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Abstract

Data Assimilation is the incorporation of observational data into a numerical model to pro-

duce a model state which accurately describes the observed reality. It is applicable to many

dynamical systems as it can provide a complete set of accurate initial conditions for input

into a numerical model. One situation where data assimilation is used is numerical weather

prediction, where the size of the state is very large (of order 107).

In this thesis we consider a data assimilation scheme known as the particle filter. The

particle filter uses information on the probability density of the model to forecast an estimate

of an ensemble of model forecasts, the state and its uncertainty. Unfortunately the number

of ensemble members required to accurately forecast the state grows exponentially as the

size of the state increases. For this reason the idea of mode tracking is introduced. When

mode tracking, the state is split into two sections. One section is forecast using the particle

filter, the other is treated so its values are equal to the mode of the marginal pdf. Previous

work has shown that introducing mode tracking to the particle filter reduces the number of

particles required to achieve a given filter accuracy. This hypothesis is tested by solving the

stochastic Lorenz equations using both the particle filter and particle filter with mode tracking

with varying numbers of particles. For both the particle filter and particle filter with mode

tracking it is found that increasing the number of particles increases the accuracy of the the

solution obtained. However contrary to previous work it is found that for small ensemble sizes

the particle filter can provide more accurate results than the particle filter with mode tracking.

The results appear to be sensitive to the specification of the observation and model errors.
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Chapter 1

Introduction

1.1 Background

Data Assimilation (DA) is the incorporation of observational data into a numerical model to

produce a model state which accurately describes the observed reality [Kalnay, 2002]. It is

applicable to many situations as it provides a complete set of accurate initial conditions for

input into a numerical model.

One situation where DA is used is numerical weather prediction (NWP) [UKMO, 2009].

To create an accurate weather forecast a numerical model must be run from accurate initial

conditions. We have some information in the form of observations taken by satellites, radioson-

des and weather stations etc., however these observations may contain measurement errors.

There are also some areas of the globe where observations cannot be made. DA combines a

previous weather forecast along with these incomplete observations to provide a complete and

accurate set of data. These are initial conditions from which the forecast is run.

Unfortunately the exact state of the atmosphere cannot be determined, and just small

perturbations in these initial conditions can cause large differences in the forecast. We must

take into account the uncertainty in the initial conditions. One approach is to use a number

of model realisations with different initial conditions known as ensembles or set of particles.

These particles are sampled from a probability density function (pdf) that is associated with
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the most likely initial conditions. Many ensemble DA methods only allow this pdf to be

Gaussian, however often real data is often non-linear and non-Gaussian, so we require an

ensemble DA scheme that allows us to have a non Gaussian pdf. A group of schemes that

allow this are known as particle filters (PF) [van Leeuwen, 2009], these are described in detail

in section 2.3.

A PF is an assimilation scheme that takes a sample of points from an a priori pdf of the

state. Each of these points in phase space correspond to a set of model initial conditions.

These points are then forecast forward in time. These forecast points provide us with a

new prediction pdf at this new time. This prediction pdf is combined with the pdf of an

appropriate observation to give us a pdf of the system at the new time. Each particle is given

a weight according to how close it is to the observations. Particles close to the observations are

given higher weights than those that are further away from the observations. This weighting,

discussed in section 2.3.2.2, allows us to allocate importance onto the particles we are most

interested in [Doucet et al., 2000a].

Unfortunately this weighting of particles causes us some problems. As we move forward in

time, most of the weight goes onto one particle [Snyder et al., 2008]. This means our statistical

information is to small to be meaningful. This situation is known as filter degeneracy [van

Leeuwen, 2009]. To overcome this situation we must resample our data at each stage. When

we resample our data we make multiple copies of particles with high weights and discard some

of the particles with the lowest weights. This allows us to redistribute the weights on the

particles and still retain the important information, this is discussed in section 2.3.4. This

resampling is the final part of the PF scheme. For low dimensional systems the PF works

well. However for the NWP problem our system is large, this makes it difficult to solve the

problem. A large number of particles are required to gain satisfactory results and this makes

the PF scheme computationally costly.

To try and make the computation less costly the idea of mode tracking (MT) is introduced

[Vaswani, 2008]. It is thought that combining MT with the PF allows us to obtain comparable

results to the PF but with fewer numbers of particles. In MT, the state space is split in to

two subspaces. One of these is forecast using the PF and the other is forecast using MT. The
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MT is combined with the PF to produce a ensemble DA scheme that allows the accuracy of

the PF but is less computationally costly [Vaswani, 2008].

1.2 Aims

The aims of this dissertation are:

• To investigate the particle filter (PF) and the associated problem of ensemble size.

• To investigate the use of mode tracking (MT) with the particle filter (PFMT) and

consider whether this can help to reduce the number of particles required.

The aims are achieved by implementing the PF with a simple model, carrying out experiments

with varying numbers of particles and comparing the results. The same model is implemented

in the PFMT and experiments are carried out to show how use to MT effectively. This includes

determining the best way to split the state, and filtering varying numbers of particles. The

results of the PF and PFMT are compared to show if MT can help reduce the number of

particles required.

1.3 Principal Results

The principal results from this thesis are:

• The PF produced very poor results when too few particles are used. The mean of the

pdf lies far from the truth and there is not enough variability in the particles. As the

number of particles is increased the mean of the pdf becomes much closer to the truth

and the ensemble variability is improved (see Chapter 5).

• The best results from the PFMT are seen when both the x and y dimensions are mode

tracked. MT only the z dimension produces the worst results. As with the PF the

PFMT the accuracy of the solution increases as the number of particles is increased,

however the variability properties of the PFMT are worse than the PF (see Chapter 6).
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• The most surprising result is that for small numbers of particles (N = 5 and N = 50) the

PF performs better than the PFMT. It is only when the number of particles is increased

to N = 500 that the results from the PFMT are usually better than the PF results. This

performance of the PFMT appears to be rather sensitive to the choice of observation

and model noise (see Chapter 6).

1.4 Outline

We begin this thesis by reviewing previous work that considers DA and PF. This previous

work and a more detailed investigation in to how PFs work is considered in Chapter 2. In this

chapter we also consider the idea of MT introduced by Vaswani [2008]. In Chapter 3 the model

system used for experiments in this thesis is discussed. The initial results from the numerical

scheme are also shown. Chapter 4 describes our implementation of the PF and PFMT code.

Some of the diagnostics used to asses the PF and PFMT results are also discussed. Chapter 5

shows some results from the PF code. The PFMT results are shown and discussed in Chapter

6. The PF and PFMT results are also compared. In Chapter 7 we conclude the dissertation

by summarising the previous chapters and suggesting further work.
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Chapter 2

Data Assimilation

In this chapter previous work on the mathematics of data assimilation (DA) is considered.

We start by considering conventional DA [Kalnay, 2002] then ensemble DA. After this we

discuss the idea of particle filters (PF) [van Leeuwen, 2009][Doucet et al., 2000a] and some

of the problems associated with them [Snyder et al., 2008]. Finally we consider how the

introduction of mode tracking (MT) [Vaswani, 2008] into the PF can overcome some of the

problems encountered.

2.1 Data Assimilation

We first consider the linear dynamical system,

ψt+1 = Fψt + ηt, (2.1)

where ψt is the state vector of length n at time t, F is a constant matrix of size n× n and ηt

is the model noise at time t. We assume we have observations dt at time t, these observations

are related to the state of the system by,

dt = Hψt + εt, (2.2)

where dt is the observation vector of length p at time t, εt is the observation error (a vector

of size p) at time t and H is known as the observation operator, a matrix of size p × n. The
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observation operator maps model space to observation space. In the simple case of direct

observations considered here, it picks out the components of the ψ vector that corresponds to

the the observations we have.

Next we consider a qualitative description of the DA process. A schematic picture is seen

in Figure 2.1.

Figure 2.1: A schematic of the sequential DA scheme

Figure 2.1 shows that DA works by taking dt, an observation at time t and a model

prediction, ψbt , known as the background. ψbt and dt are combined to produce an analysis

ψat , this value is then forecast to the next timestep using equation 2.1. This forecast value

becomes the new background state. The process of combining observations and backgrounds

to create an analysis which is then forecast is repeated until the time at at which the model

state is required.

The Data Assimilation Algorithm [Swinbank et al., 2003]

1. Calculate the analysis:

ψat+1 = ψbt+1 +K(dt+1 −Hψbt+1),

where K (of size n× p) is known as the gain matrix, and is prescribed by the

particular assimilation scheme in use.

2. Given the dynamical system in 2.1 forecast the analysis using

ψbt+1 = Fψat + ηt

to obtain a background state at the next time.

Table 2.1: A simple DA algorithm.
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The equations of the assimilation scheme can also summarised in a simple algorithm [Swin-

bank et al., 2003], this is seen in Table 2.1.

Although a fairly simple idea DA can be a very computationally costly exercise, this is

due to the large state spaces that are often dealt with. For NWP the size of the ψa and ψb

vectors is of the order 107, with the d vector being of size 106 [Nichols, 2003].

2.2 Ensemble Data Assimilation

So far only one initial state has been assimilated. Unfortunately the exact state of the atmo-

sphere often cannot be determined and as small perturbations from the set of conditions can

lead to a large change in the outcome of the forecast it is important that uncertainty in our

initial conditions is taken into account. To do this a number of initial states are considered

and each one is assimilated. Each of these different states is known as an ensemble or parti-

cle. Figure 2.2 shows a number of these ensembles being forecast from the initial probability

density function (pdf) to give a pdf at the forecast time.

This forecast pdf has uses throughout DA and we would like to have some idea of it at each

Figure 2.2: Schematic of ensemble DA: Each ensemble is forecast from slightly different initial

conditions. The red line represents the initial pdf. The grey lines are the trajectories of the

ensembles sampled from the initial pdf, the black line is the ensemble mean trajectory. The

blue line represents the forecast pdf. Figure from Bannister [2009]
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time step. An assimilation method known as the Kalman filter (KF) [Kalnay, 2002] keeps the

pdf information during the assimilation. At each timestep the pdf of the analysis is forecast

as well as the analysis. The ensemble Kalman filter (EnKF) [Evensen, 2006] assimilates an

ensemble of states and these forecasts are used to determine the background pdf at the new

time. However both the KF and EnKF assume that the data is modelled by a Gaussian state

space model. Most real data is far more complex. Often real data is non-linear, non-Gaussian

and in many dimensions, and hence the assumptions in KF and EnKF are inappropriate. A

sequential Monte Carlo method called particle filtering allows us to approximate non-linear,

non-Gaussian state space models [Doucet et al., 2000a].

2.3 The Particle Filter

To gain an understanding of how a PF works a schematic diagram for one iteration of the

process is considered, this is seen in Figure 2.3. Here the vertical axis represents a model

variable, whereas the horizontal axis represents time.

Figure 2.3 (a) shows the prior pdf p(ψt) the probability of the state ψ at time t, this is

represented by the red line. In Figure 2.3 (b) the black dots represent a set of N particles

sampled from this pdf. Figure 2.3 (c) shows these particles being forecast to time t + 1,

their trajectories are shown by the black lines. At this time (Figure 2.3 (d)) there is an

observation d, shown as a blue dot, which has an associated pdf p(dt+1|ψt+1) the probability

of the observation given the state at time t+1. This is known as the observation likelihood and

is represented by a blue line. Finally in Figure 2.3 (e) the forecast particles and p(dt+1|ψt+1)

are combined to give, p(ψt+1|dt+1), the probability of the model state given the observation

at at time t + 1. This is known as the filtering pdf and is represented by the red line at this

time.

To continue the iteration we return to Figure 2.3 (c) forecasting the particles from the

new model pdf. The PF algorithm is cycled until the time is reached when we require the

information.
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(a) (b)

(c) (d)

(e)

Figure 2.3: A schematic of one iteration of the particle filter process. See text for details.
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Now we have seen qualitatively how a PF works we describe the equations used in the

algorithm, following van Leeuwen [2009].

2.3.1 The Prior and Sampling From It

To start the PF we require a prior pdf, p(ψ0). Here ψ0 is the state vector of length n at the

initial time. Due to the vast amount of data required for situations such as NWP it is difficult

to store all the information associated with p(ψt). There are many values associated with this

pdf including is mean, variance and other moments. Both van Leeuwen [2009] and Doucet

et al. [2000a] consider the mean of the pdf to simplify the handling of p(ψ). The mean of a

function, f , of the state is given by,

f(ψ) =
∫
f(ψ)p(ψ)dψ. (2.3)

However this quantity may still be difficult to calculate due to the large size of the state. To

overcome this we sample from the initial pdf to gain a set of N particles, {ψi}Ni=1 ∼ p(ψt).

This allows us to represent p(ψ) as

p(ψ) =
1
N

N∑
i=1

δ(ψ − ψi), (2.4)

. where δ is the Dirac delta function. The mean can now be represented by

f(ψ) ≈ fN (ψ) =
1
N

N∑
i=1

f(ψi). (2.5)

2.3.2 Sequential Importance Sampling

Now the prior pdf has been considered and sample of particles has been taken from it we must

consider how to deal with these particles. The second stage in the PF algorithm is known

as sequential importance sampling (SIS). SIS is the method of forecasting these particles,

weighting them according to their position relative to the observations and then normalising

these weights. The SIS algorithm is summarised in Table 2.2. We define the notation seen

in Table 2.2, and later in Table 2.4, as follows. ψ0:k = {ψ0, ..., ψt} represents the model

states up to time t. d0:k = {d0, ..., dt} represents the observations up to time t. π(ψ0:k|d1,k),
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The Sequential Importance Sampling Algorithm [Doucet et al., 2000b]

For times k = 0, 1, 2, ....

1. For i = 1, ..., N , sample ψik ∼ π(ψk|ψi0:k−1, d0:k) and ψ0:ki = (ψi0:k−1, ψ
i
k).

2. For i = 1, ..., N , evaluate the importance weights up to a normalising constant:

wik = wik−1

p(dk|ψik)p(ψik|ψik−1)
π(ψk|ψi0:k−1, d0:k)

(2.6)

3. For i = 1, ..., N , normalise the importance weights:

ωik =
wik∑N
j=1w

j
k

(2.7)

Table 2.2: The sequential importance sampling algorithm.

the distribution of the model states up to time k given the observations up to time d, is an

arbitrary importance sampling distribution and is known as the importance function. This

follows the notation from Doucet et al. [2000a]. The steps of the algorithm are described in

sections 2.3.2.1 and 2.3.2.2.

2.3.2.1 The Forecast Step and Bayes Theorem

Step one in the SIS algorithm (Table 2.2) is the forecast step. In the probabilistic language

this forecast step is denoted as: sample from the importance function ψik ∼ π(ψk|ψi0:k−1, d0:k)

the distribution of the state at time k given the states up to time k − 1 and the observations

up to time k . In many PFs the importance function π(ψ0:t|d1:t) is chosen to be the priori

distribution. We shall see in section 2.3.5 that we adopt the prior distribution as the impor-

tance function. For this, the forecast step is given as: Sample from p(ψt|ψit−1). In practice,

for each particle ψit, we run the stochastic model forward from time t− 1 to time t using the

full nonlinear stochastic model equations.

Once we have forecast these particles we wish to combine them with the observations at
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the forecast time. To do this we make use of Bayes Theorem.

Theorem 1 Bayes Theorem

p(ψ|d) =
p(d|ψ)p(ψ)

p(d)
(2.8)

So if ψ is the model state and d the observations then Bayes Theorem tells us that the prob-

ability of the model state given the observations is equal to the probability of the observations

given the model state multiplied by the probability of the model state divided by the probability

of the observation. Here p(d) is a normalisation factor.

If the importance function is chosen to be the prior distribution, then by substituting the

summation notation in equation (2.4) into Bayes Theorem we obtain equation 2.9,

p(ψt|dt) =
N∑
i=1

wiδ(ψt − ψit), (2.9)

where wi is the particle weight. We can now calculate the probability of the model state given

the observations. The particle weights, wi, can be used to give us information on how close

each of the particles is to the observation, this is discussed in the following section.

2.3.2.2 Weighting

We are interested in knowing how close each particle, ψit, to the observation at this time. For

this reason the wit from equation (2.9) is known as the weight at time t of particle ψit.

wit =
p(dt|ψit)∑N
j=1 p(dt|ψ

j
t )
, (2.10)

However we must remember that these weights are only for when the importance function

is equal to the prior pdf. Weights for a general importance function are shown in equation

(2.6) in Table 2.2.

This weighting of the particles gives the relative importance of each particle in the PDF. It

is important as we may find that some of the forecast values do not fit with the observations.

As weighting represents the importance of the particles, particles that fall in areas of high

probability, i.e. near an observation, are given a weighting to make them more important
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where as particles that are in areas of low probability are given a low weighting. We consider

an example from Fox [2003] to see how weighting works.

Example 1 Weighting Example

A robot is somewhere on the map seen in Figure 2.4 and he is trying to find his location.

Doors are shown on the map and the robot can recognise doors but he cannot tell the difference

Figure 2.4: Map of the corridor used for the robot experiment. The white areas represent the

corridors where the robot can walk. Figure from Fox [2003].

Figure 2.5: Figures showing the position of the robot, graphs of the associated probability of

his position and graphs of the particles representing the possible location of the robot. The

top of both plots (a) and (b) show the location of the robot relative to the doors. The x vs w

plots in (a) and (b) show the distribution of particles across the location seen and their relative

weights. Here we use the notation as in Fox [2003], wi represents thew weight of particle i.

Here x is the equivalent of ψ, the state and z is the observation. The remaining plot in (b)

shows the observation likelihood p(d|ψ). Figure from Fox [2003]
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between each door. The first step in in the particle filter is to sample a number of points where

the robot may be. These particles initially all have equal weights and are represented in Figure

2.5 (a) by the small black lines on the x vs. w plot. The robot then arrives at a door, he now

knows that on the map he is somewhere in front of a door, but he does not know which door.

There is equal chance of him being at each door, this is shown in the x vs. p(z|x) plot. Now we

have some information of the robots location we are able to weight the particles accordingly.

The particles that represent being by a door are weighted higher as there is a greater chance

that this is where the robot is. The particles not near a door are given lower weights as there

is a smaller chance that this is where the robot is. We can see these weights represented on

the x vs. w plot in Figure 2.5 (b). We shall return to this example later in section 2.3.4 to

find out where the robot is.

2.3.3 Problems with Weighting

Unfortunately this weighting of particles causes us some problems, as we move forward in

time weight goes onto one particle [Snyder et al., 2008]. This happens because each weight is

multiplicatively dependent on a previous weight (equation 2.6). Eventually this leads to all

the weight being on one particle. In this case, our statistical information is to small to be

meaningful, this situation is known as filter degeneracy [van Leeuwen, 2009]. Snyder et al.

[2008] investigated this weighting problem. They calculated the maximum normalised weight

at each timestep. This maximum weight is defined as

ωmax,t = max {ωit : i = 1, .., N}. (2.11)

Figure 2.6 shows the results of an experiment that was run to see how the weights behave.

Is shows a histogram of the number of occurrences of the maximum weights in each interval.

It was created by tallying how many times the maximum weight falls in each interval. We see

that many of the maximum weights fall into the interval (0.98, 1), showing that on each of

these occurrences nearly all the weight is on one particle. This means the information from

our other particles is lost. Results included in Appendix A show that the code described in

section 4.1 produces similar results to those in Snyder et al. [2008] when the resamiling step
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Figure 2.6: A plot of the number of occurrences of the maximum weights in particular intervals.

Figure from Snyder et al. [2008]

is omitted.

Now we have seen that weighting the particles can lead to filter degeneracy we must find

a way to over come it. One way to do this is to resample the data.

2.3.4 Resampling

We have seen that if we keep all our particles and their weights and continue to evolve them

over time all the weight goes onto one particle. To avoid this situation we include a resampling

step in our sequential importance sampling algorithm. Essentially resampling the data means

that we discard particles with lower weights as they are furthest from the observations. We

increase our sample size back to N particles by creating multiple copies of the particles with

high weights. When multiple copies of each particle are forecast, due to the stochastic nature

of the forecast step, we obtain different forecast results. Although we obtain different forecasts

from multiple copies of the same particle, these forecasts are still closer than if the particles

had not been resampled. This leads to a loss of diversity in the particles. The effectiveness of

the resampling can be seen in the continuation of the Robot Example [Fox, 2003].

Example 2 Resampling Example

Last time we saw the robot, Figure 2.5 (b), he had reached a door and the particles had

been weighted. The x vs w plot on Figure 2.7 (c) shows these particles once they have been

resampled, normalised and the robot has moved to the right. We see that the resampling
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Figure 2.7: Figures showing the position of the robot, graphs of the associated probability of

his position and graphs of the particles representing the posible location of the robot. Notation

and plots as in Figure 2.5. Figure from Fox [2003]

has increased the number of particles where the weights had been increased and decreased the

number of particles where the weights were small. Figure 2.7 (d) shows the robot reaching

another door, again the particles are weighted accordingly. It is already easy to see that the

area with a high density of high weighted particles represents the actual position of the robot.

Figure 2.7 (e) shows the resampled particles with normalised weights once the robot has moved

right. It is possible to see that the particles are most densely populated around the position of

the robot with only a few particles else where.

Figure 2.8 shows the results of the experiment carried out in [Fox, 2003]. Figure 2.8 (a)

shows the results once the robot has moved 5m, we see that the particles are spread across the

whole map giving little indication of the robots actual location. By Figure 2.8 (b) the robot has

moved slightly further, the particles are now in clusters in four different locations, this limits

the position of the robot to these four corners on the map. Finally by Figure 2.8 (c) after the

robot has moved approximately 55m we see that all the particles are in one cluster suggesting

that the robot is located somewhere amongst them.
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Figure 2.8: Maps showing the possible location of the robot after he has moved 5m (a), more

than 5m (b), 55(m). Figure from Fox [2003]

2.3.4.1 Stratified Resampling

There are many ways to resample including Multinomial resampling, Residual resampling,

Stratified resampling and Systematic resampling. Douc et al. [2005] show that residual, strat-

ified and systematic resampling in general produce comparable results that are better than

those produced by multinomial resampling. Systematic resampling is most simple to imple-

ment, but there is a lack of theoretical analysis of its behavior and for this reason the method

implemented in this thesis is Stratified resampling. The Stratified resampling algorithm seen

in Kitagawa [1996] is presented in Table 2.3.
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The Stratified Resampling Algorithm [Kitagawa, 1996]

1. Rearrange the normalised weights ω1, . . . , ωN in ascending order.

The reordered weights are expressed as ω̃1, . . . , ω̃N .

2. Split the interval in to N equal sections of length 1
N . Label sections j where

j = 1, 2, ..., N .

3. Calculate values uj , where uj is the midpoint of section j.

4. Set i = 1, j = 1, ωL = 0 and ωR = ω̃1.

5. Test ωL < uj ≤ ωR

If this inequality holds then accept the particle associated with

ω̃i and set j = j + 1.

If the inequality does not hold set ωL =
∑i

l=1 ω̃
l,

ωL =
∑i+1

l=1 ω̃
l and i = i+ 1.

6. Repeat step 5. until i = N and j = N

7. There should now be N particles accepted, some of which are

duplicates. These are the resampled particles.

Table 2.3: The Stratified Resampling Algorithm.

We now consider a simple example to explain how stratified resampling works.

Example 3 Stratified Resampling Example

Assume we need to resample five particles with normalised weights ω1 = 0.3, ω2 = 0.1, ω3 =

0.05, ω4 = 0.35 and ω5 = 0.2 respectively.

1. Sort into order of increasing value to obtain w̃1 = w3 = 0.05, w̃2 = w2 = 0.1, w̃3 =

w5 = 0.2, w̃4 = ω1 = 0.3 and ω̃5 = ω4 = 0.35.

2. Split the interval (0, 1] in to 5 equal sections of length 0.2.

3. Take uj to be the midpoint of each interval j. u1 = 0.1, u2 = 0.3, u3 = 0.5, u4 = 0.7

and u5 = 0.9.

4. Now we consider the inequalities containing uj and w.
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Test ωL < uj ≤ ωR where u1 = 0.1, ωL = 0 and ωR = 0.05.

0 < 0.1 ≤ 0.05 = w̃1

This inequality does not hold so we add ω̃1 to the LHS and ω̃2 to the RHS.

Test ωL < uj ≤ ωR where u1 = 0.1, ωL = 0.05 and ωR = 0.15.

ω̃1 = 0.05 < 0.1 ≤ 0.15 = ω̃1 + ω̃2

This is true so take the particle associated with ω̃2 and increase the value of j to j = 2.

Test ωL < uj ≤ ωR where u1 = 0.3, ωL = 0.05 and ωR = 0.15.

ω̃1 = 0.05 < 0.3 ≤ 0.15 = ω̃1 + ω̃2

This does not hold so we add the next weight to each side.

Test ωL < uj ≤ ωR where u1 = 0.3, ωL = 0.15 and ωR = 0.35.

ω̃1 + ω̃2 = 0.15 < 0.3 ≤ 0.35 = ω̃1 + ω̃2 + ω̃3

This is true so take the particle associated with ω̃3 and increase the value of j to j = 3.

Test ωL < uj ≤ ωR where u1 = 0.5, ωL = 0.15 and ωR = 0.35.

0.15 < 0.5 ≤ 0.35

This does not hold so we add the next weight to each side.

Test ωL < uj ≤ ωR where u1 = 0.5, ωL = 0.35 and ωR = 0.65.

0.35 < 0.5 ≤ 0.65

This is true so take the particle associated with ω̃4 and increase the value of j to j = 4.

Test ωL < uj ≤ ωR where u1 = 0.7, ωL = 0.35 and ωR = 0.65.

0.35 < 0.7 ≤ 0.65

This does not hold so we add the next weight to each side.

Test ωL < uj ≤ ωR where u1 = 0.7, ωL = 0.65 and ωR = 1.

0.65 < 0.7 ≤ 1

This is true so take the particle associated with ω̃5 and increase the value of j to j = 5.

Test ωL < uj ≤ ωR where u1 = 0.9, ωL = 0.65 and ωR = 1.

0.65 < 0.9 ≤ 1
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This is true so take the particle associated with ω̃5. The value of j can no longer be

increased so the algorithm is finished.

The new particles are those associated with the original ω1, ω2, ω4, ω4 and ω5. We

have lost the particle with the lowest weight, but have two copies of the particle with the

highest weight.

This resampling is the final step in the PF algorithm. From this point we return to the

forecast step, we forecast the resampled particles, weight them and then resample. This

process is repeated until the final time is reached.

2.3.5 Summarising the Particle Filter

The algorithm containing this resampling step is known as the Bootstrap Filter [Doucet et al.,

2000a], this is shown in Table 2.4.

The Bootstrap Filter

1. Initialisation, t = 0

For i = 1, . . . , N , sample ψi0 p(ψ0) and set t = 1.

2. Importance Sampling Step

For i = 1, . . . , N , sample ψ̃it p(ψt|ψit−1) and set

ψ̃i0:t = (ψ̃i0:t−1, ψ̃
i
t).

For i = 1, . . . , N , evaluate the importance weights,

w̃it = p(dt|ψ̃it).

3. Normalise the importance weights.

4. Selection Step

Resample with replacement N particles (ψi0:t; i = 1, . . . , N)

from the set (ψ̃i0:t; i = 1, . . . , N) according to the

importance weights.

Reset weights to 1
N .

Set t = t+ 1 and repeat step 2.

Table 2.4: The Bootstrap Filter
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The algorithm in Table 2.4 implies that we must resample at every step, however this is

not the case. It is possible to resample only at timesteps when the weights differ significantly

in value. This will save computational cost as at times when the weights are nearly equal it is

possible just to keep each of the particles as this is likely to be what the particle filter would

do. The only difficulty with not resampling at each timestep is deciding when resampling

should take place. This may be done when the highest weight reaches a particular value or at

say every other timestep. As this choice is complex to make and code we chose to resample

at every timestep. We see in section 6.1 that this resampling at every timestep leads to a lack

of variability in the particles. Resampling less often may be a way to overcome this problem.

2.3.6 Properties of the Particle Filter

Resampling the data removes the problem of all the weight ending up on one particle, and

for small scale systems the PF now works well. It is expected that the PF will converge to

the true distribution in the limit of large particle samples. However for the NWP problem

our system is large, this leads to some more complications. Snyder et al. [2008] shows us that

the main issue is the number of particles we require. As the dimension of the state increases

the number of particles required for the PF to converge to the true distribution increases

exponentially. This is shown in Figure 2.3.6. This large number of particles required makes

the PF computationally expensive.

2.4 The Particle Filter with Mode Tracking

To reduce the computational cost of the PF Vaswani [2008] introduced the idea of mode

tracking (MT) . It is thought that combining MT with the PF allows us to obtain comparable

results to the PF but with fewer numbers of particles. When MT we split the state into

Ψ = [Ψs,Ψr]. We treat the Ψs part of the state using the ordinary PF, with the pdf of the

state being approximated. The Ψr part is treated differently. We wish to set Ψr equal to the

mode of the marginal pdf. We do this by forecasting Ψr one timestep with no noise. We then

find optimum values for Ψr by minimising a cost function that can be related to the 3D-Var

21



Figure 2.9: Number of Particles Required required ‘for the posterior mean estimated by the

particle filter is to have averaged square error less than the prior or observations’[Snyder

et al., 2008]. As the dimension of the state increases (along the horizontal axis) we see that

the number of particles required increases exponentially. Nx and Ny are the state dimensions,

Ne is the number of ensembles required. The asterisks represent the the simulation results, a

best fit line is then plotted. Figure from Snyder et al. [2008]

[Bannister, 2009].

We present, in Table 2.5 the PFMT algorithm from Vaswani [2008]. We shall consider

each stage of the algorithm to see how PFMT works in detail.

The PFMT Algorithm

1. Importance Sample Ψt,s: ∀i sample Ψi
t,s p(Ψ

i
t,s|Ψi

t−1).

2. Mode track Ψt,r: ∀i set Ψt,r = mi
t where

mi
t(Ψ

i
t−1,Ψ

i
t,s, dt) = arg minΨt,r [− log p(dt|Ψi

t,s)p(Ψt,r|Ψi
t−1,Ψ

i
t,s)].

3. Weight: ∀i compute wit = ωi
t∑N

j=1 ω
j
t

where Ψi
t = [Ψi

t,s,Ψ
i
t,r].

and ωit = wit−1p(dt|Ψi
t)p(Ψ

i
t,r|Ψi

t−1,Ψ
i
t,s).

4. Resample: Set t← t+ 1, return to step 1.

Table 2.5: The PFMT Algorithm.
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2.4.1 Initialisation and Importance sampling

When mode tracking we must first decide how to split the state. Vaswani [2008] suggests

that it is best to split the state so ‘Ψt,s contains the minimum number of dimensions ... [such

that] p(Ψt,r|Ψi
t−1,Ψ

i
t,s, dt) [the probability of the r section of the state at time t given the

probability of the state at time t−1 and the s part of the state and the observations at time t]

is unimodal’. Once we have chosen how to split the state we can begin the PFMT algorithm.

The first step shown in Table 2.5 is the importance sampling step. This step is identical to

the PF, the only difference being that we only treat the Ψs dimensions in this way. Here we

sample from the prior pdf and forecast the Ψs dimensions one timestep.

2.4.2 Mode Tracking

The second step in the PFMT algorithm is MT. The mode tracking finds values for the Ψr

part of the state for each particle by minimising the cost function in equation (2.12) with

respect to Ψt,r.

J i(Ψi
t,s,Ψt,r) =

1
2

(Jo(Ψi
t,s,Ψt,r) + Jq(Ψt,r)), (2.12)

where

J io(Ψ
i
t,s,Ψt,r) =

dt −H
 Ψi

t,s

Ψt,r

T

R−1

dt −H
 Ψi

t,s

Ψt,r

 , (2.13)

and

J iq(Ψt,r) = (Ψt,r − fr(Ψi
t−1))T [Qrr −QrsQ−1

rr Q
T
rs]
−1(Ψt,r − fr(Ψi

t−1)), (2.14)

where R is the observation error covariance matrix and Q is the model error covariance matrix.

Q is split into four sections corresponding to how Ψ has been split. The Jq term above

(equation (2.14)) is the the cost function of the model whereas the Jo term (equation (2.13))

is the cost function of the observation. The (Ψt,r−fr(Ψi
t−1)) term in equation (2.14) represents

how far the background is from the model state, the corresponding term in equation (2.13)

represents how far the observation is from the model state.

Now we have forecast values for each part of the state the particles must be weighted.
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2.4.3 Weighting and Resampling

The weighting for the PFMT differs from the ordinary PF. The weights are calculated using,

wit = ωi
t∑N

j=1 ω
j
t

(2.15)

where ωit = ωit−1p(dt|Ψi
t)p(Ψ

i
t,r|Ψi

t−1,Ψ
i
t,s). We see these normalised weights are similar to

that given in equation (2.7).

Now the particles have been weighted the PFMT continues as the ordinary particle filter.

We resample the particles using the same stratified resampling algorithm. Once the particles

have been resampled we reset the weights for each particle to wi = 1
N . As with the PF we

return to the forecast step to continue the assimilation. We repeat the iteration until the final

forecast time is reached.

Vaswani [2008] found that the introduction of MT significantly decresed the number of

particles required to achieve desirable results. The experiments carried out by Vaswani [2008]

showed the ‘superior performance of the PFMT ... over the PF-original’ when both codes

were run with the same number of particles.

2.5 Summary

In this chapter previous work has been considered. Kalnay [2002] showed how DA is used

to combine observations and a numerical model to produce a model state which accurately

describes the observed reality. Bannister [2009] showed how ensemble DA forecasts a number

of states to give us a pdf associated with the forecasts. We have then considered work by van

Leeuwen [2009] and Doucet et al. [2000a] to show how the PF makes use of Bayes Theorem

to improve on the simple ensemble DA. We considered the idea of weighting, giving particles

a value that represent how close they are to the truth, and then use this to resample the

particles. From Snyder et al. [2008] we saw that as the state of the system increased the

number of particles required to give an accurate solution increased exponentially. For this

reason Vaswani [2008] introduced the idea of MT. Vaswani [2008] also showed that the PFMT

performed better than the ordinary PF. Therefore this should allow us to reduce the number
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of particles required to solve the system and hence decrease the computational cost of the

assimilation. We test this hypothesis in Chapter 6. In order to test these ideas we require a

model dynamical system, this is seen in Chapter 3.
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Chapter 3

The Model

In this chapter we describe a suitable model that can be used with the PF and PFMT al-

gorithms. A fairly simple model has been chosen so it is not complex to implement and not

too computationally costly to solve. The chosen model has previously been used with a PF

[Pham, 2000][Bengtsson et al., 2003] allowing us to compare the results we obtain.

We consider how to solve the model numerically, some numerical solutions are produced

and these are compared to previous work [Pocock, 2008][Pham, 2000][Bengtsson et al., 2003]

to validate our implementation. The error in the numerical solution is also considered to check

the numerical approximation is converging correctly.

3.1 The Lorenz Model

The model chosen is based on the deterministic Lorenz model [Lorenz, 1963], shown in equa-

tions (3.1), (3.2) and (3.3).

dx

dt
= σ(y − x), (3.1)

dy

dt
= x(ρ− z)− y, (3.2)

dz

dt
= xy − βz, (3.3)

26



where x, y and z are the dimensions of the state, t is time and σ, ρ and β are constants. The

constants σ, ρ and β may take any value greater than zero, however we have chosen σ = 10,

ρ = 28 and β = 8
3 as these are the classic Lorenz parameters [Lorenz, 1963]. Choosing these

values allows us to compare our work with previous studies. The choice of ρ = 28 causes the

system to exhibit chaotic behavior [Lorenz, 1963].

Equations (3.1), (3.2) and (3.3) show a deterministic formulation of the Lorenz model. We

wish our model to represent unresolved atmospheric processes with added noise. To allow for

this we transform (3.1), (3.2) and (3.3) into stochastic differential equations of the form,

dΨ = a(Ψ)dt+ b(Ψ)dW. (3.4)

The first term on the RHS represents the RHS of the original Lorenz equations, the second

term is an addition of ‘noise’ by a Wiener process [Kloden and Platen, 1999]. The stochastic

Lorenz equations are given by (3.5), (3.6) and (3.7).

dX = σ(Y −X)dt+BXdWX (3.5)

dY = (X(ρ− Z)− Y )dt+BY dWY (3.6)

dZ = (XY − βZ)dt+BZdWZ . (3.7)

Now X, Y and Z represent random variables, where as ρ, β and σ are held at the same

constant value. dW still represents a value from the Wiener process. The constants BX , BY

and BZ can be changed to alter the importance of the noise in the system. The choice of these

parameters is discussed in section 3.6.

A second reason for choosing a stochastic model is that we require some sort of stochastic

process for the PF to work. Section 2.3.4 discusses the idea of resampling, the stochastic

process is required here to separate copies of particles that are made.

3.2 The Euler-Maruyama Approximation

To solve the model numerically a time discrete approximation must be used. The scheme

chosen is a stochastic generalization of Euler’s method known as the Euler-Maruyama (EM)
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approximation [Kloden and Platen, 1999]. Given a SDE of the form in (3.4) the EM approxi-

mation has the form

Ψt+1 = Ψt + a(Ψt)∆t + b(Ψt)∆Wt, (3.8)

where ∆t is the timestep and ∆Wt = Wt+1 −Wt. Wt is the value of the Wiener process at

timestep t and hence ∆Wt is the difference between the W values at two consecutive timesteps.

These random variables ∆Wt are independent and from the distribution N(0,∆t). In practice

we take ∆Wt directly from N(0,∆t) rather than calculating values of Wt at each timestep.

Thus the size of the timestep affects the noise added to the model. Here the values of ∆t may

vary in length, for simplicity we consider equal length timesteps ∆. The EM approximation

for the model is given in equations (3.9) to (3.11),

Xt+1 = Xt + σ(Yt −Xt)∆ +BX∆WX , (3.9)

Yt+1 = Yt + (Xt(ρ− Zt)− Yt)∆ +BY ∆WY , (3.10)

Zt+1 = Zt + (XtYn − βZt)∆ +BZ∆WZ . (3.11)

3.3 Convergence and Stability

It is also important to verify that the scheme is numerically stable and converges to the true

solution of the continuous problem as ∆ goes to zero. We now present some Theorems that

give some information on convergence and stability of the scheme.

3.3.1 Convergence of the EM Scheme

We start by considering the convergence criteria of the scheme. Kloden and Platen [1999] and

Kliemann and Namachchivaya [1995] state both strong and weak convergence results for the

EM approximation. First we define the meanings of strong and weak convergence, then the

results for the EM approximation are stated in Theorems 2 and 3. We also include Theorem

4, the convergence results for one timestep of Euler’s method.

Definition 1 Strong Convergence

If ΨT
t is the true value of Ψ at time t, Ψ̃∆

t is an approximation of Ψ obtained from a numerical
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model with timestep ∆ and E is the expectation operator. Then an approximation Ψ̃ converges

with strong order γ > 0 if there exists a finite constant G > 0 such that

E(|ΨT
t − Ψ̃∆

t |) ≤ G∆γ

for all step sizes ∆ ∈ (0, 1).

Definition 2 Weak Convergence

If ΨT
t is the true value of Ψ at time t, Ψ̃∆

t is an approximation of Ψ obtained from a numerical

model with timestep ∆ and E is the expectation operator. Then an approximation Ψ̃ converges

with weak order α > 0 if for any polynomial g there exists a finite constant Gg > 0 such that

|E(g(ΨT
t ))− E(g(Ψ̃∆

t ))| ≤ Gg∆α

for all step sizes ∆ ∈ (0, 1).

Theorem 2 Strong Convergence for the EM approximation

The EM approximation converges with strong order γ = 0.5.

Theorem 3 Weak Convergence for the EM approximation

The EM approximation converges with weak order α = 1

Theorem 4 Convergence for one timestep of Euler’s method

For one itteration of Euler’s method it is expected that ε∆ = O(∆2)

We omit the proofs of these Theorems here. However the proof of Theorems 2 and 3 can be

found in Kloden and Platen [1999] and the proof of Theorem 4 in Lee and Schiesser [2003].

3.3.2 Stability of the EM Scheme

Both Saito and Mitsui [1996] and Kloden and Platen [1999] discuss the stability of the EM

approximation, however only linear systems are dealt with. As stability of nonlinear systems

is complex, even in an ODE case, we shall consider the stability of the EM approximation for

the linear equation

dΨt = λΨtdt+ dWt, (3.12)
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where λ is a complex number with <(λ) < 0. The EM scheme for equation (3.12) with an

equidistant step size ∆ is given in equation (3.13),

Ψ∆
n+1 = Ψ∆

n (1 + λ∆) + ∆Wn. (3.13)

From this we obtain,

|Ψ∆
n − Ψ̃∆

n | ≤ |1 + λ∆|n|Ψ∆
0 − Ψ̃∆

0 |, (3.14)

where Ψ̃∆
n is the solution obtained from starting at Ψ̃∆

0 . From equation (3.14) we see the addi-

tive noise terms cancel out, giving us the same region of absolute stability as the deterministic

Euler method shown in Figure 3.1.

Figure 3.1: The stability region of Euler’s Method. The stable region lies within the circle on

the complex plane.

As we can not compute the stability region directly for the EM approximation with the

Lorenz equations we look to the literature to try and find a stable timestep to use. Xiao

et al. [2009] use the Lorenz equations with parameters σ = 10, ρ = 30 and β = 8
3 , the only

parameters that differ are ρ and the noise parameter we have called B. To solve the equations

Xiao et al. [2009] use the EM approximation and a timestep of ∆ = 0.01. In our experiments

we have also used a timestep of ∆ = 0.01 and have seen no evidence of numerical instability

with this timestep.
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3.4 The Euler-Maruyama Code

The Euler-Maruyama scheme (equations (3.9), (3.10) and (3.11)) was implemented in MAT-

LAB. The noise terms ∆WX , ∆WY and ∆WZ are independent and from the distribution

N(0,∆t). To calculate these values in MATLAB the randn command was used [Moler, 2006].

The randn command produces pseudo-random numbers from the distribution N(0, 1). As we

require values from N(0,∆n) the values of ∆WX , ∆WY and ∆WZ are calculated scaling the

output of randn by
√

∆, (i.e
√

∆N(0, 1)).

3.5 Model Validation

In this section we present results from both quantitative and qualitative experiments to val-

idate the scheme. The sensitivity of the model to the choice of the parameters BX , BY and

BZ is also considered.

3.5.1 Qualitative Results

First the qualitative results are considered. We plot various solutions of the Lorenz systems

to check they are as expected. Each Figure (3.2, 3.3, 3.4 and 3.5) contains four separate plots.

The graphs on the left are of x (top), y (middle) and z (bottom) against time t. The plot

on the right is a plot of x against z, this is the classic butterfly plot produced by the Lorenz

Equations.

To gain an initial solution we run the Euler-Maruyama scheme from time t = 0 until

t = 20 with a timestep of ∆ = 0.01 and B = 0 (no noise) from initial conditions x = 0.00001,

y = 0.00001 and z = 2.00001. This allows us to see a smooth numerical solution to the

deterministic equations and may help determine a suitable level of noise later. The solution

is plotted in Figure 3.2.

It can be seen that the x, y and z values oscillate, small oscillations lead to the spiraling

motion in the classic butterfly plot whereas the large oscillations cause the jumps between the

left hand and right hand wings. The butterfly plot on the RHS is the classic Lorenz picture we
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Figure 3.2: Solution to stochastic Lorenz equation with no noise added. Initial conditions

x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0 to t = 20 with a timestep ∆ = 0.01.

expect, as seen in [Bengtsson et al., 2003], qualitatively verifying that the basic EM scheme

is working.

We now add some noise to the scheme. We run the scheme as before but with BX = 1,

BY = 1 and BZ = 1, the final time is reduced to t = 0.4 to simplify the solution and allow us

to focus on the added noise. The solution is plotted in Figure 3.3, it is similar to the solution

in Figure 3.2 but the trajectory is no longer smooth. The trajectory contains small bumps at

each timestep, these are related to the added noise.

The values of BX = 1, BY = 1 and BZ = 1 put a large amount noise in the scheme

and we do not necessarily require the noise to be this large. The sensitivity of the model to

these parameters is discussed later in section 3.6. In another experiment we set BX = B,

BY = B and BZ = B where B = 0.1. Even with this small amount of noise two solutions with

identical initial conditions can be completely different over time, with different realisations of
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Figure 3.3: Solution to stochastic Lorenz equation. Initial conditions x = 0.00001, y =

0.00001, z = 2.00001. From time t = 0 to t = 0.4 with a timestep ∆ = 0.01. Noise parameters

BX = 1, BY = 1 and BZ = 1.
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Figure 3.4: Two solutions from identical initial conditions. The red and blue lines represent

two solutions from initial conditions x = 10.00001, y = 10.00001, z = 20.00001 but with

different realisations of noise. From time t = 0 to t = 1 with a timestep ∆ = 0.01. Noise

parameters B = 0.1.

noise. Figures 3.4 shows how solutions with the same initial conditions can differ.

The location of the initial conditions in phase space also helps to determine how quickly

two solutions with different initial conditions differ over time. The initial conditions for Figure

3.4 lie in an unstable area of the system, the small amount of noise added pushes one solution

to the left wing of the butterfly and the other to the right hand side. However the initial

conditions for Figure 3.5 lie in a more stable part of the system and the trajectories produced

follow similar paths over a longer time period.
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Figure 3.5: Two solutions from identical initial conditions. The red and blue lines represent

two solutions from initial conditions x = 10.00001, y = 10.00001, z = 20.00001 but with

different realisations of noise. From time t = 0 to t = 1 with a timestep ∆ = 0.01. Noise

parameters B = 0.1.

3.5.2 Quantitative Results

We have now seen that the Euler-Maruyama scheme provides the expected qualitative results,

producing the classic butterfly plot we expect from the Lorenz attractor and showing the

chaotic nature of the system by giving differing solutions from the same initial conditions. We

now look for some quantitative results to support the results already obtained.

Theorem 2 and 3 showed that we expect the EM approximation to converge with strong

order γ = 0.5 and weak order α = 1. This suggests that a plot of log(∆) vs. log(Error) will

produce a line with gradient between 0.5 and one. We shall see that this gradient is dependent

on the noise parameter B. Setting B = 0 simplifies the EM approximation to Euler’s method

[Ascher and Petzold, 1998], for one timestep of this scheme Theorem 4 shows this error should
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be O(∆2). Therefore if we run our scheme with no noise we expect the plot of log(∆) vs.

log(Error) to show a straight line with gradient two.

To be able to plot the log(∆) vs. log(Error) graph we need to be able to calculate the the

error at a given timestep. Normally this would be calculated using equation (3.15)

Ψt − Ψ̃∆
t = ε∆, (3.15)

where ε∆ is the error obtained from the difference between Ψ is the true solution at time t

and Ψ̃t the numerical approximation at the same time calculated with timestep ∆. As we do

not have an analytic solution we cannot do this directly. We expect our error ε = O(∆0.5), so

we would expect equation (3.15) to be,

Ψt − Ψ̃∆
t = O(∆0.5). (3.16)

To calculate our error with a given timestep ∆ we compute equation (3.16) using both timestep

∆ and timestep 2∆. This leads to equations (3.17) and (3.18).

Ψt − Ψ̃∆
t = O(∆0.5). (3.17)

Ψt − Ψ̃2∆
t = O((2∆)0.5). (3.18)

subtracting equation (3.17) from (3.18) gives equation (3.19).

Ψ̃∆
t − Ψ̃2∆

t = O((2∆)0.5)−O(∆0.5) = O(∆0.5). (3.19)

Therefore to calculate the error at time ∆ we calculate the numerical solution using ∆ and

2∆ we then subtract one from the other. The resulting value is the error associated with the

timestep ∆. We carry out these calculations for 5 different ∆’s and plot the results. As we

have three dimensions we must decide how to calculate an average of the error, we choose to

use a Root Mean Squared Error (RMSE).

In Figure 3.6 log(∆) vs. log(Error) is plotted, we plot this for various values of B. We

include B = 0 when the EM scheme is reduced to Euler’s Method. The actual error for each

∆ is plotted as a cross, we then fit a line of best fit.
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Figure 3.6: Graph showing how the size of the timestep affects the error, for varying values

of B. log(∆) is plotted against log ε∆ the log of the error produced with a particular size

timestep. Crosses represent experimental results obtained as described in the text. A line of

best fit is then added to each set of data.

From Figure 3.6 we see that the line produced when B = 0 has a gradient of two suggesting

the error for one timestep for the Euler’s method is O(∆2) which is what we expect. We see

that the remaining plots all have similar gradients, although the gradient reduces slightly as

the value of B increases. The gradients of the best fit lines for B = 5 and B = 10 are both

0.5 suggesting an order of convergence of 1
2 , this means the EM scheme is converging with the

expected order seen in Theorem 2. The best fit lines for B = 0.5 and B = 1 are slightly higher

than 0.5, they still fall between the strong and weak convergence values given in Theorems 2

and 3.
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3.6 Sensitivity to Noise Parameters

In equations (3.5), (3.6) and (3.7) we see that the parameters BX , BY and BZ affect the size

of the noise added to the equation. For simplicity we set each of these values equal, this value

is B (BX = BY = BZ = B). To see how the value of B affects the solution we run the model

as in Figure 3.3 but with a final time of t = 0.1 with various values of B and with identical

noise realisations for each trajectory. These are shown in Figure 3.7. The Figure shows that

the smaller the value of B the smoother the trajectory obtained. From now on we choose to

set B = 0.1, this value is chosen as it allows us to see relatively smooth, yet noisy solutions.

Figure 3.7: Affect on solution of changing B. Each line shows the EM solution to the stochastic

Lorenz equations for a different value of B. Initial conditions x = 0.00001, y = 0.00001,

z = 2.00001. From time t = 0 to t = 0.1 with a timestep ∆ = 0.01.
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3.7 Summary

In this Chapter we have seen the stochastic Lorenz equations ((3.5),(3.6) and (3.7)) that will

be solved using the EM approximation and estimated by the PF and the PFMT. We have seen

the EM approximation, a simple generalisation of Euler’s method, this is used to forecast the

particles in the PF. We have seen that the EM approximation gives the expected solution to

the Lorenz equations, the x z plot being the classic Lorenz butterfly. We also considered the

order of convergence of the EM scheme and showed that the scheme converged as expected.

We have considered how the noise in the scheme affects the solution, and how it can cause

two completely different solutions from the same initial conditions.
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Chapter 4

Implementation and Diagnostics for

the PF and PFMT

In this chapter the PF and PFMT codes are discussed. We explain how the codes are imple-

mented and consider some of the parameters used. We also consider some of the diagnostics

used to show the accuracy of the results obtained from the code.

4.1 The Particle Filter Code

4.1.1 Initialisation

To be able to compare and compute our numerical solution we require a true solution and a

set of observations, creating these is the first stage of the PF code. The true solution is given

by one run of the Euler-Maruyama approximation seen in equations (3.9, 3.10 and 3.11), these

truth values at time t are referred to as xTt , yTt and zTt . To create the observations the values

of the truth need to be perturbed slightly, these slight perturbations represent instrument

and human error that is involved with collecting observations. This error is represented by

εt in equation (2.2), for this code we choose εt to be taken from the distribution N(0, 0.04).

To perturb the truth values a pseudo-random number from N(0, 0.04) is added to each, this

is done using the randn MATLAB command that was used in the EM code in section 3.2.
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The values output by randn are multiplied by
√

0.04 so the perturbations are taken from the

correct distribution. We denote these observations at time t using xOt , yOt and zOt .

Now we have a truth and some observations, we are ready to sample our initial particles.

The particles are created in a similar way to the observations. For each particle required a

small perturbation is added to each of the initial conditions. This time randn is multiplied

by
√

∆ so the perturbations are taken from N(0,∆). The final stage in the initialisation is to

equally weight each of the particles, wi = 1
N .

4.1.2 The Particle Filter Iteration

The main PF is now run, this is an implementation of steps 2 through to 5 of the Bootstrap

Filter seen in Table 2.4, these steps are repeated for the number of time steps required.

The first stage is to forecast each of these particles one timestep, this is done using the EM

approximation. The EM approximation used is identical to that used to create the truth, but

for each particle the initial conditions are peturbed as discussed in section 4.1.1. Once each

particle has been forecast its weight can be calculated. The wi for each particle are calculated

using equation (4.1),

wit =
exp(−σo

2 ((xF,it − xOt )2 + (yF,it − yOt )2 + (zF,it − zOt )2)
N

, (4.1)

where σo is the observation variance, xF,it , yF,it and zF,it are the forecast values at time t for

each particle and xOt , yOt and zOt are the observations at time t. Once these weights have been

calculated they are normalised. These weights are then used in the resampling. The resampling

is a simple implementation of the stratified resampling algorithm seen in Table 2.3. Now the

particles have been resampled the weights are reset and we return to the forecasting stage.

4.2 The PFMT code

The initialisation of the PFMT is the same as the initialisation for the PF code seen in

section 4.1.1. Once this initialisation is complete the PFMT iteration can begin, this is an

implementation of the PFMT algorithm seen in Table 2.5. The first step in the iteration is
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to forecast the particles one time step. However as we are MT we need to treat the state to

be mode tracked differently to the rest of the state. We must forecast the state to be mode

tracked state with no noise, we do this using the EM scheme with B = 0 for one timestep.

The EM scheme has been modified so it only forecast the required state. The remaining states

are also forecast with this modified EM scheme but with B = 0.01. Now each dimension has

been forecast we move on to the MT section. We mode track by minimising the cost function

in equation (4.2).

J ii(Ψi
t,s,Ψt,r) =

1
2

(Jo + Jb), (4.2)

where

J iq(Ψt,r) = (Ψt,r − fr(Ψi
t−1))TQ−1

rr (Ψt,r − fr(Ψi
t−1))

and Jo is as in equation (2.13). Equation (4.2) is a specific case of the cost function seen in

equation (2.12) in section 2.4.2. Here we have been able to simplify the model error matrix

to Qrr as our matrix Q contains only zeros off the diagonal. By minimising this equation we

gain our forecast values for the dimensions of the state that we wish to mode track. Now we

have all the values we require we can weight the particles. The particles are weighted slightly

differently to the weighting in the PF code. We used our forecast values to calculate the value

of the cost function in equation 4.2 then we use this and

wi =
exp(−J i)

N
, (4.3)

to compute the weights. Now the weights have been computed they are normalised and the

particles can be resampled. The resampling in the PFMT is identical to the resampling in the

PF. Now the particles have been resampled the weights are reset to wi = 1
N and we return to

the forecasting stage. The iteration is repeated until the final time is reached. The results are

then plotted.
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4.3 Diagnostics

4.3.1 Root Mean Squared Error

To show how the PF performance changes as the number of particles changes the RMSE is

calculated. The RMSE measures the average magnitude of the error, it is calculated using the

true solution and the particle mean. We calculate the particle mean for each dimension of the

state. Equation 4.4 shows how the particle mean is calculated using the forecast values xF,it

and normalised weight wit.

x̄t =
N∑
i=1

xF,it wit (4.4)

If the true solutions at each time are xT , yT and zT and the particle means are x̄, ȳ and

z̄ then the RMSE is calculated using equation (4.5),

RMSE =

√
(xTt − x̄t)2 + (yTt − ȳt)2 + (zTt − z̄t)2

3
. (4.5)

The RMSE is calculated at each timestep and its value plotted against t.

However the RMSE only considers one statistic from the PDF. Although we base our

analysis of the PF on this, we must remember that the PF represents the whole pdf. It may

be possible that if we considered a different diagnostic we would see slightly different results.

4.3.2 Rank Histograms

As well as considering the RMSE we use another diagnostic known as the Rank Histogram

(RH) [Hamill, 2000] to asses the quality of the PF. RH are useful for diagnosing errors in

the mean and spread of the particles and determining the reliability of ensemble forecast.

Unfortunately the RH assumes that each particle is equally weighted, due to this and the

resampling we include we must be careful how we interpret our results. A better alternative

to the RH may be the Reliability Diagram [Wilkes, 1995], we consider this in our Future work

(Section 7.2).
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4.3.2.1 Creating the Rank Histograms

RH are created by considering where the value of the observation at time t falls compared to

the values of the forecast particles at the same time. The particles at time t are sorted into

ascending order so that if x̃i are the weighted particles we have x̃1 ≤ x̃2 ≤ ... ≤ x̃N . This

creates N + 1 bins the first for values lower than x̃1, the second for values between x̃1 and x̃2

and so on, the final bin is for values higher than x̃N . The bin, also know as rank, in which the

observation at time t falls is noted. This value is tallied over all times t. The resulting tally

is plotted and this is known as the RH.

4.3.2.2 Interpreting Rank Histograms

As the RH assumes each particle is equally weighted there at each time there is an equal

probability that the observation, d, will fall into any of the N + 1 ranks. This implies that the

resulting rank histogram should have bars of equal height (Figure 4.1 (a)). Histograms that

are not uniform can give us information on the quality of the ensemble. Many of the common

histograms that are produced from ensemble forecasts are discussed in Hamill [2000], four

of the most common histograms obtained are shown in Figure 4.1. A U-shaped histogram

(Figure 4.1 (b)) suggests a possible lack of variability in the particle sample, whereas an

excess of variability overpopulates the central ranks (Figure 4.1 (c)). Having the left half

of the histogram overpopulated (Figure 4.1 (d)) suggests that particles are positively biased,

(a) (b) (c) (d)

Figure 4.1: Common rank histograms obtained. These histograms show the number of times

the observation falls in each bin. Plots from Hamill [2000]
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overpopulation in the right half implies the particles are negatively biased. However these are

not the only possible reasons for these types of behavior.

4.4 Summary

In this chapter we have seen how the PF and PFMT are implemented. We have seen that they

both share the same intialisation which involves a truth run. The values from this are then

perturbed to give us the observations. The next stage of the PF code is an implementation of

the Bootstrap Filter seen in Table 2.4. Whereas the PFMT code continues with an implemen-

tation of the PFMT algorithm seen in Table 2.5. As well as considering the implementations

of the PF and PFMT code, the diagnostics for the solutions are also considered. We have seen

how to calculate the RMSE and the RH. How to interpret the RH has also been discussed.
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Chapter 5

The Particle Filter Solutions

In this chapter we use the PF to estimate solutions of the stochastic Lorenz system. The PF

will be run for a number of different situations and the qualitative results will be compared.

Primarily we are interested in how the number of particles affects the results (Section 2.3.6)

so the experiments shall focus on this. Once the solutions to the Lorenz equations have been

seen, the RMSE and Rank Histogram plots are also presented for each of the solutions so we

can quantitatively assess the PF.

In section 2.3.3 we saw that if the resampling step was not included in the PF algorithm

all the weight ended up on one particle. We wished to check that our code produced the same

results. Results included in Appendix A show that if we run the code described in section 4.1

without the resampling step we see similar results to those in Snyder et al. [2008].

5.1 Lorenz Trajectory solutions

The solutions in this section show the trajectories obtained when the PF is run. We are

interested in how the solutions differ depending on the number of particles used. For this

reason the only input data that differs when the code is run is the number of particles used.

The remaining input data stays the same for each run of the model, this data is as follows:

Start time t = 0, End time t = 1, Time step ∆ = 0.01, Initial x = 0.00001, Initial y = 0.00001

and Initial z = 2.00001. The output from the code results in the Figures included in the
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following section, these figures have the same format as in Chapter 3.

5.1.1 Results for N = 2

Figure 5.1: PF solution of the Lorenz equations with N = 2 particles. The red line is the true

solution, the dark blue line is observations, the green line is the particle mean calculated in

equation (4.4), the light blue lines represent the particle trajectories obtained for each particle.

Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0 to t = 1 with a

timestep ∆ = 0.01. Noise parameter B = 0.1.

In Figure 3.4 we saw how, due to the chaotic nature of the system, two solutions from the

same initial conditions can differ. The idea of resampling in the PF is that particles that do not

follow the true solution are discarded in favour of particles that are closer to the true solution.

Therefore if particles do start to differ from the true solution as in Figure 3.4 we expect to

see their trajectories terminate as these particles are ‘resampled’ and the trajectory restart

from a new position corresponding to a different particle. One of the problems with the PF is

that if too few particles are used then there is the possibility that none of the particles follow

the truth. This is the case in Figure 5.1, where we see that both the particles, and hence the
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particle mean, have their solution on the LHS of the Lorenz butterfly whereas the true solution

is on the RHS. This illustrates the case when the particles all have a significantly different

solution to the truth, this means that the particle with the highest weight does not reflect the

true solution so even the resampling cannot bring our solution closer to the truth. For future

experiments and verification a larger number of particles will be used so this situation does

not occur.

5.1.2 Results for N = 5

Figure 5.1 showed that if the PF is run with too few particles the results that are obtained

may not follow the true solution, however even with just a few more particles sensible results

can be obtained. The results shown in Figure 5.2 show the PF solution to the stochastic

Lorenz equations with N = 5 particles. In these and subsequent plots it is difficult to see

the observations as they lie under the truth, the only points when the observations are visible

Figure 5.2: PF solution of the Lorenz equations with N = 5 particles. Colours as in Figure

5.1. Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0 to t = 1 with

a timestep ∆ = 0.01. Noise parameter B = 0.1.
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is when the observation error is large. Similarly when the particles collapse down they are

hidden beneath the particle mean and the truth if the solution is accurate enough. In Figure

5.2 on the x against z plot we see some particles initially heading away from the true solution.

However some of the particles are following the true solution and we see the PF working

by terminating the particles that are moving away from the true solution and duplicating

particles that are following the true solution. Between t = 0 and t = 0.5 is when the particle

resampling of particles shows most, the resampling is particularly prominent in the x against t

and y against t plots. After some time, and due to the relatively low numbers of particles being

used, all the particles have very similar values and lie close to the particle mean. Although

this time there are enough particles to provide us with a solution that is similar to the truth,

after t = 0.5 all the x, y, and z particle mean results start to differ from the observations and

the true solutions. We see that the x, y and z plots all show that the numerical solution is

similar to the true solution but shifted in time. This phase error is masked in the x vs. z plot

as this plot has no time dependence.

We would like to know how many particles we need for the particle mean to be sufficiently

close to the true solution over our time window. To do this we increase the number of particles

to see how this improves the solution.

5.1.3 Results for N = 50

The number of particles is now increased to N = 50, as there are more particles we expect

the particle mean solution to be closer to the exact solution. Although we expect the particle

mean to be closer to the true solution, we also expect to see more particles that diverge from

the true solution, the PF should terminate these particles and create duplicates of particles

that are following the true solution.

Figure 5.3 shows the PF solution to the stochastic Lorenz equations with N = 50 particles.

As expected we see that more particles do diverge from the true solution, it is also possible

to see these particles being resampled and becoming a duplicate of particle closer to the true

solution. We also see that in the x, y and z plots the particle mean follows the solution

more accurately than in Figure 5.2, this suggests that increasing the number of particles has
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Figure 5.3: PF solution of the Lorenz equations with N = 50 particles. Colours as in Figure

5.1. Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0 to t = 1 with

a timestep ∆ = 0.01. Noise parameter B = 0.1.

improved the results produced by the PF. Comparing the x, y and z plots from Figure 5.3 and

Figure 5.2 it is possible to see that the particles have a larger spread. The resampling discards

particles that diverge from the true solution moving all the particles toward the truth. However

over time we still see some particles terminating and restarting from a different position, this

is due to the stochastic system and the noise that is add in the Euler-Maruyama scheme.

5.1.4 Results for N = 500

Finally we consider the results when 500 particles are used, these are shown in Figure 5.4. As

expected these are the best PF results obtained, the particle mean lies underneath the true

solution and the particles stay close to the true solution.

We have now seen that as the number of particles is increased it appears that the quality

of the solution also increases. However all the results we have seen so far are only based on

one truth solution. We would expect to obtain qualitatively similar behavior if the PF was
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Figure 5.4: PF solution of the Lorenz equations with N = 500 particles. Colours as in Figure

5.1. Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0 to t = 1 with

a timestep ∆ = 0.01. Noise parameter B = 0.1.

run with a different true solution and noise realisation. Due to time limitation we have not

verified this. One other limitation of the PF is that we have compleate observations at every

timestep. In reality the set of observations would be incomplete and not avaliable at each

timestep. It would be desirable to decrease the number of observations we have to make the

situation more realistic, this is discussed in section 7.2.

5.2 Quantitative Results

We now present the quantitative results obtained. The RMSE is calculated and some rank

histograms plotted to verify the Lorenz results.

5.2.1 Root Mean Squared Error

In Figure 5.5 the RMSE for N = 5, N = 50 and N = 500 is plotted. The RMSE for N = 5,

N = 50 and N = 500 are calculated from the output given by the model runs that were used
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Figure 5.5: RMSE for various number of particles. Calculated from model runs with initial

conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0 to t = 1 with a timestep

∆ = 0.01. Noise parameters B = 0.1.

to plot Figure 5.2, 5.3 and 5.4 respectively.

We see that the RMSE for N = 5 is much larger than than the RMSE for the other model

runs with a very high error between t = 0.5 and t = 1. There are also some sudden reductions

in the RMSE. The N = 50 RMSE is a significant improvement on the N = 50 RMSE however

we still see that the error is highest between t = 0.5 and t = 1. There are also some occasions

where we see a sudden reduction in the error before it begins to rise again. The RMSE for

N = 500 is the smallest and smoothest, this supports the qualitative plots that the more

particles used the more accurate the numerical solution. This is also supported by Pham

[2000] and Vaswani [2008] who see the RMSE reduce as the number of particles is increased.

We do not expect the RMSE plot to be smooth as the results are obtained from a set

of SDEs and the noise added though the Euler-Maruyama scheme will affect the magnitude
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of the RMSE. One reason for the variation in the RMSE is thought to be caused ‘when the

system state enters a strong nonlinearity section’ [Pham, 2000] of the Lorenz Attractor. This

is likely to be the cause of the higher RMSE seen between t = 0.5 and 1. These fluctuations

are also seen in [Pham, 2000] when they consider a RMSE over a longer period of time. The

plots they obtain show regions of low RMSE then regions of high RMSE. As this is due to the

system chosen we may also expect to see this behavior if the PF was run f0r a longer period

of time.

As well as the areas of high and low RMSE that we see, we also observed some sudden

reductions in the RMSE before it began to rise again. One possible reason we suggest for

this is the affect of the resampling. It is possible that the sudden decrease in the RMSE for

N = 5 at time t = 0.5 is cause by diverging particles being resampled at the previous timestep.

This would mean that the resampled particles lie closer to the truth hence the RMSE would

rapidly decrease. As these particles are forecast some begin to diverge causing the RMSE to

rise again.

5.2.2 Rank Histograms

As well as considering the RMSE we present RH for the N = 5, N = 50 and N = 500 solutions

of the Lorenz equations. Figure 5.6 shows the RH for the PF solution to the Lorenz equations

with N = 5 particles. The top left panel shows the rank histogram for the x dimension,

the y dimension is shown in the top right. The bottom left is the rank histogram for the z

dimension, the bottom right is a combination of the previous three. The clearest shape in all

the histograms is the one for the z dimension, this histogram is clearly U-shaped suggesting a

lack of variability in the particles. The x histogram also shows some U-shaped characteristics

supporting the suggestion of a lack of variability. This is also the nature suggested by the

combined plot. However we mentioned earlier that the rank histogram assumes the particles

are all equally weighted, as this is not the case we must consider how it may affect the result.

In the PF we resamle particles according to their weights. It is this resampling that changes

how we interpret the RH. When we resample the particles we obtain become similar, over

time the particles become closer to one another representing the solution closest to the truth,
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Figure 5.6: Rank Histograms for N = 5. Calculated from a model run with initial conditions

x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0 to t = 1 with a timestep ∆ = 0.01.

Noise parameters B = 0.1. ‘Realisations’ refers to the number of occurrences of the observation

per bin.

this is easily seen in Figure 5.2 where the particle mean hides the actual particle trajectories.

This means that over time we expect the variability of our particles to decrease. Also when

considering Figure 5.2 we see that initially the particles are fairly similar to the exact solution,

however between t = 0.5 and t = 0.8 all the particles have a value below the observations, and

after t = 0.8 the particles all have a higher value than the truth. Therefore we expect all the

tallies from t = 0.5 and t = 0.8 to go into the first bin, where as all the tallies after t = 0.8

go in the last bin. This means more than half the tallies are guaranteed to go in the first and

last bins leading to a U-shaped rank histogram.

We now consider the rank histogram for the PF solution to the Lorenz equations with

N = 50. From the RH from N = 5 we know that the original solution can give us some

information on how we may expect the RH to differ, so first we consider Figure 5.3. From the

x vs. t plot after t = 0.8 we see that all the particles have values higher than the truth so we
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Figure 5.7: Rank Histograms for N = 50. Calculated from a model run with initial conditions

x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0 to t = 1 with a timestep ∆ = 0.01.

Noise parameters B = 0.1. ‘Realisations’ refers to the number of occurrences of the observation

per bin.

expect all the tallies from this time to be in the first bin making this bar higher. From the y

vs. t plot between t = 0.7 and t = 0.9 the particle values are higher than the truth and after

t = 0.9 the particle values are lower than the truth. This means the y RH is expected to be

U-shaped. The z vs. t plot also shows that after t = 0.7 all the particles fall to one side of the

truth. Until t = 0.8 the particles are lower than the truth, after this the particles are higher

than the truth, thus we expect to see a U-shaped rank histogram for z, but with the lowest

rank being fuller than the highest. The RHs for the solution for N = 50 are plotted in Figure

5.7.

We see that the RHs are as expected, with the x RH having large number of tallies in the

first bin, the y RH being U-shaped and the x RH being U-shaped but with more tallies in

the first bin. Although we have some explanation of the high tallies in the first and last bins

we would still like to see the values in the middle bins being uniform. Unfortunately the bins
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Figure 5.8: Rank Histograms for N = 500. Calculated from a model run with initial conditions

x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0 to t = 1 with a timestep ∆ = 0.01.

Noise parameters B = 0.1. ‘Realisations’ refers to the number of occurrences of the observation

per bin.

in these rank histograms are not as uniform as we expect, this may be due to the ensemble

collapse and the lack of variability this causes.

Finally we consider the RH for the PF solutions to the Lorenz equations with N = 500

particles. As the number of particles has increased we expect there to be more variability

in our particles and hence do not expect to see the U-shaped behavior in the RH. This is

supported by Figure 5.4 as we can see that the particles stay spread out through out the

window and although the spread is smaller in some places the particles do not collapse down

to a single trajectory. We consider the RH for this solution in Figure 5.8. This time we see

that each of the bins that contain tallies are much more equal, however we see many bins with

no tallies at all. This is because there are only 100 timesteps to tally over but 501 bins that

could be filled. Therefore we are only interested in the filled bins being uniform and with the

exception of just a few bins this is what we see. The only RH which is not so uniform is the

z plot. In Figure 5.4 we see that at the very end of the time window the particles in the z
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vs. t plot do collapse down and it is difficult to see the individual particle trajectories. It is

possible that it is the values here that contribute the the higher tally in the last bin of the z

RH.

5.3 Summary

In this Chapter we have seen both quantitative and qualitative results from the PF. We have

seen that if too few particles are used then the PF can give a solution that differers significantly

from the truth. Once the number of particles is increased the solution improves. The more

particles the better the solution we obtain, and the smaller the RMSE we see. For a small

number of particles the PF produces a trajectory with a phase error compared to the true

solution. This phase error is obvious in the x, y and z plots, however it is hidden in the x

vs. z plot as this plot is independent of time. When the number of particles is increased to

N = 500 the PF solution follows the truth closely. When a small number of particles is used

the RH show that we do not have enough variability in our ensembles. A large number of

particles is required to get enough variability across the whole PDF.
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Chapter 6

Particle Filters with Mode Tracking

In this chapter we consider the both the quantitative and qualitative results for the PFMT

code. These are then used to determine the best way to split the state. The affect of increasing

the number of particles is also considered. We then go on to see how the difference between

the observation error variance and the background error variance affects the results from the

PFMT.

6.1 Splitting the State

When MT we must decide how we split the state. In section 4.1.1 we saw thhat Vaswani [2008]

proposed that it is best to split the state so ‘Ψt,s contains the minimum number of dimensions

... [such that] p(Ψt,r|Ψi
t−1,Ψ

i
t,s, dt) is unimodal’. This suggests that the way we split the state

will affect the result obtained. To determine how we should split the state we will consider

the Lorenz solutions from the PFMT after splitting the state in each possible way.

6.1.1 Qualitative Results

In this section we only discuss and include the plots for the solutions of the best and worst ways

to split the state. The remaining plots are included in Appendix B. The following plots are all

from the PFMT code run from initial conditions x = 0.00001, y = 0.00001, z = 2.00001, time
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Figure 6.1: PFMT solution of the Lorenz equations with Ψr = (z) and Ψs = (x, y). Colours

as in Figure 5.1. Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0

to t = 1 with a timestep ∆ = 0.01. Noise parameter B = 0.1. N = 500 particles.

t = 0 to t = 1 with a timestep ∆ = 0.01, a noise parameter B = 0.1 and N = 500 particles.

It is only the way that the state is split that varies. We have chosen to use N = 500 particles

as this gave the best results from the PF and assume it will in the PFMT.

Figure 6.1 shows the solution when only the z dimension is mode tracked, Ψr = z. We see

the solution is fairly good, although there is still a small phase error and the particle mean

can still be distinguished from the truth between 0.5 and 0.8. This appeared to be the worst

of the mode tracked solutions we obtained.

It appears that the best result obtain came from MT the x and y dimensions, Ψr = (x, y).

This result is shown in Figure 6.2. We see that this solution is better than the one shown in

Figure 6.1. The phase error is no longer present and it is difficult to distinguish the particle

mean from the truth.

When comparing Figures 6.1 and 6.2 with Figure 5.4, the PF solution with N = 500, we

clearly see that the particles visible in Figure 5.4 are not visible in Figures 6.1 and 6.2. This
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Figure 6.2: PFMT solution of the Lorenz equations with Ψr = (x, y) and Ψs = (z). Colours

as in Figure 5.1. Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0

to t = 1 with a timestep ∆ = 0.01. Noise parameter B = 0.1. N = 500 particles.

highlights the lack of particle variability in the PFMT.

We also split the state in four other ways and the solutions for these are shown in Appendix

B. These qualitative results were similar in each case all appearing slightly better from the

result shown in Figure 6.1 but worse than the solution seen in Figure 6.2.

6.1.2 Quantitative Results

To give a more comprehensive view of how the results differ we consider the quantitative

results for each of the possible ways to mode track the state. First the RMSE of each solution

is considered, these are plotted in Figure 6.3. We see that until t = 0.4 the error from each

solution is small and similar. After this we begin to see the errors grow. The errors are highest

for each solution at the times expected, in the interval t = 0.5 to t = 0.8 when the system is in
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Figure 6.3: RMSE for the PFMT solutions of the Lorenz Equations with different parts of the

state mode tracked

a strong nonlinearity region. It is clear that the solution with the highest error is as expected,

the one from MT the z dimension. The next highest error is nearly half of the highest error,

this is produced from the solution when y is mode tracked. The next highest errors are from

the solution when the y and z states and x and z are mode tracked. We have two solutions

left for which we have not considered the RMSE. From the quantitative results we could see

that the best solution was from the code when the x and y dimensions were mode tracked.

So we expect the the next error seen on Figure 6.3 to be the one associated with the solution

when x is mode tracked. The smallest error is from the solution obtained from the PFMT

solution when x and y and mode tracked. This error is much smaller than the previous errors,

and half the error of the x mode tracked solution implying that the best PFMT solution is

obtained when both the x and y dimensions are MT.

We look to equations (3.5) to (3.7) to give some idea of why choosing Ψr = (x, y) gives the

most accurate result. As MT produces the more accurate result we expect the Ψt,r dimensions

to be more accurate. When z is mode tracked its value depends on two non mode tracked
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dimensions and hence the result obtained is not so accurate. However when x and y are mode

tracked the value of z is dependent on these two mode tracked values, so the PF z value is

also kept accurate and hence the over all solution is excellent.

We may have expected that MT two dimensions always gave better results than MT one

dimension. However from Figure 6.3 we see that this is not the case. Although we see the most

accurate solution is produced by MT the x and y dimensions we see that the next best choice

would be to mode track only the x dimension. It is possible this is due to multi-modal behavior

of one or more of the dimensions. Vaswani [2008] suggests that MT the wrong dimensions

can result in larger RMSE. In section 4.1.1 we saw that Vaswani [2008] proposed that it is

best to split the state so ‘Ψt,s contains the minimum number of dimensions ... [such that]

p(Ψt,r|Ψi
t−1,Ψ

i
t,s, dt) is unimodal’. It is possible that when we mode track, say x and z, this

does not hold but when we mode track just x it does, hence MT just one dimension would

give a better result than MT two dimensions.

We have now determined which is the most accurate solution when N = 500, and therefore

which states it is best to mode track. We shall now only consider results obtained from the

PFMT when both x and y are mode tracked.

6.2 Changing the number of particles

We now consider how results from the PFMT vary when we change the number of particles

used. These results will then be compared to the results from the PF code to see the difference

that the MT makes. The following plots are all from the PFMT code run from initial conditions

x = 0.00001, y = 0.00001, z = 2.00001, time t = 0 to t = 1 with a timestep ∆ = 0.01, a noise

parameter B = 0.1 and Ψr = (x, y). It is only the number of particles that varies.

6.2.1 Qualitative Results

We consider first the result obtained when the number of particles is set to N = 5, this is

shown in Figure 6.4. The equivalent results for the PF can be seen in Figure 5.2. We see that

this result is rather poor. Again we see a phase error in the numerical solution and hence the
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Figure 6.4: PFMT solution of the Lorenz equations with Ψr = (x, y) and Ψs = (z). Colours

as in Figure 5.1. Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0

to t = 1 with a timestep ∆ = 0.01. Noise parameter B = 0.1. N = 5 particles.

particle mean differs from the truth significantly. Comparing this result to Figure 5.2 we see

that it appears the result from the PFMT is worse than the PF. Again we notice a difference

between the PF and PFMT plots, the ensemble variability collapse occurs much sooner in the

PFMT results.

Next the results when N = 50 are considered, these are seen in Figure 6.5. The equivalent

results for the PF can be seen in Figure 5.3. We see that this result is still fairly poor, and

more comparable to the N = 5 result from the PF seen in Figure 5.2. This suggests the PFMT

requires more particles to achieve a more accurate result. This is contrary to the result seen

in Vaswani [2008] where it is shown that the PFMT requires a smaller number of particles to

produce similar results to the PF.

The result when N = 500 is shown in Figure 6.2, the equivalent results for the PF are

shown in Figure 5.4. This is as expected the most accurate of the PFMT solutions we have

seen as it is run with the most particles and the state is split to give the best result. To see
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Figure 6.5: PFMT solution of the Lorenz equations with Ψr = (x, y) and Ψs = (z). Colours

as in Figure 5.1. Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0

to t = 1 with a timestep ∆ = 0.01. Noise parameter B = 0.1. N = 50 particles.

how the results actually compare with the PF we consider the quantitative results.

6.2.2 Quantitative Results

Figure 6.6 shows the RMSE for N = 5, N = 50 and N = 500 particles for both the PF

code and the PFMT code when Ψr = (x, y). We see that the two highest errors correspond

to the PF and PFMT runs with N = 5, however the PFMT error is much higher than the

PF error. This corresponds to the qualitative results we saw. It was also suggested that the

PFMT N = 50 was more comparable to the PF N = 5 solution and this is obvious in Figure

6.6 as these errors are very similar. The PF solution with N = 50 is much lower than the

PF solution with N = 5 and is initially similar to the PF solution with N = 500. Another

difference we see between the PF and PFMT results is that the PFMT RMSE results are

much smoother and we do not see the sudden jumps that we see in the PF RMSE solutions.

We finally compare the RMSE for the PF and PFMT when N = 500. We see that these
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Figure 6.6: RMSE produced from the PFMT (Ψr = (x, y)) and PF codes with various values

of N . Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. Time t = 0 to t = 1 with a

timestep ∆ = 0.01. Noise parameter B = 0.1.

errors are very similar, the PF error is slightly higher initially where as the PFMT error is

higher at the end. However the PF error is higher for longer and overall it is higher than the

PFMT error suggesting that the PFMT solution is better than the PF solution. These results

contradict results seen in Vaswani [2008] that suggest that the PFMT always produces more

accurate solutions than the PF.

6.3 Sensitivity of MT to error variances

When testing the PFMT code it was discovered that the values in the Q and R matrices made

a significant difference to the result from the MT. Due to this we shall consider what happens

when we change the variance of the observation error, the diagonal elements of the R matrix,

as these are high compared to the model error Q. The error in the solution decreases as the

number particles increases, for this reason we run the code with N = 50 so the difference is
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more obvious. The code is run for Ψr = (x, y) with initial conditions x = 0.00001, y = 0.00001,

z = 2.00001. Time t = 0 to t = 1 with a timestep ∆ = 0.01 and noise parameter B = 0.1.

6.3.1 Qualitative Results

The PFMT solutions to the Lorenz equations when N = 50 were shown in Figure 6.5. For

these results the error variance of the observations was set to 0.04. We ran the code again but

with the variance set to 0.01, this makes the observation and model error variance equal. As we

have decreased an error we expect the results to improve. The results are shown in Appendix

C in Figure 7.6. Comparing Figure 6.5 to Figure 7.6 we see a significant improvement and the

results when the observation error variance is set to 0.01 are similar to the results produced

from the PFMT code when N = 500.

6.3.2 Quantitative Results

To compare the results of changing the observation error variance we again consider the RMSE,

this can be seen in Figure 6.7.

We see that bringing the values of the background and observation error closer together

we significantly improve the results obtained from the PFMT with the error being reduced to

below one from above 16. This shows that by reducing the observation error just slightly we

can greatly improve the accuracy of our assimilation.

The sensitivity of solutions to the difference between the observation and model errors is

discussed in Johnson et al. [2005] in the context of 4D-var. They show that selecting the correct

values for the observation and model error variances ‘is critical for extracting the maximum

amount of useful information from the observations’. This result supports the theory that the

PFMT is sensitive to the error variances. It also suggests that it may be possible to improve the

results from the PFMT if we find the correct ratio between model and observation variances.

In section 3.6 we considered how to scale the model noise using the noise parameter B.

We must take into account the affect this may have on the ratio between the observation and

model error. Decoupling the Q matrix from the noise parameter may be one way to overcome
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Figure 6.7: RMSE for PFMT solutions to the Lorenz equations with varying error variances

the affect the B parameter has on this ratio. This decoupling is one section discussed in future

work (section 7.2).

6.4 Summary

In this Chapter we have seen the results from the PFMT code. We have discovered that the

best way to split the state when MT is Ψr = (x, y) and Ψs = z. Splitting the state in this

way gives us the most accurate solution, we have shown this in Figures 6.2 and 6.6. We have

also seen that the PFMT leads to ensemble variability collapse much sooner than in the PF.

Like the PF we also see that the solution improves as we increase the number of particles.

The most surprising result of this Chapter, and indeed this thesis, is seen in section 6.2. We

see that the PFMT, for small numbers of particles, does not produce a result that is better

than the PF. It is only when the number of particles is increased to N = 500 that the PFMT

produces more accurate solutions than the PF. These results differ to those seen in Vaswani

[2008] which suggest that the results obtained from the PFMT are always superior to the
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results from the PF. We have also seen that the results from the PFMT appear to be quite

sensitive to the ratio between the observation and model noise. This suggestion is supported

by Johnson et al. [2005] who show that, in 4D-var, a correct ratio between the observation

and model errors is required to achieve the best result.

68



Chapter 7

Conclusion

7.1 Summary and Discussion

In Chapter 2 the ideas of DA, ensemble DA, PF and PFMT were discussed. We saw that DA

combines observations and model data to produce more accurate state estimates. The use of

ensemble DA allows estimation of uncertainty in the resulting analysis. The PF allows us to

model non-Gaussian pdfs using Bayes Theorem (Theorem 1) to update the prediction pds to

give the filtering pdf. Each particle in the pdf has a weight associated with it according to

how close they are to the observation. Unfortunately without resampling over time all the

weight goes onto one particle making our statistical information meaningless [Snyder et al.,

2008]. To overcome this weighting problem we have seen that we must resample the data.

Snyder et al. [2008] showed that the PF works well for small systems but for systems as large

as NWP it is very computationally costly, with the number of particles required increasing

exponentially as the dimension of the state grows. Vaswani [2008] proposed a scheme that

would reduce this computational cost by MT part of the state, this was discussed in section

2.4.

In Chapter 4.1 we considered results obtained from the PF. If too few particles were used

then a solution could be obtained that differed significantly from the truth. Once the number

of particles was increased we obtained solutions closer to the truth, we also saw that the x, y
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and z plots showed phase errors in the solutions. As the number of particles increased we saw

that the solution improved. This was seen in both the qualitative and quantitative results and

is supported by Pham [2000] and Vaswani [2008] who see the RMSE reduce as the number of

particles is increased.

When considering the RMSE we discovered that due to the nonlinearity of the Lorenz

system the errors obtained were not smooth, this behavior was also seen in the RMSE obtained

by Pham [2000]. We saw that large errors were often associated with the strongly nonlinear

regions of phase space [Pham, 2000]. We also suggested that some of the sudden jumps in the

RMSE were due to the resampling of the particles. Another quantitative result that was used

to determine the accuracy of the PF runs was the RH [Hamill, 2000]. We saw that when all

the particles had equal weights a reliable forecast with no errors in its mean and spread should

produce a uniform RH. However due to the weighting of particles in the PF we used ensemble

means to determine any differences we expected. The RH showed that for small N there was

a lack of variability in the ensemble, increasing the value of N increased this variability.

In Chapter 6 we considered the results obtained from the PFMT code and compared these

to the PF results. When considering how to split the state we saw that the best results were

obtained when the x and y dimensions we mode tracked, whereas the z dimension gave the

worst results. This was explained by the model equations and is discussed in section 6.1.

It was also apparent that MT two dimensions did not always give better results than MT

one dimension. This was likely to be due to the multi-modal behavior of one or more of the

dimensions.

When the number of particles used with the PFMT was increased the accuracy of the

solution also increased. However a comparison of the PF and PFMT results showed that

with small values of N the PFMT produced less accurate results than the PF. Even when

the number of particles was increased to N = 500 the PFMT did not alway perform better

than the PF. This was contrary to the results seen in Vaswani [2008] where the PFMT always

produced superior results to the PF.

Finally we considered the sensitivity of the PFMT to the ratio between the model and

observation errors. We knew as we were reducing the error variance of the observations the
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result would improve, but the improvement seen was more significant than expected. This

sensitivity of the model is supported by Johnson et al. [2005], who show that the correct ratio

is required to obtain the most accurate solution. It was also mentioned that the choice of noise

parameter B, discussed in section 3.6, affected the ratio between the model and observation

errors as the model noise is scaled by the parameter B.

7.2 Further Work

We consider three areas identified throughout the thesis that may benefit from further in-

vestigation. These include overcoming the limitations of thie work by reducing the number

of observations available for use in the PF and PFMT, resampling less often and testing

more than one realisation of the model. Using reliability diagrams instead of RH and further

investigation into the sensitivity of the Q matrix.

7.2.1 Overcoming Limitations of this work

In section 4.1 we saw that we started the code by creating a truth run, then perturbing these

values to give observations. When the main PF iteration was run the forecast values were

compared to observations at every timestep. In reality the observations do not occur this

often, and even when the observations do occur we may not have an observation for each of

the dimensions that needs to be forecast. For this reason it would be interesting to investigate

the performance of the PF and PFMT when sparse and incomplete observational data is used.

Reducing the number of observations to say one every ten timesteps should be fairly simple,

as it requires only a slight adjustment to the code. Instead of forecasting the the particles

one timestep using the EM approximation we would need to forecast them say ten timesteps.

At this point they could then be compared to the observation, weighted and resampled. The

idea of making the observational data incomplete is slightly more complex and would require

a greater adjustment of the code.

A second limitation of the code is the inclusion of the resampling at each timestep. This

increases the computational cost of the scheme and leads to a lack of variability in the particles.
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It would be interesting to see the effect of remove the resampling from each timestep and only

include it when necessary.

One further limitation of the experiments seen in Chapters 5 and 6 is that they have only

been run for one realisation of the model. It would be beneficial to run the code for different

realisations to check that similar results are obtained.

7.2.2 Considering the use of Reliability Diagrams

In section 4.3.2 we used RH to asses the quality of our solutions. However we found that they

were not ideal as they assumed equally weighted particles and no resampling. We mentioned

that it may be more appropriate to use a reliability diagram [Brocker and Smith, 2007],

[Wilkes, 1995] to tell us about the quality of our forecast. The reliability diagram takes the

weighting of the particles into account and would therefore provide us with a more accurate

diagnostic to allow us to determine the reliability and quality of the forecast.

7.2.3 Investigating the Q matrix sensitivity

In section 6.3 we showed that by reducing the difference between the background error variance

and the observation variance we greatly increased the accuracy of the PFMT solution. It would

be of interest to see if the improvement in the solution was as great if the same experiment

was carried out for the PF. This would allow us to know if this decrease in error was more

advantageous for the PFMT. However setting the variances of the background and observation

equal was not the only result concerning the Q matrix that improved the solutions. When

the code was tested it was discovered that decoupling the Q matrix from the B parameter

also increased the accuracy of the solution. Unfortunately there was not time to pursue this

discovery, but it would be interesting and maybe important to know why this decoupling

increases the accuracy of the solution.
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Appendix A

This appendix is included to show that if the resampling step is removed from the code

discussed in section 4.1 we obtain results similar to those seen in Snyder et al. [2008]. In

section 2.3.3 we saw that Snyder et al. [2008] showed that over time without resampling

all the weight ended up on one particle. As we know this problem exists we would like to

check that the code we are using produces similar results. Figure 7.1 shows a histogram of

maximum weights at each iteration. The graph is generated from code that is discussed in

detail in section 4.1, we do not include the resampling step as we wish to see how the weights

behave without this.

From Figure 7.1 we see that we also have a high realisation of maximum weights in the

interval (0.98, 1) suggesting that over time the weight goes onto one particle. However unlike

Figure 2.6 we also see a high realisation of maximum weights in the interval (0.2, 0.22). As

there are N = 5 particles initially we expect each particle to have a weight of wi = 0.2, it is

likely that all the particles stay close to true solution for a short amount of time. During this

time we would expect the weights to remain fairly equal, hence giving us a high realisation of

maximum weights in the (0.2, 0.22) interval. We have now shown that without the resampling

step the weights behave as expected.
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Figure 7.1: How weight goes onto one particle over time. Code parameters: N = 5 particles.

Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0 to t = 1 with a

timestep ∆ = 0.01. Noise parameter B = 0.1.
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Appendix B

This appendix includes a number of plots that support the work, seen in section 6, on splitting

the state. Each plot shows the PFMT solutions to the Lorenz equations with different parts

of the states mode tracked. These solutions are obtained from code run with the following

parameters: Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0 to

t = 1 with a timestep ∆ = 0.01. Noise parameter B = 0.1. N = 500 particles.

Figure 7.2: PFMT solution of the Lorenz equations with Ψr = (x) and Ψs = (y, z). Colours

as in Figure 5.1. Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0

to t = 1 with a timestep ∆ = 0.01. Noise parameter B = 0.1. N = 500 particles.
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Figure 7.3: PFMT solution of the Lorenz equations with Ψr = (y) and Ψs = (x, z). Colours

as in Figure 5.1. Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0

to t = 1 with a timestep ∆ = 0.01. Noise parameter B = 0.1. N = 500 particles.
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Figure 7.4: PFMT solution of the Lorenz equations with Ψr = (x, z) and Ψs = (y). Colours

as in Figure 5.1. Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0

to t = 1 with a timestep ∆ = 0.01. Noise parameter B = 0.1. N = 500 particles.
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Figure 7.5: PFMT solution of the Lorenz equations with Ψr = (y, z) and Ψs = (x). Colours

as in Figure 5.1. Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0

to t = 1 with a timestep ∆ = 0.01. Noise parameter B = 0.1. N = 500 particles.
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Appendix C

This appendix includes a plot that supports the work in section 6.3.1. The plot shows the

PFMT solutions to the stochastic Lorenz equations with observation error variance = 0.01.

This solution is obtained from code run with the following parameters: State splitting Ψr =

(x, y) and Ψs = (z). Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time

t = 0 to t = 1 with a timestep ∆ = 0.01. Noise parameter B = 0.1. N = 50 particles.

Figure 7.6: PFMT solution of the Lorenz equations with Ψr = (x, y) and Ψs = (z). Colours

as in Figure 5.1. Initial conditions x = 0.00001, y = 0.00001, z = 2.00001. From time t = 0

to t = 1 with a timestep ∆ = 0.01. Noise parameter B = 0.1. N = 50 particles. Observation

error variance = 0.01
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