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Abstract

In this study, wave dispersion is investigated as a possible mechanism in limiting the

western extent of the offshore propagation of baroclinic Rossby waves, which has recently

been observed in Topex/Poseidon satellite altimeter data. The technique of ray tracing

is used, and a model developed, to calculate Rossby wave ray trajectories initially in the

framework of Quasi-Geostrophic theory on the equatorial β-plane, and then in spherical

polar coordinates. The model is also extended to account for the coastal geometry of

the Atlantic and Pacific Ocean basins, and an analytical function is derived such that

a gravity-wave phase speed distribution representative of either ocean basin is used to

determine the Rossby radius of deformation. From the resulting ray propagation pattern,

an attempt is made to determine the location of the theoretical coastic lines, westward of

which, Rossby waves excited at the eastern boundary are expected to decay exponentially.

A comparison is then made between the modelled caustics and sea surface height (SSH)

data from the French CLIPPER model. Despite some data processing issues, the results

indicate that the pattern of SSH variability in the South Atlantic Ocean is indicative of the

shape of the coastics predicted by the model. This suggests that dispersion rather than

dissipation is a likely mechanism to account for the observed westward decay of boundary-

driven Rossby waves, and that Rossby waves observed in the western part of the ocean

basin are likely to have been generated by a different mechanism.
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Chapter 1

Introduction

Rossby wave theory first came about in 1939 (Rossby, 1939) and suggested the existence of

westward propagating signals originating primarily from the eastern boundaries of ocean

basins. These waves were thought to be the large-scale response of the ocean to wind and

buoyancy forcing in the ocean interior and at the eastern boundaries of ocean basins, or

due to perturbations along the boundary associated with coastally trapped Kelvin waves

originating from the lower latitudes.

Chelton and Schlax (1996) used TOPEX/Poseidon (T/P) satellite altimeter data and

confirmed the existence of these waves. They applied a filter to the T/P satellite altime-

ter data in order to detect sea surface height (SSH) anomalies and therefore single out

the oceanic Rossby waves. Having analysed the T/P data, they found that the existing

standard linear theory for free, linear Rossby waves was an incomplete description of the

observed waves. For example, the westward phase speeds of the observed waves in the

mid to high latitudes were significantly greater than those predicted by the linear theory.

The standard linear normal mode theory used for modelling Rossby waves yields an eigen-

value problem with an infinite number of normal mode solutions which are ordered accord-

ing to their phase speed, the first being the barotropic mode, the second being the first

order baroclinic mode and the remaining solutions being higher order baroclinic modes.

Barotropic mode waves, having the greatest phase speed, take only days to weeks to cross

an ocean basin and behave like ordinary shallow-water gravity waves. Chelton and Schlax

(1996), having analysed the T/P data, found that the first order baroclinic mode Rossby

waves generally have a surface amplitude of less than 10cm, and a wavelength of at least

500km. Unlike the barotropic mode, the first order baroclinic mode waves take months

to decades to cross an ocean basin and have a greater effect on the depth of the thermo-

cline than they do at the surface. The difference in ocean crossing time for a particular

1



2 CHAPTER 1. INTRODUCTION

mode of Rossby wave is a result of the latitudinal variation of phase speed. The phase

speed’s latitudinal dependence is a result of the β-effect, and is thus often referred to as

β-refraction, illustrated by Figure (1.1).

Figure 1.1: White lines identify a westward propagating, β-refracted Rossby wave trough
where the two diagrams are seperated by a time period of 3 months. The image is taken
from Chelton and Schlax (1996) and is based on T/P data.

Barotropic mode Rossby waves take a relatively short amount of time to cross an ocean

basin, and thus have little climatic significance. The baroclinic mode waves on the other

hand have a very slow propagation speed, taking up to 20 years to cross an entire ocean

basin. A baroclinic mode wave with a surface amplitude of 5cm corresponds to a 50m

change in depth of the oceanic thermocline, a difference of three orders of magnitude.

The slow propagation speed of the baroclinic mode in conjunction with its amplified effect

on the thermocline depth means that baroclinic mode waves are an important factor in

determining the low-frequency large-scale variability of the ocean interior and thus for

decadal-scale climate variability. It is widely believed that the remaining higher order

baroclinic modes play a relatively small part in ocean circulation dynamics and we will

therefore be concentrating on first-order baroclinic mode Rossby waves in this study.

There are thought to be two primary methods of propagation, boundary-driven waves

caused by sea level variability at the eastern boundary of an ocean basin, and wind-driven

waves caused by wind stress in the ocean interior. Fu and Qiu (2002) use T/P observational

data and suggest that the influence of boundary-driven waves in the North Pacific Ocean

has only a limited offshore extent. This extent is dependent on the latitude at which the

wave originally propagates, for example an extent of between 3000-4000km at 10◦N and

between 200-300km at 50◦N. Their study also suggests that wind-driven waves seem to

overwhelm the boundary-driven waves in the interior ocean and thus that the variability in
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the interior is dominated by wind stress. Despite this, they also state from their analysis

that the effects of boundary-driven waves are clear when wind-driven variability is removed

from the observational data. This can be seen in Figure (1.2) which illustrates correlation

coefficients in the North Pacific between observed SSH anomalies and boundary-driven

Rossby waves having had wind driven variability removed. The strong correlation that

occurs near to the coastline decays rapidly away from the coastline indicating the presence

of some significant dissipative or dispersive processes offshore.

Figure 1.2: Correlation coefficients between SSH variability and boundary-driven Rossby
waves having had wind driven anomalies removed from the data (Fu and Qiu, 2002)

Fu and Qiu (2002) suggest that while the short-wavelength Rossby-wave components are

susceptible to dissipation soon after propagating from the coast due to their smaller spa-

tial scales, there is still some strong correlation between long-wavelength components from

the boundary and SSH variability some distance from the coast. This suggests that the

western extent of long-wave propagation is less likely to limited by dissipation and that

dispersion is a more likely cause. The relative importance of boundary-driven and wind-

driven waves is still uncertain, however, it is the extent to which boundary-driven Rossby

waves can propagate into the western part of an ocean basin that we are interested in. In

this study we will consider dispersion as the possible underlying mechanism of this limited

offshore extent.

One fundamental property of waves is that they can transmit energy over great distances

through the disturbances that they create. Consider the presence of many different wave

disturbances in the ocean. The interference of these wave disturbances with one another

creates a beat pattern known as a wave group or packet. The wave group is enclosed by

a wave envelope which has an overall amplitude of A (x) and contains individual distur-

bances of wavelength λ. The local value of the wave envelope amplitude is determined by
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individual crests and troughs of the disturbances contained within it.

While an individual wave disturbance travels at its own phase speed, a wave envelope,

illustrated by Figure (1.3) travels at the group velocity. The significance of this is that

wave energy is conserved and propagates with the wave group at the group velocity as

opposed to the phase speed (Pedlosky, 1986). The amplitude of the wave envelope there-

fore determines where there is significant wave energy where for example, a small wave

amplitude indicates limited wave activity. If the group velocity of the wave envelope is

not equal to the phase speed of the individual wave crests and troughs, then the waves are

dispersive. A result of this is that the motion of a Rossby wave packet can be determined

using the Rossby wave dispersion relationship.

Figure 1.3: A wave envelope.

Schopf et al. (1981) investigated the dispersion of annual and semi-annual frequency

oceanic Rossby waves by examining the group velocity vector. The study used the Rossby

wave dispersion relationship and ray theory (defined later) to derive a system of differential

equations that could describe the group velocity of a Rossby wave packet. It was found

that, in general, group velocity vectors originating at some distance from the equator on a

straight, north-south orientated boundary, would turn and propagate equatorwards. This

is illustrated by Figure (1.4). The turning of the rays occurs as a result of the latitudinal

variability of the Rossby Radius of deformation and suggests that Rossby waves originat-

ing from high latitudes are able to disperse into the equatorial zone. This suggests that

energy from Rossby waves originating in the high latitudes is transported equatorwards

as opposed to the western part of the ocean basin and thus that there is a limited extent

to which boundary driven waves can propagate westwards at some latitudes. This extent

is marked by a theoretical line called a caustic line.
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Figure 1.4: A simple example of a ray propagation pattern from a straight, north-south
orientated boundary for semi-annual frequency Rossby waves (Schopf et al. 1981).

Grimshaw and Allen (1983) discuss the existence of a critical latitude φc polewards of

which waves remain coastally trapped as poleward propagating internal Kelvin waves and

equatorwards of which trapped waves can still exist, but waves can also propagate freely as

offshore propagating baroclinic Rossby waves. The critical latitude is strongly dependent

on the frequency of the waves such that there is also a critical frequency ωc for which

coastally trapped Kelvin waves may or may not propagate as a Rossby wave. This study

also used the method of characteristics or rays and suggests the existence of a caustic line

which originates at the intersection between the coastline and critical latitude, and pole-

wards of which Rossby waves propagating from the eastern boundary decay exponentially.

Rossby wave dispersion is the principal cause for the existence of this caustic line.

The studies by Schopf et al. (1981) and Grimshaw and Allen (1983) considered straight

eastern boundaries and used the β approximation to derive solutions in cartesian coordi-

nates. Each of them suggest that wave dispersion is likely to result in a limited western

extent of Rossby wave propagation, an extent that has been observed in studies such as

Fu and Qiu (2002). The aim of this project is to revisit the methods used in the aforemen-

tioned studies and examine ray propagation, particularly from the Atlantic and Pacific

coastlines. A model will be derived to calculate the paths of the Rossby wave rays initially

on the equatorial β-plane, and then in spherical polar coordinates in order to account

for the curvature of the Earth. While previous studies have assumed that the baroclinic



6 CHAPTER 1. INTRODUCTION

gravity-wave phase speed is constant, we will introduce an analytical function represen-

tative of a more realistic phase speed distribution. This will yield an original result and

allow us to examine the effect of a variable phase speed on ray propagation. From the ray

solutions, we can gain a visual picture of the potential location of the caustics described

in the literature. We will then attempt to locate real coastics in modelled SSH data and

compare any results with the theoretical predictions produced from the ray solutions.

1.1 Theory

1.1.1 A Note On WKB Theory

The Wentzel-Kramers-Brillouin (WKB) approximation involves recasting a wavefunction

as an exponential function, expanding the resulting function and multiplying higher deriva-

tives by a small parameter ǫ. Usually either the wave amplitude or phase speed is taken to

be slowly varying. For our purposes, we will take the wave amplitude to be slowly varying.

The WKB approximation is valid provided that the scale of the spatial variations is large

compared with the wavelength of the waves being examined (Schopf et al. 1981).

1.1.2 Dispersion Relationship

In order to derive our model equations, we begin with the Quasi-Geostrophic potential

vorticity conservation (QGPVC) equation on a β-plane.

∂

∂t

(

∆Ψ −
1

R2
Ψ

)

+ β
∂Ψ

∂x
= 0 (1.1)

where

∆Ψ =
∂2Ψ

∂x2
+

∂2Ψ

∂y2
(1.2)

Here R = c0/f is the Rossby radius of deformation where c0 is the equivalent gravity

wave speed and f = βy is the coriolis parameter under the β-plane approximation. The

equation admits plane wave solutions of the form:

Ψ = A exp i [kxx + kyy − ωt] (1.3)

where kx and ky are the zonal and meridional wavenumbers respectively and ω is the wave’s

angular frequency. We derive the Rossby wave dispersion relationship by substituting the

plane wave solution Ψ into the QGPVC equation.
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From Equation (1.1) we can therefore write:

∂

∂t

[

−
(

k2
x + k2

y

)

Ψ −
1

R2
Ψ

]

+ βikxΨ = 0 (1.4)

⇒ iω
(

k2
x + k2

y

)

+
iω

R2
+ βikx = 0 (1.5)

⇒
[

1 + R2
(

k2
x + k2

y

)]

ω + βR2kx = 0 (1.6)

Thus we arrive at the Rossby wave dispersion relationship for a plane wave solution:

ω =
−βR2kx

1 + R2
(

k2
x + k2

y

) (1.7)

The plane wave solution involves the rather unrealistic assumption that the wave field is

strictly periodic with a constant amplitude. It is mostly used as a local approximation

to the true wave dynamics. Examining the transmission of a wave disturbance requires

consideration of wave fields where the wave amplitude is no longer constant but also a

function of time and space.

Let us now consider wave solutions of a slightly different form:

Ψ = A (x, y, t) eiS(x,y,t) (1.8)

where the wave amplitude A is a slowly varying function of x, y and t (roughly constant

over one wavelength) in comparison to the phase function S and where S = kxx+kyy−ωt.

According to ray theory, the zonal and meridional wavenumbers kx and ky, and angular

frequency ω, are defined as derivatives of the phase function:

ω = −
∂S

∂t
(1.9)

kx =
∂S

∂x
(1.10)

ky =
∂S

∂y
(1.11)

We now look to show that this satisfies the same dispersion relationship by substituting

this wave solution into the QGPVC equation and using the equations defined above.
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It can be shown that:

∂Ψ

∂x
=

∂A

∂x
eiS + Ai

∂S

∂x
eiS (1.12)

∂Ψ

∂y
=

∂A

∂y
eiS + Ai

∂S

∂y
eiS (1.13)

∆Ψ =

(

∂2A

∂x2
+

∂2A

∂y2

)

eiS + 2i

(

∂A

∂x

∂S

∂x
+

∂A

∂y

∂S

∂y

)

eiS − A

(

∂2S

∂x2
+

∂2S

∂y2

)

eiS (1.14)

Now we consider that A=A [X, Y, T ] where X=ǫx, Y =ǫy, T=ǫt and ǫ is a small term since

we have taken A to be a slowly varying function in time and space. We can therefore

rewrite some of the terms above, for example:

∂A

∂x
=

∂A

∂X

∂X

∂x
= ǫ

∂A

∂X
(1.15)

and ignore them due to their relatively small magnitude so that only the lowest order

terms remain. We are left with:

∆Ψ = −

(

∂2S

∂x2
+

∂2S

∂y2

)

Ψ (1.16)

From equation (1.1) we can now write:

∂

∂t

[

−

(

∂2S

∂x2
+

∂2S

∂y2

)

Ψ −
1

R2
Ψ

]

+ βi
∂S

∂x
Ψ (1.17)

and from equations (1.10) and (1.11) it is clear that this is equivalent to:

∂

∂t

[

−
(

k2
x + k2

y

)

Ψ −
1

R2
Ψ

]

+ βikxΨ = 0 (1.18)

ω
[

−R2
(

k2
x + k2

y

)

− 1
]

+ βkx = 0 (1.19)

We therefore arrive at the same relationship as given by equation (1.7):

ω =
−βR2kx

1 + R2
(

k2
x + k2

y

) (1.20)

We have thus shown that the basic notions developed for plane waves are directly applica-

ble to a slowly varying wave packet and therefore that the derived dispersion relationship

in the first approximation (using only the lowest order terms) is equal to that used for a

pure plane wave solution.
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1.1.3 Ray Equations

Although the phase speed of a Rossby wave is almost always directed purely westward, the

group velocity has no such restriction. As the energy associated with Rossby waves prop-

agates with the group velocity cg of a wave packet, it is therefore important to calculate

the group velocity when examining energy propagation. Ray tracing is when we define a

set of points in the direction of the group velocity such that energy propagates through

them with a velocity equal to the group velocity. A ray is obtained from the numerical

integration of the group velocity given some initial position (x0, y0). From Leblond (1978)

we can define the following standard relationship, also known as the Conservation of Crests

equation:

∂k

∂t
+ ∇ω = 0 (1.21)

where k is the vector containing the zonal and meridional wavenumbers (kx, ky)
T . We can

separate this equation into its individual components:

dkx

dt
= −

∂ω

∂x
(1.22)

dky

dt
= −

∂ω

∂y
(1.23)

The only way that the dispersion relationship can depend on x is if the phase speed c0

is also dependent on x and thus if c0 = c0 (x) or c0 = c0 (x, y). In this project however,

we will generally consider either a constant phase speed or the phase speed function c0 =

c0 (y) which depends on y only. In this case, we can assume that the zonal wavenumber

does not change from its initial value, but rather is conserved along each ray:

dkx

dt
= 0 (1.24)

Finally, the zonal and meridional group velocities of the wave are:

dx

dt
=

∂ω

∂kx

= cgx (1.25)

dy

dt
=

∂ω

∂ky

= cgy (1.26)

Equations (1.22), (1.23), (1.25) and (1.26) will provide the basis of our model. We will

begin however by considering the analytical solution derived by Schopf et al. (1981) and

then Grimshaw and Allen (1983).
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1.1.4 Analytical Solution

For the most simple case, an analytical solution can be derived to describe the ray paths.

The most simple case relies on a few basic assumptions, that waves are propagating from

a straight, north-south orientated eastern boundary, that the gravity-wave phase speed c0

is constant, and that the phase function S is constant along the eastern boundary. We

start by rearranging the dispersion relationship into the following form:

(

kx +
β

2ω

)2

+ k2
y =

β2

4ω2
−

f2

c2
0

(1.27)

Under the assumption that the wave amplitude is slowly varying compared to variations

in the phase, it is possible to use WKB ideas. We therefore refer back to and redefine

equations (1.10) and (1.11), which under WKB theory mean that the locally defined

wavenumbers must satisfy the dispersion relationship ω:

kx =
∂S

∂x

ky =
∂S

∂y
(1.28)

From equation (1.28), an added constraint is that the wavenumbers must also satisfy the

following compatibility condition:

∂kx

∂y
=

∂ky

∂x
(1.29)

If we consider Rossby waves of a constant frequency, we need only solve equations for

the wavenumbers kx and ky and not ω. Differentiating equation (1.27) with respect to x

yields:

2kx
∂kx

∂x
+

β

ω

∂kx

∂x
+ 2ky

∂ky

∂x
= 0 (1.30)

This is equivalent to:

(

kx +
β

2ω

)

∂kx

∂x
+ ky

∂ky

∂x
= 0 (1.31)

Using the compatibility condition specified by equation (1.29), this can be written as

follows:

(

kx +
β

2ω

)

∂kx

∂x
+ ky

∂kx

∂y
= 0 (1.32)
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This equation takes on the form of a quasi-linear first order partial differential equation:

a(x, y, kx)
∂kx

∂x
+ b(x, y, kx)

∂kx

∂y
= c(x, y, kx) (1.33)

where

a = kx +
β

2ω
b = ky

c = 0 (1.34)

We define the ray trajectory for which we want to solve as the curve r (x(t), y(t), kx(t))

which must satisfy:
dr

dt
= (a, b, c) (1.35)

It is clear that equation (1.35) represents a system of differential equations that describes

the path of group velocity and variations in the zonal and meridional wavenumbers of the

Rossby waves:

dx

dt
= kx +

β

2ω
(1.36)

dy

dt
= ky (1.37)

dkx

dt
= 0 (1.38)

dky

dt
= −

βf

c2
0

(1.39)

The equation for the ray trajectory is therefore given by:

dy

dx
=

ky

kx + β/(2ω)
(1.40)

As we have assumed a constant frequency, ω = ω0 and clearly from equation (1.38), kx

= kx0 remains constant along each ray. The remaining solutions to the ray equations, as

derived by Grimshaw and Allen (1983), are given as follows:

x = x0 +

(

kx +
β

2ω

)

t (1.41)

y = y0cos

(

βt

c0

)

(1.42)
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ky = −
βy0

c0
sin

(

βt

c0

)

(1.43)

where x0 and y0 are the coordinates of the starting point of the ray trajectory. Using the

equations for x and y, a constant gravity-wave phase speed of c0 = 3ms−1 and specifying

ω such that it corresponds to semi-annual frequency Rossby waves, we can immediately

reproduce the solution derived by Schopf et al. (1981) propagating from a straight north-

south orientated boundary. This is illustrated by Figure (1.5).
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Figure 1.5: Analytic solution from equations (1.41) and (1.42) for semi-annual frequency
Rossby waves.

Suppose ξ is a measure of distance along the eastern boundary from which a ray trajectory

begins. A caustic appears when two neighboring trajectories from ξ and ξ + δξ reach the

same location at the same time, i.e. when:

x(t, ξ) = x(t + δt, ξ + δξ)

y(t, ξ) = y(t + δt, ξ + δξ) (1.44)

This is satisfied only when:

∂x

∂ξ
=

∂y

∂ξ
= 0 (1.45)

At the point where two rays meet, the ray amplitude and thus energy of the wave under
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consideration becomes infinite. This is an unphysical result and indicates a failure of the

ray theory. For the purpose of Rossby wave dispersion the caustic acts as an envelope.

Within the envelope, WKB theory remains valid and thus there are real ray solutions. On

the caustic WKB theory breaks down, and westward of it Rossby waves decay exponen-

tially. As we expect ray theory to be valid within the envelope, we also expect Rossby

wave propagation to occur within this region. We do not expect any boundary driven

Rossby rays to propagate beyond the caustic.

While it has been shown that there is an analytical solution for the most simple case, i.e.

a straight boundary, constant gravity wave phase speed, all under the β-plane approxima-

tion, we intend to extend the ideas to account for variable phase speed, realistic coastlines,

and eventually to spherical polar coordinates. For this reason we will concentrate on using

numerical solution to solve the differential equations for the remaining part of the project.



Chapter 2

Model Derivation and Results

In this section, we will derive the model, initially in cartesian coordinates and then in

spherical polar coordinates. The model involves solving a system of ordinary differential

equations which will be done using the Matlab ODE solver. More specifically we shall use

the ODE45 solver, which uses the 4th-Order Runge-Kutta method. We will first assume

that the eastern boundary is straight and north-south orientated, and that the equivalent

gravity wave speed c0 is constant. We will then examine the effect of removing these

assumptions on the ray solutions, and consider the impacts of converting to spherical

polar coordinates. Finally, we will try to locate the potential paths of the caustics in both

hemispheres for the Atlantic and Pacific Oceans.

2.1 Cartesian Coordinates

2.1.1 Ray Equations

The ray equations for our model in cartesian coordinates are:

dx

dt
= cgx =

∂ω

∂kx

= −
βR2

[

1 + R2
(

k2
y − k2

x

)]

[

1 + R2
(

k2
x + k2

y

)]2 (2.1)

dy

dt
= cgy =

∂ω

∂ky

=
2βR4kxky

[

1 + R2
(

k2
x + k2

y

)]2 (2.2)

dkx

dt
= −

∂ω

∂x
= 0 (2.3)

dky

dt
= −

∂ω

∂y
= −

2β2R2kx

f
[

1 + R2
(

k2
x + k2

y

)]2 (2.4)

While we are working in cartesian coordinates, we will take x to be longitude and y to be

14
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latitude, where for example y = 1000km or y = −1000km represents a position 1000km

north or south of the equator respectively. Under the β-approximation, we make the

assumption that the β-parameter is constant, and thus that the Coriolis parameter f =

βy varies linearly with latitude. We approximate β with:

β ≈
2Ω

a
≈ 2.288 × 10−11m−1s−1 (2.5)

where a = 6371km is the mean Earth radius and Ω = 2πday−1 is Earth’s rate of rotation.

From equation (2.1), it is clear that the group velocity in the x-direction, cgx can be either

positive or negative. The sign of cgx is dependent on the the following condition. If we

have that:

1 + R2
(

k2
y − k2

x

)

< 0 (2.6)

then the group velocity in the x-direction is clearly positive, since it is known that β > 0.

From Pedlosky (2003), waves of this specification are short waves. If on the other hand,

we have that:

1 + R2
(

k2
y − k2

x

)

> 0 (2.7)

then the group velocity is negative. Thus long waves, which we are primarily interested

in, have their energy propagate westwards.

2.1.2 Autonomous Equations

When solving these equations with Matlab’s built in ODE solver, we come across a prob-

lem. Towards the equator, it is the case that y → 0 and the Rossby radius of deformation

R → ∞ as y → 0 since it is a function of the recipricol of y. This poses a problem when we

integrate these equations with time, as the rays close to the equator shoot off to infinity,

and this makes it difficult to produce a suitable plot of rays across a diverse range of

latitudes. As we will be considering the long wave solution of the ray equations, we can

assume from equations (2.1) and (2.7) that the group velocity in the x-direction will be

negative everywhere, i.e. cgx < 0. A result of this is that we can avoid any problems when

solving near to the equator by integrating the equations with respect to x as opposed to t.

By removing the independent variable t, we reduce our system of differential equations to

an autonomous system and we can integrate for each ray trajectory between the eastern

boundary and some specified western extent.
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The autonomous system is derived as follows. We know from equation (2.1):

dx

dt
= cgx (2.8)

We can therefore write that:

dt =
dx

cgx

(2.9)

Using this, we can rewrite equations (2.2) and (2.4) as follows:

dy

dx
=

cgy

cgx

(2.10)

dky

dx
=

1

cgx

dky

dt
(2.11)

Thus our autonomous system of differential equations is given by:

dy

dx
=

−2R2kxky
[

1 + R2
(

k2
y − k2

x

)] (2.12)

dkx

dx
= 0 (2.13)

dky

dx
=

2βkx

f
[

1 + R2
(

k2
y − k2

x

)] (2.14)

One disadvantage of integrating spatially as opposed to temporally is that we cannot see

the time evolution of the rays. However the time evolution of the rays is not significant if

we are simply trying to determine the caustics separating the region of wave propagation

and the region of no wave propagation. In general, the autonomous system has one less

equation and is therefore not only a means by which we can avoid any problems that crop

up through integrating with time, but is also more simple to solve.

2.1.3 Fixed kx Solution

We can now integrate equations (2.12) and (2.14) to find a simple solution of the ray paths.

We do not need to solve a differential equation for kx since equation (2.13) simply implies

that kx retains its initial value along each ray solution. We will first assume that while

the frequency ω varies along the coastline, the zonal wavenumber kx has a fixed value of

kx = 9 × 10−6m−1 and is constant in all equations.

We will solve for ray trajectories beginning from a straight north-south eastern boundary,
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in which case we take as a boundary condition that the phase, S is constant along the

boundary. In this case it can be shown that:

∂S

∂y
= ky = 0 (2.15)

The meridional wavenumber ky will therefore have a zero initial value for each ray trajec-

tory. This assumption is valid only while the coastline is straight and has a north-south

orientation, but not in the more general case of a variable coastline. The initial value

of x will also be zero and we will calculate ray solutions for a range of initial values of

y. Finally, having calculated the global average baroclinic gravity-wave phase speed for

oceanic Rossby waves from the Chelton et al. (1998) data set, we will initially take c0 to

have a constant value of 2.6ms−1.
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Figure 2.1: Ray paths from a straight boundary with a fixed kx

Having integrated the equations for group velocity, we get some preliminary results of the

ray paths with a straight north-south boundary. Figure (2.1) is a graphical representation

of the ray equation solutions. We integrate over a range of latitudes in order to get a

full picture of the energy propagation pattern. It is clear that rays propagating from the

poleward latitudes are primarily directed equatorwards, whereas rays near to the equator

are directed almost purely westward. The dark boundary enclosing the majority of the ray
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solutions is known as the caustic line which we will discuss in more detail later. Important

to note is the symmetry of the solution about the equator.

2.1.4 Fixed ω Solution

We will now no longer assume that kx is fixed at the boundary but instead fix ω. By

doing this we can specify the particular Rossby wave frequency for which we are solving

the differential equations. Fixing ω means that we need to solve for the initial value of

kx at the eastern boundary. Keeping in mind that from equation (2.15), we are using an

initial value of ky = 0 we can write the dispersion relationship along the boundary as:

ω =
−βR2kx

1 + R2k2
x

(2.16)

ω
(

1 + R2k2
x

)

+ βR2kx = 0 (2.17)

R2k2
x +

βR2

ω
kx + 1 = 0 (2.18)

This is equivalent to:

R2k2
x +

Rc0

ωy
kx + 1 = 0 (2.19)

since R = c0/βy. This is simply a quadratic equation for kx which can easily be solved

to give the value of kx along each ray. The quadratic equation yields two solutions, one

corresponding to long waves, and the other to short waves:

klong
x =

−βR +
√

β2R2 − 4ω2

2Rω
(2.20)

kshort
x =

−βR −
√

β2R2 − 4ω2

2Rω
(2.21)

In this study, we will concentrate explicitly on the long wave solution.

We can now compare the analytical solution as in Figure (1.5), with the numerical solution

derived from the autonomous system of differential equations for semi-annual frequency

Rossby waves. The comparison is illustrated by Figure (2.2) and indicates that there is

very little error associated with the 4th-order Runge-Kutta method. The shape of the

ray envelope is the same, and noticeably sized errors only begin to appear in the far west

where they are not as important. We will therefore continue to use the Matlab ODE45

solver.
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Figure 2.2: Comparison of analytical (red) and numerical (black) solution for semi-annual
frequency oceanic Rossby waves.

2.1.5 Critical Latitude

It is clear that to avoid a complex solution of equation (2.19), the following condition must

be satisfied:

β2R2 − 4ω2 > 0 (2.22)

From this we can calculate the maximum frequency for which Rossby wave propagation

can occur from the eastern boundary:

ωmax =
βc0

2f
=

c0

2y
(2.23)

We will focus on annual frequency Rossby waves so that ω = 2 × 10−7s−1 and continue

to assume that the gravity-wave phase speed simply takes on the global average such that

c0 = 2.6ms−1 and is constant in time and space. As we are considering Rossby waves

of an annual frequency, we are less interested in the maximum frequency ωmax and more

interested in the critical latitude (yc in cartesian coordinates). It can be shown that for an

incident low-frequency wave with a fixed frequency ω, there exists some critical latitude

polewards of which waves remain coastally trapped as Kelvin waves. Equatorwards of

the critical latitude, waves can propagate offshore as Rossby waves. It is clear that from

rewriting equation (2.23), the critical latitude is given by:
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yc =
c0

2ω
(2.24)

since we need a real value of the zonal wavenumber kx for Rossby wave propagation to

occur. At this stage, the critical latitude simply depends on the gravity wave phase speed

c0 and angular frequency ω. For Rossby waves of an angular frequency, assuming a uniform

phase speed of c0 = 2.6ms−1, it can be shown that the critical latitude yc for a fixed ω

solution and a straight boundary is approximately yc = 6525km. This is illustrated by

Figure (2.3) below. Polewards of the critical latitude, values of kx are complex, and thus

the rays north of the red dashed line in Figure (2.3) are derived from the real part of the

zonal wavenumber. No wave propagation occurs at these latitudes. Also note once more,

the symmetry of the ray pattern about the equator.
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Figure 2.3: Fixed ω solution focused on the northern hemisphere. The red dashed line
represents the critical latitude yc north of which no waves propagate from the eastern
boundary.

Schopf et al. (1981) suggests that for a north-south orientated coastline, there is an almost

exact focus of wave energy near to the equator at a distance of:

x = −πc0/4ω (2.25)

from the eastern boundary. As we are considering waves of an annual frequency with a

phase speed of 2.6ms−1, it can be shown that this focus of energy should be approximately
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10250km from the eastern boundary, a result consistent with the graphical representation

given in Figure (2.3). The location of this energy focus is expected to be an area of very

intense Rossby wave activity.

2.1.6 Realistic Coastlines

Thus far we have only considered wave propagation from a straight, north-south bound-

ary. Now we extend our model to account for realistic coastline geometry by introducing

two vectors with x and y coordinates such that they follow the eastern coastlines of the

Atlantic and Pacific Oceans. Coastline coordinates were taken every 1◦ of latitude and

to keep the coastlines smooth, points between were calculated using the inbuilt Matlab

interpolation function. It is important to consider that we are using relatively smooth,

simplified coastline geometry such that complicating features such as islands are not taken

into account. We define the equation representing the coastline as:

x = Xe(y) (2.26)

We then use the coastline coordinates to specify the initial values x0 and y0 in the model

equations, so that we are integrating from the coastline. It is important to note that in

the Atlantic Ocean, we set the Greenwich Meridian to be zero longitude. We use negative

and positive values of longitude to indicate locations that are East or West of the meridian

in the Atlantic. In the Pacific Ocean however, we take the longitude to be the distance

eastwards of the Greenwich Meridian, such that it is always positive. For the time being

we shall also omit the western coastline from figures so that we can examine the properties

of the entire ray envelope.

The resulting solutions for the Atlantic and Pacific oceans with constant phase speed and

ky = 0 along the boundary are shown in Figure (2.4). The effect of the addition of coastline

geometry is significant. There are now obvious asymmetries present in the solution about

the equator relative to the straight boundary solution and these asymmetries are most

obvious where there are large longitudinal distances between values of x0 for adjacent

values of y0. For example, the effect of the eastern coastline of Africa just north of the

equator is clearly visible in the ray solutions almost directly to the west. Using constant

c0 = 2.6ms−1 and ky = 0 along the boundary means that the critical latitude remains

at about 6525km in either hemisphere, which lies beyond the coastline geometry for the

Pacific coastline and most of the Atlantic coastline with the exception of the northern

most part of the coast in the Atlantic. As we shall see however, using constant values for

c0 and ky are assumptions that can only be retained for the most basic model solution.
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Figure 2.4: Ray solutions for (a) Atlantic and (b) Pacific coastline geometry under the
assumption of a zero meridional wavenumber along the boundary and constant c0.
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2.1.7 Variable Meridional Wavenumber

Now that we are considering variable coastline geometry, we can no longer use the same

boundary condition specified by equation (2.15) which specifies a zero meridional wavenum-

ber along the boundary. We need to impose a boundary condition for the phase along the

eastern boundary Xe (y). Consider a vector ls which is a projection of the wavenumber

vector along the coastline. The initial wavenumber k = (kx, ky) has to satisfy not only

the dispersion relationship but also the following condition given by Schopf et al. (1981):

ls = k · es

where es is the unit vector along the coast. This imposes the following condition on the

initial zonal and meridional wavenumbers:

ky = −kx
dXe

dy
(2.27)

where dXe/dy = −tanα and α is the angle between the coastline and the meridian. An

coastline angle of α = 0 therefore corresponds to the case of a north-south eastern bound-

ary, α > 0 corresponds to a north-east sloping boundary and α < 0 corresponds to a

north-west sloping boundary. In this case we must also form a new equation for the zonal

wavenumber before the meridional wavenumber can subsequently be calculated. We first

rewrite the dispersion relationship:

ω = −
βR2kx

1 + R2k2
x (1 + tan2α)

(2.28)

After some simple rearranging, we arrive at the following long wave equation for kx at the

boundary:

⇒ R2
(

1 + tan2α
)

k2
x +

βR2

ω
kx + 1 = 0 (2.29)

⇒

(

1

cos2α

)

k2
x +

β

ω
kx +

1

R2
= 0 (2.30)

⇒ klong
x = −

βcos2α

2ω
+

cos2α

2

√

(

β

ω

)2

−
4

R2cos2α
(2.31)

We can then calculate ky using equation (2.27). The maximum frequency and critical

latitude are now dependent on the angle of the coastline and can be written as follows:

ωmax =
c0cosα

2y
(2.32)
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yc =
c0cosα

2ω
(2.33)

We can now also define a critical coastline angle αc. The critical coastline angle represents

the maximum angle from a north-south orientated boundary for which Rossby waves can

still propagate for a given latitude and frequency:

αc = cos−1

(

2ωy

c0

)

(2.34)

Having altered the model to properly account for variable coastline geometry, we can

now examine the effect that this has on the ray paths. First we will consider a straight

coastline, orientated at an angle of α = ±45◦ from the meridian. The result of this is

shown in Figure (2.5).
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Figure 2.5: Rays from a sloping eastern boundary.

If we initially look at the north east orientated boundary, it is clear that one effect of
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introducing a variable meridional wavenumber along the boundary is that the ray paths

are now initially orientated slightly towards the south as they leave the coastline. In

addition, the angle of the boundary means that the caustic in the northern hemisphere is

developing nearer to the equator, and the energy focus described by Schopf et al. (1981)

is located slightly north of the equator. Schopf et al. (1981) defines an equation to specify

the (x,y) position of the energy focus for a straight coastline orientated at some angle α

from the meridian:

x = −
πc0

4ω
−

3c0

2πω
sin2α (2.35)

y = −
c0

π2ω
sin3α (2.36)

Also to be considered is the effect of the angle of the coastline on the critical latitude. For

a north-south orientated coastline the critical latitude was calculated to be approximately

yc = 6500km. For a straight coastline orientated at an angle of α = 45◦ from the merid-

ian, it can be shown from equation (2.33) that the critical latitude is approximately yc =

4600km. This is consistent with the extent shown in Figure (2.5). Our final consideration

is the fact that ray paths for a north-west orientated boundary are simply a reflection

about the equator of the paths from the north-east orientated boundary.

We will now examine ray paths propagating on a more local scale from a slowly vary-

ing coastline as opposed to a simple straight boundary. Figure (2.6) shows ray solutions

from a section of the South Pacific eastern coastline. The most prominent effect of the

variable coastline on the ray paths is the presence of convergence and divergence of ray

paths depending on the local coastline shape. There are several consequences this can

have on the propagation of Rossby waves. Areas where the ray paths diverge are likely to

be areas with less energy and thus weaker Rossby wave activity. Areas of ray convergence

are likely to be areas of energy focus, with enhanced variability associated with the Rossby

waves. The third possibility is that rays may converge to the point of crossing, in which

case the coastline shape can cause caustic formation within the interior of the ray envelope.

Finally we consider the effect of introducing a variable meridional wavenumber along the

Atlantic and Pacific coastlines by solving for the ray trajectories across the entire ocean

basins. The results are shown in Figure (2.7) below. It is immediately obvious that the

solutions are not as neat and tidy as those shown previously, this being a result of the

frequent variations in the coastal geometry. There are regions of ray divergence and con-

vergence, and rays propagating from the North Atlantic coastline are particularly chaotic

due to the high variability in α over a relatively small distance.
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Figure 2.6: Rays propagating on a local scale from the south-eastern Pacific coastline.

The critical latitude yc is dependent on the angular frequency ω, the gravity-wave phase

speed c0 and the coastline angle α. However as we have taken ω and c0 to be constant,

while α varies along the coastline, the critical latitude is now a function of α and also

varies along the coastline. It is clear that the more the coastline leans in the east-west

direction the lower the critical latitude, where a totally east-west coastline prevents any

wave propagation taking place at all.

The effect of α on the critical latitude is most significant in the higher latitudes. This is

because for α 6= 0, yc will be reduced, and in the higher latitudes this is more likely to

result in the zonal wavenumber becoming complex at the boundary. Of course, this can

occur at any latitude for a sufficiently tilted coastline. The overall result of this is that

there are areas along the eastern boundary equatorwards of the actual critical latitude

(beyond which no Rossby waves propagate from the boundary), from which Rossby waves

cannot propagate due to the slope of the coastline. This is frequently the case in the

North Pacific and the North Atlantic although there are some examples of this closer to

the equator such as on the West coast of Africa.

Sections of the coastline with a complex initial zonal wavenumber will be marked in red
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in figures from this point on. In general it has been shown that coastal geometry is an

important factor in determining the energy distribution associated with oceanic Rossby

waves.
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(a) Atlantic Ray Paths
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Figure 2.7: Ray paths with variable meridional wavenumber at the boundary for (a)
Atlantic Ocean and (b) Pacific Ocean. Red circles indicate latitudes beyond the critical
latitude or at which no Rossby wave propagation occurs due to the angle of the coastline.
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2.1.8 Variable c0

Up to this point, we have made the assumption that the gravity-wave phase speed has a

zonally and meridionally constant value of c0 = 2.6ms−1. In reality, the phase speed of

Rossby waves is not constant and changes with both latitude and longitude. The phase

speed is an important factor both in terms of determining the critical latitude, and in de-

termining the shape of the rays themselves. It can therefore be deduced that introducing

a variable phase speed may be a good way of improving the model.

Chelton et al. (1998) concentrated on computing global climatologies of the first baro-

clinic gravity-wave phase speed and Rossby radius of deformation every 1◦ of latitude and

longitude. Subsequently, one option for introducing a variable phase speed into our model

would be to use the two dimensional Matlab interpolation function so that as we integrate

for each ray solution, the group velocity of the ray is calculated using the interpolated

phase speed value specified according to its location in the oceanic basin.

Another, perhaps more simple option, would be to use an analytical phase speed function

for the Atlantic and Pacific oceans such that it closely fits the observed data. Having

considered the observational data, the initial analytical function derived for the Atlantic

and Pacific phase speeds is as follows:

c0 (y) = A + Bcos

(

2y

a
+ Cπ

)

+ Dcos

(

6y

a
+ π

)

; (2.37)

where the parameters A, B and D have the same dimensions as c0 (ms−1) and C is a non-

dimensional parameter. As we are using a non-constant phase speed, we must redefine

equation (2.14). In general we can write equation (2.14) in autonomous form as:

dky

dx
=

(

R2
)

y
kx

R2
[

1 + R2
(

k2
y − k2

x

)] (2.38)

where
(

R2
)

y
is the rate of change of the Rossby radius of deformation with respect to y

and R depends on the analytical phase speed function c0 (y).

For the global zonal mean, latitudinal distribution, we choose parameter values of A =

2ms−1, B = 1ms−1, C = 0 and D = 0.3ms−1. Figure (2.8) is a comparison of the resulting

phase speed function and the observed global mean phase speeds. Mean latitudinal phase

speed distributions were also calculated from the Chelton et al. (1998) dataset, between

70◦W and 20◦E for the Atlantic ocean and between 160◦E and 70◦W for the Pacific ocean.

The values of the A, B, C and D parameters in equation (2.35) were then altered to more
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closely fit the observed phase speeds in the particular ocean basin. The results of these

alterations are shown in Figure (2.9).

(a) Zonal Average (Chelton et al. 1998)
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Figure 2.8: (a) The global zonally averaged first order baroclinic mode gravity-wave phase
speed obtained by Chelton et al. (1998). (b) The latitudinal variation in gravity-wave
phase speed provided by the derived function specified by equation (2.37).
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Figure 2.9: A comparison of the zonally averaged phase speed for (a) the Atlantic Ocean
and (b) the Pacific Ocean, with the analytical function using the specified parameters for
each respective ocean basin.
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The parameters for the Atlantic ocean were chosen to be A = 2ms−1, B = 0.7ms−1, C =

-0.02 and D = 0.31ms−1. For the Pacific ocean, the parameter values are A = 2.4ms−1,

B = 0.5ms−1, C = 0 and D = 0.25ms−1. It can be seen that the zonally averaged phase

speeds in the Pacific are generally faster than the Atlantic, however there are greater

meridional variations in the phase speed in the Atlantic, particularly towards to the mid-

latitudes.

In an attempt to improve the analytical function further, we could also take into account

longitudinal variations in phase speed. Figure (2.10) shows the change in meridionally

averaged phase speeds beginning from the eastern boundaries of the Atlantic and Pacific

oceans respectively.
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Figure 2.10: Meridionally averaged phase speeds for the Atlantic and Pacific oceans where
0◦ longitude respresents the eastern coastline.

The first thing to note is that in general, the longitudinal variations in phase speed do

not seem to be as significant as the latitudinal variations. The phase speeds also seem to

increase from east to west, possibly due to topographic influences (Killworth and Blun-

dell, 1999 and Tailleux and McWilliams, 2002) or the presence of a background mean flow

(Killworth et al., 1997). In the Pacific Ocean, the longitudinal change in phase speed is on

average, an increase from East to West by approximately 0.5ms−1 whereas in the Atlantic

there is an increase of around 0.7ms−1.

We could introduce a simple additional term such that the phase speed increases linearly

westward across the ocean basin. The resulting analytical function would be as follows:
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c0 (x, y) = A + Bcos

(

2y

a

)

+ Ccos

(

6y

a
+ Dπ

)

+
Ex

a
; (2.39)

where the additional parameter E has the dimensions of phase speed (ms−1) and deter-

mines how fast the phase speed increases from East to West. Introducing an x-dependent

phase speed function means that the zonal wavenumber kx is no longer conserved along

each ray. We are therefore required to rewrite equation (2.13) which in general takes the

following autonomous form:

dkx

dx
=

(

R2
)

x
kx

R2
[

1 + R2
(

k2
y − k2

x

)] (2.40)

where
(

R2
)

x
is the rate of change of the Rossby radius of deformation with respect to x

and R depends on the analytical phase speed function c0 (x, y).

Figures (2.11) and (2.12) show the relative errors associated with the assumption of con-

stant phase speed and using the y-dependent analytical function for c0 in the Atlantic

and Pacific oceans respectively. Figure (2.13) shows the error associated with the two-

dimensional function for c0 in the Pacific Ocean only. The errors were calculated by making

a comparison with the observed phase speeds from the Chelton et al. (1998) dataset. The

y-dependent function is a dramatic improvement for c0 in the Atlantic Ocean, particularly

in the mid-latitudes. There are some underestimates and overestimates >0.3ms−1 in the

upper hemisphere, particularly along the northern part of the coastline which may be

significant for accurately determining the critical latitude.

The assumption of constant c0 for the Pacific Ocean produces significant errors in the

western part of the basin and in the high latitudes. The y-dependent function is a huge

improvement in these areas but there is a general underestimate >0.3ms−1 along the east-

ern coastline. The two-dimensional function for the Pacific clearly produces a phase speed

distribution that more closely matches the observed Rossby wave phase speeds as errors

are generally less than 0.3ms−1 across the entire ocean basin.

It is clear that the analytical functions provide a better estimate for the overall gravity-

wave speed distribution. There are some significant errors along the eastern boundaries

however, and this will have an effect on the critical latitude yc, which becomes a function of

α and c0 when the variable c0 is introduced. Ideally we would like to interpolate observed

values of c0 from the Chelton et al. (1998) dataset, but this proved somewhat difficult

to implement. The two-dimensional analytical function is the best alternative, however

having attempted to include it within the model, it proved problematic to test that the



32 CHAPTER 2. MODEL DERIVATION AND RESULTS

distribution of c0 values specified by the function was correct. For simplicity, and so that

we can be certain that the analytical function specifies the correct phase speed distribution

for each ocean basin, we will use the y-dependent function given by equation (2.37), which

provides a middle-ground in terms of accuracy. In further work, interpolation of the

dataset or the two-dimensional phase speed function should be implemented for more

realistic results.
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Figure 2.11: Error between the observed phase speeds and (a) constant c0 (b) analytic
function c0 (y) in the Atlantic Ocean. Phase speed errors <0.3ms−1 are shown in yellow.
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Figure 2.12: Error between the observed phase speeds and (a) constant c0 (b) analytic
function c0 (y) in the Pacific Ocean. Phase speed errors <0.3ms−1 are shown in yellow.
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Figure 2.13: Error between the observed phase speeds and the analytic function c0 (x, y).
Phase speed errors <0.3ms−1 are shown in yellow.

After some lengthy calculations, the ray equations were re-derived to account for the

variable phase speed. It was however somewhat difficult to simplify the equation for ky such

that it is included in the appendix only (Appendix (1.5.1)). The resulting ray solutions

are shown in Figure (2.14). An obvious effect of introducing the variable phase speed is

the change in critical latitude and thus the latitudinal extent along the eastern boundary

from which Rossby waves can propagate. In general there is a significant reduction by

several degrees of the critical latitude yc for both the Atlantic and Pacific ocean basins.

This is a result of there being values of c0 that are less than 2.6ms−1 in the mid-latitudes.

The western extent of the ray solutions, particularly in the Pacific, also seems to have

reduced slightly in the higher latitudes due to the reduction in c0. The value of c0 is

therefore important in determining both the zonal and meridional extent of Rossby wave

propagation in the ocean and also the general shape of the ray envelope.
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Figure 2.14: Ray paths with variable meridional wavenumber at the boundary and variable
c0 for (a) Atlantic Ocean and (b) Pacific Ocean. Red circles indicate latitudes beyond the
critical latitude or at which no Rossby wave propagation occurs due to the angle of the
coastline.
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2.2 Spherical Polar Coordinates

So far we have used the β-plane approximation in the derivation of our ray equations.

We now extend the theory to account for the curvature of the Earth by using spherical

geometry. The transformation from cartesian geometry is relatively simple. Rather than

assuming that the β-parameter is constant and that the coriolis parameter f varies linearly,

we use their full definitions:

f = 2Ωsinφ (2.41)

β =
2Ωcosφ

a
(2.42)

such that they both retain their latitudinal variations and where Ω is the rate of Earth’s

rotation and a is Earth’s radius. As in Killworth and Blundell (2003), we also express the

cartesian wavenumbers kx and ky in terms of the angular wavenumbers kλ and kφ:

kx =
kλ

acosφ
(2.43)

ky =
kφ

a
(2.44)

where λ and φ are longitude and latitude respectively.

2.2.1 Dispersion Relationship

Using the angular wavenumber terms given by equations (2.43) and (2.44) we can rewrite

the dispersion relationship in spherical polar coordinates:

ω =
−βR2acosφkλ

a2cos2φ + R2
(

k2
λ + cos2φk2

φ

) (2.45)

where ω is now a function of φ and the angular wavenumbers kλ and kφ.

2.2.2 Ray Equations

We derive the ray equations in spherical polar coordinates as for cartesian coordinates,

however this time we systematically differentiate the dispersion relationship with respect

to λ, φ and the angular wavenumber terms. After some careful calculations, it can be

shown that for a constant gravity-wave phase speed c0, the ray equations are:

dλ

dt
= cgλ =

∂ω

∂kλ

= −
βR2acos3φ

[

a2 + R2
(

k2
φ − k2

λ/cos2φ
)]

[

a2cos2φ + R2
(

k2
λ + cos2φk2

φ

)]2 (2.46)
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dφ

dt
= cgφ =

∂ω

∂kφ

=
2βR4acos3φkλkφ

[

a2cos2φ + R2
(

k2
λ + cos2φk2

φ

)]2 (2.47)

dkλ

dt
= −

∂ω

∂λ
= 0 (2.48)

dkφ

dt
= −

∂ω

∂φ
= −

2βR2akλ

(

R2sin2φk2
λ + a2cos4φ

)

sinφ
[

a2cos2φ + R2
(

k2
λ + cos2φk2

φ

)]2 (2.49)

It can once more be shown from equation (2.46) that in order for the group velocity to be

negative in the λ-direction, the following condition must be satisfied:

a2 + R2
(

k2
φ − k2

λ/ cos2 φ
)

> 0 (2.50)

where β = 2Ωcos φ/a and cos φ > 0. This condition is equivalent to:

k2
λ < cos2 φ

(

a2

R2
+ k2

φ

)

(2.51)

which corresponds to long wave solutions as required.

2.2.3 Autonomous Equations

We have shown that for long waves, the group velocity in the λ direction is always negative,

i.e. cgλ <0. For the same reasons stated in the section on cartesian coordinates, and as we

know it to be valid since cgλ <0, we will therefore reduce our system of ordinary differential

equations to an autonomous one. From equation (2.46):

dλ

dt
= cgλ (2.52)

and we can therefore write:

dt =
dλ

cgλ

(2.53)

Using this, we can rewrite our equations for φt and (kφ)
t
as follows:

dφ

dλ
=

cgφ

cgλ

(2.54)

dkφ

dλ
=

1

cgλ

dkφ

dt
(2.55)
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Thus our autonomous system of differential equations is given as:

dφ

dλ
=

−2R2kλkφ
[

a2 + R2
(

k2
φ − k2

λ/cos2φ
)] (2.56)

dkλ

dλ
= 0 (2.57)

dkφ

dλ
=

2kλ

(

R2sin2φk2
λ + a2cos4φ

)

sinφcos3φ
[

a2 + R2
(

k2
φ − k2

λ/cos2φ
)] (2.58)

2.2.4 Fixed ω Solution

We will begin by integrating for a straight north-south eastern boundary, in which case

can we assume a boundary condition of constant phase S. This implies that kφ = 0 along

the boundary and we can therefore initially write the dispersion relationship as:

ω =
−βR2acosφkλ

a2cos2φ + R2k2
λ

(2.59)

This can be rearranged so that we have a quadratic equation to solve for the initial value

of kλ along the eastern boundary:

R2k2
λ +

βR2acosφ

ω
kλ + a2cos2φ = 0 (2.60)

The solution of this equation that corresponds to long waves is as follows:

klong
λ =

acosφ
(

−βR +
√

β2R2 − 4ω2
)

2Rω
(2.61)

From equation (2.57), it is shown that kλ is constant when integrating with respect to λ,

and thus the value of kλ specified by equation (2.61) is conserved along each ray trajectory.

2.2.5 Critical Latitude

It is clear that to avoid a complex solution for the zonal wavenumber, the following con-

dition must be satisfied:

β2R2 − 4ω2 > 0 (2.62)

Keeping in mind that β and f now retain their latitudinal variations this is equivalent to:

ω <
βc0

2f
=

c0 cos φ

2a sinφ
(2.63)
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From this we can calculate the maximum frequency for which Rossby waves can propagate

freely from the eastern boundary:

ωmax =
c0

2atanφ
(2.64)

To determine the critical latitude in spherical polar coordinates, we simply rewrite equation

(2.63):

⇒ f <
βc0

2ω
(2.65)

The critical latitude is therefore given by:

φc = tan−1
( c0

2aω

)

(2.66)

Using a constant gravity-wave phase speed of c0 = 2.6ms−1 and a fixed annual frequency,

it can be shown that the critical latitude for a north-south orientated straight coastline in

spherical polar coordinates is φc ≈ 45.7◦. This is illustrated in Figure (2.15).
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Figure 2.15: Ray paths in spherical polar coordinates for a straight, north-south orientated
boundary with a zero initial angular meridional wavenumber

If we consider that the critical latitude in cartesian coordinates was roughly 6525km and
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use a conversion ratio of 112km per degree, then the critical latitude for the cartesian

coordinate solution in degrees is approximately 58.3◦. It is therefore clear that converting

to spherical geometry has a direct effect on the extent of the critical latitude when con-

sidering a straight north-south boundary. In addition, although still symmetric about the

equator, the ray envelope has a slightly different shape. This is a result of allowing the β

and f parameters to retain their latitudinal variations.
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2.2.6 Realistic Coastlines

We now introduce realistic coastlines to the model, illustrated in Figure (2.16).
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Figure 2.16: Ray paths for (a) the Atlantic Ocean and (b) the Pacific Ocean with a zero
meridional wavenumber at boundary.
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2.2.7 Variable Meridional Wavenumber

For a non-straight boundary, we can no longer assume an initial value of kφ = 0. Us-

ing equation (2.27) and converting the cartesian wavenumbers into angular wavenumbers

yields the following boundary condition:

kφ = −
kλ

cosφ

dλe

dy
(2.67)

where dλe/dφ = −tanα. We must now form a new equation for the zonal wavenum-

ber, before the meridional wavenumber can subsequently be calculated. The dispersion

relationship at the eastern boundary becomes:

ω =
−βR2acosφkλ

a2cos2φ + R2k2
λ (1 + tan2α)

(2.68)

⇒

(

1

cos2α

)

k2
λ +

βacosφ

ω
kλ +

a2cos2φ

R2
= 0 (2.69)

which is simply a quadratic equation for kλ whose long wave solution is given by:

⇒ klong
λ = −

βacosφcos2α

2ω
+

cos2α

2

√

(

βacosφ

ω

)2

−

(

2acosφ

Rcosα

)2

(2.70)

This equation is solved for the initial value of kλ before kφ is calculated from equation

(2.67). As in cartesian coordinates we can now redefine the maximum frequency, critical

latitude and critical coastline angle in spherical polar coordinates:

ωmax =
c0cosα

2atanφ
(2.71)

φc = tan−1
(c0cosα

2aω

)

(2.72)

αc = cos−1

(

2aωtanφ

c0

)

(2.73)

The effect of introducing a variable meridional wavenumber can be seen in Figure (2.17).

The overall impact is similar to the β-plane solution. The angle from which the ray

propagates from the coastline now depends on the angle of the coastline relative to the

meridian. Thus for α > 0, rays leave the coastline initially heading southwards, and for

α < 0, rays leave the coastline initially heading northwards. There are therefore regions of

ray divergence and convergence, particularly where the coastline varies significantly over

a small distance. The critical latitudes are similar those in the final cartesian coordinate

solution but the western extent of the rays in the mid-latitudes seems to be greater overall.
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Figure 2.17: Ray paths with variable meridional wavenumber at the boundary and con-
stant gravity-wave phase speed c0 in spherical polar coordinates for (a) the Atlantic Ocean
and (b) the Pacific Ocean. Red circles indicate latitudes beyond the critical latitude or at
which no Rossby wave propagation occurs due to the angle of the coastline.
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2.2.8 Variable c0

The last step to achieve the final result in spherical polar coordinates is to remove the as-

sumption that the gravity-wave phase speed is constant. Rather than using c0 = 2.6ms−1,

we will once more use the phase speed function specified by equation (2.37). In spherical

polar coordinates this is equivalent to:

c0 (φ) = A + Bcos (2φ + Cπ) + Dcos (6φ + π) ; (2.74)

since φ = y/a. Re-deriving the ray equations becomes a little more tedious due to the

additional φ dependent terms, but the general autonomous form of the equation for kφ

can be written:
dkφ

dλ
=

1

cgλ

[

∂ω

∂R2

∂R2

∂φ
+

∂ω

∂β

∂β

∂φ
+

∂ω

∂kx

∂kx

∂φ

]

(2.75)

where R = c0(φ)/2Ω sin φ and kx = kλ/a cos φ. The full form of this equation is given in

Appendix (1.5.2). If we chose to include a gravity-wave phase speed function that is also

dependent on λ, then the ray equation for kλ becomes:

dkλ

dλ
=

1

cgλ

[

∂ω

∂R2

∂R2

∂λ

]

(2.76)

where R = c0(λ, φ)/2Ω sin φ. However in the current study, and as for the cartesian coordi-

nate model, we will assume that the gravity-wave speed is variable in φ but longitudinally

constant.

Figure (2.18) shows the resulting ray solutions for the variable phase speed in spherical

polar coordinates. The critical latitude has been marginally reduced as a result of the

variable c0, while the westward extent of the rays is slightly smaller in the higher latitudes

but greater in the lower latitudes. Although the difference is not dramatic, it is certainly

easy to discern between the various solutions. This is further confirmation that the phase

speed distribution and therefore the change in the Rossby radius of deformation in an

ocean basin is important in determining the way in which the wave energy disperses. We

can therefore emphasise the significance of using realistic phase speed values when trying

to determine the caustics.
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Figure 2.18: Ray paths with variable meridional wavenumber at the boundary and variable
gravity-wave phase speed c0 in spherical polar coordinates for (a) the Atlantic Ocean and
(b) the Pacific Ocean. Red circles indicate latitudes beyond the critical latitude or at
which no Rossby wave propagation occurs due to the angle of the coastline.
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2.3 Caustics

In comparing the final results in cartesian coordinates and spherical polar coordinates

(shown by Figures (2.14) and (2.18) respectively), it can be seen that there is very little

difference between the two sets of ray solutions. This indicates that the shape of the ray

envelope and the caustics is unlikely to be greatly affected by the sphericity of the Earth.

The Rossby radius of deformation is the only latitudinal dependent term present in both

sets of ray equations due to the variable c0 and coriolis parameter f . It can therefore be

deduced that the shape of the ray envelope is more a result of the latitudinal variation

in the Rossby radius of deformation than due to the sphericity of the Earth. Despite

this general similarity, there are some very minor differences that appear as a result of

converting to spherical polar coordinates, for example relating to the extent of the critical

latitude and the caustics. We can deduce that as the Earth is in fact nearly spherical,

that the use of spherical polar coordinates is justified in making for slightly more accurate

results.

Having achieved our final result, it is clear that in some areas, the exact location of the

caustics is not easy to define visually. This is particularly the case when we integrate for

more ray trajectories from the eastern boundary. The initial direction of rays propagat-

ing from the eastern boundary is more variable near to the critical latitude due to the

enhanced effect of the coastline angle, and this is particularly the case in the northern

hemisphere where the angle of the coastline tends to vary more dramatically. This makes

the point at which each ray trajectory first crosses with another a little more difficult to

determine.

It does not seem that this issue would be significant if smoother coastline variations for the

Atlantic and Pacific coastline had been implemented. When the coastline angle changes

significantly over a small distance, areas of strong divergence and converge of rays appear.

It is when this occurs that problems can arise in determining the caustic. Variations of

the eastern coastline geometry and the validity of the WKB theory is brought up as an

important issue by Schopf et al. (1981). We must therefore consider the possibility that

some sections of the coastline used within the model vary too quickly over too small a

distance to be admitted under WKB theory.

While further work would be to calculate the exact position of the caustics numerically,

at the current stage, and although somewhat subjective, we should be able to make a

reasonable visual determination of the caustics. These are shown in Figures (2.19) and

(2.20) for the Atlantic and Pacific Oceans respectively, where the caustic lines are marked
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in red. In addition we include the western coastlines to give a better overall picture.

Figure 2.19: Caustics in the Atlantic Ocean

Figure 2.20: Caustics in the Pacific Ocean
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For the Atlantic Ocean, the model solution suggests that the critical latitude in the North-

ern Hemisphere is at approximately φc ≈ 40◦N on the eastern coastline. In the Southern

Hemisphere the critical latitude is at the southern tip of Africa at φc ≈ 35◦S where the

coastline comes to an end. The poleward extent of the caustic decreases almost lin-

early westwards (towards the equator) in both hemispheres, until the western coastline

is reached. The focus of rays that we have seen in solutions with the western coastline

hidden does not occur in the Atlantic because the ocean basin is not wide enough. The

caustics instead meet the western coastline at 13◦N just South of the Gulf of Mexico and

16◦S on the East coast of Brazil.

The critical latitude at the eastern coastline of the Pacific Ocean is approximately φc ≈

43◦N in the Northern Hemisphere and φc ≈ 42◦S in the Southern Hemisphere. The length

of the East Pacific coastline from which Rossby waves can propagate is therefore much

greater than that of the Atlantic. This is due to faster gravity-wave phase speeds in the

Pacific, larger values of α in the North Atlantic, and particularly due to the fact the tip of

South America is almost 20◦ further South than that of South Africa. The Pacific Ocean

basin is also significantly wider than the Atlantic basin. According to the modelled caus-

tics, there is an indication that the majority of boundary-driven Rossby waves from the

eastern coastline do not reach the western coastline before being dispersed equatorwards

and there is only a very limited region near to the equator where boundary-driven waves

from the east can reach the western coastline. There is a sharp focus of energy in the

equatorial zone between the longitudes of 140◦ and 200◦ which correspond to 140◦E and

160◦W relative to the Greenwich Meridian.

If we once more consider Figure (1.2) from Fu an Qui (2002), we can see that the correlation

coefficients between SSH variability in the Pacific Ocean and boundary-driven Rossby

waves from the eastern boundary are strongest in the eastern part of the basin. Between

115◦W and 175◦W at 10◦N, there is very little correlation. This corresponds to an area

of ray divergence in our theoretical model, which suggests that there may be less energy

associated with the boundary-driven waves in this region. Between 125◦E and 175◦W,

Figure (1.2) indicates that there is strong correlation between boundary driven waves and

SSH variability. This area corresponds to the region in our theoretical model where rays

begin to converge, near to the sharp energy focus.
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Analysis of Model Output

Many recent studies have used either satellite altimeter data or high resolution ocean mod-

els to examine the properties of oceanic Rossby waves. The French CLIPPER model for

example, can be used to generate salinity, temperature, SSH and three-dimensional veloc-

ity profiles for the Atlantic Ocean and its ability to realistically simulate oceanic Rossby

waves has been tested (Lecointre et al. 2008). The model has a resolution of 1/6◦ on a

MERCATOR grid, and 42 geopotential depth levels which are more concentrated near to

the surface.

In the model, the ocean surface is forced by realistic atmospheric conditions derived from

the ECMWF ERA15 reanalysis dataset. This ensures confidence that waves have been

generated by realistic forcing mechanisms such as those that occur over the real oceans.

Oceanic Rossby waves are commonly observed by examining SSH anomalies, and it is

therefore the SSH data from the model that we shall be considering. The model outputs

data every 5 days, and there are 10 years worth of data available from the year 1990 to

2000. We will consider data in the South Atlantic Ocean between 45◦S and 10◦N.

We can therefore attempt to identify the potential location of the caustic in the southern

Atlantic Ocean using the model data. Before doing so, some data processing is required

so that the relevant data can be isolated. As we have concentrated on modelling caustics

for annual frequency Rossby waves, the first step is to apply a filter to the data in order

to remove any high frequency anomalies which correspond to processes that operate on a

shorter time scale than the Rossby waves under consideration. We can do this by applying

a Fast Fourier Transform to the time series for each individual data point (x, y). Then

by plotting the frequency against the power for each frequency, we can extract the annual

frequency and remove any unwanted frequencies. The Inverse Fourier Transform can then

be applied so that we are left with the time series of annually varying anomalies. An
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example of an unfiltered and filtered time series is given by Figure (3.1), below. Finally,

we will remove the zonal mean at each time step in order to prevent any zonal averages

from dominating the Rossby wave signals.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (Days)

S
e

a
 S

u
rf

a
ce

 H
e

ig
h

t 
(m

)

 

 
Unfiltered
Filtered

Figure 3.1: Filtered and unfiltered SSH time series.

Having filtered the time series at each data point, the next step is to arrange the data into

a longitude-time plot, also known as a Hovmöller diagram. Figures (3.2) and (3.3), below,

show examples of an unfiltered and filtered longitude-time plot at 25◦S. The Hovmöller

diagram gives a dynamical view along zonal sections of the data, and make westward prop-

agating signals easy to identify. The slope of the lines indicating westward propagating

signals is inversely proportional to the phase speed of the signal where a more vertically

orientated line indicates a more slowly propagating signal.
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Figure 3.2: Unfiltered time-longitude plot.
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Computational restraints meant that in the current study, we could only examine the

longitudinal SSH profiles at 22 equally spaced latitudes, i.e. every 2.5◦ between 45◦S and

10◦N. Having applied some processing techniques to the data however, we can perform a

simple test on the available data in an attempt to detect the coastics by calculating the

root mean square variance (RMSV).

First we take the time mean at each point:

η̄(λ, φ) =
1

T

∫ T

0
η(λ, φ, t)dt (3.1)

where η is SSH. The RMSV (σ) is then given by:

σ(λ, φ) =
1

T

∫ T

0
[η(λ, φ, t) − η̄(λ, φ)]2 dt (3.2)

Our expectation is that the greatest variance will occur within the region between the

caustics in the North and South Hemisphere, as this is where we expect enhanced SSH

variability as a result of the annual frequency Rossby waves. Beyond the caustic we expect

variability to be relatively small. The result of calculating the RMSV does not necessarily

yield the results that we expect.
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Figure (3.4) shows the root mean square variability of the filtered SSH data in the South

Atlantic Ocean and shows that there is significant variability between 35◦S and 45◦S in

the western part of the basin and between 33◦S and 43◦S in the eastern part of the basin.

The greatest variability occurs in the West and at latitudes South of where we anticipate

the modelled caustic to be. There is very little variability further North and this also

contradicts our expectations.

Despite this, it can clearly be seen that there are some contours originating from the

southern tip of South Africa that go equatorwards and meet the western boundary be-

tween 12-16◦S. The southern hemisphere caustic from our theoretical model also left the

southern tip of South Africa and met the western coastline at approximately 16◦S. This

can be seen in Figure (2.19). There does therefore seem to be some indication of the

shape of the caustics derived from our theoretical predictions in the RMSV of the SSH

anomalies. This is a good early indicator that such a caustic line is observable in the ocean

data and therefore also in the real ocean.

The unexpected pattern of variability shown in Figure (3.4) is likely to be a result of not

fully isolating the Rossby wave signal. This indicates that the processing techniques that

we have applied are not sufficient to illustrate the regions of high variability and low vari-

ability associated purely with the westward propagating Rossby waves. It is also clear that

considering SSH profiles only every 2.5◦ of latitude is not sufficient for a proper analysis.

While there is certainly some correlation between the contours of RMSV and the mod-

elled caustic in the southern Atlantic, some improvements need to be made at the data

processing stage to ensure a proper analysis can be carried out. Firstly it is important to

make use of all of the available data such that nothing important is missed out from the

analysis. It is also important to ensure that the westward propagating signals which we

are primarily interested in have been properly isolated. A common technique to extract

westward propagating signals from ocean data is the Radon Transform which is used fre-

quently in recent studies, such as Chelton and Schlax (1996). Ensuring that the data is

processed correctly is the first step to ensuring an accurate interpretation of the data, and

thus also to see if caustics can be identified in real ocean data.



Chapter 4

Conclusions and Further Work

4.1 Summary

During this project we have modelled ray propagation in the Atlantic and Pacific ocean

basins both in cartesian and spherical polar coordinates. We began by considering a

straight eastern boundary, both north-south orientated and orientated at some angle α.

We then extended the ideas to account for variable coastline geometry and introduced

eastern boundaries representative of the Atlantic and Pacific coastlines.

Introducing a variable coastline required us to introduce a new boundary condition de-

pendent on the angle of the coastline α. The boundary condition was used to determine

the initial values of the zonal and meridional wavenumbers. Having introduced the new

boundary condition, it was found that trapped waves in regions equatorwards of the crit-

ical latitude φc were unable to propagate freely as Rossby waves if α is sufficiently large.

This indicates that Rossby waves are not able to propagate from all regions equatorwards

of φc. Variable coastal geometry also creates differences in the initial tilting of the rays as

they propagate away from the boundary, and this leads to the divergence and convergence

of rays in some regions. The shape of the coastline therefore has significant impacts on

the energy distribution of the boundary-driven waves throughout the ocean basin. This

observation may be related to the pattern of correlation coefficients shown in Figure (1.2)

from Fu and Qiu (2002) and as discussed in Chapter (2.3).

Finally, having previously assumed the phase speed to be constant, we introduced a vari-

able phase speed function to more accurately represent the distribution observed in the

real oceans, a result not previously derived. Introducing a variable c0 meant that φc be-

comes a function of α and c0, and the critical coastline angle αc becomes a function of φ

and c0. The variable phase speed therefore affects the location of the critical latitude, and
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also determines whether Rossby waves can propagate freely from regions equatorwards of

φc if α is also significant. As the Rossby radius of deformation R is dependent on c0 and we

determined that the latitudinal variation in R was significant for shaping the ray envelope,

we deduced that c0 is also an important variable in determining the location of the caustics.

The solutions derived in cartesian coordinates and spherical coordinates were found to be

very similar, indicating that the shape of the ray envelope is not strongly dependent on

the sphericity of the Earth.

Having produced some graphical representation of the ray propagation patterns across

each ocean basin, we briefly discussed the presence of the caustics. The caustics are the-

oretical lines that meet the eastern boundary at the critical latitude and North of which

we expect waves at the boundary to remain trapped as coastally-trapped Kelvin waves.

Equatorwards of the critical latitude, provided that the coastline angle is not sufficiently

large, waves can propagate freely from the coast as Rossby waves. In the interior ocean,

the caustics define the western extent of the region where we expect to find a significant

amount of variability associated with boundary driven waves. Westward of the caustic,

variability associated with the boundary driven waves is expected to decay exponentially.

The pattern of real ray solutions within the caustic region indicated that rays propagating

from the eastern boundary turned and headed equatorwards. As a ray trajectory repre-

sents the group velocity vector, and energy associated with boundary driven Rossby waves

propagates with the group velocity, the theory therefore indicates that energy from the

mid-latitudes propagates equatorwards via dispersion, as opposed to the western part of

the ocean basin. The turning of the rays, and thus the shape of the ray envelope is what

determines the location of the caustics.

Having estimated the location of the caustics in the Atlantic and Pacific oceans, we then

aimed to find some correlation between the caustics derived from our model and some

modelled ocean data. We considered high resolution SSH data from the French CLIPPER

Model in the southern Atlantic Ocean. Due to computational constraints we were limited

to the use of 22 zonal sections at 2.5◦ latitudinal intervals. Initially we carried out some

Fourier analysis on the available data and removed the zonal mean in an attempt to isolate

the baroclinic Rossby waves. Finally we arranged the data into time-longitude arrays

before calculating the RMSV for each zonal section. In plotting contours of the RMSV

in the South Atlantic (Figure 3.4), we expected to find greater variance within the region

bounded by the caustics estimated from our model. While in some ways the contour plot

was somewhat contradictory of our expectations (likely a result of not properly isolating

the Rossby wave signal), we still found some correlation between the shape of some of
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the contours and the modelled caustic. This is a good early indicator that dispersion is

the underlying mechanism resulting in the western decay of baroclinic boundary-driven

Rossby waves. If further analysis confirms this result, then it can be deduced that Rossby

waves observed in the western part of ocean basins are unlikely to have been generated at

the eastern boundary, but produced by an altogether different mechanism.

4.2 Further Work

Finally we suggest a number of improvements that can be made to the model itself, and

where this work can be taken next.

4.2.1 Model Improvements

A latitude-dependent analytical function was introduced to account for the variable Rossby

wave phase speeds observed in the real Atlantic and Pacific oceans. While the function

used was an improvement on assuming the phase speed to be constant in the ocean overall,

it was particularly weak in some parts of the ocean basins. Further to this, an analytical

function in latitude and longitude was derived and while not fully implemented, it was

shown that it provided a better estimate of the gravity-wave phase speed distribution.

Despite this, a good idea would be to use a dataset of observed values of c0 in conjunction

with Matlab’s built in two-dimensional interpolation function. This would involve initially

assigning the observed values of c0 onto a discrete array. Then by using spline or nearest

interpolation, phase speed values can be taken from the c0(λ, φ) array as each ray trajec-

tory is integrated across the ocean basin. When solving the system of ODEs, we must also

remember that this will involve a c′0(λ, φ) term, making it a little more difficult to imple-

ment. This can be solved by including a subroutine called within the ODE function, such

that it calculates the rate of change of the observed phase speeds with respect to latitude

and longitude. Having deduced that c0 is an important factor in determining the criti-

cal latitude and ray envelope shape, this should be a significant improvement to the model.

A further weakness in the model relates to the determination of the caustics. Whilst we

relied on the assumption that the meridional wavenumber kφ along the boundary was zero,

the location of the caustic could easily be seen. However, upon introducing a variable kφ

along the boundary, the initial points at which the ray trajectories crossed, ie. the points

that determine the caustic line, were no longer as easy to see. Determining the caustics

therefore became somewhat subjective. It can be assumed that interpolating observed

phase speed data is likely to enhance this effect, as an observational dataset is unlikely to

be as smoothly varying as the phase speed distribution specified by an analytical formula.
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The next step to improve the model is therefore to include some steps to compute the

point at which each ray trajectory first crosses with another. The line that passes through

each of these points is the caustic.

We previously stated that a caustic appears when two neighboring trajectories, from ξ

and ξ + δξ (where ξ is a measure of the distance along the boundary) meet at the same

time t, i.e. when:

λ(t, ξ) = λ(t + δt, ξ + δξ)

φ(t, ξ) = φ(t + δt, ξ + δξ) (4.1)

Expanding the right hand sides yields:

δt
∂λ

∂t
+ δξ

∂λ

∂ξ
= 0

δt
∂φ

∂t
+ δξ

∂φ

∂ξ
= 0 (4.2)

If we then eliminate the small quantities, it is clear that a caustic occurs when:

∂λ

∂t

∂φ

∂ξ
−

∂φ

∂t

∂λ

∂ξ
= 0 (4.3)

According to Killworth and Blundell (1999), in order to follow the values of this Jacobian,

we need differentials of the entire ray problem and the initial conditions with respect to the

distance ξ. As the existing ray problem already consists of derivatives of ω, we therefore

need to calculate the second derivatives of ω with respect to φ, λ, kλ and kφ. Calculating

the individual points at which a caustic occurs should be sufficient to determine the caustic

lines that bound the ray envelope.

Lastly, the model should be extended to examine ray propagation and the presence of

caustics in the Indian Ocean. This will simply be a case of altering the array of coastline

coordinates to represent the eastern coastline of the Indian Ocean. The array can then

be used to determine the initial values of the ray trajectories. A phase speed distribu-

tion representative of those in the Indian Ocean should also be used, either through an

analytical formula, or through observational data.
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4.2.2 Ocean Data Analysis

Having made improvements to the ray propagation model, the next stage is to make a full

comparison with an oceanic data set, for example from the French CLIPPER model. For

this to be successful however, it is important to both utilise all of the available data, but

also to ensure that the data is processed correctly. The reason that we wish to process

the oceanic data is so that we can isolate the westward propagating Rossby wave signals.

Having done so we can recalculate the RMSV in an attempt to locate caustics in the real

ocean data.

When considering the SSH anomaly time series in the South Atlantic Ocean, we carried

out a Fourier analysis in order to extract the annually varying signal, and removed the

zonal averages to ensure that they did not dominate the Rossby wave signals. These

methods were not sufficient to extract the Rossby wave signals from the oceanic dataset.

The Radon Transform (Radon, 1917) is a method frequently used in image processing and

particularly for extracting information about oceanic Rossby waves. The classical two-

dimensional Radon Transform can project an image from the cartesian (x, t) plane onto

a line orientated at a given angle θ. The transform effectively calculates the line integral

through the (x, t) image where the line is positioned according to the values of ρ and θ

where ρ is equal to the smallest distance to the origin of the coordinate system. There are

various forms of the Radon Transform and some of these have been designed specifically for

extracting Rossby wave signals (Lecointre et al. 2008). The following equation represents

one form of the Radon Transform:

ρ = x cos θ + y sin θ (4.4)

R(ρ, θ) =

∫

∞

−∞

∫

∞

−∞

f(x, y)δ(ρ − x cos θ − y sin θ)dxdy (4.5)

where ρ and θ are as defined above. Consider the line labelled x′ in Figure (4.1). As this

line is rotated through certain angles of θ, a line integral is calculated through the image,

perpendicular to x′. By calculating the line integral at certain angles through the image,

one can determine the maxima and minima in θ corresponding to the image intensity

returned from the line integral.
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Figure 4.1: Challenor et al. (2001)

As we have seen, westward propagating signals in ocean data can best be illustrated by ar-

ranging data into a Hovmöller diagram. Zonally-propagating features subsequently appear

as slanted propagation patterns where the angle at which the feature slants is determined

by its phase speed. Having applied the Radon Transform to a Hovmöller diagram, we

would therefore expect a maxima to occur in θ when x′ is perpendicular to the sloping

features that represent the westward propagating signals. By determining the maxima and

minima associated with certain angles within the time-longitude plot, we can thus iden-

tify signals that are purely westward propagating. Then by applying a Gaussian filter,

as in Hunt (2009), we can extract the relevant information and apply the Inverse Radon

Transform to project the image back onto the (x, t) plane.

Having calculated the caustics in the ray propagation model numerically and correctly

processed the oceanic dataset such that only the annual Rossby wave signal remains, a

full quantitative analysis can be performed between the modelled caustics and the Rossby

wave SSH variability.
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Appendix 1

5.1 Variable c0 Equation - Cartesian Coordinates

The analytical phase speed function in y is defined as:

c0 (y) = A + Bcos

(

2y

a
+ Cπ

)

+ Dcos

(

6y

a
+ π

)

; (5.1)

We need to rederive the equation for the rate of change of ky with respect to x, given by:

dky

dx
=

(

R2
)

y
kx

R2
[

1 + R2
(

k2
y − k2

x

)] (5.2)

Thus we simply need to find the derivative of R2 with respect to y. First we define:

φ1 =
6y

a
+ π (5.3)

φ2 =
2y

a
+ Cπ (5.4)

We will also define:

d1 = β2y3 (5.5)

d2 = aβ2y2 (5.6)

The following equations are the terms of the resulting derivative of R2.

r1 =
2A2

d1
(5.7)

r2 =
4ABsinφ2

d2
(5.8)
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r3 =
4ABcosφ2

d1
(5.9)

r4 =
12ADsinφ1

d2
(5.10)

r5 =
4ADcosφ1

d1
(5.11)

r6 =
4B2cosφ2sinφ2

d2
(5.12)

r7 =
2B2cos2φ2

d1
(5.13)

r8 =
4BDcosφ2cosφ1

d2
(5.14)

r9 =
12BDcosφ2sinφ1

d2
(5.15)

r10 =
4BDcosφ2cosφ1

d1
(5.16)

r11 =
12D2sinφ1cosφ1

d2
(5.17)

r12 =
2D2cos2φ1

d1
(5.18)

Thus we use the following in our equation for ky:

(R2)y =
12

∑

i=1

ri (5.19)

5.2 Variable c0 Equation - Spherical Polar Coordinates

The analytical phase speed function in φ is defined as:

c0 (y) = A + Bcos (2φ + Cπ) + Dcos (6φ + π) ; (5.20)

We need to re-derive the equation for the rate of change of kφ with respect to λ. Thus we

need to determine (R2)φ. First we define:

φ1 = 6φ + π (5.21)

φ2 = 2φ + Cπ (5.22)

We also define:
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(f2)φ = 8Ω2cosφsinφ (5.23)

The following equations are the terms of the resulting derivative of R2:

q1 =
A2(f2)φ

f4
(5.24)

q2 =
4ABsinφ2

f2
(5.25)

q3 =
2ABcosφ2(f

2)φ

f4
(5.26)

q4 =
12ADsinφ1

f2
(5.27)

q5 =
2ADcosφ1(f

2)φ

f4
(5.28)

q6 =
12BDsinφ1cosφ2

f2
(5.29)

q7 =
4BDcosφ1sinφ2

f2
(5.30)

q8 =
2BDcosφ1cosφ2(f

2)φ

f4
(5.31)

q9 =
8B2cosφ2sinφ2

f2
(5.32)

q10 =
B2cos2φ2(f

2)φ

f4
(5.33)

q11 =
12D2cosφ1sinφ1

f2
(5.34)

q12 =
D2cos2φ1(f

2)φ

f4
(5.35)

Therefore the derivative of R2 is:

(R2)φ =
12

∑

i=1

qi (5.36)

The equation for kφ becomes:

dkφ

dλ
=

(

(R2)φa2cos3φ − 2R4sinφk2
λ

)

kλ

R4cos3φ
[

a2 + R2
(

k2
φ − k2

λ/cos2φ
)] (5.37)
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