A Moving Finite Element Approach

to Semiconductor Process Modelling in 1-D

John M. Hobbs

September 1993

Submitted to the
Department of Mathematics,
University of Reading,
in partial fulfillment of the requirements for the

Degree of Master of Science

Abstract

The Moving Finite Element Method and modifications to the method are
investigated for robustness and efficiency when applied to a problem in
Semiconductor Process Modelling. The modifications carried out include the
use of Penalty Functions, Gradient Weighting and Graph Massage, and the
semiconductor modelling involves the prediction of the dopant concentration
within the silicon that constitutes the semiconductor device, so that certain

electrical properties of the device can be predicted.

Acknowledgements

I would like to thank Dr.M.J. Baines and Dr.P.K. Sweby of the Mathematics
Department of Reading University for their supervision and advice during this
work. I would also like to acknowledge SERC for their financial support during

the last year.

Chapter 1

Introduction

In order to predict certain electrical properties of a semiconductor device it is
necessary to know the distribution of a dopant within the crystalline silicon that
constitutes the device, and the process of introducing this dopant and diffusing
it within the silicon is known as process modelling. Typically the dopant (eg,
arsenic) is introduced into the silicon by ion implantation, through the surface of
the silicon, and this results in a high concentration of dopant in a shallow region.
The doped silicon is then heated to regrow the damaged crystal which causes the
dopant to diffuse within the silicon. This diffusion proces is highly non-linear and
gives rise to an interesting problem in numerical modelling.

Unfortunately, the numerical solution of this process is made difficult by
certain features that occur during the diffusion. One difficulty arises owing to
the formation of a steep front in the concentration profile which is created as the
initial peak of the original (implanted) concentration diffuses much quicker than
the tail. This front is sharp and advances across the region, so its resolution is of

great importance. However, it is also important that the position and structure

of the junction® is predicted accurately after diffusion is complete. The position
of this junction occurs well into the tail region, which is some five or six orders of
magnitude below the initial concentration, and this is a second source of numerical
difficulty.

The aim of this dissertation is to formulate a simple model of the diffusion
process and to find a method which will solve the problem both accurately and
efficiently. To this end the method of moving finite elements (MFE) is used and
various modifications to the original MFE method [8] are examined, including
the use of penalty functions, weight functions and graph massage®*. A method
for dealing with the second numerical difficulty mentioned above, by means of
a transformation, is discussed and the results from the FORTRAN 90 code
are presented in Chapter 5. Finally, conclusions are drawn about the various

strategies investigated.

!Before the dopant is implanted a very small concentration of dopant of opposite sign is
distributed uniformly throughout the silicon. The junction is then defined as the place where
the concentration of the implanted dopant drops below this background level.

2This is a new approach for dealing with the problems of node migration to and from certain
regions of the graph and is dealt with in some detail in Chapter 4.

Chapter 2

The Semiconductor Problem

2.1 The Diffusion Model

2.1.1 General Case

It is necessary to start by formulating a model of the non-linear diffusion process
that takes place within the crystalline silicon as the dopant diffuses. The details
of the diffusion mechanisms involved are omitted here, but they can be found in
[3] and [6]. An equation for the conservation of the dopant concentration ¢ is

obtained, and can be written in the form

Jc

i V.(D(¢)Ve) (2.1)
where
B S
D(C) - Dl[1+3] (22)
ne = i[lc+/E+4n?]

B, D; and n; are constants and the implantation of the dopant is modelled by

taking the initial profile to be a Gaussian hump which has a standard deviation

3

that is small in comparison to the distance over which the the dopant diffuses.

Equations (2.1) and (2.2) can be simplified further to obtain the model problem

e = V(D(c)Ve) (2.3)
D(c) = cte

where € < 1 (typically O(1072)). This new equation has the essential features
of equations (2.1) and (2.2) and taking a Gaussian initial profile leads to similar

behaviour to that of the full problem.

2.1.2 The 1-D Case

In 1-D, equation (2.3) becomes

dc 0 dc
and carrying out the differentiation on the RHS gives
de dc\? d%c
The boundary conditions are taken to be
g—; = Oatx = —a

(2.6)

and the initial condition is a Gaussian hump, perpendicular to the surtace of the
silicon, given by

—(.r—u))2

¢ = e 22 att =0 (2.7)

where

Xx = —a = silicon surface,

A = initial height of Gaussian,
w = centre of Gaussian,
o = standard deviation of Gaussian.

A typical profile for the initial concentration can be seen in Figure 1.1.

c (em™®)

z (um)

Figure 11 Initial dopant concentration profile.

Clearly, the second boundary condition in (2.6) cannot be explicitly applied
in a numerical sense, so a Neumann BC, % = 0, is applied at x = b where b is
fixed and large enough so that the junction will lie inside [-a, b] after diffusion
is complete. Alternatively, a moving boundary could be used, but the study of

this boundary is not considered here. More details of moving boundaries and the

MFE method can be found in [9].

2.2 A Transformation

2.2.1 Reasons for a Transformation

Detailed information needs to be provided in the tail region in order to accurately
resolve the position of the junction which forms there. However, using the dopant
concentration ¢ as the variable can cause problems because it is very small in
magnitude and hard to resolve. As a result of this, finding a point in the tail
where the concentration has a particular value is prone to error. Therefore, it is
argued that the dopant concentration may not be the best choice of variable from
a physical point of view and that a variable which is related more directly to the

position of the junction should be used.

2.2.2 The Transformation

This leads to the transformation, suggested by Please and Sweby [10], which
stretches the ordinate in the tail region. The moving front in the solution profile
has a near-shock structure, so it is argued that a more attractive variable would
be the profile speed in the = direction, V. To relate this to ¢ it is observed that
flux is swept out by a near-shock at a rate ¢V and that this is balanced by the
flux rate D(¢)Ve in the non-linear diffusion mechanism. Then ¢, the velocity

potential of V is introduced, and a comparison of the flux rates gives

Vo = D(c)Ve (2.8)

which in turn gives

= / Dic)dc (2.9)

Using equation (2.9) with the model problem (2.3), where D(¢) = ¢+, gives the

new variable
¢ =c+elog.(c) (2.10)

For small ¢, ¢ ~ elog.(c), so ¢ has been stretched logarithmically in this region
(and only in this region), which allows greater resolution in the tail where the
solution is no longer exponential but quadratic (since the initial function is
quadratic for small ¢ under this transformation). For large ¢, ¢ ~ ¢, so the
behaviour of the solution is basically unaltered in this region and this is needed

to model the early dominance of the diffusion mechanism.

2.2.3 Application to the Semiconductor Problem
Substituting equation (2.8) into equation (2.1) gives

dc
Fre V.(cVo) (2.11)

and differentiating (2.10) with respect to ¢ gives

d¢ D(c)dc
5= e (212)

Substituting equation (2.11) into equation (2.12) gives

do _ Do)
5 = TV.(CVQS)

_ Dic) VeV + V%]

= Dic)Vchﬁ + D(c)V% (2.13)

Rearranging equation (2.8) and substituting into equation (2.13) gives

d¢

5 = VoVs+ D)V

— (Vo) + D(e)V% (2.14)

7

In 1-D equation (2.14) becomes

6 (96\° 9%¢
o= (8:1;) +D(e) 5 (2.15)

and this does not look very different to equation (2.5). However, the advantage
of equation (2.15) is the scale of ¢ when compared to that of ¢, and the severity
of the numerical difficulties is greatly reduced.

Although ¢ appears in equation (2.15) which is a PDE for ¢, it is a simple task
to calculate ¢ from ¢ using (2.10). The FORTRAN 90 code uses Newton iteration
to carry out this inversion which is computationally inexpensive: typically only
three or four iterations are required, although more iterations are required at
certain values' of c.

It is worth noting that for the full problem, equations (2.1), (2.2) and (2.9)
imply that a much more complicated relationship than (2.10) exists between the
variables ¢ and ¢, but the model diffusion coefficient of (2.3), namely D(c) = c+e,
gives the qualitative scaling that is required. Hence, it is sufficient for this study

to use (2.10) and avoid the complications of using D(¢) as in (2.2).

!These critical values are around the point where the initial approximation changes from
c=¢toc= e?, but even at these values the Newton solver takes only six or seven iterations
to converge.

Chapter 3

The Finite Element Method

3.1 Reasons for Using Finite Elememts

In Chapter 1 it was stated that one of the aims of the dissertation was to find
a method that is able to accurately track and model the position of the moving
front. On a fixed grid it would be necessary to have a very fine grid to provide
a good resolution of the moving front, but away from the front the solution is
smooth and the fine grid is not necessary. To avoid the computational inefficiency
of using a large number of grid-points, the finite element method (FEM) is used
since it is able to provide the irregular grid that is needed for this problem at any
fixed time. Furthermore, if the grid is allowed to move then it is hoped that the

‘correct’ concentration of nodes will be provided at the required positions.

3.2 The Fixed Finite Element Method

Consider the general PDE

—=Lc (3.1)

where L is a spatial differential operator which involves, at most, second order
derivatives. A variational principle can be obtained for equation (3.1) by

considering the weighted L, norm of the PDE which is
) 2
R = (ac—/:c) wde (3.2)

where w is a weight function to be chosen later. If R is minimised with respect
to % (by setting % = 0) then equation (3.1) is recovered. This procedure can
be extended to the case where ¢ is replaced by an approximation and an intuitive
interpretation is that R measures the residual, ie the degree to which the original
equation fails to be satisfied.

The standard Galerkin method of finite elements is derived by approximating

¢ by

n

c(x,t)= ch(t) a;(z) (3.3)

J=1

where

¢;(t) are the time-dependent amplitudes,

a;(x) are the time-independent basis functions.

and the time derivative of ¢, from equation (3.3), is given by

T > é(t) aj(x) (3.4)

Discretised equations for the nodal amplitudes can be found by minimising R

with respect to the time derivatives of the amplitudes, ie by setting % = 0. This
J

generates a set of equations for the ¢; which give the ‘best fit” of % to L ¢ and

these are given explicitly by

<ai,g§—£c>:0, i ={1,...,n}

10

j(al,icjoz])—(oz“ﬁc% i ={1,...,n}
:>Zn:<aivaj>éj:<04m£0>, i ={1,...,n} (3.5)

where
b
(u, v) :/ uvwde

Equation (3.5) represents a system of n ODEs in n unknowns (the nodal
amplitudes), so the original PDE problem has been reduced to an ODE system
and the integration of these ODEs gives a continuously evolving function e¢(t)

which approximates the solution of (3.1).

3.3 Basis Functions

Conventionally, finite element basis functions are chosen so that they vanish
outside of a fixed interval, which results in the matrix given by the inner products
(o, o) in equation (3.5) being banded or sparse, since distant basis functions
do not overlap. This simplifies the task of evaluating the inner products (and
inverting the matrix if necessary). The most common finite elements that are
used are piecewise linear finite elements and it is these that are used in the
following work.

A grid of points, s; is defined such that ¢ = s < ... < s; < ... <5, = b.
Then each basis function, «;, is defined to be 1 at s;, linear in the interval
[sj_1, $;+1] and 0 outside the interval [s;_q, s;41]. More explicitly, the basis

functions are given by

11

;_—Sﬁ LS [Sj—lv Sj]

GEN S welsi syl (3.6)
0 otherwise

and a typical basis function «; can be seen in Figure 3.1. With this choice of

I
I
I
I
I
I
|
I
I
I
|
I
I
|
I
I
I
|
I
I
|
I
I
I
|
I
i
J

j+1

Figure 3.1

basis functions the matrix resulting from the inner products of equation (3.5) is

tri-diagonal.

3.4 Problems of the Fixed FEM

While the FEM discussed above can provide a non-uniform grid and thus reduce
the number of nodes by concentrating nodes in regions where the solution gradient
varies rapidly and placing fewer nodes in regions where the solution is smooth,
it cannot adapt itself to a problem where these regions move in time. In order
to track these moving regions it is necessary to allow the grid to adapt as the
solution evolves. From the point of view of the FEM it is desired to find a way
in which the basis functions can adapt themselves to the evolving solution. It is

12

for this reason that the method of moving finite elements (MFE) was introduced

and it is this method that is examined here in some detail.

3.5 The Moving Finite Element Method

The MFE method is an extension of the fixed FEM where the nodes are allowed
to move over time, and this is an example of a dynamic rezoning strategy. The
grid positions s; become functions of time and ¢ is now approximated by

n

e, t) =3 ci(t)aj(w, s;(1)) (3.7)

=1
The time derivative of ¢ is much more complicated than for the fixed FEM owing
to the dependence of «; on the nodes s;_1, s; and s;41, which are all free to move

in time.

3.5.1 Derivation of % for the MFE

Differentiating equation (3.7) with respect to ¢ gives

5 Zn: &) aj(z, s5(1)) + ¢(1) aatoq(x, si(1)) (3.8)

Now

n 8 n aOé]‘ dS
;Cy(t) @%‘(% s;(1))]Z:;Cjas 7
n n aOé‘ ‘
- ZC]‘ Z 88] i (39)
7=1 =1 3

Consider a general basis function «; for a piecewise linear approximation. Clearly,

day -
To 18 only non-zero for s; € {s;_1, s, $j41}.

13

So,

Ja; 4 . (5 —1’) .
o e
ai S . — _ (75—5 —1) (5 +1—x) .
g o= (gl Ll g
ﬂs‘, — _(w=s) o
dsj41 9Tl T (s;41-s,)2 70t
Hence,
ZCJ' Z aa] S = Z [Sum of the RHS of equations (3.10)]
: » S; ,
g=1 =1 g j=1

Collect the §; terms, giving

_ ‘ Do
B ((S]T sx)) ¢jt18; from gﬁ;l
Sj+1 — Sj J
(x—sj-1) | (sj41—2) \ . Do
((7=t (i —ap?) 95 ™,
(x—s;) . darji
—(Sj — Sj_l)zc]_lsj from Js;

and then sum them to get

[_ (sit1 =) (cip1 —¢) (w2 —si) (¢ — Cj—l)] 5= B

(8j41 = 85) (sj01 —85) (85— ;1) (85— 5;-1)

say, where
—mja; T € [sjn, 8]
Bi=3 —mjpa; @ €lsi, sip]
0 otherwise
and
m; = (¢ = ¢-1)
(s; —sj-1)

Then, equations (3.11) and (3.12) give

L dajds N
Z s @t = 2%

=1 7=1

Finally, substituting equation (3.15) into equation (3.8) gives
Z [avjé; + B3]
7=1

14

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

The 3;’s will be discontinuous (since the m;’s can be regarded as a discontinuous

function) and a typical basis function 3; can be seen in Figure 3.2.

B;

QS @D

J+1

Figure 3.2

3.5.2 Minimisation of R

If the residual, R, in equation (3.2) is now minimised with respect to ¢; and $;, by
setting % =0= %, then this generates movements which give the ‘best fit’, in
the same sense as before, over the enlarged space of nodal amplitudes and nodal
velocities, and therefore, it is claimed, a better fit, since the grid moves in such a
way as to minimise the residual and hopefully this will optimise the solution. The
validity of this claim is somewhat questionable though, as the node movement
may have more to do with the ‘crudeness’ of using linear basis functions than
anything else, and details of this can be found in [1].

The result of the minimisation of R in this way is referred to as a method of

lines (MOL) and the equations are given more explicitly by

<Oéi,%—/:,0> = 0

<ﬂi,%—£6> = 0

(i, S0y fag &5+ B 5,)— Le) = 0
= i ={1,...,n}

(B, Ty lajéj 4 B8] = Le) = 0

Z?:l <ai7 aj>éj + Z?:l <O‘i7 ﬂjﬁj = <ai7 ,Cc> .
= i={1,....,n} (3.17)

"B, a)e + 0 (B Byé; = (Bis Le)

Equations (3.17) represent a system of 2n ODEs in 2n unknowns and the matrix

associated with the inner products of (3.17) is 2x 2 block tri-diagonal.

3.6 Structure of the MFE Matrix

If A is the matrix associated with the inner products of (3.17) then each 2x2

block, B;; (i = {1,...,n}), of A is given by

B, = (i a5) e 5) . j={1,....n (3.18)

(Bisa;) (Bis Bi)
It is a simple exercise to show that (o, ;) = (f;, «;) and hence, that each block
is symmetric. It is also a straightforward exercise to show that the super-diagonal
block ¢ = £ is identical to the sub-diagonal block : = k41 and thus the full matrix
is symmetric. Therefore, it is only necessary to calculate the inner products for
the diagonal blocks and the super-diagonal (or sub-diagonal) blocks to determine
the matrix and these are given explicitly by :

Diagonal entries

(ai, aj) — {aj,q;) = F[As; +Asjp]
<Oé2', 6]> - <05j7 ﬂ]> = [AC]‘—|—AC]‘+1]] - {L,n} (319)

(B, B)) — (Bi, Bi) = 3[Acm;+ Acjpim]

W=

16

Super-diagonal entries

(i, ;) — (ajp, qp) = éA5j+1

(ais Bi) — Aajpr, B) = —§Acin J=Al) (3.20)

(B:, B)) = (Biwa, Bi) = gAciamin

where

As; = Distance between s; and s;_q,
Ac; = Difference in height between ¢; and ¢;_;.
The RHS vector, g, associated with the inner products of equation (3.17) is
given by
(i, L)

g = Ci={l,....n) (3.21)
(Bi, Lc)

and owing to the general nature of L ¢ it is necessary to calculate these inner
products using some form of numerical integration. The FORTRAN 90 code uses
8-point Gaussian quadrature to numerically integrate these terms and this seems
to provide enough accuracy for the MFE method. (Using a greater number of
sampling points did not significantly improve the approximation.)

The vector of unknowns, y, is given by
v=1[.. 8, .1, i={1,...,n (3.22)
Hence, the MFE system which is given by equations (3.18), (3.21) and (3.22) is

Ay=g (3.23)

which is a semi-discrete ODE system that needs to be numerically integrated in

time to obtain the fully discrete system.

17

3.7 Time-stepping and Conjugate Gradients

3.7.1 Numerical Time-stepping

To advance the time-step numerically a finite difference time-stepping scheme is
introduced and the FORTRAN 90 code uses an explicit Euler method to achieve
this. The time-step is automatically chosen by the program to take the largest
time-step possible without causing the nodes to merge and while remaining within
certain limits (At Alimar). The user is free to choose the upper time limit, but
some sense should be applied and a limit which is ‘too large’ should be avoided. If
any of the nodes should merge in a time which is less than At,,,,, then half of the
minimum merging time of all the nodes which merge is taken, or the minimum
time-step Af,,;, if this is larger. It was found that the nodes did not merge for

any of the runs carried out for the semiconductor problem.

3.7.2 Solutionof Ay=g¢g

Since piecewise linear basis functions have been used, a pre-conditioned conjugate
gradient (PCG) algorithm was used to invert the symmetric mass matrix A.
It D is taken to be the matrix consisting of the diagonal blocks of A, then
pre-conditioning the system (3.23) by D~1 allows the system to be solved very
efficiently, requiring only two or three iterations [2], and for the semiconductor
problem one iteration! was sufficient for a majority of the time-steps. The only
exception to this occurred when penalty functions were used (see the next section)

and the number of iterations went up to between? 10 and 30.

LA tolerance of 10~8 was used to test the difference between succesive iterations.
2The number of iterations depends on the value of the parameter 6.

18

3.8 Parallelism

Unfortunately, the MFE method is not without its problems. One such problem
is that of parallelism and this occurs when the equations in the system (3.23)
become singular (or nearly singular) at any point. This is a problem because the
‘best fit’ is now ambiguous and this creates difficulties for the ODE solver. A
singularity occurs when the solutions on adjacent cells lie on the same line, but it
is possible to move the offending node without affecting the MFFE approximation.
Thus, the singularity can be removed by specifying any consistent value for the

motion of the node.

3.8.1 Penalty Functions

An alternative approach to dealing with parallelism is to use penalty functions

which have the effect of adding a small positive definite term
(3.24)

to the residual R in (3.2), where R,,. only depends on the nodal positions and

their time derivatives [4]. The new residual becomes

b 2 e o 2
Rp:R+R+Ue:/a (g;—ﬁc) wdx+ezm (3.25)

i=1 (s; — sj-1)
d applying the condition 2% = 0 = 2% gives rise t tions f
and applying the condition Fz# = 0 = FF gives rise to some new equations from
9R, . 9R, . .
the 5;* = 0 condition, but not from the Z;* = 0 condition, since R,,. does not
J J

depend explicitly on ¢;.

19

3.8.2 Changes to the Matrix A

Consider % = 0. Then for any j,
i‘ € Zn: (S] S]_1)2 =0
03 j=1 (s —sj-1)

1 1 1 1
= €|l———S5, 1 + + §;— ————§; =0
(5;—s0) ((Sj —sj-1) (84 _S])) T (s —)

So, minimising the new residual (3.25) with respect to $; and ¢; has the effect of
adding small positive definite terms to the matrix A in (3.17) and the changes to
this matrix are given by :

Changes on diagonal block

BB = (B B te | — L | i

(85— sj=1) (8j41 — 5j)

Changes on super-diagonal block

€

(5j+1 - S]) ’

<5ivﬁj>_><5j+1vﬁj>_ Z:{lvvn}

The effect of adding this internodal viscosity is to restrain the node motion in
regions where the usual restoring force on a node becomes small and the optimum
choice of the constant € is given by Miller to be ten times the square of the desired
truncation error. This should be large enough to avoid numerical difficulties, but
small enough so that grid motion will not be affected in regions where the original
matrix is not nearly singular.

The FORTRAN 90 code makes use of both of these procedures to deal with the
problem of parallelism, but as parallelism wasn’t a difficulty that was encountered
with the semiconductor problem it is hard to assess the usefulness of the penalty

functions.

20

3.9 Node Tangling

While the MFE method is expected to cause the grid to concentrate in regions of
steep gradient, there is also a tendency for most (or all) of the nodes to concentrate
in the region of the moving front, leaving the rest of the region with very few (or
no) nodes. Even worse is the case where nodes overtake each other causing
a tangling of the grid, but if a “sensible” time-step is taken then this shouldn’t
happen. To prevent the possibility of this happening and to allow nodes to remain
in smooth regions away from the front, it is necessary to reduce the influence of
regions of steep gradient. This is achieved by taking the weight function w, in

equation (3.2), to be
w=(1+m?)"2, j={1,....n} (3.26)

where m; is the approximate derivative to % and is given in (3.14). The effect
of this weight function in (3.2) is to de-emphasise regions of the graph where
the gradient is large and to convert the integral over = to an integral over the
arc-length of the solution curve. It is hoped that the use of the weight function

w will result in better nodal movement.

3.10 Conservation

Since the equations of the original semiconductor problem (2.1) and (2.2) were
based on a conservation law the extent to which the MFE method preserves the
exact conservation properties in the discretised equations should be considered.
Glasser [4] shows that the MFE method preserves the exact conservation
property if the weight functions are chosen to be constant. However, a constant

21

weight function does not have the ability to de-emphasize regions of the graph
as required and a non-uniform weight function destroys the exact conservation
property. Therefore, a decision has to be made as to which property is ‘least’
desired, and if a non-uniform weight function is used, then it is hoped that the
additional accuracy arising from an improved nodal distribution will offset the

loss of the exact conservation property.

3.11 Recovery

When solving equations (3.17) it is necessary to evaluate the inner product

(Bis Lc) (3.27)

However, since L contains second derivatives which don’t exist and the f; are

3

discontinuous®, this inner product does not exist and it needs to replaced by

(B, L(S¢)) (3.28)

where & is a smoothing operator defined explicitly as Se(x) = v(x) [5] by
constructing a recovered function v(x) from the piecewise linear approximation
to ¢, or its gradient g—;, which has sufficient continuity to allow the evaluation of
(3.28). Suitable functions v(x) may be constructed by fitting local polynomials
of sufficiently high order to ¢ or %.

It can be shown that taking a Hermite cubic interpolation between nodes ¢

and ¢ — 1 is equivalent to é-mollification (ie, arbitrary smoothing of ¢) and since

v(x) can be defined in a variety of other ways as well, the recovery procedure

3Usually, integration by parts copes with the problems of second derivatives in finite element
approximation, but the discontinuity in the 3; prevents this.

22

offers greater flexibility than the other methods with no loss of computational
efficiency?. The use of recovery can also improve accuracy and allow larger

time-steps and it is for these reasons that the FORTRAN 90 code uses the recovery

procedure.

3.11.1 Choice of Recovery Function

A quadratic function g—;{ is fitted to the MFE gradient g—; to exploit ideas of

superconvergence [5], and this function is defined on the element between nodes

2 and ¢ — 1 by
g—;(si_l) = (1 — (9) mi;_q —|— HmZ
2—;(%(&_1 +3s)) = my
2 (si) = ¢Ym;+ (1 =¥)min
where

0 _ As;
T (Asi+Asi_q)

¢ — As;
(Asi+Asit1)

For the semiconductor problem

ov 0%

(D) 5=+ 53 (3.29)

Lo = a%(D(C> g_x)
S L(Se) = %(D(Sc) a(éic))
v = %(D@%)
e+ (5]
d
oz

4This is only true in the 1-D case. In 2-D, the recovery procedure becomes a lot more
complicated and may not be the best way of evaluating the inner products.

23

and it should be noted that in equation (3.29) all of the terms which involve the

smoothing operator and are differentiated with respect to « need to be recovered,
namely 8%(D(v)) and 2275. While the recovery of 8%(D(v)) is not strictly necessary,
it does help with the nodal velocities and should be used in practice as better

numerical results can be obtained.

24

Chapter 4

Graph Massage

4.1 The Need For Graph Massage

While the instantaneous movement of the nodes using the gradient weighted MFE
(GWMFE) method are optimal with respect to the minimisation of the residual
R, it is sometimes noted that node depletion and excessively long line segments
can gradually occur in certain regions of the solution graph over ‘long’ periods of
time. Conversely, moving fronts can push too many nodes into small regions of the
solution graph over ‘long’ periods of time. To remedy this problem a technique has
been developed by Andrew Kuprat which assesses the GWMFE solution graph
at regular intervals and adds or deletes nodes where appropriate. This technique
is called Graph Massage [7]. Owing to the continuous movement of the nodes it
is expected that the solution graph will be massaged fairly infrequently and then,
that only a small number of nodes will be added or deleted at any time.

The graph massage algorithm is a FORTRAN 90 subroutine which creates

nodes according to two criteria (break and length) and annihilates nodes using one

25

criteria (break). Each of these creation and annihilation criteria will be referred

to as a module.

4.2 Properties of Graph Massage

The graph massage algorithm is required to satisty certain properties and these

are as follows.

4.2.1 Inter-Modular Stability (IMS)

It the graph massage algorithm was naive then there would be a possibilty that

infinite loops of the following type could occur

1) The annihilation module decides that a given node is not needed
and deletes it.

2) One of the two creation modules decides that the resulting region
of the graph is ‘node depleted’ and adds a new node.

3) The annihilation module decides that the new node is not needed
and deletes it.

etc.

This sort of pointless interaction needs to be avoided and this requirement is
called Inter-Modular Stability.

IMS is achieved by allowing the creation modules to be ‘dumb’ and making
the annihilation module ‘intelligent’. This means that the two creation modules
are allowed to add nodes if their criteria for node creation is satisfied, but the
annihilation module can only delete a node if the resultant graph in that region
does not require the creation modules to add nodes.

26

4.2.2 Perturbational Stability (PS)

Assume that graph massage has been performed on a graph and that the resultant
graph is G with an associated solution vector ¢. Now suppose that G is perturbed
to a new graph ¢’ with the corresponding solution vector ¢/ = ¢ 4+ €. Then graph
massage should refuse to alter G’ in any way provided that € is sufficiently small
and this is called Perturbational Stability.

This stability is important when ¢ represents the GWMFE approximation to a
time-dependent PDE, because the graph massage routine will be called every few
time-steps and small perturbations in ¢ will occur between each call owing to the
evolutionary nature of the PDE. Therefore, to avoid computational inefficiencies
arising from changes made to the graph, it is desired that graph massage will
only make changes to G occasionally.

In practice, perturbational stability is achieved by working with two sets of
tolerances. After the user has input various tolerances, graph massage increases or
decreases each tolerance by a user-specified stability factor so that graph massage
is discouraged. If, however, creation or annihilation is required with these ‘harder’
trigger tolerances, then all of the tolerances are relaxed to their original values
and the graph massage modules are called. The output solution vector ¢ now
satisfies the original tolerances as well as the trigger tolerances which are harder

to violate, so perturbational stability is achieved.

27

4.2.3 Controlled Cumulative Graph Damage (CCGD)

When graph massage is called it makes changes to the graph and thus ‘damages’
it, in some sense to be defined. This damage must be acceptable for each node
annihilation and the cumulative damage that is done to the graph must not be
unacceptable. The control of this damage is known as Controlled Cumulative
Graph Damage. An example of a graph that suffers acceptable damage for each
nodal annihilation, but suffers an unacceptable amount of cumulative damage

can be seen in Figure 4.1.

(a)

(c) (d)

Figure 41 Unacceptable cumulative graph damage.

To prevent this kind of unacceptable damage being done, two bounds on the
cumulative graph damage have to be satisfied and these are
1) Each point on the original graph ¢ is mapped onto a corresponding
point on the new graph G’ so that the displacement suffered by this

mapping is bounded.

28

2) The angles between the normals to adjacent faces of the graph GG
chang by a bounded amount when mapping to the new graph G".
This means that the points on G are only allowed to move a small distance and

that the shape of the graph is only allowed to be distorted by a small amount.

4.3 The Three Graph Massage Modules

Before commencing with the details of the modules it is necessary to describe
how the nodes are labelled, how the algorithm keeps track of the nodes and how

the nodes are related to each other.

4.3.1 Nomenclature

The left boundary node is labelled ‘0" and the right bounday node is labelled
‘n’. The value of n may vary as the solution evolves, but the left boundary
node cannot be annihilated as this would be considered to be an unacceptable
distortion of the graph. A general interior node is labelled ‘2 .

The segment joining nodes ¢ — 1 and ¢ is labelled Segment; and Chord; is the
line joining node : — 1 to node ¢ + 1. The angle between Segment; and the Chord;
1s]3Z and the angle between Segment;,; and Chord; is 52

As nodes are created and annihilated, the FORTRAN 90 code renumbers the
nodes so that the nodes are always numbered from 0 to n, and so that node ¢

always lies between nodes ¢ — 1 and ¢z + 1. In this way the solution graph is

completely described by the positions of the nodes 0, ..., n.

29

4.3.2 Creation on Length Module

If a given segment, Segment;, is longer than the user-specified maximum segment
length, Max_Segment_Length, then this module attempts to insert a node. This

node will be inserted so as to bisect Segment;, as in Figure 4.2.

1 +1

(a) (b)

Figure 4.2 Insertion of node by Creation on Length.

The insertion of a node is not guaranteed though, and the failure to add a new

node may be owing to one of the following reasons:

1) The maximum allowable number of nodes is already being used.

2) One of the new cell widths, As; or As,yy, violates the user-specified
minimum cell width tolerance, Min_Cell Width, where Min_Cell Width
is used to prevent nodes from being added too close together. (This is

useful for preventing the insertion of nodes on shocks or steep fronts.)

The longest segments are bisected first (as they are seen to need it the most), so

a rank list needs to be created which contains all of the segments whose length

30

exceeds Max_Segment_Length. This list is then ordered! smallest to largest, and
segments are taken from the end of the list. If a new node is added then the
new segment lengths are checked to see if they exceed Maxz_Segment_Length, and

if they do then they are added to the list.

4.3.3 Annihilation on Break Module

Before going any further it is necessary to define what is meant by the term break.
Break is a measure of the displacement damage done to the graph G by inserting
or removing a node, and using the definition as given in [7], the break at ¢, Break;,
is defined to be the perpendicular distance between node ¢ and Chord,.

If Break; is less than the user-specified annihilation on break tolerance,
Annihilation_Brk_Tol, then the node is added to a rank list of nodes which are
marked for deletion. The list is ordered largest to smallest, with each node being
taken from the end of the list so that the nodes with the smallest break will be
removed first.

As for the creation on length module, the occurence of node ¢ in the rank
list does not necessarily mean that node ¢ will be annihilated, and because the
annihilation module is “intelligent” there are more criteria which can prevent
the annihilation of the node from taking place. The criteria that would prevent

annihilation are:

1) The minimum number of nodes is already being used.

2) The incremental angle damage done to (G exceeds the user-specified

IEvery time that nodes are added to the list it needs to be sorted. This should not cause
any problems though, as it is expected that relatively few nodes will be created or annihilated
at any given time.

31

tolerance, Annihilation_Ang_Tol.
3) The resulting chord segment exceeds the user-specified maximum
segment length, Maz_Segment_Length.
4) The resulting breaks at the adjacent nodes exceed the user-specified
creation on break tolerance, Creation_Brk_Length.
5) The cumulative break damage exceeds the user-specified cumulative
break tolerance, Cum_Brk_Tol.
6) The cumulative angle damage exceeds the user-specified cumulative
angle tolerance, Cum_Ang_Tol.
Node 7 is removed from the list whether it’s deleted or not. If, however, node
¢ is deleted then the break at the two adjacent nodes i — 1 and ¢ + 1 needs
to be calculated and if either break is less than Annihilation_Brk_Tol then the
appropriate node needs to be added to the list. The effect of a node annihilation

on the graph can be seen in Figure 4.3.

(a) (b)

Figure 4.3 Node deletion by Annihilation on Break.

32

While the annihilation list contains the nodes, and the damage that the nodes
would do to the graph if removed, it does not in any way measure the cumulative
damage that the graph would suffer as a result of removing a node, taking into
account any previous annihilations around that node. This cumulative damage
needs to be measured in some other way and the details of the analysis can be
found in [7].

If node 7 is annihilated then the cumulative break damage and the cumulative

angle damage measures are given by :

Cum_Brk_Ttl,_y = MAX{Cum_Brk_Ttl;_y , Cum_Brk_Ttl;} + Break;

and

Cum_Ang Tty = MAX {Cum_Ang_Ttl;_, + b , Cum_Ang_Ttl; + 51}

respectively.

4.3.4 Creation on Break Module

Previously, Break; was perceived as a measure of how expendible the node 7 was,
ie for values of Break; greater than Annihilation_Brk_Tol, annihilation of node
2 would be out of the question. Here it is used to determine whether or not a
node needs help. For values of Break; above the user-specified creation on break
tolerance, Creation_Brk_Tol, it is said that node z “carries too much displacement”
and that a new node needs to be created next to ¢ to reduce Break; to a target
break value. The new node is inserted to the left or right of « depending on which
segment is longest, as can be seen in Figure 4.4, and this is done to reduce the

difference between segment lengths.

33

(a) (®)

Figure 44 Node insertion by Creation on Break.

When calculating Break; it is important that nodes do not overtake, as this
can lead to Break; becoming a gross underestimate of how much node ¢ “needs
help”. However, this situation should never occur for a properly formulated PDE
which is solved using the GWMFE method with graph massage.

It 2 is an interior node, then to find the length of the new segment that
will reduce Break; to the target break value, Kuprat finds the root of a quadratic
equation via an algorithm that “obtains the correct root in every case”. However,
no details of this algorithm were given, and when looking at the problem of
calculating the new segment length, it was discovered that the new length could
be found very simply by using the geometry of the triangles involved. The problem
reduces to one of calculating two angles and these are easily found by using the

A

known segment lengths, Segment; and Segment; 1, and the known angles P; and
It ¢ is one of the boundary nodes, then calculating the new segment length

is even easier. For Neumann boundary conditions Break; is defined to be the

34

vertical distance between ¢ and the adjacent interior point, so finding the new
segment length that will reduce Break; to the target break value is just a matter

of comparing the ratio of the break values to that of the segment lengths.

35

Chapter 5

Results

5.1 Note on FORTRAN 90

One useful feature of FORTRAN 90 that was utilised by the code was that of
derived data types, which made it easy to keep track of the nodes that were
associated with particular segment lengths, break values and angles in the cre-
ation/annihilation routines. In 2-D, where the data structure is more complicated,
the use of derived data types would be particularly useful. The use of FORTRAN

90 also made the general coding process a lot easier.

5.2 The Results

In this chapter the graphs from the various FORTRAN 90 programs are presented
along with the tolerances that were used to produce each graph. In all of the

graphs At,,,, = 60s and the final time is 43200s.

36

Figure 51 MFE with 21 nodes.

The graph above shows the results using the normal MFE method at ¢ = 0,

21600 and 43200s.

Figure 5.2 GWMFE w1ith 27 nodes.

The graph above shows the results using the Gradient Weighted MFE method

at t = 0, 21600 and 43200s.

37

4.32
3.89 —
3.46 -
3.02 -
259 —

2.16

1.73 4

13

0.86

0.43

0.0 +—+rrrrrr—rr+—/—rr T z (um)
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.3 MFE nodal movement.

The graph above shows the positions of the 21 nodes up to ¢t = 43200s for the

normal MFE method.

4.32
3.89 —
3.46 -
3.02 —
2.59

2.16

1.73

1.3

0.86

0.43

B z (um)
0.0 0.2 0.4 0.6 0.8 1.0

Figure 54 GWMFE modal movement.

The graph above shows the positions of the 21 nodes up to ¢t = 43200s for the

Gradient Weighted MFE method.

38

13

10" 4 T T T T — x (um)

Figure 55 MFE with penalty funciions.

The graph above shows the solution obtained using penalty functions, where

the parameter 6 = 0.001.

in(c)

21

10

13

107 T T Tt T — =z (um)

Figure 56 GWMFE with penalty functions.

The graph above shows the solution obtained using penalty functions, where

the parameter 6 = 0.0001.

39

13

10" [[[

Figure 5.7

The graph above shows the solution obtained using graph massage with the

following tolerances:

Min_Num_Nodes

GM _Frequency
Trunc_FErr_Tol
Creation_Brk_Tol
Mazx_Segment_Length

Stability_Factor

The graph was massaged 2 times.

40

15

0.001

0.05

0.25

1.7

13

10" 4 T T Ty T — x (um)

Figure 5.8

The graph above shows the solution obtained using graph massage with the

following tolerances:

Min_Num_Nodes

GM_Frequency

Trunc_Err_Tol

Creation_Brk_Tol

Max_Segment _Length

Stability_Factor

The graph was massaged 4 times.

41

15

0.0001

0.05

0.25

1.1

Chapter 6

Conclusions

In this dissertation the method of moving finite elements has been examined,
and then applied, to an existing problem in semiconductor process modelling.
A program had already been written for the problem several years ago, by P.K.
Sweby, but it had been observed that the program wasn’t very robust in the sense
that for more “difficult” cases (ie a different choice of parameters) the program
failed to resolve the problem accurately.

The original program was re-written in FORTRAN 90 and then various
modifications were made to it in an attempt to improve the robustness of the
method. The original problem was retained in order to assess any improvements
that might result.

The first modification was the use of weight functions which give rise to the
GWMFE method. It was hoped that the gradient weighting would improve
the nodal distribution by moving nodes away from the steep front and into
the tail region where the resolution is of great importance. However, when

comparing Figures 5.1 and 5.2, which are the normal and gradient weighted

42

outputs respectively, it is not obvious that there is any difference between the
two solutions.

Comparison of the nodal positons over time, Figures 5.3 and 5.4, also suggests
that GWMFE has not performed any better than normal MFE as the nodal
movement is almost identical. The fact there was no nodal movement away
from the shock, when using GWMFE, was rather disappointing, and it may have
something to do with employing a Neumann boundary condition at « = 0. This
BC creates a sharp corner, where the left shock is ‘reflected’, and the nodes may
be staying in this region in order to resolve this difficulty. Increasing the number
of nodes in the approximation had little affect on the approximations.

The second modification was to include penalty functions and this introduced
a user-specified parameter ¢, which, in some sense, lost a certain amount of the
robustness that was being sought. It was necessary to find a ‘good’ value of 6 that
managed to improve the approximation, but it was observed that changing delta
caused the position of the tail to change quite drastically, Figures 5.5 and 5.6.
This was quite worrying, and the fact that the tail position depended strongly on
the choice of 6 would seem to suggest that this was not a good modification to
make for this problem?.

The final modification that was made was to use Graph Massage which is a
new technique that is used in conjunction with the GWMFE method to ‘tweak’
the graph every few time-steps, in order to stop things from going wrong. The
method itself seems fairly straightforward, but unfortunately the method cannot

be seen to be robust as it requires a large number of user-specified parameters,

Since the solution did not become parallel when run using the normal MFE method, it was
not expected that penalty functions would greatly improve the solution.

43

and although several of these can be related to each other, at least four of
the parameters have to be chosen by trial and error. It took several hours of
experimention before any parameters were found to work for the semiconductor
problem, and even then the results were rather disappointing.

Two plots using graph massage can be seen in Figures 5.7 and 5.8. The
first appears to give quite a good resolution of the shock, but there is something
strange happening around the tail region. The second appears to give a poorer
approximation to the shock, but the ‘kink” in the tail region is less pronounced.
No amount of fiddling with parameters managed to produce a solution that looked
much different from the two shown here.

There is also a “problem” associated with graph massage and this is the fact
that the height of the solution should be of the same order as the length of the
solution interval. If this is not the case, and the solution height is a lot larger than
the the interval length, then the ‘dumb’ creation on length module will require
either a large value for Maxz_Segment_Length, in which case nodes will tend to be
placed on any peak in the solution and nowhere else, or the number of nodes will
have to be large in order to make Max_Segment_Length small enough to resolve
details away from any peak in the solution. The result is that the it may be
necessary to scale the problem in order to use Graph Massage and again this is
not a good thing for robustness.

Although the results obtained have not been very promising, the use of graph
massage in 2-D would seem to offer the possibility of solving (‘fixing’) problems,
which until now, may have had little chance of being solved. If more time had been

available, an investigation of graph massage in 2-D would have been undertaken,

44

and it 1s in 2-D that Graph Massage appears to have most applicability.

45

Bibliography

1]

M.J. Baines, N.R.C. Birkett & P.K. Sweby (1990), ‘Non-Linear Diffusion In

Process Modelling’, I. Jour. Num. Model., Vol. 3, pp. 79 - 90.

P. Concus, G.H. Golub, D.P. O’Leary (1975), ‘A Generalised Conjugate Gra-
dient Method for the Numerical Solution of Elliptic PDFEs’, in Sparse Ma-
trix Computations (Eds. J.R. Bunch, D.J. Rose) Academic Press, New

York, pp. 309 - 332.

R.B. Fair (1981), ‘Concentration Profiles of Diffused Dopant in Silicon’, in
Impurity Doping Processes in Silicon (Ed. F.F.Y. Wang) North Hol-

land, New York, pp. 315 -442.

A.H. Glasser (1988), ‘A Moving Finite Element Model of the High Density

Z-Pinch’, Jour. Comp. Phys., Vol. 85 N°1, pp. 159 - .

L.W. Johnson, A.J. Wathen & M.J.Baines (1988), ‘Moving Finite Element
Methods for Evolutionary Problems. II. Applications’, Jour. Comp. Phys.,

Vol. 79 N°2, pp. 270 - 297.

J.R. King & C.P. Please (1986), ‘Diffusion of Dopant in Crystalline Silicon:

An Asymptotic Analysis’, IMA J. Appl. Math., 37, pp. 185 - 197.

46

[7] A.P. Kuprat (1992), ‘Creation and Annihilation of Nodes for the Moving

Finite Element Method’, PhD Thesis, University of California.

[8] K. Miller (1981), ‘Moving Finite Elements I’, STAM J. Numer. Anal.,

18, pp. 1019 - 1032.

[9] R.O. Moody (1988), ‘The Numerical Solution of Moving Boundary Problems

Using MFE Methods’, PhD Thesis, University of Reading.

[10] C.P. Please & P.K. Sweby (1986), ‘A Transformation to Assist Numerical
Solution of Diffusion Equations’, Numerical Analysis Report 5/86, Uni-

versity of Reading.

47

