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Abstract

Flood events have large consequences on human society in terms of impact on
human life and economy. In the current climate change situation, increase of
heavy rain will contribute to an increase of flood events both in intensity and
frequency. Groundwater flood is a particular flood event which involves the
rising of the groundwater table to the surface due to previous infiltration.
Numerical modelling codes based on physical laws describing the velocity
and water column change are powerful tools for flood simulating extensions
and intensity forecasts. We have developed a coupled code consisting of
a one dimensional shallow water equation approximation together with a
thin film equation to describe the behaviour of the groundwater flood. A
Lagrangian description is used throughout because it is particularly adapted
to the problem of both the shallow water and thin film equations. In addition,
high order numerical resolution of high order equation is sought using an
adaptive moving mesh to improve the accuracy of the solution. The model
proposed leads to a finite difference numerical draft model of the groundwater
flood in 1D for single sources. It will needs further testing to improve it
stability and flow continuity. Further development of the code may imply a
2D development, a finite element version of the code more suitable to solve
the flow computation on a complex surface, consideration for roughness and
the use of implicit method.
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Definition Groundwater : Aquifer which is located underground. In this
case the aquifer is unconfined and pressure increase results in the rise of the
water column
Open channel flow : Flow of water in a channel in which the top part con-
tains a free boundary
Groundwater flood : Flood due to the rise of the groundwater at the surface
Flash flood : Flood due to quick heavy rain. Infiltration that exceeds the
threshold of the maximum soil infiltration is called run-off flow, which can
create hill-slope flood flow
Verlet is a Physicist pioneered the computation of molecular dynamics mod-
els simulation. It refers to a particular scheme called ”Verlet scheme”

Nomenclature h : The height of the water column (in metres m)
x : Position in the x direction (in meters m)
u : Velocity of the water in the x direction (in metres per seconds m.s−1)
t : Time (in seconds s)
g : Gravity constant, g = 9.80665 (in m.s−2)
slope : Slope of the bottom
Manning : Coefficient of roughness
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Chapter 1

Introduction

Flooding research constitutes an important research topic driven by its ma-
jor impact on society. The damage due to flood is costly and insurance costs
to prevent flood damage are high. Worldwide, coastal, riverine and flash
floods are responsible for more than 50% of fatalities and for about 30% of
the economic losses caused by all natural disasters.

In the United Kingdom, property, land and assets to the value of £214 bil-
lion are at risk of flooding in England and Wales. The Environment Agency
spends £300 millions a year on flood defences, 43% of existing flood defences
being in a fair, poor or very poor state of repair. The damage bill from the
devastating floods of 2007 was in excess of £3 billion. A map of England ex-
posure risk to groundwater flood was published by the Environment Agency
(Figure 1.1)

These natural hazards have a certain degree of predictability and the keys
to minimize the damage are in the precision of the flood extent and intensity
prediction. Different flood events such as heavy rain, tsunamis, over banking
in channels and groundwater occur. Accurate determination of height and
extension of the flood require numerical modelling tools based on discretiza-
tion of physical laws. In this study, flood issue from a groundwater rise to
the surface is modelled by finite differences, in a Lagrangian reference frame
and in one dimension. Soil, rock properties, topography and rain intensity
play a strong role in this process but those phenomena are not modelled in
this project.
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Figure 1.1: Flooding facts in the UK
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During this study, only the groundwater flood process after reaching the
surface was studied. To model this effect, a one dimensional depth averaged
approximation of the Navier-Stokes was used called the Saint-Venant equa-
tions.

The Navier-Stokes equations describe the motion of fluid and arise from ap-
plying Newton’s second law to fluid motion. The Shallow Water Equations
(SWEs) are a vertically averaged approximation of the Navier-Stokes equa-
tion. The vertical averaging is determined using the boundary conditions
and by averaging the velocity over the depth. This dissertation describes
the derivation steps of the averaged depth Shallow water equation and the
associated approximations. The depth averaged method is a standard cur-
rent technique to approximate the Navier-Stokes equations to shallow water
approximation. The one dimensional approximation of the Shallow water
equations are the Saint-Venant equations or open channel flow equations
(Olsen, 2012 [1]).

The latest numerical scheme and strategies to optimize flood depth averaged
free surface problem have been compiled by Delis et al., 2010 [2]. Further-
more, detail of the derivation of the approximation of the Shallow water
equations currently used are developed by Dawson and Mirabito, 2008, [3].
Commercial numerical codes developed since the ’60’s, include MIKE from
Danish Hydrological Institute (DHI), HEC-RAS from the American Hy-
draulic Engineering Centre, TUFLOW. Recent open source code are now
available for flood modelling purpose such as OPEN OpenCFD [4]. Those
models are used for channel, overbank flood or heavier rain flood. At present,
no model is specifically dedicated to groundwater flooding but there is a grow-
ing interest related to the groundwater issue.

Ouput of numerical model are used to produced flooding risk maps as il-
lustrated Figure 1.2 The Saint-Venant equations are coupled to a thin film
equation to model the diffusion of the water with low water fluxes.

The thin film equation is a non-linear 4th order equation which describes
the spreading of a fluid on a surface. The two equations, Saint-Venant for
linear uniform flow, and diffusion, are coupled to describe more precisely a
groundwater flood process.
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Figure 1.2: Example of flooding risk map (From Ordnance Survey Ireland, All
rights reserved. Licence number 2010/15CCMA/Galway County Council)

A recent research project called FUSE (Floodplain Underground SEnsors) [5]
uses a high-density, wireless, underground Sensor Network to quantify flood-
plain hydro-ecological interactions. It investigates the Field groundwater
table change with flood consequence. It allows monitoring of the groundwa-
ter level by geophysics, i.e. electromagnetic methods, with a high resolution.
In the long term the project will improve our understanding of groundwater
flood forecast and could possibly be used as an early alert tool for ground-
water floods.

Numerical modelling software is a key tool to address the degree of pre-
dictability of a flood event: Numerical modelling improvements will mini-
mize the damage by improving the precision of flood front location and the
height of the water wave. The present project also makes use of a Lagrangian
frame of reference, resulting in interesting and challenging numerical mod-
elling issues with maximum time steps in coupling the systems of equations:
Saint-Venant for laminar flow and thin film for non-linear diffusion, using a
moving mesh strategy based on velocities.
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Figure 1.3: Schematic model of the numerical problem (From Baines et al.,
2012, Unpublished)

The thin film equation is a diffusion problem described by a 4th non lin-
ear differential order equation. It describes the spreading of a thin film on a
surface. Several publications are related to this problem which have several
industrial applications (O’Brien and Schwartz, 2002 [6]). In our case, prob-
lem of capillary and inter-facial tension is neglected due to the dynamic of
the fluid.

The coupling of the two problems is a based on theoretical assumptions which
haven’t been developed and published yet. Hence, the use of this idea will
be submitted to criticism based on this first project. The problem covered
by this work is illustrate by the Figure 1.3 where the two flow domains are
illustrated. The location of the groundwater source flow at the left boundary
and the moving free boundary at the right hand of the model are illustrated
as well.
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Summary The first chapter introduces the objectives of the project and
the limitations of the model and discusses recent advances in flood numer-
ical modelling. Chapter 2 reviews the moving mesh method and the veloc-
ity moving mesh method used for this problem. Chapter 3 describes the
Saint-Venant equations, 1D approximation of the shallow water equations
(also called the open channel flow equations). Mathematical and numerical
scheme development is described including the Lagrangian frame of reference.
Chapter 4 describes a version of the 4th order non linear diffusion equation
called the thin film equation and its modelling using a moving mesh strategy.
Chapter 5 describes the coupling strategy used to coupled the two type of
equations and resolve moving boundaries. Finally, Chapter 6 concludes and
gives further work percpectives.
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Chapter 2

A moving mesh : A
velocity-based moving mesh
method

This chapter describes a method based on a moving mesh strategy. This
method uses a velocity based moving mesh method, particularly well-adapted
for Lagrangian fluid movement. Moving meshes or dynamic meshes are a
numerical modelling strategy to minimize the number of grid points used for
a dynamic problem compared to a static grid while preserving the physics
of phenomena. The method chosen is based on local mass conservation for
each discretized element (Baines et al., 2011 [7]), which is consistent global
mass conservation. The method allows the configuration of the velocity of
the mesh for each nodal point of the mesh (Bhattacharya, MSc 2004 [8]).
The local consevation is assured for each time step. The velocity is obtained
by differentiating the mass conservation equation. The new mesh locations
are obtained from the nodal velocities by a time step method. The method
is particularly adapted to surface flow problems. Several moving meshes
methods has been developed and this area of research is ongoing (Budd et
al., 2009 [9]), having strong potential in climate models for example (Weller
et al, 2009 [10]).
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2.1 Finite Difference Methods

The Finite Difference Method (FDM) is used is this project. Finite Element
Method was used by Bhattacharya. B., 2004 [8] and Baines et al., 2005
[11] with successful results. The coupled method consists of discretizing the
domain with N nodes and computing the Partial Differential Equations of
Saint-Venant and the thin film method over time using traditional time steps.
Both sets of equations became discretized by an explicit method.

2.2 Mass conservation

We considered the non linear thin film equation

∂h

∂t
=

∂

∂x

(
h3∂

3h

∂x3

)
(2.1)

over the domain x = [−1, 1] with h = 0 at the free boundaries (x0(t) and
xN(t)). We can identify two steps in the velocity based moving mesh. First,
the velocity of each nodal point is computed. Pevious work has included the
development of a moving mesh method for a self similar problem, Bird., 2012
[14]. The typical equation used was :

∂h

∂t
=

∂

∂x

(
h
∂3h

∂x3

)
(2.2)

with h = 0 at free boundaries.
Secondly, the local mass conservation law is used to etermine the new height
of the water column. Global mass conservation is assured by the boundary
conditions.

2.3 Local mass conservation

The local mass conservation between discretized points is assumed over time.
It is defined as ∫ xi+1(t)

xi−1(t)
h(x, t)dx = ρi (2.3)

where ρi represent the local mass at the node i which remains constant for
all time. A discrete midpoint approximation of the integral (Equation 2.3)
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gives:
(xi+1 − xi−1)hi = ρi (2.4)

for
i = 2, ..., N − 1

Next, the new location of the node is computed and height of the water
column is recomputed based on equation 2.3 for each hi

2.4 Moving mesh

Knowing the velocity of the node at each node, the new location of the nodes
xn+1
i can be calculated form the previous mode location xni by the expression:

xn+1
i = xni + vi × dt (2.5)

where vi represent the velocity of each node and dt the time step used. Care
have to be taken for the chose of dt, high value of the time step could conduct
to node overlapping since the node velocity are different. In the other hand,
low dt value will conduct to slow the computation code.
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Chapter 3

One-dimensional shallow water
equation approximation: The
Saint-Venant approximation

The Saint-Venant equation describes a one-dimension (1D) approximate shal-
low water flow used currently for open channel flow. It can be used for a one
dimension water flow problem as a simplification of a two-dimension (2D)
problem in a 1D context. The equations which described the flow process
are derived from the mass conservation and momentum conservation.

Eulerian and Lagrangian descriptions of fluid constitute two ways to describe
fluid movement (Price (2006 [12]). The Eulerian approach supposes a fixed
reference and the Lagrangian approach a coordinate system moving with the
fluid particles. Due to the nature of flooding, the Lagrangian description
is particularly adapted to the problem: the equations become simpler and
their numerical approximation more precise. Due to the central difference
explicit scheme used, a volume corrector is used to compute the height of the
water column. The channel is considered with a small slope of 0.006 degree.
We begin by considering the Eulerian SWEs, following by a semi-implicit
Lagrangian formulation and finally fully Lagrangian. The Verlet scheme is
used for the Lagrangian SWEs.
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3.1 Eulerian description of fluid

There are several schemes available to solve the Saint-Venant equations. For
the Eulerian approach, we used space central difference method corrected by
a predicator corrector as illustrated by Olsen., 2012 [1].

3.1.1 Mathematics equations

We define the variables:
h: The height of the water column, a function of x and t
x: Position in the x direction
u: Velocity of the water in the x direction, also a function of x and t
We assume the following equations of continuity and momentum conserva-
tion:
Continuity equation:

∂h

∂t
+
∂(uh)

∂x
= 0 (3.1)

Momentum equation:
∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0 (3.2)

3.1.2 Finite difference discretization

We discretize both equations by a simple finite difference method, the Forward-
Time Central-Space (FTCS) scheme. Both explicit and a semi-implicit schemes
were used. The simplicity of the formulation makes the algorithm attractive
even of strong instability. According to Olsen [1], a volume corrector has to
be applied due to the high instability of the central difference scheme. The
numerical approximations are

∂h

∂t
≈ hn+1

i − hni
dt

and

∂u

∂x
≈
uni+1 − uni−1

2∆x
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where hnj is the height of the water column at node j and at time tn of the

domain x = [0, 1000].
Also,

∂(uh)

∂x
≈ uni

hni+1 − hni−1

2∆x
+ hni

uni+1 − un−1
i

2∆x
, (3.3)

leading to :

hn+1
i − hni

∆t
+ uni

hni+1 − hni
2∆x

+ hni
uni+1 − uni

2∆x
= 0 (3.4)

Hence,

hn+1
i = hni −

∆t

2∆x
(uni (hni+1 − hni ) + hni (uni+1 − uni )) (3.5)

where dx is the spacial increment and dt the temporal increment. For the
equation the explicit form is given by: Which lead to:

un+1
i − uni

∆t
= uni

uni+1 − uni
∆x

+ g
hni+1 − hni

∆x

un+1
i = uni −

∆t

∆x
(uni (uni+1 − uni ) + g(hni+1 − hni )) (3.6)

The semi-implicit form is defined by:

un+1
i = uni −

∆t

∆x
(uni (uni+1 − uni ) + g(hn+1

i+1 − hn+1
i )) (3.7)

The Semi-implicit form was used because it considered as more accurate at
the time the value of the velocity u is computated.

3.1.3 Volume control

Due to the high instability of the explicit scheme, an implicit volume corrector
has to be applied to recalculate the correct velocity and height of the solution.
According to Olsen [1], this operator can be defined as: ]

hn+1
i = 0.25× (uni + un+1

i ) + hni ×
∆x
∆t
− 0.5× u

∆x
∆t

+ 0.5× u
(3.8)
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Figure 3.1: Figure for control volume approach to discretization of continuity
equation [1]

where u is defined as:

u =
uni + un+1

i

2

An illustration of the of the approach related to the Equation 3.8 is illustrated
Figure 3.1. i− 1, i, i + 1 represent three cross sections, j − 1, j two surfaces
water. The purpose of the algorithm is to compute the height of the water
column at j. The volume control is based on the computation of fluxes in
and out of the volume upstream of i. The difference between the inflow and
the outflow is equal to the volume of water between the two surface at time
j − 1 and j respectively.

The results of the Saint-Venant numerical model are illustrated in Figure
3.2, Figure 3.3 at time t = 1 s, t = 20 s, t = 50 s, t = 100 s, t = 150 s, t
= 200 s respectively. The space step is set to dx = 1m with N = 101 nodal
points, the time step was set to dt = 1s. The Figures shows the propagation
of a channel water wave over time. The curve indicates the height and the
location of the water level. The front height is well captured. Oscillation
at the left boundary can be observed due to the sharp flow change from the
discontinuity of the initial condition.
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Figure 3.2: 1D Saint-Venant flow at t = 100 s (Computation FORTRAN,
visualization MATLAB)
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Figure 3.3: 1D Saint-Venant flow at t = 200 s (Computation FORTRAN,
visualization MATLAB)
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3.2 Semi-Lagrangian description of fluid move-

ment or trajectory-based method

The Semi-Lagrangian description of fluid flow is used to simplify the problem.
For the Saint-Venant approximation, two steps are needed for the method.
First, the height of the water column has to be computed based on the
velocity by the continuity equation. In the next step, the new velocity is
determined by the momentum conservation equation. We used the definition
of Lagrangian fluid movement:

Dh

Dt
=
∂h

∂t
+ u

∂h

∂x
(3.9)

3.2.1 Mathematical equations

We have the following equations:
Continuity equation:

∂h

∂t
+
∂(uh)

∂x
= 0⇔ Dh

Dt
+ h

∂u

∂x
= 0 (3.10)

Momentum equation:

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0⇔ Du

Dt
+ g

∂h

∂x
= 0 (3.11)

3.2.2 Finite difference discretization

We express the previous equation using a Lagrangian derivative, expressing
the new height, new velocity and new position of the water wave: Continuity
equation:

Dh

Dt
+ h

∂u

∂x
= 0

⇔ hn+1
i − hnα

∆t
+ hni

uni+1 − uni−1

2∆x
= 0
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⇔ hn+1
i − hnα

∆t
= −hni

uni+1 − uni−1

2∆x

⇔ hn+1
i = hnα − hni × (uni+1 − uni−1)× ∆t

2∆x
Momentum conservation equation:

Du

Dt
+ g

∂h

∂x
= 0

⇔ un+1
i − uni

∆t
+ g

hni+1 − hni−1

2∆x

⇔ un+1
i = uni − g

∆t

2∆x
× (hni+1 − hni−1)

3.2.3 Boundaries conditions

Left boundary condition

The Left boundary condition is set as constant flux boundary of water. It
represents a local punctual groundwater flood influx.

Right boundary condition

The right boundary xN is constrained by the length location of the last point.
Flux at the end point is computed using velocity and height at this location.

Visualization

The results of the Saint-Venant numerical model in Lagrangian reference are
illustrated Figure 3.4 and Figure 3.5 at time t = 10 s, t = 70 s. The space
time step was dx = 50m, with N = 21 nodes and dt = 0.01s.

3.3 Fully Lagrangian fluid dynamic descrip-

tion: The Verlet scheme

A fully Lagrangian description needs x(t, φ) independent of dx, where φ is
the number of the particle. The Verlet scheme is adapted to this problem, it
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Figure 3.4: 1D Saint-Venant flow at t = 10 s (Computation FORTRAN,
visualization MATLAB)
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Figure 3.5: 1D Saint-Venant flow at t = 70 s (Computation FORTRAN,
visualization MATLAB)
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develop a full Lagrangian description of the fluid particle.

3.3.1 Mathematical formulation

Using mass conservation, we define ∆x by the equation,

h∆x = ∆c

where ∆c is considered as the mass of fluid, is constant in each cell ∆x except
at inflow.

3.4 Global and local mass conservation

The height at the initial condition is defined hx(t) = 0.005 + (1 − x(y)1/2)2

the total mass is now not constant due to the flux from the SWE part (and
from the possible non-zero diffusive flux from the Spreading part but let’s
ignore that). So, defining θ(t) as the total mass take the rate of change θ̇ to
be the flux from the SWE. The main new feature is that the partial masses
cannot remain constant in time since the total mass is not constant in time.
However, the normalized partial masses can remain constant in time, that is(

1

θ(t)

) ∫ x

a
hdx = c = constant (3.12)

When the time differentiation is carried out, an additional term cθ̇ on the
right hand side has to be used.

1. Momentum equation. x, u, the position and the velocity are advanced
from

dx

dt
= u,

du

dt
= −g∆h

∆x
= −gh∆h

∆c

2. Continuity equation. The height h is advanced from

h∆x = ∆c
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3.4.1 Discretization and algorithm implementation

We start from the momentum equation in a Lagrangian domain:

Du

Dt
= −gh∆h

∆x
(3.13)

To compute the mesh location, we use the Velocity Verlet formulation (Dum-
mer et al., 2012 [13]).
First step :

x
n+ 1

2
i − xni

∆t
2

= uni (3.14)

Second step : hn+ 1
2 is computed by the relation

hn+ 1
2 ∆xn+ 1

2 = ∆c (3.15)

un+1
i − uni

∆t
= −gh

n+ 1
2 ∆h

∆c
(3.16)

un+1
i = uni −

ghn+ 1
2 ∆hn+ 1

2dt

∆c
(3.17)

Third step :
xn+1
i − xni

∆t
=

1

2
(uni + un+1

i ) (3.18)

3.4.2 Numerical Results of Saint-Venant equations us-
ing the Verlet scheme

Initial conditions

The initial conditions are not known for this equation because no exact so-
lution is available for this problem. We tested three different height initial
conditions for:

1. h0 = a ×
(

1 −
(
x2

4

)2)
with a = 0.01, 1...10 and x = [0, 2] The result

obtained are illustrated Figure 3.6. The displacement of the water
wave, it location and height is illustrated. After the first time step, the
height of the water column at the left boundary drop to it real dynamic
height maintain by the inflow.
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Figure 3.6: Results of the computation of the Saint-Venant equations using

the Verlet scheme, N = 51 nodes and initial condition h0 = a×
(

1−
(
x2

4

)2)
(Computation and visualization tool MATLAB).
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Figure 3.7: Results of the computation of the Saint-Venant equations using
the Verlet scheme, N = 11 nodes and initial condition h0 = a× (1− tanh(x))
(Computation and visualization tool MATLAB).

2. h0 = a × (1 − tanh(x) with a = 0.01, 1...10 and x = [0, 2] The result
of the computation of the Lagrange Saint-Venant equations using the
Verlet scheme is illustrated Figure 3.7. It shows the evolution of the
water height column over time.

3. h0 = 1 for x = [0, 50] and h0 =
(

1 −
(
x2

4

)2)
for x = [50, 100], ,

dt = 0.00001s, dx = 1m. The result of the computation of the La-
grange Saint-Venant equations formulation using the Verlet scheme is
illustrated Figure 3.8 and zoom on the wave front illustrated Figure 3.9
and the left boundary Figure 3.10 and the oscillation on the front Fig-
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ure 3.11. It shows the evolution of the water height column over time.
Oscillation due to the sharp initial condition and the explicit method
(Figure 3.11). The Figures 3.8 and 3.11 illustrates the instability of
the scheme mainly due to the initial condition and highlight the dif-
ficulty the set up the correct initial condition. The inflow is fixed to
qin = 0.2m3.s−1 and the initial water height column is set up to obtain
a height that h0 = 0.1m at t = 0s

Boundary condition

Left boundary, velocity of nodal point 0 The left boundary is a Neu-
mann boundary with a fix flux. It represents the inflow of water from the
source. The position of the node 0 is x(t)0 = 0.

Right boundary, velocity of nodal point N The right boundary is
defined by the moving node boundary xN+1, at that location the local mass
is considered as cN = 0 and in theory, the height of the water column is
hN = 0. The velocity of the point is defined by the equation:

vn+1
N = vnN (3.19)

It is also possible to fix a value for hN and dhN while considering the value
of hN+−1 and dhN as higher.
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Figure 3.8: General results of the computation of the Saint-Venant equations
using the Verlet scheme, N = 101 nodes and initial condition h0 = 1 for

x = [0, 50] and h0 =
(

1−
(
x2

4

)2)
for x = [50, 100], dt = 0.00001s, dx = 1m

(Computation and visualization tool MATLAB).
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Figure 3.9: Front zoom results of the Saint-Venant equations computation
using the Verlet scheme, N = 101 nodes and initial condition h0 = 1 for

x = [0, 50] and h0 =
(

1−
(
x2

4

)2)
for x = [50, 100], dt = 0.00001s, dx = 1m.

Zoom on the front wave (Computation and visualization tool MATLAB).
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Figure 3.10: Left boundary results of the Saint-Venant equations computa-
tion using the Verlet scheme, N = 101 nodes and initial condition h0 = 1 for

x = [0, 50] and h0 =
(

1−
(
x2

4

)2)
for x = [50, 100], dt = 0.00001s, dx = 1m.

Zoom on the Left boundary (Computation and visualization tool MATLAB).
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Figure 3.11: Oscillations on the water front associated with the Saint-Venant
equations computation using the Verlet scheme, N = 101 nodes and initial

condition h0 = 1 for x = [0, 50] and h0 =
(

1 −
(
x2

4

)2)
for x = [50, 100],

dt = 0.00001s, dx = 1m. Zoom on the Left boundary (Computation and
visualization tool MATLAB).
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Chapter 4

Non linear diffusion: Thin film
equation

The thin film equation, a non linear diffusion equation, also called the lubri-
cation approximation, is used to model the front wave of the groundwater
flood. The thin film equation is a 4th order in space 1st order in time, partial
differential equation. It is used to compute the height versus spreading of a
thin film of liquid on a surface over time. The equation is defined as :

∂h

∂t
=

∂

∂x

(
hn
∂h

∂x

)
(4.1)

where n = 3. The solution of the self similar problem when n = 1 has
been study before with Finite Element (Bhattacharya, MSc 2004 [8]) and
Finite Difference (Baines et al., 2011 [7]) and Bird, 2012 [14]). The analytical
solution for the case of n = 3 haven’t been discovered yet, no initial condition
can be surely used for that case.

4.1 Mathematical formulation

The algorithm to model the thin film equation is again based on local mass
conservation.

1. Advance x the position of the film and h the height of the water using

dx

dt
= h3hxxx
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2. Advance h using local mass conservation

h∆x = ∆c

We use the interface boundary conditions: continuity of h, u, hx and the free
boundary conditions: h = hx = h3hxxx = 0. Also, the inflow boundary
conditions at the interface:

d

dt

∫
hdx =

d

dt
(h∆x) = given flux

4.2 Finite Difference discretization

There is no analytical solution to this partial differential equation. In order
to test the numerical, the initial condition is fixed arbitrarily to:

u0 = (1− x2)2 (4.2)

The initial mesh is regularly spaced but later deformation will occur resulting
in non uniform mesh. A condition on the time step has to be strict to
avoid node overtaking. Nodes are not allowed to cross each other since the
conservation principle breaks down. We write

dx

dt
= u, u = h3hxxx

We pose that
q = −hxx

giving
u = −h3qx

To approximate q, we use:

ui = −(qi)x ≈ −
(hi+1−hi)
(xi+1−xi)2 + (hi−hi−1)

(xi−xi−1)2

1
xi+1−xi + 1

xi−xi−1

(4.3)

We obtained an approximation of qi for each nodal points and can compute
the velocity value by using 4.3. From this result, the location of the nodal
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points x2 until xN can be determined using an explicit Euler method. We
used forward Euler to compute the new nodes location

xn+1
i = xni + undt

The height is determined using the local mass. From the initial condition
using central differences, we have

ρi = (x0
i+1 − x0

i−1)h0
i

for i = 2, ..., N − 1 Here, x0 is a vector containing the initial mesh location

and h0 is the vector containing the initial water column height.

4.3 Boundary conditions

4.3.1 Left boundary, velocity of nodal point 0

The left boundary is a flux boundary. A amount of water filled the first grid
block at each time step. The mass of the local block c0 is defined as:

c0(t+ 1) = c0(t) + dt× q(t) (4.4)

In our case, a constant flux is used for simplification and q(t) = 1m3.s−1. The
left boundary is computed using symmetry principle or mirror point along
the y axis defined by the equation:

hn0 =
cn0

2× xn0
(4.5)

with c0 = cst computed at the time t = 0 at initial condition.

4.3.2 Right boundary, velocity of nodal point N: Thin
film precursor

The right boundary is defined by the moving node boundary xN+1, at that
location the local mass is considered as cN = 0 and in theory, the height
of the water column is hN = 0. Considering that height and the fact that
h is used to compute the velocity of the node, velocity will be 0. A thin
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film precursor has to be used. A thin film precursor has to be added to
the numerical model. O’Brien [6] described the precursor thin film as a thin
layer to allow the liquid to move. On a numerical point of view, the thin
film precursor is computed trough the height given at the node xN(t). If
hN(t) = 0, we have vN(t) = 0 and the node N doesn’t move as illustrated by
the equation 4.6:

vN(t) = −hN(t)2 × (qN(t)− qN−1(t))

(xN(t)− xN−1(t)
(4.6)

4.4 Numerical Results of the thin film equa-

tion

The Figure 4.1 illustrates a half domain time stepping method evolution of
the thin film equation including a precursor film at the front of hN(t) =
0.05m. The line shows the shape of a droplet spreading over a surface at
time t = [0s, 2s, 4s, 6s, 8s, 10s, 12s, 14s, 16s, 18s, 20s]. The time step dt =
0.000001s for a space step of dx = 0.2m over 2 metres long. The high of
the water column is fix at a maximum of h0(0) = 0.1m. To optimize the
computation velocity, the number of nodes have been chosen to N = 11
including a fix node at x0(t) = 0 and a free boundary at the node xN(t).
For higher time or space step, the solution blows up. The result shows the
free moving boundary node moving on the right as expected by previous
author publication. The curvature of the droplet contact between water
and air is getting flatter as expected to assure mass conservation. The left
boundary present trend dh

dx
= 0. The dynamic angle as illustrated by O’Brien

[6] decreases. The Figure 4.2 resumes the main features of the half thin film
equation problem.
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Figure 4.1: Results of the computation of the thin film equation for N = 11
nodes.(Computation and visualization tool MATLAB)
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Figure 4.2: Illustration of the main features of the thin film script (Compu-
tation and visualization tool MATLAB).
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Chapter 5

Coupling model for flood
modelling

The coupling of the two numerical schemes needs careful examination of
both flow domains. Time step are different and the interfaces point has to
be identified. At the interface of the two flows domains, there is continuity
of the water column height, velocity of the fluid, the water flow, slope of the
continuity of the water column height.

We introduce xI , the left boundary point which is at a constant location
xI = 0. xC(t), the moving boundary point between the two domains and
xF (t), the right boundary point at the front of the water wave. The moving
mesh strategy is used for both domains through the Lagrangian frames of
reference used. The Figure 5.1 resumes and illustrates the numerical prob-
lem with the main features associated. We have a 4th order equation; we
need 4 boundaries conditions with 2 moving boundaries, we need also 2 more
boundary conditions.

5.1 Mathematical formulation

We define the condtion at the node 0, C and N . At xC(t), we have:

vSW = vTF

hSW = hTF
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Figure 5.1: Schematic illustration of the coupled flow problem
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and
∂h

∂x

∣∣∣∣
SW

=
∂h

∂x

∣∣∣∣
TF

The boundary conditions at
xF (t)

are
hTF = 0

∂h

∂x

∣∣∣∣
TF

= 0

The condition hN = 0 gives a zero flux condition on the right boundary.

5.2 Global and local mass conservation

In order to model the flux of water at the interface of the two domains at the
location of the moving node, a transfer flux function has to be implemented.
We use a partial mass coefficient to assure a smooth redistribution of the
water over the whole domain by normalization. The coefficient θ is defined
as

θi(t) =
∫ x

a
hidx = ci (5.1)

The global mass conservation equation became:∫ x

a
h(t) + [hv]xa = ċ (5.2)

With:
θnew = θold + dt× ċ (5.3)

And each local mass:

hi × (xi+1 − xi−1) = ciθ
new (5.4)

The moving mesh method for the Verlet scheme was coupled with the mov-
ing mesh of the thin film equation in away that the mesh doesn’t overlap.
First results were obtained for the model. Conservation principle of the wa-
ter mass applies by local conservation mass. A normalization principle was
used as described previous to distribute the inflow mass increase from the
left boundary over the whole domain. Nevertheless the result exhibit flow
continuity problem over the domain at the common node.

43



0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

x (distance, in metres)

h 
(h

ei
gh

t o
f t

he
 w

at
er

 c
ol

um
n,

 in
 m

et
re

s)

 

 
t = 0 s
t = 20 s
t = 40 s

Figure 5.2: Numerical result of the coupled model at time t = 0 s, t = 20 s
and t = 40 s

5.3 Numerical modelling results

Result obtained by the coupled model is illustrated Figure 5.2 and Figure
5.3. The two domains of flow are visualized on the model as well as there
evolution over time. The number of node was fixed to N = 41, the time step
to dt = 0.00005s and the space discretization to dx = 2.5m. The solution
shows a problem of continuity of the left border due to the flow boundary
and the change of the high due to the change of velocity. Another issue
came at the point xC where the continuity seems to be assured. Oscillation
on the left border arises after t = 200s and cause a solution blow up later.
The solution proposes is on it draft level and will need further testing and
improvement to propose a better solution even if the moving mesh of the two
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Figure 5.3: Numerical result of the coupled model at time t = 0 s, t = 20 s,
t = 40 s, t = 60 s, t = 80 s, t = 100 s
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flow domain is assured.
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Chapter 6

Conclusions and Further Work

6.1 Conclusions

During this project, the Saint-Venant and thin film equations have been used.
Several schemes were tested to optimize the resolution of the Partial Differen-
tial Equations. To solve the Saint-Venant set of equations, explicit Eulerian
and Lagrangian methods were used. The central space difference was used
for the Eulerian method, the scheme show some instability at it left bound-
ary. Furthermore, a volume corrector is used to recalculate the height of the
wave at the location of the node based on flux difference between the next
and the previous node. Semi-Lagrangian and fully Lagrangian method were
used as well. The semi-Lagrangian offers an intermediate method more ac-
curate than the Eulerian with the simple formulation of a transformed Euler
formulation. The fully Lagrangian formulation was solve using the ”Verlet
method” based on two half location time step computation with a height
computation between the two half time step. It offers a strong stability of
the scheme. The ”Verlet method” is a moving mesh method; the method we
used is a velocity based method. The importance of Lagrangian method is
highlighted by the results. Nevertheless, the initial condition plays a strong
role in the scheme stability. Even if Saint-Venant equations have analytical
solution in certain situation, it doesn’t apply to all configurations. We de-
signed the initial condition based on supposition like a 1− tanh(x) function.
Eulerian methods are very popular because of it visualization. Lagrangian
methods are more accurate but need some practice to be familiar with. The
left boundary considered as a flux boundary represents the inflow of the flood
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in the model. The amount of flux was fixed based on the volume of water
already set by the initial condition. The flux boundary was handled by two
methods, the filling of the first node by the flux and a distribution of the flux
over the whole water domain using partial local mass coefficient.
The thin film equation using dynamic mesh introduces to interesting applied
numerical modelling problem, it resolution is a well known problem. Method,
time step and mesh discretization size as well as initial condition have strong
consequence on the stability of the solution and the rise of oscillations.

Due to the high instability of some methods, some schemes have to be pre-
ferred or corrector applied like the volume corrector for the central space
difference method or FTCS method (Forward Time Central Space). Nev-
ertheless, the results obtains are similar to current publication in term of
expected results. Some problem arises at the left flow boundary due to the
calculation of the water high based on local mass conservation issue.

The result obtained for the coupled model need further work to improve
the model and constitute only a promising draft test to model groundwater
flood in a more accurate manner than actual model.

The use of a thin film to describe a flood could be seen as ”strange”. But
coupled with Saint-Venant set of equations and for low water level between 0
and 0.1 metres, it could improve the description of the front wave in a more
accurate manner for groundwater flood event.

The slope of the area was not considered as well as the roughness of the
area. Those parameters will increase or decrease the velocity, the travel time
and the height of the water wave. Measuring the roughness of area based on
satellite image is a research subject.

6.2 Results

Results obtained during this thesis project gives direction to the development
of improve flood model based on coupled physical flow model. The first draft
coupled model is under development and the result constitutes only a first
draft result. Limitation of the method and gap in the flow continuity are

48



evident. The use of coupled flow domain approach to model a groundwater
flow is original for multidisciplinary research purpose on hydraulic, ground-
water model and advance numerical modeling. The ideas developped during
this thesis will need further validation, implementation and development.

6.3 Further Work

Several direction have to be considered for further work:

1. A first improvement will be to develop the model with implicit method
which offers better result in term of scheme stability and accuracy. Nev-
ertheless, computation time will be considerably increased. In the case
of the thin film equation which need small time step the computation
time could became a problem.

2. A second direction will concerned the two dimensional (2D) version of
the models which will have an interesting ouput on the visualization of
the wave.

3. A third direction will concerned the develpment of a complex topog-
raphy solving method which take in count the altitude change of the
area.

4. A last direction will concern the source point spread origin of groundwa-
ter flood source: Our simple 1D model only considered a single water
source. In a groundwater flood event, it is most likely that several
flooding initial point will occurs at the same time according to their
altitude. The flood wave will interact with each others. This complex
mechanism will have to be modeled.
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