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Abstract 
 

In this dissertation we will discuss the finite difference method for approximating 

conservation laws with a source term present which is considered to be a known function 

of x, t and u.  Finite difference schemes for approximating conservation laws without a 

source term present are discussed and are adapted to approximate conservation laws with a 

source term present.  First we consider the source term to be a function of x and t only and 

then we consider the source term to be a function of u also. Some numerical results of the 

different approaches are discussed throughout the dissertation and an overall comparison of 

the different approaches is made when the source term is stiff.    
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Symbols and Notation 
 
 
 
 
The following is a list of symbols and notation used throughout this project. 
 
 
 
Δx    Step-size in x-direction. 
 
Δt    Step-size in t-direction. 
 
i    Integer denoting current step number. 
 
n    Integer denoting current step number. 
 
I    Total number of steps in x-direction. 
 
N    Total number of steps in t-direction. 
 
xi = iΔx    Current position in space. 
 
tn= nΔt    Current position in time. 
 
u(x,t)    The exact solution. 
 
u(x,0)    The initial data. 
 
f(u(x,t))   The flux. 
 
R(x,t,u(x,t))   The source term. 
 

( )tnxiuun
i ΔΔ≈ ,   The numerical approximation of the exact solution. 

 
( )( )tnxiuui Δ+Δ≈ 1,)1(   The first order numerical approximation of the exact  

solution. 
 

( )( )tnxiuff n
i ΔΔ≈ ,   The numerical approximation of the flux. 

 
( )( )tnxiutnxiRRn

i ΔΔΔΔ≈ ,,,  The numerical approximation of the source term. 
 
c    The wave speed for the advection equation. 
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a(u(x,t))        The wave speed for the conservation law. 
 

x

t
s

Δ
Δ=     

 

x

t
cv
Δ
Δ=         The Courant number for the advection equation. 

 
),( tnxiuue n

i
n
i ΔΔ−=        The ‘true’ error of a scheme at the nodes. 

 
Τn

i          The truncation error of a scheme. 
 

( )θφ=φ ii         The flux-limiter of a second order scheme. 

 

( )⎪
⎩

⎪
⎨

⎧

=

≠
−
−

=

+

+
+

+

+

uuua

uu
uu

ff
sv

n
i

n
i

n
i

n
i

n
in

i
n
i

n
i

n
i

i

1

1
1

1

2/1

 if          

  if   
   The local Courant number for the conservation law. 

 

t
uu

t

u n
i

n
i

Δ
−≈

∂
∂ +1

         A forward difference approximation. 

 

x
uu

x

u n
i

n
i

Δ
−≈

∂
∂ −+

2
11         A central difference approximation. 

 

x
uu

x

u n
i

n
i

Δ
−≈

∂
∂ −1          A backward difference approximation. 

 
Also, we will be using a fixed mesh, i.e.  
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 t = tN   

tN-1  

tn+1 – tn = Δt 
 
xi+1 – xi = Δx 
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xi = iΔx 
 

tN-2  
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1 Introduction 
 
Recently, the numerical solution of conservation laws with a source term, i.e. 

( ) ( )utxR
x

uf

t

u
,,=

∂
∂+

∂
∂

           (1.1) 

 
where f(u) is the flux and R(x,t,u) is the source term, has been in great demand.  This 

is due to the frequency in which conservation laws with source terms arise in 

mathematical models of physical situations.  For example, the 1-D Shallow Water 

Equations models flow in rivers for a channel of finite depth and requires the 

numerical solution of a system of equations of the form (1.1).  Consider the Shallow 

Water Equation discussed by Bermudez and Vazques[4] 

 

( ) ( )wxR
x

wF

t

w
,=

∂
∂+

∂
∂

          (1.2) 

where 

( ) ⎥
⎦

⎤
⎢
⎣

⎡=⎥
⎦

⎤
⎢
⎣

⎡=
uh

h

q

h
txw , ,  ( )

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+
=

gh
h

q
q

wF 2
2

2

1   and  ( ) ( )⎥⎦
⎤

⎢
⎣

⎡
′

=
xHgh

wxR
0

, . 

Here, h(x,t) and u(x,t) represent the total height above the bottom of the channel and 

the fluid velocity, respectively, and H(x) is the depth of the same point but from a 

fixed reference level (see Figure 1-1).  The analytical solution of (1.2) can be 

extremely difficult to find and sometimes is impossible.  Thus, numerical methods are 

required to approximate the solution of (1.2). 
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Figure 1-1: Shallow Water Equation. 

 

The solution of (1.1) can be difficult to numerically approximate accurately even 

when the source term is not present, i.e.  

( )
0=

∂
∂+

∂
∂

x

uf

t

u
.    (1.3) 

 
Throughout Chapter 2, we will use finite differences to approximate (1.2) and discuss 

the accuracy and stability of the schemes derived.  We will look at the truncation error 

and show that first order finite difference schemes are dissipative and second order 

finite difference schemes are dispersive.  Flux-limiter methods will also be discussed 

so that we can minimise the dispersion present in second order finite difference 

schemes.    

In Chapter 2, we will see that the majority of difficulties encountered when 

approximating (1.2) can be overcome but we now need to consider how to 

approximate (1.1), where the source term is now present.  A great deal of research has 

been carried out in conservation laws with source terms but how to handle source 

terms, especially when they are stiff, is still an open issue.  In Chapter 3, we will 

A 

L 

x 

H(x) 

h(x,t) 

Seabed 

River 



 
 

 
 

 

5 
 
 

discuss various approaches for approximating (1.1) but with the source term being 

only a function of x and t, i.e.  

( ) ( )txR
dx

udf

dt

du
,=+ . 

 
We will consider ‘adding’ the source term, the Lax-Wendroff approach and the 

MPDATA approach and we will compare the three approaches for a test problem.     

In Chapter 4 we extend the work to consider (1.1) where the source term is also a 

function of u.  This requires an approximation of the source term since we do not 

know u.  In Chapter 4, we will discuss a variety of approaches for numerically 

approximating (1.1) including the three discussed in Chapter 3.  A simple test problem 

will be used to analyse the different approaches and in Chapter 5, we will compare the 

different approaches with a test problem whose source term is stiff. 
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2 1-D Conservation Law 
 
 
In this chapter, we will look at some numerical schemes for approximating the 1-D 

scalar conservation law  

0
)( =

∂
∂+

∂
∂

x

uf

t

u
      (2.1) 

 
where u(x,t) is the conserved quantity and f(u) is the flux.  We can also rearrange (2.1) 

to obtain the quasi-linear form 

0)( =
∂
∂+

∂
∂

x

u
ua

t

u
    (2.2) 

 
where a(u) = f ′(u), which is called the wave-speed.  If a(u) = c, where c is a constant, 

then (2.1) becomes the linear advection equation. 

 
 

2.1 1-D Linear Advection Equation 
 
The most basic form of the conservation law is the linear advection equation 
 

0=
∂
∂+

∂
∂

x

u
c

t

u
      (2.3) 

 
where c is a constant and f(u) = cu.  Here, the constant c is known as the wave speed 

since a(u) = c.  There are a variety of numerical techniques for approximating the 

linear advection equation, such as finite element methods and finite volume methods.  

Another class of numerical technique used for approximating the linear advection 

equation are finite difference methods.  Finite difference methods involve replacing 

the derivatives of (2.3) with finite difference approximations. e.g. 
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t
uu

t

u n
i

n
i

Δ
−=

∂
∂ +1

    

which is called the forward difference approximation in time, 

t
uu

t

u n
i

n
i

Δ
−=

∂
∂ −+

2

11

    

which is called the central difference approximation in time and 

x
uu

t

u n
i

n
i

Δ
−=

∂
∂ −1    

which is called the backward difference approximation in space.  The three finite 

differences can be obtained by using Taylor’s theorem, i.e.  

...
2 2

22
1 +⎥⎦

⎤
⎢⎣
⎡

∂
∂Δ+⎥⎦

⎤
⎢⎣
⎡

∂
∂Δ+≈+

t

ut
t

u
tuu

n

i

n

i

n
i

n
i  

and by re-arranging we may obtain the forward difference approximation 

t
uu

t

u n
i

n
i

n

i Δ
−≈⎥⎦

⎤
⎢⎣
⎡

∂
∂ +1

. 

Thus, by using finite differences, we can obtain a finite difference scheme that 

approximates the linear advection equation.  For example, if we use a forward 

difference approximation in space and a central difference approximation in time and 

assume both of these finite differences to be approximations at (i,n), we may obtain  

t
uuc

t
uu n

i
n
i

n
i

n
i

Δ
−+

Δ
− −+

+

2
11

1

, 

and by re-arranging, we obtain 

( )uu
v

uu n
i

n
i

n
i

n
i 11

1

2
−+

+ −−= , 

which is a finite difference scheme which approximates the linear advection equation.  

Unfortunately, this finite difference scheme is unconditionally unstable as we will see 

later.   
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2.1.1 First Order Schemes 
 
In order to obtain a first order scheme, we use a forward difference approximation in 

time and a backward difference approximation in space and assume both of these 

finite differences to be approximations at (i,n), i.e.  

.       and      1
n
i

1

x
uu

x

u

t
uu

t

u n
i

n
i

n
i

Δ
−=

∂
∂

Δ
−=

∂
∂ −

+

 

 
Substituting these into (2.3) gives 
 

,01
1

=⎥
⎦

⎤
⎢
⎣

⎡
Δ
−

+
Δ

− −
+

x
uu

c
t

uu n
i

n
i

n
i

n
i  

and hence, 
 ( )uuvuu n

i
n
i

n
i

n
i 1

1
−

+ −−=     
 

where 
x

t
cv

Δ
Δ=  and is known as the Courant number.  This scheme is one of the most 

basic numerical approximations of the advection equation.  However, it can be shown 

that this scheme is numerically unstable if c < 0, in which case we use a forward 

difference approximation in space and time and assume that both are approximations 

at (i,n), i.e.  

       and      
n

1i
1

x
uu

x

u

t
uu

t

u n
i

n
i

n
i

Δ
−=

∂
∂

Δ
−=

∂
∂ +

+

, 

 
then substituting into (2.1) gives 
 

.01
1

=⎥⎦
⎤

⎢⎣
⎡

Δ
−+

Δ
− +

+

x
uuc

t
uu n

i
n
i

n
i

n
i  

Whence, 

 ( ). 1
1 uuvuu n

i
n
i

n
i

n
i −−= +

+     
 
This scheme is numerically unstable if c > 0.  Separately, these schemes can become 

numerically unstable, but if we combine them 

( )
( )⎩

⎨
⎧

<−
>−

−=
+

−+

0    if   

0    if   

1

11

vuuv

vuuv
uu

n
i

n
i

n
i

n
in

i
n
i      (2.4) 
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we obtain the Upwind method with switching through v = 0.  This scheme can still 

become unstable but only for ⏐v⏐> 1.  This will be discussed later. 

Alternatively, we could obtain another first order scheme if we use a forward 

difference approximation in time and a central difference approximation in space and 

assume that both are approximations at (i,n), i.e. 

 
2

      and      1
n

1i
1

x
uu

x

u

t
uu

t

u n
i

n
i

n
i

Δ
−=

∂
∂

Δ
−=

∂
∂ −+

+

 

 
then substituting into (2.1) gives 
 

0
2

11
1

=⎥⎦
⎤

⎢⎣
⎡

Δ
−+

Δ
− −+

+

x
uuc

t
uu n

i
n
i

n
i

n
i  

 

⇒  ( ). 
2 11

1 uu
v

uu n
i

n
i

n
i

n
i −+

+ −−=     

 
Unfortunately this central scheme is unconditionally unstable, but by replacing un

i  by 

the average 

( )uuu n
i

n
i

n
i 11

2

1
−+ +=  

 
we obtain the Lax-Friedrichs scheme 
 

( ) ( )uu
v

uuu n
i

n
i

n
i

n
i

n
i 1111

22

1
−+−+ −−+=       (2.5) 

 
which is stable for  | v | ≤ 1.  (See later) 
 
 

2.1.2 Second Order Schemes 
 
One of the most well known second order schemes for approximating the advection 

equation is the Lax-Wendroff scheme and is derived as follows: 

Using Taylor’s theorem 

...
2 2

22
1 +⎥⎦

⎤
⎢⎣
⎡

∂
∂Δ+⎥⎦

⎤
⎢⎣
⎡

∂
∂Δ+≈+

t

ut
t

u
tuu

n

i

n

i

n
i

n
i     (2.6) 

and since 
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x

u
c

t

u

∂
∂−=

∂
∂

      (2.7) 

⇒ 
x

x

u
c

c
x
t

u

c
tx

u
c

xt

u
c

t

u

∂

⎟
⎠
⎞⎜

⎝
⎛

∂
∂−∂

−=
∂

⎟
⎠
⎞⎜

⎝
⎛

∂
∂∂

−=
∂∂

∂−=
∂∂

∂−=
∂
∂

    
22

2

2

 

so, 

.
2

2
2

2

2

x

u
c

t

u

∂
∂=

∂
∂     (2.8) 

 
Substituting (2.7) and (2.8) into (2.6) gives 
 

...
2 2

22
21 +⎥⎦

⎤
⎢⎣
⎡

∂
∂Δ+⎥⎦

⎤
⎢⎣
⎡
∂
∂Δ−≈+

x

ut
c

x

u
tcuu

n

i

n

i

n
i

n
i  

 
and by using central difference approximations in space and assuming that both are 

approximations are at (i,n), i.e. 

 

 2      and     
2 2

1
n

1i

2

2
11

x

uuu

x

u

x
uu

x

u n
i

n
i

n
i

n
i

Δ
+−=

∂
∂

Δ
−=

∂
∂ −+−+  

 
we obtain 

.
2

22 2
11

2
2111

x

uuut
c

x
uu

tcuu
n
i

n
i

n
i

n
i

n
in

i
n
i Δ

+−Δ+
Δ
−

Δ−= −+−++  

 
Hence, the second order Lax-Wendroff scheme is 
 

( ) [ ]uuu
v

uu
v

uu n
i

n
i

n
i

n
i

n
i

n
i

n
i 11

2

11
1 2

22
−+−+

+ +−+−−= .   (2.9) 

 
 

2.1.3 Implicit Schemes 
 
So far, all the schemes we have looked at have been explicit schemes.  This is because 

none of the schemes we have looked at have terms involving time level n+1 on the 

right hand side of the scheme.  For example, the Lax-Wendroff scheme is explicit 
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 but if we use central difference approximations in space and assume that both are 

approximations at (i,n+1) instead of approximations at (i,n)  
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we obtain the implicit Lax-Wendroff scheme.  This scheme is implicit since terms 

involving n+1 appear on the right hand side of the equation.  Implicit schemes cause 

difficulties since we now have to solve a tri-diagonal system at each time step.  Re-

arranging (2.10) 
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is the tri-diagonal system, which needs to be solved at each time step, for the implicit 

Lax-Wendroff scheme where  

( ) ( )v
v

cvbv
v

a −=+=+−= 1
2

  and   1  ,1
2

2 . 

 
All implicit schemes take the form 

GuA n =+1  

where A is a (I+1) x (I+1) matrix and G is a (I+1) column vector.  In general, implicit 

schemes can be more accurate than explicit schemes but implicit schemes are harder 

to implement and require a lot more calculations than explicit methods. 

So far we have looked at a few finite difference schemes, of first or second order, 

which numerically approximate the solution of the advection equation but there are a 



 

 12 

great deal more and definitely too many to look at in this section.  For a more in depth 

discussion of finite difference schemes for the advection equation, look in Kroner[8], 

LeVeque[7] and Ames[14]. 

 

2.2 1-D Conservation Law 
 
In Section 2.1, we discussed some finite difference schemes for approximating the 

linear advection equation, which is a form of the scalar conservation law 

0
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u
 

 
where f ′(u) = a(u).  However, we can adapt the techniques discussed in Section 2.1 so 

that we can numerically approximate the solution of the scalar conservation law but 

we must be careful how we approximate (2.1) since we wish to ensure conservation. 

 

2.2.1 Non-Conservative Schemes 
 
If a scheme is non-conservative, then the scheme will move discontinuities at the 

incorrect wave speed.  For example, if we approximated the quasi-linear form of 

equation (2.1) by using the finite difference method then we would obtain a non-

conservative scheme.  Consider inviscid Burger’s equation, i.e. 
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re-writing in quasi-linear form gives 
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and by using a forward difference approximation in time and a backward difference 

approximation in space and assuming that both are approximations are at (i,n), i.e. 
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assuming 0>un

i .  This scheme is conservative for smooth data only and if used to 

numerically approximate discontinuities, the scheme becomes non-conservative 

moving the discontinuity at the wrong speed.  

Non-conservative scheme with dx = 0.01, dt = 0.001 and t = 0.5.
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Figure 2-1: Non-conservative scheme. 
 

If we use the non-conservative scheme, which approximates inviscid Burger’s 

equation, with initial data 

⎩
⎨
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≥
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=
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3.0  if   2.1
)0,(
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x
xu , 

we may obtain the results in Figure 2-1.  Here, we can see that the scheme has moved 

the discontinuity too slowly which means that the scheme is not conservative. 
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2.2.2 Conservative Schemes 
 
To ensure conservation, we require that the method be in conservation form, i.e. 
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where F is called the numerical flux function and is of  p + q + 1 arguments.  We can 

ensure conservation by numerically approximating (2.1) and using a similar approach 

as we did in the previous sub-section.  For example, when we derived the Upwind 

scheme, we used a forward difference in time and either a forward or a backward 

difference in space depending on the value of v.  Here, we take a same approach but 

we will apply finite differences to f  instead of u, i.e. 
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is the Upwind scheme for the scalar conservation law where 
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However, difficulties arise when approximating vi+1/2.  This is because in 
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ui+1/2 is unknown.  One approach used to overcome this problem could be to 

approximate ui+1/2 by 
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Another method, which ensures conservation, is to approximate vi+1/2 by replacing 

a(u) by a “local v” defined at each grid point by 
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Problems also occur when adapting the Lax-Wendroff scheme to the non-linear case.  

This is because (2.8) no longer holds.  However, we can overcome this problem by re-

writing (2.8) as 
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and by using Taylor’s theorem, 
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the Lax-Wendroff scheme for the conservation law.  Table 2-1 lists a variety of finite 

difference schemes for the conservation law. 
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Table 2-1: Finite difference schemes for the 1-D conservation law. 
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Here, we can see that adapting the finite difference method to the scalar conservation 

law can cause minor problems.  

 
 

2.3 Truncation Error and Stability 

2.3.1 Truncation Error 
 
The truncation error of a scheme is very useful, since it tells us whether the scheme is 

consistent and the order of accuracy of the scheme.  To derive the truncation error of a 

scheme, we assume that the values at the grid points are exact, i.e. ),( tnxiuun
i ΔΔ= , 

and then use Taylor series expansions.  The truncation error is also known as the 
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discretisation error, which is the error caused by using finite difference 

approximations to approximate the derivatives of (2.3).  As an example, consider the 

Lax-Friedrichs scheme (2.5) for the scalar conservation law 
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then by substituting into (2.5) gives 
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is the truncation error of the Lax-Friedrichs scheme.  The Lax-Friedrichs scheme is 

second order in space but only first order in time, which makes the Lax-Friedrichs 

scheme first order and consistent, since as Δx2 → 0 and Δt → 0, the truncation error 

tends to zero, 0→Τn
i .  Similarly, if we consider the Lax-Wendroff scheme for the 

advection equation 
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we can show that the Lax-Wendroff scheme has a truncation error of 
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The Lax-Wendroff scheme is second order and consistent since as 

0x and 0 22 →Δ→Δt , the truncation error tends to zero, 0→Τn
i . 

In general, if a scheme has a truncation error of order )()( tOxO qp Δ+Δ , then the 

scheme is of order p in space, q in time and of overall order min(p,q).  Also, if p and q 

are greater than or equal to 1, then the scheme is consistent. 

 
 

2.3.2 Stability 
 
We also need to know the interval of absolute stability of a finite difference scheme 

since, if we choose our step-sizes such that the interval of absolute stability is 

breached, then the finite difference scheme will become unstable giving very 

inaccurate results.  Now, a numerical scheme is stable provided the error at the nodes 
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does not blow up.  I.e. if the numerical values at the nodes are not exact, then errors 

begin to creep in the numerical approximation.  If those errors blow up, then the 

scheme becomes numerically unstable.  Figure 2-2 shows the Upwind scheme 

becoming numerically unstable with initial data 
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Upwind scheme for advection equation w ith dx = 0.02, dt = 0.025 and c = 1.
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Figure 2-2: The Upwind scheme becoming unstable. 

 
 
There are several analytical techniques that can be used to see if a scheme is stable, 

one of which is the Fourier method.  The Fourier method consists of substituting a 

Fourier mode eu xiki
n

n
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Δξ=  into the scheme to obtain an expression for the 

amplification factor ξ.  The scheme will then be stable provided 

|ξ| ≤ 1. 
 

For example, consider the Lax-Wendroff scheme for the advection equation 
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By substituting eu xiki
n
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Δξ= , we obtain 
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If we now divide by eijkΔx we obtain 
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So, for stability we require 
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Here, we can see that the amplification factor lies on an ellipse:  
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So, the interval of absolute stability is an ellipse with centre (1-v2) and crosses the x-

axis at x = 1 and x = 1-2v2. Figure 2-3 shows the unit circle with the ellipse of the 

amplification factor inside the unit circle.  Here, we can see that for the ellipse to stay 

inside the unit circle, 121 2 −≥− v  and 01 2 ≥− v .  Hence, for the Lax-Wendroff 

scheme to be stable, 1≤v .  This condition on v is called the interval of absolute 

stability.  Notice that if v = 1, the ellipse is in fact the unit circle.  Table 2-2 lists the 

stability intervals of a few schemes.  
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Figure 2-3: Interval of stability for Lax-Wendroff 
 

 

 

Name of Scheme 
Order 

(space + time) 
Overall Order 

of Scheme 
Interval Of  

Absolute Stability 

Upwind (first order) 1 + 1 1 | v | ≤ 1 

Lax-Friedrichs 2 + 1 1 | v | ≤ 1 
Upwind (second order) 2 + 2 2 | v | ≤ 2 

Leapfrog 2 + 2 2 | v | ≤ 1 
Lax-Wendroff 2 + 2 2 | v | ≤ 1 
MacCormack  

Predictor-Corrector 
2 + 2 2 | v | ≤ 1 

Table 2-2: The interval of absolute stability and the order of some schemes. 
 

Earlier, Figure 2-2 showed the Upwind scheme becoming unstable for v = 1.25.  This 

is because the Upwind scheme is stable for 0 ≤ v ≤ 1, when c > 0, and since v lies 

outside the interval of absolute stability, the scheme will become unstable. 
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2.4 Dissipation, Dispersion and Oscillations 

2.4.1 Dissipation 
 
It can be show that all first order schemes suffer from dissipation which can result in a 

very inaccurate numerical solution.  Dissipation occurs when the travelling wave’s 

amplitude decreases.  Figure 2-4 shows some numerical results of the Upwind scheme 

applied to the advection equation with initial data 
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Figure 2-4 shows us that the Upwind scheme is dissipative since the numerical 

solution has started to decrease in amplitude. 
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Figure 2-4: Dissipation of the first order Upwind scheme 

 
 
In order fully understand why dissipation occurs, we will use the analysis of the 

modified equation, which is discussed by Sweby[13] and LeVeque[7], on the Lax-

Friedrichs scheme for the advection equation 
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Earlier, we saw that this scheme had a truncation error of 
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and by using (2.8) 
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we may obtain 
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So, the Lax-Friedrichs scheme is a second order approximation to 
 

x

u
D

x

u
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      (2.12) 

[ ]v
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xD 2
2

1
2

   where −
Δ

Δ= .  Equation (2.11) is known as the linear advection-diffusion 

equation and is ill-posed if D < 0.  In this case, equation (2.12) is well posed 

since 0
2

   
2

≥
Δ

Δ
t

x  so, for (2.12) to be well posed [ ] 1 01  2 ≤⇒≥− vv .  Hence, since for 

stability, 1≤v , equation (2.12) is well posed as long as the scheme is stable.  So, the 

Lax-Friedrichs scheme qualitatively behaves like the solution of (2.12).  Now, by 

using the Fourier Transform of u with respect to x  

( ) ( )∫
π

=ξ
∞

∞−

ξ dxetxutu ix,
2

1
,ˆ  

and substituting into (2.12), we may obtain that (2.12) is an ODE with solution 

( ) ( ) eeutu tictD ξ− ξξ=ξ 2
0,ˆ,ˆ  

and by using an inverse transform, we may obtain 
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2
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Here, we can see that the solution is of the form ( )( )e xti ξ−ξω , which represents a 

travelling wave with decreasing amplitude, ( )eu tD ξ−ξ 2
0,ˆ .  The frequency is ω(ξ) and 

is dependent on the wave number ξ.  In this case the frequency is ω(ξ) = cξ, this is 

also known as the dispersion relation.  Also, 

( )
ξ
ξω

 

is known as the phase velocity and gives us the wave speed of each wave. 

For the Lax-Friedrichs scheme, the phase velocity is 

( )
c=

ξ
ξω

. 

Hence, the waves all travel at the same speed and so, the Lax-Friedrichs scheme is 

non-dispersive.  However, the Lax-Friedrichs scheme suffers from dissipation, due to 

the wave travelling with decreasing amplitude.  Hence, the Lax-Friedrichs scheme 

suffers from dissipation but not dispersion.  We can also show that the Upwind 

scheme with v > 0 suffers from dissipation, since the truncation error of the scheme is 

[ ] )()(
2

22
2

2

tOxO
x

u
xtc

cn
i Δ+Δ+

∂
∂Δ−Δ=Τ , 

the scheme is a second order approximation to (2.12) with 

( )vx
c

D −Δ= 1
2

. 

 
Hence, the Upwind scheme is also dissipative and since 
 

( ) ( )vx
c

v
vx

c −Δ>⎟
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⎛ +−Δ 1

2

1
11

2
, 

 
where the left-hand side represents the value of D for the Lax-Friedrichs scheme, we 

can see that the Lax-Friedrichs scheme is more dissipative than the Upwind scheme 

for v > 0. 
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2.4.2 Dispersion and Oscillations 
 
Dispersion occurs when waves travel at different wave speeds and is common in all 

second order schemes.  Figure 2-5 shows some numerical results of the Lax-Wendroff 

scheme applied to the advection equation with initial data 
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≥
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3.0  if   0

3.0  if   1
)0,(

x

x
xu . 

 
Here, we can see that the Lax-Wendroff scheme suffers from dispersion since 

oscillations are occurring in the numerical solution behind the discontinuity. 

 

C om parison betw een exact solution and num erical approxim ation at t =  0.5.
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Figure 2-5: Dispersion leading to oscillations of the Lax-Wendroff scheme. 

 
 
We can see why the Lax-Wendroff scheme suffers from dispersion by taking the same 

approach as we did for the dissipation case.  Consider the Lax-Wendroff scheme for 

the linear advection equation 
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whose truncation error was 
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we can see that the Lax-Wendroff scheme is a better approximation to 
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3

3
−Δ=ηη=+ vx
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dx

ud
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c
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and by using Fourier Transforms, we may obtain 

( ) ( ) ( )( ) ( ) ξη+ξ=ξω∫ ξ
π

=
∞

∞−

ξ−ξω 3     where0,ˆ
2

1
, cdxeutxu xti . 

Here, we can see that the solution is of the form ( )( )e xti ξ−ξω , which represents a 

travelling wave with constant amplitude, ( )0,ˆ ξu .  This means that the scheme no 

longer suffers from dissipation, however, consider the phase velocity 

( )
ξη+=

ξ
ξη+ξ=

ξ
ξω 2

3

c
c

. 

Here, we can see that different wave numbers travel at different speeds and so, the 

Lax-Wendroff scheme is dispersive.  Also, if η < 0 within the stability region of a 

scheme, then oscillations will occur behind the discontinuity and if η > 0 within the 

stability interval of a scheme, then oscillations will occur in front of the discontinuity.  

This is because, if η < 0, then high wave numbers travel with a slower velocity than 

they should creating oscillations behind the discontinuity, but if η > 0, then high wave 

numbers travel with a faster velocity than they should creating oscillations in front of 

the discontinuity.  Figure 2-5 shows that the Lax-Wendroff scheme suffers from 

oscillations occurring behind the discontinuities, which would imply that η < 0, 

( )1
6

22 −Δ=η vx
c
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For stability, we require 01    1        1  22 ≤−⇒≤⇒≤ v vv , which means that for η < 0, 

0
6

2 ≥Δx
c

 and since c = 1 and Δx > 0, verifies that η < 0 creating oscillations behind 

the discontinuity. 

In general, all first order schemes suffer from dissipation but are non-dispersive, and 

all second order schemes suffer from dispersion but are non-dissipative.  For a more 

in depth discussion on wave theory, see Whitham[9] and Ames[14]. 

 
 

2.5 Flux-limiter Methods 
 
So far we have seen that, in general, all first order schemes suffer from dissipation and 

all second order schemes suffer from dispersion, which creates oscillations around the 

discontinuity.  However, there is a method which switches between a second order 

approximation when the region is smooth and a first order approximation when near a 

discontinuity.  This method considerably reduces the size of the oscillations by using 

a first order approximation near discontinuities and is called the flux-limiter method.   

Figure 2-6 shows some numerical results of the Lax-Wendroff scheme with and 

without the Superbee flux-limiter method applied to the scheme and with the exact 

solution for initial data 
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Lax-Wendroff scheme for advection equation with c = 1, dx = 0.002, dt = 0.001 and t = 
0.5.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

U
(x

,0
.5

)

Exact Solution No flux-limiter Superbee flux-Limiter

Superbee flux-limiter applied to Lax-Wendroff scheme 
with t = 0 to 0.5.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1x

U
(x

,t
)

0 0.1 0.2 0.3 0.4 0.5

 
Figure 2-6: Superbee flux-limiter method applied to the Lax-Wendroff scheme. 

 
 
Here we can see that the Superbee flux-limiter method has eliminated all oscillations 

from the Lax-Wendroff scheme resulting in an extremely accurate second order 

scheme.  To fully understand flux-limiter methods, we shall closely follow the work 

of Sweby[13] and LeVeque[7].   

Now, we can re-write any second order scheme as 

( ) ( )[ ]1;;1 −−−=+ iuFiuFsuu n
i

n
i       (2.13) 

where 
( ) ( ) ( )iuFiuFiuF HL ;;; += .    (2.14) 

 
Here, FL(u;i) represents a first order scheme and FH(u;i) represents a second order 

correction term.  In order to obtain the flux-limiter method for a second order scheme, 

we re-write (2.14) as 

( ) ( ) ( )φ+= iHL iuFiuFiuF ;;;  

where φi represents the flux-limiter, which is yet to be specified.  Before we discuss 

the choice of the flux-limiter, let us re-write the Lax-Wendroff scheme for the scalar 

conservation law in the form of (2.13). 
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We can re-write this equation as the first order Upwind scheme plus a second order 

correction term.  Assuming that vi+1/2 > 0, the Lax-Wendroff scheme can be written as  
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Here, FL(u;i) represents the Upwind scheme and FH(u;i) represents the second order 

correction term.  Similarly, assuming that vi+1/2 < 0, we may obtain 
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We now need to measure the smoothness of the data so that we may choose the flux-

limiter to obtain second order accuracy and the TVD property.  The TVD property is 
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called the Total Variational Diminishing property and will not be discussed in full in 

this thesis.  However, we will show some regions of TVD for the flux limiter, φi.    

In order to measure the smoothness of the data, we could look at the ratio of 

consecutive gradients. 

uu

uu

ii

jj
i −

−
=θ

+

+

1

1  

 
where )sgn( 2/1vij i+−= .  Here, if θi close to 1 then the data is considered to be 

smooth, but if θi is far from 1, then there are kinks in the data at ui.  We can now take 

φi to be a function of θi, i.e. 

( )θφ=φ ii  

where φ is a given function.  Now, we require the flux-limiter to be of second order 

and to satisfy the TVD property.  If the flux-limiter is to satisfy the TVD property, we 

must first assume that 

0  if  0 ≤θ=φ ii  

and we must choose the flux-limiter to lie in the TVD region shown in Figure 2-7.  

But to obtain second order accuracy, the flux-limiter must pass through φ(1) = 1 and 

lie in the region shown in Figure 2-8.  Roe’s Superbee flux-limiter 

 
φ(θi) = max(0,min(2θi,1),min(θi,2)) 

 
satisfies the second order TVD region as shown in Figure 2-9 and is therefore second 

order accurate and Figure 2-6 shows that the Lax-Wendroff scheme with Superbee 

flux-limiter method is considerably more accurate than without the Superbee flux-

limiter method.  See Sweby[12] for a more in-depth analysis on flux-limiter methods. 

 

 



 

 31 

 

 

 

 
 
 
 

 

 

 

 

 

 
 

Figure 2-7: TVD region for finite difference schemes. 
 

 

 

 
 

 

 

 

 

 

 
 

Figure 2-8: Second order TVD region for finite difference schemes. 
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Figure 2-9: Superbee flux-limiter for finite difference schemes. 
 
 
Table 2-3 lists a few flux-limiters, which satisfy the TVD property and are second 

order accurate. 

 
Name of Flux-limiter φ(θ) 

Minmod φ(θ) = max(0,min(1,θ)) 
Roe’s Superbee φ(θ) = max(0,min(2θ,1),min(θ,2)) 

van Leer ( )
θ+
θ+θ

=θφ
1

 

van Albada ( )
θ+
θ+θ=θφ
2

2

1
 

Table 2-3: Some Flux-limiters for second order schemes. 
 

Throughout Chapter 2, we have discussed the finite difference technique for 

approximating the scalar conservation law and, in particular, the linear advection 

equation.  However, sometimes the right hand side of (2.1) is not equal to zero but 

instead, a source term is present which can cause difficulties in approximating the 

solution accurately.  In the next chapter, we will consider such a case, where a source 

term is now present on the right hand side of (2.1). 

θ 

1 

2 

3 

1 2 3 

φ(θ) 
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3 Conservation Law with Source 
Term R(x,t) 

 
 
In Chapter 2, we discussed a variety of finite difference schemes for numerically 

approximating conservation laws and the linear advection equation.  We also 

discovered that a number of problems occur when numerically approximating 

conservation laws even when a source term is not present.  In this chapter, we will 

discuss some numerical techniques for solving conservation laws when a source term 

is present.  However, in this chapter we will only consider source terms that are 

functions of x and t only, i.e. 
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uf
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∂
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∂
∂

        (3.1) 

 
where R(x,t) is the source term.  In this chapter, we will also use the linear advection 

equation with c = 1 and source term 
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with initial data 
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whose exact solution is 
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as a test problem to illustrate some numerical results. 
 
 
 

3.1 Basic Approach 
 
The most basic finite difference approach used to numerically approximate (3.1) is to 

‘add’ the source term to a scheme that numerically approximates the conservation law 

without source term (2.1).  For example, if we use a forward difference approximation 

in time, a central difference in space and assume the source term to be an 

approximation at (i,n) then (3.1) becomes 
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and by re-arranging we may obtain 
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This central scheme is unconditionally unstable, by using the average  
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which is the first order Lax-Friedrichs scheme with the source term ‘added’ on 
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Upwind (first order) with dx = 0.01, dt = 0.001 and t = 0 to 0.5.
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Figure 3-1: The Upwind scheme with source term ‘added’ on. 
 
 
 
 

Lax-Wendroff with dx = 0.01, dt = 0.001 and t = 0 to 0.5.
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Figure 3-2: The Lax-Wendroff scheme with source term ‘added’ on. 
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Lax-Wendroff + TVD with dx = 0.01, dt = 0.001 and t = 0 to 0.5.
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Figure 3-3: The Lax-Wendroff scheme with Superbee flux-limiter and source term 
‘added’. 

 
 

Comparison of schemes with source term added on explicitly.  dx = 
0.01, dt = 0.001 and t = 0.5.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

U
(x

,0
.5

)

Exact Solution Upwind (first order) Lax-Wendroff Lax-Wendroff + TVD
 

Figure 3-4: Comparison of different schemes with the source term ‘added’ on. 
 



 37 

This approach will work with all schemes discussed in Chapter 2 and, in general 
 

tRuu n
i

SCHEME
i

n
i Δ+=+1 .          (3.4) 

 

Here, uSCHEME
i  represents a numerical scheme of the conservation law without a 

source term present.  Also, by assuming the source term to be an approximation at 

(i,n+1), we can obtain a semi-implicit scheme 

tRuu n
i

SCHEME
i

n
i Δ+= ++ 11 .         (3.5) 

 
Figure 3-1, Figure 3-2, Figure 3-3 and Figure 3-4 are all results of schemes of the 

form (3.4) applied to (3.2) with initial data (3.3).  Figure 3-1 shows the Upwind 

scheme with the source term ‘added’, Figure 3-2 shows the Lax-Wendroff scheme 

with source term ’added’ and Figure 3-3 shows the Lax-Wendroff scheme with 

Superbee flux-limiter and source term ‘added’.  Figure 3-4 shows the Upwind 

scheme, Lax-Wendroff scheme and Lax-Wendroff scheme with Superbee flux-limiter, 

all with the source term explicitly ‘added’ on.  Here, we can see that the Upwind 

scheme with source term ‘added’ suffers badly from dissipation and that the Lax-

Wendroff scheme with source term added suffers badly from dispersion resulting in 

very large oscillations being present.  The most accurate scheme was the Lax-

Wendroff scheme with Superbee flux-limiter and source term ‘added’.  In addition, 

we can see all schemes are conservative since the discontinuity was moved at the 

correct wave speed.   
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3.2 Lax-Wendroff Approach 
 
We can also use the Lax-Wendroff approach that we used in Chapter 2, Section 2, to 

approximate the scalar conservation law with source term.  However, we must first re-

write (2.11) to include the source term.  Now, we can re-write (3.1) as 
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Now, by using Taylor’s theorem      
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and substituting (3.6) and (3.7) into (3.8) gives  
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and by using central difference approximations in space and assuming that both are 

approximations at (i,n) then 
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Hence, by using a forward difference approximation in space and time, we may obtain 
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and by re-arranging 
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we may obtain a second order approximation to (3.1), which is based on the Lax-

Wendroff scheme.  We can also apply flux-limiter methods to (3.9) by re-writing (3.9) 

as 
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where φi denotes the flux-limiter method described in Chapter 2, Section 5 and we 

could use any of the flux-limiters in Table 2-3 to obtain a second order flux-limiter 

method.  If we now apply the Lax-Wendroff approach, without a flux-limiter method, 

(3.9) to the test problem (3.2) with initial data (3.3), we may obtain the results in 

Figure 3-5. 
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Lax-Wendroff approach with dx = 0.01, dt = 0.001 and t = 0 to 0.5.
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Figure 3-5: The Lax-Wendroff approach for advection equation with source term. 
 
 
Figure 3-5 shows practically the same results as Figure 3-2 where the source term was 

‘added’ to the Lax-Wendroff scheme. This is because the source term is a known 

function of x and t so all approximations of the source term will be extremely 

accurate.  However, when the source term is also a function of u, the approximations 

of the source term are not as accurate making the two schemes accuracy change 

dramatically, as we will see later. 

 
 

3.3 MPDATA approach 
 
Smolarkiewicz and Margolin[3] derived an algorithm to approximate the advection 

transport equation (3.7) called MPDATA.  MPDATA is a Multidimensional Positive 

Definite Advection Transport Algorithm and approximates the advection equation 

(2.3) with a source term present 
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which is also known as the advection transport equation.  The author states that this 

algorithm uses a similar approach to that of the Lax-Wendroff, which can be viewed 

as the Upwind scheme minus an error estimate, but exploits special properties of the 

Upwind scheme. 

 

3.3.1 Basic MPDATA 
 
Before we can discuss the MPDATA algorithm for (3.10), we must first look at the 

most basic MPDATA algorithm, which is based on the advection equation without 

source term,  
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If we assume that u is nonnegative, then the basic MPDATA algorithm is the Upwind 

scheme (2.4) re-written in flux form 
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This scheme is only first order and we require a second order scheme, but if we look 

at the truncation error of (3.12) 
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Here we can see that (3.12) is a better approximation of the advection-diffusion 

equation, 
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and is only first order in space and time.  However, we can construct a numerical 

estimate of the error and subtract it from (3.12) which will make the scheme second 

order.  This approach is similar to that of the Lax-Wendroff scheme for the advection 

equation, which uses central differences to approximate the right hand side of (3.12) 

whereas MPDATA uses special properties of the Upwind scheme for approximating 

and compensating the error.  We can re-write the error term as 
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where the superscript (1) denotes the first approximation of the advection equation 

(3.11), we may obtain the first order accurate approximation 
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of the pseudo velocity.  In order to obtain a second order approximation, we subtract 

the error in the second pass 
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Hence, we may now obtain the basic MPDATA algorithm 
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where the pseudo velocity is 
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and the first order approximation is 
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So far we have only considered the advection equation with u nonnegative but the 

basic MPDATA algorithm can also be updated for u to be of variable sign.  This is 

achieved by using the pseudo velocity 
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instead of (3.14).  Also, we can apply flux-limiters to the basic MPDATA algorithm 

by replacing (3.13) with 
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where φi denotes the flux-limiter method described in Chapter 2, Section 5. 

3.3.2 MPDATA Approach for Advection Equation 
with Source Term R(x,t) 

 
So far we have only discussed the basic MPDATA scheme for the advection equation 

but MPDATA can also be adapted to approximate the advection transport equation 

(3.10) 
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If we use a forward difference approximation in time and assume it is an 

approximation at (i,n).  Also, by assuming the source term is an approximation at 

(i,n+½)  we may obtain  
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Now, by using Taylor’s theorem 
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and by substituting into (3.16) we may obtain 
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Substituting (3.18) into (3.19) and re-arranging gives 
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and substituting this into (3.17) we may obtain 
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Whence we may obtain  
 

)(
22

2
2

2
2 tO

x

ut
c

x

Rt
cR

x

u
c

t

u
Δ+

∂
∂Δ−

∂
∂Δ+=

∂
∂+

∂
∂

.  (3.20) 

 
The first two terms on the right hand side of (3.20) shows the error due to the source 

term and the third term shows the error due to the method.  Here, the second term on 

the right hand side of (3.20) can blow up creating very inaccurate numerical results, 

especially if the source term is stiff (see Chapter 5, Section 1), but MPDATA 

compensates for this term making the scheme considerably more accurate.  The 
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MPDATA approach which numerically approximates (3.10) is derived by assuming 

the source term approximation to be at (i,n+½) giving  
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 we may obtain the MPDATA scheme for approximating the 

advection transport equation 
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 corresponds to the basic MPDATA algorithm 

discussed in the previous section (3.3.1).  Here, by advecting the auxiliary field, 
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Δ+ , the terms in the truncation error (3.20) due to the source term do not blow 

up.  Now, by applying (3.21) and (3.9) to the test problem (3.2), with initial data (3.3), 

we may obtain the numerical results in Figure 3-6 and Figure 3-7.  Both Figure 3-6 

and Figure 3-7 show that the MPDATA scheme suffers from a lot less oscillations 

behind the discontinuity than the Lax-Wendroff approach, which means that 

MPDATA is less dispersive than the Lax-Wendroff approach.  Also, Figure 3-7 

shows that, near the discontinuity, the MPDATA approach is a lot less accurate than 

the Lax-Wendroff approach.  
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MPDATA approach with dx = 0.01, dt = 0.001 and t = 0 to 0.5.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

u
(x

,t
)

0 0.1 0.2 0.3 0.4 0.5
 

Figure 3-6: MPDATA approach for advection transport equation. 
 
 
 
 

Comparison of Lax-Wendroff and MPDATA approach with dx = 0.01, 
dt = 0.001 and t = 0.5.
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Figure 3-7: Comparison between Lax-Wendroff approach and MPDATA. 
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So, the MPDATA approach is considerably less dispersive than the Lax-Wendroff 

approach but, near the discontinuity, the Lax-Wendroff is considerably more accurate.  

But overall, the MPDATA approach is a lot more accurate than the Lax-Wendroff 

approach for approximating (3.10).  In general, the MPDATA approach (3.21) is very 

accurate when numerically approximating the advection-transport equation (3.10). 

3.3.3 MPDATA Approach for Conservation Law 
with Source Term R(x,t) 

 
So far we have only looked at MPDATA algorithms for the advection-transport 

equation.  Let us now consider MPDATA algorithms for the scalar conservation law 

with source term present (3.1), i.e. 
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MPDATA can be adapted to approximate (3.1) by considering the velocity c of the 

advection-transport equation to no longer be a constant but to be a function of u 

instead, i.e. 
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for the conservation law without source term now takes the form 
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where the pseudo velocity is  
 

[ ]( ) [ ]www
uu

uu
ww

t

x
V n

i
n
i

n
i

ii

iin
i

n
ii

2/1
2/1

2/1
2/3

2/1
2/1)1()1(

1

)1()1(
12/1

2/1
2 2/1

2/1
)1(

2/1
+
−

+
+

+
+

+

++
+

+
++ −−⎥⎦

⎤
⎢⎣
⎡

+
−−

Δ
Δ=  (3.23) 

 
and the first order approximation is 

( ) ( )[ ]wuuFwuuFuu n
i

n
i

n
i

n
i

n
i

n
i

n
ii

2/1
2/11

2/1
2/11

)1( ,,,, +
−−

+
++ −−= . 



 48 

However, wn
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points (i,n).  We could approximate wn
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or by using linear interpolation 
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If we approximate by using linear interpolation, the method would require another 

scheme to initially start the algorithm off, since we require a value of u at (i,n-1), but 

if we use the average, the algorithm becomes impractical since we require the value of 

u at (i,n+1).  So far we have only considered the most basic MPDATA algorithm for 

the conservation law without source term and have encountered a lot of difficulties.  If 

we now consider a source term then the corresponding MPDATA scheme is 
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 corresponds to the basic MPDATA algorithm, 

for the conservation law without source term, discussed in Section 3.1.  However, care 

must be taken when using this scheme since if the source term is a function of u then 

even more difficulties arise when using this algorithm as we will see later. 

 
 

3.4 Comparison of Schemes Using Test Problem 
 
Now, by using the test problem (3.2) with initial data (3.3), we can obtain the 

numerical results in Figure 3-8 and Figure 3-9 and compare the numerical solution of 
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the three approaches discussed throughout this chapter with the exact solution.  The 

three approaches are: 

1. Upwind (first order) with the source term ‘added’ on. 

2. Lax-Wendroff approach with or without Superbee flux-limiter. 

3. MPDATA approach with or without Superbee flux-limiter. 

Figure 3-8 compares the numerical solution of the three different approaches with the 

exact solution at t = 0.5. Figure 3-9 compares the ‘true’ error of the numerical solution 

of the three different approaches at t = 0.5.  Figure 3-8 shows us that the Upwind 

scheme suffers from dissipation as expected and that the MPDATA approach without 

TVD gives less oscillations behind the discontinuity than the Lax-Wendroff scheme 

without TVD.  Figure 3-9 shows that the most accurate approach overall is the Lax-

Wendroff approach with Superbee flux-limiter followed by the MPDATA approach 

with Superbee flux-limiter.  We can also see that near the discontinuity, the MPDATA 

approach is less accurate than the Lax-Wendroff approach, but away from the 

discontinuity, the MPDATA approach is considerably more accurate than the Lax-

Wendroff approach.  However, the MPDATA approach will be not so accurate when 

applied to the scalar conservation law since the MPDATA approach would require 

special starting procedures and approximates approximations.  This is due to the 

MPDATA approach being specifically derived to approximate the linear advection 

equation with source term present and not the scalar conservation law.   

Throughout this chapter, we have discussed three main approaches which 

approximate the scalar conservation law with source term, which is a function of x 

and t and we have obtained some very accurate results.  However, we have only 

considered known source terms and when the source term has to be approximated, the 

different approaches discussed in this chapter are not so accurate.  In the next chapter, 
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we will consider some methods for approximating the scalar conservation law with 

the source term being a function of u also.  Since the source term is now a function of 

u as well, we will now need to approximate the source term as well.    
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Comparison of 'true' error of the schemes with dx = 0.01, dt = 0.001 
and t = 0.5.
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Figure 3-8: Comparison of the three approaches discussed in this chapter. 
 

Comparison of 'true' error of schemes with dx = 0.01, dt = 0.001 and t 
= 0.5.
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Figure 3-9: Comparison of ‘true’ error of the three approaches discussed in this 
chapter. 
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4 Conservation Law with Source 
Term R(x,t,u) 

 
 
In Chapter 3, we discussed some finite difference schemes that numerically 

approximate conservation laws with a source term which is a function of x and t.  In 

this chapter, we will discuss some finite difference schemes that numerically 

approximate conservation laws with a source term which is now a function of x, t and 

u, i.e. 
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where R(x,t,u) is the source term.  We shall see that difficulties will arise since the 

source term is now a known function of u as well as x and t, resulting in the numerical 

approximation of the source term no longer being exact.  Throughout this chapter, we 

will be using the following test problem considered by LeVeque and Yee[1]. 
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to illustrate some numerical results. 
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4.1 Adaptation of the Schemes for the Conservation 
Law with Source Term R(x,t) 

 
In this section, we will discuss how the different approaches for conservation laws 

with a source term of the form R(x,t), which were discussed in Chapter 3, can be 

adapted to numerically approximate (4.1). 

4.1.1 Basic Approach 
 
The ‘adding’ of the source term can be easily adapted to numerically approximate 

equation (4.1).  We do not need to adapt scheme (3.4) since we can re-write the source 

term approximation to include u, i.e. ( )utnxiRR n
i

n
i ,, ΔΔ=  which is known since the 

values of un
i are known so, the scheme remains as 

tRuu n
i

SCHEME
i

n
i Δ+=+1 .          (4.4) 

 
However, scheme (3.5) is semi-implicit since ( )utnxiRR n

i
n
i

11 ,, ++ ΔΔ=  but the values of 

un
i

1+ are not yet known so we need to re-write 

tRuu n
i

SCHEME
i

n
i Δ+= ++ 11 .         (4.5) 

 
One approach is to use Taylor’s theorem to obtain 
 

)( 21 tO
t

R
tRR

n

i

n
i

n
i Δ+⎥⎦

⎤
⎢⎣
⎡
∂
∂Δ+≈+          (4.6) 

 
and by substituting (4.6) into (4.5), we may obtain 
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Here, we could use finite differences to approximate 
t

R

∂
∂

, i.e. 

 

t
RR

t
R n

i
n
i

Δ
−=

∂
∂ −1

, 
t
RR

t
R n

i
n
i

Δ
−=

∂
∂ −+

2

11

  or  
t

RR
t

R n
i

n
i

Δ
−=

∂
∂ +1

, 

 



 54 

but we would then encounter other difficulties since we only know the values of un
i  

and un
i

1− , except initially when we do not know the values of ui
1− .  We could also 

calculate the derivative analytically and then approximate the derivative, i.e. ⎥⎦
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⎡
∂
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t

R
n

i

 

but the derivative of the source term may be extremely difficult to find since the 

source term is a function of u and u is a function of x and t.  Another approach we 

could take is to re-arrange ⎥⎦
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⎡
∂
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R
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i

 in (4.6) by using the chain rule, i.e. 
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Substituting into (4.6) gives 
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and by substituting into (4.5), we may obtain 
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a semi-implicit scheme which ‘adds’ the source term implicitly.  Here, since the 

source term is a known function of x, t and u, we can calculate the derivatives 

analytically and then approximate the derivatives, i.e. ⎥⎦
⎤

⎢⎣
⎡
∂
∂

u

R
n

i

. 
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Comparison of schemes with source term added on explicitly.  dx = 
0.01, dt = 0.001 and t = 0.5.
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Figure 4-1: Comparison of different schemes with the source term ‘added’ on. 
 
 
If we use (4.4) to numerically approximate the test problem (4.2), we may obtain the 

results shown in Figure 4-1.  Figure 4-1 shows that the Upwind scheme with the 

source term ‘added’ is still giving the least accurate results and that the Lax-Wendroff 

with Superbee flux-limiter is giving the most accurate results. 

 
 
 

4.1.2 Lax-Wendroff Approach 
 
The Lax-Wendroff approach can be adapted to numerically approximate (4.1) but 

with difficulty.  During the derivation of the Lax-Wendroff approach for numerically 

approximating (3.1), we obtained 
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We then used a forward difference approximation in space and time, to obtain 
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and hence, 
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However, if the source term is now also a function of u, then (4.8) becomes semi-

implicit since we no longer know the value of Rn
i

1+ .  We could replace Rn
i

1+  with (4.6) 

as we did in the previous sub-section, but this would only create more problems.  

However, we could replace Rn
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1+ with  
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the Lax-Wendroff approach for approximating (4.1). We can also apply flux-limiter 

methods to the Lax-Wendroff approach and obtain  
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where 
( ) ( ) ( )φ+= iHL iuFiuFiuF ;;;  

 
and 
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Here φi denotes the flux-limiter method, which can be any of the flux-limiters in Table 

2-3.  If we use (4.4) to numerically approximate the test problem (4.2), we may obtain 

the results shown in Figure 4-2.  Here, we can see that the Lax-Wendroff approach 

has numerically approximated (4.2) very accurately.  Also, the numerical results in 

Figure 4-2 are very similar to the numerical results in Figure 4-1, where we ‘added’ 

the source term.  In general, the Lax-Wendroff approach is more accurate than 

explicitly ‘adding’ the source term as we shall see later. 

 

 

  

Lax-Wendroff approach with and without Superbee flux-limiter, 
where dx = 0.01, dt = 0.001 and t = 0.5.
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Figure 4-2: Lax-Wendroff approach with and without Superbee flux-limiter. 
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4.1.3 MPDATA approach 
 
The MPDATA approach also creates difficulties when the source term is also a 

function of u.  This is because (3.21) requires the value of Rn
i

1+  and we must re-write 

(3.21) so that it numerically approximates the conservation law with source term 

instead of the advection-transport equation, which was discussed in Chapter 3, Section 

3.3.  Also, the MPDATA approach requires another scheme to start it off initially, 

since we need to re-write (4.1) as 
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but by using linear interpolation 
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Rn
i

1+ being unknown by using 

( ) ...11 +⎥⎦
⎤

⎢⎣
⎡
∂
∂−+≈ ++

u

R
uuRR

n

i

n
i

n
i

n
i

n
i  

 



 59 

and by substituting into (3.24), to obtain 
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where ( )CuMPDATA n

i ,  corresponds to the basic MPDATA algorithm with flux-

limiter 
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the first order approximation is 
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and φi  can be any of the flux-limiters listed in Table 2-3.  Here, we can see that the 

MPDATA approach for numerically approximating (4.1) is becoming very 

impractical.  This is because we are approximating approximations resulting in the 

accuracy of the algorithm reducing rapidly and we also require another scheme to start 

the algorithm off.  However, MPDATA can be used to accurately numerically 

approximate the advection-transport equation with source term, R(x,t,u).  If we use 

(4.4) to numerically approximate the test problem (4.2), we may obtain the results 

shown in Figure 4-3.  Here, we can see that the MPDATA approach is quite accurate 

but not as accurate as the results obtained in Figure 4-1 and Figure 4-2.  Also, 

MPDATA will not be so accurate for the inviscid burgers case with source term. 
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MPDATA with and without TVD where dx = 0.01, dt = 0.001 and t = 0.5.
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Figure 4-3: MPDATA approach with and without Superbee flux-limiter. 
 
 

4.2 Roe’s Upwind Approach 
 

4.2.1 Advection Equation with Source Term R(x) 
 
Roe[6] derived a finite difference scheme which numerically approximates   
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u
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where c > 0 and R(x) is the source term, with second order accuracy.  If we consider 

the initial-value problem of (4.10) with initial data ( ) ( )xuxu o=0, , we may obtain the 

general solution 
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which can be re-written as 
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Here we can see that the first term on the right hand side of (4.11) can cause 

difficulties if the Courant number is not an integer.  This is because we are using a 

mesh where we only know the values at the grid points (iΔx,nΔt) and if v is not an 

integer, then the value of u required no longer lies on the mesh and is thus unknown.  

However, Roe[6] deduced that the only reasonable way to approximate this term is to 

use 

( ) ( )uuvutnxviu n
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which is the Upwind approach, since no other formula is consistent with (4.10).  Also, 

(4.12) gives the smallest truncation error of all possible choices where the truncation 

error has positive coefficients and depends only on v.   

The integral term present in (4.11) can be approximated in numerous ways.  Since we 

know R(x), we could integrate the source term and use the exact values but a more 

general approach is to use a two-point approximation 
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Here, the value of α is arbitrary and must be chosen such that 0 ≤ α ≤ 1.  Hence, by 

substituting (4.13) and (4.12) into (4.11), we may obtain 
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which is Roe’s Upwind approach for numerically approximating (4.10). However, this 

scheme is only stable for c > 0, but if c < 0 then we may obtain 
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and by combining (4.14) and (4.15) gives 
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which is Roe’s Upwind approach.  Moreover, Roe[6] found that if we take  
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then we may obtain a scheme that is second order accurate in the steady state, i.e. 
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Unfortunately, this scheme is only a first order approximation to (4.10) but we can 

also obtain a second order accurate scheme by using van Leer’s MUSCL approach 

[10] to obtain 
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which is a second order approximation to (4.10).  Notice that (4.16) is the Lax-

Wendroff scheme for numerically approximating the advection equation without a 

source term with a source term approximation added.  

 

4.2.2 Conservation Law with Source Term R(x,t,u) 
 
Bermudez and Vazquez[4] adapted Roe’s Upwind approach for numerically 

approximating (4.10) to numerically approximate the advection equation with source 

term R(x,u), i.e. 
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where c > 0.  They used a similar approach as in the previous sub-section to obtain 



 63 

 

( ) ( ) ( )( )( )dssstcxustcxR
c

tnxviuu nini
tn
tn

n
i  ,,

1
,)( 11

11 −−−−∫+ΔΔ−= ++
++      (4.18) 

 
and hence,  
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which numerically approximates (4.17) and is identical to (4.14).  They also discussed 

another approach, which was to approximate the integral term of (4.18) with 
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Hence, Bermudez and Vazquez[4] obtained two approaches to numerically 

approximate (4.17)  
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which is Roe’s Upwind approach and 
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Here, α = ½ also gives second order accuracy in the steady state for both schemes.  

Vazquez and Bermudez[4] also discuss various choices of α and give some intervals 

of absolute stability and positivity, where c > 0, for the different values of α, which 

are listed in Table 4-1. 
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Scheme 
Interval Of Absolute 

Stability ( c > 0 ) 
Interval Of Absolute 

Positivity ( c > 0 ) 

α = 0 1
2

≤Δλ+ t
v  1≤Δλ+ tv  

α = v 1≤v  and 1
2

≤Δλ t
 1≤v  and 1≤Δλ t  

v
2

1=α (for R(x) only) 1≤v  and 1
2

≤Δλ t
 

1
2

≤Δλ t
 and 

2
1

1
t
t

v
Δλ−

Δλ−≤  

2

1=α  1≤v  and 1
2

≤Δλ t
 1

2
≤Δλ+ t

v  and v
t ≤Δλ

2
 

Table 4-1: Intervals of absolute stability and positivity for R(x,u) = -λu. 
 
 
Notice that when α = 0, both (4.19) and (4.20) become the Upwind scheme with 

source term ‘added’ as discussed in Chapter 3, Section 1.   

This approach can be easily adapted to numerically approximate (4.1) by re-writing 

(4.19) and (4.20) as 
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which is Roe’s Upwind approach, and 
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Here, both (4.21) and (4.22) are first order accurate schemes but we can obtain second 

order accurate schemes by using   
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Also, we can apply the flux-limiter method to obtain  
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and 
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Here, φi represents the flux-limiter, which can be any of the second order flux-limiters 

in Table 2-3. 
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4.2.3 Some Numerical Results for the Explicit 
Upwind Approach 

 
Now, by using (4.24) to numerically approximate the test problem (4.2), we may 

obtain the numerical results in Figure 4-4. 

  

Comparison of schemes based on Roe's Upwind approach with dx 
= 0.01, dt = 0.001 and t = 0.5.
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Figure 4-4: Comparison of schemes based on Roe’s Upwind approach. 
 
 

Here, we can see that Roe’s upwind approach is giving some very accurate results, 

especially for the second order Lax-Wendroff plus Superbee flux-limiter, but the 

results are not as accurate as in Figure 4-1, where we ‘added’ the source term, and 

Figure 4-2, where we used the Lax-Wendroff approach.  However, we will see later 

that, in general, Roe’s Upwind approach is a lot more accurate at numerically 

approximating (4.1) than ‘adding’ the source term and the Lax-Wendroff approach, 

especially when the source term is stiff. 
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4.3 Implicit Upwind Approach 
 
Embid, Goodman and Majda[2] discussed some different approaches for numerically 

approximating  
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u
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        (4.25) 

 
where the source term must be of the form 
 

( ) ( ) ( )ugxeuxR =, . 
 

They discussed the first order Engquist-Osher scheme, with switching through zero, 

and a second order Upwind approach based on the Engquist-Osher approach.  Here, 

we will use the analysis of Embid, Goodman and Majda[2] to derive a first and 

second order implicit Upwind scheme with the source term ‘added’ implicitly.  

 

4.3.1 First Order Implicit Upwind Approach 
 
The first scheme that we will discuss is the implicit first order Upwind approach with 

the source term ‘added’ implicitly, i.e. 
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Here, we will need to re-arrange (4.26) into the system 
  

GuA n =+1 , 

where A is a (I+1) x (I+1) matrix and G is a (I+1) column vector, and solve this 

system at every time step.  However, difficulties can arise when re-arranging (4.25) 

into system form.  Consider (4.26) when 02/1 >+vi  
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and, by re-arranging we may obtain 
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However, the second and third terms on the left-hand side of (4.27) create difficulties 

since they are functions of u and so we cannot re-arrange (4.27) into system form.  

We can overcome this problem by using Taylor’s theorem, i.e. 

( ) ...11 +⎥⎦
⎤

⎢⎣
⎡
∂
∂−+≈ ++

u

f
uuff

n

i

n
i

n
i

n
i

n
i  

and 

( ) ...11 +⎥⎦
⎤

⎢⎣
⎡
∂
∂−+≈ ++

u

g
uugg

n

i

n
i

n
i

n
i

n
i  

 
Now by substituting into (4.27) 
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and by re-arranging we may obtain 
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where 02/1 >+vi .  Similarly, we may obtain 
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where 02/1 <+vi .  Hence, by combining (4.28) and (4.29), we may now obtain the 

system form  
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Here, A is a tri-diagonal matrix and so, this system does not require too many 

calculations and since f and g are known functions of u, we can approximate ⎥⎦
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4.3.2 Second Order Implicit Upwind Approach 
 
We can also obtain a second order approximation by using the implicit second order 

Upwind approach with the source term ‘added’ implicitly, i.e. 

( )( ) ( )( )
( )( ) ( )( )⎪⎩

⎪
⎨
⎧

<−++−+−

>−−−−−
−Δ+=

+
++

++
+
+

+
++

+
+
−

+
−−

+
−

+
−++

0   if   31

0   if      13

2
1/2i

11
12/1

1
1

1
22/3

1/2i
1
2

1
12/3

1
1

1
2/111

vffvffv

vffvffvs
tRuu n

i
n
ii

n
i

n
ii

n
i

n
ii

n
i

n
iin

i
n
i

n
i (4.31) 

 
We will need to re-arrange (4.31) into system form and solve for each time step in the 

same way we did in the previous sub-section to obtain 
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where 02/1 >+vi  and 
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where 02/1 <+vi .  Hence, by combining (4.32) and (4.33), we may now obtain the 

system form 
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Here, A is a penta-diagonal matrix and unfortunately requires a lot more calculations 

than before resulting in the interval of absolute stability and the accuracy of the 

scheme being reduced.  However, Embid, Goodman and Majda[2] discussed using the 

first order tri-diagonal matrix for the second order Upwind approach based on the 

Engquist-Oscher scheme to increase the interval of absolute stability.  Using the same 

approach, we can obtain the second order implicit Upwind approach, i.e. 
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They also state that by using the first order matrix, the interval of absolute stability 

increases resulting in a more robust scheme.  We can also apply flux-limiter methods 

to (4.34) to minimise any oscillations present in the numerical solution.  This is 

obtained by replacing Gi  in (4.34) with 
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where φi  represents the flux-limiter, which is described in more detail in Chapter 2, 

Section 5.  

 

4.3.3 Some Numerical Results for the Implicit 
Upwind Approach 

 
If we apply (4.30) and (4.34) with and without flux-limiter to the test problem (4.2), 

we may obtain the numerical results in Figure 4-5. Here, we can see that the results of 

the first order implicit Upwind approach are quite accurate but the method suffers 

from dissipation.  Also, notice that the second order implicit Upwind approach 

produced the most accurate results.  
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Implicit Upwind approach with dx = 0.01, dt = 0.001 and t = 0.5.
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Figure 4-5: Comparison of schemes based on the implicit Upwind approach. 
 

 

4.4 LeVeque and Yee’s MacCormack Approach 
 
In this sub-section we will look at how the MacCormack scheme, which is listed in 

Table 2-1, can be adapted to numerically approximate (4.1).  This approach is 

frequently used and was discussed by Yee[5], LeVeque and Yee[1] and Embid, 

Goodman and Majda[2].   

 

4.4.1 Explicit MacCormack Approach 
 
We can approximate (4.1) by expanding on the explicit MacCormack scheme.  The 

MacCormack method is the Lax-Wendroff scheme re-written in predictor-corrector 

form, i.e. 
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for the conservation law without source term. We can adapt (4.35) to include the 

source terms explicitly and still maintain second order accuracy, i.e. 
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Here, if f(u) = 0, then (4.35) reduces to the standard two-stage Runge-Kutta method.  

Yee[5] also discussed a modified-flux approach for (4.36) which is 
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Table 4-2: Some choices of Qi 2/1+ . 
 
 
Here, (4.37) is only TVD if R(x,t,u) = 0, otherwise Yee[5] states that (4.37) satisfies 

the TVD properties as far as the numerical results are concerned, but is extremely 

difficult to prove that it is TVD. 
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4.4.2 Semi-Implicit MacCormack Approach 
 

Yee[5] and LeVeque and Yee[1] also discuss an approach which considers the source 

term approximation to be at (i,n+1) but still uses the explicit MacCormack scheme 

resulting in a semi-implicit scheme.  This approach is obtained by re-writing (4.36) as 
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Now by using Taylor’s theorem 
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where 10 ≤θ≤ .  Hence, by re-arranging we may obtain 
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the semi-implicit MacCormack approach where 

 ( ) ( ) tRffsuu
u

R
t iiiii

n

i

Δ+−−=−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡
∂
∂θΔ− +

)1()1()1(
1

)1()2(1  

and 

( ) ( ) tRffsuu
u

R
t n

i
n
i

n
i

n
ii

n

i

Δ+−−=−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡
∂
∂θΔ− +1

)1(1 . 



 76 

 

Yee[5] discusses various choices of θ and deduces that we can obtain second order by 

setting 
2

1=θ .  We can also apply the modified flux described in the previous sub-

section by re-writing (4.38) as 
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and Qi 2/1+ is chosen from Table 4-2. 

 

4.4.3 LeVeque and Yee’s Splitting Method for the 
MacCormack Approach 

 
LeVeque and Yee[1] also discuss a splitting method for the semi-implicit 

MacCormack approach discussed in this sub-section.  The splitting method alternates 

between solving the conservation law with no source term 
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where ( )tS f Δ  denotes the numerical solution of (4.40) and ( )tS Δψ  denotes the 

numerical solution of (4.42).  LeVeque and Yee[1] also state that in order to obtain 

second order accuracy, we can use the Strang splitting [11] to obtain 
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numerical solution of (4.42).  They also give a splitting method of the form (4.42) for 

the semi-implicit MacCormack approach with TVD discussed in the previous sub-

section: 
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4.4.4 Some Numerical Results for the MacCormack 
Approach 

 
If we apply (4.37), (4.39) and (4.43) with and without TVD to the test problem (4.2), 

we may obtain the numerical results in Figure 4-6 and Figure 4-7.  Here, we can see 

that all three approaches give practically the same results but, as with the Lax-

Wendroff approach, this will not always be the case. 

Throughout this chapter, we have seen that there are a variety of methods used for 

approximating conservation laws with a source term present, which is a function of x, 

t and u.  We have also obtained some very accurate results but in the next chapter, we 

will see that the different approaches discussed throughout this project are not so 

accurate when the source term becomes stiff. 
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MacCormack approach with dx = 0.01, dt = 0.001 and t = 0.5.  No limiter.
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Figure 4-6: Comparison of explicit, semi-implicit and splitting method for 
MacCormack approach. 

 
 
 

MacCormack approach with dx = 0.01, dt = 0.001 and t = 0.5.  Limiter based on 
u(1).
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Results Of semi-implicit MacCormack with dx = 0.01, dt = 
0.001 and t = 0 to 0.5.  Limiter based on u(1).
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Figure 4-7: Comparison of explicit, semi-implicit and splitting method for 

MacCormack approach with TVD. 
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5 Some Numerical Results 
 
In this chapter, we will apply the different approaches discussed throughout this 

dissertation to a specific test problem (5.1) which was considered by LeVeque and 

Yee[1], i.e.  
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and whose exact solution, which is shown in Figure 5-1, is 
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Here, Δtμ determines the stiffness of (5.1) and as sμ becomes greater than 1 the 

propagation speed of some approaches can be greatly affected. When Δtμ > 1, the 

source term is said to be stiff since, for most approaches, we can no longer choose an 

adequate step-size in time to produce accurate results.  A stiff source term moves the 

discontinuity to a cell boundary for each time step resulting in the discontinuity being 

moved at entirely the wrong speed.  For example, if we apply the Lax-Wendroff 

approach  (4.8) to the test problem (5.1), with μ = 1, 10, 100 and 1000, then we may 

obtain the numerical results in Figure 5-2, Figure 5-3, Figure 5-4 and Figure 5-5 
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respectively.  Here, we can see that as Δtμ increases, the source term becomes stiff 

and the numerical approximation becomes less and less accurate.  This is because as 

Δtμ increases, the discontinuity moves slower and slower which means that when the 

source term is stiff, the scheme is no longer conservative.  However, not all of the 

schemes discussed in Chapter 4 will exhibit this behaviour, as we will see later. 

We will use test problem (5.1) to compare the results of some of the methods 

discussed throughout this dissertation to ascertain which approach produces the most 

accurate results by seeing which approaches are conservative as the source term 

becomes stiff.  

 
Name Of Approach Reference No. Order Paper 

Explicit ‘adding’  (4.5) 1 / 2 - 
Semi-implicit ‘adding’ (4.7) 1 / 2 - 

Lax-Wendroff (4.8) 2 - 
MPDATA (4.9) 2 Smolarkiewicz + Margolin[3] 

Roe’s Explicit  
Upwind I 

(4.21) 1 
Roe[6], 

 Vazquez + Bermudez[4] 
Roe’s Explicit 

Upwind II 
(4.23) 2 

Roe[6],  
Vazquez + Bermudez[4] 

Implicit Upwind I (4.30) 1 Embid, Goodman + Majda[2] 
Implicit Upwind II (4.34) 2 Embid, Goodman + Majda[2] 

Explicit  
MacCormack 

(4.37) 2 
Yee[5], 

 LeVeque + Yee[1], 
 Embid, Goodman + Majda[2] 

Semi-Implicit 
MacCormack 

(4.39) 2 
Yee[5],  

LeVeque + Yee[1] 
Splitting Method  
( MacCormack ) 

(4.43) 2 LeVeque + Yee[1] 

Table 5-1: Some different approaches for numerically approximating (5.1). 
 

We will be discussing the results of the schemes listed in Table 5-1 which can also be 

found in Appendix A where they are written in full. 
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5.1 Explicit and Implicit ‘Adding’ Approach. 
 

Now, by applying (4.5) and (4.7) to the test problem (5.1), we may obtain the 

numerical results in Figure 5-6, Figure 5-7 and Figure 5-8.  Here, Figure 5-6 and 

Figure 5-7 show similar results, where the Lax-Wendroff with source term ‘added’ is 

the least accurate since the method moved the discontinuity the slowest resulting in 

the discontinuity being at approximately x = 0.45 at t = 0.5 instead of at x = 0.8 at t = 

0.5.  The Upwind with source term ‘added’ was the second most accurate since the 

discontinuity was at approximately x = 0.63 at t = 0.5 instead of at x = 0.8 at t = 0.5.  

The Lax-Wendroff with Superbee flux-limiter and source term ‘added’ gave the most 

accurate results since the discontinuity was at approximately x = 0.73 instead of at x = 

0.8 at t = 0.5.  Also notice how the Upwind, Lax-Wendroff and Lax-Wendroff with 

Superbee flux-limiter all gave very ‘steep’ discontinuities with no dissipation present 

but each method varied considerably as to where the discontinuity was at t = 0.5. 

Figure 5-8 shows us that even though the numerical results in Figure 5-6 and Figure 

5-7 look similar, they are not.  Here, we can see that the semi-implicit approach is 

more accurate than the explicit approach since the discontinuity of the semi-implicit 

approach is nearer to x = 0.8 at t = 0.5 than the discontinuity of the explicit approach.  

Hence, in general the semi-implicit approach is more accurate than the explicit 

approach.   

Notice how the ‘adding’ approach is no longer conservative when the source term is 

stiff.  This is because the interval of absolute stability of the source term 

approximation with μ = 1000 is very small and has been breached resulting in the 

discontinuity being moved at the incorrect wave speed.  Thus a very small step-size 

would be required to ensure stability of the source term approximation resulting in the 
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scheme being impractical for approximating conservation laws with a stiff source 

term. 

 

5.2 Lax-Wendroff approach 
 
Now, by applying (4.8) to the test problem (5.1), we may obtain the numerical results 

in Figure 5-9.  Also, by using the numerical results in the previous subsection, we 

may obtain the numerical results in Figure 5-10. Figure 5-9 shows similar results to 

that of Figure 5-6 and Figure 5-7 where the source term was ‘added’ explicitly or 

semi-implicitly.  But if we look at Figure 5-10, we can see that the Lax-Wendroff 

approach is more accurate than the explicit ‘adding’ approach but less accurate than 

the semi-implicit ‘adding’ approach.  However, there is very little difference in these 

approaches since they all placed the discontinuity at approximately x = 0.73 at t = 0.5 

instead of at x = 0.8 at t = 0.5.  So these schemes are no longer conservative when the 

source term is stiff. 

 

 

5.3 MPDATA Approach 
 
Now, by applying (4.9) to the test problem (5.1), we may obtain the numerical results 

in Figure 5-11.  Here, we can see that the MPDATA approach has numerically 

approximated (5.2) considerably more accurately, placing the discontinuity near x = 

0.77 at t = 0.5, than the previous two approaches, which placed the discontinuity at 

approximately x = 0.73 at t = 0.5. The MPDATA approach with Superbee flux-limiter 

is not much more accurate than without Superbee flux-limiter whereas in the previous 

two cases, the results with TVD were considerably more accurate than without TVD.  
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The MPDATA approach is the first method that has ensured conservation when the 

source term is stiff.  This is because the MPDATA approach compensates for the 

terms in the truncation error due to the source term approximation resulting in a 

conservative method even when the source term is stiff. 

 

5.4 Roe’s Upwind Approach 
 
Now, by applying (4.21) and (4.23) to the test problem (5.1), we may obtain the 

numerical results in Figure 5-12.  Here, we can see that by using (4.21), the method 

has moved the discontinuity too fast.  The discontinuity should be at x = 0.8 at t = 0.5 

but the first order explicit Upwind approach has placed the discontinuity at 

approximately x = 0.85 at t = 0.5.  However, the first order explicit Upwind is the 

most accurate numerical approximation out of the three displayed in Figure 5-12.  The 

second order Upwind method failed to move the discontinuity at all and produced 

oscillations on both sides of the discontinuity.  The second order Upwind method with 

Superbee flux-limiter moved the discontinuity too fast resulting in the discontinuity 

being at approximately x = 0.9 at t = 0.5 instead of at x = 0.8 at t = 0.5.  This shows us 

that Roe’s Upwind approach is no longer conservative when the source term is stiff. 

    

5.5 Implicit Upwind Approach 
 
 
Now, by applying (4.30) and (4.34) to the test problem (5.1), we may obtain the 

numerical results in Figure 5-13.  Here, we can see that the second order implicit 

Upwind has produced the most accurate numerical results seen so far.  Also notice 

how the first order implicit Upwind approach has given the least accurate results due 
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to the discontinuity moving too slow resulting in the discontinuity being at x = 0.6 

when t = 0.5 instead of at x = 0.8 when t = 0.5.  Hence, the first order implicit Upwind 

approach is no longer conservative when the source term is stiff but the second order 

implicit Upwind approach is conservative when the source term is stiff and produces 

very accurate results.  

 

5.6 MacCormack Approach 
 
Now, by applying (4.37), (4.39) and (4.43) to the test problem (5.1), we may obtain 

the numerical results in Figure 5-14, Figure 5-15, Figure 5-16 and Figure 5-17.  Here, 

we can see that Figure 5-14 and Figure 5-15 are showing similar results where the 

numerical results obtained without a limiter are the least accurate, the numerical 

results obtained with a u(1) limiter give the second most accurate results and the u(2) 

limiter gives the most accurate results.  However, in Figure 5-16 even though the 

results are similar to Figure 5-14 and Figure 5-15, the most accurate numerical results 

are with the limiter u(*) and the second most accurate numerical results are with the 

limiter u(2). Figure 5-17 also shows us that the Splitting method produces the most 

accurate numerical results followed by the semi-implicit MacCormack approach and 

then the least accurate was the explicit MacCormack approach.  So, overall the 

Splitting method is the most accurate but all methods are no longer conservative when 

the source term is stiff. 

LeVeque and Yee[1] also observed that the explicit MacCormack approach, the semi-

implicit MacCormack approach  and the splitting method were no longer conservative 

when the source term is stiff.  Their results, with Δx = 0.02 and Δt = 0.0015, showed 

that the splitting method moved the discontinuity too fast and the semi-implicit 

method moved the discontinuity too slow, if at all, when the source term was stiff.  
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5.7 Overall Comparison 
 
So far, we have looked at each approach individually but we will now compare all of 

the different approaches listed in Table 5-1 to see which approach produced the most 

accurate numerical results when applied to the test problem (5.1).   

5.7.1 First Order Comparison 
 
If we apply all the first order approaches listed in Table 5-1 to the test problem (5.1), 

then we may obtain the numerical results in Figure 5-18.  Here, we can see that Roe’s 

Upwind approach has obtained the most accurate numerical approximation.  

However, Roe’s Upwind approach is not very accurate since the numerical 

approximation moved the discontinuity too fast resulting in the discontinuity being at 

x = 0.85 when t = 0.5 instead of at x = 0.8 when t = 0.5.  The explicit ‘adding’ 

approach and the implicit Upwind approach both gave very similar results and were 

the least accurate due to both schemes moving the discontinuity too slow resulting in 

the discontinuity being at approximately x = 0.6 when t = 0.5.  The semi-implicit 

‘adding’ approach was the second most accurate but also moved the discontinuity too 

slow resulting in the discontinuity being at approximately x = 0.65 when t = 0.5.  

Hence, overall all first order schemes either moved the discontinuity too fast or too 

slow when the source term is stiff resulting in an inaccurate numerical approximation 

of the test problem (5.1).   

5.7.2 Second Order Comparison 
 
If we apply all the first order approaches listed in Table 5-1 to the test problem (5.1), 

then we may obtain the numerical results in Figure 5-19.  Here we can see that the 

most accurate second order approach was the implicit Upwind followed by the 

MPDATA approach.  The semi-implicit ‘adding’ approach, semi-implicit 
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MacCormack approach, explicit ‘adding’ approach, Lax-Wendroff approach, explicit 

MacCormack approach and Splitting method based on the MacCormack approach all 

gave similar inaccurate results.  They all moved the discontinuity too slow resulting in 

the discontinuity being at approximately x = 0.45 when t = 0.5 instead of at x = 0.8 

when t = 0.5.  Also, notice how Roe’s Upwind approach failed to move the 

discontinuity at all.  Hence, the most accurate second order scheme was the implicit 

Upwind approach followed by the MPDATA approach with the implicit Upwind 

giving very accurate results and the MPDATA approach giving accurate results.  

Here, most of the schemes were not conservative except for the second order implicit 

Upwind approach and the MPDATA approach. 

5.7.3 Second Order with TVD Comparison 
 
If we apply all the first order approaches listed in Table 5-1 to the test problem (5.1), 

then we may obtain the numerical results in Figure 5-20.  Here, we can see that the 

explicit MacCormack approach, semi-implicit MacCormack approach and the 

splitting method, based on the semi-implicit MacCormack approach, all produced the 

least accurate results.  This is because the MacCormack approach moved the 

discontinuity too slowly resulting in the discontinuity being at approximately x = 0.6 

when t = 0.5 instead of at x = 0.8 when t = 0.5. The explicit ‘adding’ approach, semi-

implicit ‘adding’ approach and the Lax-Wendroff approach all produced the second 

least accurate results. This is because the ‘adding’ approach and the Lax-Wendroff 

approach moved the discontinuity too slowly resulting in the discontinuity being at 

approximately x = 0.73 when t = 0.5.  The implicit Upwind approach, which produced 

the most accurate results in the second order comparison, produced the second least 

accurate results.  Here, the method has moved the discontinuity too fast resulting in 

the discontinuity being at x = 0.95 when t = 0.5.  Roe’s Upwind approach, which 
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failed to move the discontinuity at all in the second order comparison, also produced 

the second most accurate set of results.  However, the results of Roe’s upwind 

approach were not very accurate since the method moved the discontinuity too fast 

resulting in the discontinuity being at approximately x = 0.9 when t = 0.5.  The most 

accurate method for the second order approach with TVD was the MPDATA 

approach.  The MPDATA approach moved the discontinuity too slow resulting in the 

discontinuity being at approximately x = 0.78 when t = 0.5.  All of the schemes with 

TVD are no longer conservative when the source term is stiff. 

5.7.4 Conclusion 
 
Hence, overall the second order approach with TVD did not necessarily produce more 

accurate results than without TVD.  In fact the most accurate results were obtained by 

not using TVD where two of the approaches were conservative when the source term 

was stiff.  However, some of the approaches improved when TVD was applied and 

others became less accurate.  This is because in most cases, when TVD was applied 

the discontinuity would move faster.  In addition, the majority of first order 

approaches produced extremely inaccurate results except for Roe’s Upwind approach 

which slightly overshot the discontinuity.  

 

5.8 Changing the Step-Size when the Source Term is 
Stiff 

 
Throughout this section, we have only considered the numerical results using Δx = 

0.01 and Δt = 0.001, which implies that the Courant number is s = 0.1.  However, 

when the source term is stiff, the accuracy of some of the schemes can vary if the 

step-size is changed.  For example, if we use the first order explicit Upwind approach 
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(4.21) on the test problem (5.1) with Δx = 0.02 and Δt = 0.0025, which implies that 

the Courant number is s = 0.125, then we may obtain the results in Figure 5-21.  Here 

we would expect the results to be less accurate than the results shown in Figure 5-12 

but Figure 5-21 shows that the results of the first order explicit Upwind approach are 

more accurate since the approach moved the discontinuity slower than in Figure 5-12.  

I.e. when we used Δx = 0.01 and Δt = 0.001 the explicit first order Upwind approach 

moved the discontinuity too fast resulting in the discontinuity being at approximately 

x = 0.85 at t = 0.5 instead of at x = 0.8 at t = 0.5.  However when we used Δx = 0.02 

and Δt = 0.0025 the explicit first order Upwind approach moved the discontinuity a 

little slower than with Δx = 0.01 and Δt = 0.001 and approximated the discontinuity at 

x = 0.8 at t = 0.5.  This shows us that the speed of the discontinuity depends greatly on 

the Courant number and as the Courant number decreases, the speed of the 

discontinuity increases.  Also notice how the results in Figure 5-21 of the explicit 

second order Upwind approach with or without Superbee flux-limiter are similar to 

the results in Figure 5-12.  Hence, for the explicit first order Upwind approach a small 

step-size does not always give the most accurate numerical approximation but Figure 

5-22 shows us that if the Courant number becomes too large then the numerical 

solution becomes unstable. 

Throughout this chapter, we have seen that if the source term is stiff then the majority 

of approaches discussed in this dissertation are no longer conservative, i.e. most of the 

approaches moved the discontinuity too slow or too fast.  However, we have obtained 

some very accurate numerical results when the source term is stiff.  In Chapter 6, we 

will compare the most accurate approaches of the first order, second order and second 

order with TVD to see which approach is the most accurate overall.  
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The exact solution of (5.1) with t = 0 to 0.5.
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Figure 5-1: The exact solution (5.2). 

 
  

Lax-Wendroff approach with dx = 0.01, dt = 0.001 and t = 0 to 0.5. 
Mu = 1.
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Figure 5-2: Lax-Wendroff approach applied to (5.1) with μ = 1. 
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Lax-Wendroff approach with dx = 0.01, dt = 0.001 and t = 0 to 0.5. 
Mu = 10.
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Figure 5-3: Lax-Wendroff approach applied to (5.1) with μ = 10. 

 
 
 
 
 

Lax-Wendroff approach with dx = 0.01, dt = 0.001 and t = 0 to 0.5. 
Mu = 100.
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Figure 5-4: Lax-Wendroff approach applied to (5.1) with μ = 100. 
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Lax-Wendroff approach with dx = 0.01, dt = 0.001 and t = 0 to 0.5. 
Mu = 1000.
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Figure 5-5: Lax-Wendroff approach applied to (5.1) with μ = 1000. 

 
 
 
 

Comparison of explicit 'adding' schemes with dx = 0.01, dt = 0.001 
and t = 0.5.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

u
(x

,0
.5

)

Exact Upwind Lax-Wendroff Lax-Wendroff  +TVD
 

Figure 5-6: Explicit ‘adding’ approach with stiff source term. 
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Comparison of semi-implicit 'adding' schemes with dx = 
0.01, dt = 0.001 and t = 0.5.
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Figure 5-7: Semi-implicit ‘adding’ approach with stiff source term. 
 
 
 
 

Comparison of explicit and semi-implicit 'adding' approach with 
Lax-Wendroff + TVD, dx = 0.01, dt = 0.001 and t = 0.5.
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Figure 5-8: Comparison of explicit and semi-implicit ‘adding’ approach. 
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Comparison of Lax-Wendroff approach with dx = 0.01, dt = 0.001 
and t = 0.5.
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Figure 5-9: Comparison of Lax-Wendroff approach. 

 
 
 

Comparison of Lax-Wendroff with Superbee flux-limiter and dx = 
0.01, dt = 0.001 and t = 0.5.
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Figure 5-10: Comparison of Lax-Wendroff with Superbee flux-limiter. 
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MPDATA approach with dx = 0.01, dt = 0.001 and t = 0.5.
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Figure 5-11: MPDATA approach for stiff source term. 

 
 
 

Comparison of approaches for Roe's Upwind approach with dx = 
0.01, dt = 0.001 and t = 0.5.
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Figure 5-12: Roe’s Upwind approach with stiff source term. 
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Implicit Upwind approach with dx = 0.01, dt = 0.001 and t = 0.5.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

u
(x

,0
.5

)

Exact First Order Second Order
 

Figure 5-13: Implicit Upwind approach with stiff source term. 
 
 

Explicit MacCormack approach with dx = 0.01, dt = 0.001 and t = 
0.5.
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Figure 5-14: Explicit MacCormack approach with stiff source term. 
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Semi-implict MacCormack approach with dx = 0.01, dt = 0.001 and t 
= 0.5.
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Figure 5-15: Semi-implicit MacCormack approach with stiff source term. 

 
 

Splitting method (MacCormack approach) with dx = 0.01, dt = 0.001 
and t = 0.5.
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Figure 5-16: Splitting method (MacCormack approach) with stiff source term. 
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Comparison of MacCormack approach with dx = 0.01, dt = 0.001 
and t = 0.5.
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Figure 5-17: Comparison of MacCormack approach with stiff source term. 
 

 
 

Comparison of first order schemes from table 5-1 with dx = 0.01, dt 
= 0.001 and t = 0.5.
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Figure 5-18: Comparison of first order schemes listed in Table 5-1 with stiff source 
term.  
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Comparison of second order schemes listed in Table 5-1 with dx = 
0.01, dt = 0.001 and t = 0.5.
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Figure 5-19: Comparison of second order schemes listed in Table 5-1 with stiff source 
term. 

 

Comparison of second order schemes with TVD listed in Table 5-1 
with dx = 0.01, dt = 0.001 and t = 0.5.
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Figure 5-20: Comparison of second order schemes with TVD listed in Table 5-1 with 
stiff source term. 
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Explicit Upwind approach with dx = 0.02, dt = 0.0025 and t = 0.5.
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Figure 5-21: Explicit Upwind approach with stiff source term. 
  

 

Explicit Upwind approach with dx = 0.02, dt = 0.005 and t = 0.5.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

u
(x

,0
.5

)

Exact First Order Second Order Second Order + TVD  

Figure 5-22: Explicit Upwind approach with stiff source term. 
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6 Conclusion 
 

6.1 Final Comparison 
 
Throughout this dissertation, we have discussed many techniques for numerically 

approximating the conservation law with and without source term, i.e. 

( ) ( )utxR
x

uf

t

u
,,=

∂
∂+

∂
∂

    (6.1) 

 
and encountered many difficulties, especially when the source term is a function of u. 

We have also seen that numerically approximating source terms accurately can be 

extremely difficult to do.  However, we have managed to overcome the majority of 

the difficulties encountered and we have obtained some very accurate finite difference 

schemes, even when the source term is stiff. 

For example, in Chapter 5, we applied the different approaches to the advection-

transport equation with a stiff source term, test problem (5.2), and compared the 

numerical results to obtain the most accurate first order approach, second order 

approach and second order approach with TVD.  These three most accurate 

approaches are compared in Figure 6-1.  Figure 6-1 shows us that the most accurate 

approach discussed in this project was the second order implicit Upwind approach.  

Roe’s first order upwind approach moved the discontinuity too fast but this was due to 

a small Courant number.  If we increased the step-size, Roe’s first order Upwind 

approach would give us more accurate results but not as accurate as the second order 

implicit Upwind approach.  Notice how the second order MPDATA approach with 

TVD gave more accurate results than Roe’s first order Upwind but less accurate than 

the second order implicit Upwind approach. 
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Comparison of most accurate approaches with dx = 0.01, dt = 0.001 
and t = 0.5.
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Figure 6-1: Comparison of most accurate approaches with stiff source term. 

 

Comparison ofsecond order Upwind with dx = 0.01, dt = 0.001 and t 
= 0.5.
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Figure 6-2: Comparison of explicit, semi-implicit and implicit second order Upwind 
with stiff source term. 
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This may be due to TVD causing the discontinuity to move faster, when the source 

term is stiff, or may be due to an implementation problem. 

So far, we have seen that the second order implicit Upwind approach has produced the 

most accurate results.  We have looked at a variety of techniques for numerically 

approximating the source term but we wish to know which technique produces the 

most accurate results.  Figure 6-2 shows some numerical results using the second 

order Upwind approach applied to the test problem (5.2) but with: 

1. The source term and the conservation law approximated explicitly 

(Explicit). 

2. The source term approximated implicitly and the conservation law 

approximated explicitly (Semi-implicit). 

3. The source term and the conservation law approximated implicitly 

(Implicit). 

Here, we can see that the semi-implicit approach produced the least accurate results 

due to the method moving the discontinuity too fast and the explicit approach 

produced the second most accurate numerical results.  This is unusual since we would 

expect the semi-implicit approach to be more accurate than the explicit approach.  

However, when we used the Lax-Wendroff approach, we saw that the semi-implicit 

approach was more accurate than the explicit due to the discontinuity being moved 

slightly faster for the semi-implicit approach, see Figure 5-8.  Thus, the semi-implicit 

approach moves the discontinuity slightly faster which makes all approaches which 

move the discontinuity too slow, i.e. Lax-Wendroff with source term ‘added’, more 

accurate but all approaches which move the discontinuity at the correct speed or too 

fast, i.e. the second order Upwind approach, less accurate.  The implicit approach 
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produced the most accurate numerical results and also moved the discontinuity faster 

than the explicit approach, but only a little. 

So we can see that numerically approximating the conservation law with source term 

can be very difficult to approximate accurately since the size of the Courant number 

greatly influences the accuracy of the numerical approximation especially when the 

source term is stiff.  I.e. applying TVD can cause the discontinuity to move faster 

when the Courant number is too small.  Also, we must be careful when choosing 

whether to use an implicit, semi-implicit or explicit approach since this also affects 

the speed of the discontinuity.  

 

6.2 Further Work 
 
In this dissertation, we have only considered a small amount of numerical techniques 

for numerically approximating the conservation law with source term.  We could 

apply finite volume methods, finite element methods or a whole range of other 

techniques to numerically approximate the conservation law with source term.  We 

have only looked at numerical results for the advection-transport equation and 

advection equation and not even considered the inviscid burger equation, etc.  Also, 

we have only briefly looked at splitting methods and high resolution methods, i.e. 

flux-limiter methods.  We have also only considered the courant number for v = 0.1 

where Δx = 0.01, Δt = 0.001 and c = 1.  Also, we have not considered a system form 

of the conservation law with source term, i.e. the Shallow Water Equation (1.2) and 

we have only considered the one-dimensional case.  As we can see there is a 

considerable amount of further work to discuss.   

 



 105 

References 
 

1. R.J. LeVeque and H.C. Yee, A Study of Numerical Methods for Hyperbolic 
Conservation Laws with Stiff Source Terms, J. Comput. Phys. 86, 187 – 210 
(1990). 

2. P. Embid, J. Goodman and A. Majda, Multiple Steady States for 1-D Transonic 
Flow, SIAM J. Sci. Stat. Comput. March 1984, 21 – 41.  

3. P.K. Smolarkiewicz and L.G. Margolin, MPDATA: A Finite-Difference Solver 
for Geophysical Flows, J. Comput. Phys. 140, 459 – 480 (1998). 

4. A. Bermudez and M^Elena Vazquez, Upwind Methods for Hyperbolic 
Conservation Laws with Source Terms, Computers and Fluids Vol. 23, No. 8, 
1049 – 1071(1994). 

 
5. H.C. Yee, Upwind and Symmetric Shock-Capturing Schemes, NASA Ames 

Research Center Technical Memoranda 89464 (1987). 
 
6. P.L. Roe, Upwind Differencing Schemes for Hyperbolic Conservation Laws with 

Source Terms, in Nonlinear Hyperbolic Problems, C. Carraso, P.-A. Raviart, and 
D.Serre, eds., Springer-Verlag, Lecture Notes in Mathematics 1270, 41 – 51 
(1986). 

 
7. R.J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser-Verlag 

(1990). 
 
8. D. Kroner, Numerical Schemes for Conservation Laws, Wiley-Teubner series 

(1997). 
 
9. G. Whitham, Linear and Nonlinear Waves, Wiley-interscience (1974). 

10. B. van Leer, Towards the Ultimate Conservative Difference Scheme, V. A 
second-order sequel to Godunov’s method, J. Comput. Phys. 14, 361 – 376 (1979) 

 
11. G. Strang, SIAM J. Num. Anal. 5, 506 (1968). 

 
12. P.K. Sweby, High Resolution Schemes Using Flux Limiters for Hyperbolic 

Conservation Laws, SIAM J. Num. Anal. 21, 995 (1968). 
 

13. P.K. Sweby, Finite Difference Schemes for Conservation Laws, Lecture Notes for 
Computer Techniques and Modelling, University of Reading. (Unpublished) 

 
14. W.F. Ames, Numerical Methods for Partial Differential Equations, Third Edition, 

Academic Press (1992). 
 
15. K.W. Morton and D.F. Mayers, Numerical Solution of Partial Differential 

Equations, Cambridge University Press (1994). 



 106 

 

Appendix A 
 

A Listing of all Numerical Schemes 
Discussed in Chapters 4 and 5. 

 
 
 
 
All approaches numerically approximate conservation laws with a source term 

present, i.e. 
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1. Explicit ‘Adding’ of Source Term: (First / Second Order) 
 

tRuu n
i

SCHEME
i

n
i Δ+=+1  

 

where uSCHEME
i  represents a numerical scheme which approximates the conservation 

law without a source term present and is of first / second order. 

 
 
2. Semi-Implicit Adding of Source Term: (First/Second Order) 
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where uSCHEME
i  represents a numerical scheme which approximates the conservation 

law without a source term present and is of first / second order. 
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3. Lax-Wendroff Approach: (Second Order) 
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and φi denotes the flux-limiter which can be any of the flux-limiters in Table A-1.  
 
 
 
4. MPDATA Approach: (Second Order) 
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and φi denotes the flux-limiter which can be any of the flux-limiters in Table A-1.  
 
 
5. Roe’s Explicit Upwind I: (First Order) 
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where  0 ≤ α ≤ 1 and if α = ½ then the scheme is second order accurate in space. 

 
6. Explicit Upwind II: (First Order) 
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where  0 ≤ α ≤ 1 and if α = ½ then the scheme is second order accurate in space. 

 
7. Roe’s Explicit Upwind III: (Second Order) 
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and 0 ≤ α ≤ 1. If α = ½ then the scheme is second order accurate in space.  Also, φi 

denotes the flux-limiter which can be any of the flux-limiters in Table A-1.  
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8. Explicit Upwind IV: (Second Order) 
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and 0 ≤ α ≤ 1. If α = ½ then the scheme is second order accurate in space.  Also, φi 

denotes the flux-limiter which can be any of the flux-limiters in Table A-1. 

 

9. Implicit Upwind I: (First Order) 
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10.  Implicit Upwind II:  (Second Order) 

( )

( )⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

−
−
−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++

−

−

−
+

−

+
−

+
−

−
+
−

+

+

+

−−−

−−−

uudG

G

G

G

G

uuaG

uu

uu

uu

uu

uu

uu

ba

dba

dba

dba

dba

db

n
I

n
III

I

I

nn

n
I

n
I

n
I

n
I

n
I

n
I

nn

nn

nn

II

III

III

11

1

2

2

1

1
1

100

1

1
1
1

2
1
2

2
1

2

1
1

1

0
1

0

111

222

222

111

00

0000

000

000

000

000

0000

��

�

�

�

�������

�

�

�

 

 
where  

( ) ( )[ ]1;; −−−Δ= iuFiuFgteG
n
iii , 

( ) ( ) ( )φ+= iHL iuFiuFiuF ;;; , 

 

( )
⎪⎩

⎪
⎨
⎧

<

>
=

++

+

0    if   

0    if     
;

1/2i1

1/2i

vf

vf
iuF n

i

n
i

L , 

( ) ( )( )
( )( )⎪⎩

⎪
⎨
⎧

<−+−

>−−
=

++++

+−−

0    if    1

0    if         1

2

1
;

1/2i122/3

1/2i1
n
i2/1

vffv

vffv
iuF n

i
n
ii

n
ii

H , 

 

⎪
⎩

⎪
⎨

⎧

<

>⎥⎦
⎤

⎢⎣
⎡
∂
∂−

=

+

+
−

0  if                  0

0  if   

2/1

2/1

1

v

v
u

f
s

a

i

i

n

ii  ,   
⎪
⎩

⎪
⎨

⎧

<⎥⎦
⎤

⎢⎣
⎡
∂
∂

>
=

+
+

+

0  if  

0  if              0

2/1

1

2/1

v
u

f
s

v

d
i

n

i

i

i , 

 

⎥⎦
⎤

⎢⎣
⎡
∂
∂

Δ−⎥⎦
⎤

⎢⎣
⎡
∂
∂+= +

u

g
te

u

f
svb

n

i

i

n

i

ii )sgn(1 2/1 , 

 
and ( ) ( ) ( )ugxeutxR =,, . Also, φi denotes the flux-limiter which can be any of the 

flux-limiters in Table A-1. 
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11.  Explicit MacCormack: (Second Order) 
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and, Qi+1/2 can be any of the values in Table A-2. 

 

12.  Semi-Implicit MacCormack: (Second Order) 
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and 10 ≤θ≤ .  Also Qi+1/2 can be any of the values in Table A-2. 

 
13.  Splitting Method (MacCormack): (Second Order) 
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and Qi+1/2 can be any of the values in Table A-2. 

 

Name of Flux-limiter φ(θ) 
Minmod φ(θ) = max(0,min(1,θ)) 

Roe’s Superbee φ(θ) = max(0,min(2θ,1),min(θ,2)) 

van Leer ( )
θ+
θ+θ

=θφ
1

 

van Albada ( )
θ+
θ+θ=θφ
2

2

1
 

Table A-1: Some second order flux-limiters. 

 
 

Some choices of Qi 2/1+  where uu n
i

n
ii −=Δ ++ 12/1 . 

( ) ( ) Δ−ΔΔ+ΔΔ= +++−++ 2/12/32/12/12/12/1 ,modmin,modmin iiiiiiQ  

( )ΔΔΔ= ++−+ 2/32/12/12/1 ,,modmin iiiiQ  

( )⎟
⎠
⎞⎜

⎝
⎛

Δ+ΔΔΔΔ= +−++−+ 2/32/12/32/12/12/1 2

1
,2,2,2modmin iiiiiiQ  

Table A-2: Some choices of Qi 2/1+ for the MacCormack approach. 
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