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Abstract

The generation of gravity waves by topography is examined in this study. These

waves are important in the atmosphere on all scales. Their interaction with the

mean flow has implications for global atmospheric circulation. They also feature

prominently in localised weather in mountainous or hilly regions.

The equations of motion for an homogeneous layer of fluid flowing over a sym-

metric, one dimensional, isolated mountain are studied and it is found that there

is a critical mountain height above which the solution becomes discontinuous. An

expression for this critical height is derived.

A numerical model is developed to solve the nonlinear shallow water equations

in a homogeneous layer and the results it produces are compared with established

results.

The theory of stratified flow is presented. The effect of approximating continuous

vertical profiles of buoyancy frequency and velocity by a finite set of discrete

layers is discussed and this multilayer approach is further investigated with the

aid of an extension of the single layer numerical model written by the author. The

results are compared to established solutions and suggestions are put forward for

further work.
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Chapter 1

Introduction

1.1 Gravity wave formation

Atmospheric gravity waves are produced when a disturbance causes the air to be

displaced from its equilibrium position. Consider an incompressible atmosphere

in equilibrium and a fluid parcel of densityρ(z0) at heightz0. If the parcel is

displaced a small distanceδz then, assuming it remains intact and does not mix

with its surroundings, the parcel will experience a buoyancy forceFb which is

given by Archimedes’ Law:

Fb = −gv(ρ(z0)− ρ(z0 + δz))ẑ , (1.1)

whereg is the acceleration due to gravity,v is the volume of displaced air which is

equal to the volume of the parcel, andρ(z0 + δz) is the density of the air displaced

by the parcel. By Newton’s second law of motion

d2(δz)

dt2
= −g

ρ(z0)− ρ(z0 + δz)

ρ(z0)
. (1.2)

Expandingρ(z0 + δz) as a Taylor series gives

ρ(z0 + δz) = ρ(z0) +
∂ρ

∂z
|z=z0δz + . . . . (1.3)

Using this, equation (4.3.2) becomes

d2δz

dt2
=

g

ρ

∂ρ

∂z
δz . (1.4)

1
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This is the equation for simple harmonic motion. It has the solution

δz(t) = AeiNt + Be−iNt , (1.5)

where

N2 = −g

ρ

∂ρ

∂z
. (1.6)

N is therefore a measure of the stratification of the fluid. For∂ρ/∂z > 0, the

perturbation grows unboundedly and the solution is unstable. If∂ρ/∂z < 0, N

is real and the air parcel oscillates with frequency N. Under these conditions the

atmosphere is said to be stably stratified. Gravity waves can have any frequency

between0 andN since the displacements of air parcels within the wave can be at

an angleα to the horizontal. In this case the distanceδz in (1.4) is replaced by

sin2 αδs andN becomesN ′ = N sin α. Typical values ofN are0.01s−1 in the

troposphere and0.017s−1 in the stratosphere (Gill, 1982).

So far we have assumed the atmosphere to be incompressible so that density is

conserved. A more accurate assumption would be that the atmosphere is adiabatic.

In this case it is the potential temperature,θ = T
(
p0/p

)k
, wherep0 is the surface

pressure, that is conserved. However, to a good approximation, the above analysis

still holds.

We have seen that disturbances in a fluid can lead to the formation of grav-

ity waves. In the atmosphere these disturbances can be caused by the effects of

orography and also by convection and the resulting release of latent heat (Nappo,

2002). In this study the source of the disturbance will be a one dimensional, sym-

metric, isolated mountain.

1.2 Meteorological applications

Operational forecast models solve an approximation to the full governing equa-

tions that filters out gravity waves. This is necessary because the resolution re-

quired to explicitly include them would result in an unreasonable execution time.

However, the effects of these waves are far from negligible. Gravity waves are im-

portant on all scales in the atmosphere. On the large scale gravity wave drag can
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slow the mean flow. On a localised scale, gravity waves are associated with lentic-

ular cloud formations and downslope winds such as the Fohn in the Alps and the

Chinook in the Rocky mountains. A particularly severe windstorm that has been

extensively studied is that which occurred in Boulder, Colorado in January 1969

where wind gusts measured up to 130mph. The strong wind speeds have been

attributed to partial reflection of gravity waves from a critical layer aloft. Such

layers will be studied in section 4.3.2. A better understanding of the formation

and propagation of these waves will lead to better paramaterisation of their effects

in global circulation models.

In the next two sections we briefly summarise the local and global effects of

gravity waves.

1.2.1 Lee waves

Gravity waves are also the source of some spectacular cloud formations such as

those shown in figure 1.1. These lenticular clouds are formed in the lee of moun-

tains. As the air is forced up over the mountain it cools and may reach the dew

point temperature in which case the water vapour it contains will start to condense

and form droplets. As the air descends again on the other side of the mountain

it warms and the water droplets vaporise. However, the continual motion of the

airstream means that the water droplets are constantly being replaced so an ob-

server will see a stationary cloud attached to the mountain - only a pilot will ex-

perience the dangerous winds within it. If the conditions are such that a standing

pattern of lee waves is created, a series of lenticular clouds can form downstream

(see figure 1.2).

Due to the stationary appearance of the cloud formations associated with Lee

waves, their importance in the atmosphere was not realised until the experiences

of gliders and pilots began to reveal the existence of unexplained localised currents

near topography. Queney (1948) details the observations that needed explaining:

• strong ascending currents, often to a great height, especially on the upwind

side of mountain ranges,
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Figure 1.1: A lenticular cloud, courtesy of Jay Shafer,

http://vortex.plymouth.edu/lenticular3.html.

• stationary lenticular clouds and cloudless areas in stratocumulous sheets,

• periodical nature of current above large mountain ranges,

• stationary pressure ridges (on crest) and troughs (on lee side),

• formation of intense narrow winds.

The effects can, to a great extent, be explained by the linear theory of internal

gravity waves in a stratified fluid. There are two factors that control the develop-

ment of lee waves: the dimensions of the topography and the characteristics of the

airstream. Both must satisfy certain conditions for lee waves to exist and it has

been shown (Corby and Wallington, 1956) that the largest amplitude waves occur

when the optimum conditions are satisfied by only a small margin.

Scorer (1949) shows that if the airstream satisfies the condition that

L2 =
N2

U2
− 1

U

d2U

dz2
(1.7)

decreases upwards at a sufficient rate, lee waves will form. For a system consisting
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Figure 1.2: A series of lenticular clouds, courtesy of Gary Schultz,

http://www.williwaw.com/2001-SEP.html.

of two layers of constantL2, the condition

L2
1 − L2

2 >
π

4h2
, (1.8)

whereh is the depth of the lower layer, must be satisfied for lee waves to form.

Sawyer (1960) shows that, although Scorer’s condition is sufficient, it is not nec-

essary and there are other airstream properties that can give rise to lee waves. He

demonstrates this by considering the case of a two layer atmosphere in which the

top layer is significantly more stable than the lower layer and his numerical results

are shown in figure 1.3.

Queney (1948) investigates the conditions of the dimensions of the topogra-

phy. He shows that, for an airstream with uniform stratification and windspeed,

the atmospheric response to a mountain range depends on the half-widtha of the

range. The main situation of interest to us is that wherea ∼= U/N , whereU

andN are the velocity and buoyancy frequency of the airstream. In this case a

system of gravity waves with wavelengthλ = 2πU/N develops in the lee of the

mountain. Queney (1948) considers two other values ofa that produce either in-
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Figure 1.3:Displacement of streamlines computed for an airstream with the vertical profiles of

L2, U andN plotted on the left. A train of rapidly decaying lee waves develops despite the fact

that theL2 profile does not satisfy Scorer’s condition. After Sawyer (1960)

ertia gravity waves or Rossby waves but we are not concerned with the effects of

rotation here.

1.2.2 Gravity wave drag

On a larger scale, gravity waves transport energy and momentum which they ex-

change with the mean flow. This can, due to wind stress over terrain, slow the

atmospheric flow at a rate of5ms−1day−1 (Nappo, 2002). The energy or mo-

mentum carried by the waves will not be deposited unless the wave breaks or is

dissipated. Such dissipation can occur at critical levels in the atmosphere where

the wind speed is equal to the speed of the waves. This will be investigated in

section 3.3.
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1.3 Modelling atmospheric gravity waves

There are many ways of approaching the study of atmospheric gravity waves, all

of which involve making some approximations either to the topography, to the

airstream properties or to the governing equations. Exact solutions to the nonlin-

ear wave equation are only possible under specific conditions, for example, that

the flow has constant density or buoyancy frequency. Under these constraints

the governing equation becomes linear but the lower boundary condition remains

nonlinear. This is known as Long’s model. Some progress has been made towards

finding exact solutions for some idealized mountain shapes (Baines (1995) and

references therein) but these kind of shapes are not found in practice. Another

approach is to assume that any perturbations are small and therefore terms involv-

ing products of perturbations can be neglected. These linearised equations offer

a method that imposes less restriction on the types of airstream studied and give

an insight into the properties of the flow. However, the linear theory is only valid

for small amplitude waves and, since the wave momentum and energy fluxes are

proportional to the square of its amplitude, it is the large amplitude waves that are

of interest in the atmosphere.

1.4 Aims

The aim of this study is to investigate the vertical propagation of gravity waves

created by flow over a single isolated mountain. We have seen that this process

is important in a meteorological context due to the energy and momentum they

transport. Our attention will be restricted to situations where the effects of rotation

are negligible. We will be using a numerical model to simulate some real flows.

This model will approximate continuous atmospheric profiles by a finite set of

discrete, homogeneous layers. The nonlinear, hydrostatic governing equations are

then solved in each layer with the appropriate matching conditions at the interface.

We hope to verify some published results produced using linear models and to

investigate some of the effects of nonlinearity on the flow.
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In chapter 2 we will examine the flow of a single, homogeneous layer over an

obstacle. We will discuss the theory of such a flow and present some results from

the one layer model.

Chapter 3 develops the theory of continuously stratified flow. We briefly dis-

cuss the energy, momentum and wind stress associated with gravity waves. Wave

reflection and trapping will also be investigated.

In chapter 4 we analyse the flow of a multilayer fluid. The governing equations

are derived and solved numerically. The multilayer program is tested and the

results discussed.

Chapter 5 presents the conclusions and outlines the possibilities for further

work.



Chapter 2

The flow of a single homogeneous

layer

2.1 The basic equations

Consider a layer of 2-dimensional, incompressible, homogeneous fluid with a free

surface flowing over an isolated mountain. The equations of motion for such a

fluid with densityρ and pressurep are

Du

Dt
= −1

ρ
∇p− gẑ, (2.1)

∇.u = 0, (2.2)

whereu = (u, w) is the fluid velocity with components in the Cartesian(x, z)

directions and̂z is the vertical unit vector. At its lower boundary the fluid encoun-

ters topographyz = h(x) and the condition that there can be no flow though this

surface gives

w = u.∇h on z = h(x). (2.3)

The fluid has an upper free surface with mean levelz = d̄ and displacementη(x)

as shown in figure 2.1. Assuming the density of any fluid above this surface to be

negligible and taking the pressure there to be zero we have

w =
Dη

Dt
on z = d̄ + η. (2.4)

9
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Assuming the vertical accelerations to be small compared to gravity, we can apply

the hydrostatic approximation

−1

ρ
pz − g = 0. (2.5)

Integrating this gives an expression for the pressure

p = ps + ρg(d̄ + η − z) , (2.6)

whereps is the pressure at the surface. From this equation we can see thatpx is

independent ofz so ifu is initially independent ofz it will remain so. Substituting

(2.6) into (2.1) gives

ut + uux = −gηx. (2.7)

This gives us the prognostic equation for the velocityu within the layer. To obtain

the prognostic equation for the surface displacementη we need to integrate (2.2)

betweenz = h andz = d̄ + η :

0 =
∫ d̄+η

h
(ux + wz)dz (2.8)

=
∂

∂x

∫ d̄+η

h
udz − uηx + uhx + [w]d̄+η

h . (2.9)

From the boundary conditions (2.3) and (2.4), this reduces to

∂

∂x

∫ d̄+η

h
udz +

∂η

∂t
= 0 . (2.10)

Remembering that, by (2.6),u independent ofz, equation (2.10) becomes

ηt + (du)x = 0 , (2.11)

whered = d̄ + η − h . So the motion of the layer is described by equations (2.7)

and (2.11). These equations are nonlinear and they can be tackled in two ways.

The first method, described in the next section, approximates the properties of

the flow by assuming any perturbations to the background state to be small. The

second method approximates the equations by representing the flow variables on

a grid and solving the resulting discrete equations numerically.
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2.2 Linear hydrostatic flow

Consider a steady one dimensional flow with speedU approaching an obstacle of

small height as shown in figure 2.1.

Figure 2.1:Definition diagram for the notation in the single layer case.U andd̄ are respectively

the upstream constant speed and depth,η(x) is the displacement of the free surface andh(x) is

the topography.d(x) = d̄ + η(x)− h(x) is the total depth of the fluid layer.

Under these conditions we can setu(x) = U + u′(x) and assumeu′(x), η(x)

andh(x) to be small perturbations. Substituting into (2.7) and (2.11) and linearis-

ing gives

u′t + Uu′x = −gηx , (2.12)

ηt + Uηx + d̄u′x = Uhx. (2.13)

Eliminatingu′ leaves(
∂

∂t
+ U

∂

∂x

)2

η − c2 ∂2η

∂x2
= U2∂2h

∂x2
, (2.14)

wherec =
√

gd̄ is the wave speed. With initial conditionsη = 0 andηt = 0, 2.14

has solution

η =
F 2

0

F 2
0 − 1

h(x)− F0

2

(
1

F0 + 1
h
(
x−

(
U + c

)
t
)

+
1

F0 − 1
h
(
x−

(
U − c

)
t
))

(2.15)
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when the initial Froude numberF0 = U/c 6= 1. This solution, forF0 < 1

is shown in figure 2.2. It is made up of a steady component over the obstacle

and two propagating waves which are functions of the characteristic variables.

All three terms have the same form as the obstacle but with different amplitudes

which depend solely on the initial conditions.

Figure 2.2:Example of the linear solution for flow over an obstacle.

For F0 < 1 the upstream propagating wave has larger amplitude. The two

types of flow are shown in figures 2.3 and 2.4.

2.3 Nonlinear hydrostatic flow

The linear equations are only valid for sufficiently smallhmax. Whenhmax does

not satisfy this constraint, nonlinear effects become apparent and can even dom-

inate the system. One important nonlinear phenomenon is the hydraulic jump or

shock. Although this study will be restricted to cases where there are no shocks,

it is important to know the circumstances under which they form so that they can
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Figure 2.3:x-t diagram showing the linear solution for subcritical flow over an obstacle.

Figure 2.4:x-t diagram showing the linear solution for supercritical flow over an obstacle.
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be avoided. Consider the case shown in figure 2.5 where the wave initially has a

small amplitude but, as the deeper fluid moves faster, the interface steepens and

may become vertical. This is the shock which, if required, can be modelled as

a discontinuity. At a shock, the flow changes from supercritical to subcritical or

vice-versa and this suggests that the local Froude number at this point must be

unity. This is shown to be true later on in this section.

Figure 2.5: This diagram illustrates the formation of a shock wave. The initial wave is that

labelled (a). As its amplitude increases the profile steepens until, as in case (c), the wave breaks.

Adapted from Andrews and Leovy. (1987).

Following Houghton and Kasahara (1968) we examine the steady state equa-

tions in order to derive a condition on the maximum mountain height that will

ensure that there are no shocks in the flow. The steady state forms of equations

(2.7) and (2.11) are

d

dx

(
1

2
u2 + g(d + h)

)
= 0 , (2.16)

d

dx
(ud) = 0 , (2.17)
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which, when integrated, give

1

2
u2 + g(d + h) =

1

2
U2 + gd̄, (2.18)

ud = Ud̄. (2.19)

Using (2.19) to eliminateu from (2.18) gives

1

2
U2 d̄2

d2
+ g(d + h) =

1

2
U2 + gd̄, (2.20)

which can be rewritten in terms of the dimensionless variablesF0 = U/c, D =

d/d̄ andH = h/d̄ as

D3 +
(
H − 1

2
F 2

0 − 1
)
D2 +

1

2
F 2

0 = 0 . (2.21)

Figure 2.6 shows this polynomial, plotted as a function of D, forF0 = 0.5 and

three different values ofH. SinceF0 < 1 the fluid will dip over the obstacle so

d < d̄ andD < 1 and the root of the polynomial corresponding to the physical

solution is that between0 and1. Figure 2.7 shows the same polynomial forF0 =

1.5. In this case the fluid rises over the obstacle and the root we are interested in

is the first which is greater than1. In both cases, it can be seen that forH greater

than some critical valueHcrit, there is no physically meaningful solution. Having

demonstrated this graphically we now give a mathematical argument. Defining

the function

g(D, F0, H) = D3 +
(
H − 1

2
F 2

0 − 1
)
D2 +

1

2
F 2

0 , (2.22)

we see that for there to be a solution tog = 0 for a given heightH, we must have

δg =
∂g

∂F0

δF0 +
∂g

∂D
δD = 0 . (2.23)

Except in the trivial caseD = 1 which corresponds to the solution for flow over

a flat horizontal boundary,∂g/∂F0 = F0(1 − D2) is non-zero. Thus any small

change inF0 must be balanced by a small change inD. This can only occur

if ∂g/∂D 6= 0. This condition gives us an equation for the critical depthDcrit.

Calculating the partial derivative ofg with respect toD gives

∂g

∂D
= 3D2 + 2D(H − 1

2
F 2

0 − 1) . (2.24)



CHAPTER 2. THE FLOW OF A SINGLE HOMOGENEOUS LAYER 16

This is zero when

D = Dcrit = −2

3
(H − 1

2
F 2

0 − 1) . (2.25)

Imposing the conditiong(Dcrit, F0, H) = 0 gives

D3
crit = F 2

0 . (2.26)

So we have found an expression for the critical depth at whichg = 0 has no

solutions. We now use this to find an equation for the critical mountain height.

Rearranging (2.18) gives

D3 =
F 2

0

F 2
, (2.27)

whereF = u/
√

gd. Comparing this with (2.26), shows that the local Froude

numberF 2 must be unity at the critical point. SettingF 2 = 1 in (2.26) and

substituting this into (2.21) gives, after some rearrangement,

Hcrit = 1 +
1

2
F 2

0 −
3

2
F

2/3
0 . (2.28)

This function is plotted in figure 2.8. Long has shown (Long, 1954) that any

H greater thanHcrit will cause the solution to become discontinuous, sohcrit =

Hcritd̄ is the maximum height of the mountain for which the flow does not contain

shocks. In this study we will restrict our attention to mountains withhmax < hcrit,

the shaded area in figure 2.8.

The introduction of shocks is not the only effect of using the full nonlinear

equations. Some steepening of the waves is still likely even if a shock is not

finally formed.

2.3.1 The program

The program singlelayerprogram.f90 solves equations (2.7) and (2.11) forU , d̄

andhmax as input by the user. Since we do not wish to analyse shocks it is not

necessary to use a shock fitting or shock capturing method. Instead the program

uses a simple leapfrog method which solves
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Figure 2.6:g(D,F0,H) for F0 = 0.5.

The red curve hasH < Hcrit and the blue

curve hasH > Hcrit. The purple curve

shows that forH = Hcrit there is a double

root.

Figure 2.7:g(D,F0,H) for F0 = 1.5.

The red curve hasH < Hcrit and the blue

curve hasH > Hcrit. The purple curve

shows that forH = Hcrit there is a double

root.
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Figure 2.8:The non-dimensional maximum height of the mountain,Hmax, as a function of the

initial Froude number,F 2
0

un+1
j = un−1

j − dt

dx

(
F n

j+1 − F n
j−1

)
, (2.29)

ηn+1
j = ηn−1

j − dt

dx

(
Kn

j+1 −Kn
j−1

)
, (2.30)

where

F n
j =

1

2
(un

j )2 + gηn
j , (2.31)

Kn
j = un

j (d̄ + ηn
j − hj) , (2.32)

andqn
j denotes the value of variableq at (xj, t

n). In order to study the steady state

solution we require the transient waves to leave the domain. This is easily accom-

plished by including a wave absorbing, or sponge, layer at the lateral boundary.

We define the Rayleigh damping functionλ(x) to be zero everywhere except in

a narrow region near the boundary. Including this damping function alters the

governing equations (2.7) and (2.11) to

ut + Fx = −λ(x)(u− U) , (2.33)
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ηt + Kx = −λ(x)η , (2.34)

whereFx andKx are the continuous fluxes corresponding toF n
j andKn

j above.

Discretising these equations gives

un+1
j = un−1

j − dt

dx

(
F n

j+1 − F n
j−1

)
− 2dtλj(u

n+1
j − U) , (2.35)

ηn+1
j = ηn−1

j − dt

dx

(
Kn

j+1 −Kn
j−1

)
− 2dtλjη

n+1
j . (2.36)

These are implicit equations which are usually solved using matrix inversion tech-

niques. However, such complications do not arise here as (2.35) and (2.36) can

easily be rearranged to give

un+1
j =

1

1 + 2dtλj

(
un−1

j − dt

dx

(
F n

j+1 − F n
j−1

)
+ 2dtUλj

)
, (2.37)

ηn+1
j =

1

1 + 2dtλj

(
ηn−1

j − dt

dx

(
Kn

j+1 −Kn
j−1

))
. (2.38)

Since we will be dealing with large amplitude waves it is likely that we will

encounter problems due to nonlinear instability. This can be kept under control by

including some form of artificial diffusion. In this program the diffusion process

will be performed at the end of each timestep by simply averagingun and ηn

according to the formula

qn
j =

(
1− av

2

)
qn
j +

av

4

(
qn
j+1 + qn

j−1

)
. (2.39)

2.3.2 Sensitivity to parameters

The Courant-Friedrichs-Levy condition states that we must have

dt <
dx

c
. (2.40)

However, this condition only ensures stability for linear equations. Since we are

solving nonlinear equations the condition ondt is more restrictive and it has been

found, for the programs used in this study, that

dt <
dx

4c
. (2.41)
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Despite keepingdt small enough to ensure that the scheme remains stable,

nonlinear instabilities still cause spurious oscillations in the solution. Instead of

reducingdt further, which would result in longer run times, we introduce theav

parameter described above. This smooths the solution and prevents the errors

from building up. However, it can also reduce the maximum amplitudes of the

waves. The optimum value ofav is different in each situation depending on how

close the mountain is to critical height. Ifhmax is sufficiently small for the linear

approximation to be applicable,av can be set to zero, even though we are solving

the nonlinear equations. However, ashmax is increased,av is progressively more

important. We have considered each situation individually in this study and the

results presented are those for whichav is set to the minimum value for stability.

2.3.3 Results

To begin with we test the program against some results from Houghton and Kasa-

hara (1968) who in turn have compared their results to the experiments of Long

(1954). The obstacle shape is given by

h(x) = hmax

(
1− x2

a2

)
, (2.42)

wherea is the half width andx is the distance from the centre of the obstacle. We

run the program with the parameters

d̄ = 20 cm, (2.43)

hmax = 10 cm, (2.44)

a = 40 dx , (2.45)

dx = 1.0 cm, (2.46)

g = 980 cm s−2 , (2.47)

with 2000 gridpoints in thex-direction, as given by Houghton and Kasahara

(1968), anddt = 0.0001 s for stability, for several different Froude numbers.

The results forF0 = 0.2 andF0 = 1.9 are given in figures 2.9 and 2.10 respec-

tively. These figures are the same as the corresponding figures (14a and 14d) in
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Houghton and Kasahara (1968). Houghton and Kasahara (1968) used a scheme

developed by Lax and Wendroff which, unlike the Leapfrog scheme used here, is

capable of handling shocks. Although we will not study flows containing shocks,

it is interesting to see how the program copes with these situations. In fact, as

shown in figures 2.11 and 2.12, it does surprisingly well. The general shape of the

solution is as given in figures 14b and 14c of Houghton and Kasahara (1968) and

the discontinuities are captured well with the exception of the upstream travelling

jump in figure 2.11. Some oscillations are evident in the region of the disconti-

nuities but this is to be expected - even the Lax-Wendroff code used in Houghton

and Kasahara (1968) does this. The Leapfrog scheme remains stable by virtue of

the averaging process explained in the previous section. With this switched off

the program is unable to cope with the discontinuities and is soon outputting in-

finite values. The results in these four figures were produced withav set to0.01.

For values higher than this the solutions were considerably smoother with some

discontinuities hardly apparent. For values lower than0.01 the oscillations at the

discontinuities were worse.
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Figure 2.9:F0 = 0.2. This figure corresponds to figure 14a in Houghton and Kasahara (1968).

The height of the free surface (blue) and the velocity (red) are shown in the dimensionless units

D = d/d̄ andU ′ = u/U . As expected, the free surface dips over the obstacle.

Figure 2.10:F0 = 1.9. This figure corresponds to figure 14d in Houghton and Kasahara (1968).

The height of the free surface (blue) and the velocity (red) are shown in the dimensionless units

D = d/d̄ andU ′ = u/U . As expected, the free surface rises over the obstacle.
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Figure 2.11:F0 = 0.3. This figure corresponds to figure 14b in Houghton and Kasahara (1968).

The height of the free surface (blue) and the velocity (red) are shown in the dimensionless units

D = d/d̄ andU ′ = u/U . The maximum height of the obstacle is greater than the critical height

so shocks form.

Figure 2.12:F0 = 0.7. This figure corresponds to figure 14c in Houghton and Kasahara (1968).

The height of the free surface (blue) and the velocity (red) are shown in the dimensionless units

D = d/d̄ andU ′ = u/U . The maximum height of the obstacle is greater than the critical height

so shocks form.
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Having looked at the case where nonlinear effects are most important, we now

turn our attention to the other extreme: the linear case. The following results are

computed for length scales appropriate for the atmosphere rather than, as previ-

ously, for comparison with experiment. A scaled down version of the mountain

has been included in each plot. The mountain scaling is the same in all three

figures but the waves in figure 2.13 have been scaled up for clarity.

We can see from figure 2.13 that for a mountain of heighthmax = 100m =

0.1d̄ the linear and nonlinear solutions are almost indistinguishable with particu-

larly good agreement directly over the mountain. The nonlinear transient waves

differ slightly from the linear solution, the maximum amplitude being more than

and occurring behind that predicted by the linear theory. In figure 2.14 the moun-

tain is sufficiently high for nonlinear effects to be apparent. The nonlinear solution

develops a deeper dip over the mountain and the maximum amplitudes of the tran-

sient waves are even further behind the linear waves. In figure 2.15 the mountain

has heighthmax = 700m = 0.7d̄ which is 20m higher than the critical mountain

height. The linear solution, as expected, gives no indication of the shock forma-

tion over the mountain. This feature is present in the nonlinear solution and it

amplifies the effects of nonlinearity on the transient waves.
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Figure 2.13:x-t diagram of the numerical solution (blue) compared to the exact linear solution

(red) for the case werehmax � hcrit

Figure 2.14:x-t diagram of the numerical solution (blue) compared to the exact linear solution

(red) for the case wherehmax < hcrit
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Figure 2.15:x-t diagram of the numerical solution (blue) compared to the exact linear solution

(red) for the case wherehmax ∼ hcrit



Chapter 3

Stratified flow

So far we have only considered the flow in a homogeneous layer. In this section

we examine the flow when the fluid is inhomogeneous, either due to a density

stratification or a variation of wind speed with height. To begin with we investigate

the theory of stratified flows. Much insight can be gained from the linear theory

which we apply here to derive equations for the energy and momentum fluxes due

to gravity waves.

3.1 Basic equations

If we make the incompressible approximation described in the introduction then

Dρ

Dt
= 0 . (3.1)

Along with (2.1) and (2.2) this gives us a complete set of equations for the system.

Taking the background flow to be(U, 0) and assuming a small disturbance we can

setu(x, t) = U(z) + u′(x, t) andρ = ρ0(z) + ρ′(x, t) whereU(z) andρ0(z) are

the undisturbed values andu(x, t), ρ′(x, t) are small perturbations, and linearise

27
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these equations to give:(
∂

∂t
+ U

∂

∂x

)
u′ + w′dU

dz
= − 1

ρ0

∂p′

∂x
, (3.2)(

∂

∂t
+ U

∂

∂x

)
w′ = − 1

ρ0

∂p′

∂z
− ρ′

ρ0

g , (3.3)

∂u′

∂x
+

∂w′

∂z
= 0 , (3.4)(

∂

∂t
+ U

∂

∂x

)
ρ′ + w′dρ0

dz
= 0 . (3.5)

Taking thex derivative of (3.2) and substituting for∂u/∂x from (3.4) gives

(
∂

∂t
+ U

∂

∂x

)
∂w′

∂z
− dU

dz

∂w′

∂x
=

1

ρ0

∂2p′

∂x2
. (3.6)

Eliminatingρ′ from (3.3) using (3.5) leaves(
∂

∂t
+ U

∂

∂x

)2

w′ + N2w′ = − 1

ρ0

(
∂

∂t
+ U

∂

∂x

)
∂p′

∂z
. (3.7)

Adding
(

∂
∂t

+ U ∂
∂x

)
∂
∂z

(3.6) to ∂2

∂x2 (3.7), treatingρ0 as constant in (3.6), removes

p′, leaving an equation forw′:(
∂

∂t
+U

∂

∂x

)2( ∂2

∂x2
+

∂2

∂z2

)
w′ +N2∂2w′

∂x2
− d2U

dz2

(
∂

∂t
+U

∂

∂x

)
∂w′

∂x
= 0 . (3.8)

By treatingρ0 as constant in (3.6) we have assumed that density variations are

negligible compared to the other terms in the momentum equations but we have

retained the density variation when it gives rise to a buoyancy force. This approx-

imation is known as the Boussinesq approximation and it is applicable when the

vertical scale of the motion is much less than the density scale height of the atmo-

sphere (Nappo, 2002). If we assume that the motion is steady then this equation

can be integrated twice with respect to x:

∂2w

∂x2
+

∂2w

∂z2
+
(

N2

U2
− 1

U

d2U

dz2

)
w = 0 . (3.9)

Assuming a wave like solution of the form

w(x, z) = ŵ(z)eikx , (3.10)
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gives
∂2ŵ

∂z2
+
(

N2

U2
− 1

U

d2U

dz2
− k2

)
ŵ = 0 . (3.11)

This has solution, for each k,

ŵ(k, z) = ŵ(k, 0)e−imz , (3.12)

where

m =
(

N2

U2
− 1

U

d2U

dz2
− k2

)1/2

. (3.13)

The sign ofm has been chosen so that the energy propagates upward. To ob-

tain a solution in physical space we take the inverse Fourier transform of (3.12).

Following Nappo (2002) this can be written as

w′ =
∫ kc

0
ŵ(k, 0) sin(kx + mz)dk +

∫ ∞

kc

ŵ(k, 0)e−qz sin(kx)dk , (3.14)

wherem = iq andkc is the cut-off wave number, so called because waves with

k < kc are propagating whereas waves withk > kc are evanescent. Therefore,

the first integral gives the contribution to vertical velocity from propagating waves

while the second gives the contribution from evanescent waves. From (3.11) we

can see that the solutions will be propagating waves only ifk2 < L2
s whereLs is

defined by

L2
s =

N2

U2
− 1

U

d2U

dz2
. (3.15)

This is the Scorer parameter referred to in the introduction.

3.2 Energetics

Gravity waves are important in the atmosphere because they transport energy.

In this section we obtain an equation for the rate of change of perturbation en-

ergy, that is, the energy due to the perturbations to the constant background state.

Addingu′(3.2) tow′(3.3) we obtain

D

Dt

(
ρ0(u

′2 + w′2)

)
+ ρ′w′g = −u′

∂p′

∂x
− w′∂p′

∂z
− ρ0u

′w′dU

dz
. (3.16)
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Using (3.4) we can write

u′
∂p′

∂x
+ w′∂p′

∂z
=

∂u′p′

∂x
+

∂w′p′

∂z
. (3.17)

Substituting this into (3.16) gives

D

Dt

(
ρ0(u

′2 + w′2)

)
+ ρ′w′g = −∂u′p′

∂x
− ∂w′p′

∂z
− ρ0u

′w′dU

dz
. (3.18)

From (3.5) we see that

ρ′w′g = −ρ′g

ρ0z

Dρ′

Dt
=

g2

2ρ0N2

Dρ′2

Dt
. (3.19)

(3.19) then becomes

D

Dt

(
ρ0(u

′2 + w′2) +
g2

2ρ0N2
ρ′2
)

= −∂u′p′

∂x
− ∂w′p′

∂z
− ρ0u

′w′dU

dz
. (3.20)

It is clear that
D

Dt

(
ρ0(u

′2 + w′2)

)
(3.21)

is the total rate of change of perturbation kinetic energy. It is not so clear that

D

Dt

(
g2

2ρ0N2
ρ′2
)

(3.22)

is the total rate of change of the perturbation potential energy. To see this we

consider the gravitational potential energyPE gained by a fluid parcel when it is

vertically displaced from its equilibrium position by a distanceh. Denoting the

buoyant force per unit volume byFb we have

PE = −
∫ h

0
Fbdz (3.23)

= −
∫ h

0
g
dρ0

dz
zdz (3.24)

= −1

2

dρ0

dz
gh2 (3.25)

= −1

2
ρ0N

2h2 (3.26)

=
1

2

g2

ρ0

ρ′2

N2
, (3.27)
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where

ρ′ = ρ0(z)− ρ0(z + h) ≈ −h
dρ0

dz
. (3.28)

So we have seen that the left hand side of (3.20) represents the total rate of change

of the perturbation energy. Examining the right hand side of this equation shows

us what this change is due to.u′p′ and w′p′ are the fluxes of wave energy in

the horizontal and vertical directions respectively so the first two terms on the

right hand side are the divergences of these fluxes. The final term is zero if there

is no background wind shear and, if the buoyancy frequency is constant, wave

perturbation energy is conserved.

3.3 Wind stress

Stress is the flux of momentum across a surface but care must be taken when

discussing wave momentum. McIntyre (1981) deplores the use of language that

perpetuates “the myth that waves possess momentum”. It is instead the flux of mo-

mentum, or wave stress, that is important. Following Nappo (2002) we multiply

the steady, linearised horizontal momentum equation (3.2) byh(x) and integrate

overx to get∫ ∞

−∞
Uh

∂u′

∂x
dx +

∫ ∞

−∞
w′h

dU

dz
dx +

∫ ∞

−∞

h

ρ0

∂p′

∂x
dx = 0 . (3.29)

Using the linear boundary condition

w′(x, o) = U
dh

dx
, (3.30)

and noting that, for an isolated obstacleh(x) → 0 asx → ±∞, we obtain

−
∫ ∞

−∞
ρ0u

′w′dx =
∫ ∞

−∞
p′

dh

dx
dx . (3.31)

This is Newton’s third law and it states that the drag per unit length exerted by the

ridge on the flow is equal to the drag exerted by the flow on the ridge. We can

define the wave stress over a length scaleL to be

τ(z) = − 1

L

∫ L/2

−L/2
ρ0u

′w′dx = −ρ0u′w′ . (3.32)
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3.4 Wave reflection, trapping and resonance

Atmospheric properties such as wind speed and buoyancy frequency change with

height and if the change is sharp enough, such as at an inversion, vertically propa-

gating waves may not be able to penetrate the layer and are instead reflected back

down. In some cases the wave is only partially reflected, the rest of the wave being

transmitted through the layer. Just as before this wave can be either propagating

or evanescent. The lower layer now contains both upwards and downwards prop-

agating waves and, depending on their wavelength and the height of the reflect-

ing layer, they can either destructively or constructively interfere. Constructively

interfering waves are trapped below the reflecting layer and are capable of trans-

porting energy a considerable distance downstream. The continual generation of

energy by the mountain can lead to resonance and this phenomenon explains the

existence of strong downslope winds.

Typical vertical profiles of wind speed and buoyancy frequency in the atmo-

sphere are complicated so for simplicity we consider the case of piecewise con-

tinuous Scorer parameter,L2. This is a generalisation of the theory given in Gill

(1982) and Nappo (2002) for piecewise continuous buoyancy frequency.

There are four possible forms of solution since we can have either propagating

or evanescent waves in each layer. In the lower layer it is possible to have both

upward propagating waves generated by the boundary and downward propagat-

ing waves reflected from the discontinuity inL2. In the upper layer only waves

propagating upward are possible. Thus

w′ = Arefreim2(z−H)e−i(kx−ωt) , z > H , (3.33)

w′ =
(
Aineim1(z−H) + Arefle−im1(z−H)

)
ei(kx−ωt) , 0 < z < H , (3.34)

whereAin is the incident wave amplitude, andArefr, Arefl are the refracted and

reflected wave amplitudes respectively. Since this is a linear analysis we apply the

linearised form of the lower boundary condition (2.4) to find

w′ = U
∂h

∂x

eim1(z−H) + re−im1(z−H)

eim1H + re−im1H
ei(kx−ωt) for 0 < z < H , (3.35)
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where we have defined the reflection coefficientr as the ratio of the amplitude of

upward and downward propagating waves

r =
Arefl

Ain
. (3.36)

We can findr by applying the conditions that the perturbation pressurep′ and the

vertical velocityw′ are continuous across the interface. However, following Gill

(1982) and Nappo (2002) this is simplified if we define the impedanceZ = p′

ρ0w′ .

Sincep′ andw′ are continuous across the interface,Z must also be. To calculate

Z in each layer we must first calculate the perturbation pressurep′. To do this we

assume wave like solutions of the formq′(x, z, t) = q̃(z)ei(kx−ωt) for each of the

variablesu′, ρ′, p′ andw′. In this case equations (3.2) and (3.4) give

p̃ =
ρ0

k
((ω − Uk)ũ + iw̃Uz) , (3.37)

ũ =
i

k
w̃z , (3.38)

which implies that

p̃ =
iρ0

k2
((ω − Uk)w̃z + iw̃Uz) . (3.39)

Using (3.35) and (3.34) we see that

p̃1 = U
∂h

∂x

(
B1e

im1(z−H) + B2e
−im1(z−H)

)
e−i(kx−ωt) , (3.40)

p̃2 = Arefr
(

ρ0m2

k2
(ω − Uk)− iUz

)
eim2(z−H)e−i(kx−ωt) , (3.41)

where

B1 =
ρ0

k2
(ω − Uk)m1 + iUz , (3.42)

B2 = (− ρ0

k2
(ω − Uk)m1 + iUz)r . (3.43)

Returning to the analysis of Gill (1982) and Nappo (2002), we consider the case

Uz = 0. Then these equations give the impedance in each layer as

Z1 =
m1

k2
(ω − Uk)

eim1(z−H) − re−im1(z−H)

eim1(z−H) + reim1(z−H)
, (3.44)

Z2 =
m2

k2
(ω − Uk) . (3.45)
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Applying the condition thatZ is continuous across the boundary gives

m2

m1

=
1− r

1 + r
. (3.46)

Rearranging this as

r =
m1 −m2

m1 + m2

(3.47)

gives us some information about the properties of the waves in each layer. By

definition, if r = 0 the wave will be propagating in both layers andm1 = m2. It

is also clear from the definition ofr that if |r| = 1 there is total reflection and the

wave is trapped in the bottom layer. Ifr = 1 thenm2 must be zero and the wave

cannot propagate through the upper layer.

3.5 The hydrostatic approximation

In this section we examine the consequences of making the hydrostatic approxi-

mation. As we shall see in the next chapter, this approximation is essential for the

formulation of the multilayer atmospheric model. Therefore we must understand

the implications that the assumption of hydrostatic balance has on the flow.

The hydrostatic approximation imposes restrictions on the scale of flow to

which the model can be applied. Following Gill (1982) we substitute (3.2) into

the time derivative of (3.4) to obtain

∂2w

∂z∂t
=

1

ρ0

∂2p′

∂x2
. (3.48)

If we assume plane wave solutions this gives the relation

p′ = −m

k2
ωρ0w0 cos(kx + mz − ωt) , (3.49)

and (3.5) gives

ρ′ = −N2

ωg
ρ0w0 sin(kx + mz − ωt) . (3.50)

SettingU = 0 in (3.8) gives the dispersion relation

ω2 =
N2k2

k2 + m2
, (3.51)
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which, along with equations (3.49) and (3.50), implies that

∂p′

∂z
= − m2

k2 + m2
gρ′ . (3.52)

Hence the hydrostatic approximation is valid only whenk2 � m2, that is, when

the horizontal scale of the motion is much larger than the vertical scale. Ironically,

this result also shows that, for constantU , m cannot vanish and the wave trapping

discussed earlier will not occur. Thus, although the vertical scale of the motion

is assumed to be small, hydrostatic theory produces vertical motion to a higher

altitude than the non hydrostatic theory.

Partial reflection from a discontinuity inN is possible. This has been studied

by Klemp and Lilly (1977) and we shall be comparing the model output to some of

their results in section 4.3.2. It is may also be possible to produce reflection simply

by varyingU in such a way thatd2U/dz2 is non zero. This will be investigated in

section 4.3.4.



Chapter 4

The multilayer model

In this chapter we return to the nonlinear theory. The atmosphere is approximated

by a finite number of discrete homogeneous layers and the nonlinear equations are

solved numerically within each layer. We will use this model to investigate some

of the theory set out in Chapter 3.

4.1 Multilayer equations

We model the fluid asI incompressible, homogeneous layers and assume the

interface between the layers to be infinitely thin. It is also assumed that no mixing

occurs between the layers. Within each layer the flow is governed by the same

equations as the single layer, namely

Dui

Dt
= − 1

ρi

∇pi − gẑ , (4.1)

∇.ui = 0 , (4.2)

where thei subscript labels the layer and the notation is the same as before, (see

figure 4.1. The interaction between the layers occurs via the pressure term which

can be found, as before, from the hydrostatic equation

− 1

ρi

piz − g = 0 . (4.3)

36
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Figure 4.1:Definition diagram for the notation in the multilayer case.Ui andd̄i are respectively

the upstream constant speed and depth in theith layer,ηi(x) is the displacement of theith interface

andh(x) is the topography.di(x) = d̄i + ηi(x)− ηi−1(x) is the total depth of theith fluid layer.

Integrating this from a pointzi within theith layer to the top of the layer gives

pi(zi) = pis + gρi(zis − zi) , (4.4)

wherepis andzis denote the pressure and height respectively at the surface of the

ith layer. For the top layer this is clearly

pI(zI) = ps + gρI

( I∑
j=1

(d̄j) + ηI − zI

)
(4.5)

whereps is the pressure at the surface. For theI−1th layer the equivalent equation

is

pI−1(zI−1) = p(I−1)s + gρI−1

( I−1∑
j=1

d̄j + ηI−1 − zI−1

)
. (4.6)
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If we impose the condition that the pressure is continuous across each interface so

that

pis = pi

( i∑
j=1

d̄j + ηi

)
= pi+1

( i∑
j−1

d̄j + ηi

)
, (4.7)

we can rewrite (4.6) as

pI−1(zI−1) = pI

( I−1∑
j=1

d̄j + ηI−1

)
+ gρI−1

( I−1∑
j=1

d̄j + ηI−1 − zI−1

)
. (4.8)

Using (4.5) we see that

pI−1(zI−1) = ps + g

(
ρI(d̄I + ηI − ηI−1)+ ρI−1

( I−1∑
j=1

d̄j + ηI−1− zI−1

))
. (4.9)

Continuing this process we see that the general equation for the pressure in theith

layer is

pi(zi) = ps + g

(
I∑

j=i+1

ρj(d̄j + ηj − ηj−1) + ρI−1

( i∑
j=1

d̄j + ηi − zi

))
. (4.10)

Substituting this into (4.1) and taking the surface pressure to be zero gives

uit + uiuix = −g
(

1

ρi

I∑
j=i+1

ρj(ηjx − η(j−1)x) + ηix

)
. (4.11)

Again we find the equation forη from the integrated form of the conservation

equation:

0 =
∫ Σi

j=1d̄j+ηi

Σi−1
j=1d̄j+ηi−1

uidz − ui
∂ηi

∂x
+ ui

∂ηi−1

∂x
+ [wi]

Σi
j=1d̄j+ηi

Σi−1
j=1d̄j+ηi−1

(4.12)

=
∂

∂t
(ηi − ηi−1) +

∂

∂x
(ui(d̄i + ηi − ηi−1)) (4.13)

where we have applied the conditionwi = Dηi

Dt
at each interface.

4.2 Multilayer program

The program multilayerprogram.f90 solves equations (4.11) and (4.13) using a

similar process to that given in section 2.3.1, that is, the equations are solved using
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a leapfrog scheme with a sponge layer to absorb the waves at the lateral boundary.

The same process of numerical diffusion is also included. The only complication

encountered in the multilayer case is the presence of an upper boundary. There

is no such distinct upper boundary in the atmosphere. Therefore, we require an

upper boundary condition that enables the waves to propagate out of the domain.

This is accomplished by adding another sponge layer, this time to the top of the

domain. The second damping function,λ2(x) is plotted in green in figure 4.2. The

discrete equations solved by this program are

un+1
i,j =

ui,jn−1 − dt
dx

(F n
i,j+1 − F n

i,j−1) + 2dt(λi,j + λ2,i,j)Ui

1 + 2dt(λ2,i,j + λi,j)
, (4.14)

ηn+1
i,j =

ηn−1
i,j − dt

dx
(Kn

i,j+1 −Kn
i,j−1)

1 + 2dt(λ2,i,j + λi,j)
. (4.15)

As in the single layer case, we require some numerical diffusion to keep the

scheme stable. This is accomplished in the same way as before.

Figure 4.2:Diagram of the multilayer program. The undisturbed heights of the layers are shown

in dashed grey, the topography is plotted in black. The damping functions are shown in red at the

lateral boundary and in green at the upper boundary.
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4.2.1 Sensitivity to parameters

The same conditions as outlined in section (2.3.2) apply todt andav in this mul-

tilayer program. However, since we are now attempting to model a continuously

stratified fluid by a set of discrete layers, we need to consider the vertical reso-

lution, that is, the number of layers of constant density used to model a layer of

constant buoyancy frequency. There has not been time to investigate this in depth.

The number of layers in each simulation has been decided by a quick preliminary

run.

When constructing the sponge layer at the upper boundary, care must be taken

to ensure that it is deep and gently sloping. The depth ensures that the waves are

fully absorbed while the gradual slope will prevent waves from reflecting. Again,

the characteristics of the sponge layer are individual to each case.

4.3 Results

4.3.1 Two layer flow

In order to test the program we apply it to a simple situation, that of two super-

posed layers of different density. In this case equations (4.11) and (4.13) become

u1,t + u1u1,x = −g
(

ρ2

ρ1

(η2,x − η1,x) + η1,x

)
(4.16)

u2,t + u2u2,x = −gη2,x (4.17)

η1,t + (u1(d̄1 + η1 − η0))x = 0 (4.18)

η2,t + (u2(d̄2 + η2) + (u1 − u2)η1 − u1(d̄1 + η0))x = 0 (4.19)

Comparing the equations foru1 andη1 with those for flow in a single layer we

see that there is only one additional term: the first term on the right hand side of

(4.16). When we derived the single layer equations we stated that any fluid above

the interface had negligible density and if we do neglect the density of the second

layer by settingρ2 = 0 we arrive at the single layer equations. Rewriting (4.16) as

u1t + u1u1x = −g
ρ2

ρ1

η2x − g
(
1− ρ2

ρ1

)
η1x (4.20)
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= −g
ρ2

ρ1

η2x − g′η1x (4.21)

we see that ifη2x is relatively small, the motion in the lower layer is similar to that

in a single layer with reduced gravity

g′ = 1− ρ2

ρ1

. (4.22)

If we make the rigid lid approximationη2x = 0, the two cases become identical.

This can be seen in figure 4.3.

Figure 4.3: Two layer flow showing the solution for the lower layer (blue) compared to the

solution for a single layer system with reduced gravityg′.

4.3.2 Partial reflection

Klemp and Lilly (1975) study a linear hydrostatic model of the atmosphere com-

prising three layers of buoyancy frequency. Their aim is to investigate the atmo-

spheric conditions which produce intense surface winds. We aim to reproduce
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their result (see figure 4.5) which shows partial reflection of the wave and a sig-

nificant increase in wave amplitude in the lower layer. The values given in Klemp

and Lilly (1975) for their three layers are

N1 = 1.6× 10−2s−1 , U1 = 15ms−1 ,

N2 = 0.9× 10−2s−1 , U2 = 25ms−1 ,

N3 = 2.0× 10−2s−1 , U3 = 45ms−1 .
For our model we need to construct these layers of buoyancy frequency out of

layers of different density. Solving

∂ρ

∂z
= −ρ

g
N2 (4.23)

for ρ gives

ρ = e−N2z/g . (4.24)

Thus

ρi = e−N2z/gρi−1 , (4.25)

where the subscripti denotes theith layer. We can now build up the requiredN2

profile. We use 10 layers of density to each layer of buoyancy frequency. The

result is given in figure 4.4. It shows good agreement with figure 4.5. The steep

drop over the mountain is well produced but, although the disturbance persists to

higher levels the shape is not quite correct - the surface rises a little before it drops

and this feature is not present in Klemp’s result.



CHAPTER 4. THE MULTILAYER MODEL 43

Figure 4.4:Numerical result from the multilayer model for the atmospheric profile detailed in

equations (4.3.2),(4.3.2) and (4.3.2)

Figure 4.5:Linear streamline pattern for flow past a bell shaped mountain. From Klemp and

Lilly (1975)
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4.3.3 Variation of buoyancy frequancy

Figure 4.6:di(x) for m = 0.001m−1.

Figures 4.6 and 4.7 showdi(x) for two different values ofm. The maximum

amplitudes of the waves are greater in the case wherem is smaller but this can

be explained by the linear theory since the wave amplitudes are proportional to
F0

2(F0−1)
which is larger ifU0 is. In order to investigate these differences further

we plot the location of the maximum waves amplitues for both values ofm, see

figure 4.8. Again this is disappointing since there is little difference other than

that which you would expect from a variation in wind speed.



CHAPTER 4. THE MULTILAYER MODEL 45

Figure 4.7:di(x) for m = 0.002m−1.

Figure 4.8:A comparison of the locations of the maximum wave amplitudes form = 0.001m−1

(blue) andm = 0.002m−1 (red).
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4.3.4 Vertical wind profile

In this section we investigate the effect of varying the initial wind speed with

height as shown in figure 4.9.

Figure 4.9:Initial vertical velocity profile,U(z).

The results, shown in blue in figure 4.10, are not as expected. We were hoping

to see some reflection at the layer whereU is decreasing. The red curves show the

result when the conditions are identical apart from the initial horizontal velocity

which is a constant10ms−1 for all z. There is some difference in the outputs

above the critical layer, as is shown in figure 4.11, but it is believed that these

differences are due purely to the different wind speed rather than to the fact that

the waves have passed through a critical layer.
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Figure 4.10:A comparison ofdi(x) in the case whereU(z) is as given in figure 4.9 (blue), to

the case whereU = 10ms−1 is constant with height (red).

Figure 4.11:A plot of the difference between the two cases shown in figure 4.10, for the last

two timeframes (before this there was little difference). As expected there is no difference below

the critical layer but some difference above.
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Conclusions

This study has examined the importance of gravity waves in the atmosphere. The

mechanism by which they are generated has been explained with particular em-

phasis on topographic forcing. The flow of a homogeneous layer over an iso-

lated obstacle has been studied in detail and the numerical results agree well with

those already established. The theory of stratified flow has been discussed and

the numerical model extended to deal with multilayer, stratified flow. The results

presented above have not been exactly as we envisaged and it is not clear that

the multilayer system should exhibit the same characteristics as the continuously

stratified flow it is attempting to represent.

5.1 Evaluation of the multilayer model

5.1.1 Resolution

The horizontal resolution was set so that there were enough gridpoints in thex

direction to represent the mountain. In the linear case the waves have wave-

length equal to the width of the mountain so this resolution is sufficient. It is

also adequate for the nonlinear cases considered in this study. In situations where

shocks occur, greater resolution at the discontinuities would stave off instability

but if these phenomena were to be studied in detail, an entirely different numerical

method should be used.

48
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The vertical resolution is of greater interest. In most cases the model has

been run with all of the density layers having the same depth. The exception to

this is the comparison with the Klemp and Lilly (1975) model where different

layer depths were used in each of the levels of buoyancy frequency. Since this

the case that produced the most encouraging results, it is likely that increasing

the vertical resolution would have some positive effects. For example, Klemp

and Lilly (1975) uses a vertical spacing based on the potential temperature. It

may also be instructive to increase the resolution at critical layers. Perhaps the

most obvious improvement would be to increase the depth of the first layer so that

higher mountains could be modelled without losing resolution higher up in the

atmosphere.

5.1.2 The sponge layer

The necessary presence of a sponge layer at the upper boundary greatly increases

the run time of the program. However, some way of approximating the condition

that waves radiate outwards must be implimented. Durran (1999) suggests another

option which involves including a viscous term in the upper layers but this does

not necessarily improve the situation since a wave absorbing layer must still be

implemented.

5.1.3 The hydrostatic approximation

In the derivation of the equations of motion for a multilayer fluid we assumed the

flow to be hydrostatic inorder to find an expression for the pressure within each

layer. However, it is possible to represent nonhydrostatic flow using a multilayer

model simply by retaining the vertical velocity variablew.

5.2 Further work

It is clear from the results presented in this study that more work is required before

the multilayer model can be trusted to give reliable results. However, once the
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model is workable, there are many other situations it can be applied to. These are

outlined in the final sections below.

5.2.1 Layers with uniform density and vorticity

Following Baines (1995) we suggest that the layered model may better approxi-

mate a continuously stratified fluid if the velocity gradient, rather than the velocity,

were uniform in each layer. Defining the mean velocity to be

Ui(z) = U(z(i−1)s) + (z − z(i−1)s)
dUi

dz
, (5.1)

wherezis is the undisturbed height of the top of theith layer, we see that this new

approximation would give a countinuous mean velocity profile. This is clearly a

step closer to approximating a continuous velocity profile.

5.2.2 Rotational effects

Nappo (2002) makes the point that, since the hydrostatic approximation becomes

more appropriate as the mountain width increases, there will come a point where

the effects of the Earth’s rotation will be felt. He calculates that a parcel travelling

at 10ms−1 will take 11 hours to cross a mountain range of width400km and on

this timescale the Coriolis force will have an impact on the flow. Gill (1982)

contends that, for large mountain chains, the slope will frequently change sign

and it is the region in which the slope maintains the same sign that is important.

In this case the length scale becomes10km and the nonrotating regime is again

applicable. This justifies our neglect of the Coriolis force but it is obvious that

there will be cases where it is important. It should be straightforward to adapt the

program to include rotational effects.

5.2.3 Extension to more dimensions

For simplicity, this study has been limited to one dimensional flow over a two

dimensional mountain. This gives an adequate indication of general properties
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of the flow over a long ridge of constant cross section but even in this case it is

evident that the ridge will end and the air will be able to flow around it. The

characteristics of both two dimensional and fully three dimensional flow can be

expected to be quite different from those of the simplified flow presented in this

study.
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