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Abstract

The Saint�Venant equations provide a one�dimensional model of free surface water

�ow in a channel� This thesis is concerned with both analytical and numerical aspects

of steady state solutions to this model� with particular emphasis on the subject of

transcritical �ows�

Under certain conditions it is shown that there is at most one physically allow�

able steady solution for given boundary conditions� and when a solution exists� we

demonstrate the convergence of a certain family of numerical methods to the solution

as the grid size vanishes�

The numerical schemes are obtained from applying a family of monotone shock

capturing schemes to a scalar conservation law which has identical steady solutions

to the Saint�Venant model� We generalise this 	scalar approach
 to include other

scalar shock capturing schemes and compare the performance in terms of accuracy

and e�ciency against more established methods� Methods of further increasing the

computational e�ciency of the 	scalar approach
 are also considered�

To assess the accuracy of the di�erent numerical methods we can compare the

numerical solutions against the exact solutions for a series of test cases� However�

other than for some idealised situations� there appear to be no such test cases in the

literature� We describe a relatively simple method that allows the construction of a

wide range of test problems with known exact solutions� including solutions having

multiple transitions� Numerical results from the numerical schemes are compared

with the exact solutions�
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Notation for the Saint�Venant Model

x Distance along channel 
m�

t Time 
s�

L Length of channel 
m�

zb Bed level 
m�

� Height relative to the bed level 
m�

� Width of channel as a function of x and � 
m�

g Acceleration due to gravity 
ms���

� Density 
kgm���

h Depth 
m�

Q Discharge 
m�s���

A Wetted area 
m��

T Free surface width 
m�

P Wetted perimeter 
m�

F � Q�

A
� gI� Momentum �ux per unit density 
m�s���

I� �
R h
�

h� ���d� Hydrostatic pressure term 
m��

D � gA
S� � Sf� � gI� Source term 
m�s���

S� � �z�b Bed slope

Sf �
jQjQ
K� Friction slope

K Conveyance 
m�s���

n Friction coe�cient

I� �
R h
�

h� ���xd� Side reaction term for a non�prismatic channel 
m��

u � Q

A
Component of �uid velocity in x direction 
ms���

c �
�
gA

T

� �

� Wave celerity 
ms���

hc� hn Critical and normal depths 
m�

S�c Critical bed slope

Fr �
�
Q�T

gA�

� �

� Froude number

E � Q�

�A� � gh 
m�s���

B� Z Width 
m� and side slope for a trapezoidal channel

w � 
A�Q�T � F � 
Q�F �T � D � 
��D�T

�



Chapter �

Introduction

The study of free�surface water �ow in channels has many important applications�

one of the most signi�cant being in the area of river modelling� With major river en�

gineering projects� such as �ood prevention measures� becoming ever more common

and ambitious� there is an increasing need to be able to model and predict the far

ranging consequences on the environment as a whole of any potential project� A ma�

jor part of this process is to predict the new hydraulic characteristics of the system�

For example constricting the river at some point may result in an increased risk of

�ooding at a point upstream� The basic equations expressing hydraulic principles

were formulated in the ��th century by de St Venant and Boussinesq� Properties

of these relationships were studied in the �rst half of this century� but application

to real river engineering projects awaited the advent of electronic computers� The

hydraulic equations are also of great importance in the modelling and design of net�

works of arti�cial channels� as for example may occur in industrial plants or sewage

systems�

The original hydraulic model of de St Venant	��
 is written in the form of a system

of two partial di�erential equations� known as the Saint�Venant equations� These are

derived under the hypothesis that the �ow is one�dimensional� One�dimensional �ows

do not actually exist in nature� but the equations remain valid provided the �ow is

approximately one�dimensional� Until recently� two or three�dimensionalmodels have

been too computationally expensive to be practical� Even now it is often prohibitively

expensive to obtain the amount of survey data for a river network necessary to make

�



use of the added realism of a higher dimensional model� For this reason the bulk

of river modelling still makes use of a one�dimensional model� with key parts of the

network perhaps modelled with a higher�dimensional model� Empirical correction

factors are often included in the one�dimensionalmodel to correct for deviations away

from one�dimensionality� A real river model would also include many other e�ects

not taken account of in the basic Saint�Venant model� for example �ow to and from

�ood plains and sediment transport� Such e�ects are discussed in the important text

on river modelling of Cunge� Holly and Verwey	�
�

This thesis is concerned only with the basic Saint�Venant model where� for given

initial data� the system of di�erential equations may at some point in time fail to have

a solution� When solutions break down we are forced to turn to the more general

integral formulation of the model� This form admits discontinuous solutions� where

a discontinuity represents a region of �ow where the �ow variables change relatively

rapidly� and is known as a hydraulic bore�

Very often in nature a �ow will approach a steady state� that is where the �ow is

essentially unchanging in time� The study of steady �ow is therefore an important

subject in hydraulics� Under the assumption of steady �ow the Saint�Venant equa�

tions reduce in complexity yielding a single nonlinear ordinary di�erential equation

which describes the variation of the free surface� This equation has been much stud�

ied� for example in the classic hydraulics text of Chow	

� As in the unsteady case

the di�erential form does not describe all solutions and we need to refer to the more

general formulation which admits discontinuous solutions�

The subject of this thesis is the steady �ow problem� i�e� the problem of de�

termining the steady state �ow without regard for the transient behaviour� In order

for this approach to be feasible there must be at most one steady solution for given

boundary conditions� otherwise we could not determine which of the steady �ows

actually occurs� If one considers only smooth solutions given by the steady �ow dif�

ferential equation� then there can clearly be at most one solution for given boundary

conditions� However if discontinuous solutions are also considered� then it is pos�

sible that there may be more than one solution� in fact we illustrate such a case� In

Chapter 
 we present theory which shows that under certain conditions there is at

�



most one physically possible steady solution for any given boundary conditions� The

proof relies on a novel formulation of the steady �ow problem� with the solutions

constructed as the vanishing viscosity limit of solutions to a singular perturbation

problem� Properties of the smooth solutions of the singular perturbation problem

give information about the not necessarily continuous solutions of the steady �ow

problem�

As well as theoretical results for the steady �ow problem� this thesis is also

concerned with numerical computation of solutions� The steady �ow di�erential

equation can be accurately and e�ciently integrated in order to compute the free

surface pro�le� This is in general only useful for computing smooth solutions� al�

though Humpidge and Moss	��
 present an algorithm for discontinuous solutions

which works by computing smooth surface pro�les and �tting discontinuities at the

appropriate locations� A more conventional approach for computing steady solutions

is to numerically model the transient �ow in time until the numerical solution attains

a steady state� Current commercial packages for modelling time dependent �ows are

often based on the Preissman box scheme or other similar schemes �see refs� 	�
� 	��
�

	��
 and 	��
�� Such methods are accurate and computationally e�cient for the gradu�

ally varying �ows which on the whole make up most of river �ows� but break down

with the formation of a hydraulic bore� For a scheme to be capable of computing

discontinuous solutions we require that� as well as approximating the Saint�Venant

di�erential equations� the scheme approximates the more general integral form of the

model� The scheme must also be stable in the presence of discontinuities� A scheme

which has these properties is known as a shock capturing scheme� The schemes used

in commercial codes are not in general shock capturing schemes�

Chapter � discusses the subject of shock capturing schemes and in particular

the scheme of Roe	��
 which has been applied to the Saint�Venant equations by

many authors� for example in 	�
 and 	��
� This scheme is e�ective at modelling

discontinuous solutions� although as we demonstrate it has some di�culties� In

particular it can be computationally ine�cient compared to the more traditional

schemes because of a severe restriction on the allowed time step� Attempts to improve

the e�ciency of the scheme are made in 	��
�






In this thesis we attempt a new approach for improving e�ciency of the com�

putation of steady solutions� Instead of applying shock capturing method to the

Saint�Venant system as it stands� we apply shock capturing methods to a suitable

scalar partial di�erential equation which is chosen so as to have identical steady solu�

tions to the Saint�Venant model� The �rst bene�t of this approach �which we refer

to as the �scalar approach�� is that analysis for scalar methods is much simpler than

for the case of systems� and in Chapter � we present theory for a particular family

of schemes� Under identical conditions to the theory in Chapter 
 we show that at

steady state the system of di�erence equations has a unique solution and we also

demonstrate convergence to the unique physical solution of the steady �ow problem

�as the grid spacing vanishes��

In Chapter � we give a relatively simple technique for constructing test problems

with known exact solutions� Although analytic solutions have previously been con�

structed for idealised problems� this appears to be the �rst time that solutions for

problems with realistic features have been made available	��
� Such features include

varying channel geometries and discontinuous solutions� Details are given for a wide

selection of test cases so as to allow other research workers to test and compare their

own numerical methods�

At the start of Chapter � we apply some of the numerical methods satisfying the

theory in Chapter � to a selection of the test problems discussed above� We assess

the usefulness of certain a�priori estimates arising from the theory� We next compare

the methods in terms of accuracy against the scheme of Roe and then generalise the

�scalar approach� in order to achieve higher�order accuracy schemes�

The �scalar approach� leads to a system of nonlinear di�erence equations and

one way to compute a solution is through a time stepping iteration which e�ectively

models to steady state the transient behaviour of a scalar partial di�erential equa�

tion� In Chapter � we investigate other possible methods for solving the di�erence

equations� in terms of e�ciency and robustness� including Newton�s method�

The numerical methods discussed in the main part of this thesis are only ap�

plicable to prismatic channels where the cross�section of the channel does not vary

throughout its length� In Chapter � we consider an extension of both the scalar

�



schemes and Roe�s scheme to the case of non�prismatic channels and compare the

accuracy of the various schemes�

�



Chapter �

The Saint�Venant Equations

In this chapter the Saint�Venant equations are introduced and some of their properties

discussed� Attention is then �xed on the steady state form of these equations which

are the main subject of this thesis� Background information is given on the steady

�ow problem�

��� The Unsteady Model

The Saint�Venant equations model �uid �ow �usually water �ow� in a channel� The

Saint�Venant model assumes that the �ow is strictly one�dimensional� although in

practice it is used to model �ows which are only approximately one�dimensional�

Correction factors are often introduced into the model to correct for any deviation

from one�dimensionality� but such factors are regarded as outside the scope of this

thesis�

There are two common approaches to deriving the Saint�Venant equations� They

may be derived by averaging the Reynolds equations over a cross�section of the

channel which is normal to the direction of the �ow� This is the approach found

in 	
��� Alternatively the equations may be derived by applying mass conservation�

momentum conservation �in the direction of the �ow� and Newton
s second law to a

suitable control volume of the channel� This second technique is considered the more

useful since it yields the Saint�Venant equations in an integral form� This form of

the equations continues to hold even when the di�erential form breaks down� The






control volume technique can be found� for example� in 	���

Before we introduce the Saint�Venant equations� we introduce the notation used

to describe the channel geometry� We let x� y� z denote a Cartesian coordinate

system with z pointing vertically upwards� and we consider a channel of length L

along the x direction� For simplicity the channel is assumed symmetric about the

plane y � �� but this is not a restriction on the Saint�Venant model� Each cross�

section �cross�section will always refer to a cross�section of constant x� of the channel

is given by�

���x� ��
�

� y � ��x� ��

�
� � � z � zb�x� � �� �����

Here the bed level zb is the height of the lowest point of the cross�section� � is a

coordinate which measures height relative to this level and � gives the width of the

channel as a function of �� It is assumed that � and zb are continuously di�erentiable

functions and that � is positive for positive �� Figure ��� illustrates a typical cross�

section�

�

�
��x� ��

�

��x� ��

�

zb�x�

h�x� t�

Free Surface

y

z

z

x

y

Figure ���� A typical channel cross�section

The set of assumptions under which the Saint�Venant equations are derived are

�



as follows�

��� The �uid is incompressible� homogeneous and internal stresses are negligible�

��� The �ow is one�dimensional with the �uid velocity depending solely on x and

time �t��

��� At each cross�section the free surface is represented by a horizontal line�

��� The streamline curvature is small and the vertical accelerations are negligible

so the pressure can be taken as hydrostatic�

The depth h�x� t� is the level of the free surface above the bed level and is illus�

trated in Figure ���� The discharge Q�x� t� is de�ned to be the total volume �ux

through a given cross�section� If u�x� t� is the x component of the �uid velocity then

Q �
Z h

�

Z �

�

��

�

udyd� � Au� �����

where the wetted area A�x� t� �the instantaneous area of the �ow through any cross�

section� is given by

A �
Z h

�

�d�� �����

Using the above assumptions the Saint�Venant equations can be derived by con�

sidering an arbitrary region of channel x� � x � x� over an arbitrary time interval

t� � t � t�� Applying conservation of mass yields the equation

�
Z x�

x�

	A�x� t��t�
t�
dx� �

Z t�

t�

	Q�x� t��x�
x�
dt � �� �����

where � is the density�

	A�x� t��t�
t�
� A�x� t���A�x� t��

and

	Q�x� t��x�x� � Q�x�� t��Q�x�� t��

Equation ����� is referred to as the integral mass equation� Note we have assumed

that there is no lateral in�ow� i�e� that mass only enters the region through the

cross�sections at x� and x��

�



Applying conservation of momentum �x component� to the same control region

and same time interval yields the equation

�
Z x�

x�

	Q�x� t��t�t� dx� �
Z t�

t�

	F �x� t��x�x� dt � �
Z t�

t�

Z x�

x�

D�x� t�dxdt� �����

Here F �x� t� is given by

F �
Q�

A
� gI�� �����

where I� is given by

I� �
Z h

�

�h� ���d��

and g is the acceleration due to gravity� �F represents the momentum�ux through a

cross�section and is composed of the advected momentumand a contribution from the

hydrostatic pressure forces over the cross�section� �Ddx represents the instantaneous

external forces acting on the �uid at a cross�section due to the channel boundary�

It is composed of frictional forces and the reaction forces from hydrostatic pressure

acting on the boundary� The function D�x� t� is given by

D � gA�S� � Sf� � gI�� ���
�

where I� is given by

I� �
Z h

�

�h� ���xd��

S� is the bed slope given by

S� � �z�b� �����

and Sf is the friction slope which models frictional forces and is discussed later in

this chapter� Equation ����� is referred to as the integral momentum equation�

Equations ����� and ����� constitute the Saint�Venant model� One possible choice

of dependent variables is the depth h and dischargeQ� Since the equations are derived

for an arbitrary stretch of channel and an arbitrary time interval� a particular pair

of functions h and Q are said to be a solution of these equations if the equations hold

for all � � x� � x� � L and t� � t� � ��

Suppose that h and Q solve equations ����� and ����� and that� for some open

region of the space�time domain� A� Q and F are continuously di�erentiable and D

��



is continuous� then it may be shown that the following di�erential equations hold on

this region�
�A

�t
�
�Q

�x
� �� �����

�Q

�t
�
�F

�x
� D� ������

These are the di�erential form of the Saint�Venant equations�

����� Discontinuous Solutions

Even though the di�erential form is not as general as the integral form� it is the

form that is most often used in practice� The di�erential form breaks down with the

formation of a shock �known in hydraulics as a hydraulic bore or simply bore�� When

this happens one must return to the integral form of the Saint�Venant equations to

obtain conditions that describe the shock� These conditions are known as Rankine�

Hugoniot conditions �see 	�� 	��� and 	����� Suppose the solution to the integral form

contains a shock given by a simple jump discontinuity which moves smoothly through

the space�time domain with path x � xS�t�� Then at any point �x� t� � �xS�t�� t� on

the discontinuity� the following conditions must be satis�ed�

Qr �Ql � s�Ar �Al�� ������

Fr � Fl � s�Qr �Ql�� ������

where the l and r subscripts denote values of the quantities on the left and right of

the discontinuity� respectively �e�g� Ql � Q�x�� t� and Qr � Q�x�� t�� and s � x�S�t�

is the shock speed� The conditions ������ and ������ were originally derived for the

homogeneous system� but are una�ected by the inclusion of a source term�

It is a standard practice to refer to solutions of the integral form of a system

conservation laws as weak solutions of the di�erential form even though they may or

may not be classical solutions of the di�erential form� This extension of the concept

of solution avoids having to explicitly refer to the integral form� The reference to

the integral form of the underlying conservation law is� however� implicit in the term

�weak solution��

��



If functions h and Q satisfy the di�erential form of the Saint�Venant equations

except at discontinuities� where the Rankine�Hugoniot conditions ������ and ������

hold� then this is enough to ensure that they form a weak solution� However not all

weak solutions are viable solutions to the physical problem� Some weak solutions

may be so�called �entropy violating�� This term arises from gas dynamics where

certain solutions to the Euler equations result in a decrease in the entropy of the

system� thus violating a fundamental law of thermodynamics� An extra condition on

the shock which is called an entropy condition is required to prevent such solutions

�see 	���� A similar situation occurs for the Saint�Venant equations where certain

shocks create energy rather than dissipating energy� This is unreasonable because

a hydraulic bore is clearly a dissipative phenomena with no mechanism to create

energy� Following the argument in 	��� �for the frictionless shallow water equations�

the following equivalent condition can be obtained�

m �Er � El � s�ur � ul�� � �� ������

where u � Q�A is the �uid velocity� E is given by

E �
u�

�
� gh� ������

and

m � Qr � sAr � Ql � sAl�

Any physical hydraulic bore must satisfy the above condition�

����� Characteristic Speeds

The Saint�Venant equations are a hyperbolic system of partial di�erential equations�

To see this we write the system in the vector form

�w

�t
�
�F

�x
�D� ������

where

w �

�
B� A

Q

�
CA � F �

�
B� Q

F

�
CA � D �

�
B� �

D

�
CA �

��



Now ������ can be written as

�w

�t
� J

�w

�x
� �D� ������

where J is the Jacobian given by

J �
�F

�w
�

�
B� � �

c� � u� �u

�
CA �

c is the wave celerity given by

c �

s
gA

T
�

and T � ��x� h� is the free surface width� The modi�ed source term is given by

�D �

�
B� �

gA�S� � Sf � �
gA

T

R h
�
�xd�

�
CA �

The Jacobian J has real and distinct eigenvalues

	� � u� c� 	� � u� c�

which give the characteristic speeds� The theory of characteristics can be found in 	��

and 	���� The system of equations can be decomposed into two ordinary di�erential

equations which hold along characteristic curves given by dx�dt � 	� and dx�dt � 	��

respectively� Examples of this type of decomposition are given in 	��� and 	���� It

is important to know the directions of 	� and 	�� since information is transmitted

along these curves� The �ow is classi�ed according to the Froude number

Fr �
juj
c

�

s
Q�T

gA�
�

a dimensionless parameter which plays a role analogous to the Mach number in gas

dynamics� For the case Fr 
 � which corresponds to juj 
 c� one characteristic speed

is negative and one is positive� Hence information is transmitted both upstream

and downstream� This type of �ow is known as subcritical �ow and occurs when

gravitational forces dominate over inertial forces

For the case Fr � � which corresponds to juj � c� both characteristics are in the

same direction as u� Hence information is only transmitted downstream� This type

��



of �ow is known as supercritical �ow and occurs when inertial forces dominate over

gravitational forces�

The case Fr � � corresponds to juj � c� and one characteristic is vertical and the

other is in the same direction as u� This type of �ow is known as critical �ow and

occurs when inertial forces and gravitational forces exactly balance�

The theory of characteristics also gives the data requirements for the boundaries of

the space�time domain� in order for the problem to be well posed� At any point on the

boundary the number of independent �ow variables speci�ed must correspond exactly

to the number of characteristic curves that enter the domain� On the boundary

t � �� since both characteristics always enter the domain� two independent variables

must always be speci�ed� This information is called the initial data for the problem�

Specifying the correct data on the boundaries x � � and x � L is more complicated

since the requirements depend on the actual solution at the particular point under

consideration� and so in general cannot be determined in advance� A discussion of

the boundary conditions for the Saint�Venant equations can be found in 	���

����� The Friction Slope

The friction slope Sf is intended to model e�ects due to boundary friction and

turbulence� In this section explicit formulas are given for this term� These are

empirical laws which were originally developed for use with steady state �ow� The

friction slope is usually written as

Sf �
QjQj
K�

�

where K is a quantity called the conveyance� In this thesis the following expression

for the conveyance is used�

K �
Ak�

nP k�
� ����
�

where P �x� t� is the wetted perimeter �the instantaneous perimeter length of the �ow

in contact with channel at a given cross�section� given by

P � ��x� �� �
Z h

�

q
� � ���d��

��



and n is a positive constant which determines the roughness of the channel� Equa�

tion ����
� includes two of the most widely used forms of the conveyance� the Man�

ning formula where k� � ��� and k� � ��� �for which the constant n is called the

Manning friction coe�cient� and the Chezy formula where k� � ��� and k� � ���

�for which the constant C � ��n is called the Chezy friction coe�cient�� More

detailed information about these and other friction laws can be found in 	�� and 	���

��� The Steady Problem

In this section we turn to the main topic of this thesis� the steady �ow problem�

Given an unsteady �ow under steady boundary conditions� it is expected that the

�ow will eventually tend towards a steady state� Assuming that this happens� we

ask the following question� Can the steady state be determined from the steady �ow

equations� under appropriate boundary conditions� without regard for the transient

behaviour of the �ow� The steady �ow equations are obtained from the unsteady

equations by assuming no time dependence� This leads to a system of two ordinary

di�erential equations� for which the mass transport equation is trivial� e�ectively

leaving only a single equation� The qualitative behaviour of solutions to the remaining

equation are investigated for a special� but useful� class of channels� Because of

shocks� the system of ordinary di�erential equations do not in general describe the

entire steady �ow� When they break down� the integral form must be used� We

discuss the implications of the steady version of the Rankine�Hugoniot conditions�

The assumption that the �ow will eventually reach a steady state is not always

valid� In some circumstances the steady solutions of the Saint�Venant equations are

not stable with respect to time� and thus steady state may never be attained� We

discuss this topic further in section ������

Suppose that h � h�x� and Q � Q�x� are a steady state solution of the Saint�

Venant equations� Substituting these into the integral relationships ����� and �����

and using the fact that A� F and D are now independent of time gives that the

equations

	Q�x�
x�

� �� ������

��



	F �x�
x�

�
Z x�

x�

Ddx� ������

must be satis�ed for all � � x� � x� � L� These are the integral form of the

steady �ow equations� Equation ������ clearly implies that Q is constant throughout

the entire reach� Without loss of generality the constant discharge Q is assumed

positive� since if the discharge is negative then the x direction can be reversed to

give a positive discharge� The case of zero discharge is a trivial case for which the

solution is always given by a horizontal free surface�

At steady state the di�erential form of the Saint�Venant equations ������ and

������� reduce to
dQ

dx
� �� ������

dF

dx
� D� ������

Equation ������ is clearly consistent with a constant discharge� At steady state any

bore must be stationary� i�e� have zero velocity� A stationary bore is known as a

hydraulic jump� Setting s � � in the Rankine�Hugoniot conditions ������ and ������

yields the jump conditions�

Qr � Ql� ������

Fr � Fl� ������

Again ������ is consistent with a constant discharge� Setting s � � in the �entropy�

condition ������ yields the requirement that

Er � El� ������

This inequality depends on the discharge being positive with the inequality being

reversed for a negative discharge�

Expanding the derivative in equation ������ and using ������ gives the following

di�erential equation for depth�

dh

dx
�

S� � Q�

K�
�

Q�

gA�

Z h

�

�xd�

� � Q�T

gA�

� ������

This is the form of the steady di�erential equation that is most amenable to both the

analysis and numerical solution of smooth �ows� However it breaks down when the

��



denominator of the right�hand side vanishes� i�e� when

F �

r �
Q�T

gA�
� �� ������

which corresponds to critical �ow�

����� The Hydraulic Jump

In this section we consider the restrictions placed on a hydraulic jump by the con�

ditions ������ and ������� In order to do this we require a relationship between the

quantities F and E� We have from ����� and ������ that

�F

�h
� gA

�
�� TQ�

gA�

�
� gA��� F �

r ��

and
�E

�h
� g

�
�� TQ�

gA�

�
� g�� � F �

r � �
�

A

�F

�h
�

giving
�

�h

�
F � Fl

A

�
� � T

A�
�F � Fl� �

�E

�h
�

If we integrate this equation from hl to hr then we obtain the relationship

Er � El �
Z hr

hl

T

A�
�F � Fl� dh�

Fr � Fl

Ar

� ����
�

We can now consider the implications of ������ and ������ for a �well�behaved�

channel cross�section� By �well�behaved� we mean that the width of the channel

does not gradually approach zero as the depth becomes large and that there is a

unique depth corresponding to critical �ow� Mathematically these correspond to the

following�

��� T � T� � � as h��� for some constant T��

��� There is only one depth hc such that h � hc solves equation �������

The depth hc is called the critical depth� For depths below the critical depth the �ow

is supercritical and for depths above the critical depth the �ow is subcritical�

Under the above assumptions the function F has the following properties�

��� F �� as h � ��

�




��� F �� as h���

��� �F��h � � at h � hc�

��� �F��h 
 � for h 
 hc�

��� �F��h � � for h � hc�

To interpret the implications of ������ and ������ we ask what depths hr �� hl satisfy

both of these conditions� There are three cases to consider

� If hl 
 hc� then there is exactly one hr �� hl satisfying ������� This depth

hr � hc is called the sequent depth of hl and is denoted by h�l � Since ������

holds for this depth and we have F � Fl 
 � for hl 
 h 
 hr� then the

relationship ����
� clearly implies that ������ is satis�ed� Hence there is exactly

one allowable depth hr�

� If hl � hc� then there is again exactly one hr �� hl satisfying ������� This depth

hr 
 hc is again called the sequent depth of hl and is denoted by h�l � However

since F � Fl 
 � for hr 
 h 
 hl� the relationship ����
� shows that ������ is

violated� Hence in this case there are no allowable values for hr�

� If hl � hc� then ������ is satis�ed if and only if hr � hc� so again there are no

allowable values for hr �� hl� For consistency we de�ne h�c � hc�

We conclude that a hydraulic jump satis�es both ������ and ������ if and only if

hl 
 hc 
 hr � h�l � ������

����� Surface Pro�les for a Prismatic Channel

In this section the solutions of ������ are examined for a prismatic channel� The

elementary analysis follows that of many standard textbooks such as 	��� 	��� and

	���� A channel is prismatic if its cross�section is unchanging throughout its length�

i�e� if the function � is independent of x� For a prismatic channel� the quantities A�

��



B

�

Z

T

h

T � B � �hZ

A � h�B � hZ�

P � B � �h
p
� � Z�

Figure ���� Trapezoidal channel cross�section

T � K� F and E are solely functions of h and hence equation ������ reduces to

dh

dx
�

S� � Q�

K�

� � Q�T

gA�

� ������

We assume that the cross�section satis�es the following conditions�

���
T

A�
is strictly decreasing in h for h � ��

��� T � T� � � as h��� for some constant T��

	

�


� ������

These conditions ensure that the shape of channel is �well�behaved� in the sense of

section ������

Conditions are also placed on the conveyance K� These are as follows�

��� K � � is strictly increasing in h for h � ��

��� K � � as h � ��

��� K �� as h���

	





�






�

������

To show that the above conditions hold for practical problems� consider the chan�

nel given by

T � B � �Zh� ������

This formula covers three di�erent shapes of cross�section� These are rectangu�

lar �B � �� Z � ��� triangular �B � �� Z � �� and trapezoidal �B � �� Z � �� see

Figure ����� For these shapes

T

A�
�

B � �hZ

h��B � hZ��
�

��



so that
d

dh

�
T

A�

�
�
��B� � ��BZh � ��Z�h�

h��B � hZ��

 ��

hence satisfying ���������� Condition ��������� is also clearly satis�ed�

Suppose now that equation ����
� is used for the conveyance with k� � � and

k� � k�� which includes both the widely used Manning and Chezy formulae� The

conveyance is now given by

K �
�Bh� h�Z�k�

n�B � �h
p
� � Z��k�

�

giving

dK

dh
�

K

AP



Bk��B � �hZ� � �h

p
� � Z� �B�k� � k�� � hZ��k� � k���

�
� ��

������

satisfying ���������� For the case of a rectangular channel �Z � �� B � ��� we have

K �
�Bh�k�

n�B � �h�k�
� � as h � ��

and

K �
Bk�

n�B�h� ��k�
hk��k� �� as h���

For the case of a triangular channel �B � �� Z � �� we have

K �
Zk�

n��
p
� � Z��k�

h�k��k� �

which tends to zero as h � � and tends to in�nity as h tends to in�nity� Finally for

the trapezoidal case �B � �� Z � ��� K clearly tends to zero as h � � and

K �
�B�h � Z�k�

n�B�h� �
p
� � Z��k�

h�k��k� �� as h���

This demonstrates all the properties ������ and ������ for this family of channel

cross�sections with the given friction formulae� We can now use these properties to

investigate the solutions of the di�erential equation �������

The Normal Depth

If at a given cross�section S��x� � �� the normal depth hn�x� is de�ned to be the

unique depth satisfying

S��x� �
Q�

K�
� ������

��



The set of conditions ������ ensure that such a depth exists� For the case S��x� � �

equation ������ has no solution� but for convenience we de�ne hn�x� to have a value

of in�nity�

Conditions ������ and ������ mean that given any position x and any depth h� the

corresponding sign of dh�dx can be determined solely from the position of h relative

to hc and hn�x�� The depth range is divided into three zones and we summarise the

information in Table ����

Zone Depth range dh�dx

�y h � maxfhc� hn�x�g Positive

� minfhc� hn�x�g 
 h 
 maxfhc� hn�x�g Negative

� � 
 h 
 minfhc� hn�x�g Positive

Table ���� Sign of depth gradient as a function of depth

To determine the relative positions of the hc and hn�x�� we de�ne the critical bed

slope S�c by

S�c �
Q�

K�

�����
h�hc

� ������

At any particular cross�section the bed slope of the channel is classi�ed in the follow�

ing manner� If S��x� 
 � then the slope is called adverse� If S��x� � � then the slope

is horizontal� If � 
 S��x� 
 S�c then the slope is said to be mild and hn�x� � hc� If

S��x� � S�c then the slope is said to be critical and hn�x� � hc� If S��x� � S�c then

the slope is said to be steep and hn�x� 
 hc�

Constant Bed Slope

The situation is most straightforward when the bed slope is constant throughout the

length of the reach� In this case the normal depth is also constant throughout the

channel length and we can use the properties ������ and ������ to obtain the following

facts� If S� �� S�c then �����dhdx
����� ��� as h �� hc� ������

yZone � does not exist for S��x� � ��

��



If S� � � and S� �� S�c then

dh

dx
�� � as h �� hn� ����
�

Also we have
dh

dx
�� S� as h ���� ������

so the free surface tends to the horizontal at large depths� The limit of dh�dx as

h � � cannot be determined without more speci�c information about the friction law

and the channel shape� Likewise for the limit as h� hc � hn for a critical bed slope�

Putting all the above information together allows us to determine the behaviour of

the free surface at any particular depth for any type of bed slope� For example

consider a mild bed slope �� 
 S� 
 S�c� hn � hc��

In zone � �see Table ���� the depth increases with x� the free surface tending

to the horizontal downstream as depth becomes large� The depth approaches the

normal depth in the upstream direction�

In zone � the depth decreases with x� Downstream the free surface becomes ver�

tical as the depth tends to the critical depth� at which point the di�erential equation

breaks down� The depth tends towards the normal depth in the upstream direction�

In zone � the depth increases with x� Downstream the free surface becomes

vertical as the depth tends to the critical depth and the di�erential equation breaks

down� Upstream the di�erential equation again breaks down as the depth approaches

zero�

The di�erent surface pro�les are illustrated in Figure ��� and are labeled M��

M� and M�� ��M� denotes mild bed slope� The same convention will be used for

the remaining types of bed slope� with �S� denoting steep bed slope� �C� denoting

critical bed slope� �H� denoting horizontal bed slope and �A� denoting adverse bed

slope�� The behaviour of the surface pro�les for the remaining types of bed slope are

illustrated in Figures ���� ���� ��� and ��
�

We now give an example to illustrate how the previous material can be used to

describe the behaviour of a simple problem with a hydraulic jump� Similar examples

can be found in 	��� Consider a channel with constant mild bed slope and assume

that at the in�ow boundary �x � �� the depth is h� 
 hc and that at the out�ow

��



M�

M�

M� Horizontal

hn

hc

x

Figure ���� Behaviour of free surface for a channel with constant mild bed slope

S�

S�

S�

Horizontal
x

hc

hn

Figure ���� Behaviour of free surface for a channel with constant steep bed slope

boundary �x � L� the depth is hL � hn� Proceeding downstream from the in�ow we

have an M� pro�le� and it is assumed that the channel is long enough so that this

pro�le terminates before it reaches the out�ow� Moving upstream from the out�ow

there is an M� pro�le� This pro�le will eventually approach the normal depth� In 	���

it is shown that close to the normal depth� the depth behaves as

h � hn � C� exp �	x�� ������

where C� and 	 � � are constants� 	 can be calculated and gives a measure of how

fast the depth tends to the normal depth� Figure ��� shows the M� and M� pro�les�

The M�� pro�le shows the allowable jumps from the M� pro�le� i�e� any jump from

the M� to the M�� curve satis�es both ������ and ������� A hydraulic jump occurs

��



Horizontal

C�

C�

C�

x

hc � hn

Figure ���� Behaviour of free surface for a channel with critical bed slope

H�

H�

Horizontal
x

hc

Figure ���� Behaviour of free surface for a horizontal channel

at a point where the M�� curve intersects the M� curve� Since the downstream side

of any jump is likely to be close to the normal depth� it is likely that a good estimate

of the height of the jump can be obtained �since h�x�� 	 hn so that h�x�� 	 h�n�

and the position of the jump will depend almost entirely on the M� pro�le� If F�

and Fn denote the values of the quantity F for depths h� and hn� respectively� then

on the M� curve F � Fn and on the M� curve F � F�� If F� � Fn then there can

be no jump so that there is no solution satisfying both boundary conditions� In this

case the M� �ow is completely drowned out and the �ow will be the subcritical M�

�ow for the entire reach�

��



A�

Horizontal

A�

x

hc

Figure ��
� Behaviour of free surface for a channel with constant adverse bed slope

M� Horizontal

Hydraulic Jump

M��

M�

x

hc

hn

Figure ���� Example of problem with hydraulic jump

Varying Bed Slope

We now consider the situation where the bed slope is allowed to vary along the reach�

The normal depth then varies with x and solutions will not in general asymptote to

the normal depth curve� However� the sign of dh�dx can still be predicted from

Table ����� and jdh�dxj still becomes in�nite as the critical depth is approached�

There is now the possibility of singular points� A singular point is where the

numerator and the denominator of equation ������ both simultaneously vanish� This

happens at a point xc when the bed slope passes through its critical value� i�e�

S��xc� � S�c� ������

��



At such a point it is possible for equation ������ to have a solution which passes

smoothly through the critical depth hc � hn�xc�� Equation ������ cannot immedi�

ately be used to calculate the gradient when passing through the critical depth� but

we can apply L
H�opitals rule 	���� 	��� to the right hand side of ������ to obtain

dh

dx

�����
xc

� lim
x�xc

S� � Q�

K�

�� Q�T

gA�

� lim
x�xc

dS�
dx

� �
Q�

K�

dK

dh

dh

dx

�Q
�

g

d

dh

�
T

A�

�
dh

dx

�

dS�
dx

�����
xc

� a�
dh

dx

�����
xc

a�
dh

dx

�����
xc

� ������

where

a� � �
Q�

K�

dK

dh

�����
hc

� �� ������

and

a� � �Q
�

g

d

dh

�
T

A�

�����
hc

� �� ������

This relationship can be solved for the depth gradient at the critical point� yielding

dh

dx

�����
xc

�
a�
�a�

�
�� 


vuut� �
�a�
a�
�

dS�
dx

�����
xc

�
A � ������

In the case dS��dx � � at x � xc� i�e� the slope changes from mild to steep� then

there are always two possible values for dh�dx at the critical point� One value is

negative and one value is positive� Figure ��� illustrates the two solutions AOB

and A�OB� passing through the singular point O� The solution AOB is extremely

important in the theory of steady �ow since it is the only mechanism for which the

�ow can accelerate from subcritical to supercritical �ow� This is because hydraulic

jumps from subcritical to supercritical �ow are prohibited by the requirement �������

For a given channel� discharge and friction law� the possible locations of a transition

from subcritical to supercritical can be found in advance from ������� These are

referred to as critical sections� Under the correct conditions the solution A�OB� can

also occur� but this is only one of the many ways that the �ow may change from

supercritical to subcritical� It is also possible that solutions such as A�OB and AOB�

can happen�

Next consider the case where dS��dx 
 � at x � xc� i�e� the slope changes from

mild to steep� If the value under the square root in ������ is positive� then there are

again two possible values for dh�dx at the critical point� and these are both positive�

��



so in this case the �ow cannot change from subcritical to supercritical at such a

point� If the value under the square root in ������ is zero there is only one value� and

this is again positive� Finally� if the value under the square root is negative there are

no allowable values for dh�dx at the critical point�

We conclude that the �ow may only change from subcritical to supercritical at a

point where the bed slope changes from mild to steep� The change in the �ow type

is in the form of a smooth transition through the critical depth�

Using the theory of nonlinear systems of ordinary equations �see 	���� 	���� more

advanced analysis of the �ow near singular points may be carried out� This is

discussed in 	��� The singular points can be classi�ed as either saddle� nodal� spiral

or vortex types�

O

A�

B�

A

B

Critical depth

Normal depth

Figure ���� Flow pro�les through a singular point for an increasing bed slope

����� Non�Prismatic Channels

We now discuss very brie�y the theory which carries over from the prismatic case to

the non�prismatic case where the function � now depends on x� The current de�nition

of normal depth is no longer useful� This is because there are now three terms on

the numerator of the right�hand side of ������� There is no longer a straightforward

competition between gravity and friction� Terms due to gravity� friction and forces

�




due to contraction or expansion of the channel cross�section must compete with each

other� A new more complex de�nition of normal depth requires taking into account

the variation of the channel cross�section with x� The theory of singular points also

becomes more complicated� The theory for non�prismatic channels is beyond the

scope of this thesis� but it is discussed in for example 	���

����� Steady Boundary Conditions

A steady solution of the Saint�Venant equations is only a special example of an

unsteady solution� so it must satisfy the same boundary data requirements as any

unsteady solution� but clearly any boundary data must be constant in time� The

number of independent variables speci�ed must be exactly equal to the number of

characteristics entering the domain� Consider the characteristics speeds given by

	� � u � c and 	� � u� c� Since Q and hence u is taken as positive� 	� is always

positive�

Since 	� � � at the in�ow boundary then at least one variable must always be

speci�ed there� This will be taken to be the value of the constant discharge� If a

value of the depth is to be speci�ed then it must be such that 	� � �� i�e� a depth

corresponding to supercritical �ow�

At the out�ow boundary one variable is the maximum that may be speci�ed�

This will always be taken to be the depth� and should be such that 	� 
 �� i�e� a

depth corresponding to subcritical �ow�

Even if boundary conditions are supplied which obey the above requirements�

this does not guarantee that there exists a steady solution satisfying these boundary

conditions� and this will be demonstrated in section ����

����� Stability of the Steady State

In this chapter steady solutions of the steady Saint�Venant equations are investigated�

For such a steady solution to be of any practical use� the solution must be stable in

time� This is very often overlooked in practice� Suppose that at some time t the �ow

is at a steady state and that it is perturbed slightly away from the steady state� The

��



steady state is said to be stable if for any such small perturbation� the �ow eventually

tends back to the original steady state� If for some small perturbation the �ow does

not tend back to the original state� then it is said to be unstable� In any practical

situation small perturbations are always present� so any unstable steady state will

not be maintainable inde�nitely� Such steady states often degenerate into what are

called roll waves �for example see 	��� 	���� 	����� the perturbations in the �ow grow

until an otherwise smooth �ow breaks up into surges� entirely changing the character

of the �ow� This is an important subject in the theory of channel design since a

channel that is designed to carry an expected steady �ow may be overtopped by the

formation of roll waves�

There is a shortage of analysis of the stability of steady state solutions to the

Saint�Venant equations� In 	��� there is analysis of the stability of normal �ow for

general shape prismatic channels� Perturbations are taken in the �ow variables about

normal �ow� The characteristic form of the Saint�Venant equations are used to decide

whether the perturbations grow or decay along each characteristic� An important

quantity is the Verdernikov number given by

Ve �
Q

K

d

dh

�
K

A

�s
A

gT
� ������

It is shown that the perturbations will grow unless

jVej � �� ������

This condition gives information about the stability of the mathematical model rather

than the actual physical �ow� although such instabilities are observed in reality� The

absolute value of the Verdernikov number can be written as

jVej � A�

K

����� ddh
�
K

A

������Fr� ����
�

For many channels �for example rectangular channels� condition ������ becomes viol�

ated as the Froude number becomes large when using the Manning or Chezy friction

laws� More details can be found in 	����

The above theory simply uses linear stability analysis� More advanced techniques

could be used to analyse stability and be applied for more cases�

��



Chapter �

Shock Capturing Methods

The Saint�Venant equations form a system of conservation laws of hyperbolic type�

Such systems of equations occur frequently in applied mathematics and so much e�ort

has been put into developing numerical methods for their solution� This thesis is

primarily interested in computing steady solutions for which a conventional approach

is to numerically model the transient behaviour of the system until steady state is

attained� We discuss the subject of time dependent schemes here in order to allow

comparison with �more direct� approaches� However a more important reason for

discussing these schemes is that when applied to a particular scalar partial di�erential

equation� they can themselves lead to more direct methods�

For a numerical scheme to be of practical use it must be possible to write it in

what is known as conservation form and such schemes are known as conservative�

We start this chapter by de�ning this property which leads on to the approach

of Godunov� We then discuss conservative methods for the scalar problem and then

show how these can be generalised to systems of equations via the use of approximate

Riemann solvers� In addition to requiring that a scheme be conservative� we require

that a schemebe stable in the presence of discontinuities� and such schemes are known

as shock capturing schemes� We discuss the subject of stability and the extension of

shock capturing schemes to higher order accuracy by the use of limiter functions�

In this chapter we also discuss more e	cient computation of steady states using

implicit schemes and methods of discretisation of source terms� The most commonly

used approximate Riemann solver is that due to Roe
���� We end the chapter by


�



giving details of how this method can be implemented for the Saint�Venant equations�

Consider the system of equations

�u

�t
�

�

�x
f�u� � �� �
���

We shall consider numerical approximations on a uniform grid in x�t space� with

�x and �t denoting the grid spacing in space and time respectively� The nodes

are labelled by the indices j and n with positions given by �xj� tn� � �j�x� n�t��

It is normal in the theory of numerical methods to let un
j denote the value of the

approximation to the exact solution at the particular grid point� i�e� un
j � u�xj� tn��

However for modelling systems of conservation laws it is more appropriate for un
j

to denote the value of the approximation to the cell average of the exact solution�

where a cell is given by the spatial interval 
xj� �

�
� xj� �

�
� with xj� �

�
� �j � �

�
��x� We

therefore have that

un
j �

�

�x

Z x
j��

�

x
j� �

�

u�x� tn�dx� �
���

��� The Conservation Form

The system �
��� is of hyperbolic type if the Jacobian of the function f has all real ei�

genvalues and has a full set of linearly independent eigenvectors� The early attempts

at numerically modelling this type of equation were for the linear case and simply

involved replacing the derivatives by �nite di�erence formulae� This led to many

classical schemes such as Lax�Wendro�
���� Such schemes were successful for solv�

ing problems with smooth solutions but failed miserably for discontinuous solutions�

Certain schemes such as the one�sided second order scheme could compute discontinu�

ous solutions successfully� but new di	culties were encountered when generalising

these to the nonlinear problem� Although convincing discontinuous solutions were

obtained� more often than not at further inspection the discontinuities were found

to move at the wrong speed� The fact that a numerical solution does not satisfy the

appropriate Rankine�Hugoniot conditions indicates that the scheme does not approx�

imate consistently the underlying conservations law� Examples of this behaviour can

be found in 

�� Chapter ���


�



Fortunately a simple requirement exists that if satis�ed ensures that a scheme

does approximate the correct conservation law� This requirement is that the scheme

can be written in conservation form� A scheme is in conservation form if it is written

in the form
un��
j � un

j

�t
�
gn
j� �

�

� gn
j� �

�

�t
� �� �
�
�

where

gn
j� �

�

� g�un
j�k� � � � �u

n
j���u

n
j � � � � �u

n
j�k���

for some k� For this scheme to be consistent with the di�erential equation �
��� the

function g is required to satisfy the consistency condition

g�u� � � � �u�u� � � � �u� � f�u�� �
���

for all u� We also require g to be Lipschitz continuous� Under these conditions Lax

and Wendro� 
��� demonstrated that any convergent sequence of solutions �as �x �
�� �t � � with �t��x �xed� must converge to a weak solution of the conservation
law�

The function g is called the numerical �ux function since it approximates the

time average �ux across the cell interfaces� i�e�

gn
j� �

�

� �

�t

Z tn��

tn

f�u�xj� �

�

� t��dt� �
���

To see why this is true substitute

un
j �

�

�x

Z x
j��

�

x
j� �

�

u�x� tn�dx� �
���

gn
j� �

�

�
�

�t

Z tn��

tn

f �u�xj� �

�

� t��dt� �
���

into the scheme �
�
� and multiply by a factor �x�t to obtain�

Z x
j��

�

x
j� �

�


u�tn��tn
dx�

Z tn��

tn


f �u��
x
j� �

�
x
j� �

�

dt � ��

This is the integral form of the conservation law over the rectangle 
xj� �

�

� xj� �

�

� �

tn� tn����
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��� The Godunov Method

The method of Godunov
��� comes from the observation that the numerical solution

satis�es the integral form of the conservation law exactly if �
��� and �
��� hold� The

method proceeds in the following manner�

��� Replace the initial data u� by a piecewise constant function where the constant

value in each cell is given by the cell average�

��� Use the piecewise constant function and the formula �
��� to compute the

numerical �uxes across each cell interface�

�
� Use the numerical scheme to compute the cell averages at the next time level�

hence de�ning a new piecewise constant function�

��� Repeat from step ��

This appears to be a relatively straightforward strategy for stepping the numerical

solution forward in time� The crucial step is the third step which involves computing

the time average �ux at each cell interface� At each cell interface we have a Riemann

problem� A Riemann problem consists of the the system �
��� with piecewise constant

initial data of the form

u��x� �

���
��
ul x � �

ur x � ��

For many systems of the conservation laws the exact solution of the Riemann problem

can be found� It can be shown that all solutions are similarity solutions in x�t� i�e�

are of the form u�x� t� � w�x�t� �see 

���� For this reason the solution to the

Riemann problem has the constant value w��� on the line x � � for all positive

t� Thus if w��� is known then it is a trivial matter to integrate the �ux along this

line in time� The simplest case to solve for is the case of the scalar problem and in

particular when the scalar �ux function f is convex� In this case one solution of the

Riemann problem is of the form

u�x� t� �

���
��

ul x � st

ur x � st�
�
���







where s is the shock speed given by

s �
f�ur�� f�ul�

ur � ul
�

This last equation is simply the Rankine�Hugoniot condition for the conservation

law� For this solution we have

xx

tu

speed s Shock

ur

ul

Figure 
��� Illustration of solution and characteristic diagram for a shock

w��� �

���
��

ul s � �

ur s � ��
�
���

For given initial data a conservation law may have many di�erent weak solutions�

but has only one physical solution� This unique physical solution is referred to as

the entropy satisfying solution or just as the entropy solution� since it is identi�ed

from all the possible weak solutions by the fact that it satis�es conditions known

as entropy conditions� The subject of entropy conditions is discussed in the next

chapter� For a convex f the entropy condition requires that the characteristics lines

must go into a shock �see 

��� 
����� This requires that

f ��ur� � s � f ��ul��

From the convexity of f this only holds in the case ul � ur� In the case ur � ul

the entropy satisfying solution to the Riemann problem is an expansion shock �also

known as an rarefaction wave�� This smooth solution is given by

u�x� t� �

�������
������

ul x � f ��ul�t

�w�x�t� f ��ul�t � x � f ��ur�t

ur x � f ��ur�t�


�



where �w satis�es

f �� �w���� � ��

For this solution

xx

tu
ur

ul

Expansion Fan

Figure 
��� Illustration of solution and characteristic diagram for an expansion wave

w��� �

�������
������

ul f ��ul� � �

uc f ��ul� � � � f ��ur�

ur f ��ur� � ��

�
����

where uc is unique sonic point satisfying f ��uc� � �� Combining �
��� and �
���� we

obtain the entropy satisfying value of w����

w��� �

��������������
�������������

ul f ��ul�� f ��ur� � �

ur f ��ul�� f ��ur� � �

ul f ��ul� � � � f ��ur�� s � �

ur f ��ul� � � � f ��ur�� s � �

uc f ��ul� � � � f ��ur��

�
����

We can now write the time average �ux across each cell interface as

gn
j� �

�

�
�

�t

Z tn��

tn

f�u�xj� �

�
� t��dt �

�

�t

Z tn��

tn

f�w����dt � f�w�����

where here w��� denotes �
���� with ul � unj and ur � unj��� The same arguments

allow the calculation of w��� for a concave f � If f is neither concave or convex then

the situation is considerably more complex� The solution of the Riemann problem

can now also be a combination of a shock and an expansion wave� A general form


�



for w��� can still be found �see 
����� giving the general form for the numerical �ux

gGod
j� �

�

�

���
��
maxff�s� � uj�� � s � ujg for uj�� � uj

minff�s� � uj � s � uj��g for uj�� � uj�
�
����

The notation we use is to omit the n superscripts in the de�nition of quantities

when it is clear that the de�nition at a particular time level n is simply obtained

by introducing n superscripts to all the time dependent variables� The solution of

a single Riemann problem is constant at the position of the initial discontinuity for

all time� In the case of the numerical scheme where in e�ect we solve a sequence of

neighbouring Riemann problems� this will not be the case for large times since waves

will arrive from neighbouring Riemann problems� To prevent this occurring one must

limit the size of the time step �t to prevent neighbouring Riemann problems from

interacting� The wave speeds are bounded by the eigenvalues of the Jacobian of

the system and the neighbouring Riemann problems are distance �x away� For the

scalar problem it is therefore su	cient to require that

����f ��uj� �t�x
���� � �� �
��
�

for all j at each time level� For a system of conservation laws� f � must be replaced

by the eigenvalue of largest magnitude of the system� This condition can also be

derived from a domain of dependence argument and is a fundamental requirement�

The need for such a condition was �rst recognized by Courant� Friedrichs and Lewy

in their famous paper of ����
�� �translation in 
��� and is called a CFL condition

after these authors� In order to satisfy the CFL condition in practice one would allow

a variable time step and choose the time step at each time level so as to satisfy the

CFL condition at that current time level�

For a system of conservation laws the task of computing a solution to the Riemann

problem is considerably more taxing� Typically the solution is composed of m waves�

where m is the size of the system� In well behaved cases �analogous to the situation

for convex f in the scalar case� each of these waves is either a shock or a rarefaction

wave� The Riemann solution has been found for certain well known systems� for

example the references 
��� and 

�� work through the solution for the Euler equations�

Of particular interest is the work in 
��� which constructs the Riemann solution for


�



the Saint�Venant equations and uses this as part of a Godunov approach� Even

when the structure of the Riemann solution is known� it tends to be computationally

expensive to compute the actual solution� since intersections of the Hugoniot and

integral curve must be found �usually numerically�� For this reason it is often not

practical to base a numerical scheme on the exact solution of the Riemann problem�

Instead an attempt is made to compute an approximation to the Riemann solution

and use this to compute the numerical �ux� This is the topic of the next section�

��� Approximate Riemann Solvers

Even in the scalar case where the simple formula �
���� gives the Godunov �ux� it

may still be more e	cient to use only an approximation to the Riemann solution in

order to compute the numerical �ux� For example one can take the solution of the

Riemann problem to be the moving shock given by �
���� regardless of whether this

is the entropy satisfying solution� From �
��� the numerical �ux is then given by

gFOU
j� �

�

�

���
��

f�uj� sj� �

�

� �

f�uj��� sj� �

�
� ��

where

sj� �

�
�

����
���

f�uj���� f�uj�

uj�� � uj
uj�� �� uj

f ��uj� uj�� � uj�

�
����

We can also write

gFOU
j� �

�

�
�

�

�
f�uj� � f�uj���� jsj� �

�
j�uj�� � uj�

�
� �
����

This scheme is known as the �rst�order upwind scheme or simply the upwind scheme

and is attributed to Roe
���� although Murman and Cole
���
��� came up with a

similar scheme much earlier� The �rst�order upwind scheme forms the basis of many

more advanced schemes�

Another important approximate Riemann solver was proposed by Engquist and

Osher
���
���� The numerical �ux for this case is given by

gE�O
j� �

�

� f��uj��� � f��uj� � f�c�� �
����


�



where the functions f� are given by

f��u� �
Z u

c
minff ��s�� �gds�

f��u� �
Z u

c
maxff ��s�� �gds

and c is arbitrary� For a convex or concave �ux function this form is equivalent to

the Godunov �ux for a rarefaction wave and only di�ers in the case of a shock�

In the case of systems of conservations laws the need for an approximate Riemann

solver is more pressing� By far the most used approximate Riemann solver is that due

to Roe
���� This works by linearising the system of equations at each cell interface

and then calculating the �ux at the interface by exactly solving the resulting linear

Riemann problem� Solving a linear Riemann problem is straightforward and is

described in 

��� At the interface at xj� �

�

and at time tn the linearised system is

given by
�u

�t
� �Jn

j� �

�

�u

�x
� �� �
����

where �Jj� �

�

� �J�uj���uj� is a constant matrix which approximates the Jacobian

J�u� � �f��u at the interface� Roe gives the properties that the matrix �J should

satisfy� These are�

��� f �ur�� f�ul� � �J�ur�ul��ur � ul� for all ul� ur�

��� �J�ur�ul� is diagonalisable for each ul� ur

�
� For each u� �J�ur�ul�� J�u� as ul� ur � u�

Condition ��� is necessary to ensure the resulting scheme is conservative� Condition

��� ensures that the linearised system is hyperbolic and hence solvable� Condition

�
� ensures that the the system �
���� is a true linearisation of the nonlinear system

so that the scheme is valid for smooth solutions� A matrix satisfying the above three

conditions is often called a Roe matrix� There is not in general a unique choice for

the Roe matrix for a particular problem� In his paper Roe demonstrates how to

calculate a Roe matrix via an intermediate variable called a parameter vector� We

specify a Roe matrix for the Saint�Venant system at the end of this chapter� Before


�



we state the numerical �ux function we must de�ne some notation� For the scalar

quantity s� we de�ne

s� �
s� jsj
�

�

���
��
� s � �

s s � ��

s� �
s� jsj
�

�

���
��

s s � �

� s � ��

��s� �

���
��
� s � �

� s � ��

To generalise these quantities to the matrix �J we diagonalise this matrix� Suppose

���� � � � � ��m denote the eigenvalues of �J and �e�� � � � � �em are the corresponding eigen�

vectors� De�ne the matrices

�X � ��e�� � � � � �em��

� � diagf���� � � � � ��mg�

so that by virtue of ��� above

�J � �X � �X���

For the diagonal matrix � we de�ne

j� j � diagfj���j� � � � � j��mjg�
� � � diagf���� � � � � � ���mg�

��� � � diagf������� � � � �����m�g�

We can now de�ne

j �J j � �Xj� j �X���

�J� � �X � � �X���

�� �J� � �X��� � �X���

The numerical �ux function using Roe!s approximate Riemann solver is now given

by

gRoe
j�� �

�

�
�

�

�
f �uj� � f �uj���� j �Jj� �

�

j�uj�� � uj�
�
� �
����
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By comparing the numerical �uxes �
���� and �
����� we can see the numerical �ux

of Roe!s approximate Riemann solver is clearly the generalisation of the �rst�order

upwind numerical �ux to the case of a system of equations�

The Engquist�Osher numerical �ux is extended to systems of equations in 
����

However this approximate Riemann solution is almost as di	cult to �nd as the exact

Riemann solution�

Not all conservative di�erence methods are derived from approximate solutions

of the Riemann problem� Take for example the Lax�Wendro� scheme
��� given by

gL�W
j� �

�

�
�

�

	
f�uj� � f�uj���� �t

�x

�
sj� �

�

��
�uj�� � uj�



�

and the Lax�Friedrichs scheme
�� given by

gL�F
j� �

�

�
�

�

	
f�uj� � f�uj���� �x

�t
�uj�� � uj�



�

which are both scalar schemes constructed using Taylor!s series� There tends to be

a fundamental di�erence between those schemes constructed via Riemann solutions

and those which are not� Consider a scalar problem with convex �ux function and

consider a smooth region of the solution where the wave speed f � is everywhere

positive� The theory of characteristics yields that the solution at each point �xj� tn���

depends only on values of the solution at points �x� t� with x � xj and t � tn���

In other words the solution depends only on the solution at previous times in the

upwind direction� In this situation the Godunov� �rst�order upwind and Engquist�

Osher schemes all reduce to

un��j � unj
�t

�
f�unj �� f�unj���

�x
� ��

Since the value of un��j depends only on unj and u
n
j��� the schemes are mimicking the

behaviour of the exact solution since the value of un��j depends only on the values at

upwind points� For a smooth region of solution where the wave speed f � is everywhere

negative� the value of the exact solution at any point �xj� tn��� again depends only

on the previous solution in the upwind direction� In this case the upwind direction

is x � xj and the three schemes reduce to�

un��j � unj
�t

�
f�unj���� f�unj �

�x
� ��

��



The value of un��j depends only on the values of unj and u
n
j�� and so again the discrete

solution only depends on the solution at upwind points� We observe that the schemes

switch their behaviour depending on the on the local wave direction� Schemes which

exhibit this behaviour are known as upwind schemes� In the case of a system of

equations� upwind schemes� such as Roe!s approximate Riemann solver� essentially

decompose the solution into its component waves and apply a scalar upwind scheme

to each individual wave� As opposed to upwind schemes� schemes such as Lax�

Wendro� and Lax�Friedrichs are known as symmetric schemes� These schemes have

a constant stencil regardless of the wave direction of the solution� Upwind schemes

are in general found to be far superior for computing discontinuous solutions�

��� Nonlinear Stability

The Lax�Wendro� Theorem
��� mentioned in section 
�� shows that any convergent

sequence of solutions to a conservative di�erence method must converge to a weak

solution of the conservation law� However it does not guarantee that a sequence of

solutions with �x��t � � will converge� To achieve this guarantee a scheme requires
some level of stability� In this section we consider this problem for scalar schemes

where there are many di�erent forms of stability�

One of the weakest forms of stability is that of monotonicity preservation� A

scheme is monotonicity preserving if given any monotone initial data� the solution

remains monotone for all time� This property prevents oscillations from occuring at

discontinuities�

A stronger form of stability and one of the most important is that of total variation

stability� The total variation of a function is a measure of the oscillatory nature of

the function� A function u on the interval 
c� d� has bounded total variation if

V d
c u � sup

�
NX
i��

ju�xi�� u�xi���j � c � x� � x� � � � � � xN�� � xN � d

�
�	�

in which case V d
c u is the total variation of u on 
c� d�� If u is continuously di�erentiable

then

V d
c u � ku�k� �

Z d

c
ju��x�jdx�

��



It can be shown that for a solution of a scalar conservation law that the total variation

decreases in time� It is therefore natural to require a numerical solution to also

have this property� A numerical scheme for which the total variation of the solution

always decreases in time is known as Total Variation Diminishing or TVD� Examples

of TVD schemes are the Godunov� �rst�order upwind� Engquist�Osher and Lax�

Friedrichs schemes� Note that a requirement for these schemes to be TVD is that the

appropriate CFL condition must hold� We can therefore think of the CFL condition

as the sole condition required so that these schemes are TVD� The TVD property

again prevents spurious oscillations from developing in the solution� as happens for

example in the Lax�Wendro� scheme which is not TVD�

It can be shown that any conservative� TVD method is convergent �see 

���

Chapter ���� However it is not guaranteed that the limit is the unique entropy

solution of the conservation law� For example� recall that the �rst�order upwind

scheme can be derived by taking the solution of the Riemann problem to be a shock�

regardless of whether this is the entropy satisfying solution or not� It is therefore not

surprising that this scheme can converge to a shock solution when the appropriate

solution is a rarefaction wave�

An even stronger form of stability than the TVD property is to require that a

scheme be monotone� The entropy satisfying solution of a scalar conservation law

has the following property� Suppose u� and v� are two sets of initial data such that

v��x� � u��x� for all x�

and that v and u denote the corresponding entropy solutions� It follows that

v�x� t� � u�x� t� for all x and t�

A scheme is called monotone if it has the analogous behaviour� That is for any

numerical solutions funj g and fvnj g with

vnj � unj for all j�

we have

vn��j � un��j for all j�

��



If we write the scheme in the form

un��j � G�unj�k � � � � � u
n
j��� u

n
j � � � � � u

n
j�k����

then the scheme is monotone if the function G is an increasing function of all

of its arguments� It is shown in 
�� and 
�
� that any conservative� monotone

scheme converges to the unique entropy satisfying solution of the conservation law�

Examples of monotone schemes include the Engquist�Osher� Godunov and Lax�

Friedrichs schemes� Note again that this form of stability also requires the appro�

priate CFL condition to hold� We conclude that monotone schemes have some very

nice properties� Not only are they convergent to the unique entropy solution of the

conservation law� but since they must also be TVD they are non�oscillatory� The

one big drawback is that they can at most be �rst order accurate� as proved in 
�
��

��� High Order TVD Schemes

Nearly all the numerical methods encountered so far in this chapter have been �rst

order accurate� Such schemes give poor accuracy in smooth parts of the solution

and tend to heavily smear discontinuities� This is explained by the large amount of

numerical dissipation these schemes possess� Classical second order schemes such as

Lax�Wendro� give good accuracy for smooth solutions but develop oscillations in the

vicinity of discontinuities� These oscillations are due to the fact that such schemes

have too little numerical dissipation� In this section we describe an approach which

uses the TVD criteria to obtain scalar schemes which have are both non�oscillatory

and give high order accuracy where the solution is smooth� This is not by any

means the only approach to obtaining such schemes� for example there is the ENO

�Essentially Non�Oscillatory� approach of 
����

The approach described here is to start with a second order scheme� such as the

Lax�Wendro� scheme� and add to it a term which increases the numerical dissipation

only in the locality of discontinuities� Equivalently� one can take a �rst order scheme�

such as the �rst�order upwind scheme� and add a term to limit the numerical dissip�

ation away from discontinuities� This can be done by constructing a new numerical

�




�ux

�gj� �

�
� gL

j� �

�

� 	
�
gH
j� �

�

� gL
j� �

�

�
�

where gL
j� �

�

is a numerical �ux for a �rst order scheme and gH
j� �

�

is a numerical �ux

for a second order scheme� If we require that 	 
 � in smooth regions of the solution

then the scheme will be second order there� If we require 	 
 � near discontinuities

then the scheme will be expected to be non�oscillatory since it will have the same

amount of numerical dissipation as for the �rst order scheme� To achieve the aim of

being second order accurate almost everywhere as well as oscillation free the function

	� which is called a limiter because it limits the numerical dissipation� must be a

non�linear function of the current solution� Requirements are placed on this function

which ensure that the resulting scheme is TVD� Harten
��� and Sweby
��� took the

�rst order scheme to be the �rst�order upwind and the second order scheme to be

Lax�Wendro� to obtain the numerical �ux

�gj� �

�
�

�

�

�
f�uj� � f�uj���� sgn�sj� �

�
��f�uj��� � f�uj��

�

�
	

�

	
sgn�sj� �

�

�� �t

�x
�f�uj���� f�uj��



�

The particular form of the limiter function is taken to be 	 � 	�rj� �

�
�� where

rj� �

�
�

uj���i � uj�i
uj�� � uj

� i � sgn�sj� �

�
��

This leads to a �ve point scheme since �gj� �

�
� g�uj��� uj��� uj� uj���� Sweby
��� also

located the bounds on the limiter functions such that the scheme is both second order

�in space and time� and TVD� Some suggested limiter functions which satisfy these

bounds are

	�r� � minmod��� r� � maxf��minf�� rgg �
	�r� �

r � jrj
� � r

�

	�r� � maxf��minf�r� �g�minf�� rgg �

There are other variations on constructing high order TVD methods using limiter

functions� for example see 
���� 
���� 
��� and 
���� To implement high order TVD

schemes for systems of equations requires ensuring that each of the component waves

is in e�ect updated by a high order scalar TVD scheme�

��



��� Implicit Schemes

The methods discussed so far in this chapter are all subject to the a CFL condition

of the type �
��
� in order that the scheme be stable� This condition restricts the

size of the time step that may be used� This may not be too much of a restriction

for transient computations where the time step must also be kept small to achieve

the required accuracy in time� However for steady state computations� where the

accuracy of the transient solution is of no importance� we wish to take as large a

time step as possible� The larger the time step we can take� the fewer times steps it

takes to reach the steady state and the more economical the method is on computer

CPU time�

To relax or even remove the time step restriction one can consider implicit meth�

ods� Consider the family of schemes

un��
j � un

j

�t
� 




�gn��j� �

�

� gn��
j� �

�

�x

�
A � ��� 
�



�gnj� �

�

� gn
j� �

�

�x

�
A � �� �
����

where � � 
 � �� This can be written in the conservative form �
�
� with the

numerical �ux

�gn
j� �

�

� 
gn��
j� �

�

� �� � 
�gn
j� �

�

�

We can re�write the scheme �
���� as

Lju
n�� � Rju

n�

where

Lju � uj � 

�t

�x

�
gj� �

�

� gj� �

�

�

Rju � uj � ��� 
�
�t

�x

�
gj� �

�
� gj� �

�

�
�

For the case 
 � �� the scheme reduces to �
�
�� In this case Lj is a linear operator�

in fact Lju � uj so that

un�� � Rju
n�

and the numerical solution at the next time level is given explicitly as a function

of the solution at the current time level� The scheme is hence called explicit� In

the case 
 �� �� Lj is now a nonlinear operator �except for a linear problem where

��



it is linear� and the solution at the next time level is only given as an implicit

function of the solution at the previous time level� The scheme is now called implicit�

There are two important special cases of 
� For 
 � �

�
the time di�erencing of the

scheme corresponds to the trapezium rule� This case gives second order accuracy in

time even for �rst order numerical �uxes� The most important case here is that of


 � �� This is often called the fully implicit case because the numerical �uxes are

only evaluated at the next time level� It can be shown �for example see 
���� that

for many numerical �uxes the scheme is unconditionally TVD� that is TVD for all

positive time steps� The need for a CFL condition can no longer be argued from a

domain of dependence argument� since each solution value at the �n���th time level

will in general depend on every solution value at the nth time level�

The case 
 � � appears ideal for steady computations� since there is no limit

to the time step allowable� The situation is not as good as it may �rst appear� To

compute the solution at each time level requires the solution of a system of nonlinear

equations� This in itself is a complex numerical problem� Even when this can be

done reliably it is still likely to counterbalance the e	ciency gain from using a large

time step� There is however an approach which avoids the need to solve a nonlinear

system� and still in general allows much greater time steps than for the explicit case�

This proceeds as follows� At each time level the nonlinear operator Lj is linearised

to give a linear scheme

�Lju
n�� � Rju

n�

where �Lj is a linear operator� At each time level we now only have the much simpler

task of solving a linear system� which more often than not will be tridiagonal� The

linearisation can often be carried out so that the resulting scheme is still conservative�

Of course we cannot expect the new scheme� which is called the linearised implicit

scheme or just linearised scheme� to inherit all the properties of the original scheme�

Nevertheless we hope that although the linearised schememay not be unconditionally

TVD� it will allow a much greater time step than for the explicit scheme� A review

of implicit"linearised methods for high order TVD schemes can be found in 
����

��



��� Inhomogeneous Conservation Laws

Many systems of conservation laws which arise in practice include a source term�

In this section we consider the modi�cations required to model the inhomogeneous

system
�u

�t
�

�

�x
f �u� � b�x�u��

More often than not the left hand�side is discretised exactly as for a homogeneous

system and terms are then added to the right hand side of the scheme to take account

of the source term b� The pointwise discretisation of the source term shown is

un��
j � un

j

�t
�
gn
j� �

�

� gn
j� �

�

�x
� b�xj�u

n
j ��

This is the simplest possible discretisation of the source term and is often su	cient to

yield satisfactory results� More advanced discretisations take into account the wave

nature of the problem� Consider the �rst�order upwind scheme for a scalar problem�

This can be derived by linearising the di�erential equation over each interval 
xj� xj���

and using the theory of characteristics to construct a solution� Carrying this out for

the inhomogeneous problem we obtain the linearised di�erential equation�

�u

�t
� sj� �

�

�u

�x
� �bj� �

�
�

where �bj� �

�
denotes some average of the source term on the left and right of the cell

interface� The theory of characteristics then motivates the following scheme�

un��j � unj
�t

�

	
gFOU
j� �

�


n
�
	
gFOU
j� �

�


n

�x
� �

�
sn
j� �

�

�
�bn
j� �

�

�
�
�� �

�
sn
j� �

�

��
�bn
j� �

�

�

where we have used the notation of section 
�
� Combined with Roe!s approximate

Riemann solver this scheme can be generalised to a system of equations as follows�

un��
j � un

j

�t
�

	
gFOU
j� �

�


n
�
	
gFOU
j� �

�


n

�x
� �

�
�Jn

j� �

�

�
�b
n

j� �

�
�
�
�� �

�
�Jn

j� �

�

��
�b
n

j� �

�
�

where �J is the Roe matrix� The above is a rather crudely devised upwind discret�

isation of the source term� More systematic discretisations are discussed in 
���

and 
����

��



This section has described all the source term discretisations used throughout the

rest of this thesis� We will see that the given upwind discretisation with the choice

�bj� �

�
�
b�xj�uj� � b�xj���uj���

�
� �
����

has a very nice property� namely� at steady state and in smooth regions of the solution�

the approximate solution has second order accuracy�

��	 Roe
s Approximate Riemann Solver for the Saint�

Venant Equations

Roe!s approximate Riemann solver has been applied to the Saint�Venant equations by

many authors� for example 
��� 
�
� and 
���� In 
��� the approximate Riemann solver

is used to develop a linearised implicit� high order TVD scheme� The implementa�

tion of Roe!s scheme for a prismatic channel is relatively well known� Priestley
�
�

implements the scheme for a varying rectangular channel� In this thesis we suggest

how the scheme can be extended to a general shape non�prismatic channel� and show

how this is valid at least for steady state computations� For a prismatic channel the

Saint�Venant equations can be written as

�w

�t
�

�

�x
F �w� �D�x�w��

where

w � �A�Q�T �

F �

�
Q�

Q�

A
� I�

�T

�

We ignore the source term here as this can be treated as described in the previous

section� The Roe matrix is derived using the parameter vector method of Roe
���

and is given by

�J�wr�wl� �



B� � �

�c� � �u� ��u

�
CA � �
����

��



where

�c� �

���������
��������

g

�
I��hr�� I��hl�

Ar �Al

�
Al �� Ar

gAl

T �hl�
Al � Ar�

and

�u �

Qrp
Ar

�
Qlp
Alq

Ar �
q
Al

�

The eigenvalues of this matrix are given by

��� � �u� �c� ��� � �u� �c�

with corresponding eigenvectors

�r� �
�
�� ���

�T
� �r� �

�
�� ���

�T
�

The numerical �ux for the scheme is given by

gRoe
j� �

�

�
�

�

�
F �wj� � F �wj���� j �Jj� �

�
j�wj�� �wj�

�
�

In practice the scheme is not usually implemented in terms of this numerical �ux�

Using the property of the Roe matrix that

F �wj����F �wj� � �Jj� �

�
�wj�� �wj��

we can write

gRoe
j� �

�

� F �wj� � �J�
j� �

�

�wj�� �wj��

Similarly we can write

gRoe
j� �

�

� F �wj�� �J�
j� �

�

�wj �wj����

The scheme can now be written as

wn��
j � wn

j �
	
�
�

j� �

�


n
�
	
�
�

j� �

�


n
�

where

�
�

j� �

�

� ��t
�x

�J�
j� �

�

�wj�� �wj��

In order to update the solution from time level n to n � � we can use the following

algorithm�

��



��� For each j set �wj � wn
j �

��� Compute and store
	
�
�

j� �

�


n
for each cell interface�

�
� At each cell interface xj� �

�

carry out

�wj � �wj �
	
�
�

j� �

�


n

�wj�� � �wj�� �
	
�
�

j� �

�


n
�

��� For each j set wn��
j � �wj�

In practice we overwrite the solution at the current time level with the solution

at the next time level� without need for the intermediate solution vector f �wjg� The
increments to the cell values are illustrated graphically in Figure 
�
� All that remains

xj� �

�
xj� �

�
xj� �

�
xj� �

�

wj��

wj

wj��

�
�

j� �

�

�
�

j� �

�

�
�

j� �

�

�
�

j� �

�

�
�

j� �

�

�
�

j� �

�

�
�

j� �

�

�
�

j� �

�

Figure 
�
� Cell updates for Roe!s approximate Riemann solver

now is to see how to compute ��

j� �

�

Some straightforward manipulation shows that

�
�

j� �

�

� � �t

�x
���
��j� �

�

����j� �

�

�r��j� �

�
� �t

�x
���
��j� �

�

����j� �

�

�r��j� �

�
� �
����

where

wj�� �wj � ����j� �

�

�r��j� �

�
� ����j� �

�

�r��j� �

�
�

��



Solving this equation yields

����j� �

�
�

����j� �

�

�Aj�� �Aj�� �Qj�� �Qj�

����j� �

�

� ����j� �

�

�

����j� �

�

�
�����j� �

�
�Aj�� �Aj� � �Qj�� �Qj�

����j� �

�

� ����j� �

�

�

The algorithm can now be written as

��� For each j set �wj � wn
j �

��� For each cell interface xj� �

�

� compute ��n
i�j� �

�

� ��n
i�j� �

�

for i � �� ��

�
� For each interface xj� �

�

and i � �� � carry out

�wj � �wj � �t

�x

	
���
i�j� �

�


n

��n
i�j� �

�

�rn
i�j� �

�

�wj�� � �wj�� � �t

�x

	
���
i�j� �

�


n

��n
i�j� �

�

�rn
i�j� �

�

�

��� For each j set wn��
j � �wj�

We have now given the implementation of the basic Roe scheme� but there are

other points to consider� Since in practice we solve a problem for �nite length of

channel� we are required to enforce boundary conditions at the ends of the reach�

Here we describe a simple approach to enforcing the boundary conditions�

����� Boundary Conditions

We describe the procedure for the boundary at x � �� with the method for the

remaining boundary following from an analogous argument� Consider the update

of the solution from time level n to n � �� We assume that for each cell interface

xj� �

�
interior to the domain that the increments

	
�
�

j� �

�


n
have been added to the

appropriate cells� If we consider the element on the boundary at x � �� then unlike

interior elements which have received two increments� the boundary element has

only received one increment
	
�
�
�

�


n

� To maintain the accuracy of the scheme at

the boundary we may need to add an increment
	
�
�

�
�

�


n

� This increment is chosen

to enforce any boundary conditions� To calculate this increment requires values for

��



��n
i�� �

�

�i � �� ��� The simplest way to obtain values for these wave speeds is to

extrapolate from inside the domain� and in particular to take

��n
i�� �

�

� ��n
i� �
�

� i � �� ��

There are three possible situations depending on the signs of these wave speeds� For

the case ��n
i�� �

�

� � �i � �� ��� neither characteristic enters the domain and so no

boundary conditions may be speci�ed� The situation is very straightforward since

now from �
���� we have 	
�
�

�
�

�


n

� ��

If ��n
i�� �

�

� � �i � �� ��� then both characteristics enter the domain and so both �ow

variables must be speci�ed at the boundary� In this case we simply overwrite both

�ow variables at the boundary with the appropriate values� In the case where only

one wave speed� say ��n
i�� �

�

is positive� only one characteristic enters the domain so

that only one �ow variable must be speci�ed on the boundary� Equation �
���� gives

	
�
�

�
�

�


n

� ��t
�x

��n
i�� �

�

��n
i�� �

�

�rn
i�� �

�

�

If the boundary condition is A � A��t�� then this is satis�ed at time level n�� if we

choose ��n
i�� �

�

to satisfy

A��tn��� � ��� ��
	
�w� � �t

�x
��n
i�� �

�

��n
i�� �

�

�rn
i�� �

�



�

If the boundary condition is Q � Q��t�� then this is satis�ed at time level n�� if we

choose ��n
i�� �

�

to satisfy

Q��tn��� � ��� ��
	
�w� � �t

�x
��n
i�� �

�

��n

i�� �

�

�rn
i�� �

�



�

����� Modi�cations to Roe�s Scheme

One problem with Roe!s linearisation is that the approximate Riemann solution con�

sists of only shocks� and no rarefaction waves� For this reason the method can some�

times converge to weak solutions other than the entropy solution� One approach to

remove this problem is given by 
��� and is also discussed in 

���Chapter ����

��



Roe!s scheme can also be modi�ed to give second order accuracy� The increment

at each cell interface is then of the form

�wj � �wj �
	
�
�

j� �

�


n

�Bn
j� �

�

�wj�� � �wj�� �
	
�
�

j� �

�


n
�Bn

j� �

�

�

where Bn
j� �

�

is a nonlinear function of
	
�
�

j� �

�


n

�
	
�
�

j� �

�


n

and
	
�
�

j� �

�


n

� The role

of the extra term is to limit the numerical dissipation of the scheme in smooth regions

of the solution and so increase the order of accuracy there� Details of this approach

can be found in 
���� Neither of the above modi�cations are used in this thesis�

�




Chapter �

Theory for the Steady Flow Problem

using Vanishing Viscosity

In this chapter we present some theory for the steady state Saint�Venant problem�

The theory arises from a novel formulation of the problem and is applicable to a

large number of cases�

��� Vanishing Viscosity

The Saint�Venant equations are a hyperbolic system of conservation laws� These

su�er from two main di�culties� namely solutions may be discontinuous and secondly

not all of these so�called weak solutions are physically possible�

Hyperbolic systems of conservation laws often arise from models of physical pro�

cesses which ignore e�ects due to viscous or dispersive mechanisms� The next level

of accuracy for any such model is to include these e�ects� The di�erential equations

are modi�ed by the addition of higher order derivatives which are multiplied by

small coe�cients called viscosity coe�cients� For the original model to be consistent

with the more complete model which includes the viscous or di�usive e�ects� it is

required that the solutions of the two models are �close	 in some sense� In particular

any solution of the �rst order system must be the limit of the corresponding solution

of the higher order system as the viscosity coe�cients vanish� Solutions of the �rst

order system which do have this property are known as vanishing viscosity solutions�


�



Unfortunately the two models are not generally consistent in the above sense� in that

not all weak solutions of the �rst order system will be vanishing viscosity solutions�

It is clearly only the vanishing viscosity solutions which have physical relevance�

In general the higher order system is parabolic and so always has smooth solu�

tions� The apparent discontinuities �which form actual discontinuities in the vanish�

ing viscosity limit
 are actually narrow regions where the solution changes extremely

rapidly� These regions are called shock layers�

The above concept is illustrated by the Euler model of gas dynamics� The Euler

equations arise from neglecting terms which model the e�ects of �uid viscosity from

the Navier�Stokes equations� the general model of �uid �ow� This is done when

the e�ects of viscosity are thought to be of only secondary importance relative to

the e�ects of inertia� Solutions of the Euler equations� which include discontinuous

solutions� are hoped to model the vanishing viscosity limit of solutions to the Navier�

Stokes equations� However neglecting the viscous terms introduces solutions which

are not vanishing viscosity solutions� Even though the e�ects of viscosity are small

throughout almost all of the �ow� they are sometimes still important� In particu�

lar their e�ects are always strong in shock layers� Viscosity prevents the solutions

from becoming discontinuous and is also the mechanism for discriminating against

unphysical discontinuities� There is a parallel here between the Euler equations and

the Saint�Venant equations� since both systems can be derived from the Navier�

Stokes equations and both models ignore viscous and di�usive e�ects� Extensions

of the Saint�Venant system which include some of the e�ects of �uid viscosity are

discussed in �
���

By considering the limit of solutions of �some	 system of parabolic equations as

the viscosity coe�cients vanish� we may obtain results concerning the existence and

uniqueness of physical solutions to a hyperbolic system� This approach is called the

vanishing viscosity method� The parabolic problem will have only smooth solutions

so that these may be easier to construct� The more di�cult step is to then obtain

estimates which are independent of the viscosity coe�cients and allow passage to the

limit�







Consider the scalar Cauchy problem

�u

�t
�

�

�x
f�u
 � �� ����


t � �� �� � x ��� u�x� �
 � U��x
�

Equation ����
 arises from the conservation of a quantity u transported with �ux

f�u
 and can be written in the integral form

Z x�

x�

�u�t�t� dx�
Z t�

t�

�f�u
�x�x� dt � ��

For given initial data U� there can be more than one weak solution to this problem�

and hence if the conservation law is to model the real world� then clearly there can

only be one physically relevant solution� Motivated by the above argument� the

physically correct solution is de�ned as the vanishing viscosity solution� i�e� the

limiting solution as � � � of the parabolic equation

�u

�t
�

�

�x
f�u
 � �

��u

�x�
�

Oleinik���� demonstrates the existence of a unique vanishing viscosity solution for

any given initial data U�� Furthermore� this vanishing viscosity solution is identi�ed

as the weak solution which� across all discontinuities and for all u between ul and

ur� satis�es the entropy condition

f�u
� f�ul


u� ul
� s � f�u
� f�ur


u� ur
� ����


where s is the shock speed given by

s �
f�ur
� f�ul


ur � ul
�

The entropy condition is the condition which identi�es the physically allowable dis�

continuities� and weak solutions which satisfy the entropy condition are referred to

as entropy satisfying or simply entropy solutions� The particular form ����
 of the

entropy condition is known as Oleinik�s condition�

Ideally we would like to obtain analogous theory for the Saint�Venant system

which as in section ����� can be written as

�w

�t
�
�F

�x
�D�


�



The analogous approach would be to consider limiting solutions as � � � of the system

�w

�t
�
�F

�x
�D � �M

��w

�x�
�

where M is a matrix such that the system is parabolic �see ���� p��
�
� We should

note that from a physical point of view� it only makes sense to add di�usive terms

to the momentum equation �the second component of the system
� The theory for

systems of equations is unfortunately much harder than for the scalar case and has

only been achieved for some special systems �see ����� Chapters �� and ��
� The

inclusion of the source term makes the situation beyond hope at this particular time�

so in order to make progress� we �x attention solely on the steady state problem and

this makes it possible to utilise the theory from the scalar case�

��� The Steady Problem

Consider the scalar problem

�h

�t
�m

�

�x
F �x� h
 � mD�x� h
� � � x � L� t � �� ����


h�x� �
 � H��x
� Q�x� t
 � constant � ��

with appropriate boundary conditions� and m � ��� This di�erential equation arises

from the integral conservation lawZ x�

x�

�h�t�
t�
dx�m

Z t�

t�

�F �x� h
�x�
x�
dt � m

Z t�

t�

Z x�

x�

D�x� h
dxdt�

where t� � t� � � and � � x� � x� � L are arbitrary� At steady state this reduces

to

�F �x� h
�x�
x�

�
Z x�

x�

D�x� h
dx�

This relationship is clearly identical to �����
 so that at steady state the Saint�

Venant equations and equation ����
 have identical weak solutions� even though their

transient behaviour is totally unrelated� If we assume that Oleinik�s condition ����


continues to identify the correct discontinuities for problem ����
� because source

terms generally have no in�uence at discontinuities� then at steady state �s��
 this

condition reduces to the requirement that

m

�
F �x� h
� F �x� hl


h� hl

�
� �� ����



�



for all h between hl and hr� If we take m � �� then it is not di�cult to see that

this condition implies

E�x� hr
 � E�x�hl
� ���



because of the relationship �����
� Thus we conclude that at steady state� any entropy

satisfying solution of ����
 �with m � ��
 must also be a physical solution of the

Saint�Venant equations� The converse is not necessarily true� however we show later

that it is true for a certain class of channel geometries� The above observation means

that we can compute steady solutions to the Saint�Venant system via computing

steady solutions of the scalar di�erential equation

�h

�t
� �

�x
F �x� h
 � �D�x� h
� ����


To obtain results concerning the existence and uniqueness of entropy solutions for

this problem we could study the viscous problem

�h

�t
� �

�x
F �x� h
 � �D�x� h
 � �

��h

�x�
�

where � � �� However since we are only interested in the solutions at steady state�

we need only consider the steady form

�h�� � F �x� h
� � D�x� h
� ����


We use the notation�

F �x� h
� �
d

dx
F �x� h
 �

�F

�x
� h�

�F

�h
�

The di�erential equation ����
 is the topic of this chapter and we present results

concerning the existence and uniqueness of solutions both for positive � and in the

vanishing viscosity limit� One �nal point to note is that if we take m � �� then�

although the steady solutions of both ����
 and the steady Saint�Venant system are

again identical� in this case the entropy satisfying solutions of ����
 violate ���

�

��� The �Viscous� Problem

The di�erential form of the steady �ow problem is given by

F �x� h
� � D�x� h
�


�



Shocks may occur along a particular reach of channel� � � x � L� and hence this

equation will not in general hold everywhere� Motivated by the previous section we

choose to study the following problem�

�h��� � F �x� h�

� � D�x� h�
� h� � �� � � x � L�

h���
 � ��� h��L
 � ���
����


where �� ��� �� � �� We have added a viscous term to the di�erential equation�

so that the di�erential equation is now second order and requires two boundary

conditions� The simplest choice is Dirichlet boundary conditions� Initially the need

for two boundary conditions appears as though it could cause trouble because the

steady �ow problem may have the depth speci�ed at both ends� either end or neither

end of the channel� This problem is resolved by the nonuniform nature of the limiting

process� since solutions of the viscous problem are only used to de�ne a solution in

the vanishing viscosity limit� and the limit solution will not necessarily satisfy either

of the boundary conditions given to the viscous problem� For the method to be useful

we must be able to control the behaviour of the limiting solution by the boundary

values �� and ���

��� Singular Perturbation Problems

There is a large amount of literature on the subject of two�point boundary value

problems which depend on a small parameter �� for example see �
��� ��
� and ��
��

These problems can be separated into two categories� If the solution converges

uniformly in x as � � �� then the problem is called a regular perturbation problem�

When the solution does not have a uniform limit in x then the problem is called a

singular perturbation problem� Problem ����
 is in the latter class and this stems

from the fact that the order of the di�erential equation reduces from second order to

�rst order as � vanishes� Therefore in general there must be nonuniform behaviour�

since we cannot expect a solution of the reduced problem �� � �
 to always satisfy

both boundary values� The nonuniformities are classi�ed depending on their type

and where they occur� We now demonstrate some of these�


�



Consider the problem

�u��� � au�� � �� � � x � �� u���
 � �� u���
 � �� ����


where � � � and a �� � is a constant� The solution to this problem is given by

u��x
 � �� e�
ax
� � �

e�
a
� � �

�

First consider the case a � �� where for small � the solution decreases rapidly from

one to zero near x � �� In fact as � tends to zero we have

u��x
	
���
��

� x � �

� x �� ��

The nonuniform behaviour at x � � is known as a boundary layer and is characterised

by the property�

� � lim
���

lim
x��

u��x
 �� lim
x��

lim
���

u��x
 � ��

For the case a � � we have

u��x
	
���
��

� x �� �

� x � ��

as � tends to zero� This corresponds to a boundary layer at x � ��

Next consider the problem�

�u��� � xu�� � �� �� � x � �� u����
 � �� u���
 � �� �����


where � � �� The solution to this problem is given by

u��x
 � � �
erf� xp

��

 � erf� �p

��



�erf� �p
��



�

where

erf�x
 �
�p
�

Z x

�
e�s

�

ds�

As � tends to zero we have

u��x
	

�������
������

� x � �

�	� x � �

� x � ��

��



In this case the nonuniformity is in the interior of the domain and as � vanishes the

solution tends to a discontinuity at x � �� For this reason� this type of nonuniformity

is known as a shock layer� There are other types of nonuniformity that are possible�

for example corner layers where the limit is continuous but has a discontinuous �rst

derivative�

The examples given above are all linear problems and the theory for such prob�

lems is well understood �for example see �
��
� It is usually possible to predict in

advance from the di�erential equation� the type and the position of the nonuniformit�

ies� For nonlinear problems this is not the case and the situation is considerably more

complicated� Analysis of simple nonlinear problems can be found in ��
� and ��
��

These make use of asymptotic techniques and usually rely on being able to integrate

the reduced di�erential equation�

Integration of the reduced di�erential equation is not possible for problem ����


and so another approach is required� It happens that theory exists for a class of

problems which are very closely related to problem ����
� This theory comes from

a functional analysis approach �as opposed to an asymptotic approach
 and applies

to a general class of problems� The theory requires some adaptation before it can be

applied to ����
�

��� Functions of Bounded Variation

The theory in this chapter will make use of the class of functions which have bounded

total variation� The term bounded total variation was de�ned in section ���� and

we de�ne BV �c� d� to be the set of real functions on �c� d� which have bounded total

variation� A function u 
 BV �c� d� has the following properties�

��
 The function is bounded�

��
 All points of discontinuity are simple �u�x�
 and u�x�
 exist
 and the set of

discontinuities is countable� Also u�c�
 and u�d�
 exist�

We consider functions in BV ��� L� which satisfy the integral relationship �����
� A

more common method of de�ning weak solutions is through the use of test functions

��



�see ����� ����
� A function h is then a weak solution of the steady �ow problem if

Z L

�

��x
F �x� h�x

 � 
�x
D�x� h�x

dx � �� �����


for all 
 
 C�
���� L
� Here C�

� ��� L
 denotes the set of all continuously di�erentiable

functions with compact support on the interval ��� L
� Like the integral relation�

ship �����
� this form requires solutions to have very little smoothness� For any

given solution h we can modify the value at countably many points in an arbitrary

manner� and still obtain a weak solution� Hence equation �����
 does not de�ne a

unique value for the solution at every point� in fact it does not de�ne a unique value

anywhere� The form �����
 is more prescriptive in that a unique value for F �x� h�x



is de�ned at each point� however this does not de�ne a unique value for h�x
� To

obtain results concerning uniqueness of weak solutions� we group all the elements

in the space BV ��� L� into equivalence classes of almost everywhere equal functions�

We then construct a normalised space NBV ��� L� to contain a single representative

function from each equivalence class� as follows�

NBV �c� d� � fu 
 NBV �c� d� � u�d
 � u�d�
� u�x
 � u�x�
 for x 
 �c� d
g�

For each u 
 BV �c� d� there is a unique �u 
 NBV �c� d� such that u � �u almost

everywhere� Not only is this normalisation consistent with the relationship �����
�

but it is also sensible from a physical point of view� We expect any physical solution

to have only a �nite number of discontinuities� and such a solution in NBV ��� L�

will be a piecewise continuous function� Other possible normalisations may allow

solutions in NBV ��� L� to have points of isolated value� and such functions would

not represent a realistic depth pro�le�

Only positive depths make sense for solutions to the steady �ow problem� Fur�

thermore we only consider solutions which are bounded below away from zero� If

we allowed the depth to become arbitrarily close to zero� then this would mean that

certain physical quantities� such as the energy� become unbounded� Hence we only

consider solutions in the set NBV���� L�� where we de�ne

NBV��c� d� � fu 
 NBV �c� d� � u�x
 � C � � for c � x � d� for a constant Cg�

��



��	 The Theory of Lorenz

In this section we adapt theory from the literature so that it can be applied to prob�

lem ����
� The argument is based on work by Lorenz in ���� and can be summarised

in the following theorem�

Theorem � ������ Consider the two point boundary value problem

�u��� � f�u�
� � b�x� u�
� � � x � ��

u���
 � ��� u���
 � ���
�����


where � � �� Suppose that f 
 C������
� b 
 C� ���� ��� �����

 and that for

some constant �

bu � � � �� �����


for all u and all x 
 ��� ��� then under these conditions the following hold�

��� The problem has a unique solution u� 
 C���� �� for all � � ��

�	� The solution is uniformly bounded in �� i�e� ku�k� � K� for all � � �� where

K� is independent of ��

�
� The solution has total variation bounded in �� i�e� ku��k� � K� for all � � ��

where K� is independent of ��

��� There is a unique function U 
 NBV ��� �� such that u� 	 U in L� as � � ��

��� u � U is the only function in NBV ��� �� which satis
es the following�

�i� If I is an interval where u is continuous� then f�u�x

 is dif�

ferentiable on I� one�sided at end points� and the di�erential

equation

�f�u
� � b�x� u
�

holds on I�

������������	
�����������


�����


�ii� If u is discontinuous at x 
 ��� �
� then

f�ul
 � f�ur
 � f�k
 if ul � ur�

f�ul
 � f�ur
 � f�k
 if ul � ur�

for all k between ul � u�x�
 and ur � u�x�
�

����������	
���������


����



��



�iii� For j � �� � and k between u�j
 and �j

���
j��sgn�u�j
� �j
�f�u�j

� f�k

 � ��

where sgn�x
 � ��� �� � for x � ��� �� � �� respectively�

��������	
�������


�����


The above theory relates to a problem closely resembling problem ����
� This is

made clearer by a transformation onto the unit interval given by

u��x
 � h��xL
�

f�x� u
 � �LF �xL� u
�

b�x� u
 � L�D�xL� u
�

�����


Theorem � will be adapted to apply to this problem under certain conditions� To do

this requires some understanding of Theorem � and how it is constructed�

Part � of the theorem gives the existence and uniqueness of the solution to the

singular perturbation problem for each positive �� The existence proof relies on

Nagumo�s Lemma ����������
� which uses the fact that the problem has both upper and

lower solutions� The functions u�x
� u�x
 are upper and lower solutions� respectively�

if the following hold for all x in the interval ��� ���

��
 u � u

��
 �u�� � f�u
� � b�x� u
 � �

��
 u��
 � ��� u��
 � ��

��
 �u�� � f�u
� � b�x� u�
 � �

�

 u��
 � ��� u��
 � ��

The condition bu � � � � ensures that the constant functions

u � min
��x��

�
��
b�x� �


�
� ��� ��

�
� ��

u � max
��x��

�
��
b�x� �


�
� ��� ��

�
� ��

are upper and lower solutions� Nagumos�s Lemma gives the existence of a solution

satisfying u � u� � u �� � x � �
� The uniqueness of the solution is given by an

inverse monotonicity argument and relies on the fact that bu � ��

��



The uniform bound of part � of the theorem comes directly from the existence

proof� since the upper and lower solutions are independent of �� This bound and the

uniform bound on the total variation� from part � of the theorem� gives that the set

fu�g��� is precompact in L���� ��� Thus for any positive null sequence S � f�ng�
there is a subsequence S� � f�nkg and a function U 
 NBV ��� �� such that

u� 	 U in L� as � � �� � 
 S��

Part 
 of the theorem gives the properties of the limit function and states that there

is exactly one function in NBV ��� �� with these properties�

��
 The Modi�ed Theory

The main di�erence between problem ����
 and the problem in Theorem � is that h is

restricted to being positive for problem ����
� With such a restriction� the condition

bu � � � � is no longer su�cient to guarantee the existence of upper and lower

solutions� and in any case this condition does not hold for our particular function

b� This can be remedied by the addition of conditions �����
 which explicitly ensure

the existence of upper and lower solutions� The condition bu � � is� however� still

required� The adapted theorem is as follows�

Theorem � Consider the problem P� given by

�u��� � f�u�

� � b�x� u�
� u� � �� � � x � ��

u���
 � ��� u���
 � ���
�����


where �� ��� �� � �� f 
 C�����
� bx� bu� bux 
 C ���� ��� ����

 and

bu � �� �����


for all u � � and x 
 ��� ��� Suppose also that there are positive constants m�M

such that

b�x�m
 � � and b�x�M
 � � for all x 
 ��� ��� �����


then under these conditions the following hold�

�




��� Problem P� has a unique solution u� 
 C���� �� for all � � � and this satis
es

the bounds

� � u � u� � �u �� � x � �
� �����


where u � minf��� ���mg and u � maxf��� ���Mg�

�	� ku��k� � K� for all � � �� where K� is independent of ��

�
� There is a unique function U 
 NBV���� �� such that u� 	 U in L� as � � ��

The function U satis
es the bounds

� � u � U � �u �� � x � �
� �����


��� u � U is the only function in 
 NBV���� �� that has properties �����
� ����



and �����
�

Proof of Theorem �

Suppose that � � � � u� 
 � u and consider the problem P ���
� given by

�u��� � f����u�

� � b����x� u�
� � � x � �� � � �

u���
 � ��� u���
 � ���

where

f����u
 �

���������������������
��������������������



�
��f

���

 � �f ��

 � f�


�u� 

�

��f ��

 � f�


�u� 

 � f�


�
e��u u � 


f�u
 � � u � 




�
��f

����
 � �f ���
 � f��

�u � �
�

��f ���
 � f��

�u � �
 � f��

�
eu�� u � ��

and

b����x� u
 �

�������
������

b�x� 

 � �u� 

bu�x� 

 u � 


b�x� u
 � � u � 


b�x� �
 � �u� �
bu�x� �
 u � ��

Using this problem we prove the theorem by a sequence of results�

��



��
 Problem P ���
� satis
es the conditions of Theorem ��

The function f��� is constructed to be continuous and have continuous �rst

and second derivatives at both u � � and u � 
� hence f��� 
 C������
�

Also

b���u �x� u
 �

�������
������

bu�x� 

 u � 


bu�x� u
 � � u � 


bu�x� �
 u � ��

and

b���x �x� u
 �

�������
������

bx�x� 

 � �u� 

bux�x� 

 u � 


bx�x� u
 � � u � 


bx�x� �
 � �u� �
bux�x� �
 u � ��

so since bx� bu� bux are are continuous on ��� �� � ����
� it follows that b��� 

C����� ��� �����

� Finally

b���u � � � ��

where

� � min
��x��

��u��

fbu�x� u
g�

��
 Solutions u� of problem P� satisfy the bounds �����
�

Suppose that u� satis�es P� and that u� � u for some x 
 ��� ��� It follows that

there must be a point x� 
 ��� �
 such that

u��x�
 � u� u���x
�
 � �� u��� �x

�
 � ��

The di�erential equation at x � x� then reduces to

b�x�� u��x
�

 � �u��� �x

�
 � ��

This is a contradiction since� because u��x�
 � u � M and bu � �� we must

have

b�x�� u��x
�

 � b�x��M
 � ��

We conclude that u� � u for � � x � ��

��



Next suppose that u� � u for some x 
 ��� ��� It follows that there must be a

point x� 
 ��� �
 such that

u��x
�
 � u� u���x

�
 � �� u��� �x
�
 � ��

The di�erential equation at x � x� then reduces to

b�x�� u��x
�

 � �u��� �x

�
 � ��

but this is again a contradiction since� because u��x�
 � u � m� we must have

b�x�� u��x
�

 � b�x��m
 � ��

We conclude that u� � u for � � x � ��

��
 Solutions u� of problem P ���
� satisfy the bounds �����
�

This follows from an identical argument to ��
 above�

��
 The function u� is a solution of problem P� if and only if it is a solution of

problem P ���
� �

Suppose that u� is a solution of P ���
� � then the bounds �����
 imply that

�u��� � f�u�

� � b�x� u�
 � �u��� � f����u�


� � b����x� u�
 � ��

thus u� also satis�es P�� Conversely� suppose that u� is a solution of P�� then

the bounds �����
 imply that

�u��� � f����u�

� � b����x� u�
 � �u��� � f�u�


� � b�x� u�
 � ��

so that u� also satis�es P ���
� �

�

 Parts � and 	 of the theorem hold�

Since Theorem � holds for problem P ���
� � this problem has a unique solution

for each � � �� Now since the solutions of P� are exactly those of P ���
� � then

clearly problem P� has a unique solution for each � � �� This gives part � of

Theorem �� Part � follows immediately from part � of Theorem ��

��



��
 There is a unique function U 
 NBV���� �� such that u� 	 U in L� as � � ��

The function U satis
es the bounds �����
�

Applying part � of Theorem � to P ���
� gives that there is a unique function

U 
 NBV ��� �� such that u� 	 U in L� as � � �� We show that U satis�es the

bounds �����
 and hence is in NBV���� ���

We can choose a positive sequence S � f�ng such that �n 	 � as n	� and

u� 	 U a�e� as � � �� � 
 S�

De�ne the set

X � fx 
 ��� �� � u��x
	 U�x
 as � � �� � 
 Sg� �����


The set ��� ��nX has zero measure and the bounds �����
 clearly hold for all

x 
 X� Now for arbitrary x in ��� �
 by de�nition of the set NBV we have

U�x
 � lim
s�x
s�X

U�s
�

U��
 � lim
s��
s�X

U�s
�

and thus the bounds �����
 hold at all points� giving part � of Theorem ��

��
 Properties �����
� ����

 and �����
 hold for the function u � U �

This is simply a matter of writing down part 
 of Theorem � as applied to

problem P ���
� � The bounds on U are then used to replace f��� by f and b���

by b�

��
 The function u � U is the only function in NBV���� �� which satis
es proper�

ties �����
� ����

 and �����
�

Suppose that u � �u 
 NBV���� �� satis�es properties �����
� ����

 and �����
�

then taking

� � min
��x��

f�u�x
� ug�

 � max

��x��
f�u�x
� ug�

and writing down properties �����
� ����

 and �����
 it is clear that f can

be replaced by f��� and b replaced by b���� Part 
 of Theorem � applied to

��



P ���
� then gives that u � U is the only function in NBV ��� �� which has these

properties� Hence we must have �u � U � showing that part � of Theorem �

holds�

This completes the proof of Theorem ��

��� Application to the Steady Flow Problem

In this section we apply the theory derived in the previous section to the steady �ow

problem for a prismatic channel� to yield the following theorem�

Theorem � Consider a prismatic channel and suppose that the following hold�

��� The channel width T is continuously di�erentiable and positive for h � ��

�	� The discharge Q is positive�

�
� The bed slope S� is positive and continuously di�erentiable for � � x � L�

��� The conveyance K�h
 satis
es�

�i� K � � is continuously di�erentiable for h � ��

�ii�
Kp
A

is increasing for h � ��

�iii� K 	 � as h � ��

�iv� K 	� as h	��

�������������	
������������


�����


Under the above conditions the following hold�

��� The problem ����
 has a unique solution h� 
 C���� L� for all � � �� and this

satis
es the bounds

� � h � h� � �h �� � x � L
�

where

h � min
��x�L

fhn�x
� ��� ��g� �h � max
��x�L

fhn�x
� ��� ��g�

��



and hn�x
 is the normal depth which satis
es

K�hn�x

 �
Qq
S��x


� ����



for � � x � L�

�	� kh��k� � K� for all � � �� where K� is independent of ��

�
� There is a unique function H 
 NBV���� L� such that h� 	 H in L� as � � ��

and this satis
es the bounds

� � h � H � �h �� � x � L
� �����


��� h � H is the only function in NBV���� L� which satis
es the following�

�i� If I is an interval where u is continuous� then F �h�x

 is dif�

ferentiable on I� one�sided at end points� and the di�erential

equation

F �h
� � D�x� h
�

holds on I�

������������	
�����������


�����


�ii� If h is discontinuous at x 
 ��� L
� then

F �hl
 � F �hr
 � F �k
 if hl � hr�

F �hl
 � F �hr
 � F �k
 if hl � hr�

for all k between hl � h�x�
 and hr � h�x�
�

����������	
���������


�����


�iii� For j � �� � and k between h�jL
 and �j

���
j��sgn�h�jL
� �j
�F �h�jL

� F �k

 � ��

where sgn�x
 � ��� �� � for x � ��� �� � �� respectively�

��������	
�������


�����


Proof of Theorem � This is simply a matter of showing that Theorem � is

satis�ed for

f�u
 � �LF �u
�

b�x� u
 � L�D�xL� u
�

m � min
��x�L

fhn�x
g�
M � max

��x�L
fhn�x
g�

�����


��



Firstly we have that

F �h
 �
Q�

A�h

� gI��h
�

so that

F ��h
 � �Q
�T �h


A�h
�
� gA�h


and

F ���h
 �
�Q�T �h
�

A�h
�
� Q�T ��h


A�h
�
� gT �h
�

The condition that T is positive and continuously di�erentiable is su�cient to ensure

that F and hence f is in C�����
�

Next we have

D�x� h
 � gA�h


�
S��x
� Q�

K�h
�

�
�

so that

Dh�x� h
 � gT �h
S��x
� gQ� d

dh

�
A�h


K�h
�

�
�

Dx�x� h
 � gA�h
S���x


and

Dhx�x� h
 � gT �h
S���x
�

The assumptions on T � K and S� ensure that Dh�Dx�Dhx 
 C���� L�� ����

 and

thus bu� bx� bux 
 C���� ��� ����

� Next we observe that

d

dh

�
A�h


K�h
�

�
�

d

dh

�
� K�h
q

A�h


�
A
��

� ��

�
� K�h
q

A�h


�
A
��

d

dh

�
� K�h
q

A�h


�
A � ��

because K	
p
A is increasing in h� The assumption that S� � � implies that Dh and

hence bu is positive� Lastly we observe that

K ��h
 �
d

dh

�
�qA�h


K�h
q
A�h


�
A �

q
A�h


d

dh

�
� K�h
q

A�h


�
A�

T �h
K�h


�A�h

� ��

so since K�h
 	 � as h � � and K�h
 	� as h	�� it follows that for each x 

��� L� there is a unique hn�x
 � � satisfying ����

� BecauseK�hn�x

 � Q	

q
S��x
 is

continuous on ��� L�� it is bounded on this interval and attains its bounds� Therefore

there exist x�� x� 
 ��� L� such that K�hn�x�

 � K�hn�x

 � K�hn�x�

 for all

x 
 ��� L�� Since K is strictly increasing in h it follows that

� � hn�x�
 � hn�x
 � hn�x�
 �� � x � L
�

��



Hence hn is bounded and in particular bounded below above zero� Now taking m

and M as in �����
 and observing that D�x� hn�x

 � �� we have that

D�x�m
 � D�x� hn�x

 � �

and

D�x�M
 � D�x� hn�x

 � ��

for � � x � L� showing that �����
 holds� We have now shown that the functions

f and b given by �����
 satisfy all the conditions of Theorem �� Theorem � fol�

lows by simply writing Theorem � in terms of the functions F � D and using the

transformations

h��x
 � u��xL
� H�x
 � U�xL
�

Interpretation of Theorem � The above theorem is only an intermediate step�

however it is extremely important to this thesis� because it de�nes the conditions

under which we can make progress� The conditions of the theorem will be assumed

to hold in what follows�

Consider a function h 
 NBV���� L� which satis�es

�F �h�x

�x�x� �
Z x�

x�

D�x� h�x

dx� for all x�� x� 
 ��� L�� �����


First we observe that the integral is mathematically sensible since D�x� h�x

 is

in L���� L� and is bounded� For �xed x� the right hand side is continuous in x�

�see ��
� p����
� so it follows that F �h�x

 must be continuous on ��� L�� Thus if h is

discontinuous at x 
 ��� L
 then the jump condition

F �h�x�

 � F �h�x�

 �����


must hold� Following ��
��p����
 it can be shown that for x 
 ��� L


lim
s��

�
F �h�x� s

� F �h�x



s

�
� D�x� h�x�

�

and that for x 
 ��� L�

lim
s��

�
F �h�x� s

� F �h�x



s

�
� D�x� h�x�

�

��



Thus for an interval where h is continuous� at interior points the reduced di�erential

equation must hold since both of the one�sided derivatives equal D�x� h�x

� At any

end points the corresponding one�sided di�erential equation clearly holds� We can

now give the precise mathematical de�nitions of what we mean by a solution of the

steady �ow problem for a prismatic channel�

De	nition 
�� �Type�I Solution� A function h 
 NBV���� L� is a type�I solu�

tion of the steady �ow problem if �����
 holds and at any discontinuity x 
 ��� L


E�h�x�

 � E�h�x�

� �����


where E is given by �����
�

De	nition 
�� �Type�II Solution� A function h 
 NBV���� L� is a type�II

solution of the steady �ow problem if �����
 holds and at any discontinuity x 
 ��� L


F �k
� F �h�x�



k � h�x�

� �� for all k between h�x�
 and h�x�
� �����


The de�nition of type�I solutions corresponds to the de�nition of physical solutions

of the steady �ow problem as introduced in section ���� The de�nition of the type�

II solutions is stronger and arises naturally from our theory� Condition �����
 is

simply Oleinik�s condition for a steady shock for the problem ����
� We observed

in section ��� that any type�II solution is also type�I solution� since F �h�x�

 �

F �h�x�

 along with �����
 implies �����
 �by �����

� The converse of this is not

necessarily true� i�e� a type�I solution is not necessarily a type�II solution� In the

next section we introduce further assumptions in order that these two de�nitions are

equivalent�

We can now give the following theorem�

Theorem 
 For ��� �� � � and under the conditions of Theorem 
� the function

h � H is the only type�II solution which satis
es

��� For all k between �� and h��


sgn�h��
� ��
�F �h��

� F �k

 � ��

��	
�
 ����



�	� For all k between �� and h�L


sgn�h�L
� ��
�F �h�L

� F �k

 � ��

��	
�
 �����


��



Proof of Theorem 
 This theorem is proved in two parts� We start by demon�

strating that the function h � H is a type�II solution�

Firstly H 
 NBV���� L�� Using property � of Theorem � we have that �h�� 	 �

in L� as � � �� Hence there is a positive sequence S � f�ng with �n 	 � as n	�
and

�h�� 	 � a�e� as � � �� � 
 S�

Since h� 	 H in L� as � � ��� 
 S
� there is a subsequence S� of S such that

h� 	 H a�e� as � � �� � 
 S��

We de�ne the set

X � fx 
 ��� L� � �h���x
	 � and h��x
	 H�x
 as � � �� � 
 S�g�

where ��� L�nX has zero measure� Suppose x���x
�
� 
 X� and integrate the di�erential

equation ����
 from x�� to x�� to obtain

��h���x
�
x�
�

x�
�

� �F �h��x

�
x�
�

x�
�

�
Z x�

�

x�
�

D�x� h��x

dx�

We haveD�x� h��x

	 D�x�H�x

 a�e� as � � �� � 
 S� and the sequenceD�x� h��x



is uniformly bounded in x� therefore letting � � �� � 
 S� and using the Lebesgue

Dominated Convergence Theorem �see ref� ��
�
 and the fact that F is continuous in

h gives

�F �H�x

�
x�
�

x�
�

�
Z x�

�

x�
�

D�x�H�x

dx�

This can be shown to hold for arbitrary x�� x� in ��� L� by �rstly letting x�� 	 x�

with x�� 
 X such that H�x��
 	 H�x�
� and secondly letting x�� 	 x� with x�� 
 X

such that H�x��
 	 H�x�
� F depends continuously on h and also D�x�H�x

 
 L�

so that the integral depends continuously on its limits �see ��
� p����
� hence we have

�F �H�x

�x�x� �
Z x�

x�

D�x�H�x

dx�

Finally condition �����
 holds at all discontinuities because of �����


The second part of the proof is to show that h � H is the only type�II solution

which satis�es ����

 and �����
� Suppose that h is a type�II solution which satis�

�es ����

 and �����
� then we show that the conditions of part � of Theorem � hold

�




and therefore we must have h � H� We have already shown that �����
 implies �����


and also the equalities in �����
� The inequalities in �����
 follow from �����
� Con�

dition �����
 is clearly equivalent to ����

 and �����
� This completes the proof�

The main consequence of the above theorem is that there is at most one type�II

solution satisfying any set of boundary values� To see this� suppose that h� and h�

are type�II solutions with h���
 � h���
 and h��L
 � h��L
� Now for �� � h���


and �� � h��L
� both these solutions satisfy ����

 and �����
� so we must have

h� � h� � H� The theorem also gives a weak existence result in that for any

positive �� and �� there exists a type�II solution satisfying ����

 and �����
� In the

next section this result allows us to identify all the possible physical solutions�

The di�culty with the above theory is that it concerns only type�II solutions�

We would like to obtain theory regarding type�I solutions� since it is this de�nition

which corresponds to our original concept of what is a physically allowable solution�

The de�nitions of type�I�II solutions di�er only in the cases where the channel cross�

section admits multiple critical depths� It may be that in such cases that the second

de�nition is the appropriate de�nition of a physical solution� Such an investigation

is beyond the scope of this thesis and we avoid this di�culty by only considering the

situation where the cross�section has a single critical depth� so that the two de�nitions

are equivalent�

��
 Cross�Sections with a Single Critical Depth

In this section we simplify the previous theory by considering only channel cross�

sections with a single critical depth� The de�nitions of type�I and type�II solutions

are then equivalent and such solutions will be referred to as physical solutions� We

have already observed that any type�II solution must be a type�I solution because of

the relationship �����
� We now show that for a channel with a single critical depth

that the converse is also true� Any depth h which satis�es

F ��h
 � gA

�
� � Q�T

gA�

�
� gA��� F �

r 
 � ��

corresponds to a critical depth� so that all local extrema of F correspond to critical

depths� Suppose that h is a type�I solution� then across any discontinuity we have

��



F �h�x�

 � F �h�x�

 and E�h�x�

 � E�h�x�

� We start by showing that

F �k
 � F �h�x�

 for all k in the set

S � fk � minfh�x�
� h�x�
g � k � maxfh�x�
� h�x�
gg �

and furthermore F � F �h�x�

 for some depth in S� First suppose that F �

F �h�x�

 for some depth in S� then clearly F has a local maxima at some depth in

S� and this corresponds to a critical depth� But since F 	� as h � �� F must also

have a local minima which corresponds to a second critical depth� contradicting the

uniqueness assumption� If F �k
 � F �h�x�

 for all k in S then F ��k
 � � for all k

in S� implying an in�nite number of critical depths� Thus F �k
 � F �h�x�

 for all

k 
 S with F � F �h�x�

 for some depth in this range�

Since E�h�x�

 � E�h�x�

 the relationship �����
 implies that

Z h�x��

h�x��

T

A�
�F � F �h�x�


dh � ��

and it follows that h�x�
 � h�x�
 and hence �����
 holds� We conclude that h is a

type�II solution�

If the channel width does not approach zero as the depth becomes large� then the

situation is as in section ����� and the F has the properties discussed there� These

properties can easily be used to show that �����
 is equivalent to ����

 and �����
�

and Theorem � then reduces to the following�

Theorem 
 Suppose that ��� �� � � and that in addition to the conditions of

Theorem 
 that the following hold�

��� T � T� � � as h	�� for some constant T��

�	� There is only one positive depth hc which satis
es

A�hc
�

T �hc

�
Q�

g
�

Under these conditions the function h � H is the only physical solution which sat�

��



is
es�
��� If �� � hc then h��
 � �� or h��
 � ��� �

�	� If �� � hc then h��
 � hc�

�
� If �� � hc then h�L
 � hc�

��� If �� � hc then h�L
 � �� or h�L
 � ��� �

�������������	
������������


�����


The above theorem leads to the following results�

��
 There is exactly one physical solution h with h��
 � hc and h�L
 � hc� We

de�ne �� � h��
 and �� � h�L
�

��
 For each �� � ��
� there is exactly one physical solution h with h��
 � �� and

h�L
 � hc� We de�ne 
����
 � h�L
�

��
 For each �� � ��
� there is exactly one physical solution h with h��
 � hc and

h�L
 � ��� We de�ne 
����
 � h��
�

Part ��
 is an immediate consequence of applying Theorem 
 with �� � �� � hc� To

see part ��
� apply Theorem 
 for �� � ��
� and �� � hc to give that there is exactly

one physical solution satisfying�

h��
 � �� h�L
 � hc�

or

h��
 � ��� h�L
 � hc�

But since ��� � ��� if the second of these possibilities were satis�ed it would violate

part ��
� Hence the �rst must be satis�ed� The same type of argument can be used

to show part ��
� In fact this type of argument can be used to determine the values

of H��
 and H�L
 for any particular �� and ��� The results are given in table ����
�

This table would be of great use if only we could determine the values of ��� �� and

the functions 
����
 and 
����
� but this is not possible analytically� and can only

be done numerically� Since any physical solution must be the vanishing viscosity

solution for some choice of �� and ��� table ����
 gives all the possible physical

solutions� Any physical solution is given by one of the following four types�

��



Region Subregion H��� H�L�

�� � hc� �� � hc �� ��

��
� � �� � hc� �� � hc �� ��

�� � ��
�� �� � hc �� 
����


�� � hc� hc � �� � ��
� �� ��

�� � hc� �� � ��
� 
����
 ��

��
� � �� � hc� hc � �� � ��

� �� ��

�� � ��
�� hc � �� � ��

� �� � 
����
� �� 
����


�� � 
����
� �� ��

��
� � �� � hc� �� � ��

� �� � 
����
� 
����
 ��

�� � 
����
� �� ��

�� � ��
�� �� � ��

� �� � 
����
�� �� � 
����
� �� 
����


�� � 
����
�� �� � 
����
� 
����
 ��

�� � 
����
�� �� � 
����
� �� ��

�� � 
����
�� �� � 
����
�
Region does

not exist

Figure ���� Properties of limit solution for di�erent �� and ��

Flow subcritical at in�ow and supercritical at out�ow The only solution of

this type satis�es h��
 � �� and h�L
 � ��� This solution can be obtained as the

vanishing viscosity solution by setting �� � hc and � � �� � hc�

Flow supercritical at in�ow and supercritical at out�ow For � � �� � ��
� �

hc there is a solution with h��
 � �� and h�L
 � hc� This solution can be obtained

as the vanishing viscosity solution by setting � � �� � hc�

Flow subcritical at in�ow and subcritical at out�ow For �� � ��
� � hc there

is a solution with h��
 � hc and h�L
 � ��� This solution can be obtained as the

vanishing viscosity solution by setting �� � hc�

��



Flow supercritical at in�ow and subcritical at out�ow If �� and �� satisfy

one of the conditions below� then there is a solution which satis�es h��
 � �� and

h�L
 � ���

��
 � � �� � ��
� � hc and hc � 
����


� � �� � ��
�

��
 hc � ��
� � �� � 
����
� and �� � ��

� � hc

��
 � � �� � minf��
�� 
����


�g � hc and �� � maxf��
�� 
����


�g � hc�

From the above we observe that in order to specify the depth at in�ow with

any degree of freedom the depth speci�ed must at the very minimum correspond to

supercritical �ow �and even then there will only be solutions for certain ranges of

depth
� Similarly to specify the depth at out�ow with any degree of freedom requires

this depth to correspond to subcritical �ow� This observation agrees with the theory

of characteristics discussed in section ������

We end this section by demonstrating that practical problems exist which do

satisfy the conditions required by the theory� The major restrictions placed by theory

are as follows�

��
 The channel must be prismatic

��
 The bed slope must be positive�

��
 The conveyance must satisfy �����
�

��
 There must be only one critical depth�

The condition that the bed slope is positive appears to be the most restrictive�

However� as we demonstrate later� when this condition is violated the uniqueness

conclusions of the theory may not hold� This condition on the conveyance is only a

slightly stronger version of the condition �����
 which is used in section ������ If we

again take the form �����
 for the conveyance and and now require that

k� � �	� and � � k� � k� � �	�� �����


which includes both the Manning and Chezy forms� then conditions �����
 are sat�

is�ed for rectangular� trapezoidal and triangular channels� This can be seen by

��



using �����
 with k� replaced with k� � �	�� Such cross�sections also have a unique

critical depth �see section �����
� There is no obvious way of showing that these con�

ditions hold for a wider class of cross�sections and friction laws� other than testing

each individual case�

���� Extension of the Theory

The theory derived in this chapter has certain limitations on the situations it can be

applied to� In this section we discuss whether these limitations may be overcome�

Theorem � requires that the bed slope is positive and that �����
 holds� in order

that Dh � � for all h � � and all � � x � L� If this condition is violated� then are

the conclusions of the theorem still true We demonstrate that in general they are

not�

Consider a �well�behaved	 channel in the sense of section ������ The channel�

which need not be prismatic� has a single critical depth hc�x
 at each cross�section�

and a jump is allowable at x if and only if

h�x�
 � hc�x
 � h�x�
 � h�x�
��

Suppose that �� � hc��
� �� � hc�L
 and that the following two problems have

solutions�

F �x� h��x

� � D�x� h��x

� h��x
 � hc�x
� � � x � L�

h���
 � ���

��	
�
 �����


F �x� h��x

� � D�x� h��x

� h��x
 � hc�x
� � � x � L�

h��L
 � ���

��	
�
 �����


If we de�ne

J�x
 � F �x� h��x

� F �x� h��x

�

then any value x� 
 ��� L
 such that J�x�
 � � corresponds to a physically allowable

jump� giving a physical solution

h�x
 �

���
��
h��x
 � � x � x��

h��x
 x� � x � L�

��



which satis�es both h��
 � �� and h�L
 � ��� Thus if J has more than a single root�

then there is more than one physical solution satisfying the same boundary values�

Observe that

J ��x
 � F �x� h��x

� � F �x� h��x

� � D�x� h��x

�D�x� h��x



� Dh�x� �h�x

�h��x

� h��x

�

with h��x
 � �h�x
 � h��x
� from applying the Mean Value Theorem� If Dh � �

holds� then clearly J ��x
 � � for � � x � L� and J has at most one root� We now

demonstrate a case where J has more than one root�

The most common situation where the condition Dh � � is violated is where the

bed slope becomes zero or negative� Consider the following problem of a ���m long�

��m wide rectangular channel� carrying a discharge of ��m�	s� with bed slope given

by

S��x
 � � �


�

�
x

���
� �

�

�
�

and boundary conditions �� � ���
m� �� � ���m� We use the Manning form of

the conveyance K with n � ����
� It can be seen that S� � � for x � 
�m�

Problems �����
 and �����
 were numerically integrated using an automatic step size

Runge�Kutta�Fehlberg method with a fourth and �fth order pair� Figure ��� shows

F �x� h��x

 and F �x� h��x

� There are clearly two intersection points� so J has

two roots� The second part of the �gure shows h��x
 and h��x
 and illustrates the

allowable jumps�
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Figure ���� Construction of Multiple Solutions by Numerical Integration

��



We conclude that when Dh � � is violated� the conclusions of the theory may no

longer be true� i�e� there may be more than one physical weak solutions satisfying

identical boundary values� In a case where this happens� which of the solutions is the

solution we require It may only be possible to answer this question by examining

the transient behaviour of the �ow� For example one steady state may be arrived at

from one initial state while another steady state may be arrived at from a di�erent

initial state� If this is the case then it puts an inherent limitation on the approach of

computing the steady state �ow without regard to the transient behaviour� It may

also be true that only one of the solutions is stable in time �see section ����

� In

that case it may be possible to develop theory to determine the necessary conditions

for stability and use these to discriminate against unstable solutions�

Theorem � is only applicable to prismatic channels� There is theory similar to

Theorem � �see ����
 which allows f to depend on x as well as u� and thus could

possibly be adapted to apply to the steady �ow problem for nonprismatic channels�

The condition bu � � � � is replaced by the condition

bu � jfxuj � � � ��

If the theory were adapted to the steady �ow problem� we would now expect to

require the condition

Dh � jFxhj � ��

However it is not clear whether this condition holds for a useful class of problems�

��



Chapter �

A Class of Numerical Methods

In the previous chapter we demonstrated that under certain conditions there is at

most one physical solution to the steady Saint�Venant problem� for any given bound�

ary values� and that this solution is the vanishing viscosity solution of a second order

two�point boundary value problem� In this chapter we follow on from these ideas to

consider a family of �nite di�erence approximations to the steady �ow problem� As

before we consider only prismatic channels� although the schemes will be extended

to non�prismatic channels in Chapter �� The basis of the theory� as in the previous

chapter� is the work by Lorenz	
�� although other authors� notably Abrahamsson and

Osher	
� and Osher	���� have made signi�cant contributions� Other closely related

work by Lorenz can be found in 	
��� 	
�� and 	

��

The steady �ow equation ����
� for a prismatic channel can be written as

d

dx
f�h� � �D�x� h�� ���
�

where f�h� � �F �h� and the functions F and D are given by ����� and ����� re�

spectively� We consider approximations to this equation of the form

g�hj��� hj�� g�hj� hj���

�x
� �D�xj� hj�� �����

where xj � j�x� hj � h�xj� and �x is the uniform grid spacing� We require that

g�h� h� � f�h� ���
�

for all positive h� in order that the scheme be consistent with the di�erential equa�

tion� A motivation for considering such a scheme comes from the previous chapter

��



where we observed that under certain conditions the physical solutions of the steady

�ow problem are exactly the steady state entropy satisfying solutions of the scalar

conservation law ������ Applying a three�point conservative �nite di�erence scheme

to this scalar conservation law and using a pointwise discretisation of the source term

yields the scheme

hn��j � hnj
�t

�
g�hnj��� h

n
j �� g�hnj � h

n
j���

�x
� �D�xj � h

n
j �� �����

where hnj � h�j�x� n�t� and again ���
� is required for consistency� At steady

state this reduces to ������ In theory� almost any of the vast amount of numerical

methods for scalar conservation laws �some of which are described in Chapter 
�

could be applied to ����� and so be used to compute solutions of the steady �ow

problem� and in Chapter � we apply some specimen schemes from the literature�

From the viewpoint of theory we consider only simple schemes of the above form�

We furthermore restrict attention to the forms of the numerical �ux function g which

give rise to monotone schemes �in the sense of homogeneous scalar conservation

laws�� This includes the Engquist�Osher� Godunov and Lax�Friedrichs forms� but

excludes the �rst�order upwind form�

For homogeneous scalar conservation laws the theory for monotone schemes is

particularly rich� For example it is known that a convergent sequence of solutions

�as �x� �t � � with �t��x �xed� must always converge to an entropy satisfying

solution of the conservation law� This property often cannot be demonstrated for

other types of schemes� and in many cases� such as for the �rst�order upwind scheme�

it can be shown to be violated �see 	
���� We show that the above property carries

over into the steady �ow problem by guaranteeing convergence to the physically

allowable solution� The fact that �i� we have the addition of a source term� �ii� we

are only interested in stationary solutions and �iii� we only consider a �nite domain�

means that the basis of the theory� as in Chapter �� comes naturally from the �eld

of singular perturbation problems� rather than the �eld of conservation laws�

��



��� Theory for Monotone Schemes

At the beginning of the 
����s� authors from the �eld of conservation laws� primarily

Osher	���� recognised that the conservative approximation to the spatial derivative

could be used in approximating singular perturbation problems of the form ���
���

yielding the scheme

�
uj�� � �uj � uj��

�x�
�
g�uj��� uj�� g�uj � uj���

�x
� b�xj� uj� � ��

j � 
� � � � � N � 


u� � ��� uN � ���

�����

where �x � 
�N � xj � j�x and uj approximates u��xj�� Lorenz	
�� considers the

above scheme under the conditions of Theorem 
 and for numerical �ux functions

g which give rise to monotone schemes for scalar conservation laws� The existence

and uniqueness of the solution of the system of di�erence equations is shown for all

� � � and �x � �� This arises from the fact that the system of equations form an

M�function� The theory of M�functions is described in 	���� An alternative proof uses

the fact that a particular mapping is a contraction mapping and follows along the lines

of 	���� This second approach is more constructive since it yields a practical algorithm

for computing solutions of the system of di�erence equations� It is also shown in 	
��

that the discrete solution converges in L� �as �x and � vanish� to the vanishing

viscosity solution of problem ���
��� The family of piecewise constant extensions to

the discrete solutions� fU�x
� g�x��

��� is shown to be precompact in L�� thus any sequence

of solutions has a convergent subsequence� The Lebesgue dominated convergence

theorem is used to show that the limit de�ned by a convergent subsequence� as

�x and � vanish� satis�es the properties which characterise the vanishing viscosity

solution of ���
��� All that is required to demonstrate the precompactness is that the

discrete solution and its total variation are shown to be uniformly bounded in �x

and ��

It turns out that the order in which � and �x vanish is unimportant� For this

��



reason we may perform the limit as � vanishes immediately to obtain the scheme

g�uj��� uj�� g�uj� uj���

�x
� b�xj� uj� � ��

j � 
� � � � � N � 


u� � ��� uN � ���

�����

and we are now only concerned with the limit as �x vanishes� This scheme is clearly

of the same form as ����� for the appropriate functions f and b and a transformation

onto the interval 	�� L�� The theory of Lorenz described above is summarised by the

following theorem� This is essentially the discrete analogue of Theorem 
 with the

role of � replaced by �x� The proof can be found in 	
���

Theorem � ������ Suppose the situation is as in Theorem � and consider the

di�erence equations

Tju � �� j � 
� �� � � � � N � 


u� � ��� uN � ���
�����

where

Tju �
g�uj��� uj�� g�uj� uj���

�x
� b�xj� uj��

�x � 
�N � xj � j�x and the function g has the following properties�

��� g�u� u� � f�u� for all u � IR�

�	� For each v � IR� u �� g�u� v� is decreasing for all u � IR�

�
� For each u � IR� v �� g�u� v� is increasing for all v � IR�

��� There exists a constant l such that for all u�� u�� v�� v� � IR

jg�u�� v��� g�u�� v��j 	 l�ju� � u�j� jv� � v�j��

Under these conditions the di�erence equations have exactly one solution u�x �

�u�x
� � u�x

� � � � � � u�x
N �T for each N � IN � If U�x � L�	�� 
� denotes the piecewise

constant extension of the discrete solution given by

U�x � u�x
j for j�x 	 x � �j � 
��x� j � �� 
� � � � � N �����

then U�x � U in L� as �x � �� where U � NBV 	�� 
� is the limiting solution of

problem ���
�� as � � ��

��



The �rst condition placed on the numerical �ux function g is simply the consist�

ency condition� The second and third conditions on g ensure that that the scheme is

monotone� To be precise� when we say that the scheme is monotone� we in fact mean

that the time dependent scheme ���
�� is monotone �see section 
��� in conjunction

with an appropriate CFL condition� These conditions require g to be non�increasing

in its �rst argument and non�decreasing in its second argument� The �nal condition

requires g to be Lipschitz continuous� which is stronger than requiring continuity�

but weaker than requiring di�erentiability�

As in Chapter � we proceed to modify this theory to hold under the conditions of

Theorem �� where the solution is restricted to being positive� To do this we construct

a new problem which has identical solutions to the set of di�erence equations �at

least in some �nite region of solution space� and to which Theorem � is applicable�

Essentially we are extending the functions g� f and b to have �well�behaved� values

outside the region of interest�

Before we present the modi�ed theorem we must introduce some notation� For u�

v � IRN�� we write u 	 v if and only if ui 	 vi for each i� The analogous de�nition

applies for each of the operators �� ��� and �� We de�ne the set

	u�v� �
n
w � IRN�� � u 	 w 	 v

o

 IRN���

For the scalar quantities 	 and 
 we de�ne the vectors

� � �	�	� � � � � 	� � IRN���

� � �
� 
� � � � � 
� � IRN���

Likewise for the vectors u and u constructed from the scalar quantities u and u�

Theorem 	 Suppose the situation is as in Theorem 	 and consider the di�erence

equations ����� where now u�� u�� � � � � uN are restricted to be positive� Suppose that

for some � � 	 	 u� 
 � u the function g has the properties�

��� g�u� u� � f�u� for all u � 		� 
��

�	� u�� u�� v � 		� 
� with u� � u� implies g�u�� v� 	 g�u�� v��

�
� v�� v�� u � 		� 
� with v� � v� implies g�u� v�� � g�u� v���

��



��� There exists a constant l such that for all u�� u�� v�� v� � 		� 
�

jg�u�� v��� g�u�� v��j 	 l�ju� � u�j� jv� � v�j��

Under these conditions the di�erence equations have a unique solution

u�x � �u�x
� � u�x

� � � � � � u�x
N �T

in 	���� for each N � IN � This solution satis�es the bounds�

� � u 	 u�x
j 	 u� j � �� 
� � � � � N� �����

If U�x � L�	�� 
� denotes the piecewise constant extension of this discrete solution

given by ������ then U�x � U in L� as �x � �� where U � NBV�	�� 
� is the

limiting solution of problem P� ���
�� as � � ��

Proof of Theorem 	 The proof of Theorem � shows that the problem P ���
� satis�es

Theorem 
 and that problems P� and P ���
� have identical solutions and hence identical

limiting solutions� We consider the following set of di�erence equations

T ���
j u � �� j � 
� �� � � � � N � 


u� � ��� uN � ���
���
��

where

T ���
j u �

g����uj��� uj�� g����uj� uj���

�x
� b����xj� uj��

The function g��� is constructed so as to match up with g on the region 	 	 u 	 
�

	 	 v 	 
 and also to satisfy the conditions of Theorem �� De�ne the function g���

by

g����u� v� � g����u�� ���v�� � q�����u��	� � q�����u��
�

�q�����v��	� � q�����v��
��

where

q��u� z� �
Z u

z
minf�f������s�� �gds�

q��v� z� �
Z v

z
maxf�f������s�� �gds�

��



���u� �

�������
������


 u � 


u 	 	 u 	 


	 u � 	�

���u� �

���
��

	 u � 	

u u 	 	�

and

���u� �

���
��


 u � 


u u � 
�

We start by showing that conditions �
����� of Theorem � hold for g���� Firstly we

have that

g����u� u� � g����u�� ���u�� � q�����u��	� � q�����u��
�

�q�����u��	� � q�����u��
�

� f�������u�� �
Z ���u�

�
�f������s�ds�

Z ���u�

�
�f������s�ds

� f�������u�� � f�������u��� f����	� � f�������u��� f����
�

� f����u��

so condition �
� holds� Secondly for u� � u� we have

g����u�� v�� g����u�� v� � g����u��� ���v��� g����u��� ���v��

�
Z ���u��

���u��
minf�f������s�� �gds

�
Z ���u��

���u��
minf�f������s�� �gds

	 ��

since �j�u�� � �j�u�� for j � 
� �� 
� Similarly for v� � v� we have

g����u� v��� g����u� v�� � g����u�� ���v���� g����u�� ���v���

�
Z ���v��

���v��
maxf�f������s�� �gds

�
Z ���v��

���v��
maxf�f������s�� �gds

� ��

since �j�v�� � �j�v�� for j � 
� �� 
� It follows that g����u� v� is decreasing in u and

increasing in v giving properties ��� and �
�� Finally we demonstrate that g����u� v�

��



is Lipschitz continuous� The �rst term is Lipschitz continuous since for j � 
� �� 


and for each u�� u� � IR we have

j�j�u��� �j�u��j 	 ju� � u�j�

so that for u�� u�� v�� v� � IR we have

jg����u��� ���v���� g����u��� ���v���j 	 l�j���u��� ���u��j� j���v��� ���v��j�

	 l�ju� � u�j� jv� � v�j��

Next choose a constant l� such that j�f������u�j 	 l� for all u� Such a constant exists

since �f������u�� � as u���� Now

jq�����u���
�� q�����u���
�j �

�����
Z ���u��

���u��
minf�f������s�� �gds

�����
	 l�j���u��� ���u��j

	 l�ju� � u�j�

The same argument shows that the remaining terms also have a Lipschitz constant

l�

Applying Theorem � we deduce that the di�erence equations ���
�� have a unique

solution� We show that this solution is in 	���� and so must also solve equa�

tions ������ Furthermore this is the only solution contained in this set� Suppose

that u � �u�� u�� � � � � uN�T is the solution to ���
�� and let j�� j� be such that

uj� 	 uj 	 uj�� j � �� 
� � � � � N�

If uj� � u then using the di�erence equation for j � j� yields

�b����xj�� uj�� �
g����uj���� uj��� g����uj� � uj����

�x

�
g����uj���� uj��� g����uj� � uj�� � g����uj� � uj��� g����uj�� uj����

�x

� ��

since uj��� 	 uj� and uj��� 	 uj� � But b
����x� u� � � for u � u which is a contradic�

tion� so we must have uj� 	 u� Next suppose that uj� � u� then using the di�erence

�




equation for j � j� yields

�b����xj�� uj�� �
g����uj���� uj��� g����uj� � uj����

�x

�
g����uj���� uj��� g����uj� � uj�� � g����uj� � uj��� g����uj�� uj����

�x

	 ��

since uj��� � uj� and uj��� � uj�� But b����x� u� � � for u � u which is again a

contradiction� so we must have uj� � u� Since u � 	u�u� 
 	���� we have

Tju � T ���
j u � �� for j � 
� � � � � N � 
�

Hence the solution of di�erence equations ���
�� is also a solution of di�erence equa�

tions ������ Clearly this can be the only solution of ����� in 	���� since any other

solution must also be a solution of ���
�� violating the uniqueness given by The�

orem ��

Finally we deduce the required convergence result for the limit �x tends to zero�

If u�x denotes the unique solution of ����� in 	����� then from the above this is

also the unique solution of ���
��� Application of Theorem � to the di�erence equa�

tions ���
�� states that the piecewise constant extension of this solution converges in

L� to the limit solution of problem P ���
� as �x� �� But from the proof of Theorem �

this limit solution is also the limit solution of problem P�� This gives the required

result and completes the proof of the theorem�

In the above theorem the conditions on the numerical �ux function are essentially

those of the original theory� however in this case we only require these conditions

to hold over a �nite range and we say that the scheme is monotone over this range�

In return the theorem gives only the uniqueness of the solution in this range and

does not preclude the existence of other solutions not wholly contained in this range�

However if conditions 
�� of Theorem � hold for all positive 	 and 
 then the system

of di�erence equations will have only one positive solution� although this will not be

the case for all the forms of g we consider�

Theorem � can straightforwardly be applied to the steady �ow problem� under

the conditions of Theorem 
� by transforming problem ����� onto the unit interval�

We postpone this until section ��
 and �rst consider a method for computing the

solution of the system of di�erence equations�

��



��� The Time Stepping Iteration

In this section we consider a method for solving the system of di�erence equations�

The theory relies on the following lemma which is simply an application of the con�

traction mapping theorem�

Lemma 
�� Consider the function G � 	c�d� �� IRN where c�d � IRN � If G is

such that

��� G�c� � c and G�d� 	 d

�	� For each u�� u� � 	c�d��

G�u���G�u�� � M�u� � u���

where the matrix M has all non
negative elements and kMk� 	 k � 
 with k

independent of u� and u�

then we have

��� G�	c�d�� 
 	c�d�

�	� The mapping G has exactly one �xed point

�
� Given any starting vector u� � 	c�d�� the sequence

un�� � G�un�� n � �� 
� �� � � � ���

�

converges to the �xed point u as n � � and we have the convergence rate

estimate

kun � uk� 	 knku� � uk� 	 ku� � uk�e
�n���k��

Proof

Given any vectors u�� u� � 	c�d� with u� � u� we have

G�u���G�u�� � M�u� �u�� � ��

because the matrixM has all non�negative elements� Hence for arbitrary u� � 	c�d�

we have by de�nition c 	 u� 	 d which implies

c 	G�c� 	 G�u�� 	 G�d� 	 d�

�




This demonstrates that G maps onto its own domain� The contractivity of G then

gives the uniqueness and existence of the �xed point by the contraction mapping

theorem �for example see ref� 	��� section ��
�
�� The convergence of the sequence

given by ���

� arises from observing observing that

kun � uk� � kG�un����G�u�k� 	 kkun�� � uk��

and hence by induction

kun � uk� 	 knku� � uk� 	 ku� � uk�e
�n���k��

Here we have used the fact that k 	 e����k� for k � 	�� 
�� This completes the proof�

Under the conditions of Theorem � we apply the above lemma to the mapping

G � 	���� �� IRN���

given by

G�u� �

�
�������������������	

��

u� ��tT�u
���

uj ��tTju
���

uN�� ��tTN��u

��



��������������������

� ���
��

where �t � �� Notice that a vector u is a �xed point of this mapping if and only it

is a solution of the di�erence equations ������ We �rst show that G has property �
�

of the lemma� We have

G��� �

�
�������������������	

��

	��tb�x�� 	�
���

	��tb�xj� 	�
���

	 ��tb�xN��� 	�

��



��������������������

� ��

��



since 	 	 u � minf��� ���mg and hence b�xj� 	� 	 �� Also we have

G��� �

�
�������������������	

��


 ��tb�x�� 
�
���


 ��tb�xj� 
�
���


 ��tb�xN��� 
�

��



��������������������

	 ��

since 
 � u � maxf��� ���Mg and hence b�xj� 
� � ��

We next investigate the circumstances under which G satis�es condition ��� of

Lemma ��
� For u�� u�� v�� v� � 		� 
� we de�ne the functions

lu�u�� u�� v�� �

����
���

g�u�� v��� g�u�� v��

u� � u�
if u� 
� u�

� if u� � u��

���

�

and

lv�u�� u�� v�� �

����
���

g�v�� u��� g�v�� u��

u� � u�
if u� 
� u�

� if u� � u��

���
��

which from the properties of g are bounded and satisfy

lu�u�� u�� v�� 	 �� lv�u�� u�� v�� � ��

We can now write

g�u�� v��� g�u�� v�� � g�u�� v��� g�u�� v�� � g�u�� v��� g�u�� v��

lu�u�� u�� v���u� � u�� � lv�v�� v��u���v� � v���

Using this relationship and applying the mean value theorem to the di�erence in the

term involving b� we can for u�v � 	���� write

G�u��G�v� � M�u� v��

��



where the tri�diagonal matrix M is given by

BBBBBBBBBBBBBBBBBBB�

�

p� q� r�
� � � � � � � � �

pj qj rj
� � � � � � � � �

pN�� qN�� rN��

�

�
CCCCCCCCCCCCCCCCCCCA

� ���
��

with

pj �
�t

�x
lv�uj��� vj��� vj��

qj � 
��t

�
lv�uj� vj� vj���� lu�uj� vj�uj���

�x
� bu�xj� �uj�

�

� 
��tbu�xj� �uj� � pj�� � rj���

rj � �
�t

�x
lu�uj��� vj���uj��

and �uj � 		� 
�� We have that pj � rj � �� and if we require that �t be chosen such

that

�t

�
lv�u�� u��u��� lu�u�� u��u	�

�x
� bu�xj� u
�

�
	 
�

for all u�� u�� u�� u	� u
 � 		� 
� and � 	 j 	 N�

���
��

then it follows also that qj � �� It is always possible to choose such a value for �t

since the coe�cient of �t is positive and bounded�

To compute the L� norm of the matrix M we need to compute the sum of each

column� The sum of the �rst column is p�� If

� � min
��j�N
��u��

fbu�xj� u�g� ���
��

then using condition ���
�� with the correct values we obtain

p� 	 
 ��tbu�x�� u�� �
lu�u�� v��u��

�x
	 
 ��t��

since lu 	 �� The sum of the second column is given by

q� � p� � 
 ��tbu�x�� �u��� r� 	 
��t��

��



since r� � �� For the jth column �
 	 j 	 N � �� the sum is given by

rj�� � qj�� � pj � 
��tbu�xj��� �uj��� 	 
��t��

The same argument shows that the remaining two column sums satisfy the same

bound� hence we conclude that

kMk� 	 
��t� � 
�

We can obtain a slightly less restrictive requirement on the parameter �t than

given by ���
�� if the function g�u� v� is assumed to be continuously di�erentiable

for all u� v � 		� 
�� In this case the function G is Frechet�di�erentiable and for

u�v � 	���� we can write

G�u��G�v� � M�u� v��

where

M �
Z �

�
G��u� s�v � u��ds�

�see 	���� sections 
���� and 
������ The Jacobian G��u� is again of the form ���
��

where now

pj �
�t

�x
gv�uj� uj����

qj � 
��t

�
gv�uj��� uj�� gu�uj� uj���

�x
� bu�xj� uj�

�

� 
��tbu�xj� uj�� pj�� � rj���

rj � �
�t

�x
gu�uj��� uj��

As before pj � rj � �� but in this case the condition

�t

�
gv�u�� u��� gu�u�� u��

�x
� bu�xj� u��

�
	 
�

for all u�� u�� u� � 		� 
� and � 	 j 	 N�

���
��

is su�cient to ensure qj � ��

We estimate the L� norm of the matrix G��u� by computing the sum of each

column� The sum of the �rst column is p�� and using condition ���
�� with the

correct values we obtain

p� 	 
 ��tbu�x�� u�� �
gu�u�� u��

�x
	 
��t��

��



since gu 	 �� The sum of the second column is given by

q� � p� � 
 ��tbu�x�� u��� r� 	 
��t��

since r� � �� For the jth column �
 	 j 	 N � �� the sum is given by

rj�� � qj�� � pj � 
��tbu�xj��� uj��� 	 
��t��

The same argument shows that the remaining two column sums satisfy the same

bound� hence we conclude that

kG��u�k� 	 
��t��

It follows that

kMk� �
����
Z �

�
G��u� s�v � u��ds

����
�
	
Z �

�
kG��u� s�v � u��k�ds 	 
��t� � 
�

From the above discussion we obtain the following Theorem�

Theorem 
 Suppose the situation is as in Theorem � and that either �i� �t � �

satis�es condition ���
�� or �ii� the function g�u� v� is continuously di�erentiable for

all u� v � � and �t � � satis�es condition ���
��� Under these conditions the the

mapping ���
�� has exactly one �xed point u which is the only solution in 	���� of

the di�erence equations ������ For any initial guess u� � 	���� the iteration

un�� � G�un�� n � �� 
� �� � � �

converges to the �xed point as n�� and we have the convergence rate estimate

kun � uk� 	 �
��t��nku� �uk� 	 ku� � uk�e
�n�t��

where � is given by ���
�� and � 	 
 ��t� � 
�

The above theorem demonstrates that we may compute the solution of the system

of di�erence equations simply by computing the sequence of vectors un�� � G�un��

n � �� 
� � � � with u� an arbitrary starting vector� We can rearrange this iteration to

obtain
un��j � unj

�t
�
g�unj��� u

n
j �� g�unj � u

n
j���

�x
� �b�xj� u

n
j �� ���
��

��



j � 
� � � � � � N � 
� where un� � �� and unN � ��� This is a �rst order time accurate

approximation to the partial di�erential equation


u


t
�





x
f�u� � �b�x� u�� � 	 x 	 
�

and the condition on the time step �t plays the role of the CFL condition�

��� Application to the Steady Flow Problem

In this section we apply the theory from the previous section to the steady �ow prob�

lem� Application of Theorem � under the conditions of Theorem 
 yields the following

theorem� Any discussion throughout the remainder of this chapter assumes that the

problem satis�es the conditions of Theorem 
 and also the additional assumptions of

Theorem ��

Theorem � Suppose the situation is as in Theorem 
 and consider the di�erence

equations

Tjh � �� j � 
� �� � � � � N � 


h� � ��� hN � ���
������

where

Tjh �
g�hj��� hj�� g�hj � hj���

�x
�D�xj � hj��

�x � L�N and xj � j�x� Suppose that for some � � 	 	 h� 
 � h the function g

has the properties�

��� g�u� u� � �F �u� for all u � 		� 
��

�	� u�� u�� v � 		� 
� with u� � u� implies g�u�� v� 	 g�u�� v��

�
� v�� v�� u � 		� 
� with v� � v� implies g�u� v�� � g�u� v���

��� There exists a constant l such that for all u�� u�� v�� v� � 		� 
�

jg�u�� v��� g�u�� v��j 	 l�ju� � u�j� jv� � v�j��

Under these conditions the di�erence equations have a unique solution

h�x � �h�x
� � h�x

� � � � � � h�x
N �T

��



in 	���� for each N � IN � This solution satis�es the bounds�

� � h 	 h�x
j 	 h� j � �� 
� � � � � N� ����
�

If H�x � L�	�� L� denotes the piecewise constant extension of this discrete solu


tion given by

H�x � h�x
j for j�x 	 x � �j � 
��x� j � �� 
� � � � � N ������

then H�x � H in L� as �x� �� where H � NBV�	�� L� is the limiting solution of

problem ����� as � � ��

Proof of Theorem � As in the proof of Theorem 
 we write

f�u� � �LF �u��

b�x� u� � L�D�xL� u��

to transform the continuous problem ����� onto the unit interval� This problem then

satis�es the conditions of Theorem �� Likewise transform the discrete problem onto

the unit interval by writing

uj � hj�

 g�u� v� � Lg�u� v��

� x � �x�L�

giving

 Tju �
 g�uj��� uj��  g�uj� uj���

� x
� b�xj� uj� � �� j � 
� �� � � � � N � 


u� � ��� uN � ���

Theorem � is directly applicable to this system and the result is obtained by writing

the conclusions of Theorem � in terms of the original variables�

For a scheme which is monotone on the interval 		� 
�� the above theorem gives

the existence and uniqueness of the system of di�erence equation in 	����� More

importantly the theorem demonstrates the convergence of the discrete solution to

the vanishing viscosity solution of problem ������ which is a physical solution of the


��



steady �ow problem� Moreover under the conditions of section ��� we demonstrated

that any physical solution of the steady �ow problem is a vanishing viscosity solution

of ����� for the appropriate choice of �� and ��� Hence by choosing the correct values

for these boundary values the solution of the di�erence equations can approximate

any physical solution of the steady �ow problem we require� The convergence result

is not as strong as we would like� since in general we compute the solution for only

one grid spacing and the theory gives no indication of the �closeness� of the discrete

solution to the exact solution� It may be that N is required to be unrealistically large

before an acceptable approximation is obtained� This is not expected to be the case�

since such schemes have been successful in many other applications� The following

corollary to Theorem � gives conditions under which the solution of the di�erence

equations is globally unique� The proof follows trivially from Theorem ��

Corollary ��� Suppose that the conditions of Theorem 
 hold and that g satis


�es the conditions �
� of Theorem � for any positive 	 and 
� then the system of

di�erence equations ������ have exactly one positive solution�

We next apply the theory for the time stepping iteration to the steady �ow problem

to obtain the following Theorem�

Theorem �� Suppose the situation is as in Theorem � and that at least one of

the following conditions holds�

��� �t � � satis�es

�t

�
lv�h�� h��h��� lu�h�� h��h	�

�x
�Dh�xj� h
�

�
	 
�

for all h�� h�� h�� h	� h
 � 		� 
� and � 	 j 	 N�

����
�

where lu� lv are given by ���

� and ���
���

�	� The function g�u� v� is continuously di�erentiable for all u� v � � and �t � �

satis�es

�t

�
gv�h�� h��� gu�h�� h��

�x
�Dh�xj� h��

�
	 
�

for all h�� h�� h� � 		� 
� and � 	 j 	 N�

������


�




Under these conditions the mapping ���
�� has exactly one �xed point h which is

the only solution in 	���� of the di�erence equations ������� For any initial guess

h� � 	���� the iteration

hn�� � G�hn�� n � �� 
� �� � � �

converges to the �xed point as n�� and we have the convergence rate estimate

khn � hk� 	 �
��t��nkh� � hk� 	 ku� � uk�e
�n�t�� ������

where

� � min
��j�N
��h��

fDh�xj� h�g�

and � 	 
��t� � 
�

Proof of Theorem �� We apply the same transformation as in the proof of The�

orem � to the mapping ���
�� with �t � L�� t to gain a mapping of the same form

with the addition of tildes to the appropriate variables� Applying Theorem � and

writing the conditions on � t in terms of the original variables� gives the required

result�

��� Numerical Flux Functions giving Monotone Schemes

In this section we consider the various well known forms of the numerical �ux function

g which satisfy conditions 
�� of Theorem �� These are the Engquist�Osher� Godunov

and Lax�Friedrichs forms and are those which give rise to monotone schemes for

scalar conservation laws� Although the functions can easily be written in terms of

the quantity F � we write them in terms of the quantity f � �F so that the forms

can be easily recognized from the literature�

The Engquist�Osher numerical �ux function is given by

g�u� v� � f��u� � f��v� � f�c�� ������

where

f��u� �
Z u

c
minff ��s�� �gds�

f��u� �
Z u

c
maxff ��s�� �gds


��



and c � � is arbitrary� This choice of g is continuously di�erentiable and we have

gu�u� v� � f ���u� � minff ��u�� �g 	 ��

gv�u� v� � f ���v� � maxff ��v�� �g � ��

Also we have g�u� u� � f�u� for positive u� so that conditions 
�� of Theorem � are

satis�ed for any choice of 	 and 
� Hence under the conditions of Theorem 
 the

conclusions of Theorem � are true� Theorem � does not show the global uniqueness

of the discrete solution� however since the conditions on g hold for arbitrary 	 and


� the corollary to the theorem is valid� giving the global uniqueness�

Using the fact that g is continuously di�erentiable� the stronger form of the CFL

condition �condition ����� is su�cient to guarantee convergence of the time stepping

iteration� This condition reduces to the requirement that

�t

�
jf ��h�j

�x
�Dh�xj� h�

�
	 
� ������

for all h � 		� 
� and � 	 j 	 N � This is now more recognisable as being a CFL

condition� The second term� due to the presence of the source term� diminishes in

in�uence as the grid is re�ned� For small �x we essentially return to the traditional

requirement that
�t

�x
jf ��h�j 	 
�

at all times� In general the function f is unbounded as the depth tends to zero or

tends to in�nity� so we cannot choose a single time step which satis�es the CFL

condition ������ for all values of 	 and 
� Thus the allowable time step will be

dependent on the a�priori bounds on the solution and the choice of initial data� We

discuss in the next section how to �nd an allowable range for �t in practice�

The Godunov form of the numerical �ux function is given by

g�u� v� �

���
��

maxff�w� � u 	 w 	 vg for u 	 v

minff�w� � v 	 u 	 vg for v 	 u�
������

In this case g is not everywhere di�erentiable� It is not di�cult to demonstrate that

if h�� h�� h� � 		� 
�� then

� 	 �lu�h�� h��h�� 	 jf �j ������


�




and

� 	 lv�h�� h��h�� 	 jf �j� ���
��

where

jf �j � max
��h��

fjf ��h�jg�

Since the consistency condition also holds then g satis�es conditions 
�� of Theorem ��

hence under the conditions of Theorem 
 the conclusions of Theorem � are true�

Again the conditions on g hold for arbitrary 	 and 
� thus the corollary to the

Theorem gives the global uniqueness of the discrete solution�

Since in this case the numerical �ux function is not everywhere di�erentiable�

we must use the weaker form of the CFL condition �condition ���
� to ensure the

convergence of the time stepping iteration� Using the bounds ������ and ���
��� the

requirement that

�t

�
�jf ��h��j

�x
�Dh�xj� h��

�
	 
� ���

�

for all h�� h� � 		� 
� and � 	 j 	 N can be seen to be su�cient� The di�erence

between this condition and that for the Engquist�Osher form is the addition of the

factor two in the �rst term� Hence as �x becomes small the condition will only allow

a time step of half that allowed by the Engquist�Osher scheme� It is likely that more

thorough analysis� using the fact that g is only non�di�erentiable on isolated curves

in the u�v space� can eliminate this extra factor from the CFL condition�

The Lax�Friedrichs form of the numerical �ux function is given by

g�u� v� �



�
�f�u� � f�v� � ��v � u�� � ���
��

where � is some parameter to be chosen� This form of g is continuously di�erentiable

and we have

gu�u� v� �



�
�f ��u�� ��

and

gv�u� v� �



�
�f ��v� � �� �

Since in general f � is unbounded as the depth tends to zero or in�nity� we cannot

choose a single value of the parameter � such that gu 	 � and gv � � for all positive


��



values of u and v� The best we can achieve is to enforce these conditions to hold

over the �nite range 	 	 u� v 	 
� by taking � such that

� 	 jf ��h�j� for all 	 	 h 	 
� ���

�

Conditions 
�� of Theorem � are then satis�ed� and under the conditions of The�

orem 
 the conclusions of Theorem � are true� In this case� however� the corollary

to Theorem � is not valid and thus the discrete solution may not be globally unique�

The theory does not preclude the existence of other solutions which are not con�

tained in the set 	����� This is not signi�cant if we intend to use the time stepping

iteration to solve the di�erence equations� since this is guaranteed to converge to

the solution which is contained in 	����� and is the solution that converges to the

vanishing viscosity solution as �x � �� For other methods there is usually no such

guarantee and the possibility of obtaining unphysical solutions cannot be ruled out�

For the Lax�Friedrichs form the stronger form of the CFL condition reduces to

the requirement that

�t

�
�

�x
�Dh�xj� h�

�
	 
� ���
��

for all h � 		� 
� and � 	 j 	 N � The requirement ���

� means that the condi�

tion ������ is su�cient to ensure convergence�

In practice the channel cross�sections considered in this thesis all satisfy not only

the conditions of Theorem 
 but also the extra requirements of Theorem � which

essentially require there to be only one critical depth hc� Under these conditions we

have

f ��h� � � for h � hc�

f ��hc� � ��

f ��h� � � for h � hc

These properties hold if f is concave and the Engquist�Osher and Godunov numerical

�ux functions simplify to the same forms as for a concave f � In the case of the


��



Engquist�Osher scheme we have

g�u� v� �

����������
���������

f�v� u 	 hc� v 	 hc

f�hc� u 	 hc� v � hc

f�u� � f�v�� f�hc� u � hc� v 	 hc

f�u� u � hc� v � hc

���
��

and for the Godunov scheme we have

g�u� v� �

����������
���������

f�v� u 	 hc� v 	 hc

f�hc� u 	 hc� v � hc

minff�u�� f�v�g u � hc� v 	 hc

f�u� u � hc� v � hc�

���
��

These two forms di�er in only one quadrant of the u�v plane� If we consider the

terms in the di�erence equations of the form g�hj��� hj�� then the two forms are only

di�erent in the case hj�� � hc� hj 	 hc which corresponds to a hydraulic jump�

In a sense the Godunov form is the one to compare other forms with since� for

the Riemann problem for scalar homogeneous conservation laws� it gives the exact

�ux across the center for both rarefaction waves and shocks �see section 
���� The

Engquist�Osher form gives the correct �ux for a rarefaction wave� but not in general

for a shock� Compare also the numerical �ux function for the �rst�order upwind

scheme which reduces to

g�u� v� �

����������
���������

f�v� u 	 hc� v 	 hc

maxff�u�� f�v�g u 	 hc� v � hc

minff�u�� f�v�g u � hc� v 	 hc

f�u� u � hc� v � hc�

���
��

Again this form only di�ers from the Godunov version in one quadrant� in this case

corresponding to a smooth transition �steady rarefaction wave�� The above form of

g does not satisfy conditions � and 
 of Theorem � for any range of depths which

includes the critical depth� For example if u � hc and v � hc with f�u� � f�v�� then

we have g�u� v� � maxff�u�� f�v�g � f�u� and gu�u� v� � f ��u� � ��


��



��� Theory into Practice

In this section we describe how to carry out the necessary steps to utilise the theory

and obtain an e�cient� robust and practical algorithm for computing solutions to

the steady �ow problem� We consider the following �ve steps�

�
� Choose the values for �� and ���

��� Determine bounds on the normal depth for the problem and hence �nd bounds

on the exact solution�

�
� Choose the starting vector h� for the time stepping iteration and then appro�

priate values for 	 and 
�

��� Ensure the numerical �ux function satis�es conditions 
�� of Theorem ��

��� Find a value of �t which satis�es the CFL condition and hence guarantees the

convergence of the time stepping iteration�

For a given problem� the �rst step is to choose values for �� and �� in order

to give the required solution� In section ��� we observed that there are essentially

four types of problem to solve� These are �i� the �ow is supercritical at in�ow and

supercritical at out�ow with the depth speci�ed at in�ow� �ii� the �ow is subcritical

at in�ow and out�ow with the depth speci�ed at out�ow� �iii� the �ow is supercritical

at in�ow and is subcritical at out�ow with the depth speci�ed at both in�ow and

out�ow� and �iv� the �ow is subcritical at in�ow and supercritical at out�ow with

the depth speci�ed at neither end of the reach� Section ��� describes the appropriate

values for �� and �� such that in each case the vanishing viscosity solution of the

singular perturbation problem is the required solution of the steady �ow problem�

From Theorem � the solution of the di�erence equations converges to the vanishing

viscosity solution as �x � �� so we retain the same choice of �� and �� for the discrete

system� To recap brie�y� if the depth is speci�ed at in�ow then �� is taken to be

this value otherwise we set �� � hc� If the depth is speci�ed at out�ow then we take

�� to be this value otherwise we set � � �� 	 hc� We will see later in this section

that when the depth is not speci�ed at a boundary� then it is advantageous to take


��



the corresponding �j as the critical depth since this minimises the range over which

the CFL condition must hold�

The next step is to obtain bounds for the normal depth hn� The normal depth is

de�ned by

K�hn�x�� �
Qq
S��x�

�

The conditions of Theorem � imply that the conveyance K is a strictly increasing

function of depth� so that the normal depth is a strictly decreasing function of bed

slope� Thus if S�
� and S�

� are such that

� � S�
� 	 S��x� 	 S�

�� for � 	 x 	 L�

and h�n� h
�
n solve

K�h�n� �
Qq
S�
�

���
��

and

K�h�n� �
Qq
S�
�

� ���
��

respectively� then we have

h�n 	 hn�x� 	 h�n� for � 	 x 	 L�

The bounds on the exact solution given by Theorem � are

h 	 h�x� 	 h� for � 	 x 	 L�

where we have

h � max
��x��

fhn�x�� ��� ��g 	 minfh�n� ��� ��g

and

h � min
��x��

fhn�x�� ��� ��g � minfh�n� ��� ��g�

Equations ���
�� and ���
�� can be solved simply by using Newton�Raphson�

The initial vector h� for the time stepping iteration can be taken as any positive

vector and the 	 and 
 are then required to be such that � � 	 	 h� 
 � h and

h� � 	����� The values

	 � min
��j�N

fh�j � h
�
n� ��� ��g


��



and


 � max
��j�N

fh�j � h
�
n� ��� ��g

achieve this� Since the CFL condition is to hold over the range 	 	 h 	 
� we would

like this range to be as small as possible� To achieve this we take the initial vector

such that �� 	 h�j 	 �� for � 	 j 	 N � For example we could vary the initial data

linearly between the end values �� and ��� We can now use the values

	 � minfh�n� ��� ��g

and


 � maxfh�n� ��� ��g�

Note also that if the depth is not speci�ed at a particular end of the channel� then

the tightest bounds on the solution and the smallest interval 		� 
� are obtained by

setting the corresponding �j to the critical depth�

The next step is to ensure that the numerical �ux function g satis�es conditions


�� of Theorem � for the choice of 	 and 
� This step is achieved automatically

for the Engquist�Osher and Godunov forms� For the Lax�Friedrichs form we must

choose the parameter � such that ���

� is satis�ed� In general to �nd a bound for

jf �j we must use a graphical method or an automated algorithm with some kind of

sampling procedure� However the bound can be found analytically for certain types

of cross�section� For example if we consider the trapezoidal family of channels� where

the width is given by

T �h� � B � zh �B� z � �� B � z � ��� ������

then f ��hc� � � and

f ���h� � �
�Q�z�

h�B � hz��
�

�Q�z

h��B � hz��
�

�Q�

h��B � hz�
� g�B � �hz� � ��

In this case we have

max
��h��

fjf ��h�jg � maxff ��minf	� hcg���f
��maxf
� hcg�g � ����
�

The �nal step is �nd a value for the time step which satis�es the appropriate

CFL condition and hence ensures the convergence of the time stepping iteration�


��



The convergence rate estimate ������ indicates that a larger value of �t can yield a

faster rate of convergence� so it is of interest to �nd the greatest time step allowable

by the CFL condition� For all the three forms of g discussed in the previous section�

the CFL condition can be written as

�t!�xj � h�� h�� 	 
�

for j � �� 
� � � � � N and all h�� h� � 		� 
�� The greatest allowable time step is then

given by

�topt �



� max

��j�N
h��h�������

f!�xj� h�� h��g

�
A
��

�

We are therefore required to maximise the function ! over at most three parameters

�actually two in the case of the Engquist�Osher and Lax�Friedrichs forms�� The �rst

step is to observe that in all three cases


!


S�
�

Dh


S�
� gT � ��

so that ! is increasing in bed slope� Thus if j� and j� are such that

S��xj�� 	 S��xj� 	 S��xj��� � 	 j 	 N�

then

max
��j�N

h��h�������

f!�xj � h�� h��g � max
h��h�������

f!�xj�� h�� h��g�

reducing by one the number of variables over which we must maximise� This leaves

only one variable for the Engquist�Osher and Lax�Friedrichs forms� For a general

channel cross�section this must be carried out graphically or automated using a

sampling procedure� However in some cases further progress can be made analytic�

ally� For the Engquist�Osher form we have

!�xj� � h�� h�� �
jf ��h��j

�x
�Dh�xj�� h��

	



�x
max
h������

fjf ��h�jg� max
h������

fDh�xj�� h�g�

For the Godunov scheme we have

!�xj� � h�� h�� �
�jf ��h��j

�x
�Dh�xj� � h��

	
�

�x
max
h������

fjf ��h�jg� max
h������

fDh�xj�� h�g�



�



For the Lax�Friedrichs scheme we have

!�xj� � h�� h�� �
�

�x
�Dh�xj�� h��

	
�

�x
� max

h������
fDh�xj� � h�g�

To compute an upper bound for !�xj�� h�� h�� in each case only requires upper bounds

for the terms jf ��h�j and Dh�xj�� h�� If we again consider the trapezoidal class of

channel cross�sections� then we have already observed that the maximum of jf �j is

given by ����
�� For the choice of Manning friction or Chezy friction it can be shown

that
d�

dh�

�
A

K�

�
� ��

hence since

Dh � g

�
TS� �Q� d

dh

�
A

K�

��

and T � � �� it follows that

max
h������

fDh�xj� � h�g 	 g

�
T �
�S��xj���Q� d

dh

�
A

K�

������
h
�

�
�

Combining the above bounds yields an upper bound for !�xj� � h�� h��� and thus a

lower bound for �topt� The di�erence between this lower bound and the optimum

value decreases as �x becomes smaller since the relative importance of the term Dh

decreases� We can also use the same idea as above to obtain a lower bound for the

convergence rate � in equation ������� This is given by

� � min
��j�N
h������

fDh�xj� h�g � g

�
T �	�S��xj���Q� d

dh

�
A

K�

������
h
�

�
A �








Chapter �

Test Problems with Analytic

Solutions

In many areas of computational �uid dynamics there are benchmark test problems

which have known analytic solutions� The performance of a particular numerical

scheme can be evaluated by using some measure of the di�erence between the nu�

merical solution and the exact solution� Important features of the solution can be

compared with the exact solution� for example the position and strength of any

shocks can be assessed� An acceptable level of performance over a wide range of

such benchmark test problems leads to con�dence that a numerical scheme will per�

form acceptably for any practical problems which are not too dissimilar� Altogether�

benchmark test problems with known solutions are an extremely useful tool�

For the steady open channel problem� because of the non�linear nature of the

di�erential equation� particularly the friction term� even the simplest problem of �ow

in a uniform rectangular channel with zero bed slope cannot be solved analytically�

To obtain a solvable problem it is necessary to assume zero friction or at least to

simplify the friction term signi�cantly� However features of the problem will then be

lost� For this reason� until now� the performance of methods for steady computation

have mostly been judged only qualitatively�

This chapter presents a simple method for constructing test problems with known

analytic solutions to the full steady Saint�Venant equation� The method is an 	inverse

method
 in that some hypothetical depth pro�le is chosen and the bed slope that

���



makes this pro�le an actual solution of the steady equation is then found� The

method can be used to construct test problems with almost any desired features�

including hydraulic jumps� Hence these test problems can be used to compare the

numerical results� for any algorithm� with an exact solution� The method is also

useful for evaluating unsteady solvers� since� if an unsteady model is given steady

boundary conditions� the limiting steady solution can be compared with the analytic

steady solution� The method presented in this chapter �ts in well with the validation

documentation initiative of the European hydraulics laboratories 
see ������ since it

enables the creation of benchmark test problems which can be used as a standard

measure for the performance of commercial software packages�

��� Test Problems with Smooth Solutions

It is convenient to write equation 
����� as

S�
x� � f�
x� h
x��h
�
x� � f�
x� h
x��� 
����

where

f� � �� Q�T

gA�
� � � F �

r 
����

and

f� �
Q�

K�
� Q�

gA�

Z h

�
�xd�� 
����

The crux of the work in this chapter depends on the following argument� Suppose

that for some reach the function T representing channel width is arbitrarily de�ned�

For example for a rectangular channel we would de�ne T � B� where B
x� � �

gives the width� If the conveyance function K is completely speci�ed and a value for

the discharge Q is given� then the functions f� and f� given by 
���� and 
���� are

completely de�ned� The main part of the method is to choose a hypothetical depth

pro�le �h
x� for the reach� which at this stage we assume to be smooth� We then use

the following formula to determine the bed slope for the reach�

S�
x� � f�
x� �h
x���h
�
x� � f�
x� �h
x��� 
����

It is not di�cult to conclude that� for the above situation� the function h � �h satis�es

the di�erential equation 
���� for the entire reach�

���



We can now use the above argument to specify a benchmark test problem for

which the exact solution is known� The following information is required�

� The length of the reach L

� The width of the channel T as a function of depth and distance

� The conveyance K as a function of depth and distance

� The discharge Q

� The bed slope 
which is given by 
�����

� The appropriate boundary conditions

The required boundary conditions are found as follows� If the depth �h
�� corresponds

to supercritical �ow� then this depth must be speci�ed at in�ow� Similarly if the depth

�h
L� corresponds to subcritical �ow� then this depth must be speci�ed at out�ow�

The above problem has as a solution h � �h�

Problems ��� in section ��� are examples of test problems constructed with the

above technique� Note that even though the function �h is assumed to be smooth we

can still construct solutions with transcritical �ow via a smooth transition� At any

point where the depth pro�le smoothly crosses the critical depth� 
���� automatically

ensures that the bed slope has the critical bed slope S�c 
see section ������ at this

point� Problem � in section ��� illustrates a smooth transition�

For many computational models the bed level zb is required rather than the bed

slope� This cannot normally be found analytically from S�� so equation 
���� must

be integrated with a high accuracy ODE solver� For this purpose a starting value

such as zb
L� � � is required�

��� Test Problems with Hydraulic Jumps

The argument in the previous section requires the hypothetical depth pro�le �h and

hence the solution to be smooth since 
���� contains the derivative of the function�

This appears to prohibit solutions with hydraulic jumps� We now show how to

���



get round this di�culty� Suppose that the hypothetical depth pro�le is now only

piecewise smooth� where all the discontinuities represent physical hydraulic jumps�

i�e� satisfy 
����� and 
������ Consider a discontinuity at x � x�� Using 
���� the

bed slope is not de�ned at x� and this corresponds to a discontinuity in the bed

slope� i�e�

S�
x
��� �� S�
x

����

This is not a great di�culty since this yields a perfectly realistic bed pro�le and one

may go ahead and use this as test problem� However we feel that it is worthwhile

taking further steps to improve the quality of the bed slope�

In general for a problem where a hydraulic jump is triggered by a bed slope

discontinuity� the position of the hydraulic jump will not coincide exactly with the

position of the discontinuity in the bed slope� Hence to add realism we take steps to

ensure that the position of the jump does not correspond to a bed slope discontinuity�

To achieve this requires the following to hold�

S�
x
��� � f�
x

�� �h
x�����h�
x��� � f�
x
�� �h
x����

� f�
x�� �h
x�����h�
x��� � f�
x�� �h
x���� � S�
x����


����

The procedure we use is to specify �h for x � x� which then gives �h
x��� and

�h�
x���� The jump condition 
����� determines the value of �h
x��� and the linear

equation 
���� then determines �h�
x���� The hypothetical depth downstream of the

jump is now chosen to satisfy these values� For most cross�section shapes equa�

tion 
����� must be solved numerically� In practice it is often found that the quality

of the bed slope and also the solution increases with the smoothness of the bed slope

at the jump� Provided the necessary derivatives exist� equation 
���� can be di�er�

entiated a number of times to �nd a condition ensuring the continuity of any order

derivative of the bed slope� If the bed slope is to be M times di�erentiable then this

�xes the values of �h
x���� �h�
x���� �h��
x���� � � � � �h�M���
x���� If we compute these

values in order� then other than solving the jump condition� only linear relationships

must be solved at each step� One reason to require the bed slope to be smoother than

just continuous is in order to satisfy the theory of Chapter �� which requires the bed

slope to be continuously di�erentiable everywhere� The examples given in section ���

���



and Appendix B satisfy this at minimum and in many cases are constructed so as to

have even greater smoothness�

To construct a solution for the entire reach 
with possibly multiple hydraulic

jumps� we work downstream from the in�ow boundary� There are very few con�

straints on the behaviour of the hypothetical depth pro�le up until the position of

the �rst hydraulic jump� Obviously the depth must be positive� In this work we also

require the resulting bed slope to be everywhere positive 
satisfying the conditions of

the theory in Chapter ��� Downstream of a jump the situation become signi�cantly

more di�cult� Suppose x� is the position of the jump and x�� denotes the position of

the next jump downstream 
or end of reach if there are no more jumps�� We require

the depth pro�le to satisfy the following�

� Have the required values for the derivatives at the jump

� Be positive for x� � x � x��

� Yield a positive bed slope for x� � x � x��

In addition to this we must be able to obtain a solution with the desired features� e�g�

maxima� minima� critical sections etc� The strategy we use is to choose the functional

form of the depth downstream of the jump� allowing free parameters� Two sets of

free parameters are required� The values of the �rst set are determined from the

constraints on the depth pro�le at the jump� The remaining set of parameters are

used to control the behaviour of the depth pro�le� Choosing the values for the second

set of parameters is essentially a matter of trial and error� however the initial choice

of the functional form is found to be crucial�

The most obvious functional form of the depth pro�le is a polynomial in x� For

such a form it is trivial to satisfy the constraints at the jump and we took this route

in ����� The downstream depth gradient at the jump is often required to be relatively

large� This results in the polynomial having a large amplitude oscillation and it is

di�cult to prevent the depth pro�le from becoming negative� The problem becomes

more severe as the distance the pro�le is required to cover increases� Because of these

di�culties� in ����� ���� and ���� we chose to use a series of exponential functions�

These have the advantage that the high derivatives that may be required downstream

���



of the jump can be restricted to the locality of the jump� The exact functional form

still made it di�cult to control the solution away from the jump� The examples

in this thesis still use exponential functions� however the exact form allows more

systematic control over the solution� The form can be written as

�h
x� � exp 
�p
x� x���
MX
i��

ki

�
x� x�

x�� � x�

�i
� �
x�� 
����

The parameters k�� k�� � � � � kM are used satisfy the constraints at the jump� Calculat�

ing these values only involves solving a small linear system� The positive parameter

p in�uences the rate at which the high derivatives and curvature near the jump decay

and essentially controls how local the e�ect of the jump is� The behaviour of the

solution away from the jump is controlled by the function �� since �h
x� � �
x� as

x � x� becomes large� Problems ��� in section ��� are examples of test problems

constructed using the above method�

��� Test Problems for Prismatic Channels

We now give eight examples of test problems for prismatic channels 
details of six

more examples for non�prismatic channels are also given in Appendix B�� These

are used throughout the remainder of this thesis to evaluate the performance of the

various numerical methods considered� Many other examples of test problems can

be found in our previous work� for example see ����� ���� and �����

All the channels have a cross�section of the form 
����� and Manning�s friction

law 
see section ������ is used� The conditions of the theory in section ��� are then

satis�ed so long as the bed slope is continuously di�erentiable and positive� The test

cases here are all constructed in order to satisfy this� Table ��� gives all the required

information 
except the bed slope� for the eight cases� To recap the notation� B and

Z are bottom width and side slope of the channel� respectively� n is the Manning

friction coe�cient�Q is the discharge and hin and hout are the depths to be speci�ed

at in�ow and out�ow� respectively 
if any�� In each case the bed slope is given by

S�
x� �

�
B�� � Q�

�
B � �Z�h
x�

�
�������

�
�h
x�

�� �
B � Z�h
x�

��
�
CA �h�
x��

Q�n�
�
B � ��h
x�

p
� � Z�

�	��
�
�h
x�

����� �
B � Z�h
x�

����� �

���



Problem B�m Z L�m n Q�
m�s��� hin�m hout�m

� �� � ��� ���� �� ��������

� �� � ��� ���� �� ��������

� �� � ��� ���� �� ��������

� �� � ��� ���� ��

� � �� ��� ���� �� �������� ��������

� �� � ��� ���� �� ��������

� � � ��� ���� �� ��������

� � � ��� ���� �� ��������

Table ���� Information for test problems ���

where it only remains to specify the function �h� which is also the solution of the

problem�

Problem � �subcritical �ow� In this case we have

�h
x� � ��� � ���� exp

	
������

�
x

���
� �

�

��

�

Figure ���
a� shows �h� Figure ���
b� shows the corresponding bed slope and Fig�

ure ���
c� shows the bed level and the free surface elevation� The channel �attens as

we approach the mid�point of the reach� having the least gradient at this point� The

channel then steepens again� returning to the initial gradient� The solution of this

problem corresponds to entirely subcritical �ow� The depth rises to a maximum at

the center of the reach and approaches the critical depth at both ends�

Problem � �subcritical �ow� In this case we have

�h
x� � ���� � ���� sin�
�
�	x

���

�

and the problem is illustrated by Figure ���� The gradient of the channel �attens and

then steepens again three times� As in the previous case the solution corresponds to

entirely subcritical �ow� The depth has local maxima corresponding to each local

minima of the bed slope�

���
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Figure ���� Depth� bed slope� bed level and surface level for test problem �

Problem � �supercritical �ow� In this case

�h
x� � ��� � ���� exp

	
���

�
x

���
� �

�

��


and the problem is illustrated by Figure ���� Again the channel becomes �atter and

then steepens� In this case the �ow is entirely supercritical and the depth rises to a

maximum at the middle of the reach�

Problem � �a smooth transition� In this case we have

�h
x� � �������� � ����tanh
�
x� ���

��

�

and the problem is illustrated by Figure ���� The gradient of the channel steadily

increases along the length of the reach� The �ow is subcritical for the �rst half of the

reach and supercritical for the second half� The transition between the two regimes

is via a smooth transition�
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Figure ���� Depth� bed slope� bed level and surface level for test problem �

Problem 	 �a hydraulic jump� In this case for x � ��m

�h
x� � ����

while for ��m 
 x � ���m the depth is of the form 
���� with x� � ��m� x�� �

���m� M � �� k� � ������ k� � ���������� k� � ����������� k� � �����������

k	 � ������������ p � ��� and

�
x� � ��� exp 
������
x � ����� �

This problem is illustrated in Figure ���� For the �rst half of the reach� the channel

has constant bed slope� After the mid�point the channel �attens out steadily� The

solution to this problem changes from supercritical to subcritical via a hydraulic

jump at the mid�point which is triggered by the reducing gradient of the channel

causing the �ow to decelerate�
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Figure ���� Depth� bed slope� bed level and surface level for test problem �

Problem 
 �a smooth transition followed by a jump� In this case for x �
���m

�h
x� � �������� � ����

tanh
��
tanh

	
�

x� ���

��



�

while for ���m 
 x � ���m the depth is of the form 
���� with x� � ���m� x�� �

���m� M � �� k� � ������� k� � ���������� k� � ������������ k� � �����������

k	 � ������������ p � ��� and

�
x� � ��� exp 
�����
x � ����� �

This problem is illustrated in Figure ���� The channel steepens and the �attens out

again� The solution changes smoothly from subcritical �ow to supercritical �ow at

one third distance� and then returns via a hydraulic jump to subcritical �ow at two

thirds distance�

���



0.0 50.0 100.0 150.0 200.0
x /m

0.40

0.50

0.60

0.70

0.80

0.90 depth/m
hc/m

0.0 50.0 100.0 150.0 200.0
x /m

0.000

0.010

0.020

0.030

0.040

0.050

bed slope


a� 
b�

0.0 50.0 100.0 150.0 200.0
x /m

0.0

1.0

2.0

3.0

4.0

5.0

bed lev. /m
surface lev. /m
critical lev. /m


c�

Figure ���� Depth� bed slope� bed level and surface level for test problem �

Problem � �a jump followed by a smooth transition� In this case for x �
��m

�h
x� � �����

while for ��m 
 x � ���m the hypothetical depth is of the form 
���� with x� �

��m� x�� � ���m� M � �� k� � �������� k� � ���������� k� � ������������
k� � ���������� k	 � ���������� p � ��� and

�
x� � ���� ����tanh
����
x � ������

This problem is the opposite of problem � and is shown in Figure ���� The channel

�attens out and then steepens again� The solution changes from supercritical �ow

to subcritical �ow via a hydraulic jump at one quarter distance� and then returns

smoothly to supercritical �ow at roughly two thirds distance�

Problem � �many transitions� In this case for x � ��m

�h
x� � ���� � ��� exp 
����x� �
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Figure ���� Depth� bed slope� bed level and surface level for test problem �

For ��m 
 x � ���m the depth is of the form 
���� with x� � ��m� x�� � ���m�

M � �� k� � �������� k� � ���������� k� � ������������ k� � ����������� p � ���

and

�
x� � ���� ����tanh
����
x � ������

For ���m 
 x � ���m the depth is of the form 
���� with x� � ���m� x�� � ���m�

M � �� k� � �������� k� � ��������� k� � ������������ k� � ����������� p � ���

and

�
x� � ���� ����tanh
����
x � ������

For ���m 
 x � ���m the depth is of the form 
���� with x� � ���m� x�� � ���m�

M � �� k� � ��������� k� � ���������� k� � ������������ k� � ����������� p � ���

and

�
x� � ���� � ����tanh
����
x � ������
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Figure ���� Depth� bed slope� bed level and surface level for test problem �

For ���m 
 x � ���m the depth is of the form 
���� with x� � ���m� x�� � ���m�

M � �� k� � ��������� k� � ��������� k� � ������������ k� � ����������� p � ���

and

�
x� � ���� � ����tanh
����
x � ������

The solution to this problem 
shown in Figure ���� has altogether eight transitions�

corresponding to four hydraulic jumps and four smooth transitions� The �ow is

supercritical at both in�ow and out�ow�

��� Conclusions

In this chapter we have given a method for constructing steady open channel test

problems to which the exact solution of the steady Saint�Venant equation is known�

To the author�s knowledge this is the �rst time that non�trivial exact solutions have

been made available to the modeller� Moreover� the method can create a useful
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Figure ���� Depth� bed slope� bed level and surface level for test problem �

range of test problems� including almost all channel geometries and all �ow types�

In particular� techniques for constructing problems with hydraulic jumps have been

described and it has been shown that jumps must satisfy certain conditions depending

on how smooth the bed slope is required to be� For brevity� the test examples given

are restricted to rectangular� triangular and trapezoidal cross�sections� This is not a

restriction on the method� although for complicated channel shapes the expressions

for the bed slope become even more large and unwieldy� The symbolic computation

package Mathematica 
see ����� helped greatly to facilitate the algebraic construction

of the test problems� We consider the method described as a valuable tool for

developing� validating or comparing steady open�channel solvers� The method can

also be used to test the performance of unsteady models as the solution tends to a

steady state�
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Chapter �

Numerical Experiments

In Chapter � we presented theory for a family of numerical methods for computing

steady solutions to the Saint�Venant equations� We refer to this approach as the

�scalar approach� since we proceed as for computing the steady solution of a scalar

partial di�erential equation� We present results for this approach for some of the

benchmark test problems described in the previous chapter� The usefulness of the

theory is assessed in terms of the quality of the a�priori estimates for the bounds on

the solution� the time step su	cient for convergence of the time�stepping iteration

and the bound on the convergence rate for this iteration� The accuracy of the various

scalar schemes are then compared against a well known time accurate solver� This

being the approximate Riemann solver of Roe
���� We �nd that for a certain dis�

cretisation of the source term� Roe
s scheme gives second order accuracy at steady

state� We use this idea to also obtain second order accuracy for the scalar approach

whilst retaining a three�point scheme� We then consider more traditional methods

of obtaining high order accuracy� namely the high order TVD approach discussed in

section ����

��� Application of some Monotone Schemes

We now apply the methods discussed in Chapter � to the test problems ��� given

in the previous chapter� The schemes we consider are the monotone schemes of

Engquist�Osher� Godunov and Lax�Friedrichs� We also consider the �rst�order up�

���



wind scheme which is not a monotone scheme� but nevertheless is still well behaved�

We use the strategy described in section ��� to compute a�priori bounds for the

solution� and allowable time steps for the time stepping iteration�

Problem � Consider the test problem �� It is given that the �ow at in�ow is

subcritical and that the depth at out�ow is �h�L� �����m� Following the strategy

described in section ���� we take �� � hc �����m and �� to be the depth speci�ed at

out�ow� This yields the bounds on the solution

h � h�x� � h� � � x � L�

where h �����m and h �����m� Comparing the bounds and the actual solution

�shown in Figure ���� we �nd that the upper bound is not at all tight� The actual

solution does not rise above ����m� In general the bounds given by the theory cannot

be expected to be tight� for they depend solely on the extreme values of the bed�slope�

In the current example the upper bound must therefore take into account the worst

case scenario for which the bed slope is at its minimum value for a great enough

distance for the solution to asymptote to the corresponding normal depth� In reality

though� the bed slope �see Figure ����b�� is only close to it
s minimum value for a

small fraction of the reach�

Figure ��� shows results for the Engquist�Osher scheme for problem � with �x �

��m� The Godunov and the �rst�order upwind schemes give identical results because

the di�erence equations reduce to an identical form for purely subcritical or purely

supercritical solutions� The numerical solution gives a reasonable representation of

the solution� The numerical solution is slightly skew� whereas the exact solution is

symmetric about the middle of the reach� The numerical solution also fails to reach

the correct maximum depth by a few centimeters�

The initial guess for the time�stepping iteration is taken to be the linear depth

pro�le joining the end values �� and ��� Thus as discussed in section ��� the depth

range of interest� and that over which the CFL condition must hold� can be taken as


�� �� � 
h� h�� It is found that the time stepping iteration converges for signi�cantly

higher time steps than that predicted by the theory� For example for the Engquist�

Osher scheme with �x ���m� the CFL condition in Theorem �� is equivalent to

���



0.0 50.0 100.0 150.0
x/m

0.70

0.80

0.90

1.00

1.10

D
ep

th
/m

hc

hexact

E-O

Figure ���� Problem � using the Engquist�Osher scheme and �x � ��m�

the requirement that �t � ������ However in practice the iteration is observed to

converge for time steps up until around ������ although the optimum performance is

found to be at about ������ Theorem � also gives a lower bound for the convergence

rate of the iteration� We have that

khn � hk � kh� � hk exp��n��t��

where � � ������ This is found to be far too pessimistic since� for �x � ��m and

�t � ������ we �nd that

khn � hk � kh� � hk exp��n���t��

for �� ����� It is already clear that above a�priori estimates may be of pretty poor

quality and thus may not be of too great practical use� The main cause of this

appears to be the looseness of the upper bound h� This has the consequence that the

CFL condition is required to hold over a far too large a range of depths�

Figure ��� shows results for the Lax�Friedrichs scheme with �x � ��m for a

selection of values of the parameter �� Clearly the lower the value of this parameter�

the more di�usive the scheme is� For the scheme to be monotone on the depth interval

of interest 
�� ��� it is required that �jF ��h�j � � on this range� This in turn requires

that � � ������ Unfortunately the solution is far too di�usive for values inside this
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Figure ���� Lax�Friedrichs scheme for Problem � and various � ��x � ��m��

range� For example Figure ��� shows results for � � ������ The solution can be

improved by increasing � above this range� The �gure also shows the solution for

� � ��� which appears to be more accurate than the corresponding solution from

the Engquist�Osher scheme� Unfortunately there is no way to estimate such a value

of � in advance� Increasing the value of � too far �for a �xed �t� causes the time

stepping iteration to diverge�

Problem � As in problem �� it is given that the �ow is subcritical at in�ow� The

depth at out�ow is given to be �h�L� �����m� Taking �� � hc �����m and �� � �h�L�

yields the lower bound h �����m and the upper bound h �����m� Figure ��� shows

results for the Engquist�Osher scheme with �x � ��m� Again the solution does not

reach the correct extrema and the solution is shifted to the right�

Problem � For this problem the depth at in�ow is given to be �h��� �����m and

the �ow at out�ow is given to be supercritical� In this case we take �� � �h��� and

�� � hc �����m� to yield bounds h �����m and h �����m� The bounds are much

tighter for this problem than in the previous cases� Figure ��� shows the solution for

the Engquist�Osher scheme with �x � ��m� Again the maximum is too low� but the

solution is almost symmetric in this case� The a priori estimates for this case are

���



0.0 100.0 200.0 300.0
x/m

0.70

0.80

0.90

D
ep

th
/m

hc

hexact

E-O

Figure ���� Problem � using the Engquist�Osher scheme and �x � ��m�

0.00 50.00 100.00 150.00 200.00
x/m

0.40

0.50

0.60

0.70

D
ep

th
/m

hc

hexact

E-O

Figure ���� Problem � using the Engquist�Osher scheme and �x � ��m�

found to be of much better quality than in the previous cases� and this must be due

to the tightness of the given solution bounds�

Problem � For this problem it is given that the �ow is subcritical at in�ow and

supercritical at out�ow� hence we take �� � �� � hc �����m� This yields the bounds
h �����m and h �����m� Figure ��� shows results for the Engquist�Osher� Godunov

and �rst�order upwind schemes with �x � ��m� The exact solution to this problem
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changes smoothly from subcritical to supercritical at the midpoint of the channel�

The methods give a good representation of the solution even with so few grid points�

The upwind scheme is found to be less accurate than for the Engquist�Osher or

Godunov schemes at the grid points on either side of the transition� The smooth

transition is a steady expansion wave for the scalar equation ������ The fact that

the �rst�order upwind scheme is less accurate near the transition stems from the

fact that the numerical �ux assumes any transition is a shock� The Godunov and

Engquist�Osher numerical �uxes� however� are designed to correctly recognise an

expansion wave� In fact the Engquist�Osher and Godunov schemes have identical

solutions for this type of solution� This can be seen by comparing ������ and ������

for the case across a smooth transition

Problem � In this case the depth is �h��� �����m at in�ow and �h�L� ����m

at out�ow� Hence we take �� � �h��� and �� � �h�L� which gives h �����m and

h �����m� Figure ��� shows results for the Engquist�Osher� Godunov and �rst�

order upwind schemes with �x ��m� The exact solution to this problem has a

hydraulic jump at the midpoint of the channel and all three methods capture this

jump satisfactorily� In fact the jump is captured even with only a few grid points� It
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Figure ���� Comparison of E�O� Godunov and upwind schemes for problem �

��x ��m��

can be seen that the Godunov scheme and the �rst�order upwind scheme give slightly

better resolved jumps than does the Engquist�Osher scheme� In particular at the grid

point immediately before the jump� the Engquist�Osher solution has visibly moved

away from the constant state� whereas the other schemes have not� It is well known

that the Engquist�Osher scheme smears discontinuities to a greater extent than the

other schemes� The upwind and Godunov methods have identical solutions for this

type of solution �compare ������ and ������ for the case across a jump��

The Lax�Friedrichs scheme requires � � ������� in order to be monotone over the

range of depths of interest� Figure ��� shows results for � � ������� The results for

values inside the monotone range� as in problem �� are far too di�usive relative to

the other schemes� The results can be improved by taking values above this range�

For example Figure ��� also shows results for � � ����� Increasing � further results

in divergence of the iteration for a �xed �t�

Problem � For this problem it is given that the �ow is subcritical at in�ow and

has depth �h�L� �����m at out�ow� Taking �� � hc �����m and �� � �h�L� gives the

bounds h �����m and h �����m� Figure ��� shows results for the Engquist�Osher�

Godunov and �rst�order upwind schemes with �x ��m� The solution to this problem
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Figure ���� Lax�Friedrichs scheme for Problem � for various � ��x ��m��

changes smoothly from subcritical to supercritical at one third distance and back to

subcritical at two thirds distance via a hydraulic jump� As in the previous examples

the Engquist�Osher and Godunov schemes are more accurate than the �rst�order

upwind scheme near the smooth transition� On the other hand the Godunov and the

�rst�order upwind schemes give a sharper jump than the Engquist�Osher scheme�

Problem � For this problem it is given that the depth is �h��� �����m at in�ow and

the �ow is supercritical at out�ow� Hence we can take �� � �h��� and �� � hc �����m�
to give the bounds h �����m and h ����m� Figure ��� shows results for the Engquist�

Osher� Godunov and �rst�order upwind schemes for �x ��m� The solution to this

problem changes from supercritical to subcritical via a hydraulic jump at one third

distance and returns smoothly back to supercritical at two thirds distance� Again

the �rst�order upwind scheme is least accurate near the smooth transition and the

Engquist�Osher scheme gives the most smeared jump�

Problem 	 For this problem it is given that the depth is �h�L� �����m at in�ow

and that the �ow is supercritical at out�ow� Taking �� � �h��� and �� � hc �����m
yields the bounds h �����m and h ����m� Figure ���� shows results for the Engquist�

Osher scheme with �x ���m� The solution to this problem has eight transitions
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Figure ���� Comparison of E�O� Godunov and upwind schemes for problem �

��x ��m��

�� hydraulic jumps and � smooth transitions�� The solution demonstrates that the

scheme is successful at solving multiple transition problems�

From the eight test problems we conclude that the time steps required to satisfy

Theorem �� and hence guarantee convergence of the time stepping iteration are in

general too pessimistic to be of great practical use� A more e�ective approach may

be to allow a variable time step which is chosen to satisfy a CFL condition at each

particular time level�
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��� Comparison with Roe�s Approximate Riemann

Solver

We now compare the accuracy of the schemes in the previous section against that of

Roe
s approximate Riemann solver
��� which is described in sections ��� and ���� The

latter scheme is a time accurate solver of the time dependent Saint�Venant system

and we model the transient �ow until steady state is attained� The scheme is a

natural generalisation of the �rst�order upwind scheme to systems of equations and

is designed speci�cally for the computation of discontinuous �ows� In section ��� we

discussed two di�erent methods of discretising a source term� Here we apply both

the pointwise discretisation and the upwind discretisation� To average the source

term at an interface we use ������� The upwind discretisation is motivated by the

fact that� for the pointwise discretisation� the resulting discharge varies wildly from

the expected constant discharge� Upwinding the source term is found to not only

remedy this but� for the particular choice of source term averaging� have the side

e�ect of giving second order accuracy at the steady state�

Figure ���� shows results for Roe
s scheme for both the pointwise and upwind

discretisation of the source term for problem � ��x � ��m�� The corresponding

results for the Engquist�Osher scheme are also shown� Part �a� of the �gure shows

the depth �eld� Roe
s scheme with pointwise source term appears to be on average

slightly more accurate than the Engquist�Osher scheme� although the latter scheme

gives a more accurate maximum depth� Roe
s scheme with upwinded source term�

however� is clearly seen to be the most accurate method by a signi�cant margin� Part

�b� of the �gure shows the discharge �eld� For the schemewith pointwise source term�

the solution deviates by a signi�cant amount from the expected constant discharge�

It thus seems unreasonable that this method should give better �or even comparable�

accuracy in the depth �eld to that of the Engquist�Osher scheme� when in the case

of the latter scheme� the discharge is �by de�nition� exact� The discharge for Roe
s

scheme with upwinded source term is correct everywhere to within ����m�s��� and

these errors are most�likely to be only rounding errors since they do not decrease as

the grid is re�ned� This evidence indicates that the di�erence equations do have an
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Figure ����� Roe
s scheme for problem � ��x ���m��

exact solution with Q �constant at steady state� We show later that this is in fact

the case�

We consider two di�erent measures of the accuracy for the schemes� which are

the L� �or mean� error given by

�

N � �

N��X
i��

j�h�xi�� hij

and the L� �or maximum� error given by

max
��i�N

j�h�xi�� hij�

���



where the function �h is the exact solution� In order to allow a fair comparison of

the two distinct approaches� the end points of the reach are not included in the error

measures� This is because the solution is not in general approximated at these points

for the scalar approach� since we �x h� � �� and hN � ��� where these values do not

necessarily arise from physical boundary conditions�

Figures ���� �a� and �b� show the L� and L� errors as a function of the number of

grid�points N � The �gures con�rm the observation that Roe
s schemewith upwinded

source term is more accurate than the version with pointwise source term� which in

turn is more accurate than the Engquist�Osher scheme� Since this data is plotted

using logarithmic axes� a measure of the order of accuracy of a particular scheme

with respect to a particular measure is given by the negative of the slope of the

straight line passing through the data points� The best straight line �t is obtained

by the method of least squares and is illustrated along with its slope for each of the

data sets� The Engquist�Osher scheme and Roe
s scheme with pointwise source term

illustrate �rst order accuracy in both measures as expected� Unexpectedly� however�

Roe
s scheme with upwinded source term demonstrates second order accuracy� We

show why this is the case later�
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Figure ����� L� and L� errors for problem ��

Figure ���� compares the results for the Engquist�Osher scheme with those of

Roe
s scheme for problem � and �x � �m� Part �a� of the �gure shows the depth

�eld� At the grid�points on either side of the smooth transition� Roe
s scheme with

upwinded source term gives rise to the largest errors� Roe
s scheme with upwinded

���
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Figure ����� Roe
s scheme for problem � ��x ��m��

source term is by far the most accurate method at the grid�point immediately down�

stream of the jump� but the opposite is true at the grid�point immediately upstream

of the jump� where the solution undershoots the jump� Such features are found to

occur relatively frequently for the upwind source term discretisation�

Part �b� of the �gure shows the discharge �eld� As in the previous test case�

Roe
s scheme with pointwise source term deviates considerably for much of the reach

from the expected constant discharge� In the notation of section ��� this scheme can

���



be written as

w
n��
j �wn

j

�t
�
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�J�
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j �

�x
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�J�
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j �wn

j���

�x
�Dn

j �

where Dn
j �D�xj�wj�� At steady state this reduces to

�J�
j� �

�

�wj�� �wj�

�x
� �J�

j� �

�

�wj �wj���

�x
�Dj� �����

In a region of supercritical �ow� i�e� ����j� �

�

� ����j� �

�

	 �� ����j� �

�

� ����j� �

�

	 �� we

have �J�
j� �

�

� �Jj� �

�

and �J�
j� �

�

� �� The scheme now reduces to

F �wj�� F �wj���

�x
�Dj �

which gives

Qj � Qj���

Fj � Fj��

�x
� Dj �

hence Qi �constant is a solution� This explains the reason for the region of con�

stant discharge between about ��m and ���m for problem �� because this region

corresponds to supercritical �ow� Although the discharge will be constant for such

a region� if the region is separated from the in�ow boundary �where the discharge is

speci�ed as a boundary condition�� then the constant discharge will not in general

be at the correct level� Here for example the discharge is slightly above the correct

level� In the case of a completely supercritical �ow� at steady state the scheme is

identical to the Engquist�Osher� Godunov and �rst�order upwind schemes�

For subcritical �ow� i�e� ����j� �

�

� ����j� �

�
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	 �� the situation is

more complicated� We have that
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If we attempt to obtain a constant discharge solution by setting Qi�� � Qi � Qi���

then the �rst component of equation ����� reduces to

����j� �

�
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�Aj �Aj��� � ��

���



The coe	cients of �Aj�� �Aj� and �Aj � Aj��� must be positive� so this precludes

the wetted area from having extrema in a subcritical region of �ow� This is clearly

nonsense� so we conclude that the di�erence equations are not in general consistent

at steady state with a constant discharge solution�

Figure �����b� also shows the discharge for Roe
s scheme with upwinded source

term� As for problem �� the discharge is correct everywhere to within ����m�s��

�except at an isolated point at the jump�� Thus it appears that away from any

transitions� the scheme is consistent with a constant discharge� The scheme can be

written as

w
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�
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At steady state this reduces to

�J�
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�wj�� �wj�

�x
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This scheme simpli�es for supercritical �ow as for the case with pointwise source

term� since  
�
�Jj� �

�

�
�  

�
�Jj� �

�

�
� I� giving

Qj � Qj���

Fj � Fj��

�x
� �Dj� �

�

�

where

�Dj� �

�

�
Dj �Dj��

�
� �����

This scheme is simply the trapezium rule applied to the steady �ow equation in

conservative form� As in the pointwise case the situation is considerably more com�

plex in the case of subcritical �ow� since the mass and momentum equations do not

immediately decouple at steady state� For subcritical �ow we have
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and
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If we try to obtain the constant discharge solution Qi�� � Qi � Qi��� then the

scheme reduces to the following

�
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Clearly a solution to this relationship is given by
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Remarkably these reduce to

Fj�� � Fj

�x
� �Dj� �

�

�

Fj � Fj��

�x
� �Dj� �

�

�

We arrive at the conclusion that� at steady state and for subcritical �ow� the scheme

with upwinded source term may again reduce to the trapezium rule applied to the

steady �ow equation �in conservative form�� For a purely subcritical �ow� the solution

can be solved by simply integrating upstream as follows�

Qj�� � Q�

Fj � Fj��

�x
�

Dj�� �Dj

�

j � N�N � �� � � � � �

where AN is given by the depth boundary condition at out�ow and Q� is the in�ow

discharge� Each step upstream requires the solution of a nonlinear equation which

could be carried out using Newton�Raphson�

We have seen that at steady state and for both subcritical and supercritical �ow�

the scheme in e�ect reduces to the trapezium rule� This explains the second order

���



accuracy observed for problem �� since the trapezium rule is a second order accurate

discretisation�

Figure ���� compares the L� accuracy of the three schemes considered above

for problem �� This clearly illustrates that Roe
s scheme with upwinded source

term is the most accurate and the Engquist�Osher scheme is the least accurate of

the methods� Both Roe
s scheme with pointwise source term and the Engquist�Osher

scheme demonstrated �rst order accuracy� whilst Roe
s schemewith upwinded source

term gives a slightly higher order of about ���� The scheme does not give full second

order accuracy for this problem because of the nonuniform convergence at the jump�

Figure �����a�d� compares the accuracy of the three schemes at the point x � ��m�
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��m� ��m� ���m� respectively� At all of the these point� except x � ��m� Roe
s

scheme with upwinded source term is by far the most accurate of the three methods�

At x � ��m the Engquist�Osher scheme is the most accurate for N up until around

��� when it is overtaken by Roe
s scheme with upwinded source term� This is most

likely due to closeness of this point to the smooth transition� since the Engquist�

Osher scheme is in general found to give superior solutions at such transitions� In

general the Engquist�Osher scheme and Roe
s scheme with pointwise source term

demonstrate �rst order accuracy at the points considered� The only anomaly is

at x � ��m where the Engquist�Osher scheme gives a higher than expected order

of about ���� From the previous arguments we would expect Roe
s scheme with

upwinded source term to show second order accuracy� This indeed the case� except

���



at x � ���m where the error initially decreases at a rate consistent with an order of

accuracy of ���� For N above ��� the error remains roughly constant at about �����

The reason that the error decreases no further is most likely due to the presence of

rounding errors�
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��� Higher Order Accuracy

This section generalises the �scalar approach� in order to obtain higher order approx�

imations to the steady state solutions� In the previous section we obtained second

order accuracy using Roe
s approximate Riemann solver combined with a particular

method of upwinding the source term� We apply the direct analogue of this scheme

to the scalar equation
�h

�t
�

�

�x
f�h� � �D� �����

where f�h� � �F �h�� This gives the �rst�order upwind schemewith upwinded source
term� Next a generalisation of the Engquist�Osher scheme is considered which again

comes down to upwinding the source term� These methods achieve higher order

accuracy by solely modifying the method of discretisation of the source term� using

the fact that the higher order accuracy is only required at the steady state� More

usually� methods are designed for the homogeneous equations and are required to

give higher order accuracy not just at steady state� but also in the transient state

of the solution� Schemes which achieve this include the high order TVD schemes

which are discussed in section ���� We apply two examples of such schemes to the

equation ����� and the accuracy is compared against the source term upwinding

approach�

����� Upwinded Source Terms

The analogue of Roe
s scheme with upwinded source terms for the scalar equa�

tion ����� can be written as

hn��j � hnj
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and sj� �

�

is given by ������� We can also write
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j h �

gFOU
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�x
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�
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At steady state the scheme reduces to

T UPW	�
j h � �� j � �� �� � � � � N � �

u� � ��� uN � ���

We observe that for subcritical �ow �sj� �

�


 �� this reduces to

Fj�� � Fj

�x
� �Dj� �

�

�

and for supercritical �ow �sj�� 	 �� it reduces to

Fj � Fj��

�x
� �Dj� �

�

�

Therefore for the choice ������ at steady state and away form transitions� the scheme

reduces to the trapezium rule� This is exactly the behaviour encountered in the

previous section for Roe
s scheme with upwinded source term� In fact for �ows

which are entirely subcritical or entirely supercritical the schemes will give identical

solutions �except possibly points at the ends of the reach where Roe
s scheme is

treated di�erently to the �scalar approach���

Figure ���� shows results for the scheme discussed above� which we refer to as

the upwind�� scheme� The accuracy can clearly be seen to be superior to that of the

Engquist�Osher scheme�

A similar idea to the above is used in 
��� to extend the Engquist�Osher scheme to

a second order accurate method for solving the singular perturbation problem �������

The scheme for the case � � � is given by

T E	O	�
j h � �� j � �� �� � � � � N � �

u� � ��� uN � ���
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the operator T E	O	�
j being given by

T E	O	�
j h �

gE	O
j� �

�

� gE	O
j� �

�

�x
� 
�j Dj�� � 
�jDj � 
�j Dj���

where
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p � � is a parameter and 
 is the smooth increasing function


�r� �

���������

���������

� r 
 �
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�

�

�
� �� � r�� �

�
� r � �

�

�
r 	 ��

connecting the values � and �

�
� The precise form of this function is unimportant

and any monotone C� function connecting � to �

�
could be taken� The case p � �

corresponds to the Engquist�Osher schemewith pointwise source term� so we consider

���



the case where p is positive� To interpret the scheme we observe the following� For

f ��hj���� f
��hj�� f

��hj��� � �p�x�p the scheme reduces to
Fj�� � Fj

�x
�
Dj �Dj��

�
�

This case corresponds to subcritical �ow with depths above a certain distance greater

then the critical depth� For f ��hj���� f ��hj�� f ��hj��� �
p
�x�p the scheme reduces

to
Fj � Fj��

�x
�
Dj�� �Dj

�
�

This case corresponds to supercritical �ow with depths above a certain distance

below the critical depth� Essentially the scheme is upwinding the source term as

for the upwind�� scheme� The di�erence here is that the switching is performed in

a smooth manner� We will see that this smoothness makes the di�erence equations

more amenable to solution than for the upwind�� schemeThe parameter p controls the

rate at which the source terms switch between the subcritical and supercritical forms

across transitions� The higher the value of p� the greater the speed the switching

occurs and the more accurate the scheme is� since the scheme corresponds to the

second order accurate trapezium rule for a greater part of the solution� If p is too

great the authors of 
��� predict that the scheme may become badly behaved� for

example by having no solutions or multiple solutions� In Appendix A we adapt

the theory in 
���� which shows the uniqueness of the discrete solution� to also �nd

conditions which guarantee convergence of the time stepping iteration

hn��j � hnj
�t

� T E	O	�
j hn � ��

Under the conditions of Theorem � it is shown that if

p
p
hM� � �� �p�M� � �� �����

where jDh�xj� h�j �M� and jf ���h�D�xj � h�j �M� for all � � j � N and h � h � h�

then the system of di�erence equations has exactly one solution satisfying h � hi � h�

i � �� � � � � N � The modi�ed CFL condition then requires that if

� � min
��i�N

fh�i � hg� � � max
��i�N

fh�i � hg�

���
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�t
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�x
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� ��

for all h � 
�� �� and � � j � N�
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Figure ����� Upwind�� and E�O�� �p � �� for problem � ��x ��m��

Figure ���� compares results for the upwind�� scheme and the E�O�� scheme

with p � � for problem �� Away from the transitions the two schemes give almost

identical results and give better accuracy than the Engquist�Osher scheme which is

also shown� Near the smooth transition the E�O�� scheme gives the most accurate

solution� whilst the upwind�� scheme is the least accurate� As in the case of Roe
s

scheme with upwinded source term �Figure ������ the upwind�� scheme is extremely

accurate at the grid point downstream of the jump� but undershoots the solution by

a signi�cant amount at the grid�point upstream of the jump� In fact the solutions for

these two schemes are very similar due to the fact that they reduce to the same scheme

away from transitions� They also appear to behave very similarly at transitions� The

E�O�� scheme is less accurate than the upwind�� scheme at the grid�point downstream

of the jump� but considerably more accurate� with no undershoot� at the grid�point

upstream of the jump� To investigate how sensitive the accuracy of the E�O�� scheme

is to the value of the parameter p� we plot the errors as a function of p for problem

�� Each of the Figures �����a�d� shows the error at a particular point along the

���



channel as a function of p� for three di�erent grid spacings �N � ��� N � ��

and N � ����� The behaviour is very similar at each of the four points� For

a particular grid spacing there are two regions of constant error� separated by a

transition region� The constant region for low p corresponds to �rst order accuracy

since the error reduces roughly by a factor of � in going from N � �� to N � ��

and from N � �� to N � ���� The constant region for high p corresponds to second

order accuracy since the error reduces roughly by a factor of �� in going fromN � ��

to N � �� and from N � �� to N � ���� In the transition region the error behaves

somewhat erratically� In almost all of the cases shown� there is a spike with the error

unexpectedly increasing� The position of the transition region moves to lower values

of p as N increases and for this problem is about one order of magnitude wide�
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Figure ����� Errors for the E�O�� scheme and problem � as a function of p�
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����� High Order TVD Schemes

The technique in the previous section achieves higher accuracy at steady state by

modifying the discretisation of the source term to create O��x� terms in the trunca�

tion error� which cancel out all terms of the same order from the approximation to the

advective part of the di�erential equation� A more common technique of obtaining

higher order accuracy is to increase the order of accuracy of the approximation to the

advective part� allowing high order accuracy not just at steady state but also in the

transient solution� Classical second order approximations such as the Lax�Wendro�

scheme are available� but these are found to be useless since they become unstable

near discontinuities� The instabilities arise due to the lack of su	cient numerical

dissipation in the schemes to damp out any oscillations at discontinuities�

A method of overcoming the problem of instabilities� which is discussed in sec�

tion ���� is to add a term to the second order approximation which increases the

numerical dissipation of the scheme only near a discontinuity� By adding numer�

ical dissipation only at a discontinuity� the accuracy in smooth parts of the solution

should be una�ected� The numerical dissipation is controlled by a nonlinear func�

tion of the solution� known as a limiter function� To ensure that the resulting scheme

is stable �i�e� oscillation free� the limiter function is chosen such that the resulting

scheme is TVD �see section �����

The approach discussed above leads to a class of methods known as high order

TVD schemes� An example of such a scheme is given in section ���� This example

is not immediately suitable for steady state calculations� because the numerical �ux

function depends on the time step and so at steady state the di�erence equations also

depend on the time step� However the only consequence of removing the terms which

depend on �t is a reduction in the temporal order of accuracy from second order

to �rst order� The temporal order of accuracy is not important for steady state

calculations� Other high order TVD schemes often require the removal of second

order time accuracy terms before they are suitable for steady state computations�

Yee
��� reviews many di�erent high order TVD schemes� and in particular a family

���



of schemes with numerical �ux function written as

gj� �

�

�
�

�

�
f�hj� � f�hj��� � �j� �

�

�
�

for di�erent functions �j� �

�

� In general the resulting scheme is a �ve point scheme

and this adds di	culties at the boundaries� In the case of the three point schemes�

the values of the boundary nodes hn� and h
n
N are �xed regardless of whether these rep�

resent physical boundary conditions� We treat the boundaries for �ve�point schemes

in the same unsophisticated manner� by now �xing the values of hn� � h
n
�� and hnN �

hnN��� This gives the scheme

hn��j � hnj
�t

� T TVD
j hn � �� j � �� �� � � � � N � �

un�� � un� � ��� unN�� � unN � ���

where

T TVD
j h �

gj� �

�

� gj� �

�

�x
�Dj �

We apply two di�erent forms of this scheme� and these are the Harten�Yee upwind

scheme and the Yee�Roe�Davis symmetric scheme� Details of the particular forms of

�j� �

�

are given below�

Harten
Yee Upwind Scheme This scheme is a variation due to Yee
��� of the

modi�ed �ux approach of Harten
���� and is given by

�j� �

�

�
�

�

���sj� �

�

��� ��j � �j����
���sj� �

�

� �j� �

�

��� �hj�� � hj� �

where sj� �

�

is given by �������

�j� �

�

�
�

�

���sj� �

�

���
���

���

�j�� � �j
hj�� � hj

hj�� �� hj

� hj�� � hj

and

�j � ��hj�� � hj� hj � hj����

The function � is given by

��x� y� � minmod�x� y��

���



where the minmod function is given by

minmod�x� y� � sgn�x�maxf��minfjxj� y � sgn�x�gg �

Other forms of the function � are given in 
����

Yee
Roe
Davis Symmetric Scheme This scheme is a generalisation by Yee

�
���� 
���� of the schemes of Roe
��� and Davis
���� and is given by

�j� �

�

� �
���sj� �

�

��� ��hj�� � hj�� �j� �

�

�
�

where sj� �

�

is given by ������ and

�j� �

�

� minmod�hj���hj� hj�hj����minmod�hj���hj� hj���hj���� �hj���hj��

Alternative forms for �j� �

�

are given in 
����
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Figure ����� Y�R�D and H�R schemes for problem � ��x ���m��

Figure ���� compares the results for the Harten�Yee upwind scheme �H�Y� and

the Yee�Roe�Davis symmetric scheme �Y�R�D� for problem �� Both these schemes

give superior accuracy to the Engquist�Osher scheme� although the H�Y scheme is

signi�cantly more accurate than the Y�R�D scheme� Figure ���� compares the results

for the Y�R�D and H�Y schemes for problem �� Both schemes on average give
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Figure ����� Y�R�D and H�R schemes for problem � ��x ��m��

better accuracy than the Engquist�Osher scheme� and again the H�Y scheme is more

accurate than the Y�R�D scheme� A feature to note is the large error at the second

grid�point for the Y�R�D scheme� as compared to the other schemes� This is due to

the symmetric nature of the scheme� The region of non�uniform convergence at the

boundaries is greater than for upwind schemes�

Figures ���� �a� and �b� show the L� and L� errors for problem � for the two

high order TVD schemes as well as the upwind�� scheme and Roe
s scheme with

upwinded source term� The high order TVD schemes give inferior accuracy to both

Roe
s scheme and the upwind�� scheme� The H�Y scheme is more accurate than the

Y�R�D scheme and exhibits second order accuracy in both measures� The L� error

for the Y�R�D scheme remains roughly constant as the number grid�points decreases�

and this is due to nonuniform convergence at the in�ow boundary� For the upwind

type schemes� the solution in the interior of the domain is not in�uenced by the fact

that the nodes at the in�ow boundary are �xed to values which do not approximate

the exact solution� This is not the case for symmetric schemes� where we have already

observed that the error at the �rst interior node is considerably larger than for the

other schemes� In fact the error at x� remains roughly constant as N increases�

and it is this error that prevents the L� error from decreasing� The nonuniform

���



convergence at the in�ow boundary also explains why� in the L� measure� the order

of accuracy has degraded from two to ����
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Figure ����� L� and L� errors for problem ��

Figure ���� compares the L� accuracy of the Y�R�D� H�Y� Upwind�� and E�O�

� schemes and Roe
s scheme with upwinded source term for problem �� All the

schemes demonstrate roughly �rst order accuracy� The accuracy of the upwind��

scheme and Roe
s scheme with upwinded source term is very similar and slightly

superior to that of the E�O�� scheme� These three schemes are more accurate than

both of the high order TVD schemes with the H�Y scheme again being more accurate

than the Y�R�D scheme� Figures �����a�d� show plots of the accuracy at the points

x � ��m� x � ��m� x � ��m and x � ���m� respectively� At all four points the

upwind�� scheme� Roe
s scheme with upwinded source term and the E�O�� all give

very similar accuracy� These schemes are more accurate than the high order TVD

schemes with the H�Y scheme again more accurate than the Y�R�D scheme� The

schemes all demonstrate at least second accuracy� except at x � ��m where the

high order TVD schemes reduce to �rst order accuracy� It is well known that such

schemes reduce to �rst order accuracy at points of extrema and this appears to be

what is happening at this point�
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��� Conclusions

The monotone Engquist�Osher and Godunov schemes and the �rst�order upwind

scheme are all found to give comparable accuracy� The Godunov and �rst�order

upwind schemes give sharper jumps than the Engquist�Osher scheme� whereas the

Engquist�Osher and Godunov schemes give more accurate smooth transitions than

the �rst�order upwind scheme� The Godunov scheme is thus the best of these three

schemes� The Lax�Friedrichs scheme is found to be too di�usive to be of use� The

a�priori estimate for the time step for the time stepping iteration is in general found to

be of poor quality� in that signi�cant saving in computation time can be obtained by

taking a larger time�step� This is most�likely due to the poor quality of the a�priori

bounds on the solution� Roe
s scheme with pointwise source terms is in many cases

found to be more accurate than the scalar schemes� even though the corresponding

discharge deviates signi�cantly from the correct constant discharge� Upwinding the

source term is found not only to yield a constant discharge� but to give second�

order accuracy for the depth at steady state� We showed that this was because the

scheme reduced to the Trapezium rule in smooth regions of the solution� The idea of

upwinding the source term was applied to the scalar methods� The upwind�� scheme

gave almost identical accuracy to Roe
s scheme with upwinded source term� The

E�O�� scheme was in general slightly less accurate� Of the two high order TVD

schemes we applied� neither were as accurate as the schemes with upwinded source

term� The Harten�Yee upwind scheme being more accurate than the Yee�Roe�Davis
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Chapter �

Computational E�ciency

This chapter explores di�erent methods for solving the di�erence equations which

arise from the various numerical schemes described in the previous chapter� The only

method discussed so far is the time stepping iteration� We hope to take advantage

of the simplicity of the di�erence equations to allow easy application of other poten�

tially more e�cient methods such as Newton�s method� Even with the time stepping

iteration it is reasonable to expect the �scalar approach� to be less computationally

intensive than Roe�s scheme	 since we only solve for half the number of unknowns	 for

the same grid spacing� Therefore a 
�� reduction in CPU time over Roe�s scheme

seems likely�

��� The Time Stepping Iteration

The performance of the time stepping iteration used to solve the Engquist�Osher

scheme for problem 
 is illustrated in Table ���� For each grid spacing the per�

formance is given for two di�erent time steps	 the optimum time step �the time step

which results in the fastest convergence rate� and the largest time step which sat�

is�es the CFL condition of Theorem �� �and hence ensures the convergence of the

iteration�� Measures of performance are given by the number of time steps and the

total CPU time taken� It should be noted that the CPU times are not particularly

accurate	 especially for small time intervals	 and so should only be used to indicate

the magnitude of the CPU time used�

�
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Optimum Monotonicity

N �t No� Steps CPU time�s �t No� Steps CPU time�s

�� ����� �� ������ ���� ����� �� ������ ����

�� ����� �� ������ ���� ���		 ��
 ������ ����

�� ���	� �� ������ ���� ����� ��� ������ ����

�� ����� ��� ����� ����� ��� ��	��

��� ����
	 ��� ���	� ������ ��� ������ ���

	�� ����	� ��� ��	�
� ��� ����	 ���� ������ ���

��� ������ ���� ������ ��� ������ ���� ������ ���

���� ������ 	��� ���	�� ��� �����
� ���	 ��
��� ���

Table ���� Time stepping for the Engquist�Osher scheme for Problem 


The criterion used to test for convergence isvuuut �

N � �

N��X
j��

�Tjhn�� � tolh� �����

where tolh � ����� This is also used for all other iterative methods for solving

the di�erence equations� In the particular case of the time stepping iteration it is

equivalent to vuuut �

N � �

N��X
j��

�
hn��j � hnj

�t

��
� tolh� �����

The optimum time step is in all cases found to be greater than that arising from

the CFL condition� For problem 
 this is by a factor of about � for small N � The

two values become much closer as N becomes larger� The number of iterations and

hence the CPU time varies inversely proportionally to the size of the time step for

time steps below the optimum value �this is because the iteration process is modelling

the transient behaviour of a PDE and so the time at which steady state is attained

tend � nend�t is essentially independent of �t�� Hence for problem 
	 the CFL

time step yields a CPU time of at most twice the best attainable� The situation can

be considerably worse than this� For example in problem � the optimum time step is

consistently greater than the CFL time step by a factor of between three and four	

for each N � The di�erence between the CFL time step and the optimum time step

�
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is dependent on the tightness of the bounds h and h	 since the CFL condition must

hold for depths between these� Section ��� discusses the reason why these bounds

are not necessarily tight� Even if tighter bounds on the analytic solution are known	

convergence is not guaranteed by ensuring the CFL condition is satis�ed over this

new smaller range	 unless the time stepping iteration can also be shown to satisfy

these new bounds� Convergence may still occur for time steps slightly higher than the

optimum value� however the number of iterations required for convergence increases�

The time stepping iteration applied to the Godunov and �rst�order upwind schemes

is found to behave very similarly to the case of the Engquist�Osher scheme

Table ��� demonstrates the performance of Roe�s scheme for problem 
	 for near

Pointwise Source Term Upwinded Source Term

N �t No� Steps CPU time�s �t No� Steps CPU time�s

�� 	�� �	� ������ ���� 	�� 		� �����

�� ��� 	�� ��	�� ��� ��� �����

�� ��
� �	� ������ ��� ��
 ��	 ������ ���

�� ��	� ���� ������ ��� ��	� �
�	 ���
�� ���

��� ���� 	��� ������ ��� ���� 	�
� ������ ���

	�� ���
 ���� ����	� ��� ���
 ���� ������ ���

��� ���	� �	��� ����
� ��� ���	 �
			 ���	�� ���

���� ����
 		��� ������ ��� ����� 	��
� ������ ���

Table ���� Roe�s scheme for problem 
 using close to optimum time steps

optimal time steps� The performance is not a�ected to a great extent by the choice

of source term discretisation� For other test cases the upwinded discretisation can

result in a more noticeable increase in computation time� To obtain a fair comparison

between the performance of Roe�s scheme and that of the scalar methods we use the

consistent convergence criterion

vuuut �

N � �

NX
j��

�
hn��j � hnj

�t

��
� tolh�
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vuuut �

N � �

NX
j��

�
Qn��
j �Qn

j

�t

��
� tolQ�

where tolQ � ���	�

Comparing the computational expense of Roe against the Engquist�Osher scheme	

it can be seen that if the optimum time step is used the Engquist�Osher scheme is

in the order of �fty times cheaper than Roe�s scheme� Even if the CFL time step is

used the Engquist�Osher scheme is still around �
 times cheaper� The performance

di�erential may be slightly exaggerated by the fact that the Roe computer code is not

as streamlined as the Engquist�Osher code� Even when taking this into account	 the

di�erence is still signi�cant and is typical of many of the test problems encountered�

We now ask whether the CPU savings observed above still occur when the time

stepping iteration is applied to the second order scalar schemes� Appendix A gives

the necessary changes to the theory in Chapter 
 to yield a modi�ed CFL condition

for the E�O�� scheme	 provided that the parameter p is below a certain critical value�

Unlike the case of the �rst order schemes where only computational e�ciency is lost

by insisting that the CFL be satis�ed	 in the second order case solution accuracy

may also be lost� For this reason we will in general choose p to be higher than the

critical value� There is no corresponding theory for the upwind�� scheme�

Table ��� illustrates the performance of the time stepping iteration applied to

upwind�� and the E�O�� scheme �p � � � for problem 
� These two schemes give

very similar levels of performance	 and in a number of cases can converge in fewer

iterations than the �rst order schemes	 although they are more complicated to im�

plement and so on average are more expensive� In Section ����� the dependence of

the accuracy of the E�O�� scheme on the parameter p is described in terms of three

regions	 a �rst order region	 a second order region and a transitional region� The be�

haviour of the time stepping iteration can also be described in terms of these ranges

of p� In the �rst order region the method not surprisingly behaves almost identically

to the �rst order Engquist�Osher scheme� In the second order region �which for the

results given in Table ��� includes p � �� the performance is very similar to the

upwind�� scheme� The performance changes smoothly between the two levels in the

transitional region	 although there may be values for the which the performance is

�
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Upwind�� E�O�� �p � ��

N �t No� Steps CPU time�s �t No� Steps CPU time�s

�� ����	 �
 ������ ���� ���
� �� ������ ����

�� ����
 �� ���
�� ���� ���
� �� ������ ����

�� ����
 ��� ��
��� ���� ���	� ��� ��
��� ����

�� ����� ��� ���
� ����� ��� ��	��

��� ����
� �
� ������ ��� ����
� ��� ���	�� ���

	�� ����	� �
� ������ ��� ����	� ��	� ���	�� ���

��� ������ ���� ���	�� ��� �����
 ���� ������ ���

���� ������ 	
�� ������ ��� ������ 	
�� ��

�� ���

Table ���� Time stepping for the upwind�� and E�O�� �p � �� schemes for problem


 using optimal time steps

unexpectedly low�

Finally we consider the performance of the time stepping iteration when using

the high order TVD schemes� Table ��� gives examples of the performances of these

schemes for test problem 
� The Yee�Roe�Davis scheme is about twice as expensive

in CPU time as the previous scalar schemes considered� This is partly due to the

extra overhead in computing the limiter functions	 but the method also seems to

inherently require more iterations to converge� The time stepping iteration for the

Harten�Yee scheme succeeds when the number of grids points is small	 although it is

rather expensive� As the number of grid�points becomes larger the iteration appears

not to converge for any choice of time step	 no matter how small� The residual

decreases and then becomes trapped in some limit cycle� Such an e�ect is called

residual plateauing and is common in steady state calculations when using schemes

with nonlinear limiters� Techniques to prevent this are discussed in ���� The method

fails on all the tested problems for larger numbers of grid�points�

Having investigated the time stepping iteration we now consider other possibly

more e�cient methods for solving the di�erence equations� We start by looking at

Newton�s method�

�
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Yee�Roe�Davis Optimum�Harten�Yee

N �t No� Steps CPU time�s �t No� Steps CPU time�s

�� ����� ��� ��	��� ���� ����	 
� ���
�� ����

�� ����� �
� ��
��� ���� ����� 	�
 ���
�

�� ����	 	�� ��			 �����	 ���� ���	�� ���

�� �����	 ��� ������ ��� Fails to converge for all �t

��� ����	� �	�
 ���
�� ��� Fails to converge for all �t

	�� ������ ���
 ������ ��� Fails to converge for all �t

��� �����
� ���� ����
� ��� Fails to converge for all �t

���� �����	� ���
 ����	� ��� Fails to converge for all �t

Table ���� Time stepping for the high order TVD schemes for problem 
 using optimal

time steps

��� Newton�s Method

The nonlinear system of di�erence equations can be written in vector notation as

T �h� � �� �����

where T �h� � �T�h�T�h� � � � �TN��h�T 	 h � �h�� h�� � � � � hN���T and h� � h�� � ��	

hN � hN�� � ��� The time stepping iteration is essentially a Picard iteration applied

to this system� Such methods only give a linear convergence rate	 i�e� the residual

is inversely proportional to number of iterations� Newton�s method however is well

known to give a quadratic convergence rate	 i�e� the residual is inversely proportional

to the number of iterations squared� The drawback of Newton�s method is that in

general	 global convergence is not obtained	 i�e� convergence will not occur for all

initial guesses of the solution� The theory of Newton�s method and other related

methods can be found in ��
��

Applying Newton�s method to the system of di�erence equations yields the fol�

lowing algorithm�

hn�� � hn � sndn� �����

�
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where dn � �dn� � d
n
� � � � � � d

n
N���

T solves the linear system

T
��hn�dn � �T �hn�� ���
�

and T � denotes the Jacobian of the system ������ Strictly speaking this is only

Newton�s method if we take sn � � at every iteration� However it is found that the

method often fails due to components of the iterate becoming negative� The method

is found to be much more robust if at each iteration the value of sn is chosen to

prevent this� We use the formula

sn � min
��j�N

fsnj g� ���
�

where

snj �

����
���

� if dnj � �

minf�s
hnj

dnj
� �g if dnj � ��

Essentially sn is taken as unity unless this would cause the solution to become negat�

ive	 in which case it is taken as just below the largest value which gives a non�negative

iterate� The parameter � � s � � is chosen to stop the solution from approaching

too close to zero in one iteration and is taken as ���
� Other approaches are pos�

sible� For example Newton�s method is a steepest descent method for the functional

T �h�TT �h�� Because of this it is always possible at each iteration to �nd a value

� � sn � � such that this functional decreases� This may lead to a method that is

globally convergent� The value of sn can be computed using a line search algorithm	

but this increases the CPU overhead considerably since it may require many evalu�

ations of the function T � Such methods are described in ��
� and �
���

For T of the form 
��� the Jacobian is given by

T
��h� �

�
BBBBBBBBBBBBBBBBBBB	

q� r�

p� q� r�
� � � � � � � � �

pj qj rj
� � � � � � � � �

pN�� qN�� rN��

pN�� qN��
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where

pj � �
gv�hj� hj���

�x
�

qj �
gv�hj��� hj�� gu�hj� hj���

�x
�Dh�xj� hj��

rj �
gu�hj��� hj�

�x
�

The Jacobian does not strictly exist in the case of Godunov and the �rst�order

upwind schemes because of the switching	 however on the curves where the function

g is not di�erentiable	 either the partial derivatives from the left or right can be used�

The Jacobian exists at all points for the Engquist�Osher and Lax�Friedrichs schemes

since the numerical �ux functions are di�erentiable in these cases� For monotone

schemes �i�e� under the conditions of Theorem � with � � h � �� we have that

gu � � 	 gv � � and Dh � � so that pj 	 rj � � and qj � �� We observe that

jp�j �
gv�h�� h��

�x
� jq�j�

jpj��j� jrj��j �
gv�hj��� hj�� gu�hj� hj���

�x
� jqjj j � �� � � � � N � ��

jrN��j � �
gu�hN��� hN���

�x
� jqN��j�

which demonstrates that the transpose of the Jacobian is strictly diagonally dominant

and the Jacobian itself is non�singular� In fact the Jacobian is a special type of matrix

known as an M�matrix� Properties of this class of matrices are discussed in ��
�� One

property is that all entries of the inverse matrix are non�negative�

Table ��
 illustrates the performance of the Newton algorithm applied to the

Engquist�Osher scheme for problem 
� The method gives a minimum of 
�� reduc�

tion over the time stepping iteration and in most cases more� For example with ����

grid points Newton�s method is more than eight times more e�cient� As well as

being signi�cantly faster	 Newton�s method has the advantage that the performance

is not dependent on the choice of some parameter such as the time step in the time

stepping iteration� Newton�s method combined with the Engquist�Osher scheme is

found to give a very good performance for all the problems ��� as long as the number

of grid�points is not too large� For problems without hydraulic jumps the iteration

count is found to be almost independent of the number of grid�points� For problems

�
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N No� iter CPU time�s No� iter CPU time�s
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Table ��
� Performance of Newton�s method for the E�O and E�O�� �p � �� schemes

for problem 


with jumps the method can fail to converge when the number of grid�points is high�

For example in problem 
 it fails for N � ����� This can be avoided by solving the

scheme on a sequence of grids of increasing resolution� The solution is transferred

from grid to grid using linear interpolation� This approach ensures that on each grid

the initial guess is closer to the �nal solution and hence is more likely to be within

the radius of convergence� This technique also can also improve e�ciency	 since

fewer Newton iterations are required on the more expensive �ner grids� Table ��


illustrates the performance of such an approach� For each value of N we started

by solving on the grid N � �� and then repeatedly doubled the grid until reaching

the �nal grid� On each intermediate grid the solution of the di�erence equations is

only solved to a tolerance of half the magnitude of that used on the �nal grid� The

number of iterations given in the table correspond to the number of iterations taken

on the �nal grid� The results show a signi�cant improvement in e�ciency when N

becomes large�

Combining Newton with the Godunov or �rst order upwind schemes gives a sim�

ilar level of performance to that for Engquist�Osher� For these schemes the function

T �h� is not di�erentiable on manifolds of the solution space	 and this might be ex�

pected to be detrimental to Newton�s method� The method often fails to converge

�
�
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N No� iter CPU time�s No� iter CPU time�s
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Table ��
� Performance of Newton�s method for the E�O and E�O�� �p � �� schemes

for problem 
 using grid re�nement

at a lower number of grid�points than for the Engquist�Osher scheme� For example

for problem 
 both Godunov and the �rst�order upwind schemes fail for N � 
��	

unlike the Engquist�Osher scheme which does converge� Again this situation can in

most cases be improved by the use of a grid re�ning technique as described above�

In the case of the upwind�� scheme the function T �h� does not even depend

continuously on its variables	 let alone be di�erentiable� Consequently for almost

all problems that contain transitions and almost all values of N 	 Newton�s method

does not converge� The second order modi�cation to the Engquist�Osher scheme	

however	 maintains the di�erentiability of the function T �h�	 and hence Newton�s

method is expected to be well behaved� The Jacobian in this case is given by �����	

where in the notation of Appendix A

pj � �
�

�x

� gj� �

�

�hj��
�

qj �
�

�x

�
� gj� �

�

�hj
�

� gj� �

�

�hj

�
�Dh�xj� hj�

� pj�� � rj�� �Dh�xj� hj��

rj �
�

�x

� gj� �

�

�hj��
�

Appendix A shows that if � � h � 	 and p satis�es ���
� then the o��diagonal

elements of the Jacobian are non�negative and the diagonal elements are positive�

�
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Hence we have

jqjj � jpj��j� jrj��j�Dh�xj� hj� � jpj��j� jrj��j�

Hence the transpose of the Jacobian is strictly diagonally dominant and the Jacobian

itself is non�singular	 and as for the �rst order monotone schemes the Jacobian is an

M�matrix�

Newton�s method applied to the second order Engquist�Osher scheme is in prac�

tice found to be well�behaved and Table ��
 shows the performance for problem �

with p � �� At best for this example the method converges in roughly the same num�

ber of iterations as for the �rst order scheme and at worst takes three times as many

iterations� In the worst case	 the method still yields a considerable improvement over

the time stepping iteration� The author of ���� suggests that the method may fail

if the parameter p is too high �violating ���
��� This is not found to be the case�

For some test cases there are found to be isolated values of p for which the method

does not converge	 however these always appear to be in the range corresponding

to the transition between �rst order and second order� In general the number of

iterations required reaches its maximum in this transition range and there have been

no di�culties encountered by taking p well into the second order range� As for the

�rst order scheme	 the method can fail as the number of grid�points becomes large�

A grid re�ning mechanism can again in many cases remedy this and also help for

awkward values of p� The possible gain in e�ciency obtainable by using a grid

re�ning technique can be seen by comparing Tables ��
 and ��


Finally we consider the application of Newton�s method to the high order TVD

schemes� The non�standard algebraic form of the limiter functions means that it is

impractical to compute the full Jacobian of the system� In any case these limiter

functions are not even continuous� We choose therefore only to compute an approx�

imation to the Jacobian� Before calculating the Jacobian the limiter functions are

set to zero	 which is a standard technique for such schemes� This approach is used

in ���� to linearise implicit schemes	 a topic discussed in the next section� For the

two high order TVD schemes considered	 the approximate Jacobian corresponds to

the Jacobian of the system for the �rst order upwind scheme �i�e� T � � �T FOU����

This approach also has the advantage that the Jacobian is tri�diagonal rather than

�
�



having a band�width of �ve	 as would be the case if one attempted to use the full

Jacobian� We expect the fact that only an approximate Jacobian is used to reduce

the performance of the Newton�s method� Applying the method to the Yee�Roe�

Davis scheme and the Harten�Yee scheme we �nd that convergence is obtained if the

number of grid�points is very small	 although the method is more expensive than

for the previous schemes such as the Engquist�Osher scheme� For even a moderate

number of grid points and even for solutions without transitions	 the method fails

to converge for the Yee�Roe�Davis scheme� The Harten�Yee scheme converges for a

higher number of grid�points	 however for problems with hydraulic jumps fails for

signi�cantly smallerN than for example the Engquist�Osher scheme� The robustness

of the method can in some cases be improved by use of a grid re�ning approach	 but

the method is not really suited to solving these schemes�

��� The Implicit Time Stepping Iteration

We now consider a generalisation of the time stepping algorithm� The particular

implementation of the algorithm relates it closely to the Newton algorithm described

in the previous section� The e�ciency of the time stepping method is restricted by

the fact that the time step must satisfy some CFL condition in order for the iterative

process to be stable �i�e� converge�� For steady state computations a standard

method for relaxing or even removing altogether the CFL restriction is to use an

implicit time stepping iteration� Such methods are discussed in section ��
 and can

be written as follows�

R�hn��� �
hn�� � hn

�t
� 
T �hn��� � ��� 
�T �hn� � �� �� � 
 � ��� �����

Note that in the case 
 � � this degenerates to the original explicit time stepping� In

the case 
 �� � the solution at the next time level can only be determined by solving

the nonlinear system of equations ������ This can be carried out using exactly the

same algorithm as described in the previous section� The complete method can now

be written as follows�

hn���k�� � hn���k � sn���kdn���k� k � �� �� � � � �����

���



where dn���k � �dn���k� � dn���k� � � � � � dn���kN�� �T solves the linear system

R
��hn���k�dn���k � �R�hn���k�� ������

R
� �

I

�t
� 
T ��

sn���k � min
��j�N

fsn���kj g�

and we take

s
n���k
j �

�����
����

� if dn���kj � �

minf�s
h
n���k
j

dn���kj

� �g if dn���kj � ��

We take the most obvious choice of initial guess	 hn���� � hn	 and set hn�� � hn�k��

if the iteration converges to the required tolerance	 i�e�

vuutR�hn���k�TR�hn���k�

N � �
� tol��

For the monotone schemes and the E�O�� scheme it was shown in the previous section

that	 if certain assumptions hold	 then T � must be nonsingular because the trans�

pose of this matrix is strictly diagonally dominant� It follows that if T � is strictly

diagonally dominant	 then

�R��T �
I

�t
� 
�T ��T �

is also strictly diagonally dominant	 since we are only adding positive terms to the

positive diagonal entries of T ��

It may appear that at each time step we may be required to perform as muchwork

as completely solving the system of di�erence equations using the Newton algorithm�

However if the time step is not too large	 the initial guess for the solution for each

internal iteration �which is the solution at the current time level� is likely to be close

to the solution of system ����� and so convergence may occur in a small number

of internal iterations� It is well known and also observed in practice that the best

performance occurs for the case 
 � �	 where for certain numerical �ux functions

the method is unconditionally TVD� In the case 
 � � the algorithm can be seen

to approach the purely Newton algorithm of the previous section as the time step

�t tends towards in�nity� Thus for cases where the Newton algorithm converges we

���



expect the implicit algorithm to have no restriction on the time step� This is found

to be the case in practice� A measure of the performance for this method is given by

the number of Jacobian inversions required for convergence to occur� The number of

inversions required decreases as the time step increases and approaches the number

of inversions required for the Newton algorithm as �t becomes very large� Even

for large time steps where the number of Jacobian inversions required for the two

methods are almost identical	 the implicit algorithm is signi�cantly more expensive

due to the expense of setting up the internal iteration�

The implicit time stepping algorithm has an advantage over Newton for some of

the cases where the Newton algorithm fails� In many of these cases it is possible to

choose a time step small enough such that the iteration converges� The implicit time

stepping was applied to the upwind�� scheme and is found to converge as long as the

time step is small enough� However the time step is required to be so small that the

method does not perform even as well as the explicit method� Furthermore spurious

solutions are encountered for some values of the time step� These spurious solutions	

which are unrelated to the physical solution of the problem	 vary depending on the

time step and so the system of di�erence equations appears to have many solutions�

Such spurious solutions have not been encountered using the explicit time stepping

algorithm�

Again	 for the �ve point TVD schemes only the approximate Jacobian is used

for implicit time stepping� The method is found to converge in all the cases tested	

provided that the time step is small enough� This is better than both the explicit time

stepping and Newton�s methods which have di�culties with either the Yee�Roe�Davis

or Harten�Yee schemes for large N �

It is found that the performance of the implicit method is dependent on the toler�

ance placed on the convergence of the internal iteration� The higher this tolerance	

the more e�cient the method is found to be� In fact the best performance is obtained

when the tolerance is so high that at most one Newton iteration is performed at each

time step� If we intend to perform only one Newton iteration at each time step then

the method can be simpli�ed to�

hn�� � hn � sndn� ������

���



where dn � �dn� � d
n
� � � � � � d

n
N���

T solves the linear system

R
��hn�dn � �R�hn�� ������

and sn is taken as in Newton�s method� Again for 
 � � this method approaches the

Newton algorithm as �t grows large� The method is known as a linearised implicit

scheme �see section ��
� since it can also be derived using Taylor�s expansions to

linearise the implicit part of the operator� The linearised method is more e�cient to

implement than the method allowing a variable number of inner iterations	 and each

iteration requires a very similar expenditure to one iteration of the Newton algorithm�

Table ��� shows the performance of the linearised method for the Engquist�Osher

E�O E�O�� �p � ��

N �t No� iter� CPU time�s �t No� iter� CPU time�s
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Table ���� Linearised implicit algorithm for the E�O and E�O�� �p � �� schemes for

problem 


scheme and its second order modi�cation �p � �� for problem 
� In each case

performance is given for a time step which gives close to the optimum convergence

rate� By comparing Tables ��� and ��
 it can be seen that the linearised method

and Newton�s method are indeed very similar in performance� Of course for the

linearised method the performance is dependent on the choice of time step and there

is no way to predict the optimal value in advance� However	 it is found that good

performance is obtained over a much wider range of time steps than for the explicit

time stepping method� There also appears to be no limit on the size of the time step

���



in many cases� In the case of the high order TVD schemes	 the linearised method

Yee�Roe�Davis Harten�Yee

N �t No� Steps CPU time�s �t No� iter� CPU time�s

�� ��� 	� ���	
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��� ����
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Table ���� Linearised implicit algorithm for the Y�R�D and H�Y schemes for problem




gives the best performance of all the methods previously encountered� This is not

surprising since this method is exactly the method �except for the modi�cation to

prevent negative values� recommended by the authors of ���� for computing steady

solutions of these schemes� The method does not perform to the same standard

as for the Engquist�Osher scheme� To start with it is more expensive	 secondly

convergence only occurs below a certain value of time step and lastly the e�ciency

is more sensitive to the choice of time step� Table ��� illustrates the performance of

the method for the two schemes for problem 
	 the performance being comparable to

that of Newton�s method when Newton converges and greatly superior to the explicit

time stepping�

The idea of a linearised implicit scheme has been successfully applied in ����

to Roe�s approximate Riemann solver with the aim of e�ciently computing steady

solutions� Carrying this out is considerably more complex than for the scalar schemes	

and it is di�cult to see how this can be more e�cient than for the scalar equivalents�

���



��� Conclusions

In this chapter the e�ectiveness of four di�erent methods of solving the di�erence

equations was considered� These were the explicit time�stepping iteration	 Newton�s

method	 the implicit time�stepping iteration and the linearised implicit time�stepping

iteration� The Engquist�Osher and �rst�order upwind schemes were found to be

particularly amenable to solution by Newton�s method� Not only was this method

the most e�cient and robust	 but also had the advantage that the e�ciency and

robustness did not depend on the appropriate choice of some parameter� However

the method can fail to converge when the number of grid�points becomes large� This

situation can often be remedied by solving the di�erence equations on �ner and �ner

grids� This technique can also further increase the e�ciency	 even in cases where

Newton�s method would converge without it� Alternatively	 since Newton�s method

corresponds to the linearised implicit method with an in�nite time step	 convergence

can be obtained by using the latter method with a �nite time step�

The only method suitable for the upwind�� scheme	 due to the discontinuous way

in which the source term switches	 was the explicit time�stepping iteration� On the

other hand	 Newton�s method was almost as robust and e�cient for the E�O�� scheme

as it was for the �rst order scheme and the same comments hold for improving the

robustness at large N � For the high order TVD schemes	 even the time stepping

iteration failed to converge in many cases� However good performance was observed

using the linearised implicit method� We conclude that the best strategy in order to

obtain accuracy	 e�ciency and robustness is the combination of the E�O�� scheme

and Newton�s iteration �and grid re�nement for large values of N��

��




Chapter �

Non�Prismatic Channels

��� Scalar Schemes

Thus far we have only considered numerical methods for the case of prismatic chan�

nels� The steady �ow equation for a non�prismatic channel is given by

d

dx
F �x� h� � D�x� h�� ���	�

The di
erence between the non�prismatic case and the prismatic case is the additional

explicit dependence of the quantity F on the distance along the channel x� In order

to model this dependence numerically� we allow the numerical �ux function to also

depend on x� A possible �rst order accurate approximation of ���	� is given by

Tjh � g�xj�q� hj��� hj�� g�xj�q��� hj� hj���


x
�D�xj � hj� � ��

for any q� where xj�q � �j � q�
x and

g�x� h� h� � f�x� h� � �F �x� h��

for all x and h� The parameter q controls how the �x� evaluation points of the

numerical �uxes are staggered� If we consider the time accurate method

hn��
j � hn

j


t
� Tjhn � ��

for the scalar PDE ������ then the term g�xj�q� hj��� hj� approximates the time av�

erage �ux across the cell interface at x � xj� �

�

� The choice q � 	�� is therefore the

	��



most natural� Other choices may be more appropriate for reasons of computational

e�ciency� If q is not an integer then certain quantities �such as the wetted area� will

need be computed at both xj and xj�q for each j� Alternatively if we take q � �

or q � 	 then these quantities are only required at the grid�points� The numerical

�ux functions described thus far in this thesis can� in general� be modi�ed simply

by adding the argument x to any evaluations of the function f or its derivatives� In

the case of the Engquist�Osher scheme this leads to

gE�O�x� u� v� � f��x� u� � f��x� v� � f�x� c�� �����

where

f��x� u� �
Z u

c
minffh�x� s�� �gds�

f��x� u� �
Z u

c
maxffh�x� s�� �gds

and c � � is arbitrary� The Godunov numerical �ux function is given by

gGod�x� u� v� �

���
��

maxff�x�w� � u � w � vg for u � v

minff�x�w� � v � u � vg for v � u�
�����

and �rst�order upwind numerical �ux is given by

gFOU�x� u� v� �
	

�
�f�x� u� � f�x� v�� jsj�u� v�� � �����

where

s �

����
���

f�x� v�� f�x� u�

v � u
u �� v

fh�x� u� u � v�

If at each cross�section there is a unique critical depth� hc�x�� and the width does

not approach zero as the depth becomes large� then these three upwind schemes have

the property that�

hi� hi�� � hc�xj�q� �� g�xj�q� hj��� hj� � f�xj�q� hj����

hi� hi�� � hc�xj�q� �� g�xj�q� hj��� hj� � f�xj�q� hj��

We look at the truncation error of the scheme to investigate which of the values of q

gives the best approximation to the di
erential equations� In a region of the solution

	��



where the �ow is subcritical� i�e� hj��� hj � hc�xj�q��� and hj � hj�� � hc�xj�q�� the

three schemes all reduce to

f�xj�q� hj���� f�xj�q��� hj�


x
�D�xj� hj� � ��

with truncation error

T�E� �

x

�

�
h��fh � �h���fhh � �qh�fhx � ��q � 	�fxx

�
�O�
x��

�

x

�

d

dx
��D � ��q � 	�fx� �O�
x��� �����

In a region of the solution where the �ow is supercritical� i�e� hj��� hj � hc�xj�q���

and hj� hj�� � hc�xj�q�� the three schemes reduce to

f�xj�q� hj�� f�xj�q��� hj���


x
�D�xj� hj� � ��

with truncation error

T�E� �

x

�

�
�h��fh � �h���fhh � ��q � 	�h�fhx � ��q � 	�fxx

�
�O�
x��

�

x

�

d

dx
�D � �qfx� �O�
x��� �����

We see that the truncation error is O�
x� for all values of q and various terms may

be eliminated by certain choices of q� but without necessarily leading to a reduction

in the magnitude of the truncation error� We will see below that there is no single

value of q that performs best in all situations�

Figures ��	 to ��� show results for problems ��	� �given in Appendix B� for the

Engquist�Osher scheme with N � ��� All results are computed using the Newton

algorithm described in section ����

The solution to problem � �Figure ��	� represents entirely subcritical �ow� the

depth pro�le is a hump which is symmetric about the center of the reach� The solution

for q � 	�� is clearly the most accurate� with the solution for q � � overestimating the

maximum depth by a signi�cant amount and the solution for q � 	 underestimating

the maximum depth by a signi�cant amount� The solutions were computed for a

range of values of N � namely N � 	�� ��� � � � � ���� 	���� In all cases the solution for

q � 	�� is found to the most accurate in both the L� and L� measures�

	��
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Figure ��	� Results for Engquist�Osher problem � �
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The depth pro�le for problem 	� �Figure ���� is similar to the previous example�

but in this case it corresponds to supercritical �ow� It can be seen that the solution

for q � � is now the most accurate� The solutions for q � 	�� and q � 	 both

underestimate the maximum by considerable amounts� with the solution for q � 	

being the least accurate� The value q � � is found to be the most accurate over all

those values of N tried�

In the case of problem 		 �Figure ���� the �ow is subcritical until approximately

one third distance along the channel where it accelerates smoothly to supercritical

�ow� The choice q � � gives the best solution in the subcritical region of �ow� whilst

the solution for q � 	�� is the most accurate in the supercritical region of �ow� In

terms of the L� error� the solution for q � 	�� is found to be the most accurate for

all the values of N considered�

The solutions for problem 	� are shown in Figure ���� The solution has a hydraulic

jump at x � 	��m and the solution for q � 	�� is the most accurate in both the

subcritical and supercritical regions of �ow� Again this value gives the smallest L�

error for all the values of N � One anomaly observed is that the error at x � ��m for

q � 	� whilst initially greater than that for q � 	��� decreases at a rate consistent

with second order accuracy� and eventually becomes less than that for q � 	���
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Figure ���� Results for the Engquist�Osher scheme for problem 		 �
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There is no obvious reason for this superconvergence�

The solution for problem 	� �Figure ���� as for problem � represents an entirely

subcritical �ow� However in this case the choice q � 	 yields the best solution

�although it is not the most accurate at the second peak�� This choice gives the

lowest L� and L� errors for all the values of N considered�

The �nal case is problem 	� �Figure ���� whose solution has two transitions� a
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Figure ���� Results for the Engquist�Osher scheme for problem 	� �
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smooth transition at 	�� distance and a hydraulic jump at 	�� distance� The solution

for q � 	�� is the most accurate in the region of subcritical �ow downstream of the

jump� In fact the solutions for the other values of q are particularly poor� The

solution for q � 	�� remains the most accurate �in the L� measure� for all the values

of N considered�

The choice q � 	�� is found to give the most accurate solution in more cases

than not� but there is no clear trend to allow us to predict when another choice will

be more accurate� For example the solutions to problems � and 	� both represent

subcritical �ows� however in the �rst case q � 	�� is the most accurate whilst in the

second case q � 	 is the most accurate� In cases where the choice q � 	�� does not

give the most accurate solution� it is never found to give the least accurate solution�

Almost identical conclusions to those given above can be made for the generalisation

of the �rst�order upwind scheme� which is found to give very similar accuracy to the

Engquist�Osher scheme�
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The straightforward extension of the E�O�� scheme to the non�prismatic case is

given by

T E�O��
j h �

gE�O�xj�q� hj��� hj�� gE�O�xj�q��� hj � hj���


x

� ��j Dj�� � ��jDj � ��j Dj���

where

��j � �

�
pfh�xj��� hj���p


x

	
�

	��



��j � 	� �

�
pfh�xj� hj�p


x

	
� �

��pfh�xj� hj�p

x

	
� 	 � ��j�� � ��j���

��j � �

��pfh�xj��� hj���p

x

	
�

and the function � is given as before� For a prismatic channel the scheme gives

second order accuracy� To see whether this remains the case for a non�prismatic

channel we again consider the truncation error in regions of subcritical and regions of

supercritical �ow� In a region of subcritical �ow �su�ciently far from being critical�

the scheme reduces to

f�xj�q� hj���� f�xj�q��� hj�


x
�
D�xj� hj� �D�xj��� hj���

�
� ��

To obtain the truncation error for this scheme we simply add the terms

D�xj � hj� �D�xj��� hj���

�
�D�xj � hj� �


x

�
�Dx � h�Dh� �O�
x��

�

x

�

d

dx
D �O�
x��

to ����� to obtain the truncation error

T�E� � ��q � 	�
x
d

dx
fx �O�
x���

Thus the scheme is only second order accurate in regions of subcritical �ow if q � 	�

In a region of supercritical �ow �again su�ciently far from being critical� the scheme

reduces to

f�xj�q� hj�� f�xj�q��� hj���


x
�
D�xj��� hj��� �D�xj � hj�

�
� ��

We again obtain the truncation error by adding the terms

D�xj � hj� �D�xj��� hj���

�
�D�xj � hj� � �
x

�
�Dx � h�Dh� �O�
x��

� �
x

�

d

dx
D �O�
x��

to ����� to obtain the truncation error

T�E� � �q
x
d

dx
fx �O�
x���

Therefore the scheme is second order accurate in regions of supercritical �ow in the

case q � �� We conclude that the approach of upwinding the source term does not
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Figure ���� Results for the E�O�� scheme �p � ��	� for problem 		 �
x �	�m��

give second order accuracy in all regions of a transcritical �ow� This suggests that

some kind of switching of the value of q is required depending on the type of the �ow�

However� such a switching would destroy the conservative nature of the scheme�

Figures ������	� show results for the E�O�� scheme �N � ��� p � ��	� for problems

�� 		� 	� and 	� respectively� The solution to problem � �Figure ���� is a subcritical

�ow� thus from the above analysis we expect that the choice q � 	� p � ��	 will give

	��



0.0 50.0 100.0 150.0 200.0
x/m

0.6

0.8

1.0

1.2

1.4

1.6

D
ep

th
/m

E-O–2 (q=0)
E-O–2 (q=0.5)
E-O–2 (q=1)
hexact

hc

Figure ���� Results for the E�O�� scheme �p � ��	� for problem 	� �
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second order accuracy� However comparing this solution against the corresponding

solution for the �rst�order scheme �Figure ��	� we see that there is no visible im�

provement in the accuracy� Figure ��	� shows the L� errors as a function of N for

the E�O and E�O�� schemes� We see that the errors for the E�O�� scheme with q � 	

do not start to decrease at a rate consistent with second order accuracy until N is

greater than ��� and the scheme remains less accurate than the E�O scheme �q � 	���

until N � ���� The initially slow rate at which the errors decrease is undoubtedly

due to the phantom transitions near the maxima of the depth pro�le�

For problem 		 �Figure ���� the errors in the subcritical �ow region for the E�

O�� scheme with q � 	 are found to decrease with roughly second order accuracy�

similarly for q � � the errors in the supercritical �ow region are observed to decrease

with roughly second order accuracy� However the quality of the overall solutions are

in general inferior to those from the E�O scheme �Figure ����� The solutions from

the E�O�� scheme behave wildly at the smooth transition� This behaviour� which

degrades the accuracy of the solution well away for the transition� is found to be

sensitive to the value of the parameter p which controls the rate at which the source

term discretisation switches across a transition� Reducing p improves the quality

of the solution near the transition� but may also destroy the partial second order
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Figure ��	�� Results for the E�O�� scheme �p � ��	� for problem 	� �
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accuracy of the scheme� The L� errors of the E�O and E�O�� schemes are shown in

Figure ��	�� Clearly the E�O scheme with q � 	�� is more accurate than the E�O��

for all three values of q�

The E�O�� scheme with q � � or q � 	 again demonstrates second order accuracy

for problem 	� in the region of �ow of the appropriate type� In this case� Figure ��	�

shows that the E�O�� scheme with q � � gives the best L� accuracy out of all the

schemes� for all the values of N considered�

The L� errors for problem 	� are shown in Figure ��	� and in this case the E�O��

scheme with q � 	 is the most accurate method� In Figure ��	� we see that the

solution for q � 	 is clearly the most accurate downstream of the jump� with the

solutions for the other values of q signi�cantly less accurate than the solutions for

the E�O scheme�

We have encountered two main di�culties with the E�O�� scheme� Firstly the

scheme can perform badly across smooth transitions� Secondly any gain in accuracy

over the E�O scheme in a region of one �ow type is often at the expense of accuracy

in a region of the opposite �ow type� We conclude that it is only bene�cial to use

the E�O�� scheme for problems where the �ow is predominantly of one type� such

as problem 	� where the E�O�� scheme with q � 	 gives the best overall solution

over the range of N � The generalisation of the upwind�� scheme ����� is found to be
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extremely problematic� since even the explicit time stepping iteration fails to converge

more often than not�

��� Roe�s Approximate Riemann Solver

We can use the same principle as in the previous section to extend Roe�s approximate

Riemann solver to the non�prismatic case� The generalised numerical �ux is given

by

gRoe
j� �

�

�
	

�

�
F �xj�q�wj� � F �xj�q�wj���� j �Jj� �

�

j�wj�� �wj�
�
�

where now

F �xj�q�wj����F �xj�q�wj� � �Jj� �

�

�wj�� �wj��

The scheme can be written as

wn��
j �wn

j


t
�


�J�
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�

�n �wn
j�� �wn

j �


x
�


�J�
j� �

�

�n �wn
j �wn

j���


x

�
F �xj�q�w

n
j � �F �xj�q���w

n
j �


x
� Dn

j �

At each time step� as well as distributing the increments


�
�

j� �

�

�n

�see section �����

we now need to add a quantity to each cell due to the new term

F �xj�q�w
n
j �� F �xj�q���w

n
j �


x
� Fx�xj�w

n
j �� �����

The approach of ���� for a rectangular channel of variable width is to use the ap�

proximation ����� and to absorb the term Fx�xj�w
n
j � into the source term� This

approach� however� renders the scheme non�conservative� No increment is added due

to the term ����� at the boundary cells and this makes the treatment of the boundary

conditions inadequate� This can be seen in the results by anomalies at boundaries

where one of the �ow variables is unspeci�ed� Further work is required to improve

this situation� The only other change to the algorithm from the prismatic case is

that when calculating the wave speeds

��j� �

�
�� � �uj� �

�

� �cj� �

�

� ��j� �

�
�� � �uj� �

�

� �cj� �

�

�
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we use the modi�ed formula

�
�cj� �

�

��
�

���������
��������

g

�
I��xj�q� Aj���� I��xj�q� Aj�

Aj�� �Aj

	
Aj �� Aj��

gAj

T �xj�q� Aj�
Aj � Aj���

where now the functions T and I� give there respective quantities as a function of

cross�section and wetted area�
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Figures ��		 to ��	� show results for Roe�s scheme for problems �� 		� 	� and

	� with N � ��� respectively� In each case both the depth and discharge �elds are
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shown� For problem � the most accurate depth pro�le is for q � 	��� although from

the plot of the L� errors �Figure ��	�� it can be seen that this is less accurate than

the Engquist�Osher scheme with the same value of q� The solutions at the smooth

transition for problem 		 are completely wrong� The behaviour is similar to that of

the E�O�� scheme� but here it is much more pronounced� It appears as though the

scheme has captured a jump rather than a smooth transition� although the solution

converges to a smooth transition as the grid is re�ned� This situation is not as serious

as it may appear� since it can be remedied simply by the addition of an entropy �x
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�see ����� Chapter 	�� which prevents the formation of unphysical discontinuities�

Results with the addition of an entropy �x are shown in Figure ��	� for this case�

The results for problem 	� �Figure ��	�� can be seen to be very comparable

to those from the Engquist�Osher scheme� Looking at the plot of the L� errors

�Figure ��	�� we see in the case q � 	 that the error for Roe�s scheme increases

suddenly for no obvious reason after N � 	���

Roe�s scheme is the least accurate of all the schemes in terms of L� errors for

problem 	� and the scheme has even greater di�culty than the other schemes in the
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subcritical region of �ow downstream of the jump�

We conclude that Roe�s scheme is in general less accurate than the Engquist�Osher

scheme� The reason for this is most likely the large deviations in the discharge� For

regions of supercritical �ow we �nd �for the reason discussed in section ���� that

the discharge is constant �although not necessarily at the correct level�� In regions

of subcritical �ow� the scheme is not consistent at steady state with a constant

discharge� resulting in large deviations in the discharge �eld� This was remedied in

section ��� by upwinding the source term� This does not work for a non�prismatic
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channel� because of the additional term ����� which has not been decomposed onto

the eigenvectors of the Roe matrix� The approach of Priestley����� which absorbs

the additional term into the source term and upwinds the modi�ed source term� does

however result in a constant discharge �away from jumps�� but also results in a

non�conservative scheme�
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��� Conclusions

We have seen in this chapter that the �scalar approach� can be extended to the case of

non�prismatic channels� A parameter q was introduced to control the cross�sections

at which the numerical �ux was evaluated� with the choice q � 	�� �so that the

�uxes were evaluated at the cell interfaces� giving the best accuracy in more cases

than not� The technique of improving the accuracy of the solution by upwinding the

source term was found be very much less e
ective than for the prismatic case� since

depending on the choice of the parameter q� the scheme is only second order accurate

in regions of subcritical �ow or regions of supercritical �ow� For the E�O�� scheme

it was often found that a gain in accuracy in a region of one type of �ow results

in a reduction in accuracy in regions of the opposite type of �ow� This approach

	��



10 100
N

10
–4

10
–3

10
–2

10
–1

L
1 e

rr
or

 /m
E-O (q=0)
E-O (q=0.5)
E-O (q=1)
E-O–2 (q=0, p=0.1)
E-O–2 (q=0.5, p=0.1)
E-O–2 (q=1, p=0.1)
Roe (q=0)
Roe (q=0.5)
Roe (q=1)

Figure ��	�� L� errors for problem 		�

may therefore only be of any bene�t for solutions of predominantly one type of �ow�

The generalisation of the upwind�� scheme was found to be extremely problematic

due non�convergence of the time�stepping iteration� whereas the E�O and E�O��

schemes were� as for the prismatic case� very amenable to Newton�s method� Roe�s

scheme was also generalised to the non�prismatic case� The scheme has di�culties

capturing smooth transitions but this could be cured by addition of an entropy �x�

Roe�s method was in general found to less accurate than the scalar schemes� due to

the large amount of deviation from the expected constant discharge� This cannot

be remedied by upwinding the source term without a special treatment of the new

term arising from the variation of the cross�section of the channel� This last subject

requires further work�
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Chapter ��

Conclusions and Further Work

In this thesis we have considered both analytical and numerical aspects of the steady

state Saint�Venant problem� with particular emphasis on the subject of discontinuous

solutions�

The main analytical results were presented in Chapter � where it was shown

under certain conditions that the steady �ow problem has at most one physically

allowable solution for any particular set of boundary conditions� Information was

also obtained regarding which sets of boundary conditions actually provide a solution�

The major requirements for the theory to apply are that the channel be prismatic�

have positive bed slope and have only a single critical depth� In addition to other

minor technical requirements� the conveyance� which gives the form of the friction

law� must be a strictly increasing function of depth� Provided the bed slope is

positive and su�ciently smooth� then all the necessary conditions were shown to hold

for trapezoidal channels �including the special cases of rectangular and triangular

channels	 with either the Manning or Chezy forms of the conveyance� For problems

where the bed slope is not everywhere positive� we demonstrated that there can be

multiple physical solutions for a given set of boundary conditions� The existence of

multiple solutions is also anticipated for non�prismatic channels� thus it may not be

possible to extend the theory to a signi
cantly wider class of problems�

The �scalar approach� for numerically computing steady solutions was intro�

duced� which arose from the observation that� under certain conditions� the physical

solutions of the steady �ow problem are exactly the steady entropy satisfying solu�
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tions of a particular scalar conservation law� Scalar shock capturing schemes could

thus be used to compute discontinuous solutions of the steady �ow problem� A family

of such schemes� which are particularly rich in theoretical results� are the monotone

schemes� In Chapter � we demonstrated that this richness carries over to the com�

putation of solutions of the steady �ow problem� Under the same conditions as the

theory in Chapter � we demonstrated that the numerical schemes de
ne a solution

which converges to the unique physical solution of the steady �ow problem �as the

grid�spacing vanishes	�

In order to assess the performance of particular methods� it is useful to have

model problems for which the exact solution is known� Other than for certain ideal�

ised cases� there appear to be no such model problems for the steady �ow problem�

In Chapter � we presented a relatively simple procedure for constructing test prob�

lems with known solutions� This allowed us to construct a series of test problems�

including problems with discontinuous solutions� The test problems were construc�

ted using an inverse approach� in that we calculated the bed slope necessary to give

a speci
ed solution�

We commenced Chapter � by applying the Engquist�Osher� Godunov and Lax�

Friedrichs monotone schemes and the 
rst�order upwind scheme to a selection of the

test cases and compared the numerical solutions against the exact solutions� The

Engquist�Osher� Godunov and 
rst�order upwind schemes were all found to give good

representations of the actual solutions� di�ering in accuracy only near transitions�

The Lax�Friedrichs scheme was found to be considerably more di�usive for values of

the free parameter necessary to make the scheme monotone over the depth range of

interest� We investigated the e�ectiveness of certain a�priori estimates arising from

the theory� and in general these were found to be too pessimistic to be of great use�

In particular the time step predicted was often found to be many times smaller than

the optimum value�

The results for the Engquist�Osher scheme were compared against those obtained

from time accurately integrating the Saint�Venant system using Roe�s approximate

Riemann solver� When for the latter approach the source term was discretised in a

pointwise manner� comparable accuracy to the Engquist�Osher schemewas observed�


��



However in general the discharge for Roe�s schemes was found to be far from constant

at steady state� This was remedied by using an upwind discretisation of the source

term� Moreover for a particular form of source term averaging it was found that

the scheme gave second order accuracy at steady state� This was explained by

showing that� at steady state� the scheme e�ectively reduces to the trapezium rule�

Upwinding of the source term was also used to obtain second order accurate three�

point scalar schemes� The resulting generalisations of the Engquist�Osher and 
rst�

order upwind schemes were found to give comparable accuracy to Roe�s scheme with

an upwinded source term� Another more traditional approach to obtaining second

order accuracy is through the use of nonlinear limiter functions� leading to 
ve�point

TVD schemes� Examples of such schemes were found to be signi
cantly less accurate

than the schemes with upwinded source term�

The accuracy of a numerical method is only one important factor in the overall

performance of the method� Another important factor is the e�ciency with which

solutions can be computed� The �scalar approach� reduces to solving a system of

nonlinear di�erence equations and the most natural method for carrying this out is

through a time stepping iteration which e�ectively models the transient behaviour of

a scalar conservation law� This algorithm is found to be signi
cantly more e�cient

than the time integration of the system of equations� However in Chapter � we invest�

igated potentially more e�cient techniques for solving the di�erence equations� For

the 
rst order schemes �Engquist�Osher� 
rst�order upwind and Godunov schemes	

we observed that Newton�s method can give a considerable improvement in e�ciency

and is also very robust� This is also the case for the second order modi
cation to

the Engquist�Osher scheme� Newton�s method is found to fail completely for the


rst�order upwind scheme with upwinded source term� because of the discontinu�

ous manner with which the source term discretisation switches across a transition�

Newton�s method is also found to have severe di�culties with the 
ve�point TVD

schemes� although the linearised implicit algorithm still gave much better perform�

ance than the explicit time stepping iteration� We demonstrated that the e�ciency

of Newton�s method can often be improved by solving the di�erence equations on a

series of grids of increasing 
neness� using linear interpolation to transfer solutions


��



between grids�

The schemes discussed thus far are only applicable in the case of a prismatic

channel� In Chapter � we extended the scalar schemes to the non�prismatic case by

allowing the numerical �ux functions to depend on the distance along the channel� We

investigated di�erent ways of staggering the evaluation points� and for the Engquist�

Osher scheme we found that� in the majority of test cases� the most accurate solution

was obtained by evaluating the numerical �ux at the cell interfaces� The version of

the Engquist�Osher scheme with upwinded source term was no longer found to give

second order accuracy in all regions of the solution� A particular staggering of the

evaluation points may give second order accuracy in one �ow regime� but the scheme

remains only 
rst order accurate in regions of the opposite type of �ow� We concluded

that upwinding the source term was only bene
cial for solutions of predominantly

one type of �ow� Further work is required to develop a conservative scheme that is

second�order accurate in both �ow regimes for a non�prismatic channel�

The same idea as above was used to extend Roe�s scheme to the case of non�

prismatic channels� and this method was found to less accurate than the Engquist�

Osher scheme� We concluded that this is due to the non�constant discharge� Unlike

the prismatic case� however� this cannot be recti
ed by upwinding the source term�

because the additional term� due to the variation of the channel cross�section with

distance� is not decomposed onto eigenvectors of the Roe matrix� It may be su�cient

to simply decompose the additional term onto the eigenvectors in such a way that

the scheme remains conservative�

The performance of the numerical schemes discussed in this thesis can be im�

proved by allowing variable grid spacing� and this is relatively simple� To make full

use of the variable grid spacing requires some kind of grid adaptivity� so that extra

grid points are only placed where really necessary� for example near discontinuities�

This is a topic for future work�

For the �scalar approach� we have treated the solution at the ends of the channel

in an unsophisticated manner� 
xing the values of the depth at the boundaries� re�

gardless of whether these represent physical boundary conditions� For schemes which

are upwind in nature this does not a�ect the accuracy of the solution away from the


��



boundaries� however some applications may require an accurate approximation of the

solution at the boundaries� Further work is therefore necessary to investigate ways

of achieving this�

One approach is to solve the system of di�erence equations as usual and then� if

necessary� extrapolate the solution onto the boundaries� For an upwind scheme� the

appropriate one�sided form of the scheme may used to perform the extrapolation�

maintaining the accuracy of the scheme at the boundaries� A di�culty with this

technique is to decide when extrapolation is required� for example we must di�er�

entiate between a hydraulic jump close to the boundary �for which extrapolation is

not appropriate	 and a boundary layer�

A more elegant approach is to build the treatment of the boundary conditions

into the numerical scheme� In the case of the time stepping iteration� this e�ectively

models the transient solution of a partial di�erential equation� and we could therefore

treat the boundary conditions in the same manner as we would for a scalar partial

di�erential equation� This is relatively straightforward for an upwind scheme� al�

though a problem with this approach is that the solution may consequently depend

on the initial guess of the solution� For example� suppose the initial data has a

discontinuity and this leaves the domain as time progresses� overriding a boundary

condition� The eventual steady solution will not now satisfy the overridden boundary

condition� even if a steady solution satisfying the boundary condition does exist�

An application where a special treatment is required at the ends of the channel

is that of solving for the steady �ow in a network of channels� The need to compute

steady solutions for large looped networks of channels was a major motivation for

developing more e�cient steady state solvers� The �scalar approach� is not particu�

larly suitable for this application� since the constant discharges in each channel in the

network are not initially known� One approach is to construct an iterative proced�

ure to compute the discharges and match up the depths at the junctions� However

preliminary investigations into such an approach proved disappointing�

The �scalar approach� has inherent limitations due to the fact that� in general� a

problem may have more than a single physical steady solution satisfying a given set

of boundary conditions� In this case we cannot expect to determine the actual steady


��



solution without referring to the transient �ow� Work is required to investigate how

common the existence of multiple solutions is and the behaviour of the scalar schemes

in such cases�

���
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Appendix A

Theory for the Second Order

Modi�cation to Engquist�Osher

In this appendix we present theory for the second order modi�cation of the Engquist�

Osher scheme due to ����� This is essentially the analogue of Theorem �	 and is

likewise proven by Lemma 
��� Under the conditions of Theorem � and if the para�

meter p satis�es a condition over some range of depths� then the system of di�erence

equations have a unique solution in this range� The uniqueness is not global since in

general there is not one value of p which satis�es the condition over all depth ranges�

This is exactly the same as for the parameter � for the Lax�Friedrichs scheme� The

result can be obtained via the theory of M�functions 
see ������ however the method

used here has the advantage of yielding a modi�ed CFL condition which guarantees

the convergence of the time�stepping iteration� Unlike for the �rst order scheme� we

have no results concerning the convergence of the discrete solution in the limit as the

grid spacing vanishes� The system of di�erence equations are as follows

T E�O��
j h � 	� j � �� �� � � � � N � �

h� � ��� hN � ���

A���

�	�



Here the operator T E�O��
j is given by

T E�O��
j h �

gE�O
hj��� hj�� gE�O
hj� hj���
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j D
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� It is convenient to write
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This is now in a similar form to the �rst order scheme� In the next lemma we show

that under certain conditions that �gj� �

�

is non�increasing in hj�� and non�decreasing

in hj�

Lemma A�� Under the conditions of Theorem �� if f � �F � 	 � 	 � h� 
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Elementary analysis of the function � shows that
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The above result leads to the following theorem�
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Theorem �� Suppose the conditions of Theorem � hold and for 	 � 	 � h� 
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�
�������������������


��

h� ��tT E�O��

� h
���

hj ��tT E�O��

j h
���

hN�� ��tT E�O��

N�� h

��

�
��������������������

� 
A���

has exactly one �xed point h which is the only solution in ����� of the di	erence

equations 
A���� Furthermore� for any initial guess h� � ����� the iteration

hn�� � G
hn�� n � 	� �� �� � � �

converges to the �xed point as n�� and we have the convergence rate estimate

khn � hk� � 
� ��t��nkh� � hk� � kh� � hk�e�n�t��

where � is given by 

���� and 	 � � ��t� � ��

Proof To prove this result we simply apply Lemma 
��� For 	 � j � N we have

G
��jj � 	 ��t
�
��

j D
xj��� 	� � ��jD
xj � 	� � ��j D
xj��� 	�
�
�

with the non�negative coe�cients ��

j � �
�
j � �

�
j being evaluated at hj�� � hj � hj�� �

	� Since 	 � 	 � h � minf��� ���mg� then D
xj � 	� � 	 for j � 	� �� � � � � N � and we

have

G
�� � ��

���



Similarly for 	 � j � N we have

G
��jj � 
 ��t
�
��

j D
xj��� 
� � ��jD
xj � 
� � ��j D
xj��� 
�
�
�

with the non�negative coe�cients ��

j � �
�
j � �

�
j being evaluated at hj�� � hj � hj�� �


� Since 
 � h � maxf��� ���mg� then D
xj � 
� � 	 for j � 	� �� � � � � N � and we

have

G
�� � ��

As in section 
�� for u�v � ����� we can write

G
h��G
v� � M
h � v��

where

M �
Z
�

�

G�
h � s
v � h��ds

and G� is of the form 
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�
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�

�hj��
�

The previous lemma shows that the pj and rj are non�negative� For j � 	� �� � � � � � N

we can write
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� jf
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�x
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using the fact that j��
�r�� ��
r�j � � and condition 
A����

���



We estimate the L� norm of the matrix G�
h� by computing the sum of each

column� The sum of the �rst column is p�� Consider the expression q� where for the

sake of argument take h�� � h�� We have shown that q� � 	� and we can write

p� � ���tDh
x�� h��� r�� � q� � ���t��

since r�� � 	 from Lemma A��� The sum of the second column is given by

q� � p� � � ��tDh
x�� h��� r� � ���t��

since r� � 	� For the jth column 
� � j � N � �� the sum is given by

rj�� � qj�� � pj � ���tDh
xj��� hj��� � ���t��

The same argument shows that the remaining two column sums satisfy the same

bound� hence we conclude that

kG�
h�k� � ���t��

It follows that

kMk� �
����
Z

�

�

G�
h� s
v � h��ds
����
�

�
Z
�

�

kG�
h� s
v � h��k�ds � ���t� � ��

Thus Lemma 
�� holds with k � � ��t�� This completes the proof�
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Appendix B

Test Problems for Non�Prismatic

Channels

In this appendix we give the details of six test problems with non�prismatic channels�

constructed using the method described in Chapter �� Table B�� gives the parameters

for these problems�

The channel for problems �� �	� �� and �� is rectangular with width given by

B�
x� � �	 � 
 exp

�
��	

	
x

�		
� �

�


��
�

The width pro�le is illustrated in Figure B���

Problem B
m Z L
m n Q
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m
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�	 B�
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	����

�� B�
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�� B�
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�� B�
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�� B�
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Table B��� Information for test problems ����

���



0.0 50.0 100.0 150.0 200.0
x/m

–5.0

–3.0

–1.0

1.0

3.0

5.0

m

B(x)/2

-B(x)/2

Figure B��� Channel width for problems �� �	� �� and ���
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Figure B��� Bottom width for problems �� and ���

The channel for problems �� and �� is trapezoidal with bottom width given by

B�
x� � �	� 
 exp

�
�
	

	
x

�		
� �

�


��
� 
 exp

�
�
	

	
x

�		
� �

�


��
�

The bottom pro�le is illustrated in Figure B���

In each case the bed slope is given by

S�
x� �

�
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�
B
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�
��	���
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�����
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�
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B
x� � Z�h
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It now only remains to specify the depth pro�le for each of the test cases�

Problem � �subcritical �ow� In this case the depth is given by

�h
x� � 	�� � 	�� exp

�
��	

	
x
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��
�
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Figure B��� Depth� bed slope� bed level and surface level for test problem �

and the problem is illustrated by Figure B���

Problem �� �supercritical �ow� In this case the depth is given by

�h
x� � 	�
 � 	�
 exp

�
��	

	
x
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� �

�


��
�

and the problem is illustrated by Figure B���

Problem �� �smooth transition� In this case the depth is given by

�h
x� � ��	� 	��tanh
	
�
	

x

�		
� �

�




�

and the problem is illustrated by Figure B�
�

Problem �	 �hydraulic jump� In this case the depth is given by

�h
x� � 	�� � 	��
	
exp

	
x

�		



� �



�

for x � ��	m� and for the remainder of the reach is of the form 
���� with x� � ��	m�

x�� � �		m� M � �� k� � �	��
���
� k� � �	��	����� k� � ���	����	� p � 	�� and

�
x� � ��
 exp
	
�	��

	
x

�		
� �




�

This problem is illustrated by Figure B���
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Figure B��� Depth� bed slope� bed level and surface level for test problem �	

Problem �
 �subcritical �ow� In this case the depth is given by

�h
x� � 	�� � 	�� exp

�
��	

	
x
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� 	�� exp

�
��


	
x
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and the problem is illustrated by Figure B���

Problem �� �smooth transition followed by hydraulic jump� In this case

the depth is given by
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x� � 	�� � 	��

	
exp

	
� x
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for x � ��	m� and for the remainder of the reach is of the form 
���� with x� � ��	m�

x�� � �		m� M � �� k� � �	�������� k� � ��
��
��� k� � ����������� p � 	�	�

and

�
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This problem is illustrated by Figure B���
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Figure B�
� Depth� bed slope� bed level and surface level for test problem ��
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Figure B��� Depth� bed slope� bed level and surface level for test problem ��
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Figure B��� Depth� bed slope� bed level and surface level for test problem ��
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Figure B��� Depth� bed slope� bed level and surface level for test problem ��
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