwards and adjoint models as well as error visualisation tech-

niques.

This concluding chapter reviews the content of the thesis as a whole, summa-

rizes the response to the key questions posed in Chapter 1, discusses the potential

for the application of these results in operational ocean forecasting and finishes

with an enumeration of possible directions for future work.
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7.1 SUMMARY OF THE THESIS CONTENT

In Chapter 2 we have identified a methodology, based on the identical twin phi-

losophy and using trajectories of a simple two layer quasi-geostrophic model, to

investigate the behaviour of data assimilation methods which remove phase error

from ocean models. In Chapter 3 it was demonstrated that traditional data assim-

ilation techniques can fail in the presence of phase error. We reviewed methods

based on the concept of rearrangements and showed that one particular technique,

the Cooper & Haines method, which has been implemented operationally, is not

of itself sufficient to remove phase error from models once initiated. Chapter 4

instead develops an assimilation approach which can correct for phase error even

with limited observations and includes rearrangements excluded from the Cooper

& Haines approach. This method is based on adiabatic rearrangements through an

advective operator. We find that the technique returns qualitatively representative

analyses for a number of semi-idealised problems, provided the number of observa-

tions allows suitable features to be identified. Chapter 5 extends the approach into

a method we identify with a 4D-VAR type analysis, which allows for information

from more observations to be assimilated. This is a novel combination of standard

techniques from data assimilation and rearrangement theory. In Chapter 6 we show

that the method can be used for assimilation successfully for a number of problems,

involving both phase and amplitude errors. However, the technique is limited by

the volume of observations available over the time window.

7.2 REVIEW OF KEY QUESTIONS

We now return to considering the questions first posed in section 1.7.2, restate

the work presented in this thesis in relation to each, examine the extent to which

these key issues have been successfully answered in the course of this thesis and

the possible methods of further inquiry which are suggested.

7.2.1 QUESTION 1

To what extent is it feasible to decouple the observed error signal in ocean analyses

consistently into signals due to pure phase error and amplitude error?

The rearrangement theory discussed in Chapter 2 and resultant metrics of Chap-

ter 3 present one method for separating the two signals, however this approach is

only feasible in the presence of full observations. As such it may be used in compar-
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isons of forecast outputs and analyses or retrievals, but cannot be compared directly

against data. The iterative approaches of Chapters 4 and 5 represent an attempt to

alleviate this requirement, but do not directly generate a measure for the relative

phase and amplitude errors in the system. Experiments with both schemes show a

general failure to achieve global minima in solving the phase error problem. This

suggests that the signals cannot be truly decoupled using the present approach. In

this situation it is possible that the simultaneous approach of Hoffman et al. (1995)

and Ravela et al. (2004) may be more appropriate.

7.2.2 QUESTION 2

Given that real oceanographic observations are noisy and limited in scope and num-

ber, can a study of novel phase correction algorithms give a quantitative understanding

of how observations relate to model data in such methods and what constraints on ob-

servations?

The experiments of Chapter 4 show that the form and type of observations as-

similated have a very large controlling effect on the adiabatic assimilation method

used. The method effectively attempts to match the gradient of the background to

the gradients of the observation, provided that the observational data was differen-

tiable on the model grid. In this sense with full observations the gradient patterns

of observation and background represent the ‘shapes’ of the fields to be matched.

With incomplete observations the behaviour is different. Observations are matched

for their values, with the difficulty becoming filling the unobserved region. Even

with very limited data surprisingly successful assimilations are possible, in terms of

the location and shape of oceanographic features.

7.2.3 QUESTION 3

Is it possible to develop efficient algorithms which maximise the utility of displace-

ment assimilation techniques, for example in terms of the use of the information con-

tained within observations, in the same way that 4D-VAR methods allow the use of

multiple nonlinear observations taken at different times?

Which of the presented methods is best used to correct for adiabatic error when

assimilating data into a system depends primarily on the form of error which is

assumed to be present, as well as on the data themselves. When full observations

of model variables are available the calculation of the polar factorization necessary
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to minimize phase error directly is trivial and computationally inexpensive1. The

coupled Monge-Kantorovich problem can be solved approximately with the same

computational cost as a 4D-VAR assimilation problem using the methods of Ben-

amou and Brenier (2001). This may however still be excessive considering many

operational centres still use sequential or 3D-VAR methods for ocean data assimila-

tion.

When observations are concentrated but not full, or are given in terms of non-

model variables with an observation operator whose inversion is non-trivial (at

least, one for which the adjoint operator is of less complexity than inversion) then

the descent correction methods of Chapter 4 may be used to correct for background

errors in states at a single verification time. Experiments have shown that the

code is best run using an energy form for the normalization on the assimilation

velocity and by choosing a multiscale approach to the assimilation, assimilating the

large scale errors in the data faster than those on the smaller scale. For limited

observations the multiscale routine approach can be used to fit to the natural scale

of the observations themselves and thus reduce ‘phantom’ oscillation induced by

the descent method.

When observations are very limited a four-dimensional approach may be used,

so that the information contained in the observations is assimilated at the cor-

rect verification time. Introducing an explicit, smooth, assimilation velocity as in

Chapter 5 allows for the correction of that portion of the adiabatic error which it

is possible to ascribe to errors in the model. This approach is found to be poor

at fitting to initial condition errors, for which the 3D approach is more suitable.

An ideal adiabatic error correction system will combine the two approaches, both

three and four dimensional, using the second approach to correct for model error

and to distribute the observational information correctly in time, while using the

first to correct for initial condition errors at the beginning of the time window. Such

an approach is currently too computationally expensive to be considered generally

feasible, but this may change with time.

7.3 IMPLICATIONS FOR OPERATIONAL MODELS

As previously discussed no operational centre currently uses a direct phase error

approach for data assimilation purposes, either in NWP or ocean forecasting. The

CH algorithm, however, is currently implemented to assimilate satellite altimetry

data. The experiments in this thesis are performed using a highly idealized system.

1The principal costs are the sorting algorithms, plus any costs based on quadrature.
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The layer QG model is much simpler than the level based primitive equation models

in use for ocean forecasting, and the twin philosophy used in testing ignores many

of the degrees of freedom available in the error signal of numerical models when

compared to observational data.

Unfortunately most current ocean modes do not include potential vorticity as a

prognostic variable. This increases the difficulty of consistently applying the fluid

parcel rearrangement idea, since PV represents an important materially conserved

quantity which is dynamically active and has a large control over currents through

the momentum equation. Regarding other tracer quantities the necessary rear-

rangements are most sensibly accomplished in 2D on isentropic surfaces. As stated

in Section 2.1, these may be approximated by surfaces of constant neutral density,

but these density values are themselves dependent on the dynamic tracers of tem-

perature and salinity. One method is thus to calculate increments to tracer values

on isopycnal surfaces and iterating with calculation of the change to the density

fields.

7.4 FUTURE WORK

Having discussed the extent to which the initial key questions tested during

this thesis have been answered we conclude by posing some open questions which

remain:

(i). Alternative Cost Functions in the Minimization Problem

Throughout the final four chapters of this thesis, and indeed in the methods

discussed in Chapter 3, the fitting to observations is measured by a quadratic cost

function. This is in part because such functions are a standard in statistical data

assimilation methods, due to the results in the derivation of the BLUE equation of

Section 1.3.1. In this case the background term is weighted by the background

covariance matrix, usually assumed full, while the observation term is habitually

weighted only by the error variances of the instrument in question. In principle the

weighting on the observation term for adiabatic methods may be any function of

the observed differences with the predictions of the observation operator,

J = F (|y − h[x]|;y,x, h, r, t) .

Terms of order other than a quadratic one give different weighting to the local fit-

ting of the gradient in assimilation velocities to large and small magnitude errors

compared to observations in both the three and four dimensional cases. Moreover
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the freedom to vary weighting with location, observation type and time allows the

method to be selective, depending on background conditions. Such an approach is

not implemented here, but may alleviate some of the sensitivity issues both meth-

ods have regarding the separation point of the jet. One could, for example use

a normalization factor based on the local magnitude of the average background

signal, in the same manner the observation error covariance matrix is used in the

BLUE equation.

(ii). Best Methods of Combining Phase and Amplitude Assimilation

This thesis has concentrated on the goal of separating signals in data from phase

and amplitude error, in order to understand the differences in behaviour of the two

sources and thus obtain a clearer idea of the best method of correcting each. In

practice though both forms of error pollute model analyses and both must be cor-

rected. Considering the implementations of phase error correction techniques pre-

sented in Section 3.3.1, all techniques (with the exception of the Cooper & Haines)

also include terms to explicitly correct amplitude error. In each case this requires

an a priori estimate of the relative magnitudes of the two forms of error, in order

to decide the size of the penalization applied to each. To accurately tune such pa-

rameters would require a large-scale statistical survey of the presence of each form

of error in analysis. This could perhaps be performed by observing the differences

between successive analysis valid at a single validification time, as is sometimes

used to tune background error covariance matrices. The new metrics introduced in

Chapter 2 might be a useful tool in such a survey.

(iii). Assimilating Lagrangian Positional Data

As stated in Chapter 1, there has been a massive effort to reduce the under-

observation of the ocean interior through the use of passive floats and drifters.

The returns of probe position with time that these probes generate represent in-

formation on model phase error, errors in the large scale currents and the effects

of sub-gridscale processes. This seems like an appropriate data set for the use of

adiabatic assimilation methods. It is possible to model the behaviour of a collection

of m probes by considering the evolution of the conditional probability of probe

location for a given set of observations,

P (r, t) := P (x(t) = r|y = ry),

where r ∈ R
3m is a vector of probe location co-ordinates, x is the true probe po-

sition and y is the usual vector of observations. Consider the following set of as-
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sumptions:

i. Each probe is an independent observation (likely to apply when probes are

well separated).

ii. The small scale mixing processes which act to spread the probability density

are broadly the same as those which mix material properties of fluid parcels.

This will obviously fail for processes such as convection.

The individual probability densities,

Pi(r, t) := P (xi(t) = r|y = ry),

will then, in the absence of observations of the ith probe, satisfy the true system

tracer evolution equation,

∂Pi
∂t

+ ut · ∇Pi = F (Pi).

The probability densities may thus be treated like any other model tracer and as-

similated adiabatically using the same techniques, given a model for observation

error,

Py = Y (ry).

In this manner any of the presented adiabatic assimilation techniques may be used.

Note that since, moreover, a single observation of a probe location is enough to

give Py everywhere, these data are uniquely suited to the polar factorization plus

transport problem approach. Using the direct minimization approach of the second

half of the thesis would require an extension of the algorithms and codes developed

in Chapters 5 and 6 to accept input from the probability functions.

Further research in any of these topics may prove fruitful. Considering the

proportion of in situ observations which are now being obtained from floats the

third in particular holds interest.
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APPENDIX A

MODEL NUMERICS

A.1 NUMERICAL SCHEME

Except for trivial cases, it is impossible to solve the equations governing the evo-

lution of the ocean analytically, even at the level of simplification of the continuous

QG equations. In order to compute approximate solutions to the equations numeri-

cally the infinite dimensional spatial and temporal domain must be discretized into

equations suitable for computers of finite capacity. Possible discretization methods

include using truncated spectral functions, truncated integral solutions using finite

elements or further approximating the model equations themselves using finite dif-

ferences. Spectral models are little used in ocean circulation modelling; the com-

plicated geometry of real ocean basins means there is no simple set of orthogonal

basis functions to use, unlike compared to the simple spherical harmonics used in

atmospheric modelling. Several ’next generation’ ocean models, such as the ICOM

project (Ford et al., 2004) are now using finite element techniques, primarily due

to the relative simplicity of application of asymmetric or adaptive meshes, but the

majority of ocean models, including the operational ocean models at both the UK

Met Office and the ECMWF use a finite difference modelling approach and it is that

methodology which is followed here.

The derivation of the two layer quasi-geostrophic equations is discussed in Sec-

tion 2.3, so here we will simply present the PDEs to be discretized for easy refer-

ence. For a two dimensional domain, D(x, y), using a choice of principal variables

of potential vorticities, q1, q2, with equivalent streamfunctions, ψ1, ψ2 ,the QG equa-

tions are

dq1
dt

:=

(
∂

∂t
+
∂ψ1

∂x

∂

∂y
− ∂ψ1

∂y

∂

∂x

)

[ξ1 + βy] =
1

ρ1H1

(
∂τ (y)

∂x
− ∂τ (x)

∂y

)

+ ν∇4ψ1,

(A.1)

dq2
dt

:=

(
∂

∂t
+
∂ψ1

∂x

∂

∂y
− ∂ψ1

∂y

∂

∂x

)

[ξ2 + βy] = ν∇4ψ2, (A.2)
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ξi := ∇2ψ1 −
f 2

0

g′H1
(ψ1 − ψ2), (A.3)

ξ2 := ∇2ψ2 −
f 2

0

g′H2
(ψ2 − ψ1). (A.4)

The other free parameters are the layer densities, ρ1, ρ2, average layer depth, H1, H2,

the wind stress, (τ (x), τ (y)), Coriolis parameter, f , β parameter and viscosity, η.

These equations are discretized using central finite differencing in both time and

space for all derivatives, apart from the friction term, which uses the forward Euler

method. This is necessary for stability. This discretization method is applied to vari-

ables stored on a regular square grid, denoted the Arakawa A grid in the standard

notation of Arakawa and Lamb (1977), see Figure A.1 for a schematic of the stencil.

The A grid is chosen, since under central differencing the natural locations off the

finite difference approximation to the QG vorticity coincides with the nodal points

for streamfunction, which is equivalent to a pressure term. This both obviates the

need for extra smoothing operators and allows the use of an energy and enstrophy

conserving formulation for the advective Jacobian term in the evolution equations.

At nodal points the continuous and discretized forms of variables are assumed to

coincide;

ψ(x, y, t) = ψ(i∆x, j∆y, n∆t) = ψni,j,

q(x, y, t) = q(i∆x, j∆y, n∆t) = qni,j.

Under central differencing the partial derivative with respect to time becomes

∂ψ

∂t

∣
∣
∣
∣
(i∆x,j∆y,n∆t)

=
ψn+1
i,j − ψn−1

i,j

2∆t
,

with the Laplacian operator represented by

∇2ψ
∣
∣
(i∆x,j∆y,n∆t)

≈
ψni−1,j − 2ψni,j + ψni+1,j

(∆x)2
+
ψni,j−1 − 2ψni,j + ψni,j+1

(∆y)2
.

The biharmonic operator deriving from isopycnal vorticity diffusion is evaluated

assuming ∇4f = ∇2[∇2[f ]] for any arbitrary scalar field. The Jacobian terms are

calculated using the so called Arakawa Jacobian (Arakawa and Lamb, 1981). This

is the stencil given by taking equal weightings in an average of the discretizations

of the three equivalent continuous forms
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Figure A.1: The stencil for the Arakawa A and C grids

1. J(ψ, ξ) =
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
,

2. J(ψ, ξ) =
∂

∂x

(

ψ
∂ζ

∂y

)

− ∂

∂y

(

ψ
∂ζ

∂x

)

,

3. J(ψ, ξ) =
∂

∂y

(

ζ
∂ψ

∂y

)

− ∂

∂x

(

ζ
∂ψ

∂y

)

.

This particular formulation is a common choice in numerical studies since it is

possible to show that it conserves the domain integrals both the system kinetic en-

ergy, ρ‖ψ∇2ψ‖1/2, and the enstrophy, ρ‖∇2ψ‖2. It is argued that this then prevents

growth of nonlinear instabilities. The final discretization for this term is

12 (∆x)2

(
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x

)n

E

=

(ψnH + ψnI − ψnB − ψnC) (ζnF + ζnE)

− (ψnG + ψnH − ψnA − ψnB) (ζnE + ζnD)

+ (ψnF + ψnC − ψnD − ψnA) (ζnB + ζnE)

− (ψnI + ψnF − ψnG − ψnD) (ζnE + ζnH)

+ (ψnF − ψnB) (ζnC + ζnE)

− (ψnH − ψnD) (ζnE + ζnG)

+ (ψnB − ψnD) (ζnA + ζnE)

− (ψnF − ψnH) (ζnE + ζnC) ,

(A.5)

where the subscripts denote the locations on the stencil centering on point E in

figure A.1.

The solution algorithm for ξn+1, ψn+1proceeds in the following fashion:

i. If ζi and ψi are known at both current and previous time levels then equations

(A.1–A.2) give explicit equations for ζn+1
i in terms of known variables.

ii. The potential vorticity fields are then inverted to give the streamfunction (and

hence column velocities) by transforming variables in equations (A.3–A.4) to
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obtain the equations for the (uncoupled) barotropic and baroclinic modes,

∇2 (ψ1 − ψ2) −
f 2

0 (H1 +H2)

g′H1H2

(ψ1 − ψ2) = ζ1 − ζ2, (A.6)

∇2 (H1ψ1 +H2ψ2) = H1ζ1 +H2ζ2. (A.7)

These two resulting block tridiagonal elliptic equations are then solved to

machine precision using the NAG multigrid elliptic 2d solver nag pde ell mg

(Numerical Algorithms Group Ltd., 1998).

The boundary condition for the baroclinic part is simply that it is spatially

constant on the boundary,

H1ψ1 +H2ψ2 = K(t).

K may be taken to vanish without modifying the resultant velocity field. The

boundary condition for the barotropic mode is solved by decomposing the

problem into two parts; Firstly the particular integral problem,

∇2φ− f 2
0 (H1 +H2)

g′H1H2
φ = χ,

is solved with φ = 0 on the boundary, then a scalar multiple of φ0, the solution

to the homogeneous equation

∇2φ− f 2
0 (H1 +H2)

g′H1H2
φ = 0,

which has unit value on the boundary, is added. The Γ required for

ψ1 − ψ2 = φ+ Γ(t)φ0

is calculated using the mass conservation equation,

∫

D
φdS = 0

which implies in turn that

Γ =

∫
Dφ(t)dS
∫
Dφ0dS

.

Note that φ0 need only be calculated once, when the code is initialized.
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A.2 THE PASSIVE TRACER ADVECTION SYSTEM

An arbitrary number, Nτ of (column integrated) passive tracer concentration

fields, τ j(x, y)1,2, j ∈ {1, . . . , Nτ}, 0 ≤ τ ≤ 1 are assumed to obey the layer tracer

transport equations,

Dτ ji
DT

:=

(
∂

∂t
+ ui

∂

∂y
+ vi

∂

∂y

)

τ ji = ∇H · (κτ∇τ ji ), (A.8)

where i ∈ 1, 2 as before denotes the layer number and ui and vi are the constant

geostrophic velocities in each layer given by

ui = −∂ψi
∂y

,

vi =
∂ψi
∂x

.

The along-isopyncal diffusivities, κτ , of the tracer fields are assumed spatially ho-

mogeneous and equal to the along-isopycnal dynamic viscosity of the system, η.

This means that bottom layer total vorticity satisfies its own tracer equation and

that in the unforced limit the initial q–τ relation is exactly conserved over the

course of an integration run. The lateral boundary condition for the diffusion oper-

ator, ∇τ.n = 0, is assumed for n a unit normal to δD. This follows naturally from

integrating τ across D and demanding conservation of total τ ,

d

dt

∫

D
τi = 0.

The equation set (A.8) is discretized on an Arakawa C grid, see Figure A.1, for

its conservation properties in flux form and the ease of calculation of edge fluxes for

the control volumes. Discretization of the volume flux terms is through the QUICK

upwinding form (Leonard, 1979),

(uτ)e =

{

ue
(

6
8
τC + 3

8
τE − 1

8
τW
)

for ue > 0

ue
(

6
8
τE + 3

8
τC − 1

8
τEE

)
for ue ≤ 0

etc

for its third order truncation accuracy and tendency to avoid oscillation and spuri-

ous introduction of unphysical negative values for concentration fields. The diffu-

sion term is discretized using a nine point stencil in an attempt to avoid significant

computational modes.

Temporal discretization is chosen to be through the standard 4th order Runga
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Kutta algorithm,

τn∗1 = τ(tn) +
∆tf(tn, τ)

2
,

τn∗2 = τ(tn) +
∆t

2
f

(
tn + ∆t

2
, τ ∗1

)

,

τn∗3 = τ(tn) +
∆t

2
f

(

tn +
∆t

2
, τ ∗2

)

,

τn∗4 = τ(tn) +
∆t

2
f (tn + ∆t, τ ∗3 ) ,

τn+1 =
(τn∗1 + 2τn∗2 + 2τn∗3 + τn∗4 )

6
.

This method is chosen primarily for its well-known area of convergence with re-

spect to stability, since it is to be noted that stability criteria are extremely strict

around the point of jet separation and it has been shown that the QUICK algo-

rithm is unstable under implementation of a central difference (leapfrog) temporal

discretization (Webb et al., 1998).

A.3 NUMERICAL ROUTINES FOR M, J ∗ AND J
The integrals in the definitions of the three metrics on functions f, g : Ω → R,

J (f, g) =

∫

Ω

(f − g)2dV,

J ∗(f, g) = inf
f̂∼f

∫

Ω

(f̂ − g)2dV,

M(f, g) =

∫ ∞

−∞

∫

Ω

|(f − α)H(f − α) − (g − α)H(g − α)dV dα

must be discretized if these operators are to be applied to numerical data. Of the

three the first is the simplest to approximate. Any quadrature may be chosen, with

the associated errors easily calculated. For the results presented in Chapter 3 a

piecewise flat approach was taken, with f and g assumed equal to their nearest

grid-point values. This leads to a discretization conveniently expressed as

J =

nx×ny∑

i=1

(fi − gi)
2∆x∆y,
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where fi etc. are grid point values under some unique ordering. The truncation

error under this approach is of order

ǫ(J (f, g)) =

∫

Ω

(‖∇f‖ + ‖∇g‖)|f − g|dV,

provided ∇f , ∇g are small.

The second function, J ∗, is calculated following the polar factorization ap-

proach of Section 3.1.2. Once again, an initial nearest grid point assumption is

made as to the value of non-nodal points, in keeping with the area averaged value

approach of the control volume discretizations of the QG model presented above.

This assumption also produces simple, fast code, since under this approach the po-

lar factorization algorithm reduces to a reordering of discrete units, or in terms of

equations,

fi = f̃σf (i),

gi = g̃σg(i),

where f̂i is a rearrangement of f with f̃1 ≤ f̃2 ≤ . . . ≤ f̃nx×ny . The invertible

mapping, σf : [1, . . . , nx × ny] → [1, nx × ny], is chosen so the equation above

holds. The function g̃ and mapping σg are defined similarly. The analysis step

which minimises J (f̂ , g) over rearrangements of f is then defined as

f̂ = f̃σg(i).

The algorithm thus requires one application of a sorting algorithm to each fi of gi,

storing the index of the reordering, to generate f̂i. The same J algorithm as above

is then applied to calculate a value for J ∗. The local dependence of the error bound

given above is replaced by a global one,

ǫ(J ∗(f, g)) =

∫

Ω

(sup
f
{‖∇f‖} + ‖∇g‖)|f − g|dV.

To calculate M two integrals must be evaluated. To reduce the errors in the

integrals in α a piecewise linear interpolation assumption must be used, rather than

the flat approach used above, since this makes the inner integral more continuous

in α, in turn making quadrature more accurate. Calculating the inner integral for

fixed α then requires (for two dimensional functions) calculations of the volumes of

polygons with regular rectangular or triangular cross section. A routine to calculate

this is combined with simple one dimensional numerical integration in α.
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APPENDIX B

DISPLACEMENT METHOD NUMERICS

B.1 TWO DIMENSIONAL DISPLACEMENT METHOD

NUMERICS

B.1.1 SPATIAL DISCRETIZATIONS

As a proof of concept a discretized form of the continuous method was applied

to a full set of point observations of an adiabatically perturbed system. A regular

Arakawa C grid (as in the passive tracer advection scheme of the previous section,

see figure A.1) was used with equal grid spacings to discretize the interval [0, 1] ×
[0, 1], with boundaries passing through ψ points. A system of discretized equations

were created with

ψki,j = [ρz
xyx

z − ρx
zyz

x] , (B.1)

uki,j′ = ψkz , (B.2)

wki′,j = ψkx, (B.3)

(B.4)

where ψki,j ≈ ψ(i∆x, j∆z, k∆t) etc, i′ = i + 1
2
, j′ = j + 1

2
and we have two sets of

linear operators,

φx =
φi′,j − φi′−1,j

∆x
, φz =

φi,j′ − φi,j′−1

∆x
, (B.5)

φ
x

=
φi′,j + φi′−1,j

2
, φ

x
=
φi,j′ + φi,j′

2
, (B.6)

representing discretizations of partial differentiation and smoothing respectively.

The lateral boundary condition is applied explicitly by setting ψi,j = 0 on boundary

points. The evolution of the ρ field itself through the transport equation,

∂ρ

∂t
+ ∇ · (ρua),
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was again achieved using the QUICK formulation described in section A.2 for the

flux terms in the discretization,

∆kρij = (ukρ)x + (wkρ)z.

New values for the φ field were calculated whenever the cost function J ceased to

descend. The cost function itself was evaluated as in section A.3 by

J(ρ, y) =
∑

i′,j′

[
w(ρi′,j′ − ρ0

i′,j′)
2 + (ρi′,j′ − yi′,j′)

2
]
∆xi′,j′∆zi′,j′. (B.7)

This formulation is consistent with the assumption that ρ values represent volume

averaged quantities and as such fits the flux formulation of equation (B.6). Here w

represents a weighing towards the background term, i.e. the initial condition for

the integration. This was actually found to be unnecessary in the work presented

in Chapter 4 where w = 0 is assumed throughout.

B.1.2 TEMPORAL DISCRETIZATIONS AND TIME STEPS

Time discretization was by the same Runge-Kutta 4th order method as used

in section A.2. The question remains as to how to choose ∆t, the length of the

integration step. Since this defines both the length of the time integration and the

length of the step along the descent path there are conflicting pressures upon it.

On the one hand we would like it to be as large as possible to minimise the number

of iterations required for convergence. On the other hand we do not want the step

size so large that the numerical integration technique for the transport equation

becomes unstable. This leads naturally to the decision that the step length will be

the minimum of

(i). The step size giving maximum descent in J(ρ)

(ii). The maximum step size derived from a CFL condition for numerical stability

of the integration,

∆t < C
∆x

|u|∞
, (B.8)

where C < 1 is some positive constant.

For a linear descent method applied to a quadratic form,

K(x) =
1

2
xTAx− bTx,
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an exact form for the maximum descent step size can be found by applying the

relation

xk+1 = xk − ∆tdk

and assuming that the point at which dk is orthogonal to the local gradient of the

quadratic form then dk is no longer a descent direction. Solving for ∆t this gives

∆t =
dTk (Axk − b)

dTd

The minimization in question can be evaluated as a quadratic function in ρ. un-

fortunately the non-linearity of the transport equation and the Runge-Kutta method

mean that the equations generated can no longer be solved directly to obtain an op-

timal ∆t. Linearizations are possible to generate an upper bound for the optimal

step size. In practice, however, it is usually easier to calculate the limit from CFL

condition, (B.8) and reduce the step size if necessary to obtain descent.

B.2 THE MULTISCALING METHOD

In both methods a new, larger-scale, Arakawa C grid is introduced, with

∆X = N∆x, ∆Z = N∆z,

where capital letters denote properties on the new grid and small letters properties

of the old. There are assumed to exist smoothing and coarsening functions mapping

fields between the two grids. For most functions the coarsening function represents

a volume average of the field value on the fine grid,

FIJ =

∑

i,j fij∆xij∆zij

∆X∆Z
,

where the summation is over all fine cells contained in the new coarse cell. The

sole exception is for observational data, where the cell value is the arithmetic mean

of all observations in the cell for those containing at least one observation and zero

otherwise,

YIJ =

{
PNo
i=1 y

IJ
i

No
No > 0,

0 No = 0,

where yIJ is the vector of observations in the coarse cell, of length No. In both

methods a coarse streamfunction is then generated,

181



DISPLACEMENT METHOD NUMERICS APPENDIX B

Ψk
I,J =

[

Rz
X
YX

Z − RX
Z
YZ

x
]

where the smoothing and differential operators of the previous section have been

extended to the new grid.

B.2.1 THE STREAMFUNCTION FORMULATION

Under the streamfunction formulation the coarse stream function is immedi-

ately smoothed down to the fine grid, using a two-dimensional spline-fitting ap-

proach for smoothness. This approach is necessary since a naive approach using

linear interpolation would ensure that maxima of the smooth ψ, which represent

the centres of local rotation of the fluid, could only lie at the ψ points which co-

incide on the fine and coarse grids. Having calculated a smoothed streamfunction

field the assimilation proceeds exactly as in the single-grid case.

In this case only the streamfunction calculation is carried out on the fine grid,

so that the multigridding code represents an additional overhead on each iteration.

Advantages arrive through the longer integration times which are possible for a

given search direction in the descent routine.

B.2.2 THE FLUX FORMULATION

Under the flux formulation the coarse streamfunction field is used directly to

calculate a coarse velocity field through equations

Uk
I,J ′ = Ψk

Z ,

W k
I′,J = Ψk

X .

These coarse velocities are then used to evolve the coarse density field using the

same discretizations as in the single grid case, but now applied on the coarse grid.

The total net flux into each cell,

∆RIJ = Rk+1
IJ − Rk

IJ ,

is then divided equally across the relevant cells of the fine grid,

ρk+1
ij = ρkij +

∆xij∆zij
∆X∆Z

∆R.
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This represents an implicit transport between the subcells contained in the coarse

cell to achieve this distribution under the given large-scale velocity field. In general

this process, while preserving the global integral of the tracer being transported,

will be numerically unstable and highly diffusive. Since in this case the veloc-

ity field is chosen to smooth the differences between background and observation

these problems are obviated to some degree. Since in this case the majority of

calculations are carried out on the smooth grid the saving in terms of number of

operations is significantly larger. The sole calculation which must be performed on

the fine grid is the calculation of the cost function, since this ensures stability by

ensuring convergence of the algorithm.
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APPENDIX C

ADJOINT MODEL FORMULATIONS

C.1 THE 4D-VAR ADJOINT MODEL

In this formulation the (non-linear) forward model, M(q(t0), t), found by inte-

grating the layer model equations,

(
∂

∂t
+
∂ψ1

∂x

∂

∂y
− ∂ψ1

∂y

∂

∂x

)

[q1 + βy] =
1

ρ1H1
∇ × τ + ν∇4ψ1,

(
∂

∂t
+
∂ψ2

∂x

∂

∂y
− ∂ψ2

∂y

∂

∂x

)

[q2 + βy] = ν∇4ψ2,

q1 = ∇2ψ1 −
f0√
g′H1

(ψ1 − ψ2) + βy,

q2 = ∇2ψ2 −
f0√
g′H2

(ψ2 − ψ1) + βy,

is assumed to evolve a state vector, q(t0) = [q1(t0), q2(t0), ψ1(t0), ψ2(t0)], consisting

of the entire fields of vorticity and streamfunction in the two layers, from an initial

point in time, t0 to a new model time, t. The goal is once again to to match obser-

vations, y(t), as in section 5.1.2, with the fit measured by a cost function, J , which

we will later define explicitly. Introducing the augmented Lagrangian,

J ∗ = J +

∫ tf

t0

∫

Ω

θ · (q −M(q(t0), t)dV dt,

where θ = [θ1, θ2, φ1, φ2] is the vector of Lagrange multipliers which will become

our adjoint variables, we obtain formal optimality conditions for the constrained

minimization of J of

q(t0) = M(q(t0), t), Forward model
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d1θ1
dt

= −φ1 +
∂h

∂ζ1
(y − h[ζ1, ζ2])

d2θ2
dt

= −φ2 +
∂h

∂ζ2
(y − h[ζ1, ζ2])

∇2φ1 −
f 2

0

g′H1

φ1 +
f 2

0

g′H2

φ2 =
∂(θ1, ζ1)

∂(x, y)
+ ν∇4θ1 − a1

∇2φ2 +
f 2

0

g′H1
φ1 −

f 2
0

g′H2
φ2 =

∂(θ2, ζ2)

∂(x, y)
+ ν∇4θ2 − a2







Adjoint model

with boundary conditions θ(t0) = θ(tf ) = 0. Since ∇J ∗ = θ(t0) the approach of

Chapter 4 is followed, the adjoint equations are discretized and stepped backwards

from the zero boundary condition at tf . The calculated θ is then used in a conjugate

gradients descent method until J is minimized with respect to variations in q(t0.

The numerics are the same as those described below for the 4DDA algorithm.

C.2 THE DISPLACEMENT ADJOINT MODEL

C.2.1 THE ASSIMILATION METHOD

In the examples presented in the main body of this thesis the material quantities

being assimilated are the potential vorticity anomalies themselves. Since the flow

is being advected in a two dimensional-sense we may introduce an ‘assimilation’

stream-function, ψa, such that

ua = −∂ψ
a

∂y
, (C.1)

va =
∂ψa

∂x
. (C.2)

Using (C.1–C.2) and (5.3) to modify (2.17) the continuous evolution equations for

the extended system become

(
∂

∂t
+
∂ψ1

∂x

∂

∂y
− ∂ψ1

∂y

∂

∂x
+
∂ψa1
∂x

∂

∂y
− ∂ψa1

∂y

∂

∂x

)

[ζ1 + βy] =
1

ρ1H1
∇ × τ + ν∇4ψ1,

(
∂

∂t
+
∂ψ2

∂x

∂

∂y
− ∂ψ2

∂y

∂

∂x
+
∂ψa2
∂x

∂

∂y
− ∂ψa2

∂y

∂

∂x

)

[ζ2 + βy] = ν∇4ψ2,

Let us introduce the notations

∂(ψ, ζ)

∂(x, y)
=
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
,
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dai (·)
dt

=
∂(·)
∂t

+
∂(ψi + ψai , (·))

∂(x, y)
,

L1 =

√
g′H1

f0

, L2 =

√
g′H2

f0

,

where L1, L2 are the Rossby deformation radii within each layer, and including

separate Lagrange multipliers for the evolution equation and PV equation we obtain

the extended cost function in this case

J ∗ = J + JMζ
+ JMψ

+ Jbc + Jic (C.3)

J =
1

2

∫ tf

t0

∫

Ωobs

(y − h[q])2dSdt, (C.4)

JMζ
=

∫ tf

t0

∫

D
θ1

[
da1ζ1
dt

− 1

ρ1H1

∇ × τ − ν∇4ψ1

]

+ θ2

[
da2ζ2
dt

− ν∇4ψ1

]

dSdt, (C.5)

JMψ
=

∫ tf

t0

∫

D
φ1

[

∇2ψ1 −
1

L2
1

(ψ1 − ψ2) − ζ1

]

+ φ2

[

∇2ψ2 −
1

L2
2

(ψ2 − ψ1) − ζ2

]

dSdt,

(C.6)

Jbc =
∑

i

∫ tf

t0

∫

δD
λi[t,x] (ψi − ki) + µi∇2ψi dℓdt+ ai

∫ tf

t0

∫

D
(ψi − ψi0) dS, (C.7)

Jic =

∫

D
ωi[x] (ψi(t0,x) − ψi0[x]) dS, (C.8)

where the Jbc, Jic are the explicit form of the penalty terms enforcing the boundary

conditions and initial conditions of the model equation and D is as usual the model

domain. The boundary and initial condition penalty terms introduce extra Lagrange

multipliers, λi, µi, ai and ωi.
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The formal optimality conditions can then be calculated as

da1q1
dt

=
1

ρ1H1
∇ × τ + ν∇4ψ1

da2q2
dt

= ν∇4ψ1

q1 = ∇2ψ1 −
1

L2
1

(ψ1 − ψ2)

q2 = ∇2ψ2 −
1

L2
2

(ψ2 − ψ1)







Forward model (C.9)

da1θ1
dt

= −φ1 +
∂h

∂q1
(y − h[q1, q2])

da2θ2
dt

= −φ2 +
∂h

∂q2
(y − h[q1, q2])

∇2φ1 −
1

L2
1

φ1 +
1

L2
2

φ2 =
∂(θ1, q1)

∂(x, y)
+ ν∇4θ1 − a1

∇2φ2 +
1

L2
1

φ1 −
1

L2
2

φ2 =
∂(θ2, q2)

∂(x, y)
+ ν∇4θ2 − a2







Adjoint model (C.10)

∂(θ1, q1)

∂(x, y)
= β

∂θ1
∂x

∂(θ2, q2)

∂(x, y)
= β

∂θ2
∂x







Gradient w.r.t. ψai . (C.11)

Thus, given values for qi, θi, it is possible to calculate the gradient of J with

respect to the free variable ψa. This can then be used in a gradient search method

to minimise the cost function. The complete algorithm is

(i). Integrate (C.9) forward in time over the time window, [to, tf ], with an initial

condition ψ(t0,x) = ψ0(x), q(t0,x) = q0(x) and assimilation forcing, ψa =

ψa,i.

(ii). Integrate (C.10) backwards in time over the time window, with an initial

condition, φ(tf ,x) = 0, θ(tf ,x) = 0.

(iii). Calculate dJ
dψa

using (C.11), use to calculate new ψa,i+1.

(iv). Repeat.

C.2.2 BOUNDARY CONDITIONS

Using a calculus of variations approach and considering a parameterized pertur-

bation δψ[tf ,x], arbitrary beyond a smoothness condition and the spatial boundary

conditions, applied to the final state of the system gives an optimality condition

θi[tf ,x] = 0 x ∈ D (C.12)
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Note that the same process applied at t0 generates the equation

θi[t0,x] = −ωi[x] x ∈ D (C.13)

and since optimality in ω requires merely

ψi(t0,x) = ψi0[x] x ∈ D (C.14)

we can choose (C.13) as our definition of ωi and we are free to impose (C.12) as

an initial condition at time tf for the evolution equation for θi and then integrate

backwards in time.

Collecting together the spatial surface terms in the linearized equation gives the

integral in each layer

∫ tf

to

∫

δD
νθi

∂∇2ψ′
i

∂n
+

[

µ− ν
∂θi
∂n

]

∇2ψ′
i +
[
φi + ν∇2θi

] ∂ψ′
i

∂n

−
[
∂

∂n

(
φi + ν∇2θi

)
− λi + θi

∂qi
∂s

]

ψ′ − θi
∂ψi + ψai

∂s
q′i dℓ dt.

(C.15)

Since it is possible to define two different functions with, for example,

ψ1 = ψ2,
∂ψ1

∂n
=
∂ψ2

∂n
,

∇2ψ1 = ∇2ψ2,
∂∇2ψ1

∂n
6= ∂∇2ψ2

∂n
,







on δD, (C.16)

considering a calculus of variations approach for sufficiently smooth functions gives

us four optimality equations

θi = 0 on δD, (C.17)

ν
∂θi
∂n

= µi on δD, (C.18)

φi + ν∇2θi = 0 on δD, (C.19)

∂

∂n

(
φi + ν∇2θi

)
= λ on δD, (C.20)

where we have simplified using knowledge from the boundary conditions

∂ψ

∂s
= 0 on δD,
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∂q

∂s
= 0 on δD.

Using the free parameter, µ, to solve for equation (C.18) we see that under free

slip constraints we have two new boundary conditions on θ, ψ, equations (C.19)

and (C.17). The optimality condition on k gives that

∫

δD
λ = 0,

hence we cannot treat λ as a free parameter to solve equation (C.20), instead we

get a third condition, ∫

δD

∂

∂n

(
φi + ν∇2θi

)
dℓ = 0. (C.21)

It is this final equation which determines the last free parameters in the system,

the constants ai which appear in the elliptic equations,

∇2φ1 −
1

L2
1

φ1 +
1

L2
2

φ2 =
∂(θ1, q1)

∂(x, y)
+ ν∇4θ1 − a1,

∇2φ2 +
1

L2
1

φ1 −
1

L2
2

φ2 =
∂(θ2, q2)

∂(x, y)
+ ν∇4θ2 − a2.

C.2.3 NUMERICS

The new forward model is identical to that given in section A.1, except that

there is now an additional term,

Dqi
Dt

+
∂(ψai , qi)

∂(x, y)
= Fi + ν∇4ψi.

Since this additional term represents advection of vorticity by a velocity indepen-

dent of the model velocities there is no reason for it to be stored or calculated on

the same model grid. In fact for conservation purposes it is desirable to use a con-

trol volumes approach and calculate fluxes on an Arakawa C grid of figure A.1, that

is discretizing by central differences the term in the form

∂(ψa, ζ)

∂(x, y)
=

∂

∂y

(
∂ψa

∂x
ζ

)

− ∂

∂x

(
∂ψa

∂y
ζ

)
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(∆x)2

(
∆(ψa, ζ)

∆(x, y)

)n

E

=

(ψanK − ψanM ) (ζnE + ζnF ) /2

− (ψanJ − ψanL ) (ζnD + ζnE) /2

+ (ψanK − ψanJ ) (ζnE + ζnB) /2

− (ψanM − ψanL ) (ζnH + ζnE) /2

(C.22)

Since the boundary value for the initial forward problem is given by

ψ(t0,x) = ψ0(x)

it is impossible to obtain optimality by imposing a boundary condition on θ(t0x),

hence the requirement that the adjoint equation set be integrated backwards from

the specified final boundary value

θ(tf ,x) = 0.

The actual equation set to be solved is very similar to that for the forward model

and the solution algorithm is almost the same. The equations are discretized with

θ and φ values stored on the same grid as ζ and ψ (see figure A.1). Again central

differences are used with ∇4f discretized as ∇2[∇2f ]. Jacobian terms involving

properties stored on the A grid are discretized using the Arakawa Jacobian and

those involving ψa using the form given in (C.22). The gradient information used

to update ψa requires evaluating

∆ψai = −∂(θi, ζi)
∂(x, y)

− β
∂θi
∂x

.

Since this information must be stored on the staggered C grid shown in figure A.1

the equation is discretized as

(∆x)2∆ψaL =

− [(θE − θD)/2 + (θG − θH)/2]

× [(ζD − ζG)/2 + (ζE − ζH)/2]

+ [(θD − θG)/2 + (θE − θH)/2]

× [(ζE − ζD)/2 + (ζG − ζH)/2]

− β [(θE − θD)/2 + (θG − θH)/2]

(C.23)

This represents a necessary smoothing of the assimilation forcing field, but is

flux preserving. Higher order discretizations could be used, but there is unlikely to

be major differences to the result. The numerical version of the solution algorithm

introduced in the previous section proceeds as follows
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(i). Given θ and φ at the current and future time levels the evolution equations

∂θi
∂t

= −∂(ψi, θi)
∂(x, y)

− ∂(ψai , θi)

∂(x, y)
− φi +

∂h

∂ζi
(yobs − h[ζ ])

can be integrated backwards in time to give θ at the previous time level.

(ii). The elliptic equations in φ can be rearranged to give

∇2(Φ1) =
∂(θ1, ζ1)

∂(x, y)
+
∂(θ2, ζ2)

∂(x, y)
+ ν∇4(θ1 + θ2)

∇2(Φ2) −
(

1

L2
1

+
1

L2
2

)

(Φ2) = H2
∂(θ1, ζ1)

∂(x, y)
−H1

∂(θ2, ζ2)

∂(x, y)
+ ν∇4(H2θ1 +H1θ2)

where Φ1 = φ1 +φ2, Φ2 = H2φ1 −H1φ2. The two elliptic problems for φ at the

previous time level are then solved using the NAG multigridded elliptic solver

routine as in the forward model code.

(iii). Calculate modifications to the coefficients of the basis functions from the gra-

dient terms using (C.23) and

∆ψaf = ∆ψa(t)f(t)

(iv). Repeat until the beginning of the time window is reached.
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APPENDIX D

GLOSSARY OF SYMBOLS AND ACRONYMS

“I am a Bear of Very Little Brain, and long words Bother me.”

A.A. Milne

Winnie the Pooh, 1926

TRADITIONAL DATA ASSIMILATION NOTATION

xt, xt True state vector/vector field, true scalar field

xb, xb Background/forecast state vector/vector field, background scalar

xa, xa Final analysis state vector/vector field, analysis scalar field

y, y Vector of observations, observation field

H, h, h Observation operator matrix, vector, scalar observation field

B Background error covariance matrix

R Observation error covariance matrix
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QUASI-GEOSTROPHIC MODEL NOTATION

x Horizontal distance in the zonal direction

y Horizontal distance in the meridional direction

Hi Thickness of the ith layer

ρi Density of the ith layer

f, f0 Coriolis parameter

β Beta parameter

ν Eddy viscosity

τ = (τ (x), τ (y)) Wind stress

ψi Geostrophic streamfunction for the ith layer

u := −∂ψi
∂y

Zonal velocity for the ith layer

v := ∂ψi
∂x

Meridional velocity for the ith layer

ξi := ∂vi
∂x

− ∂ui
∂y

Relative vorticity in the ith layer

qi Quasi-Geostrophic potential vorticity in the ith layer

K Total kinetic energy

A Total available potential energy

Q Relative enstrophy

B Baroclinic kinetic energy

DISPLACEMENT ASSIMILATION NOTATION

ua, ua, va Assimilation velocity

ψa Assimilation streamfunction

s Timelike assimilation variable (for 3D method)

t Model time (for 4D method)

J Discrepancy cost function (3D or 4D)

M Displacement metric cost function

P Particle in particle scheme

f Low pass filter applied to functionf
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ACRONYMS

3D-VAR Three Dimensional Variational assimilation

4D-VAR Four Dimensional Variational assimilation

4DDA Four Dimensional Displacement Assimilation

ACM Analysis Correction Model

BLUE Best Linear Unbiased Estimator

CH Cooper and Haines

CTD Conductivity, Temperature and Depth probe

DA Data Assimilation

DBCP Data Buoy Cooperation Panel

ECMWF The European Centre for Medium Range

Weather Forecasting

ERA40 The ECMWF 40 year Reanalysis dataset

FFT Fast Fourier Transform

FOAM Forecasting Ocean Assimilation Model

GCM General Circulation Model

GOOS Global Ocean Observing System

NWP Numerical Weather Prediction

PV Potential Vorticity

QG Quasi-geostrophic

SOOP Ship of Opportunity

SSS Sea Surface Salinity

SST Sea Surface Temperature

SV Singular Vector

T–S Temperature – Salinity

TAO The Tropical Atmosphere Ocean project

VOS Voluntary Observing Ships

WOCE World Ocean Circulation Experiment

XBT eXpendable BathyThermograph
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