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Abstract

In this dissertation we will discuss the finite difference method for approximating
conservation laws with a source term present which is considered to be a known function
of x, t and u. Finite difference schemes for approximating conservation laws without a
source term present are discussed and are adapted to approximate conservation laws with a
source term present. First we consider the source term to be a function of x and ¢ only and
then we consider the source term to be a function of u also. Some numerical results of the
different approaches are discussed throughout the dissertation and an overall comparison of

the different approaches is made when the source term is stiff.
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Symbols and Notation

The following is a list of symbols and notation used throughout this project.

Ax Step-size in x-direction.

At Step-size in t-direction.

i Integer denoting current step number.

n Integer denoting current step number.

1 Total number of steps in x-direction.

N Total number of steps in t-direction.

Xi =1iAx Current position in space.

t,=nAt Current position in time.

u(x, ) The exact solution.

u(x,0) The initial data.

Slu(x,1)) The flux.

R(x,t,u(x,1)) The source term.

u' = u(iAx, nAt) The numerical approximation of the exact solution.

Y = u(iAx, (n +1)Ar) The first order numerical approximation of the exact
solution.

f= f(u(iAx,nAr)) The numerical approximation of the flux.

R = R(iAx, nAt,u(iAx, nAt)) The numerical approximation of the source term.

c The wave speed for the advection equation.
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The wave speed for the conservation law.

The Courant number for the advection equation.

The ‘true’ error of a scheme at the nodes.
The truncation error of a scheme.

The flux-limiter of a second order scheme.

The local Courant number for the conservation law.

A forward difference approximation.

A central difference approximation.

A backward difference approximation.

Also, we will be using a fixed mesh, i.e.

A
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i=0 i=1



1 Introduction

Recently, the numerical solution of conservation laws with a source term, i.e.

ou , of ) _ L1
at+ . —R(x,t,u) (1.1)

where f(u) is the flux and R(x,z,u) is the source term, has been in great demand. This
is due to the frequency in which conservation laws with source terms arise in
mathematical models of physical situations. For example, the 1-D Shallow Water
Equations models flow in rivers for a channel of finite depth and requires the
numerical solution of a system of equations of the form (1.1). Consider the Shallow

Water Equation discussed by Bermudez and Vazques[4]

ow E)F(w)
—+—*%=R 1.2
ot ox () (12

where

w(x,t){’ﬂz[h}, F)=| o 1 | and R(x,w){ 0 }

uh ;-'_Eg th (x)

Here, h(x,7) and u(x,7) represent the total height above the bottom of the channel and
the fluid velocity, respectively, and H(x) is the depth of the same point but from a
fixed reference level (see Figure 1-1). The analytical solution of (1.2) can be
extremely difficult to find and sometimes is impossible. Thus, numerical methods are

required to approximate the solution of (1.2).
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Figure 1-1: Shallow Water Equation.

The solution of (1.1) can be difficult to numerically approximate accurately even

when the source term is not present, i.e.

Al (13)
ot ox

Throughout Chapter 2, we will use finite differences to approximate (1.2) and discuss
the accuracy and stability of the schemes derived. We will look at the truncation error
and show that first order finite difference schemes are dissipative and second order
finite difference schemes are dispersive. Flux-limiter methods will also be discussed
so that we can minimise the dispersion present in second order finite difference
schemes.

In Chapter 2, we will see that the majority of difficulties encountered when
approximating (1.2) can be overcome but we now need to consider how to
approximate (1.1), where the source term is now present. A great deal of research has
been carried out in conservation laws with source terms but how to handle source

terms, especially when they are stiff, is still an open issue. In Chapter 3, we will



discuss various approaches for approximating (1.1) but with the source term being

only a function of x and ¢, i.e.

i W) _ i),
dt dx

We will consider ‘adding’ the source term, the Lax-Wendroff approach and the
MPDATA approach and we will compare the three approaches for a test problem.

In Chapter 4 we extend the work to consider (1.1) where the source term is also a
function of u. This requires an approximation of the source term since we do not
know u. In Chapter 4, we will discuss a variety of approaches for numerically
approximating (1.1) including the three discussed in Chapter 3. A simple test problem
will be used to analyse the different approaches and in Chapter 5, we will compare the

different approaches with a test problem whose source term is stiff.



2 1-D Conservation Law

In this chapter, we will look at some numerical schemes for approximating the 1-D

scalar conservation law

Y _,
ot ox

(2.1)
where u(x,?) is the conserved quantity and f(u) is the flux. We can also rearrange (2.1)

to obtain the quasi-linear form
—+a(u)—=0 (2.2)
t

where a(u) = f’(u), which is called the wave-speed. If a(u) = ¢, where ¢ is a constant,

then (2.1) becomes the linear advection equation.

2.1 1-D Linear Advection Equation

The most basic form of the conservation law is the linear advection equation

ou +c ou =0 (2.3)
ot ox

where c is a constant and f(u) = cu. Here, the constant ¢ is known as the wave speed
since a(u) = ¢. There are a variety of numerical techniques for approximating the
linear advection equation, such as finite element methods and finite volume methods.
Another class of numerical technique used for approximating the linear advection

equation are finite difference methods. Finite difference methods involve replacing

the derivatives of (2.3) with finite difference approximations. e.g.



ou _u" —uf
ot At

which is called the forward difference approximation in time,

au B I/l"1+1 _ u(z—l

1 1

o 2N
which is called the central difference approximation in time and

ou _ uf —ui
ot Ax
which is called the backward difference approximation in space. The three finite

differences can be obtained by using Taylor’s theorem, i.e.

" 242, T
=yl + At u JAC o)
ot 2 | o

i i

and by re-arranging we may obtain the forward difference approximation
oul w-ul
{az} oA
Thus, by using finite differences, we can obtain a finite difference scheme that
approximates the linear advection equation. For example, if we use a forward
difference approximation in space and a central difference approximation in time and

assume both of these finite differences to be approximations at (i,n), we may obtain

Wt W= ul
i i +c i+1 i-1 ,
At 2At
and by re-arranging, we obtain
n+tl _ n V( n n )
ui — Ui _5 Ui+1 — Ui-1)»

which is a finite difference scheme which approximates the linear advection equation.
Unfortunately, this finite difference scheme is unconditionally unstable as we will see

later.



2.1.1 First Order Schemes

In order to obtain a first order scheme, we use a forward difference approximation in
time and a backward difference approximation in space and assume both of these

finite differences to be approximations at (i,n), i.e.

du "' —ul ou _ ui —ul
—=2_ % gnd —= 1
ot At ox Ax

Substituting these into (2.3) gives

n+l_ n n_.n
Ui Ui +c Ui “uj— =0
At

and hence,

+1_
i = =l =)

At ) ) .
where v = CE and is known as the Courant number. This scheme is one of the most

basic numerical approximations of the advection equation. However, it can be shown
that this scheme is numerically unstable if ¢ < 0, in which case we use a forward
difference approximation in space and time and assume that both are approximations
at (i,n), i.e.

ou 't —ul ou  ua—ul
7 Ui Ui and 7 Ui+1 — Ui
ot At ox Ax

b

then substituting into (2.1) gives

ul" =l Ui — u;
i i +c i+1 L - O.
At Ax

Whence,

n+l _ n_v(n _ n)
Ui Ui Uiv1— Ui )-

This scheme is numerically unstable if ¢ > 0. Separately, these schemes can become

numerically unstable, but if we combine them

wtl_ n {V(u?—u?_l) if v>0 (2.4)

Ui —ui— n 2) -
V(qu—ui) if v<0



we obtain the Upwind method with switching through v = 0. This scheme can still
become unstable but only for |v|> 1. This will be discussed later.

Alternatively, we could obtain another first order scheme if we use a forward
difference approximation in time and a central difference approximation in space and
assume that both are approximations at (i,n), i.e.

n+l n n n
ou _ Ui T Ui and a_u _ Ui T Uil

o A ox  2Ax

then substituting into (2.1) gives

n+l

u, — Ui +c Ui+1 — Ui-1 =0
At 2Ax

n+l _ n_K(n _.n )
= uj “u; 5 Uit T Ui-1)

Unfortunately this central scheme is unconditionally unstable, but by replacing ;! by

the average
n 1 n n
Ui = 5 (ui+1 + I/li—l)
we obtain the Lax-Friedrichs scheme

y =%(u:11+u?_1)—§(u¢+l—u,-"_l) 2.5)

which is stable for |v|<1. (See later)

2.1.2 Second Order Schemes

One of the most well known second order schemes for approximating the advection
equation is the Lax-Wendroff scheme and is derived as follows:

Using Taylor’s theorem

oul Al |
Ui Ui |:at:| 2 |: at2 j| ( )

i i

and since



Ju  Odu

E——Cg (27)
2 u 5 5 a(au) 0 —ca—u
:_cau:_cau:_c ot — . ox
or dtox o0xot ox ox
S0,
2 2

Substituting (2.7) and (2.8) into (2.6) gives
i 242, T
ul™ = ui — cAt du + AL CE
ax i 2 ax2 ;
and by using central difference approximations in space and assuming that both are
approximations are at (i,n), i.e.

2
ou Ui T Ui O U uin—2ui ui
—_— = and 7= 2
ox 2Ax ox Ax

we obtain

n __n 2. n _ n n
ntl— on oa Mivi T U1 o AT w1 2u tui
Ui  =u; cAt ) +c ) 5 .

Hence, the second order Lax-Wendroff scheme is

2
v v
it =yl - ) (u?ﬂ - u?-1)+ 5 Lt =20 + ) (2.9)

2.1.3 Implicit Schemes

So far, all the schemes we have looked at have been explicit schemes. This is because
none of the schemes we have looked at have terms involving time level n+1 on the

right hand side of the scheme. For example, the Lax-Wendroff scheme is explicit

2
- ! ]

n+tl _ n n n n n n
Ui = Ui _5(ui+1_ui—1)+5 Uit — 2ui t Ui

10



but if we use central difference approximations in space and assume that both are

approximations at (i,n+1/) instead of approximations at (i,n)

2

1% Vv
Wt =g - E(Mm — i)+ 5 [ =20 + ] (2.10)

we obtain the implicit Lax-Wendroff scheme. This scheme is implicit since terms
involving n+1 appear on the right hand side of the equation. Implicit schemes cause
difficulties since we now have to solve a tri-diagonal system at each time step. Re-

arranging (2.10)

_5(1 0 )+ (2 + %(l —v)uii = uf

hence
b c 0 0 0 ... 0fu"] [up—au"]
a b ¢ 0 0 O xi ur
0 a c 0 0 w5t us
0O .. 0 a b c OfyH Ui
0O .. 0 0 a b c|y Ui
0 ... 0.0 0 a b|u™| |ui-cutu

is the tri-diagonal system, which needs to be solved at each time step, for the implicit

Lax-Wendroff scheme where
a= —%(l+v), b=1+y" and c= %(l—v).

All implicit schemes take the form

AEnH pe
where A is a (I+1) x (I+1) matrix and G is a (I+1) column vector. In general, implicit
schemes can be more accurate than explicit schemes but implicit schemes are harder
to implement and require a lot more calculations than explicit methods.
So far we have looked at a few finite difference schemes, of first or second order,

which numerically approximate the solution of the advection equation but there are a

11



great deal more and definitely too many to look at in this section. For a more in depth
discussion of finite difference schemes for the advection equation, look in Kroner[8],

LeVeque[7] and Ames[14].

2.2 1-D Conservation Law

In Section 2.1, we discussed some finite difference schemes for approximating the

linear advection equation, which is a form of the scalar conservation law

o, ¥ w
ot 0x

where f’(u) = a(u). However, we can adapt the techniques discussed in Section 2.1 so
that we can numerically approximate the solution of the scalar conservation law but

we must be careful how we approximate (2.1) since we wish to ensure conservation.

2.2.1 Non-Conservative Schemes

If a scheme is non-conservative, then the scheme will move discontinuities at the
incorrect wave speed. For example, if we approximated the quasi-linear form of
equation (2.1) by using the finite difference method then we would obtain a non-
conservative scheme. Consider inviscid Burger’s equation, i.e.

1

d —u’
Ju + 2 ). 0,
ot ox
re-writing in quasi-linear form gives
o0
Jor  ox

and by using a forward difference approximation in time and a backward difference

approximation in space and assuming that both are approximations are at (i,n), i.e.

12



du _uit—uf and U _ i —uj
ot At ox Ax

we obtain

n+l _ n__

n__ n[ n ]
ui — Ui —Sui lui — Uil
assuming 5! >0. This scheme is conservative for smooth data only and if used to

numerically approximate discontinuities, the scheme becomes non-conservative

moving the discontinuity at the wrong speed.

Non-conservative scheme with dx = 0.01, dt = 0.001 and t = 0.5.

1.05
0.95

& 085

5

S 075
0.65
0.55
0.45

0.35

X

\— Exact — Approximation \

Figure 2-1: Non-conservative scheme.

If we use the non-conservative scheme, which approximates inviscid Burger’s
equation, with initial data

1.2 if x<0.3

,0 = b
Hex0) {0.4 if x>03

we may obtain the results in Figure 2-1. Here, we can see that the scheme has moved

the discontinuity too slowly which means that the scheme is not conservative.

13



2.2.2 Conservative Schemes

To ensure conservation, we require that the method be in conservation form, i.e.

it =yl — S[F(u?_p,u?_pﬂ ,---,u?+q)— F(u?_p-l ,u?_p,---,u?+q_1)]
where F is called the numerical flux function and is of p + g + 1 arguments. We can
ensure conservation by numerically approximating (2.1) and using a similar approach
as we did in the previous sub-section. For example, when we derived the Upwind
scheme, we used a forward difference in time and either a forward or a backward
difference in space depending on the value of v. Here, we take a same approach but

we will apply finite differences to f instead of u, i.e.

n+l n
al/t Ui T U

E At
al’ld eithCI' ai:@ if Vi+1/2>0 or ai:@ if Vi+1/2<0
ox Ax ox Ax
where
vitr/2=5a(ui /o) -
Hence,

n n .
ntl _ n (fz _fi—l) if yip>0
ui =ui —S . A
(fi+1_f,') if y,,<0

is the Upwind scheme for the scalar conservation law where s = % and 7= f(u).

However, difficulties arise when approximating v;,;». This is because in

— n
Vir2 =Sa( uin )
uir12 1s unknown. One approach used to overcome this problem could be to

approximate u;, , by

Uirl2 = %(Minﬂ + l/lzn)

14



Another method, which ensures conservation, is to approximate v;,;» by replacing

a(u) by a “local v defined at each grid point by

fn _ n

i+1 ] : n
e if ul # uj
Virt/2 = S| Uiv1 — Ui .

a(u;) otherwise

Problems also occur when adapting the Lax-Wendroff scheme to the non-linear case.
This is because (2.8) no longer holds. However, we can overcome this problem by re-

writing (2.8) as

s oo, 150 ) o)
8M:_a f(u):_ ot ou Ot ox

ot 0tox 0x ox ox

(2.11)

and by using Taylor’s theorem,

of
p a
) AP ("(”)dx)
Uu; Ml_At +—
ox 2 ox

whence we may obtain

ui™ = uf _%(f:—l - f?—l)"'%[\/mxz (f?+1 - f:l)_ Vi-1/2 (f? a f:i—l)]

the Lax-Wendroff scheme for the conservation law. Table 2-1 lists a variety of finite

difference schemes for the conservation law.
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Name of Scheme Order
Scheme
Upwind S g S(f? - f?—l) if vinp>0 1
(first order) ' ' s(f:'H_ f,n) if iy <0
Lax-Friedrichs ut = ; u,+1+ul [f,+1 fi 1] 1
Second Order (3—Vi—1/2)(f,- - f,--1)_ (1—vi—3/2)(f,--1 - ff_z)
Upwind = — s if yi,1p>0 5
(Warming and l S 2 (1+Vi+3/2)(f:l+2 - f1+1)+ i+ 3)(f,+1 fi )
Beam)
if y;,1,<0
Leapfrog 't = - S( i f?—l) 2
Lax-Wendroff | /"=y - %( i 1) [vz+1/2( = f’)— Viei/2 (f = f ?_1)] 2
MacCormack P = Ui ( =S 7)
Predictor- PO 2
Corrector uit'=— u” : _i[f —f 1]

Table 2-1: Finite difference schemes for the 1-D conservation law.

"=
| e R n
For all schemes in Table 2-1, y; 1/, =8| u;+1~u; and S=E.

a(u;) otherwise

Here, we can see that adapting the finite difference method to the scalar conservation

law can cause minor problems.

2.3 Truncation Error and Stability
2.3.1 Truncation Error

The truncation error of a scheme is very useful, since it tells us whether the scheme is
consistent and the order of accuracy of the scheme. To derive the truncation error of a

scheme, we assume that the values at the grid points are exact, i.e. y} = u(iAx,nAt),

and then use Taylor series expansions. The truncation error is also known as the
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discretisation error, which is the error caused by using finite difference
approximations to approximate the derivatives of (2.3). As an example, consider the

Lax-Friedrichs scheme (2.5) for the scalar conservation law

1
1
M:H = 2 l/t:+l+1/lz [fz+1 fz 1]

Now, by assuming that the values at the grid points are exact, i.e. y! = u(iAx,nAt),

and by using Taylor’s theorem

ul™ = uj +A{a} A—t{a} +...
o 2| o |

ul™ = u] +Ax[a} £L +...
ax i 2 ax2 .

then by substituting into (2.5) gives

AtT;‘:u+Ata—u—— UutAx—+———+u
o 2 0x 2 ax 0x 2 ax

N Axaf+Axaf (f WY AP Axafﬂ

1( U  Ax’ d’u Axau Axabt]

+ﬂ{f+

2Ax ax 2 ax 6 a ax 2 ax 6 ax

+0(Ax") +O(Ar)

where T7 denotes the truncation error. Hence,

Aru AV u A IS
2 0 2M19xY 69X

Ti = +O(AX") + O(Ar)

is the truncation error of the Lax-Friedrichs scheme. The Lax-Friedrichs scheme is
second order in space but only first order in time, which makes the Lax-Friedrichs
scheme first order and consistent, since as A’ — 0 and At — 0, the truncation error

tends to zero, T/ — 0. Similarly, if we consider the Lax-Wendroff scheme for the

advection equation

2
. = | |
ntl _ n n n n n n
ui = ui _E(Mﬂl_ui—l)-l'z Wiv1 — 2ui t ui-1]s

we can show that the Lax-Wendroff scheme has a truncation error of

17



1 283” 283” 3 3
Ti=—| At ——CcAx"— |+ O(Ax") +O(Ar).
6( or’ ox’

The Lax-Wendroff scheme 1is second order and consistent since as

Ar* — 0and Ax”> — 0, the truncation error tends to zero, T/ — 0.
In general, if a scheme has a truncation error of order O(Ax”)+O(At?), then the

scheme is of order p in space, ¢ in time and of overall order min(p,gq). Also, if p and ¢

are greater than or equal to 1, then the scheme is consistent.

2.3.2 Stability

We also need to know the interval of absolute stability of a finite difference scheme
since, if we choose our step-sizes such that the interval of absolute stability is
breached, then the finite difference scheme will become unstable giving very

inaccurate results. Now, a numerical scheme is stable provided the error at the nodes

e =|uj —u(iAx,nAr)

does not blow up. Le. if the numerical values at the nodes are not exact, then errors
begin to creep in the numerical approximation. If those errors blow up, then the
scheme becomes numerically unstable. Figure 2-2 shows the Upwind scheme
becoming numerically unstable with initial data

1 if x<0.5

”(x’o):{o if x>0.5
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Upwind scheme for advection equation with dx = 0.02, dt = 0.025 and ¢ = 1.

U(x,t)

[—0 —0.025 0.05 —0.075 —0.1 —0.125 —0.15]

Figure 2-2: The Upwind scheme becoming unstable.

There are several analytical techniques that can be used to see if a scheme is stable,

one of which is the Fourier method. The Fourier method consists of substituting a

Fourier mode 4! = F;ne”‘"Ax into the scheme to obtain an expression for the

amplification factor & The scheme will then be stable provided

El<1.

For example, consider the Lax-Wendroff scheme for the advection equation

2
v %
1
= = 2t — )+ L L - 20 + ]
2 2
By substituting 7 =&, X", we obtain
kidx __ kide _ 7 k(i+1)Ax _ k(i—1)Ax
Em+1 et i — &n et ) 2 (&n et i &n et i )
Vz ik (i+1)Ax
ik(i+D)AY ikiAx 'k('—l)Ax]
+E[E.>n zg.ﬁnell +§net ' *
If we now divide by ¢7*** we obtain
y
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27 . ,
6ot =63 e =, e b D M0t g o]

and by re-arranging

2
E-’n+1 _ I:l_vz _l_VE(eikAx+e—ikAx)_%(eikAx_e—ikAx) :IE-’"

Using the identities
"™+ o7 =2 coskAx
and
oKX — g IRAY = Djgin kAx
we may obtain

2
Eus1= {1 —vi+ %(2COSkAx)—%(2iSin kAx) }E_.n :

So, for stability we require
|1—v2 + vzcoskAx—visinkAx| <1.
Here, we can see that the amplification factor lies on an ellipse:

E=1-2+ % coskAx —visinkAx
If we let
x=1-y*+°coskAx
and
y =—visinkAx
and by using the identity
cos2 kAx + sin2 kAx =1

SaloR

So, the interval of absolute stability is an ellipse with centre (1-v*) and crosses the x-

whence

axis at x = 1 and x = 1-2v*. Figure 2-3 shows the unit circle with the ellipse of the
amplification factor inside the unit circle. Here, we can see that for the ellipse to stay

inside the unit circle, 1-2,°>—1 and 1-,>>0. Hence, for the Lax-Wendroff
scheme to be stable, v < |1| This condition on v is called the interval of absolute

stability. Notice that if v = 1, the ellipse is in fact the unit circle. Table 2-2 lists the

stability intervals of a few schemes.
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-1 1-2v%y 7| 1-v*y 1

Figure 2-3: Interval of stability for Lax-Wendroff

Name of Scheme Order Overall Order Interval Of
(space + time) of Scheme Absolute Stability

Upwind (first order) 1+1 1 lvi<1

Lax-Friedrichs 2+1 1 [v]|<1

Upwind (second order) 2+2 2 [v|<2

Leapfrog 2+2 2 [v]|<1

Lax-Wendroff 2+2 2 lvi<1
MacCormack

Predictor-Corrector 2+2 2 lvi<l

Table 2-2: The interval of absolute stability and the order of some schemes.

Earlier, Figure 2-2 showed the Upwind scheme becoming unstable for v = 1.25. This
is because the Upwind scheme is stable for 0 < v < 1, when ¢ > 0, and since v lies

outside the interval of absolute stability, the scheme will become unstable.
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2.4 Dissipation, Dispersion and Oscillations
2.4.1 Dissipation

It can be show that all first order schemes suffer from dissipation which can result in a
very inaccurate numerical solution. Dissipation occurs when the travelling wave’s
amplitude decreases. Figure 2-4 shows some numerical results of the Upwind scheme

applied to the advection equation with initial data

1 if x<0.5

0)= .
Hx0) {o if x>0.5

Figure 2-4 shows us that the Upwind scheme is dissipative since the numerical

solution has started to decrease in amplitude.

Comparison Between Exact solution and Numerical Approximation att=0.3.

1.2
1
Upwind scheme for advection equation with dx = 0.01, dt =
0.8 4 0.001,c=1and t=0 to 0.3.
2 1.2 -
X
5 1
06 9 0.8 |
= 06 -
=
S 044
0.4 4 aad
0 T
029 0.2 0.4 0.6 0.8 1
0.2
X
—0 —0.1 —0.2 —0.3]
0

Figure 2-4: Dissipation of the first order Upwind scheme
In order fully understand why dissipation occurs, we will use the analysis of the

modified equation, which is discussed by Sweby[13] and LeVeque[7], on the Lax-

Friedrichs scheme for the advection equation

n+l _ 1 ( n n )_ v [ n o _ .n ]
wi =~ it uio) = 5 i~ wica
2 2
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Earlier, we saw that this scheme had a truncation error of

At 82M sz 82M Ax a u 3 2
T =— - + +0 +0
al‘z p 2 3 a (Ax) (At)

and by using (2.8)

we may obtain

At , Ax® [0°u  Ax* 9’u 3 2
T =|—¢c — + -+0 +0 .
{ c Ja 2 P (Ax’) (A1)

So, the Lax-Friedrichs scheme is a second order approximation to

a_”+ca_“_D3_” 2.12)
ot ox ax

2
where D = %[l—vz]. Equation (2.11) is known as the linear advection-diffusion
!

equation and is ill-posed if D < 0. In this case, equation (2.12) is well posed

2

since % >0 so, for (2.12) to be well posed [1 —v2]2 0= |v| <1. Hence, since for
t

stability, v| <1, equation (2.12) is well posed as long as the scheme is stable. So, the

Lax-Friedrichs scheme qualitatively behaves like the solution of (2.12). Now, by

using the Fourier Transform of u with respect to x

7 t)_T [ulxr)eEds

—o0

and substituting into (2.12), we may obtain that (2.12) is an ODE with solution

A€, 1)=i(E,0)e P ek

and by using an inverse transform, we may obtain

(s)= L Talgo)e0s 06r-5.
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Here, we can see that the solution is of the form ei(‘”(‘i)t“gx), which represents a

-D&%;

travelling wave with decreasing amplitude, ﬁ(&,O)e . The frequency is (&) and

is dependent on the wave number &. In this case the frequency is ®(§) = c&, this is

also known as the dispersion relation. Also,

o)
g

is known as the phase velocity and gives us the wave speed of each wave.

For the Lax-Friedrichs scheme, the phase velocity is

o@)_..
z

Hence, the waves all travel at the same speed and so, the Lax-Friedrichs scheme is
non-dispersive. However, the Lax-Friedrichs scheme suffers from dissipation, due to
the wave travelling with decreasing amplitude. Hence, the Lax-Friedrichs scheme
suffers from dissipation but not dispersion. We can also show that the Upwind

scheme with v > 0 suffers from dissipation, since the truncation error of the scheme is

c 82u 2 2
T/ =~ [Ate - Ax [+ O(AX) +O(AF)
2 ox

the scheme is a second order approximation to (2.12) with
D= %Ax(l —v).

Hence, the Upwind scheme is also dissipative and since

1%

%Ax(l—v{l+l)>§Ax(l—v),

where the left-hand side represents the value of D for the Lax-Friedrichs scheme, we
can see that the Lax-Friedrichs scheme is more dissipative than the Upwind scheme

for v > 0.
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2.4.2 Dispersion and Oscillations

Dispersion occurs when waves travel at different wave speeds and is common in all
second order schemes. Figure 2-5 shows some numerical results of the Lax-Wendroff
scheme applied to the advection equation with initial data

1 if x<0.3

Hex0)= {o it x>03

Here, we can see that the Lax-Wendroff scheme suffers from dispersion since

oscillations are occurring in the numerical solution behind the discontinuity.

Comparison between exact solution and numerical approximation att = 0.5.

1.25

1.05 A

Lax-Wendroff sch for ad i ion with dx = 0.02, dt = 0.01,
c=1andt=0to 0.5

0.85

0.65 4 1.2
o
o' 1
X
5 08
0.45 4 <
1%
Sos
0.4
0.25 0.2
0
01 02 03 0.4 1
02 x
0.05 4 :
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.15

X
‘ — Exact — Lax-W endroff ‘

Figure 2-5: Dispersion leading to oscillations of the Lax-Wendroff scheme.

We can see why the Lax-Wendroff scheme suffers from dispersion by taking the same
approach as we did for the dissipation case. Consider the Lax-Wendroff scheme for
the linear advection equation

2
. ~| ]
n+tl _ n n n n n n
Ui = u; __(Mi+1_l/ti—l)+5 Uit — 2u; t Ui-1]>

2

whose truncation error was
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1 3 ’
T =— Atzd_lj—chzd—L: +O(Ax3)+0(Al3)’
6 dar dx

we can see that the Lax-Wendroff scheme is a better approximation to

and by using Fourier Transforms, we may obtain

u(x,t)zﬁ 14(£,0)e/©E-E)dy where &)= cE+nE>.

Here, we can see that the solution is of the form e"(“’(é)t_éx), which represents a
travelling wave with constant amplitude, #(€,0). This means that the scheme no

longer suffers from dissipation, however, consider the phase velocity

o) _ c&+ng&’ _
g g

c+mnéE>.

Here, we can see that different wave numbers travel at different speeds and so, the
Lax-Wendroff scheme is dispersive. Also, if 1 < 0 within the stability region of a
scheme, then oscillations will occur behind the discontinuity and if n > O within the
stability interval of a scheme, then oscillations will occur in front of the discontinuity.
This is because, if | < 0, then high wave numbers travel with a slower velocity than
they should creating oscillations behind the discontinuity, but if 1 > 0, then high wave
numbers travel with a faster velocity than they should creating oscillations in front of
the discontinuity. Figure 2-5 shows that the Lax-Wendroff scheme suffers from

oscillations occurring behind the discontinuities, which would imply that n <0,

n=2a(-1).
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For stability, we require |v| <1 = 2< 1 = 2-1<0, which means that for n<o,

% Ax2>0 and since ¢ = 1 and Ax > 0, verifies that 1N < O creating oscillations behind

the discontinuity.
In general, all first order schemes suffer from dissipation but are non-dispersive, and
all second order schemes suffer from dispersion but are non-dissipative. For a more

in depth discussion on wave theory, see Whitham[9] and Ames[14].

2.5 Flux-limiter Methods

So far we have seen that, in general, all first order schemes suffer from dissipation and
all second order schemes suffer from dispersion, which creates oscillations around the
discontinuity. However, there is a method which switches between a second order
approximation when the region is smooth and a first order approximation when near a
discontinuity. This method considerably reduces the size of the oscillations by using
a first order approximation near discontinuities and is called the flux-limiter method.
Figure 2-6 shows some numerical results of the Lax-Wendroff scheme with and
without the Superbee flux-limiter method applied to the scheme and with the exact
solution for initial data

1 if x<0.3

Hex0) = {o it x>03
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Lax-Wendroff scheme for advection equation with ¢ = 1, dx = 0.002, dt = 0.001 and t =
0.5.

1.4

1.2 /\
_ N

Superbee flux-limiter applied to Lax-Wendroff scheme

08 | 15 with t =010 0.5.

06 | 08 1
0.6 q

0.4 4
0.2 q

U(x,0.5)

u(x.t)

0.4

0.2 1 0 0.2 0.4 0.6 0.8 1

[—0—o01 0203 —04—05] |
0 T T T T T T T Vf\ |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.2
X

\— Exact Solution — No flux-limiter  Superbee ﬂux-Limiter\

Figure 2-6: Superbee flux-limiter method applied to the Lax-Wendroff scheme.

Here we can see that the Superbee flux-limiter method has eliminated all oscillations
from the Lax-Wendroff scheme resulting in an extremely accurate second order
scheme. To fully understand flux-limiter methods, we shall closely follow the work
of Sweby[13] and LeVeque[7].

Now, we can re-write any second order scheme as

u’.”l:uf‘—s[F(u;i)—F(u;i—l)] (2.13)

where
F(u;i)=F, i)+ Fpy (i), (2.14)

Here, F;(u;i) represents a first order scheme and Fy(u,7) represents a second order
correction term. In order to obtain the flux-limiter method for a second order scheme,
we re-write (2.14) as

Fusi)=F o (usi)+ Fpy (51)o,
where ¢; represents the flux-limiter, which is yet to be specified. Before we discuss
the choice of the flux-limiter, let us re-write the Lax-Wendroff scheme for the scalar

conservation law in the form of (2.13).
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™ =M?_£(f?+1_f?1)+%[vi+l/2 (fz+1 ) Vi- 1/2(f f’ 1)]

We can re-write this equation as the first order Upwind scheme plus a second order

correction term. Assuming that v;.;,» > 0, the Lax-Wendroff scheme can be written as

ul = —s[f -fi 1] 1 vl+1/2)(f?+1_f?)"'%(l_"i—l”)(f?_f?‘l)
and we may obtain
Fo(wi)=f]

and

Fpwi)= ;(l vz+1/2)[fl+1 f]

Here, F(u;i) represents the Upwind scheme and Fy(u,7) represents the second order

correction term. Similarly, assuming that v;,;» < 0, we may obtain

FL(u;i): f7+1
and

. 1
Fu (W): _5(1+Vi+1/2)|:f?+1 - f,n]

Hence, we may obtain

utt =yt - s[F(u;i)— F(u;i —1)]
where

Fuwsi)=Fo i)+ F (i),

and

. f:1 if y;,,>0
FL(M;l): .
fin if viy,<0

. 1
FH(u;l)=§

{(I—VHI/Z)( ?+1_ f?) if vin>0
(

- 1+Vi+1/2)( ?Jrl_f:l) if i, <0
We now need to measure the smoothness of the data so that we may choose the flux-

limiter to obtain second order accuracy and the TVD property. The TVD property is
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called the Total Variational Diminishing property and will not be discussed in full in
this thesis. However, we will show some regions of TVD for the flux limiter, ¢;.
In order to measure the smoothness of the data, we could look at the ratio of

consecutive gradients.

Ujr1 — U
0, =—"""

Wil ~ Ui
where j=1i-sgn(y,,,,). Here, if 0; close to 1 then the data is considered to be
smooth, but if 6;is far from 1, then there are kinks in the data at u;, We can now take
0; to be a function of 0, i.e.
¢; = 0(6;)

where ¢ is a given function. Now, we require the flux-limiter to be of second order
and to satisfy the TVD property. If the flux-limiter is to satisfy the TVD property, we
must first assume that

¢,=01if 9;<0
and we must choose the flux-limiter to lie in the TVD region shown in Figure 2-7.
But to obtain second order accuracy, the flux-limiter must pass through ¢(1) = 1 and

lie in the region shown in Figure 2-8. Roe’s Superbee flux-limiter

0(6;) = max(0,min(26;,1),min(6;,2))
satisfies the second order TVD region as shown in Figure 2-9 and is therefore second
order accurate and Figure 2-6 shows that the Lax-Wendroff scheme with Superbee
flux-limiter method is considerably more accurate than without the Superbee flux-

limiter method. See Sweby[12] for a more in-depth analysis on flux-limiter methods.
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o(6)

A
37 0(0)=06
)t
. 00) = 1
I ' ' >
1 2 3 0
Figure 2-7: TVD region for finite difference schemes.
0(6)
A
37 0(0)=06
)t
. 00) = 1
I I I >
1 2 3 0
Figure 2-8: Second order TVD region for finite difference schemes.
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3T
2T 0(0)
L+

1: 2: 3: > 9

Figure 2-9: Superbee flux-limiter for finite difference schemes.

Table 2-3 lists a few flux-limiters, which satisfy the TVD property and are second

order accurate.

Name of Flux-limiter 0(0)
Minmod 0(0) = max(0,min(1,0))
Roe’s Superbee 0(0) = max(0,min(26,1),min(06,2))
o] +o
van Leer o0)="—r

6)="- o]

0°+0

van Albada o(6)= o

Table 2-3: Some Flux-limiters for second order schemes.

Throughout Chapter 2, we have discussed the finite difference technique for
approximating the scalar conservation law and, in particular, the linear advection
equation. However, sometimes the right hand side of (2.1) is not equal to zero but
instead, a source term is present which can cause difficulties in approximating the
solution accurately. In the next chapter, we will consider such a case, where a source

term is now present on the right hand side of (2.1).
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3 Conservation Law with Source
Term R(x,t)

In Chapter 2, we discussed a variety of finite difference schemes for numerically
approximating conservation laws and the linear advection equation. We also
discovered that a number of problems occur when numerically approximating
conservation laws even when a source term is not present. In this chapter, we will
discuss some numerical techniques for solving conservation laws when a source term
is present. However, in this chapter we will only consider source terms that are
functions of x and 7 only, 1.e.

au , o)
ot ox

= R(x,1) (3.1

where R(x,?) is the source term. In this chapter, we will also use the linear advection

equation with ¢ = 1 and source term

—e ' if x<03+¢
R(x,t)z ) ,
0 if x>03+7¢
1.€.
—¢' if x<03+¢
a_”+a_”: € 1 * , (3.2)
Jt odx |0 if x>03+¢
with initial data
( O) 1 ifx<0.3 (33)
u(x,0)= )
0 if x >0.3

whose exact solution is

33



u(x’t): e’ 1 x<03+¢
0 if x >0.3+¢

as a test problem to illustrate some numerical results.

3.1 Basic Approach

The most basic finite difference approach used to numerically approximate (3.1) is to
‘add’ the source term to a scheme that numerically approximates the conservation law
without source term (2.1). For example, if we use a forward difference approximation
in time, a central difference in space and assume the source term to be an

approximation at (i,n) then (3.1) becomes

+1 no _ ¢n
Wl Fla S,
At 2Ax !

and by re-arranging we may obtain

n+l _ n_S[fﬂ _fn ] n
wi = up =5l i Jilt AR

This central scheme is unconditionally unstable, by using the average

1
n _—_ n n
u; = _(ui+1+ui—1)

2
we may obtain

Ui — U1 U

> i[f?+1_f?—1]+ AR}

2

which is the first order Lax-Friedrichs scheme with the source term ‘added’ on

uft = %(”?H + M?—1)_ % [f?+1 - f?—l]

where
u?” = uiLF + AR}

34



u(x,t)

U(x,t)

Upwind (first order) with dx = 0.01, dt = 0.001 and t = 0 to 0.5.

X

—0—01 02 03—04—05]
Figure 3-1: The Upwind scheme with source term ‘added’ on.

Lax-Wendroff with dx = 0.01, dt = 0.001 and t = 0 to 0.5.

X

[—0—01 02 03—04—05]

Figure 3-2: The Lax-Wendroff scheme with source term ‘added’ on.
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U(x,t)

Lax-Wendroff + TVD with dx = 0.01, dt = 0.001 and t = 0 to 0.5.

X

—0—01 02 03—04—05]

Figure 3-3: The Lax-Wendroff scheme with Superbee flux-limiter and source term

U(x,0.5)

‘added’.

Comparison of schemes with source term added on explicitly. dx =
0.01, dt =0.001 and t = 0.5.

X

\— Exact Solution — Upwind (first order)  Lax-Wendroff —— Lax-Wendroff + TVD \

Figure 3-4: Comparison of different schemes with the source term ‘added’ on.
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This approach will work with all schemes discussed in Chapter 2 and, in general

=P EME + ARY 3.4

SCHEME

Here, y; represents a numerical scheme of the conservation law without a

source term present. Also, by assuming the source term to be an approximation at

(i,n+1), we can obtain a semi-implicit scheme

w1 = SCHEME 4 p i+l (3.5)
Figure 3-1, Figure 3-2, Figure 3-3 and Figure 3-4 are all results of schemes of the
form (3.4) applied to (3.2) with initial data (3.3). Figure 3-1 shows the Upwind
scheme with the source term ‘added’, Figure 3-2 shows the Lax-Wendroff scheme
with source term ’added’ and Figure 3-3 shows the Lax-Wendroff scheme with
Superbee flux-limiter and source term ‘added’. Figure 3-4 shows the Upwind
scheme, Lax-Wendroff scheme and Lax-Wendroff scheme with Superbee flux-limiter,
all with the source term explicitly ‘added’ on. Here, we can see that the Upwind
scheme with source term ‘added’ suffers badly from dissipation and that the Lax-
Wendroff scheme with source term added suffers badly from dispersion resulting in
very large oscillations being present. The most accurate scheme was the Lax-
Wendroff scheme with Superbee flux-limiter and source term ‘added’. In addition,

we can see all schemes are conservative since the discontinuity was moved at the

correct wave speed.
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3.2 Lax-Wendroff Approach

We can also use the Lax-Wendroff approach that we used in Chapter 2, Section 2, to
approximate the scalar conservation law with source term. However, we must first re-

write (2.11) to include the source term. Now, we can re-write (3.1) as

ou W

= R(x, 3.6
o (x,7) ™ (3.6)
s 0 aia—u d| a(u) R—ai
ou_oR_9°f _OR_9f _OR_\ouot)_oR_ Ox
off ot OJdx o OJxot Ot ox ot dx
and we may obtain
of
o’u OR 9(a(u)R) a(a(u)ax)
— = + . (3.7
or ot ox ox
Now, by using Taylor’s theorem
oul Af[u]
Myt At |+ |+ 3.8
weme l[atl+ 2 Lﬂf} G

and substituting (3.6) and (3.7) into (3.8) gives

a9
ol e _ataom), 15|,

=y + RAL— At
wi ox 2| or ox ox

and by using central difference approximations in space and assuming that both are

approximations at (i,n) then

n+l __

S S
Wi = ui __(f:rl - f?—1)+_[Vi+1/2 (f?ﬂ - f:l)_ Vi-1/2 (f? - f?—l)]

2 2
+ AZ[R + g(d—R - —d(a(”)R) H .
2\ dt dx

Hence, by using a forward difference approximation in space and time, we may obtain
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ult' = 4——(/‘”1 fi 1) V,+1/2(f,+1 f) Vi—l/z(f:l_f?—l)]

+At[R + At (R?H R ai+1/2R7+1/2_ai1/2R§1—1/2ﬂ
2

At Ax

and by re-arranging

a = =2 (= F 2 (= )= v (= 1)
(3.9)
+— [R + RHH]_ — [V,+1/2 ( Riv— R?)_ Vi-1/2 (R? - R?—l)]

2
we may obtain a second order approximation to (3.1), which is based on the Lax-
Wendroff scheme. We can also apply flux-limiter methods to (3.9) by re-writing (3.9)

as

it =yl - S[F(u;i)_ F(U;i - 1)]+ % [R;1 + R;‘M]_ % [Vi+1/2 (R?Jrl - R?)_ Vi-1/2 (R:l - R?—l)]
where
Fusi)=F o (usi)+ Fpy (51)o,

and

. f? if yi,p>0
Folwi)=1""
fin 1 vip<0

N 1 (1—Vi+1/2)( TH_]C?) if y;,,>0

FH (u,l)= - " " . .

2 _(1+Vi+1/2)( i+l_fi) if vin<0
where ¢; denotes the flux-limiter method described in Chapter 2, Section 5 and we
could use any of the flux-limiters in Table 2-3 to obtain a second order flux-limiter
method. If we now apply the Lax-Wendroff approach, without a flux-limiter method,
(3.9) to the test problem (3.2) with initial data (3.3), we may obtain the results in

Figure 3-5.
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Lax-Wendroff approach with dx = 0.01, dt = 0.001 and t = 0 to 0.5.

1.4

1.2

]} /\

_—

0.6

U(x,1)

0.4 1

0.2 1

0.2 0.4 0.6 0.8 1 1.2

-0.2
X

—0—041 02 03—04—05]

Figure 3-5: The Lax-Wendroff approach for advection equation with source term.

Figure 3-5 shows practically the same results as Figure 3-2 where the source term was
‘added’ to the Lax-Wendroff scheme. This is because the source term is a known
function of x and ¢ so all approximations of the source term will be extremely
accurate. However, when the source term is also a function of u, the approximations
of the source term are not as accurate making the two schemes accuracy change

dramatically, as we will see later.

3.3 MPDATA approach

Smolarkiewicz and Margolin[3] derived an algorithm to approximate the advection
transport equation (3.7) called MPDATA. MPDATA is a Multidimensional Positive
Definite Advection Transport Algorithm and approximates the advection equation

(2.3) with a source term present
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Jdu ou
—+c—=R 3.10
o +cax (x,1) (3.10)

which is also known as the advection transport equation. The author states that this
algorithm uses a similar approach to that of the Lax-Wendroff, which can be viewed
as the Upwind scheme minus an error estimate, but exploits special properties of the

Upwind scheme.

3.3.1 Basic MPDATA

Before we can discuss the MPDATA algorithm for (3.10), we must first look at the
most basic MPDATA algorithm, which is based on the advection equation without

source term,

ou +c ou =0 (3.11)
o Ox
If we assume that u is nonnegative, then the basic MPDATA algorithm is the Upwind

scheme (2.4) re-written in flux form

W =l =[P uls C) = Fllul ,C)] (3.12)

where
F(ML’MRaC): C+ML+C_MR 5

A I I
C=ci. ¢ = (C+[c]) and == (c—[c]).

This scheme is only first order and we require a second order scheme, but if we look

at the truncation error of (3.12)

_AY (o ) s
_2Atqc| C)ax2+0(AX)

and since ¢ >0

c azu 2 2
T/ = = (Ax—cAt)"—+O0(AX) + O(AF) .
2 ox
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Here we can see that (3.12) is a better approximation of the advection-diffusion

equation,
d d 0 gu Ax’
u u X
—+c—= where K =——(C|-?),
ot ‘ ox ox z‘q | ¢ )

and is only first order in space and time. However, we can construct a numerical
estimate of the error and subtract it from (3.12) which will make the scheme second
order. This approach is similar to that of the Lax-Wendroff scheme for the advection
equation, which uses central differences to approximate the right hand side of (3.12)
whereas MPDATA uses special properties of the Upwind scheme for approximating

and compensating the error. We can re-write the error term as

e, 3o

ot 0x 0x

where

v(l) :MQq_Cz)l Jou

2At u ox
is a pseudo velocity. Then by using
1 U un—u
iwin =i +u;) and —==———,
Ui+12 ) (M 1Tu ) ax Ax

where the superscript " denotes the first approximation of the advection equation

(3.11), we may obtain the first order accurate approximation

(1 (D

v = Ax qC|_C2 Wirl ~ Ui
i+1/2 A 1) 1)

l w1t ui

of the pseudo velocity. In order to obtain a second order approximation, we subtract

the error in the second pass
= = [F v i) = FGlu vl
Hence, we may now obtain the basic MPDATA algorithm
= = [F G v )= FGou v s,.) (3.13)
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where the pseudo velocity is

Ax u —ut”
A ) w T
Vi = Ar QC| C {ufﬂ O (3.14)

and the first order approximation is

w =ul - [F(u?’uﬁl,c)— F(u?_l,u?’c)}
So far we have only considered the advection equation with u nonnegative but the
basic MPDATA algorithm can also be updated for u to be of variable sign. This is

achieved by using the pseudo velocity
M| _]
Ax Uil _‘Mi ‘
m e [P B
Vi+1/2 - At qC| C {ug—)l +‘u§1)‘

instead of (3.14). Also, we can apply flux-limiters to the basic MPDATA algorithm

by replacing (3.13) with
ut = ul = [P v ine)o - Flathu vilaoo ] G15)

where ¢; denotes the flux-limiter method described in Chapter 2, Section 5.

3.3.2 MPDATA Approach for Advection Equation
with Source Term R(x,t)

So far we have only discussed the basic MPDATA scheme for the advection equation
but MPDATA can also be adapted to approximate the advection transport equation
(3.10)

8_u+ca_u = R(x,1).
or  Ox

If we use a forward difference approximation in time and assume it is an
approximation at (i,n). Also, by assuming the source term is an approximation at
(i,n+%2) we may obtain

w!'—ui | Ou

- +c$:R§””2 (3.16)
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Now, by using Taylor’s theorem

ult = +A{au} +—{au} +
ot or’

R'?+1/2zR(‘+£ 87R +A_t ﬁ +
l o208 o l.

and by substituting into (3.16) we may obtain

2
Ju Ao, O ATORT o),
or 2 o ox 2| ar '
ou Jdu
—+c—=R/+0
EPRLEw Ri+O(At),
and
0’ ? ?;; OR
u
—+c =—+0 .
o % 5 (At)
Substituting (3.18) into (3.19) and re-arranging gives
‘u OR OR
TR R o)
ot ot ox x
and substituting this into (3.17) we may obtain
8_u+At a_”_ IR Yo a_”:R+0(At2)
o 2 o> ox ox
Whence we may obtain
ou au AtdR  ,At9’u

— +c
ot ax 2 ox 2 ox’

(3.17)

(3.18)

(3.19)

(3.20)

The first two terms on the right hand side of (3.20) shows the error due to the source

term and the third term shows the error due to the method. Here, the second term on

the right hand side of (3.20) can blow up creating very inaccurate numerical results,

especially if the source term is stiff (see Chapter 5, Section 1), but MPDATA

compensates for this term making the scheme considerably more accurate.

The
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MPDATA approach which numerically approximates (3.10) is derived by assuming
the source term approximation to be at (i,n+%2) giving

u!"' = MPDATA(} .C)+ AR
where MPDATA(M? ,C ) corresponds to the basic MPDATA algorithm discussed in the

previous section (3.3.1). Now, by using the average,

R;1+1/2 — %[R;Hl + R,n]

we may obtain

1™ = MPDATA(y!,C)+ % (RF'+RY)

and by advecting % R! we may obtain the MPDATA scheme for approximating the

advection transport equation

u;?“:MPDATA(M?+%R,-",C)+%R;‘“ (3.21)

where MPDATA(MQ%% R?,Wf‘fll/zz) corresponds to the basic MPDATA algorithm

discussed in the previous section (3.3.1). Here, by advecting the auxiliary field,
ur + % R!, the terms in the truncation error (3.20) due to the source term do not blow

up. Now, by applying (3.21) and (3.9) to the test problem (3.2), with initial data (3.3),
we may obtain the numerical results in Figure 3-6 and Figure 3-7. Both Figure 3-6
and Figure 3-7 show that the MPDATA scheme suffers from a lot less oscillations
behind the discontinuity than the Lax-Wendroff approach, which means that
MPDATA is less dispersive than the Lax-Wendroff approach. Also, Figure 3-7
shows that, near the discontinuity, the MPDATA approach is a lot less accurate than

the Lax-Wendroff approach.
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u(x,t)

u(x,t)

MPDATA approach with dx = 0.01, dt = 0.001 and t = 0 to 0.5.

X

—0—0.1 02 03—04—05]
Figure 3-6: MPDATA approach for advection transport equation.

Comparison of Lax-Wendroff and MPDATA approach with dx = 0.01,
dt = 0.001 and t = 0.5.

X

\— Exact Solution — Lax-Wendroff approach ~ MPDATA approach \
Figure 3-7: Comparison between Lax-Wendroff approach and MPDATA.
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So, the MPDATA approach is considerably less dispersive than the Lax-Wendroff
approach but, near the discontinuity, the Lax-Wendroff is considerably more accurate.
But overall, the MPDATA approach is a lot more accurate than the Lax-Wendroff
approach for approximating (3.10). In general, the MPDATA approach (3.21) is very

accurate when numerically approximating the advection-transport equation (3.10).

3.3.3 MPDATA Approach for Conservation Law
with Source Term R(x,t)

So far we have only looked at MPDATA algorithms for the advection-transport
equation. Let us now consider MPDATA algorithms for the scalar conservation law
with source term present (3.1), i.e.

du af (u)
at ox

= R(x,t)

MPDATA can be adapted to approximate (3.1) by considering the velocity ¢ of the
advection-transport equation to no longer be a constant but to be a function of u
instead, i.e.

a_u N a(w(u)u)

=R S
o o (1)

where w(u) :% for inviscid burgers equation, etc. The basic MPDATA algorithm

for the conservation law without source term now takes the form
+_ (D) _ M M) v, M (1) (D
I/tn — Ui [F (’/lz ?MH—I’VHI/Z)_ F(I/h Ui SV i 1/2)] (3-22)

where the pseudo velocity is

(@) (1)
) _Ax n+l/2 [ nit2 12} Uiel — Ui n+l/2[ n+l/2 n+1/2] (3.23)
Vi = ——\wis2| ~ lwiti/s O o | Wiz ik = wis .
At uin +u

and the first order approximation is

) _ n_[ n+1/2 n+1/2 ]
u — U F(ul ’u1+l’Wl+l/2) F(ul l’I/lz s Wi- 1/2)
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However, /5 is unknown since w is a function of u and u is only known at the grid

points (i,n). We could approximate /7 by using the average

n+l/2_l( ntl 4o )
Witl/2 = ) Wis1/2 T Wit1/2

or by using linear interpolation

n+l/2_l(3 n_ n—l)
Wi+l/2_2 Wis1/2 ~ Wit1/2)-

If we approximate by using linear interpolation, the method would require another
scheme to initially start the algorithm off, since we require a value of u at (i,n-1), but
if we use the average, the algorithm becomes impractical since we require the value of
u at (i,n+1). So far we have only considered the most basic MPDATA algorithm for
the conservation law without source term and have encountered a lot of difficulties. If

we now consider a source term then the corresponding MPDATA scheme is

= MPDATA( u'+ % R", w?:f/f) + % R (3.24)

where MPDATA(MQ%% R?,W{‘ff/f) corresponds to the basic MPDATA algorithm,

for the conservation law without source term, discussed in Section 3.1. However, care
must be taken when using this scheme since if the source term is a function of u then

even more difficulties arise when using this algorithm as we will see later.

3.4 Comparison of Schemes Using Test Problem

Now, by using the test problem (3.2) with initial data (3.3), we can obtain the

numerical results in Figure 3-8 and Figure 3-9 and compare the numerical solution of

48



the three approaches discussed throughout this chapter with the exact solution. The
three approaches are:

1. Upwind (first order) with the source term ‘added’ on.

2. Lax-Wendroff approach with or without Superbee flux-limiter.

3. MPDATA approach with or without Superbee flux-limiter.
Figure 3-8 compares the numerical solution of the three different approaches with the
exact solution at t = 0.5. Figure 3-9 compares the ‘true’ error of the numerical solution
of the three different approaches at t = 0.5. Figure 3-8 shows us that the Upwind
scheme suffers from dissipation as expected and that the MPDATA approach without
TVD gives less oscillations behind the discontinuity than the Lax-Wendroff scheme
without TVD. Figure 3-9 shows that the most accurate approach overall is the Lax-
Wendroff approach with Superbee flux-limiter followed by the MPDATA approach
with Superbee flux-limiter. We can also see that near the discontinuity, the MPDATA
approach is less accurate than the Lax-Wendroff approach, but away from the
discontinuity, the MPDATA approach is considerably more accurate than the Lax-
Wendroff approach. However, the MPDATA approach will be not so accurate when
applied to the scalar conservation law since the MPDATA approach would require
special starting procedures and approximates approximations. This is due to the
MPDATA approach being specifically derived to approximate the linear advection
equation with source term present and not the scalar conservation law.
Throughout this chapter, we have discussed three main approaches which
approximate the scalar conservation law with source term, which is a function of x
and ¢ and we have obtained some very accurate results. However, we have only
considered known source terms and when the source term has to be approximated, the

different approaches discussed in this chapter are not so accurate. In the next chapter,
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we will consider some methods for approximating the scalar conservation law with
the source term being a function of u also. Since the source term is now a function of

u as well, we will now need to approximate the source term as well.
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Comparison of 'true' error of the schemes with dx = 0.01, dt = 0.001
and t = 0.5.

U(x,t)

X

— Exact Solution — Upwind (first order) Lax-Wendroff
— MPDATA — Lax-Wendroff + TVD — MPDATA + TVD

Figure 3-8: Comparison of the three approaches discussed in this chapter.

Comparison of 'true' error of schemes with dx = 0.01, dt = 0.001 and t
=0.5.

0.45

0.4

0.35

0.3

0.25

0.2

'true' error

0.15

0.1

0.05

0

-0.05

— Upwind Error — Lax-Wendroff error MPDATA error —— Lax-Wedndroff + TVD error — MPDATA + TVD error

Figure 3-9: Comparison of ‘true’ error of the three approaches discussed in this
chapter.
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4 Conservation Law with Source
Term R(x,t,u)

In Chapter 3, we discussed some finite difference schemes that numerically
approximate conservation laws with a source term which is a function of x and z. In
this chapter, we will discuss some finite difference schemes that numerically
approximate conservation laws with a source term which is now a function of x, # and
u, 1.e.

ou  of (u) _
ot ox

R(x.t,u) (4.1)
where R(x,t,u) is the source term. We shall see that difficulties will arise since the
source term is now a known function of u as well as x and #, resulting in the numerical

approximation of the source term no longer being exact. Throughout this chapter, we

will be using the following test problem considered by LeVeque and Yee[1].

Ju Ju
—+—=R(u), 4.2
ot oOx ( ) (4.2)
where
R(u)z —u(u - l{u —%),
with initial data
1 if x<0.3
u(x,O)z )
0 if x>0.3
and whose exact solution is
1 if x<03+¢
u(x,t)z ] 4.3)
0 if x>03+¢

to illustrate some numerical results.
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4.1 Adaptation of the Schemes for the Conservation
Law with Source Term R(x,t)

In this section, we will discuss how the different approaches for conservation laws
with a source term of the form R(x,f), which were discussed in Chapter 3, can be

adapted to numerically approximate (4.1).

4.1.1 Basic Approach

The ‘adding’ of the source term can be easily adapted to numerically approximate
equation (4.1). We do not need to adapt scheme (3.4) since we can re-write the source

term approximation to include u, i.e. R!= R(iAx,nAt,u?) which is known since the

values of 5 are known so, the scheme remains as
!t =P EME + AR (4.4)

However, scheme (3.5) is semi-implicit since R/ = R(iAx, nAt,u,’-‘“) but the values of

n+l

u!" are not yet known so we need to re-write

ul(z+1 — quHEME+AIR?+1 . (45)

One approach is to use Taylor’s theorem to obtain

R =R} +At[aaﬂ +O(AF) (4.6)

I

and by substituting (4.6) into (4.5), we may obtain

u;m _ M;SCHEME + AII:R?-FAII:BBR} } .
r

. . oR .
Here, we could use finite differences to approximate Y ie.
t

R _RI-R™ OR _R™-R™ _ OR _R"-R:

ot At ot 2At ot At

9
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but we would then encounter other difficulties since we only know the values of ;!

1

and 5", except initially when we do not know the values of 5;'. We could also

o : . o RT
calculate the derivative analytically and then approximate the derivative, i.e. [a}
r

but the derivative of the source term may be extremely difficult to find since the

source term is a function of u and u is a function of x and . Another approach we

—n

could take is to re-arrange {BR in (4.6) by using the chain rule, i.e.
t

R
ot | |Oul|or] |ou At

i i

Substituting into (4.6) gives

R = R+ - u?)[aRJ +
ou |,

and by substituting into (4.5), we may obtain

1-At R wl ! = ul M AR — Aty R , 4.7)
du : du i

a semi-implicit scheme which ‘adds’ the source term implicitly. Here, since the

source term is a known function of x, r and u, we can calculate the derivatives

. . .. [oRrT
analytically and then approximate the derivatives, i.e. [a} .
u_j
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Comparison of schemes with source term added on explicitly. dx =
0.01, dt = 0.001 and t = 0.5.

u(x,0.5)

X

|— Exact — Upwind (first order)  Lax-Wendroff — Lax-Wendroff + TVD|

Figure 4-1: Comparison of different schemes with the source term ‘added’ on.

If we use (4.4) to numerically approximate the test problem (4.2), we may obtain the
results shown in Figure 4-1. Figure 4-1 shows that the Upwind scheme with the
source term ‘added’ is still giving the least accurate results and that the Lax-Wendroff

with Superbee flux-limiter is giving the most accurate results.

4.1.2 Lax-Wendroff Approach

The Lax-Wendroff approach can be adapted to numerically approximate (4.1) but
with difficulty. During the derivation of the Lax-Wendroff approach for numerically

approximating (3.1), we obtained

=t =2 (= S S (7= 1) v = 1)

At( R d(a(u)R) ﬂ

+Atl R+—
[ 2| ot ox
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We then used a forward difference approximation in space and time, to obtain

S S
ntl _ »n n n n n n n
u =u (f,-ﬂ - f,-,l)'l' - [Vi+1/2 (fi+1 - f,- )_ Vi-1/2 (fi - fi—l)]

2 2
" AI[R? + ﬂ( R -R! _aimnRivin—ainRian ﬂ
2 At Ax
and hence,
u?H =u; _%(f?u - f?71)+ % [Vi+1/2 (f?ﬂ - f?)_ Vi-1/2 (ch1 - f,:)]

* % [R? + RZ‘M]_ % [Vi+l/2 (R?ﬂ - R:‘l)_ Vi-1/2 (R:l - R?—l)]

However, if the source term is now also a function of u, then (4.8) becomes semi-
implicit since we no longer know the value of R!*'. We could replace R'*' with (4.6)
as we did in the previous sub-section, but this would only create more problems.

However, we could replace R!*' with

R =R+ - u;“)[aR} +...

Ju
and obtain
[1 —%‘:?f:l ]u?ﬂ =u; _%(f:'1+1 - f7—1)+%|:\/i+1/2(f:'1+1 - f?)_ Vi—l/2(f7 —f?_l)]

2| ou 4

i

+ A{Rf - u—:[ale jl - ﬂ [Vi+1/2 (R?ﬂ - R?)_ Vi-1/2 (R? - R?—l)]

the Lax-Wendroff approach for approximating (4.1). We can also apply flux-limiter

methods to the Lax-Wendroff approach and obtain

[1—%{3};} )u?” = u?—S[F(Wi)_F(”;i_l)]-l_A{R?_%{?j} }

’ " (4.8)
A
- Zt [Vi+1/2 (R7+1 - R?)_ Vi-1/2 (R:1 - R?—l)]
where
F(usi)=Fo(wsi)+ Fu (i),
and
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. f ,n if y;,,>0
Folwi)=4"
fin i viup<O

2

1 {(I_VHI/Z)(_f::.l_ f:l) if yip>0

Fulei)=; - (1+vi+1/2)(f:’+1 - f?) if i <0 .
Here ¢; denotes the flux-limiter method, which can be any of the flux-limiters in Table
2-3. If we use (4.4) to numerically approximate the test problem (4.2), we may obtain
the results shown in Figure 4-2. Here, we can see that the Lax-Wendroff approach
has numerically approximated (4.2) very accurately. Also, the numerical results in
Figure 4-2 are very similar to the numerical results in Figure 4-1, where we ‘added’
the source term. In general, the Lax-Wendroff approach is more accurate than

explicitly ‘adding’ the source term as we shall see later.

Lax-Wendroff approach with and without Superbee flux-limiter,
where dx = 0.01, dt = 0.001 and t = 0.5.

U(x,0.5)

X

|—Exact — Lax-Wendroff  Lax-Wendroff + TVD |

Figure 4-2: Lax-Wendroff approach with and without Superbee flux-limiter.
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4.1.3 MPDATA approach

The MPDATA approach also creates difficulties when the source term is also a

function of u. This is because (3.21) requires the value of R!*' and we must re-write

(3.21) so that it numerically approximates the conservation law with source term
instead of the advection-transport equation, which was discussed in Chapter 3, Section
3.3. Also, the MPDATA approach requires another scheme to start it off initially,

since we need to re-write (4.1) as

Jdu N o(w(uu)

—R
o o (x.1,u0)

but by using linear interpolation

n+l/2_l(3 0 n—l)
Wi+l/2_2 Wit1/2 ™~ Wi+1/2)+

Here, we would require the initial values of y,,,, and w;;,, but we only know the
values of w,,,,. But, if we used the average,

n+1/2_l( el 4o )
Wit/2 = 5 Wis1/2 T Wit1/2

the algorithm would become impractical since by using

ow [
W;1+l ~ W? + (M?H _ Ll?) /| +
ou

i

n+l n "
n+l/2 _ 1 n (Mi+l/2_ui+l/2) ow
Wit1/2 —5 2Winipt— =

we obtain
2 ou Jiyi2

but the values of y/,, are unknown. We can overcome the difficulty of the value of

R/ being unknown by using

R =R+ - u?)[aR} o
ou

i
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and by substituting into (3.24), to obtain

[1 ) £|:8R:| ]M?H _ MPDATA(M? N %R,ﬂ ’ W?:11//22j + %|:R? —u; |:?9R:| :I 4.9)
u

where MPDATA(,],C) corresponds to the basic MPDATA algorithm with flux-
limiter
w = = [P uv )0 Flulu® v 2o, ]
whose pseudo velocity is
(€] (€]

a AX (i1 _[ ,,+1/2]2 Uivi " Ui | n+1/2[ n+l/2 n+1/2]
Vi = _At Wi+l/2 Wi+1/2 O, O Wi+1/2 Wiv3r2 = Wi-1/2 1
i+1 T U;

the first order approximation is
) _ n _[ n o n+1/2) noon n+l/2 ]
u —Uu; F(ui ’ui+1’Wi+1/2) F(ui—laui aWi—l/z) s

n+l/2_l 3 n _ . n-l
Witl/2 — > Wit1/2 = Wi+l1/2

and ¢; can be any of the flux-limiters listed in Table 2-3. Here, we can see that the
MPDATA approach for numerically approximating (4.1) is becoming very
impractical. This is because we are approximating approximations resulting in the
accuracy of the algorithm reducing rapidly and we also require another scheme to start
the algorithm off. However, MPDATA can be used to accurately numerically
approximate the advection-transport equation with source term, R(x,t,u). If we use
(4.4) to numerically approximate the test problem (4.2), we may obtain the results
shown in Figure 4-3. Here, we can see that the MPDATA approach is quite accurate
but not as accurate as the results obtained in Figure 4-1 and Figure 4-2. Also,

MPDATA will not be so accurate for the inviscid burgers case with source term.
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MPDATA with and without TVD where dx = 0.01, dt = 0.001 and t = 0.5.

u(x,0.5)

N

X

|—Exact —MPDATA  MPDATA + TVD|

Figure 4-3: MPDATA approach with and without Superbee flux-limiter.

4.2 Roe’s Upwind Approach

4.2.1 Advection Equation with Source Term R(x)

Roe[6] derived a finite difference scheme which numerically approximates

8u 8u
e =R, 4.10
af ¢ 8x (X) ( )

where ¢ > 0 and R(x) is the source term, with second order accuracy. If we consider
the initial-value problem of (4.10) with initial data u(x,0)= 4, (x), we may obtain the

general solution
L.
ulx,t)=u,(x—ct)+~["_ R(x)dx
c
which can be re-written as

W = (= v)Ax,nar) + L R dx. 4.11)
C
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Here we can see that the first term on the right hand side of (4.11) can cause
difficulties if the Courant number is not an integer. This is because we are using a
mesh where we only know the values at the grid points (iAx,nAf) and if v is not an
integer, then the value of u required no longer lies on the mesh and is thus unknown.
However, Roe[6] deduced that the only reasonable way to approximate this term is to
use

u((i = v)Ax,nAr) = 1 = vl = ul), (4.12)
which is the Upwind approach, since no other formula is consistent with (4.10). Also,
(4.12) gives the smallest truncation error of all possible choices where the truncation
error has positive coefficients and depends only on v.
The integral term present in (4.11) can be approximated in numerous ways. Since we
know R(x), we could integrate the source term and use the exact values but a more

general approach is to use a two-point approximation

Lise  pvydr= Al-a)r +orm]. (4.13)

; (i~v)Ax
Here, the value of o is arbitrary and must be chosen such that 0 < oo < 1. Hence, by
substituting (4.13) and (4.12) into (4.11), we may obtain
™ = = vt =)+ Al - 0)R: + R (4.14)
which is Roe’s Upwind approach for numerically approximating (4.10). However, this

scheme is only stable for ¢ > 0, but if ¢ < 0 then we may obtain
i = = vt =l )+ A0 — )R + uRE (4.15)
and by combining (4.14) and (4.15) gives

ntl _ V(bt?‘u?—l)_Af[(l_Oﬁ)R?+O€R?_1 if v>0
u. —ui—
V(u?+1—u?)—At[(l—oc)R;‘+ocR;‘+1] if v<O

which is Roe’s Upwind approach. Moreover, Roe[6] found that if we take
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1
o=—
2

then we may obtain a scheme that is second order accurate in the steady state, i.e.

V(u?—u?_l)—%[R?+R7_l if v>0
n+tl _ n
,

At : '
V(u:‘lﬂ - uzr‘l)_?[R? + R?+1] if v<0
Unfortunately, this scheme is only a first order approximation to (4.10) but we can

also obtain a second order accurate scheme by using van Leer’s MUSCL approach

[10] to obtain

L —u,-"_l)—g(l—v)[u?ﬂ —ou + |+ Al - o) R + Ry

where ¢ > 0. And hence we may obtain

v = i )+ = (=)ot — 20 + ) e[l - ) Rr + g if v>0
n+tl _ n 2
ui —u;— (4-16)

V= )+ = )t = 20 + )~ A= )R + aR] i v <0
2

which is a second order approximation to (4.10). Notice that (4.16) is the Lax-
Wendroff scheme for numerically approximating the advection equation without a

source term with a source term approximation added.

4.2.2 Conservation Law with Source Term R(x,t,u)

Bermudez and Vazquez[4] adapted Roe’s Upwind approach for numerically
approximating (4.10) to numerically approximate the advection equation with source
term R(x,u), i.e.

du Jdu
— +c—=R(x, 4.17
o +c . (x,u) ( )

where ¢ > 0. They used a similar approach as in the previous sub-section to obtain
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u = u((i —v)Ax,nAt)+ lf;"“ Rty =), — (s —s)5))ds  (4.18)
C n

and hence,

W =l =l =)+ A - ) RE + o R,
which numerically approximates (4.17) and is identical to (4.14). They also discussed
another approach, which was to approximate the integral term of (4.18) with

1
" R(x; =t — s htt (s — €t — 5 ) 5))ds = AIR((l — )i+ Oxig, (- o)l + Oﬁuf-!)

c’n
instead of

1
ZLIZHR(X:‘ = (tun = hul =t —s)5))ds = At[(l ~ Q)R+ OLR?—J

Hence, Bermudez and Vazquez[4] obtained two approaches to numerically

approximate (4.17)

ntl _ V(Lﬁ - M?—1)_ At[(l - OC)R? + OCRf_l] if v>0
i =i~ , , (4.19)
V(u?+1 - u?)— At[(l - oc)R? + ocR?+l] if v<O
which is Roe’s Upwind approach and
i o [l =) - AR = e+ i (1= 0 + ogly) i V>0
i = Ui _ (4.20)
V(e — 1))~ AR((1= o) i+ 0y, (1= 0)udl + 0ail) i v <O

Here, o0 = %2 also gives second order accuracy in the steady state for both schemes.
Vazquez and Bermudez[4] also discuss various choices of o and give some intervals
of absolute stability and positivity, where ¢ > 0, for the different values of o, which

are listed in Table 4-1.
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Scheme Interval Of Absolute Interval Of Absolute
Stability (¢>0) Positivity (¢>0)
AT
a=0 v+ —<1 v+AAL<1
o= vSland%Sl v<1and A <1
YVLY; 1-AAf
M~ < <
oc:%v(forR(x)only) vSland%Sl 5 <landvs A
2
0c=l vSland&SI v+&31and&3v
2 2 2 2

Table 4-1: Intervals of absolute stability and positivity for R(x,u) = -Au

Notice that when o = 0, both (4.19) and (4.20) become the Upwind scheme with
source term ‘added’ as discussed in Chapter 3, Section 1.

This approach can be easily adapted to numerically approximate (4.1) by re-writing

(4.19) and (4.20) as

i o |strr= ) ada-o)ri+ R if b0 0
Ui ~ui— . , 4.21)
S(f:l+l - f,n)_ Ar[(1- Oﬂ)R:‘l +oR ] if vi,<0
which is Roe’s Upwind approach, and
ntl _ n (f - fi 1) AIR(( )xi + (xxi—la(l - Oﬁ)u? + Oﬁu?_1) if vi,>0 4.22)
ui —u - . .
S(fj:_l - fi )— AIR((I - (X)xi + Ol X1 (1 - O(,)u? + OLM?H) if Vit < 0

Here, both (4.21) and (4.22) are first order accurate schemes but we can obtain second

order accurate schemes by using

s(ri= rr e S amvan = £ Qv - 710
ntl _ _Al[(l OL)R?"'O(‘R?—l] if vi,>0
ui Ui —
A S (RSO (S 1) N R (F )
_Al[(l OL)R7+O¢R?+1] if y,,,,<0

and
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n+tl _ n

U S (B (S ) S (S GRS
- AIR((I - OC)XI' + O xi1s (1 - Oﬂ)uln + Oﬂu?—l) if vi,>0
S(f?H - f?)_ % [(1+Vi+1/2)(f?+1 - f?)_ (1+Vi—1/2)(f? - f?—l)]

—AtR((l—Oﬁ)xi +(Xx,‘+1,(1_0()u:'1+0(u7+1) if v;,,<0

Also, we can apply the flux-limiter method to obtain

and

1

1- n rooif 0
PPl eard R
(l—(X)R?+(XR?+1 if v;4,<0
u?‘”:u?—s[F(u;i)—F(u;i—l)]
+ A’{R( 1= 0)x;+ Oxiy, (1= )il + 0y) i w12 >0 (4.24)
R(1—oc)x,-+ch,~+1,(1—06)u?+06u?+1) if y,1,,<0

where

and

Fuwsi)=Fo i)+ Fo (i),
Pl oy >0

FL(u,l): f; ' Vi+1/2
fl-+1 if Vi+l/2<0

P (u'i)— 1 (I—Vi+1/2)(f7+1 - f?) if y,p>0
H b ) — " .
21— (1+Vi+1/2)(f:l+1 - f,n) if i, <0

Here, ¢; represents the flux-limiter, which can be any of the second order flux-limiters

in Table 2-3.
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4.2.3 Some Numerical Results for the Explicit
Upwind Approach

Now, by using (4.24) to numerically approximate the test problem (4.2), we may

obtain the numerical results in Figure 4-4.

Comparison of schemes based on Roe's Upwind approach with dx
=0.01, dt =0.001 and t = 0.5.

1.4

1.2

0.6 \

u(x,t)

0.4
0.2 ‘
0 T T T T T T T T L |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.2

X

|—Exact — Upwind (first order)  Lax-Wendroff — Lax-Wendroff + TVD|

Figure 4-4: Comparison of schemes based on Roe’s Upwind approach.

Here, we can see that Roe’s upwind approach is giving some very accurate results,
especially for the second order Lax-Wendroff plus Superbee flux-limiter, but the
results are not as accurate as in Figure 4-1, where we ‘added’ the source term, and
Figure 4-2, where we used the Lax-Wendroff approach. However, we will see later
that, in general, Roe’s Upwind approach is a lot more accurate at numerically
approximating (4.1) than ‘adding’ the source term and the Lax-Wendroff approach,

especially when the source term is stiff.
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4.3 Implicit Upwind Approach

Embid, Goodman and Majda[2] discussed some different approaches for numerically

approximating

ou  of (u) _
TR = R(x,u) (4.25)

where the source term must be of the form

R(x,u)z e(x)g(u).
They discussed the first order Engquist-Osher scheme, with switching through zero,
and a second order Upwind approach based on the Engquist-Osher approach. Here,
we will use the analysis of Embid, Goodman and Majda[2] to derive a first and

second order implicit Upwind scheme with the source term ‘added’ implicitly.

4.3.1 First Order Implicit Upwind Approach

The first scheme that we will discuss is the implicit first order Upwind approach with

the source term ‘added’ implicitly, i.e.

(f:lﬂ_f:il) if y;,,>0

N ) . (4.26)
(f:l+11_f,- 1) if v;,<0

+1 __ +1
i =u; AR — s

Here, we will need to re-arrange (4.26) into the system

Aun+1 — G
where A is a ([+1) x (/+1) matrix and G is a (I+1) column vector, and solve this
system at every time step. However, difficulties can arise when re-arranging (4.25)

into system form. Consider (4.26) when y,,,,,>0
u =+ AR = (- )
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and, by re-arranging we may obtain
n+1 + S(‘f”+1 _ f?jll)_ AtR:Hl — l/l?
and since R(x,u)= e(x)g(u)

W+ s = )= A =l 4.27)

However, the second and third terms on the left-hand side of (4.27) create difficulties
since they are functions of u and so we cannot re-arrange (4.27) into system form.

We can overcome this problem by using Taylor’s theorem, i.e.

n+l n +1_ a
= pieler-af 2+

and

=] 5+

ou

Now by substituting into (4.27)

wof st [t 4] |

(e dag |
- Atei[g + (u," ! u?){g} ] =u;
ou |,
and by re-arranging we may obtain

(01— {m[gf; } Ae[giH S(uf_ﬁl—uf_l){gj;l1=Ate,-g:-1—s(f7_f?_1) (4.28)

where y,,,,,>0. Similarly, we may obtain

(u?ﬂ—u?{l—{gj;} —Ate,-BftHﬂ(uﬁl—u, )Bﬂ = A" —s(f7 - 1) @29
[ [ i+1

1 i

where y,,,,,<0. Hence, by combining (4.28) and (4.29), we may now obtain the

system form

68



b do 0 0 0 .. 0T w-u] [Goalei'=un)]
ai b1 dl 0 0 0 u;lJrl_u;l G
0 a b d- 0 0 st —ub G2
e T T : : = : (4.30)
0 ... 0 o bio dia O |uiB—uls G-
0O ... 0 0 am bia dia | ui—uls G
0 .. 0 0 0 a bl |Gi-diln—ul)
where
" (f?‘f?,l) if y;,1,>0
Gi:Ateig,‘_s n A ’
(fm—f,-) if y;12,<0
0 if y;,,,,>0
|:af} if vi2>0 "
a; = au s di: af
) lf Vist2 <0
O lf Vi+1/2<0 au
and
o | 0
bi=1+5gn(v;y2)s f — Ate; g
ou |, ou |,

Here, A is a tri-diagonal matrix and so, this system does not require too many

"

calculations and since f and g are known functions of u, we can approximate {a}
u |.
1

4.3.2 Second Order Implicit Upwind Approach

We can also obtain a second order approximation by using the implicit second order

Upwind approach with the source term ‘added’ implicitly, i.e.

s (3 Vie 1/2)(](”“_](?:1) (l —Vi- 3/2)(][,%11_][,%21) if vi,p>0

4.31)
2| = Qerviea )P = £ Qi+ 3N = £77) By <O

+1 __ +1 _
i =u;i t AR}

We will need to re-arrange (4.31) into system form and solve for each time step in the

same way we did in the previous sub-section to obtain
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o T_, [0
(u?+1_u?{1+%(3—\)i1/2)l:aj; l Ate’{aﬂ }

2

—i(uﬁl_u, 114 —Vi1/2 7 Vi- 3/2]‘:af} 2(1/[1”+1 ui- ll Viz3/2 l:afjl (4.32)
i1 )

du du

= Ate:g; _5[(3 Vi- 1/2)(fn+1—f7_+11)_ (1—Vi—3/2)(f?_+11_f?-+21)]

where y,;,,,,>0 and

( ?+1_u?{1 ;(v,+1/2+3){gj; 1 Atel[gi l}

S
+—
2

Where Vis1/2 < 0 .

system form

bo do ko O

d
(um ul+1l4 tvipnt Vl+3/2]‘: f }
41

d
> (u?:z uz+2X1+Vl+3/z)l: f} (4.33)
i+2

Ju 2 Jou

= Ateig,r-l - % [_ (1+V5+3/2)(f?+2 f,+1)+ (V,+1/2 + 3)(f,+1 f )]

Hence, by combining (4.32) and (4.33), we may now obtain the

0 0 o7 ug™ = ug | Go—ao(u 1

)= o3 ) |

—u-

a b d kO 0 ... 0| u'=ul G- ll( eyt 1)

L a b do ke 0 ... 0| 5" G»

0 . . . . f : ) .

: L 0 : - :

0 ... 0 lio a2 b2 di2 ki Lt?% Lt1 2 G-

0 ... 0 O [ am b dia | ufi—uls Groi—kia (Lt’;ﬂ—u?u)
_O .. 0 0 0 y ar b A MIIHI_MI 1 LGi—d: (M;lﬂ_ul;ﬂ)_kl(u?g_M?+2)_
where

. s |B-vi 1/2)(fn+1—f7+11) (1- Vi—sfz)(f?jll - f:ljzl) if yip >0
G =Ate: 8; — 5 n+l n+l n+l n+ly) . ’
(v )= )+ G430 = £77Y) 1y <O

S

of | .
/= 2[1 % 3/2][81412 Visl/2

0 if v2<0

2
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s of | .
——l4—vin—vi- o if vi2>0
= ) [ Vi-1/27V 3/2][au 1_1 Vitl/2 ,
0 if v,2<0
b=l As ag n_i af " |vic2-3 i v >0
' ¢ au i 2 au i Vi+1/2+3 lf V[+1/2<O,
0 if y;,,>0
di=1s d 5 .
= [4+Vi+1/2 + Vi+3/2] i if y;,4,<0
2 au i+1
and
0 if y;12,>0
ki= S d i . .
- 5 [1+Vi+3/2]‘:a];j| if y;,1,,<0
2

Here, A is a penta-diagonal matrix and unfortunately requires a lot more calculations

than before resulting in the interval of absolute stability and the accuracy of the

scheme being reduced. However, Embid, Goodman and Majda[2] discussed using the

first order tri-diagonal matrix for the second order Upwind approach based on the

Engquist-Oscher scheme to increase the interval of absolute stability. Using the same

approach, we can obtain the second order implicit Upwind approach, i.e.

o do 0 0 0 0T w"=ut | [ Go—aolui'=ut)
a b di 0 O 0 | wl™—ul G
0 a b d> 0 0 u§+l - ug G2
T ' : : = : (4.34)
0 0 a> bio dio 0 |ui—uls G2
0 0 0 au b dia | uifi—ul Gia
0 0 0 0 a b | uw-ui] |G —dz(u7+1—u7+1)_
where
w8 (3—Vi—1/2)(f:l+1 - fﬁl)_ (1—Vt—3/2)(f?§l - f:ljzl) if yiyp>0
Gi=Ate; 8; == 3 ntl et nil o) . ’
2 { (1+Vi+3/2)(fi+2 fin )+ (Vi+l/2 + 3)(f;+1 I ) if y;,p<0
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if yi12,>0

|:af :|" 0 if yi2>0
—g|
a[ = .

" i1 . S ai if vi+l/2<0
0 if y12,<0 du |,
and
of ' dg |’
bi=1+sgn(v;y2)s i — Ate; 8 .
ou |; ou |,

They also state that by using the first order matrix, the interval of absolute stability
increases resulting in a more robust scheme. We can also apply flux-limiter methods
to (4.34) to minimise any oscillations present in the numerical solution. This is

obtained by replacing G; in (4.34) with

Gi=Atei g —[F (i) - Flusi—1)]

where
Fusi)= Fo(wsi)+ Fr (i),

and

" pn>0
[

no
fin i viup<O0

—v; = if . 0
FH(u;i)zl{(l V'—Uz)(fl fl-1) L yiyp >

2 |- (1+Vi+3/2)(f?+2 - f:l+1) if Vielp < 0 .

where ¢; represents the flux-limiter, which is described in more detail in Chapter 2,

Section 5.

4.3.3 Some Numerical Results for the Implicit
Upwind Approach

If we apply (4.30) and (4.34) with and without flux-limiter to the test problem (4.2),
we may obtain the numerical results in Figure 4-5. Here, we can see that the results of
the first order implicit Upwind approach are quite accurate but the method suffers
from dissipation. Also, notice that the second order implicit Upwind approach

produced the most accurate results.
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Implicit Upwind approach with dx = 0.01, dt = 0.001 and t = 0.5.

u(x,0.5)

X

‘— Exact — First Order  Second Order‘

Figure 4-5: Comparison of schemes based on the implicit Upwind approach.

4.4 LeVeque and Yee’s MacCormack Approach

In this sub-section we will look at how the MacCormack scheme, which is listed in
Table 2-1, can be adapted to numerically approximate (4.1). This approach is
frequently used and was discussed by Yee[5], LeVeque and Yee[l] and Embid,

Goodman and Majdal[2].

4.4.1 Explicit MacCormack Approach

We can approximate (4.1) by expanding on the explicit MacCormack scheme. The
MacCormack method is the Lax-Wendroff scheme re-written in predictor-corrector

form, i.e.

W = 2 (1) [f(l) (1) (4.35)

where
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1 —

u’ == s(f1,- 17)
for the conservation law without source term. We can adapt (4.35) to include the

source terms explicitly and still maintain second order accuracy, i.e.
H_ (1) M _ (1) R
W = [f D] arRe (4.36)
2 2
where
=== 1 ek
Here, if flu) = 0, then (4.35) reduces to the standard two-stage Runge-Kutta method.

Yee[5] also discussed a modified-flux approach for (4.36) which is

nt+l _ (2) (2) (2)
Ui + [¢i+1/2 - (I)H/z (4'37)
where

1 s M
== +u§1))—§[ffl) (1)]"' At R2

u =ul - s(f,+1 f?)+ AR}

1

_ .2 (2) (2)
_HV:‘+1/2| Vit1/2 kum Ui Qm/z)

(2)  _
¢i+l/2 - B

and Q. ,1s chosen from Table 4-2.

Some choices of Q,,,,, where Ai12=uiv—u; -

Q;.1,,=Mmin mOd(AHl/Z’Ai 1/2)"‘ mland(Ai+l/2’Ai+3/2)_ Ait112
Qi mlnmod(A, 1/27A1+l/2’A1+3/2)

) 1
0,1, =min mOd(zAi—UZ72Ai+l/272Ai+3/2’§(Ai—1/2 + Ai+3/2))

Table 4-2: Some choices of Q

i+1/2°

Here, (4.37) is only TVD if R(x,t,u) = 0, otherwise Yee[5] states that (4.37) satisfies
the TVD properties as far as the numerical results are concerned, but is extremely

difficult to prove that it is TVD.
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4.4.2 Semi-Implicit MacCormack Approach

Yee[5] and LeVeque and Yee[1] also discuss an approach which considers the source
term approximation to be at (i,n+1) but still uses the explicit MacCormack scheme

resulting in a semi-implicit scheme. This approach is obtained by re-writing (4.36) as
=+ =) =)

where

(- u)= [f(“ “)]+ At[gr+]"
and
=)= —S(f,'L —f7)+ AR
Now by using Taylor’s theorem
R =R+ - )Bﬂj+

we may obtain

= L ) -]

where

M
( @) _ <1> _S [f(“ <1>]+ AzR“)+At6( @ _ (1))[31:}

and

u == (o= )+ AcRE+ A0 - {gRT
u

where 0<6<1. Hence, by re-arranging we may obtain

ﬂ“—m+;K§” )+ (=) 438)

the semi-implicit MacCormack approach where

[1 At@BR} :I(u,@) ~ul")= —s(fff1 - f<”)+ AR}

u |

and

{1 Ate{gﬂ ](u(- '—ut)= =1 f1)+ AR
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Yee[5] discusses various choices of 0 and deduces that we can obtain second order by
o= 1 . ) ) .
setting 0 =5. We can also apply the modified flux described in the previous sub-

section by re-writing (4.38) as

u =+ 00— 0%, (4.39)
where ]
{1A6BR} (2 =) =s{r - 70 A
{1 - Até{(;]:_j(u?) —u)= _s(f?H - f" )+ AR}
and _

@ _1 _ 2 k(z)_ 2 _ )
¢i+1/2_5|i\/i+1/2| Vit172 Nbi+1 — Ui Qi+1/2

and Q.,,,,1s chosen from Table 4-2.

4.4.3 LeVeque and Yee’s Splitting Method for the
MacCormack Approach

LeVeque and Yee[l] also discuss a splitting method for the semi-implicit
MacCormack approach discussed in this sub-section. The splitting method alternates

between solving the conservation law with no source term

ou  of(w) _ (4.40)
ot ox

and then solving the ordinary differential equation

ou

EzR(x,t,u), (4.41)

1.e.

W™ =8, (Ar)s, (Ar)u
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where §, (At) denotes the numerical solution of (4.40) and §, (Ar) denotes the

numerical solution of (4.42). LeVeque and Yee[l] also state that in order to obtain

second order accuracy, we can use the Strang splitting [11] to obtain

At At
ult = SW(T)S,,- (At)SW( T)u? (4.42)

where (Ar) denotes the numerical solution of (4.40) and SW(%) denotes the

numerical solution of (4.42). They also give a splitting method of the form (4.42) for
the semi-implicit MacCormack approach with TVD discussed in the previous sub-

section:

o)

{1—%‘“} }(u?—u,”):gR?

41| ou | 2
us =l + (=)
5.(a0): (=)= (- 1)
0 =1+ =)

@ _ )= _of D _ <1>)
(Mi Ui )_ s(fm /i

w_(2) [x o ]
ui =u; t ¢i+1/2 (l)i—llz .

{1_%‘“} }(uf*—u,@):ﬂﬁ

4| du 2
W=+ - u®). (4.43)
Here
¢,~+1/2 = 5 ﬁVi+l/2| - Vi2+1/2 kbtm Ui Qi+l/2)

where Q.. ,,,is chosen from Table 4-2. We can also replace ¢,,,, with ¢, ,,.
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4.4.4 Some Numerical Results for the MacCormack
Approach

If we apply (4.37), (4.39) and (4.43) with and without TVD to the test problem (4.2),
we may obtain the numerical results in Figure 4-6 and Figure 4-7. Here, we can see
that all three approaches give practically the same results but, as with the Lax-
Wendroff approach, this will not always be the case.

Throughout this chapter, we have seen that there are a variety of methods used for
approximating conservation laws with a source term present, which is a function of x,
t and u. We have also obtained some very accurate results but in the next chapter, we
will see that the different approaches discussed throughout this project are not so

accurate when the source term becomes stiff.
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u(x,0.5)

u(x,0.5)

MacCormack approach with dx = 0.01, dt = 0.001 and t = 0.5. No limiter.

—0—041 02 03 —04 —05

X

|— Exact — Explicit  Semi-implicit  Splitting |

Figure 4-6: Comparison of explicit, semi-implicit and splitting method for
MacCormack approach.

MacCormack approach with dx = 0.01, dt = 0.001 and t = 0.5. Limiter based on
u(1).
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X

‘— Exact — Explicit ~ Semi-implicit - Splitting ‘

Figure 4-7: Comparison of explicit, semi-implicit and splitting method for
MacCormack approach with TVD.
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5 Some Numerical Results

In this chapter, we will apply the different approaches discussed throughout this
dissertation to a specific test problem (5.1) which was considered by LeVeque and
Yee[l], i.e.

9 _ k), (5.1)

where

with initial data

1 if x<0.3
0 if x>03

u(x,0)= {

and whose exact solution, which is shown in Figure 5-1, is

1 if x<03+¢

) ) (5.2)
0 if x>03+¢

u(x,;):{

Here, Aru determines the stiffness of (5.1) and as spu becomes greater than 1 the
propagation speed of some approaches can be greatly affected. When Aru > 1, the
source term is said to be stiff since, for most approaches, we can no longer choose an
adequate step-size in time to produce accurate results. A stiff source term moves the
discontinuity to a cell boundary for each time step resulting in the discontinuity being
moved at entirely the wrong speed. For example, if we apply the Lax-Wendroff
approach (4.8) to the test problem (5.1), with uw = 1, 10, 100 and 1000, then we may

obtain the numerical results in Figure 5-2, Figure 5-3, Figure 5-4 and Figure 5-5
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respectively. Here, we can see that as A7y increases, the source term becomes stiff
and the numerical approximation becomes less and less accurate. This is because as
At increases, the discontinuity moves slower and slower which means that when the
source term is stiff, the scheme is no longer conservative. However, not all of the
schemes discussed in Chapter 4 will exhibit this behaviour, as we will see later.

We will use test problem (5.1) to compare the results of some of the methods
discussed throughout this dissertation to ascertain which approach produces the most
accurate results by seeing which approaches are conservative as the source term

becomes stiff.

Name Of Approach Reference No. | Order Paper
Explicit ‘adding’ (4.5) 1/2 -
Semi-implicit ‘adding’ (4.7) 1/2 -
Lax-Wendroff (4.8) 2 -
MPDATA 4.9) 2 Smolarkiewicz + Margolin[3]
Roe’s Explicit @21 1 Roe]6],
Upwind | ) Vazquez + Bermudez[4]
Roe’s Exphcn (4.23) ) Roel6],

Upwind II Vazquez + Bermudez[4]
Implicit Upwind [ (4.30) 1 Embid, Goodman + Majda[?2]
Implicit Upwind II (4.34) 2 Embid, Goodman + Majda[2]

.. Yee[5],
Mali’é%l;fr‘l;ck 4.37) 2 LeVeque + Yee[1],
Embid, Goodman + Majda[2]
Semi-Implicit Yee[5],
MacCormack (4.39) 2 LeVeque + Yee[1]
Splitting Method
( MacCormack ) (4.43) 2 LeVeque + Yee[1]

Table 5-1: Some different approaches for numerically approximating (5.1).

We will be discussing the results of the schemes listed in Table 5-1 which can also be

found in Appendix A where they are written in full.
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5.1 Explicit and Implicit ‘Adding’ Approach.

Now, by applying (4.5) and (4.7) to the test problem (5.1), we may obtain the
numerical results in Figure 5-6, Figure 5-7 and Figure 5-8. Here, Figure 5-6 and
Figure 5-7 show similar results, where the Lax-Wendroff with source term ‘added’ is
the least accurate since the method moved the discontinuity the slowest resulting in
the discontinuity being at approximately x = 0.45 at # = 0.5 instead of at x = 0.8 att =
0.5. The Upwind with source term ‘added’ was the second most accurate since the
discontinuity was at approximately x = 0.63 at # = 0.5 instead of at x = 0.8 at r = 0.5.
The Lax-Wendroff with Superbee flux-limiter and source term ‘added’ gave the most
accurate results since the discontinuity was at approximately x = 0.73 instead of at x =
0.8 at t = 0.5. Also notice how the Upwind, Lax-Wendroff and Lax-Wendroff with
Superbee flux-limiter all gave very ‘steep’ discontinuities with no dissipation present
but each method varied considerably as to where the discontinuity was at ¢ = 0.5.
Figure 5-8 shows us that even though the numerical results in Figure 5-6 and Figure
5-7 look similar, they are not. Here, we can see that the semi-implicit approach is
more accurate than the explicit approach since the discontinuity of the semi-implicit
approach is nearer to x = 0.8 at r = 0.5 than the discontinuity of the explicit approach.
Hence, in general the semi-implicit approach is more accurate than the explicit
approach.

Notice how the ‘adding’ approach is no longer conservative when the source term is
stiff.  This is because the interval of absolute stability of the source term
approximation with u = 1000 is very small and has been breached resulting in the
discontinuity being moved at the incorrect wave speed. Thus a very small step-size

would be required to ensure stability of the source term approximation resulting in the
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scheme being impractical for approximating conservation laws with a stiff source

term.

5.2 Lax-Wendroff approach

Now, by applying (4.8) to the test problem (5.1), we may obtain the numerical results
in Figure 5-9. Also, by using the numerical results in the previous subsection, we
may obtain the numerical results in Figure 5-10. Figure 5-9 shows similar results to
that of Figure 5-6 and Figure 5-7 where the source term was ‘added’ explicitly or
semi-implicitly. But if we look at Figure 5-10, we can see that the Lax-Wendroff
approach is more accurate than the explicit ‘adding’ approach but less accurate than
the semi-implicit ‘adding’ approach. However, there is very little difference in these
approaches since they all placed the discontinuity at approximately x = 0.73 at r = 0.5
instead of at x = 0.8 at r = 0.5. So these schemes are no longer conservative when the

source term is stiff.

5.3 MPDATA Approach

Now, by applying (4.9) to the test problem (5.1), we may obtain the numerical results
in Figure 5-11. Here, we can see that the MPDATA approach has numerically
approximated (5.2) considerably more accurately, placing the discontinuity near x =
0.77 at t = 0.5, than the previous two approaches, which placed the discontinuity at
approximately x = 0.73 at # = 0.5. The MPDATA approach with Superbee flux-limiter
is not much more accurate than without Superbee flux-limiter whereas in the previous

two cases, the results with TVD were considerably more accurate than without TVD.
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The MPDATA approach is the first method that has ensured conservation when the
source term is stiff. This is because the MPDATA approach compensates for the
terms in the truncation error due to the source term approximation resulting in a

conservative method even when the source term is stiff.

5.4 Roe’s Upwind Approach

Now, by applying (4.21) and (4.23) to the test problem (5.1), we may obtain the
numerical results in Figure 5-12. Here, we can see that by using (4.21), the method
has moved the discontinuity too fast. The discontinuity should be at x = 0.8 at = 0.5
but the first order explicit Upwind approach has placed the discontinuity at
approximately x = 0.85 at t = 0.5. However, the first order explicit Upwind is the
most accurate numerical approximation out of the three displayed in Figure 5-12. The
second order Upwind method failed to move the discontinuity at all and produced
oscillations on both sides of the discontinuity. The second order Upwind method with
Superbee flux-limiter moved the discontinuity too fast resulting in the discontinuity
being at approximately x = 0.9 at = 0.5 instead of at x = 0.8 at # = 0.5. This shows us

that Roe’s Upwind approach is no longer conservative when the source term is stiff.

5.5 Implicit Upwind Approach

Now, by applying (4.30) and (4.34) to the test problem (5.1), we may obtain the
numerical results in Figure 5-13. Here, we can see that the second order implicit
Upwind has produced the most accurate numerical results seen so far. Also notice

how the first order implicit Upwind approach has given the least accurate results due
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to the discontinuity moving too slow resulting in the discontinuity being at x = 0.6
when ¢ = 0.5 instead of at x = 0.8 when 7 = 0.5. Hence, the first order implicit Upwind
approach is no longer conservative when the source term is stiff but the second order
implicit Upwind approach is conservative when the source term is stiff and produces

very accurate results.

5.6 MacCormack Approach

Now, by applying (4.37), (4.39) and (4.43) to the test problem (5.1), we may obtain
the numerical results in Figure 5-14, Figure 5-15, Figure 5-16 and Figure 5-17. Here,
we can see that Figure 5-14 and Figure 5-15 are showing similar results where the
numerical results obtained without a limiter are the least accurate, the numerical
results obtained with a »" limiter give the second most accurate results and the u®
limiter gives the most accurate results. However, in Figure 5-16 even though the
results are similar to Figure 5-14 and Figure 5-15, the most accurate numerical results
are with the limiter »” and the second most accurate numerical results are with the
limiter u®. Figure 5-17 also shows us that the Splitting method produces the most
accurate numerical results followed by the semi-implicit MacCormack approach and
then the least accurate was the explicit MacCormack approach. So, overall the
Splitting method is the most accurate but all methods are no longer conservative when
the source term is stiff.

LeVeque and Yee[1] also observed that the explicit MacCormack approach, the semi-
implicit MacCormack approach and the splitting method were no longer conservative
when the source term is stiff. Their results, with Ax = 0.02 and A¢ = 0.0015, showed
that the splitting method moved the discontinuity too fast and the semi-implicit

method moved the discontinuity too slow, if at all, when the source term was stiff.
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5.7 Overall Comparison

So far, we have looked at each approach individually but we will now compare all of
the different approaches listed in Table 5-1 to see which approach produced the most

accurate numerical results when applied to the test problem (5.1).

5.7.1 First Order Comparison

If we apply all the first order approaches listed in Table 5-1 to the test problem (5.1),
then we may obtain the numerical results in Figure 5-18. Here, we can see that Roe’s
Upwind approach has obtained the most accurate numerical approximation.
However, Roe’s Upwind approach is not very accurate since the numerical
approximation moved the discontinuity too fast resulting in the discontinuity being at
x = 0.85 when ¢t = 0.5 instead of at x = 0.8 when ¢ = 0.5. The explicit ‘adding’
approach and the implicit Upwind approach both gave very similar results and were
the least accurate due to both schemes moving the discontinuity too slow resulting in
the discontinuity being at approximately x = 0.6 when ¢ = 0.5. The semi-implicit
‘adding’ approach was the second most accurate but also moved the discontinuity too
slow resulting in the discontinuity being at approximately x = 0.65 when ¢ = 0.5.
Hence, overall all first order schemes either moved the discontinuity too fast or too
slow when the source term is stiff resulting in an inaccurate numerical approximation

of the test problem (5.1).

5.7.2 Second Order Comparison

If we apply all the first order approaches listed in Table 5-1 to the test problem (5.1),
then we may obtain the numerical results in Figure 5-19. Here we can see that the
most accurate second order approach was the implicit Upwind followed by the

MPDATA approach. The semi-implicit ‘adding’ approach, semi-implicit
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MacCormack approach, explicit ‘adding’ approach, Lax-Wendroff approach, explicit
MacCormack approach and Splitting method based on the MacCormack approach all
gave similar inaccurate results. They all moved the discontinuity too slow resulting in
the discontinuity being at approximately x = 0.45 when ¢ = 0.5 instead of at x = 0.8
when ¢t = 0.5. Also, notice how Roe’s Upwind approach failed to move the
discontinuity at all. Hence, the most accurate second order scheme was the implicit
Upwind approach followed by the MPDATA approach with the implicit Upwind
giving very accurate results and the MPDATA approach giving accurate results.
Here, most of the schemes were not conservative except for the second order implicit

Upwind approach and the MPDATA approach.

5.7.3 Second Order with TVD Comparison

If we apply all the first order approaches listed in Table 5-1 to the test problem (5.1),
then we may obtain the numerical results in Figure 5-20. Here, we can see that the
explicit MacCormack approach, semi-implicit MacCormack approach and the
splitting method, based on the semi-implicit MacCormack approach, all produced the
least accurate results. This is because the MacCormack approach moved the
discontinuity too slowly resulting in the discontinuity being at approximately x = 0.6
when ¢ = 0.5 instead of at x = 0.8 when ¢ = 0.5. The explicit ‘adding’ approach, semi-
implicit ‘adding’ approach and the Lax-Wendroff approach all produced the second
least accurate results. This is because the ‘adding’ approach and the Lax-Wendroff
approach moved the discontinuity too slowly resulting in the discontinuity being at
approximately x = 0.73 when ¢ = 0.5. The implicit Upwind approach, which produced
the most accurate results in the second order comparison, produced the second least
accurate results. Here, the method has moved the discontinuity too fast resulting in

the discontinuity being at x = 0.95 when ¢ = 0.5. Roe’s Upwind approach, which
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failed to move the discontinuity at all in the second order comparison, also produced
the second most accurate set of results. However, the results of Roe’s upwind
approach were not very accurate since the method moved the discontinuity too fast
resulting in the discontinuity being at approximately x = 0.9 when ¢ = 0.5. The most
accurate method for the second order approach with TVD was the MPDATA
approach. The MPDATA approach moved the discontinuity too slow resulting in the
discontinuity being at approximately x = 0.78 when ¢ = 0.5. All of the schemes with

TVD are no longer conservative when the source term is stiff.

5.7.4 Conclusion

Hence, overall the second order approach with TVD did not necessarily produce more
accurate results than without TVD. In fact the most accurate results were obtained by
not using TVD where two of the approaches were conservative when the source term
was stiff. However, some of the approaches improved when TVD was applied and
others became less accurate. This is because in most cases, when TVD was applied
the discontinuity would move faster. In addition, the majority of first order
approaches produced extremely inaccurate results except for Roe’s Upwind approach

which slightly overshot the discontinuity.

5.8 Changing the Step-Size when the Source Term is
Stiff

Throughout this section, we have only considered the numerical results using Ax =
0.01 and Ar = 0.001, which implies that the Courant number is s = 0.1. However,

when the source term is stiff, the accuracy of some of the schemes can vary if the

step-size is changed. For example, if we use the first order explicit Upwind approach
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(4.21) on the test problem (5.1) with Ax = 0.02 and A¢ = 0.0025, which implies that
the Courant number is s = 0.125, then we may obtain the results in Figure 5-21. Here
we would expect the results to be less accurate than the results shown in Figure 5-12
but Figure 5-21 shows that the results of the first order explicit Upwind approach are
more accurate since the approach moved the discontinuity slower than in Figure 5-12.
L.e. when we used Ax = 0.01 and Ar = 0.001 the explicit first order Upwind approach
moved the discontinuity too fast resulting in the discontinuity being at approximately
x=0.85at r = 0.5 instead of at x = 0.8 at t = 0.5. However when we used Ax = 0.02
and Ar = 0.0025 the explicit first order Upwind approach moved the discontinuity a
little slower than with Ax = 0.01 and Az = 0.001 and approximated the discontinuity at
x=0.8 at t =0.5. This shows us that the speed of the discontinuity depends greatly on
the Courant number and as the Courant number decreases, the speed of the
discontinuity increases. Also notice how the results in Figure 5-21 of the explicit
second order Upwind approach with or without Superbee flux-limiter are similar to
the results in Figure 5-12. Hence, for the explicit first order Upwind approach a small
step-size does not always give the most accurate numerical approximation but Figure
5-22 shows us that if the Courant number becomes too large then the numerical
solution becomes unstable.

Throughout this chapter, we have seen that if the source term is stiff then the majority
of approaches discussed in this dissertation are no longer conservative, i.e. most of the
approaches moved the discontinuity too slow or too fast. However, we have obtained
some very accurate numerical results when the source term is stiff. In Chapter 6, we
will compare the most accurate approaches of the first order, second order and second

order with TVD to see which approach is the most accurate overall.
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u(x,t)

u(x,t)

The exact solution of (5.1) with t = 0 to 0.5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X

(—0—01 02 03—04—05]

Figure 5-1: The exact solution (5.2).

Lax-Wendroff approach with dx = 0.01, dt = 0.001 and t = 0 to 0.5.
Mu=1.

X

—0—0.1 02 03—04—05]

Figure 5-2: Lax-Wendroff approach applied to (5.1) with p = 1.
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u(x,t)

u(x,t)

Lax-Wendroff approach with dx = 0.01, dt = 0.001 and t = 0 to 0.5.
Mu = 10.

X

—0—01 02 03—04—05]
Figure 5-3: Lax-Wendroff approach applied to (5.1) with u = 10.

Lax-Wendroff approach with dx = 0.01, dt = 0.001 and t = 0 to 0.5.
Mu = 100.

X

—0—0.1 02 03—04—05]
Figure 5-4: Lax-Wendroff approach applied to (5.1) with u = 100.
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u(x,t)

u(x,0.5)

Lax-Wendroff approach with dx = 0.01, dt = 0.001 and t = 0 to 0.5.
Mu = 1000.

X

—0—0.1 02 03—04—05]
Figure 5-5: Lax-Wendroff approach applied to (5.1) with u = 1000.

Comparison of explicit 'adding' schemes with dx = 0.01, dt = 0.001
andt=0.5.

X

\— Exact —Upwind  Lax-Wendroff — Lax-Wendroff +TVD

Figure 5-6: Explicit ‘adding’ approach with stiff source term.
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u(x,0.5)

u(x,0.5)

Comparison of semi-implicit 'adding’' schemes with dx =
0.01, dt =0.001 and t = 0.5.

X

\— Exact —Upwind  Lax-Wendroff — Lax-Wendroff + TVD

Figure 5-7: Semi-implicit ‘adding’ approach with stiff source term.

Comparison of explicit and semi-implicit 'adding' approach with
Lax-Wendroff + TVD, dx = 0.01, dt = 0.001 and t = 0.5.

X

‘— Exact — Explicit Semi-implicit‘

Figure 5-8: Comparison of explicit and semi-implicit ‘adding’ approach.
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u(x,0.5)

u(x,0.5)

Comparison of Lax-Wendroff approach with dx = 0.01, dt = 0.001
and t = 0.5.

X

|—Exact —Upwind  Lax-Wendroff — Lax-Wendroff + TVD|
Figure 5-9: Comparison of Lax-Wendroff approach.

Comparison of Lax-Wendroff with Superbee flux-limiter and dx =
0.01, dt = 0.001 and t = 0.5.

X

‘— Exact — Explicit ~ Semi-implicit — Lax-Wendroff Approach ‘

Figure 5-10: Comparison of Lax-Wendroff with Superbee flux-limiter.
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u(x,0.5)

u(x,0.5)

MPDATA approach with dx = 0.01, dt = 0.001 and t = 0.5.

X

|—Exact —MPDATA  MPDATA + TVD|
Figure 5-11: MPDATA approach for stiff source term.

Comparison of approaches for Roe's Upwind approach with dx =
0.01, dt = 0.001 and t = 0.5.

X

\— Exact — Firstorder  Second order —— Second order + TVD \

Figure 5-12: Roe’s Upwind approach with stiff source term.
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u(x,0.5)

u(x,0.5)

Implicit Upwind approach with dx = 0.01, dt = 0.001 and t = 0.5.

X

‘— Exact — First Order  Second Order‘

Figure 5-13: Implicit Upwind approach with stiff source term.

Explicit MacCormack approach with dx = 0.01, dt =0.001 and t =
0.5.

X

\— Exact — No Limiter  Limiter based on U(1) —— Limiter based on U(2) \

Figure 5-14: Explicit MacCormack approach with stiff source term.
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U(x,0.5)

Semi-implict MacCormack approach with dx = 0.01, dt = 0.001 and t
=0.5.

u(x,0.5)

X

\— Exact — No limiter  Limiter based on U(1) — Limiter based on U(2) \

Figure 5-15: Semi-implicit MacCormack approach with stiff source term.

Splitting method (MacCormack approach) with dx = 0.01, dt = 0.001
andt=0.5.

X

\— Exact — No Limiter  Limiter based on U(*) — Limiter based on U(2) \

Figure 5-16: Splitting method (MacCormack approach) with stiff source term.
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Comparison of MacCormack approach with dx = 0.01, dt = 0.001
and t = 0.5.

u(x,0.5)

X

\— Exact — Explicit with limiter u(2) Semi-implicit with limiter u(2) —— Splitting with limiter U(*)

Figure 5-17: Comparison of MacCormack approach with stiff source term.

Comparison of first order schemes from table 5-1 with dx = 0.01, dt
=0.001 and t = 0.5.

u(x,0.5)

— Exact — Explicit 'adding' using Upwind
Semi-implicit ‘adding' using Upwind ~—— Roe's Upwind approach
— Implicit Upwind approach
Figure 5-18: Comparison of first order schemes listed in Table 5-1 with stiff source
term.
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Comparison of second order schemes listed in Table 5-1 with dx =
0.01, dt = 0.001 and t = 0.5.

u(x,0.5)

X
— Exact — explicit 'adding' using Lax-Wendroff
Semi-implicit 'adding' using Lax-Wendroff —— Lax-Wendroff approach
— MPDATA approach — Roe's Upwind approach
— Implicit Upwind — Explicit MacCormack
—— Semi-implicit MacCormack Splitting method (MacCormack)

Figure 5-19: Comparison of second order schemes listed in Table 5-1 with stiff source

term.

Comparison of second order schemes with TVD listed in Table 5-1
with dx = 0.01, dt = 0.001 and t = 0.5.

u(x,0.5)

X
— Exact — Explicit 'adding' using Lax-W endroff
Semi-implciti 'adding' using Lax-Wendroff —— Lax-Wendroff approach
— MPDATA approach — Roe's Upwind
— Explicit MacCormack — Semi-implicit MacCromack
Splitting (MacCormack)

Figure 5-20: Comparison of second order schemes with TVD listed in Table 5-1 with

stiff source term.
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u(x,0.5)

u(x,0.5)

Explicit Upwind approach with dx = 0.02, dt = 0.0025 and t = 0.5.

N / \\/ -+ v - N

X

\— Exact — Firstorder  Second Order —— Second Order + TVD\

Figure 5-21: Explicit Upwind approach with stiff source term.

Explicit Upwind approach with dx = 0.02, dt = 0.005 and t = 0.5.

X

\— Exact — First Order ~ Second Order —— Second Order + TVD \

Figure 5-22: Explicit Upwind approach with stiff source term.
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6 Conclusion

6.1 Final Comparison
Throughout this dissertation, we have discussed many techniques for numerically

approximating the conservation law with and without source term, i.e.

ou, of (u) _
= o = R(x,t,u) (6.1)

and encountered many difficulties, especially when the source term is a function of u.
We have also seen that numerically approximating source terms accurately can be
extremely difficult to do. However, we have managed to overcome the majority of
the difficulties encountered and we have obtained some very accurate finite difference
schemes, even when the source term is stiff.

For example, in Chapter 5, we applied the different approaches to the advection-
transport equation with a stiff source term, test problem (5.2), and compared the
numerical results to obtain the most accurate first order approach, second order
approach and second order approach with TVD. These three most accurate
approaches are compared in Figure 6-1. Figure 6-1 shows us that the most accurate
approach discussed in this project was the second order implicit Upwind approach.
Roe’s first order upwind approach moved the discontinuity too fast but this was due to
a small Courant number. If we increased the step-size, Roe’s first order Upwind
approach would give us more accurate results but not as accurate as the second order
implicit Upwind approach. Notice how the second order MPDATA approach with
TVD gave more accurate results than Roe’s first order Upwind but less accurate than

the second order implicit Upwind approach.
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Comparison of most accurate approaches with dx = 0.01, dt = 0.001
and t = 0.5.

o
S
X
1
X
— Exact — Roe's First Order Upwind Approach
Second Order Implicit Upwind ~—— Second Order MPDATA approach with TVD
Figure 6-1: Comparison of most accurate approaches with stiff source term.
Comparison ofsecond order Upwind with dx = 0.01, dt = 0.001 and t
=0.5.
o
S
X
1

X

|— Exact — Explicit  Semi-Implicit — Implicit|

Figure 6-2: Comparison of explicit, semi-implicit and implicit second order Upwind

with stiff source term.

102



This may be due to TVD causing the discontinuity to move faster, when the source
term is stiff, or may be due to an implementation problem.
So far, we have seen that the second order implicit Upwind approach has produced the
most accurate results. We have looked at a variety of techniques for numerically
approximating the source term but we wish to know which technique produces the
most accurate results. Figure 6-2 shows some numerical results using the second
order Upwind approach applied to the test problem (5.2) but with:
1. The source term and the conservation law approximated explicitly
(Explicit).
2. The source term approximated implicitly and the conservation law
approximated explicitly (Semi-implicit).
3. The source term and the conservation law approximated implicitly
(Implicit).
Here, we can see that the semi-implicit approach produced the least accurate results
due to the method moving the discontinuity too fast and the explicit approach
produced the second most accurate numerical results. This is unusual since we would
expect the semi-implicit approach to be more accurate than the explicit approach.
However, when we used the Lax-Wendroff approach, we saw that the semi-implicit
approach was more accurate than the explicit due to the discontinuity being moved
slightly faster for the semi-implicit approach, see Figure 5-8. Thus, the semi-implicit
approach moves the discontinuity slightly faster which makes all approaches which
move the discontinuity too slow, i.e. Lax-Wendroff with source term ‘added’, more
accurate but all approaches which move the discontinuity at the correct speed or too

fast, i.e. the second order Upwind approach, less accurate. The implicit approach
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produced the most accurate numerical results and also moved the discontinuity faster
than the explicit approach, but only a little.

So we can see that numerically approximating the conservation law with source term
can be very difficult to approximate accurately since the size of the Courant number
greatly influences the accuracy of the numerical approximation especially when the
source term is stiff. Le. applying TVD can cause the discontinuity to move faster
when the Courant number is too small. Also, we must be careful when choosing
whether to use an implicit, semi-implicit or explicit approach since this also affects

the speed of the discontinuity.

6.2 Further Work

In this dissertation, we have only considered a small amount of numerical techniques
for numerically approximating the conservation law with source term. We could
apply finite volume methods, finite element methods or a whole range of other
techniques to numerically approximate the conservation law with source term. We
have only looked at numerical results for the advection-transport equation and
advection equation and not even considered the inviscid burger equation, etc. Also,
we have only briefly looked at splitting methods and high resolution methods, i.e.
flux-limiter methods. We have also only considered the courant number for v = 0.1
where Ax = 0.01, Az = 0.001 and ¢ = 1. Also, we have not considered a system form
of the conservation law with source term, i.e. the Shallow Water Equation (1.2) and
we have only considered the one-dimensional case. As we can see there is a

considerable amount of further work to discuss.
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Appendix A

A Listing of all Numerical Schemes
Discussed in Chapters 4 and 5.

All approaches numerically approximate conservation laws with a source term

present, i.e.

du  of (W) _

Er )

1. Explicit ‘Adding’ of Source Term: (First / Second Order)

ul(l+1 — ulSCHEME_}_AtRl(z

SCHEME
1

where y represents a numerical scheme which approximates the conservation

law without a source term present and is of first / second order.

2. Semi-Implicit Adding of Source Term: (First/Second Order)

u | ou

SCHEME

where y; represents a numerical scheme which approximates the conservation

law without a source term present and is of first / second order.
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3. Lax-Wendroff Approach: (Second Order)

ZEi 251’

(Lﬂ[ﬂnu?“:ﬂ—sﬁ (i)~ F (i ‘1)]”{1{?_”_?{&“

- % [Vi+l/2 (R7+1 - R?)_ Vi-1/2 (R:1 - R?—l)]

where

F(u;i)= FL(MQi)+ Fu (”;i)q)i’

. f,n if ;>0
Folwi)={" :
fin 1 vip<O

Fu (Lt;i)—l{(lV"“/Z)(f:iﬂ_f:i) if yiyp>0

21— (1+Vi+1/2)(f:l+1 - f,n) if yi,,<0

and ¢; denotes the flux-limiter which can be any of the flux-limiters in Table A-1.

4. MPDATA Approach: (Second Order)

At[oRT At At oR
I——| =— | |u*"'= MPDATA| ,/ +—R! . Wii2 |+ —=| Rl —ul'| —
[ Z[aul]u (u 2R W1/2\J Z{R u[aul}

where MPDATA(M? ,C ) corresponds to the basic MPDATA algorithm with flux-

limiter:

+1 1 1 1 1 1 1 1
W =0 = [F @, u v D)0, - F G u va,.)o,]

where

1 _ (D

) _ M n+l/2_[ ,,+1/2]2 Uivl " Ui | n+1/2[ n+l/2 _ n+1/2]

Vi+1/2__Al Wit1/2| = Wis1/2 m 4w |7 Wiz Wiz = wisrz
Ui+1 T Ui

M _ n n n n+1/2 n n n+l/2
ui —Uui — [F(ui sUi+1> Wit1/2 )_ F(ui—l’ui sWi-1/2 )]’

n+l/2_l( n_ n—l)
Witt/2 = = BWir1/2 =~ Wisi/2

2
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and ¢; denotes the flux-limiter which can be any of the flux-limiters in Table A-1.

5. Roe’s Explicit Upwind I: (First Order)

ntl _ n S(«f? - f?—l)_ At[(l - O(')R;l + O('R;l—l] lf Vitl/2 > 0
ui —u;i— ) .
S(«f::—I - f?)_ At[(l - Oﬂ)R:" + 0€R?+1] if y,4,<0

where 0 <o <1 and if o = V2 then the scheme is second order accurate in space.

6. Explicit Upwind II: (First Order)

ntl _ n {S(f? - f?—l)_ AIR((l - O(')xi +0lxions (1 - Oc)ufl + O('l/l;l—l) if vi2>0
ui —ui - .
S(f;l-u - f:l)_ AIR((l - O()Xi + O xipns (1 - OC)MT + OCM?—{-I) if y,,,,<0

where 0 <o <1 and if oe = %2 then the scheme is second order accurate in space.

7. Roe’s Explicit Upwind Ill: (Second Order)

(1 - OC)R? +oRy ify,,>0

= s F(u;i)— Fu;i—1)|1+ At
u; Ui S[ (u l) (ul )] {(I—OC)R?‘FO(R?H if Vi—1/2<0

where

Fusi)= Fp i)+ Fp (i),

. fi o if yiup>0
F. (“; ! ) = .. ’
fi+1 if Vs < 0

L (1_Vi+1/2)(f;l+1 - fjl) if >0
Fulwi)== RN
2 |- (1+Vi+1/2)(fi+1 -/ ) if i,p<0

and 0 < o < 1. If o = Y2 then the scheme is second order accurate in space. Also, ¢;

denotes the flux-limiter which can be any of the flux-limiters in Table A-1.
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8. Explicit Upwind IV: (Second Order)

+AI{R(I—Ot)xi-I-Oﬁxi-n(l_OC)u?+Oﬁu;‘1—1) if y,,1,>0
R((l—oc)x,-+chi+1,(1—0€)u?+0€u?+1) if v;,,<0

where

Fwsi)=Fo (i) + Fr (wsi)o,,

. f,n if >0
Fi (M; l ) = 0 s
fi+1 if Vi < 0

Fu (Lt;i)—l{(lVi+1/2)(f:‘1+1_f:‘1) if vip>0

2|- (l+vi+1/z)(f?+1 - f,n) if Visin < 0’

and 0 < o < 1. If a = V2 then the scheme is second order accurate in space. Also, ¢;

denotes the flux-limiter which can be any of the flux-limiters in Table A-1.

9. Implicit Upwind I: (First Order)

bo do O O 0 ... 0T ut"—up] _Go—ao(uffl—ufl)_
a b di 0 0 0 it —ul Gi
0 a by do 0 ... 0| 5=y G»
0 ... 0 o bio dia O | uiB—uls G-
0O ... 0 0 a bia dia | Wit —ul G
_0 .. 0 0 0 ar bi AL u7+1—u7 i _Gz—dz(u7+1—u7+1)_
where
" (f?‘f?,l) if y;,1,>0
Gi = Ateig,‘ —-S n 2\ . s
(fi+l_fi) if yi12<0
" 0 if y;,,,,>0
—S|:af} if yi12>0 n .
ai = au i1 k) di = af .
) S| if v12<0
0 if y;,12<0 ou i,
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ou ou

1A

of T dg |
bi=1+ sgn(vi+1,2)s{f} — Ate; {g}

and R(x,t,u)z e(x)g (u)

10. Implicit Upwind Il: (Second Order)

where
G = Aleig? - [F(U;i)_ F(u;i _1)]a

F(wsi)=Fo i)+ Fr (wsi)o,,

. f,n if yi,p>0
Fi (M; l ) = 0 s
fin 1 vip<0

—Vi- L= fr if i+ 0
FH(u;i):l{(l Vi 1/2)(f1 fl-l) I pipp>

2\ (1+Vi+3/2)(f:‘l+2 - f:l+1) if vy <0
¢ 0 if y,,,,>0
_ —S{gj;} if yi2>0 d.= 3 T .

a; — ; ’ i ’

o \ s if vi412<0

0 if y1,<0 du |,
o | dg |
bi :1+sgn(Vi+1/2)S‘:a];j| _Atei‘:aij| )

o do 0 0 0 . 0T w-ut | [Gomaolu ' —u)]
ar b di 0 0 e 0 M?H - uf’ Gi
0 a b d» O e 0 | w'~us G2
0 ... 0 o bin di 0 |uih—uls G2
0O ... 0 0 a1 b dia Lt?j - Lt7_1 G
o ... 0 0 0 a b | w-ul] _Gz—dz(u7+1—u'}+1)_

and R(x,7,u)=e(x)g(u). Also, ¢; denotes the flux-limiter which can be any of the

flux-limiters in Table A-1.
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11. Explicit MacCormack: (Second Order)

w0 [(2) )
Ui + ¢i+1/2 q)i—1/2
where

m_ (1) R(l)
ufz)—— Wl +u) [f ]+ At=—
2 2

Mgl)zui _S(f;ll_f,‘)'l'Al‘R?a

1
2 (2) (2)
Py ﬂvi+l/2| T Vit2 kuzu Ui Qm/z)

@ _
¢i+1/2 - 2

and, Q;,1,> can be any of the values in Table A-2.

12. Semi-Implicit MacCormack: (Second Order)

nil _ @) [(2) )
ui — Ui +¢i+1/2 (I)H/z

where

{1 AtO{aR} (=)= =s(7 0 = ) AR

ou |

[1 Ate{aR }( O y)==s(f", - 1)+ AR

u

i

: |
2 (2) (2)
Py ﬂvi+1/2| T Visr/2 Ndi+l T Ui Qi+1/2)'

(2)  _
¢i+1/2 - 2

and 0<0<1. Also Qi+12 can be any of the values in Table A-2.
13. Splitting Method (MacCormack): (Second Order)

SW(%): ll—ﬁ{gﬂi }(ul )= AztR

w=ul+ (u,— u?)-
s, (Ar): (" =)= -sf; - £1.)

1 * 1
u§)=ui+( ()—uz)
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( =u)==s(ris- 1)

o [ K ]
w =u; +t ¢i+1/2 (l)i—l/z'

CMORT oy AL
R

Here,

o _1 2 k(*) ) )
¢,‘+1/2_§|ivi+1/2|_\/i+1/2 Uiv1 — Ui _Qi+1/2

and Q;,1,2 can be any of the values in Table A-2.

Name of Flux-limiter 0(0)
Minmod 0(0) = max(0,min(1,0))
Roe’s Superbee 0(0) = max(0,min(26,1),min(6,2))
o|+6
van Leer 0(0)="—r
1+|o |
0°+0
van Albada 00)="1- e

Table A-1: Some second order flux-limiters.

Some choices of Q.,,,, where A0 =uii—u; -

0,1, =min mOd(Ai+1/2 ) Ai—1/2)+ min mOd(Ai+l/2’ Ai+3/2)_ Ais2

0,1, =min mOd(Ai71/2’Ai+l/2’Ai+3/2)

) 1
Q,,1,, =min mOd(ZAi1/272Ai+1/272Ai+3/2a§(Ai1/2 + Ai+3/2))

Table A-2: Some choices of Q,,,,, for the MacCormack approach.
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