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Abstract

The goal of this work is the e�cient solution of the heat equation with Dirichlet

or Neumann boundary conditions using the Boundary Elements Method (BEM).

E�ciently solving the heat equation is useful, as it is a simple model problem for

other types of parabolic problems. In complicated spatial domains as often found in

engineering, BEM can be bene�cial since only the boundary of the domain has to be

discretised. This makes BEM easier than domain methods such as �nite elements

and �nite di�erences, conventionally combined with time-stepping schemes to solve

this problem.

The contribution of this work is to further decrease the complexity of solving the

heat equation, leading both to speed gains (in CPU time) as well as requiring smaller

amounts of memory to solve the same problem. To do this we will combine the

complexity gains of boundary reduction by integral equation formulations with a

discretisation using wavelet bases. This reduces the total work to O(h
−(d−1)
x ), when

the solution of the linear system is performed with linear complexity.

We show that the discretisation with a wavelet basis leads to a numerically sparse

matrix. Further, we show that this matrix can be compressed without losing accuracy

of the underlying Galerkin scheme. This matrix compression reduces the number of

non-zero matrix entries from O(N2) to O(N). Thus, we can indeed solve the linear

system in linear time.

It has been shown theoretically that using sparse grid methods leads to considerably

higher convergence rates in the energy norm of the problem. In this work we will

show that the convergence can be further improved for some choices of polynomial

degrees by using more general sparse grid spaces. We also give numerical results to

verify the theoretical bounds from [Chernov, Schwab, 2013].
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Chapter 1

Introduction

The goal of this work is the e�cient solution of the heat equation with Dirichlet

or Neumann boundary conditions. The heat equation is a simple model problem

for other types of parabolic problems. The numerical solution of non-stationary

parabolic problems is needed in numerous �elds, which we describe below.

We solve the heat equation

(∂t −∆)u = f (1.1)

for some right-hand side f , posed in a spatial domain Ω ⊂ Rd and on the time

interval (0, T ). Throughout we will use zero initial conditions

u = 0 at {t = 0} × Ω

and either Dirichlet boundary conditions, which means that the value of the solution

on the boundary is given

u|∂Ω = g

or Neumann boundary conditions, which means that the normal derivative of the

solution on the boundary is given

∂nu|∂Ω = g.

Solving the heat equation has many applications in physics and engineering [51].

The primary application in three dimensions is modelling heat �ow in an isotropic

medium. Other applications include pressure di�usion in porous media or di�usion

of a chemical substance from a region of higher to one of lower concentration. For the

latter problem the di�usion coe�cients may depend on the concentration, leading to

a non-linear equation, which is not covered in this work.



1.1. BACKGROUND 10

The heat equation can also arise in problems in image analysis and machine learning,

such as shape recognition problems [53]. Further, one can use an equation of this

form for image processing problems such as linear denoising [43].

The heat equation also appears in �nancial modelling [52]. In particular, it is used

for the valuation of �nancial derivatives. Further, the di�erential equation derived

from the Black-Scholes option pricing model can easily be transformed into the heat

equation. Since these forms of the problem typically do not have analytical solutions,

e�cient numerical methods for solving them are important.

1.1 Background

Conventional methods for solving parabolic boundary value problems include Finite

Element Methods (FEM), numerical schemes which approximate the solution using

a variational formulation on a simple subdivision of the domain Ω. This is combined

with a low-order time stepping scheme, such as implicit Euler or Crank-Nicholson

[50].

Another alternative is to use convolution quadrature (see [37] and [38]) for the time

discretisation. Convolution quadrature provides a stable time-stepping scheme by

using a Laplace transform of the kernel function. It can be applied to a variety of

problems, see e.g. [4].

In complicated spatial domains as often found in engineering, the Boundary Element

Method (BEM) can be very useful since only the boundary of the domain has to be

discretised, making it easier than domain methods such as �nite elements and �nite

di�erences. In several applications, the needed data is not the solution of the problem

itself, instead it is given by the boundary values of the solution or by its derivatives.

Another advantage is that this data can be obtained directly from the boundary

integral formulation.

Further, BEM can be used for problems with unbounded domains since a volume

mesh of the unbounded domain does not need to be generated. An example of the

discrete solution to an exterior problem and an interior problem on a smooth domain

are shown in Figure 1.1. BEM are introduced in detail in the books [36], [49] and [44],

which cover only elliptic problems. However, most of the ideas are easily transferable

to the case of parabolic problems.

We will use a Galerkin discretisation for the boundary integral formulation of the
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Figure 1.1: Solutions calculated with BEM for the outside of an ellipse and for a
star-shaped domain .

heat equation. This has the advantages of being stable for any combination of mesh

widths ht, hx and of allowing for a straight-forward error analysis. An alternative to

Galerkin methods is o�ered by collocation methods (see [16] and [2]). In collocation

methods a suitable set of points is chosen and the equation is required to be satis�ed

at those points.

The boundary element method (BEM) relies on �nding a formulation of the problem

(1.1) which is posed on the mantle of the space-time cylinder Ω× (0, T ). For this we

require the fundamental solution of the heat equation, which is

G(t, x) =

(4πt)−d/2e−|x|
2/4t t ≥ 0

0 t < 0.
(1.2)

Then we can apply Green's second theorem to the problem with either Dirichlet or

Neumann boundary conditions. Thus we get the following representation for the

solution of the heat equation

u(x, t) =

∫ T

0

∫
∂Ω

[
G(x− y, t− s) ∂

∂ny
u(y, s)− ∂

∂n
G(x− y, t− s)u(y, s)

]
dyds

+

∫ T

0

∫
Ω
G(x− y, t− s)f(y, t)dydt,

(1.3)

where ny is outward unit normal to ∂Ω. The boundary element method then consists

of �nding either ∂
∂nu|∂Ω for the Dirichlet problem or u|∂Ω for the Neumann problem.

This means we only need to solve a problem on the boundary of the domain, lowering
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the dimension of the problem.

The BEM formulation of the heat equation becomes coercive after the boundary

reduction. This means that the method is stable for all choices of mesh size versus

time steps, and allows for more �exibility. In particular, for a problem with an

inhomogeneous source term which does not vary signi�cantly in time, a small number

of time steps may be su�cient and allows for much faster solving.

To compare use of FEM and BEM for solving the heat equation we compare their

relative complexity. Complexity is a measure of the number of single operations

(FLOPs) needed to complete a computation. The complexity of these methods

depends strongly on the complexity of the solution of the resulting linear system.

Linear complexity for the solution of the linear system is attainable for FEM since

that formulation results in sparse matrices. However, the BEM formulation generally

results in densely populated matrices. We will resolve this issue by using a wavelet

basis. This leads to a numerically sparse matrix and the corresponding linear system

can be solved with linear complexity as required.

Typically, FEM combined with a low-order time-stepping scheme give a complexity

of

O(h−1
t h−dx ),

where the spatial dimension is given by d, hx is the mesh width in space and ht is

the time step size. According to [46] if one allows increasing the polynomial degree

in time along with a mesh re�nement in the temporal dimension, i.e. with hp-FEM

the complexity can be reduced to

O(h−dx | log hx|2).

In [47] space-time compressive, adaptive Galerkin methods are used to further reduce

the complexity to

O(h−dx ).

The contribution of this work is to further decrease the complexity of these methods.

This leads both to speed gains (in CPU time) as well as requiring smaller amounts

of memory to solve the same problem. To do this we will combine the complexity

gains of boundary reduction by integral equation formulations with a sparse tensor

space-time discretisation. This reduces the total work to

O(h−(d−1)
x )
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when the solution of the linear system is performed with linear complexity.

1.2 Motivation

The boundary integral operators of the heat equation have very similar properties

to the operators in the elliptic case. More precisely, it has been shown in [15] that

these operators are coercive and continuous in the appropriate anisotropic Sobolev

spaces. This means that unlike in the case of the domain heat operator we can as-

sure stability for any conforming Galerkin discretisation using the classical Lemma

of Lax-Milgram and Lemma of Céa.

The �rst step to achieving the required complexity gains is �nding a way to solve

the linear system in linear complexity. This is in general not possible for densely

populated matrices such as those given by the boundary integral operators since

they are non-local. However, we can obtain numerically sparse matrices by using

a wavelet basis. Wavelet bases (see e.g. [19], [13], and [45]) were initially used for

signal analysis (sound, images). There are also numerous other applications in nu-

merical analysis.

Most research into using wavelet bases for BEM has been done for the elliptic case

(see e.g. [34]). There has also been some work on using wavelets for the heat equation

in two dimensions in [8]. As in elliptic problems it will be possible to compress the

resulting matrix by setting small entries to zero. One of the main results of this work

is proving that a matrix compression results in no loss of accuracy for this problem.

We will also discuss some alternative types of wavelet basis.

When trying to get sparse matrices one alternative to wavelets is to use panel clus-

tering methods. For example, in [40] fast multipole methods are used in space and

time. In the near-�eld they use numerical quadrature to calculate the time-integrals

which leaves them with a smooth kernel in space.

Another alternative is adaptive cross approximation in which one uses rough approx-

imations for the far-�eld and precise calculations only in the near-�eld (see e.g. [5],

[6] and [7]).

The second step is improving the approximation properties of the method itself, i.e.

improving the convergence rates. In order to improve the expected convergence re-

sults, sparse grid techniques (see e.g. [32], [28]) can be used. It has been shown

theoretically in [12] and [11] that this approach does indeed improve convergence.
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In this work we will show that the convergence can be further improved for some

choices of polynomial degrees by using more general sparse grid spaces. We use the

combination technique (see e.g. [33],[22]) to implement this and verify the theoretical

bounds.

1.3 Chapter Overview

In Chapter 2 we introduce the non-stationary heat equation and outline the bound-

ary reduction. This chapter also contains some well-known theoretical results on the

heat equation, they will be used throughout.

In Chapter 3 we introduce several concepts related to wavelet basis functions. We

discuss multiresolution analysis and the construction of biorthogonal wavelets. We

also give many explicit examples of wavelet bases as they are used in this work.

Chapter 4 shows the discretisation of the integral equations and discusses some im-

plementational issues, such as matrix structure and quadrature rules. It also contains

a comparison between FEM and BEM.

In Chapter 5 we summarise several known results on the convergence rates of full

tensor product BEM for the heat equation. Then we show new estimates in the

energy norm which lead to improved convergence rates. Finally we show numerical

results to verify these estimates.

In Chapter 6 we introduce sparse grid spaces with several choices of index set. We

show a known proof for the convergence rates of standard sparse grids and verify

these rates numerically. Further, we introduce an optimised sparse grid index set

and prove new results for the convergence rates of these sets.

In Chapter 7 we prove that when using a wavelet basis a matrix compression reduces

the number of non-zero matrix entries to O(N) and does not lead to a loss of accu-

racy in the scheme. Numerical results are also given.

In Chapter 8 we conclude with a summary and a discussion of future work.
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Chapter 2

The Heat Equation

In this chapter we introduce the boundary integral formulation of the heat equation.

The results of this chapter are well known and can also be found in [15] and [42].

We start out by giving a problem formulation on domains Ω ⊂ Rd. The appropriate
function spaces for this formulation are not the well known Sobolev spaces Hr, but

rather the anisotropic Sobolev spaces Hr,s. We introduce these function spaces in

Section 2.1.3.

Then we summarise the reduction of the problem to the boundary. Then we show

some properties of the boundary integral operators. Notably, even though the heat

equation is a parabolic di�erential equation, the associated boundary integral op-

erators have similar properties to those of elliptic operators. Finally, we give some

regularity results for the solution of the problem.

2.1 Problem Formulation

Let Ω ⊂ Rd be a bounded Lipschitz domain with boundary Γ := ∂Ω. For simplicity

we will later restrict ourselves to smooth domains. However, all theoretical results

in this chapter hold for general Lipschitz domains.

Further, let n be the outer normal vector �eld of Γ. We assume that it exists almost

everywhere on the boundary Γ.

With T > 0 we denote a �nite time horizon and with I := (0, T ) the time interval

of interest.
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Γ = ∂Ω
Ω

t = T

t = 0

→
n

Figure 2.1: The domain Q for Ω ⊂ R2.

Then we set Q := I × Ω the space-time cylinder. The domain heat equation is

de�ned on Q. However, after the boundary reduction we will mainly work with the

mantle of the space-time cylinder Σ = I × Γ.

In Q we consider a linear nonstationary heat equation with Dirichlet or Neumann

boundary conditions.

2.1.1 Trace Operators

To formulate the heat equation we �rst introduce two types of trace operators for

su�ciently smooth functions w.

De�nition 2.1.1. We denote the trace operator by γ0, so

γ0w = w|Σ, (2.1)

is the function w restricted to the mantle of the space-time cylinder.

De�nition 2.1.2. We denote by γ1 the conormal derivative of a function, so

γ1w = ∂nw = (∇w|Σ) · n, (2.2)

is the normal derivative of a function w restricted to the mantle of the space-time

cylinder.

After the relevant function spaces have been introduced we will show continuity

results for these trace operators.
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2.1.2 Formulation of the Domain Heat Equation

The heat equation describes heat di�usion through a given region over time. In order

to give a full description of a heat di�usion problem we need to supplement the heat

equation

(∂t −∆)u = f, in Q

with a combination of initial and boundary values. For simplicity we always assume

that the initial conditions are zero. This means that we prescribe

u = 0, at {t = 0} × Ω

in the entire domain. Further we need to prescribe values on the boundary (Dirichlet

problem) or the boundary heat �ux (Neumann problem).

Thus, the Dirichlet and Neumann problems are formulated as follows.

De�nition 2.1.3 (Dirichlet Problem). Given g : Σ → R and f : Q → R, �nd
u : Q→ R satisfying:

(∂t −∆)u = f, in Q

u = 0, at {t = 0} × Ω

γ0u = g, in Σ.

(2.3)

De�nition 2.1.4 (Neumann Problem). Given h : Σ → R and f : Q → R, �nd
u : Q→ R satisfying:

(∂t −∆)u = f, in Q

u = 0, at {t = 0} × Ω

γ1u = h, in Σ.

(2.4)

Remark 2.1.5. It is possible to pose the heat equation with other types of boundary

conditions, such as Robin-type boundary conditions

aγ0u+ bγ1u = c.

Newton's law of cooling states that the boundary heat �ux is proportional to the tem-

perature di�erence between the domain Ω and the surrounding environment Rd\Ω.
This makes Robin boundary conditions the natural formulation to model this.
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2.1.3 Function spaces

A variety of function spaces are needed in the course of this work. For example, in

order to give the solvability and uniqueness results for the Neumann and Dirichlet

problems above we will require certain anisotropic Sobolev spaces.

Thus, we start this section by introducing L2 spaces and the standard Sobolev spaces

Hr. Then we de�ne the anisotropic spaces Hr,s and Hr,s
mix. The mix-spaces will be

useful in the error analysis of the sparse grid spaces in Chapter 6.

The Sobolev spaces needed for this work are constructed using the function spaces

L2(Σ).

De�nition 2.1.6. We denote the L2(Σ) inner product as follows

〈u, v〉 :=

∫
Γ

∫ T

0
u(x, t)v(x, t)dtdx.

Thus, we have a norm de�ned as ‖u‖L2(Σ) =
√
〈u, u〉 and we can de�ne the space of

square integrable functions

L2(Σ) = {u : ‖u‖L2(Σ) <∞}

For simplicity we will start by de�ning isotropic Sobolev spaces. We will then intro-

duce two types of anisotropic Sobolev space.

Note that we denote multi-indices (i.e. sequences of natural numbers) by k =

(k1, ..., kd) ∈ Nd. Further, we write the 1-norm of these vectors as |k| :=
∑d

i=1 ki.

De�nition 2.1.7 (weak derivative). Let U ⊂ Rd be an open set. We say v is the

k-th weak derivative of the function u if∫
U
uDkϕ = (−1)|k|

∫
U
vϕ, ∀ϕ ∈ C∞0 (U), where Dkϕ =

∂|k|

∂k1 . . . ∂kn
ϕ

where C∞0 (U) is the space of in�nitely di�erentiable functions with compact support

in U . We denote the weak derivative v by Dku.

Whole-numbered Sobolev spaces can be understood as spaces of L2-functions with

weak derivatives.

De�nition 2.1.8. Let s ∈ N and U ⊂ Rd an open set, then

Hs(U) = {u ∈ L2(U) :
∑

0≤|k|≤s

‖Dku‖2L2(U) <∞},
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where Dku is the weak derivative of u.

There are a variety of ways to de�ne Sobolev spaces with real-valued regularity expo-

nents. We de�ne them directly using Sobolev-Slobodeckij semi-norms. Alternatively,

they can be understood as interpolation spaces of the whole-numbered Sobolev spaces

or they can be de�ned via Fourier transforms.

De�nition 2.1.9. For an open subset U ⊂ Rd, for θ ∈ (0, 1) and for f ∈ L2(U), the

Slobodeckij semi-norm is de�ned by

|f |2Hθ(U) :=

∫
U

∫
U

|f(x)− f(y)|2

|x− y|2θ+d
dx dy.

Let s > 0 be a non-integer and set θ = s− bsc ∈ (0, 1). Then

Hs(U) :=

{
f ∈ Hbsc(Ω) : sup

|k|=bsc
|Dkf |Hθ(U) <∞

}
.

Next we introduce the Hr,s(Σ) and Ht
mix(Σ) spaces, more general spaces than the

standard isotropic Sobolev spaces de�ned above.

De�nition 2.1.10. Let r, s > 0. Then the anisotropic Sobolev spaces Hr,s(Σ) and

H̃r,s(Σ) are given by

Hr,s(Σ) := L2(I, Hr(Γ)) ∩Hs(I, L2(Γ)) (2.5)

We can restrict ourselves to spaces which have zero initial conditions,

H̃r,s(Σ) := {u ∈ Hr,s((−∞, T )× Γ) : u(t, x) = 0, t < 0}. (2.6)

Both types of anisotropic spaces can be equipped with a simple graph norm

‖u‖Hr,s(Σ) = ‖u‖L2(I,Hr(Γ)) + ‖u‖Hs(I,L2(Γ)).

Using the dual space we can de�ne H−r,−s = (Hr,s)′.

Next we introduce the so called mix-spaces. Let Ωi ⊂ Rdi for 1 ≤ i ≤ n. We de�ne

Hk

mix(Ω1 × ...× Ωn) := Hk1(Ω1)⊗ · · · ⊗Hkn(Ωn).

Further, for ease of notation we will denote

Ht,l
mix(Ω1 × Ω2) := Ht(Ω1)⊗H l(Ω2).
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For t, l < 0, Ht,l
mix is de�ned as the dual of H−t,−lmix , i.e. we set

Ht,l
mix := (H−t,−lmix )′.

These are spaces of dominating mixed derivative.

The following relation holds between the isotropic Sobolev spaces and these mix-

spaces:

Ht,l
mix(Ω1 × Ω2) ⊂ Ht,l(Ω1 × Ω2).

Further, the following embeddings hold

Lemma 2.1.11. Let Ω1 ⊂ Rd1 , Ω2 ⊂ Rd2. Further, let a, b, k ≥ 0 and k ≥ a + 2b,

then there holds

Hk, k
2 (Ω1 × Ω2) ⊂ Ha,b

mix(Ω1 × Ω2).

Proof. See Lemma 5.2, [12].

2.1.4 Uniqueness and Solvability

The existence and uniqueness of solutions to the domain heat equation depends on

properties of the trace operators. These properties are also needed to show the

regularity results at the end of this chapter.

Lemma 2.1.12. The trace operator γ0 is continuous and surjective as a mapping

H̃1, 1
2 (Q)→ H

1
2
, 1
4 (Σ).

Proof. See Lemma 2.4 in [15].

Lemma 2.1.13. For s ∈ (−1
2 ,

1
2) the conormal derivative is continuous as a mapping

{v ∈ H̃1+s, 1+s
2 (Q) : (∂t −∆)v ∈ L2(Q)} → H−

1
2

+s,(− 1
2

+s)/2(Σ).

Proof. See Corollary 4.14 in [15].

The well-posedness and solvability of the Neumann and Dirichlet problems (2.3) and

(2.4) are well known.

Lemma 2.1.14. For every f ∈ H̃−1,−1/2(Q) and g ∈ H1/2,1/4(Σ) there exists a

unique u ∈ H̃1,1/2(Q) satisfying (2.3).

Proof. See Theorem 2.9, [15].
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Lemma 2.1.15. For every f ∈ L2(Q) and h ∈ L2(I,H−1/2(Γ)) there exists a unique

u ∈ H̃1,1/2(Q) satisfying (2.4).

Proof. See Lemma 2.21, [15].

2.2 Boundary Reduction

We now want to transform the boundary value problems (2.3) and (2.4) into integral

equations on the boundary Γ. For this we require a version of Green's Theorem.

Theorem 2.2.1. Let u ∈ H̃1, 1
2 (Q) with (∂t −∆)u ∈ L2(Q) and v ∈ H̃1, 1

2 (Q). Then

for any t0 ∈ R there holds Green's �rst formula:∫
Q
∇u(x, t)·∇v(x, t0 − t)dxdt+

∫
Q
∂tu(x, t)v(x, t0 − t)dxdt

=

∫
Σ
γ1u(t, x)γ0v(x, t0 − t)dxdt+

∫
Q

(∂t −∆)u(x, t)v(x, t− t0)dxdt

If additionally (∂t −∆)v ∈ L2(Q), then there holds Green's second formula∫
Q

(∂t −∆)u(x, t)v(x, t0 − t)− u(x, t0 − t)(∂t −∆)v(x, t)dxdt

=

∫
Σ
γ0u(x, t) · γ1v(x, t0 − t)dxdt−

∫
Σ
γ1u(x, t) · γ0v(x, t0 − t)dxdt

Proof. See Proposition 2.19 in [15].

The fundamental solution of the heat equation is

G(x, t) =

(4πt)−d/2e−|x|
2/4t t ≥ 0

0 t < 0,
(2.7)

for any dimension d > 1.

Applying the second Green's theorem to the Dirichlet problem (2.3) or the Neumann

problem (2.4) with the choice v(x, t) = G(x, t) yields that the solution u ∈ H̃1, 1
2 (Q)

admits the representation:

u(x, t) =

∫
Σ

[
G(x− y, t− s) ∂u

∂ny
(y, s)− ∂

∂ny
G(x− y, t− s)u(y, s)

]
dyds

+

∫
Q
G(x− y, t)f(y, s)dyds,

(2.8)
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However, for simplicity we will assume f = 0 in the following.

With this simple representation of the solution it becomes natural to de�ne the

following two operators.

De�nition 2.2.2. The single layer heat potential is de�ned as

K0(ϕ)(x, t) :=

∫
Σ
ϕ(y, s)G(x− y, t− s)dyds (x, t) ∈ Q

De�nition 2.2.3. The double layer heat potential is de�ned as

K1(ψ)(x, t) :=

∫
Σ
ψ(y, s)

∂

∂ny
G(x− y, t− s)dyds (x, t) ∈ Q.

This means that using the trace operators de�ned in Section 2.1.1 we can rewrite

the equation (2.8) as:

u = K0(γ1u)−K1(γ0u), in Q, (2.9)

we call this the representation formula.

Next we restrict the heat potential operators to the mantle of the space-time cylin-

der using a trace operator. This simpli�es the notation. We refer to the resulting

operators as boundary integral operators.

Let ϕ ∈ H
1
2
, 1
4 (Σ) and ψ ∈ H−

1
2
,− 1

4 (Σ).

De�nition 2.2.4. The single layer operator V is de�ned as

V ψ := γ0K0ψ. (2.10)

Further, the hypersingular operator W is de�ned as

Wϕ := −γ1K1ϕ (2.11)

and the double layer operator K is de�ned as

Kϕ := γ0 (K1ϕ) |Q +
1

2
ϕ. (2.12)

Lastly, the related operator N is de�ned as

Nψ := γ1(K0ψ)|Q −
1

2
ψ. (2.13)
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In order to make use of these operators, we need to know more about them. These

operators have been well studied in [15], from which we take this theory.

As in the elliptic case, there hold certain jump relations on Σ. These relations ensure

that the above operators V,W,K and N are indeed well de�ned.

De�nition 2.2.5. Let BR be a unit ball in Rd large enough to contain Ω. Further,

let Qc = I ×BR\Ω and let u ∈ H̃1, 1
2 (I ×BR). Then the jumps across the boundary

Γ are de�ned as

[γ0u] = γ0(u|Qc)− γ0(u|Q)

and

[γ1u] = γ1(u|Qc)− γ1(u|Q).

These de�nitions are independent of the choice of R.

Theorem 2.2.6. For all ψ ∈ H−
1
2
,− 1

4 (Σ) and all ϕ ∈ H
1
2
, 1
4 (Σ) there hold the jump

relations:

[γ0K0ψ] = 0, [γ1K0ψ] = −ψ, [γ0K1ϕ] = ϕ, [γ1K1ϕ] = 0.

Proof. See Theorem 4.3 in [15].

Further, if Γ is su�ciently smooth all the integral operators used in the methods

above are one-to-one mappings.

Theorem 2.2.7. Assume that Γ ∈ C∞(Σ). Then for any s ≥ 0 the mappings

V : H̃s− 1
2
,(s− 1

2
)/2(Σ)→ H̃s+ 1

2
,(s+ 1

2
)/2(Σ)(

1

2
I +K

)
,

(
1

2
I −N

)
: H̃s+ 1

2
,(s+ 1

2
)/2(Σ)→ H̃s+ 1

2
,(s+ 1

2
)/2(Σ)

W : H̃s+ 1
2
,(s+ 1

2
)/2(Σ)→ H̃s− 1

2
,(s− 1

2
)/2(Σ)

are isomorphisms.

Proof. See Theorem 4.3 in [15].

This provides the basis for the analysis of Galerkin methods for these operators. Fur-

ther, we can show that V and W are positive and de�ne isomorphisms in anisotropic

trace spaces.
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Theorem 2.2.8. The single layer operator V : H−
1
2
,− 1

4 (Σ) → H
1
2
, 1
4 (Σ) is an iso-

morphism and

∃c > 0 : 〈ψ, V ψ〉 ≥ c‖ψ‖2
H−

1
2 ,−

1
4 (Σ)

∀ψ ∈ H−
1
2
,− 1

4 (Σ).

The hypersingular operator W : H
1
2
, 1
4 (Σ)→ H−

1
2
,− 1

4 (Σ) is an isomorphism and

∃c > 0 : 〈φ,Wφ〉 ≥ c‖φ‖2
H

1
2 ,

1
4 (Σ)

∀φ ∈ H
1
2
, 1
4 (Σ).

Proof. See Corollary 3.13 in [15].

Taken together with the continuity results this theorem implies invertibility of the

operators V and W . Due to the invertibility and coercivity of the operators we

can ensure that any discrete scheme will be stable and have a unique solution. In

Chapter 4 we will use these properties to show best approximation properties of the

discrete approximation with the Lemma of Céa.

From these properties we can formulate two methods for solving the Dirichlet problem

(2.3) and the Neumann problem (2.4).

2.2.1 Direct Method

Using the direct method the boundary integral formulation of the Dirichlet Problem

is

1. Find ψ ∈ H−
1
2
,− 1

4 (Σ) such that:

V ψ =

(
1

2
I +K

)
g. (2.14)

2. Then the unique solution u ∈ H̃1, 1
2 (Q) of the Dirichlet problem with f = 0

can be represented by

u = K0ψ −K1g. (2.15)
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Using the direct method the boundary integral formulation of the Neumann Problem

is

1. Find ϕ ∈ H
1
2
, 1
4 (Σ) such that:

Wϕ =

(
1

2
I −N

)
h. (2.16)

2. Then the unique solution u ∈ H̃1, 1
2 (Q) of the Neumann problem with f = 0

can be represented by

u = K0h−K1ϕ. (2.17)

In this method ψ = γ1u is exactly the boundary �ux on Σ, so this method is useful

if the boundary �uxes are also of interest.

2.2.2 Indirect Method

Using the indirect method the boundary integral formulation of the Dirichlet Problem

is

1. Find ψ ∈ H−
1
2
,− 1

4 (Σ) such that:

V ψ = g. (2.18)

2. Then the unique solution u ∈ H̃1, 1
2 (Q) of the Dirichlet problem with f = 0

can be represented by

u = K0ψ. (2.19)

Using the indirect method the boundary integral formulation of the Neumann Prob-

lem is

1. Find ϕ ∈ H
1
2
, 1
4 (Σ) such that:

Wϕ = −h. (2.20)

2. Then the unique solution u ∈ H̃1, 1
2 (Q) of the Neumann problem with f = 0

can be represented by

u = K1ϕ. (2.21)

Remark 2.2.9. This method is simpler to implement than the direct method since

the matrix of the double layer operator K and the matrix of the operator N do not

need to be evaluated for the Dirichlet and Neumann problem respectively.
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2.3 Regularity

In this section we will summarise some of the regularity results for the Dirichlet and

Neumann problems.

Theorem 2.3.1. The single layer operator V is a continuous map from

V : H−
1
2

+s,− 1
4

+ s
2 (Σ)→ H

1
2

+s, 1
4

+ s
2 (Σ),

for any s ∈ (−1
2 ,

1
2).

Proof. See Theorem 4.8 in [15].

Theorem 2.3.2. For any s ∈ (−1
2 ,

1
2) the operators

W : H
1
2

+s, 1
4

+ s
2 (Σ) → H−

1
2

+s,− 1
4

+ s
2 (Σ)

1

2
I +K,

1

2
I −K : H

1
2

+s, 1
4

+ s
2 (Σ) → H

1
2

+s, 1
4

+ s
2 (Σ)

1

2
I +N,

1

2
I −N : H−

1
2

+s,− 1
4

+ s
2 (Σ)→ H−

1
2

+s,− 1
4

+ s
2 (Σ)

are continuous.

Proof. See Theorem 4.16 in [15]

Combining these results we get the following regularity results.

Theorem 2.3.3. The inverse operators

V −1 : H̃1, 1
2 (Σ)→ L2(Σ)(

1

2
I +K

)−1

,

(
1

2
I −K

)−1

: H̃1, 1
2 (Σ)→ H1, 1

2 (Σ)(
1

2
I +N

)−1

,

(
1

2
I −N

)−1

: L2(Σ) → L2(Σ)

W−1 : L2(Σ) → H̃1, 1
2 (Σ)

are continuous.

Proof. See Theorem 4.18 in [15].
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Chapter 3

Wavelets

In this chapter we introduce wavelets, in particular biorthogonal wavelets. Wavelets

are useful in a many di�erent applications. They are used in pure mathematics for

the analysis of harmonic operators. They are also widely used in signal analysis. A

general introduction to wavelets can be found in [13] or [19].

In this chapter we start by introducing multiresolution analysis and biorthogonal

wavelets. Then we give examples of wavelet bases. These bases will be important

throughout this work, mainly in Chapter 7 which introduces a matrix compression

based on properties of certain types of biorthogonal wavelets. Further, the norm

equivalences that hold for wavelets are used for the proofs in Chapters 5 and 6.

3.1 Notation

In this chapter we assume that the domain Ω is simply connected and that its

boundary Γ is smooth. In two dimensions this means that it can be parameterised

by a single function

γ : [0, 1]→ Γ.

Further, we assume that the parameterisation γ is 1-periodic and that the derivative

α(t) := ‖γ′(t)‖ > 0 for all t ∈ [0, 1].

Remark 3.1.1. In [35] the more general case of a piecewise smooth boundary is

discussed.
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De�nition 3.1.2. We denote the characteristic function of an interval by χ, i.e.

χ[a,b](x) :=

1, x ∈ [a, b]

0, else.

De�nition 3.1.3. A family of functions {ϕk}k∈Z is a Riesz basis of the Hilbert

space H if it is dense in H and there exist 0 < C1 ≤ C2 such that for all �nitely

supported sequences (xk), we have

C1

∑
k

|xk|2 ≤ ‖
∑
k

xkϕk‖2H ≤ C2

∑
k

|xk|2.

3.2 Multiresolution Analysis

Multiresolution analysis was �rst formulated in 1986 by Mallat and Meyer (see [39]

and [41]). It provides a framework to construct wavelets.

A multiresolution analysis consists of a sequence of nested approximation spaces

... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ ... ⊂ Vj ⊂ ... ⊂ L2(R). (3.1)

Further, the union of these spaces should be dense in L2(R)⋃
j∈Z

Vj = L2(R) (3.2)

and their intersection should be the null function⋂
j∈Z

Vj = {0}. (3.3)

The spaces are related to each other with a dyadic scaling:

f(·) ∈ Vj ⇔ f(2j ·) ∈ V0. (3.4)

Finally, we require that there exists a function φ ∈ V0 such that

{φ(· − k) : k ∈ Z} forms a Riesz basis of V0. (3.5)

This means that all spaces are scaled versions of the initial space V0, so we call this

a multiresolution analysis.
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Due to (3.5) together with (3.4) we have that

φj,k = 2j/2φ(2j · −k), k ∈ Z. (3.6)

forms a Riesz basis of Vj .

The function φ is referred to as a scaling function since every Vj is generated by

scaled versions of φ.

Since V0 ⊂ V1, we can expand φ ∈ V0 in terms of the basis of V1

φ(x) =
√

2
∑
k∈Z

hkφ(2x− k).

This type of equation is called a re�nement equation and the coe�cients hk are called

re�nement coe�cients.

Next we construct a system of pairwise orthogonal subspaces Wj . These spaces are

orthogonal with respect to the L2 inner product. These give a multilevel decompo-

sition of the spaces Vj , i.e. there exist spaces Wj such that

Vj+1 = Vj ⊕Wj , Wj⊥Wj̃ ∀j 6= j̃.

Due to (3.2) and (3.3) this implies

L2(R) =
⊕
j∈Z

Wj .

The spaces Wj inherit scaling property (3.4) from the spaces Vj .

Together this means that if we have an orthonormal basis {ψ(· − k), k ∈ Z} of

W0, then {ψj,k = 2−j/2ψ(2−j · −k), j, k ∈ Z} is a basis of Wj . This means that in

order to �nd an orthonormal wavelet basis of L2 we only need to �nd a ψ so that its

translations form an orthonormal basis of W0. We refer to such a ψ as a mother

wavelet since the entire wavelet basis can be derived from it.

Theorem 3.2.1 (Theorem 5.1.1, [19]). If a sequence of nested approximation spaces

satis�es (3.1) � (3.5), i.e. when we have a multiresolution analysis, there exists an

associated wavelet basis {ψj,k, j, k ∈ Z}, such that

ΠVj+1 = ΠVj +
∑
k

〈·, ψj,k〉ψj,k,
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where ΠVj is the L
2-orthogonal projection onto Vj. The wavelet ψ can be constructed

using the re�nement equation

ψ =
∑
k

(−1)k−1h−k−1φ−1,k. (3.7)

Remark 3.2.2. This series representation of ψ is not unique.

Remark 3.2.3. We can de�ne the basis of the space Wj as ψjk = ψ(2jx− k) using

this representation.

Next we will give an example of using the re�nement coe�cients to construct a

mother wavelet for the case of piecewise constant basis functions.

3.2.1 Example: Haar Wavelet

The simplest example of such a multiresolution analysis uses piecewise constant

functions and is called the Haar multiresolution analysis. It is associated with the

Haar wavelet. Since we will later use wavelets only on �nite intervals we give the

Haar multiresolution analysis on the interval [0, 1] instead of R.

For j ∈ N and k ∈ {1, ..., 2j} consider the decomposition τ jk = [(k − 1)2−j , k2−j ] of

the interval [0, 1]. This decomposition has an associated space of piecewise constant

basis functions

Vj = {f ∈ L2 : f is constant on τ jk , k ∈ {1, ..., 2
j}}.

The scaling function of these spaces is the box function

φ(x) = χ[0,1](x).

Thus, these spaces are spanned by scaled versions of φ, i.e.

Vj = span{φ(2j · −k)}2jk=1.

By construction the the inclusions

V0 ⊂ ... ⊂ VL ⊂ ... ⊂ L2([0, 1])

hold. We now construct the subspaces Wj as the L
2([0, 1])-orthogonal complements

of Vj−1 in Vj .

W0 = V0, Wj ⊕ Vj−1 = Vj ,
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Figure 3.1: The box function φ(x) and the components of the re�nement equation
(left) and the Haar wavelet (right).

where dimW0 = 1, dimWj = 2j−1, j > 0.

Clearly the box function φ satis�es the following re�nement equation

φ(x) = φ(2x) + φ(2x− 1).

Using Theorem 3.2.1 we get the following representation of the Haar mother wavelet

ψ = 2−1/2(φ−1,0 − φ−1,1) =


1 in [0, 1

2)

−1 in [1
2 , 1)

0 else.

Figure 3.1 depicts the re�nement equation and the resulting Haar wavelet. This

means that the basis of the space Wj is

{ψj,k := 2(j−1)/2ψ(2j · −k), k = 1, ..., 2j}.

Since the length of the support of ψj,k is 21−j , the above basis functions are nor-

malised, i.e. ‖ψ‖L2([0,1]) = 1. Further, the orthogonality relations hold by de�nition.

Using these orthogonality conditions we can derive one moment condition for these

wavelets, ∫ 1

0
ψj,k(x)dx =

∫ 1

0
ψj,k(x)ψ0,k(x)dx = 0.
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3.3 Biorthogonal Multiresolution Analysis

Instead of using the multiresolution analysis from the previous section we can de�ne

a so called biorthogonal multiresolution analysis.

For the biorthogonal multiresolution analysis we require two scaling functions φ, φ̃. In

turn they generate two di�erent multiresolution analyses, and two di�erent wavelet

functions ψ, ψ̃, the wavelet and the dual wavelet. We call these sequences dual

multiresolution sequences.

De�nition 3.3.1 (dual pair). We say that two re�nable functions θ, θ̃ form a dual

pair if

〈θ, θ̃(· − k)〉 = δ0,k, k ∈ Z.

Using biorthogonal wavelets gives the necessary freedom to construct basis functions

which are symmetric around 0 or 1
2 and to choose the number of vanishing moments

and the degree of polynomial exactness seperately. This is necessary to ensure that

the matrices of the integral operators can be compressed to sparse matrices [14].

We start with two hierarchies of approximation spaces

... ⊂ V0 ⊂ ... ⊂ Vj ⊂ ... ⊂ L2(R)

... ⊂ Ṽ0 ⊂ ... ⊂ Ṽj ⊂ ... ⊂ L2(R).

Now we de�ne the complement spaces Wj to Vj in Vj+1. The new construction

is chosen so that we have orthogonality between Wj and W̃j̃ for j 6= j̃, instead of

between Wj and Wj̃ for j 6= j̃, as in the previous construction. This means that it

is no longer clear that the basis functions of Wj form a Riesz-basis.

We need to use the dual hierarchy to ensure this, so we also �nd complement spaces

W̃j to Ṽj in Ṽj+1. The construction is so that

W̃j ⊥ Vj and Wj ⊥ Ṽj ,

and thus,

Wj ⊥ W̃j̃ , for j 6= j̃.

This allows us to prove that the bases are indeed Riesz bases. To give this result we

�rst de�ne Fourier transforms and frames.
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De�nition 3.3.2 (Fourier Transform). We denote by ψ̂ the Fourier transform of ψ:

ψ̂(ξ) := (2π)−
1
2

∫
R
e−iξxψ(x)dx.

De�nition 3.3.3 (Frame). Let f ∈ L2(R). Then we call (un)n a frame if there exist

c1 > 0 and c2 <∞ so that

c1‖f‖2L2(R) ≤
∑
n

|〈f, un〉|2 ≤ c2‖f‖2L2(R).

Given a frame (un)n, we call a second frame (vn)n a dual frame if

〈un, vn−k〉 = δ0,k, ∀n, k.

Theorem 3.3.4 (Theorem 3.8, [14]). Let hn and h̃n be two real sequences with∑
n∈Z

hnh̃n+2k = δk,0.

De�ne the single scale functions φ and φ̃ using hn and h̃n as re�nement sequences

as follows

m0(ξ) = 2−
1
2

∑
n

hne
−inξ, m̃0(ξ) = 2−

1
2

∑
n

h̃ne
−inξ

φ̂(ξ) = (2π)−
1
2

∞∏
j=1

m0(2−jξ),
ˆ̃
φ(ξ) = (2π)−

1
2

∞∏
j=1

m̃0(2−jξ).

Further, assume that their Fourier transforms decay su�ciently rapidly, more pre-

cisely, for some c, ε > 0

|φ̂(ξ)| ≤ c(1 + |ξ|)−
1
2
−ε, | ˆ̃φ(ξ)| ≤ c(1 + |ξ|)−

1
2
−ε.

Then we de�ne ψ and ψ̃ as

ψ = 2j/2
∑
n

(−1)nh̃−n+1φ(2 ·+n)

ψ̃ = 2j/2
∑
n

(−1)nh−n+1φ̃(2 ·+n).

Then ψj,k = 2j/2ψ(2−j ·−k) constitute a frame in L2(R). Further, ψ̃j,k = 2j/2ψ̃(2−j ·
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−k) constitute a dual frame and there holds

f =
∑
j,k

〈f, ψ̃jk〉ψjk =
∑
j,k

〈f, ψjk〉ψ̃jk, ∀f ∈ L2(R).

where the series converges strongly in L2(R).

Further, if φ and φ̃ ful�ll

〈φ, φ̃(· − k)〉 = δk,0,

the wavelets ψj,k and ψ̃j,k are dual Riesz bases with

〈ψj,k, ψ̃j′,k′〉 = δj,j′δk,k′ ,

i.e. they are biorthogonal.

When we use wavelets we will often need the following norm equivalences. For this

type of wavelet basis the Jackson and Bernstein inequalites hold [19]. That means

we can use an estimate of the form

inf
uj∈Vj

‖u− uj‖L2 ≤ c2−jm‖u‖Hm , ∀u ∈ Hm

for some m ∈ N. Further, there holds an inverse estimate of the form

‖uj‖Hr ≤ c2jq‖uj‖L2 , ∀uj ∈ Vj ,

for q < r with r ∈ (0,m]. When we have these two estimates the following norm

equivalences hold.

Theorem 3.3.5 (Theorem 3.3, [31]). Let u ∈ Ht, u =
∑

j=(j1,...,jk)wj for wj ∈
Wj1 ⊗ ...⊗Wjk . Then

‖u‖2Ht ∼
∑
j

22tmax{j1,...,jk}‖wj‖2L2 , (3.8)

for t ∈ (−r̃, r) where r and r̃ is the number of vanishing moments of the wavelets

and the dual wavelets respectively.

Remark 3.3.6. These norm equivalences can easily be extended to anisotropic spaces.

Let Ω1 ⊂ Rd1, Ω1 ⊂ Rd1 and let u ∈ Hr,s(Ω1 × Ω2) with u =
∑

(i,j)≥0wi,j for

wi,j ∈Wi ⊗Wj, then

‖u‖2Hr,s(Ω1×Ω2) ∼
∑

(i,j)≥0

22 max{ri,sj}‖wi,j‖2L2(Ω1×Ω2).
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Further, if u ∈ Hr,s
mix(Ω1 × Ω2), then

‖u‖2Hr,s
mix

(Ω1×Ω2) ∼
∑

(i,j)≥0

22(ri+sj)‖wi,j‖2L2(Ω1×Ω2).

Remark 3.3.7. Analogous equivalences hold for the dual wavelet.

In the following two sections we give two examples of the construction of biorthogonal

wavelet basis functions.

3.3.1 Example: Wavelet with 3 Vanishing Moments

As we did for the construction of the Haar wavelet we start with a basis of box

functions. Let φ = χ[0,1]. Then the scaled and translated versions of φ are

φjk = 2j/2χ
[t

(j)
k ,t

(j)
k+1]

, with t
(j)
k = k2−j ,

k = 0, 1, ..., 2j − 1,

j ∈ N0.

Remark 3.3.8. This corresponds to the piecewise constant basis used in Chapter 4.

Now we de�ne the space spanned by these basis functions

Vj = span {φj,k : k = 0, 1, ..., 2j − 1}.

Since this space ful�lls the requirements of Theorem 3.3.4 we know that there exists

a biorthogonal basis generated by φ̃ such that

〈φ, φ̃(· − k)〉 = δ0,k, k ∈ Ij .

Let Wj be the complement space to Vj in Vj−1. Then Theorem 3.3.4 further gives

the existence of wavelets ψ, ψ̃ such that ψj,k and ψ̃j,k are Riesz bases of Wj and W̃j

respectively.

Writing the biorthogonal wavelet ψ̃ explicitely is not necessary since we only require

its existence for the theory in Chapter 7.

Using an appropriate re�nement sequence we can construct the mother wavelet ex-
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Figure 3.2: A piecewise constant wavelet with three vanishing moments.

plicitely:

ψ(x) :=



−1
8 x ∈ [−1, 0)

1 x ∈ [0, 1
2)

−1 x ∈ [1
2 , 1)

1
8 x ∈ [1, 2]

0 else.

(3.9)

This wavelet is shown in Figure 3.2.

These wavelets have two important properties. Firstly, they have three vanishing

moments, i.e.:

〈(·)α, ψj,k〉 = 0, ∀0 ≤ α < 3.

and secondly they have a compact support, i.e.:

|suppψjk| = 3 · 2−j .

3.3.2 Example: B-Spline Wavelets

As before we start with a dual pair of re�nable functions (θ, θ̃):

θ(x) =
∑
k

akθ(2x− k), θ̃(x) =
∑
k

ãkθ̃(2x− k)
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and ∫
R
θ(x)θ̃(x− k)dx = δk,0, ∀k ∈ Z.

For the function θ we choose standard B-spline functions mθ, which are polynomials

of degree m− 1. To de�ne the B-splines we �rst de�ne the divided di�erences.

De�nition 3.3.9. We de�ne recursively the m-th order divided di�erence of f ∈
Cm(R) at the points ti, ..., ti+m

[ti, ..., ti+m]f =
[ti+1, ..., ti+m]f − [ti, ..., ti+m−1]f

ti+m − ti
,

where [ti]f = f(ti).

De�nition 3.3.10. Let xm+ = (max{0, x})m. Then, the m-th order centered cardinal

B-spline is given by

mθ(x) = m[0, 1, ...,m]
(
· − x−

⌊m
2

⌋)m−1

+

Remark 3.3.11. Using the above formula we easily get the �rst order cardinal B-

spline:

2θ(x) =


x, 0 ≤ x ≤ 1

2− x, 1 ≤ x < 2,

0 else.

The higher-order splines follow analogously.

Before we de�ne the corresponding multiresolution analysis we will discuss properties

of these B-splines. In Figure 3.3 we plot the �rst four cardinal B-splines.

The centered B-splines have compact support

suppmθ =
[
−
⌊m

2

⌋
,
⌈m

2

⌉]
=: [l1, l2]

The centered B-splines are re�nable and the re�nement sequence {ak} is �nite. The
re�nement sequence is known and is given by

mθ(x) =

l2∑
k=l1

akmθ(2x− k), (3.10)

with ak = 22−m

(
m

k + bm2 c

)
.
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Figure 3.3: The �rst four cardinal B-spline functions.

Remark 3.3.12. We can use formula (3.10) to �nd the re�nement sequence for the

�rst order centered B-spline 2θ. We know that supp 2θ = [−1, 1]. This means there

are three re�nement coe�cients to be calculated. Clearly they are

a−1 =
1

2
, a0 = 1, a1 =

1

2
.

We show this re�nement sequence in Figure 3.4.

We know from [14] that for each m and for any m̃ ≥ m with m + m̃ there exists a

function m,m̃θ̃ such that (mθ,m,m̃θ̃) form a dual pair, i.e.

〈mθ,m,m̃θ̃(· − k)〉 = δ0,k.

The function m,m̃θ̃ has a compact support

suppm,m̃θ̃ = [l1 − m̃+ 1, l2 + m̃− 1] =: [l̃1, l̃2]

and the same symmetry properties as mθ [17].
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Figure 3.4: The �rst-order centered cardinal B-spline function and its re�nement
sequence.

The function m,m̃θ̃ is also re�nable, with re�nement sequence

m,m̃θ̃(x) =
∑
k

ãk m,m̃θ̃(2x− k).

def cascade (h , phi_0 , j_max ) :
s t a r t = min( phi_0 . keys ( ) )
end = max( phi_0 . keys ( ) )
i l = ( end−s t a r t )/2
phi_j = phi_0
h = d e f a u l t d i c t ( int , h )
for j in range (1 , j_max+1):
# Prev iou s l y c a l c u l a t e d va l u e s :
phi_jm1 = dict ( phi_j )
# Current va l u e s :
phi_j = {}
ind_1 = i l ∗ 2∗∗ j
ind_2 = i l ∗ 2∗∗( j−1) − 1
x = 2∗∗(− j )∗m
phi_j [ x ] = 0
# Use p r e v i o u s l y c a l c u l a t e d va l u e s in re f inement eq .
for l in range(−ind_2 , ind_2+1):

phi_j [ x ] += h [m−2∗ l ] ∗ phi_jm1 [2∗∗(−( j −1))∗ l ]
return phi_j

Figure 3.5: The cascade algorithm (in Python).
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Figure 3.6: The functions ψ (left) and θ̃ = 2,2θ (right) for m = m̃ = 2.

Notation: For any function f we denote fj,k = 2j/2f(2jx− k).

Then the spaces Vj and Ṽj can be de�ned as the spans of mθj,k and m,m̃θ̃j,k. Using the

single scale bases we can de�ne the wavelets ψ and ψ̃ using the re�nement sequences

as described in Theorem 3.3.4. The complement spaces Wj and W̃j are spanned by

the corresponding wavelets ψj,k and ψ̃j,k.

We do not have an analytic representation of the dual scaling function θ̃. Instead

we can evaluate θ̃ at point values using the cascade algorithm [19]. The algorithm is

shown in Figure 3.5. The wavelet and the dual scaling function as approximated by

the cascade algorithm are shown in Figure 3.6.

3.4 Wavelets on Intervals

Wavelets de�ned on non-periodic domains such as intervals need to be chosen care-

fully. Wavelets chosen to ful�ll certain boundary conditions have been introduced

in [18]. They build on the work from [17]. We give here a brief summary of the

construction. Essentially these wavelets are constructed in such a way that when

the wavelet vanishes on one side of the interval the dual wavelet is unconstrained

and vice versa. This allows us to require bounds at the edges of the interval without

losing properties such as norm equivalences.

We use the set Z to specify the location of Dirichlet bounds. Z = {} corresponds to
no Dirichlet bounds, Z = {0} corresponds to Dirichlet bounds on the left side of the

interval, Z = {1} corresponds to bounds on the right and Z = {0, 1} corresponds to
bounds on both ends of the interval.
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Figure 3.7: The interior, left and right index sets.

In this section we �x the order m of the B-spline wavelet and of the order m̃ of

its dual. Let (θ, θ̃) = (mθ,m,m̃θ̃) be the chosen dual pair of re�nable single scale

functions as de�ned in the previous section. Now we divide the generators of Vj and

Ṽj into left, right and interior basis functions as follows:

Θ′j = ΘL
j ∪ΘI

j ∪ΘR
j , and Θ̃′j = Θ̃L

j ∪ Θ̃I
j ∪ Θ̃R

j .

The interior basis functions are left unchanged, i.e.

ΘI
j = {θj,k : k ∈ ∆I

j}, Θ̃I
j = {θ̃j,k : k ∈ ∆̃I

j},

where ∆I
j = {l, ..., 2j − l− (m mod 2)} and ∆̃I

j = {l̃, ..., 2j − l̃− (m mod 2)} with
l = l̃ − (m− m̃) and l̃ ≥ l̃2. The index sets are plotted in Figure 3.7.

The left and right generator functions need to be modi�ed in order to ensure the

boundary conditions are met. We de�ne

αnr =

∫
xrθ(x− n)dx, α̃nr =

∫
xrθ̃(x− n)dx.

Using these coe�cients we rede�ne the left boundary generating functions

θLj,l−m+r =
l−1∑

n=−l2+1

α̃nrθjn|[0,1], r = 0, ...,m− 1 and

θ̃L
j,l̃−m̃+r

=

l̃−1∑
n=−l̃2+1

αnrθ̃jn|[0,1], r = 0, ..., m̃− 1.

Then we rede�ne the right boundary functions symmetrically

θRj,2j−l+m−mmod 2−r(1− x) = θLj,l−m+r(x), r = 0, ...,m− 1 and

θ̃R
j,2j−l̃+m̃−m mod 2−r(1− x) = θ̃L

j,l̃−m̃+r
(x), r = 0, ..., m̃− 1.
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Figure 3.8: The modi�ed generator functions for d = 2, the left boundary functions
are red, the interior functions are blue and the right boundary functions are green.

We have to assume that j ≥ j0 to ensure that the boundary wavelets do not interfere.
Then the nested spaces Vj = span Θ′j and Ṽj = span Θ̃′j are exact of order m and m̃

respectively. The modi�ed scaling functions are shown for the case of linear B-splines

in Figure 3.8.

We denote by ΘZ
j the functions Θ′j with the boundary conditions corresponding to

Z. Now we need to ensure biorthogonality while keeping the boundary conditions Z

valid. More precisely, this means we want

〈θZj,k, θ̃Z̃j,k′〉 = δk,k′ , ∀k ∈ ∆j , k
′ ∈ ∆̃j

with the boundary conditions

θZj,k(x) = 0, ∀k ∈ ∆j and θ̃
Z̃
j,k(x) = 0, x ∈ Z, ∀k ∈ ∆̃j .

Remark 3.4.1. In [18] boundary conditions on higher derivatives are also consid-

ered. However, to ensure initial conditions are met we will only require these.

In the following we ensure that the boundary conditions are met and then biorthog-

onalise the resulting system. As before the interior functions do not require any

modi�cation.

Let a′, ã′ ∈ N with a′ ≥ m − 1, ã′ ≥ m̃ + 1, then we supplement the generating
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functions with higher and lower order B-splines as follows

Θ(+0) = {θLj,a′−(m−1)+r, r = 0, ...,m− 2} ∪ {m−1θ[j,a′], ...,m−1θ[j,a′+b′]}

Θ̃(−0) = {θ̃Lj,ã′−(m̃+1)+r, r = 0, ..., m̃} ∪ {m−1,m̃+1θ̃[j,ã′], ...,m−1,m̃+1θ̃[j,ã′+b̃′]},

where a′ −m+ 1 = ã′ − m̃− 1 and a′ + b′ = ã′ + b̃′.

Integrating the primal system on the left and di�erentiating the dual system yields

Θ(+1) = {θLj,l−1−m+r, r = 0, ...,m− 1} ∪ {mθ[j,l−1], ...,mθ[j,l−1+b′]}

Θ̃(−1) = {θ̃L
j,l̃−m̃−+r

, r = 0, ..., m̃− 1} ∪ {m,m̃θ̃[j,l̃], ...,m,m̃θ̃[j,l̃+b̃′+1]}.

Theorem 3.4.2 (Theorem 4.2, [18]). For every Z, m > 0, m̃ > 0 and j ≥ j0 the

dual pair ΘZ
j , Θ̃Z

j de�ned above satis�es the complementary boundary conditions and

can be biorthogonalised.

For Z = {} we can de�ne the wavelet basis functions using the re�nement sequences

for the generating functions.

Θ
(+0)
j =

∑
k

(−1)k−1a−k−1θ
(+0)
−1,k, Θ̃

(−0)
j =

∑
k

(−1)k−1ã−k−1θ̃
(+0)
−1,k.

These wavelets are compactly supported, biorthogonal and the functions have m̃+ 1

vanishing moments. Now we can introduce

ψ
(+1)
j = 2j

(∫
ψ

(+0)
j

)
⊂ V (+1)

j+1 and ψ̃
(−1)
j = (−1)2−j

d

dx
ψ̃

(−0)
j ⊂ Ṽ (−1)

j+1 .

Theorem 3.4.3 (Proposition 3.8, [8]). The collections ψ(+1), ψ̃(−1) are biorthogonal

bases with

V
(+1)
j+1 = V

(+1)
j

⊕
span ψ

(+1)
j , Ṽ

(−1)
j+1 = Ṽ

(−1)
j

⊕
span ψ̃

(−1)
j .

Now we can de�ne the wavelets for symmetric boundary conditions:

ψ
{0,1}
j := ψ

(+1)
j , ψ̃

{}
j := ψ

(−1)
j and

ψ
{}
j := ψ

(−1)
j , ψ̃

{0,1}
j := ψ

(+1)
j .

Now we can use these two de�nitions to �nd the corresponding results for asymmetric
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boundary conditions. More precisely, for Z = {0} and if we let p = l−m+m mod 2:

ψ
L,{0}
j := {ψ{0,1}jk : k = 1, ..., p− 1},

ψ
I,{0}
j := {ψ{}jk : k = p, p+ 1, ..., 2j − p},

ψ
R,{0}
j := {ψ{}jk : k = 2j − p+ 1, ..., 2j}

and for the dual system

ψ̃
L,{1}
j := {ψ{0,1}jk : k = 1, ..., p− 1},

ψ̃
I,{1}
j := {ψ{}jk : k = p, p+ 1, ..., 2j − p},

ψ̃
R,{1}
j := {ψ{}jk : k = 2j − p+ 1, ..., 2j}.
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Chapter 4

Galerkin Boundary Element

Methods

In this chapter we discuss the discretisation of the direct and indirect formulations

of the heat equation given in Section 2.2. Essentially, we need to approximate the

anisotropic Sobolev space H−
1
2
,− 1

4 (Σ) that these equations are formulated in. To

approximate this space we choose a �nite dimensional subspace of the anisotropic

Sobolev space.

In this chapter we discuss such discretisations by full tensor product spaces of piece-

wise polynomials. However, due to the coercivity of the single-layer operator many

other kinds of discretisation are possible. Wavelet bases have been introduced in

Chapter 3. Discretisations using wavelet bases will be discussed in Chapter 7 and

discretisations using sparse grid spaces will be discussed in Chapter 6.

First we discuss in general terms the discretisation in space and time. Then we intro-

duce the discretisation in time by piecewise constant basis functions and in space by

piecewise polynomial basis functions. Next, we look in detail at the discretisation of

the single and double layer operators. This includes �nding the analytical solutions

for the time integrals of both operators. Further, we discuss implementational issues,

such as the solution of the resulting linear system and quadrature rules. Finally, we

give numerical results showing a comparison between the boundary element method

described in this chapter and a �nite element discretisation.
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4.1 Space-Time Discretisation

In this section we discuss the discretisation in space and time. We initially discuss

the discretisations without giving the discrete space since the following results hold

for all choices of discrete subspace. In the following sections we will give details of

the construction of a full tensor product discretisation with piecewise polynomials.

Let XL be a nested sequence of discrete spaces, i.e.

X0 ⊂ X1 ⊂ ... ⊂ XL ⊂ ... ⊂ H−
1
2
,− 1

4 (Σ).

Further, let ψL ∈ XL be the solution to either the direct or indirect formulations of

the heat equation with Dirichlet data, i.e.

Find ψL ∈ XL such that

〈V ψL, η〉 = 〈g, η〉, for all η ∈ XL (Direct method)

or 〈V ψL, η〉 = 〈(1

2
+K)g, η〉, for all η ∈ XL (Indirect method)

(4.1)

Lemma 4.1.1. The solution ψL ∈ XL of both problems is unique and quasi-optimal:

‖ψ − ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ ‖V ‖

cv
inf

ηL∈XL
‖ψ − ηL‖

H−
1
2 ,−

1
4 (Σ)

. (4.2)

Proof. This follows directly from the Lemma of Lax-Milgram and the Lemma of Céa

respectively, using the coercivity and continuity of V in the appropriate spaces. See

[15] or [42] for more details.

Remark 4.1.2. Analogous results hold for the Neumann problem.

4.1.1 Time Discretisation

Now we give an explicit construction for a discrete space in time. We will refer to

this space as Xlt .

For a given level lt ∈ N, choose Nt = 2lt and the index set ∆lt = {0, 1, ..., Nt − 1}.

We subdivide the time interval of interest I = (0, T ) by tltk = Tk/Nt with k ∈ ∆lt .

This gives us an equidistant partition of the time interval. The time step size ht is

given by ht = T/Nt.
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For the discretisation we employ piecewise constant functions

χk(t) =

1, if tltk < t < tltk+1

0, otherwise.
(4.3)

Functions of higher polynomial degree degree can also be used (see e.g. [42]). Another

option is to use wavelets in time, for this see Chapter 3.

Then the discrete space in time is given as the span of these functions

Xlt = span {χk}Ntk=1.

Once we have de�ned the space discretisation we can tensorise the two spaces to

form the discrete space XL.

4.1.2 Space discretisation

Let Γ denote the boundary of the domain Ω. In the following Γ is assumed to be

smooth, however, more general boundaries are possible. For example, polygonal

domains or other piecewise smooth domains are easily handled.

In two dimensions, the smooth boundary Γ of a simply connected domain can be

parameterised by a single 1-periodic function:

γ : [0, 1]→ Γ.

In the following we assume that the function γ is analytic [34].

Remark 4.1.3. In higher dimension [42], d > 2, the domain needs to be cut up into

smaller non-overlapping patches Γi, each with its own parameterisation

γi : [0, 1]d−1 → Γi.

Each patch is meshed individually.

We create a mesh Th on [0, 1]d−1, for example, by division into intervals, cubes or

simplices. We denote the elements of this mesh by τ ∈ Th. For d = 2 this is shown

in Figure 4.1.

Then we de�ne the discrete space X pxlx as the image of the space of piecewise polyno-

mials of degree px. Here lx gives the number of elements in the mesh. More precisely,
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Γ

γ−1

γ

I = [0, 1]

Figure 4.1: The mapping γ and its inverse mapping by γ−1 for d = 2.

there are 2lx elements τ ∈ Th and

X pxlx = {v ∈ L2(Γ) : v|τ ◦ γ ∈ Ppx ∀τ ∈ Th},

where Ppx is an appropriate space of polynomials of degree px.

The basis functions on Γ can also be given using the parametrisation γ. This gives

a basis de�ned on each element τ of the triangulation:

bj = b̂j ◦ γ−1, j = 1, ..., (px + 1)d−1,

where b̂j are the basis functions on the interval I = [0, 1].

Remark 4.1.4. The number of basis functions on each elements is given under the

assumption that tensor product polynomials of degree px in each direction are used.

The collection of these functions for all τ ∈ Th forms a basis for X pxlx . Thus, if

there are Nx elements in Th, then there are (px + 1)d−1Nx basis functions. It is

convenient to denote them by {bα(x)}α. Then {bα(x)χn(t)}α,n forms a basis of

XL := Xlt ⊗ X
px
lx
. This is the well known full tensor product space. Alternatively it

is possible to combine space and time discretisations using a sparse grid space. This

will be discussed in Chapter 6.

The Galerkin solution ψL belongs to XL, so we can write it as

ψL(x, t) =

Nt−1∑
n=0

Nx−1∑
β=0

ψβnbβ(x)χn(t),

where Nx is the number of basis functions in space and Nt is the number of basis

functions in time.

This gives us the discretised form of the equation to be solved for the Indirect Method
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(2.2.2):

Nt−1∑
n=0

Nx−1∑
β=0

〈bαχm, V bβχn〉ψβn = 〈bαχm, g〉, α = 0, ..., Nx − 1,

m = 0, ..., Nt − 1.

(4.4)

The Direct Method (2.2.1) can be discretised completely analogously and gives a

similar linear system to solve.

Next we look at some examples of parameterisations for di�erent smooth boundaries

Γ that will be used in the numerical tests in Section 5.4.

Example: The unit circle in two dimensions

The simplest example of a smooth domain in d = 2 is the circle Γ = ∂BR(0). This

domain is shown in Figure 4.2. It is easy to see that it can be mapped bijectively

and smoothly onto the interval [0, 1].

We denote the mapping from the unit interval [0, 1] to the boundary by γ , it is given

by

γ : [0, 1]→ Γ = ∂BR(0)

ϕ 7→ R

(
cos(π(2ϕ− 1))

sin(π(2ϕ− 1))

)

The inverse mapping is denoted by γ−1 and is given by:

γ−1 : Γ = ∂BR(0)→ [0, 1].(
x

y

)
7→ 1

2π
atan2(y, x) +

1

2
,

where atan2 is the function given by:

atan2(y, x) = 2 arctan

(
y√

x2 + y2 + x

)

In this case the outer normal at the point γ(ϕ) is easy to calculate. It is given by:(
n1

n2

)
=

(
cos(2πϕ− π)

sin(2πϕ− π)

)
.
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Figure 4.2: A circular domain Ω = B1(0) in blue and the exact boundary �ux in
green, as well as the approximated boundary �ux in red.

For the integration it is also necessary to calculate the derivatives of the mapping γ.

For a circle these derivatives have a very simple form:

‖γ′(x)‖ = 2πR. (4.5)

Remark 4.1.5. The derivative γ does not depend on x, so it is possible to speed

up the numerical quadrature needed to evaluate the boundary integral operators by

moving it out of the integrals.

Example: Ellipse

Another easily parameterised smooth domain is the ellipse. In our tests we choose an

ellipse where the major axis coincides with the x-axis. The major axis of an ellipse is

its longest diameter. These ellipses are described by two parameters a and b which

give the eccentricity of the ellipse. The values a, b and the major axis of an ellipse

are shown in Figure 4.3.

As before we denote the smooth, 1-periodic mapping from the interval [0, 1] onto the

boundary of the ellipse by γ.

γ : [0, 1]→ Γ

ϕ 7→

(
a cos(2πϕ)

b sin(2πϕ)

)
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x

y

a

b

major axis

Figure 4.3: An ellipse, the major axis and the values of a and b.

It is simple to calculate that

‖γ′(ϕ)‖ = 2π
√

(a sin(2πϕ))2 + (b cos(2πϕ))2.

Further, the inverse of γ is given by:

γ−1(x) =
1

2π
atan2 (ax2, bx1).

The outer normal for the ellipse is given by:(
ñ1

ñ2

)
=

(
1/a cos(2πϕ)

1/b sin(2πϕ)

)
.

And normalising gives the unit outer normal n = ñ/‖ñ‖ as required.

Example: A star-shaped domain

A more complicated domain that is still easy to parameterise, is the star-shaped do-

main shown in Figure 4.4. This domain was chosen to be smooth and less symmetric

than the previous tests.

In this case the smooth mapping γ is given by:

γ : [0, 1]→ Γ

s 7→ 1

20

(
cos(2πs)(4 + cos(6πs) + cos(2πs))

sin(2πs)(4 + cos(6πs) + cos(2πs))

)
(4.6)
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x

y

Figure 4.4: The star-shaped domain used for tests in red and a circle of radius 1 as
a reference in blue.

It is also necessary to calculate the derivative of the mapping γ. In this case it is

given by

‖γ′(s)‖ =
π

10

√
(4 + cos(6πs) + cos(2πs))2 + (3 sin(6πs) + sin(2πs))2 (4.7)

4.2 The Single-layer Operator

Discretisation of the single-layer operator V leads to a square matrix Gα+nNx,β+mNx .

When we discretise with piecewise constant basis functions in time the matrix has

a block Toeplitz structure. We examine each of the Nt blocks corresponding to a

pair of time steps m,n. The blocks each have size Nx × Nx. To keep the notation

compact we will also refer to the matrix blocks as (Gmn), their entries are

(Gmn)αβ : = 〈bαχm, V bβχn〉

=

∫
Σ

∫
Σ
bα(x)bβ(y)χm(t)χn(s)G(x− y, t− s)dy ds dx dt.

Assume in the following that constant basis functions are used in time. We change

the order of integration and de�ne a time-integrated kernel:

gmn(x) :=

∫ (m+1)ht

mht

∫ (n+1)ht

nht

G(x, t− s)dsdt.

Remark 4.2.1. Since the fundamental solution G(x, t) is zero when t < 0, the

time-integrated kernel gmn(x) will also be zero when m < n.
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I

II
1

l–1 l l+10

Figure 4.5: The transformed subdomains I and II.

In this section easily simplify the integration in time by reducing this double-integral

to a one-dimensional integral (see [15], Section 6). After the reduction one can

either apply a numerical quadrature rule or evaluate the one-dimensional integral

analytically.

First, let l = m− n and scale the integration variables in gmn(x) to get

gmn(x) = h2
t

∫ 1

0

∫ 1

0
G(x, ht(t+m− (s+ n)))dsdt

= h2
t

∫ 1

0

∫ t+l

t+l−1
G(x, hts̃)ds̃dt,

where s̃ = t− s+ l.

By dividing the domain into two triangular domains (shown in Figure 4.5) and

changing the order of integration we get

gmn(x) = h2
t

∫ l

l−1

∫ s̃−l+1

0
G(x, s̃ht)dtds̃︸ ︷︷ ︸+h2

t

∫ l+1

l

∫ 1

s̃−l
G(x, s̃ht)dtds̃︸ ︷︷ ︸ .

I II

(4.8)

The �rst integrand, which corresponds to domain I above is 0 in the case l = 0.

Now the integration over t can easily be performed and we get

gmn(x) = h2
t

∫ l

l−1
G(x, s̃ht)(s̃− l + 1)ds̃+ h2

t

∫ l+1

l
G(x, s̃ht)(l + 1− s̃)ds̃. (4.9)

The integration over s̃ can be done analytically or using a quadrature rule. Since the

integral of gmn(x) has an algebraic singularity at s̃ = 0 one would use a composite
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Gauss-Legendre rule for l = 0, 1 and a Gauss-Legendre rule for l > 1.

Integrating analytically involves evaluating the exponential integral function. In

languages such as C/C++ or Python this can be done e�ciently. In other languages

it may be preferable to use an integration rule instead.

Next we will show how to derive the integral value analytically for any d > 1. We

will later use the same approach to calculate the time integrals for the double layer

operator.

De�nition 4.2.2. We de�ne the exponential integral functions as

Ei(x) :=

∫ x

−∞
ett−1dt.

Further, for ease of notation we de�ne as in [15]:

E1(x) := −Ei(−x).

We will use the following simple integration rules:∫ b

a
e−r/sds =

[
rEi(−r/s) + se−r/s

]b
a

(4.10)

and ∫ b

a
e−r/ss−1ds = [−Ei(−r/s)]ba . (4.11)

When the lower integration limit a is zero and the upper integration limit b > 0, we

have ∫ b

0
e−r/sds = rEi(−r/b) + se−r/b (4.12)

and ∫ b

0
e−r/ss−1ds = −Ei(−r/b). (4.13)

We start with the simplest case l = 0, i.e. the elements on the diagonal. In this case

the integral (4.8) has the form:

gmm(x) = h2
t

[∫ 1

0
G(x, s̃ht)ds̃−

∫ 1

0
G(x, s̃ht)s̃ds̃

]
= h2

t (4π)−d/2
[∫ 1

0
(s̃ht)

−1e−|x|
2/(4s̃ht)ds̃−

∫ 1

0
(s̃ht)

−1e−|x|
2/(4s̃ht)s̃ds̃

]
We look at the two integrals separately. Using the integration rule (4.11) the �rst
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integral gives ∫ 1

0
(s̃ht)

−1e−|x|
2/(4s̃ht)ds̃ =

1

ht

∫ ht

0
σ−1e−|x|

2/(4σ)dσ

= − 1

ht
Ei(−|x|2/(4ht)).

Further, the second integral is∫ 1

0
(s̃ht)

−1e−|x|
2/(4s̃ht)s̃ds̃ =

1

ht

∫ ht

0
σ−1e−|x|

2/(4σ)σdσ

=
1

ht

∫ ht

0
e−|x|

2/(4σ)dσ.

By using equation (4.10) we �nd that the second integral gives

1

ht

∫ ht

0
e−|x|

2/(4σ)dσ =

[
|x|2

4
Ei(−|x|2/(4σ)) + σe−|x|

2/(4σ)

]ht
0

=
1

ht

(
|x|2

4
Ei
(
− |x|2/(4ht)

)
+ e−|x|

2/(4ht)

)
.

In order to simplify notation we set

ak(x) =
‖x‖2

(4kht)
.

Here we only need a1, however in the other cases other values of k will be used. Then

we sum up the two integrals and get the following solution for the time integral on

the diagonal:

gmm(x) = ht(4π)−d/2(E1(a1)(1 + a1)− e−a1).

Next we look at the case l = 1. This case can be handled in much the same way as

the calculation above, giving

gm,m−1(x) = h2
t

(∫ 1

0
G(x, s̃ht)ds̃+

∫ 2

1
G(x, s̃ht)(2− s̃)ds̃

)
= (4π)−d/2

(
ht

∫ ht

0
e−|x|

2/(4σ)dσ −
∫ 2ht

ht

e−|x|
2/(4σ)dσ

+ 2ht

∫ 2ht

ht

e−|x|
2/(4σ)σ−1dσ

)
.

Again we look at each of the summands individually. It is easy to see that using
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equations (4.10) and (4.11) respectively, we get

ht

∫ ht

0
e−|x|

2/(4σ)dσ =

[
|x|2

4
Ei(−|x|2/(4σ)) + σe−|x|

2/(4σ)

]ht
0

,

∫ 2ht

ht

e−|x|
2/(4σ)dσ =

[
|x|2

4
Ei(−|x|2/(4σ)) + σe−|x|

2/(4σ)

]2ht

ht

,

and

2ht

∫ 2ht

ht

e−|x|
2/(4σ)σ−1dσ = 2ht

[
−Ei(−|x|2/(4σ))

]2ht
ht

.

In total this gives us

(4π)−d/2
(
−2htE1(a1)(a1 + 1) + 2hte

−a1 − 2hte
−a2 + ht(2 + a2)E1(a2)

)
.

For l < 0 it is clear that gm,m−l(x) = 0 due to the form of the fundamental solution.

Thus, the remaining case is l > 1. Here the integral has the form

gm,m−l(x) = h2
t

(∫ l

l−1
G(x, s̃ht)(s̃− l + 1)ds̃+

∫ l+1

l
G(x, s̃ht)(l + 1− s̃)ds̃

)
= h2

t (4π)−d/2

(
1

ht

∫ l

l−1
e−|x|

2/(4s̃ht)ds̃

− (l − 1)

∫ l

l−1
e−|x|

2/(4s̃ht)(s̃ht)
−1ds̃

− 1

ht

∫ l+1

l
e−|x|

2/(4s̃ht)ds̃

+ (l + 1)

∫ l+1

l
e−|x|

2/(4s̃ht)(s̃ht)
−1ds̃

)
.

Then, we sum up all the integrands and get

gm,m−l(x) = (4π)−d/2

(∫ lht

(l−1)ht

e−|x|
2/(4σ)dσ − ht(l − 1)

∫ lht

(l−1)ht

e−|x|
2/(4σ)σ−1dσ

−
∫ (l+1)ht

lht

e−|x|
2/(4σ)dσ

+ (l + 1)ht

∫ (l+1)ht

lht

e−|x|
2/(4σ)σ−1dσ

)
.
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Next we integrate using the simple integration rules (4.10) and (4.11), giving

gm,m−l(x) = (4π)−d/2
(
ht(a1 + l − 1)E1(al−1) + ht(l + 1 + a1)E1(al+1)

− 2ht(a1 + l)E1(al)− ht(l − 1)e−al−1

− (l + 1)hte
−al+1 + 2lhte

−al
)
.

Finally, summarising the results we have

gm,m(x) = ht(4π)−d/2f1(x),

gm,m−1(x) = ht(4π)−d/2(−2f1(x) + f2(x)),

gm,m−l(x) = ht(4π)−d/2(fl−1(x) + fl+1(x)− 2fl(x)), l > 1.

(4.14)

Where

fl(x) = E1(al)(l + al)− le−al . (4.15)

The function gmn(x) has a logarithmic singularity for x tending to zero. This is easy

to see using the Taylor expansion of Ei(x):

Ei(x) = γ + ln |x|+
∞∑
k=1

xk

k k!
.

This series representation holds for all x > 0 (see [1]). However, for large x it

converges slowly and should not be used in calculations.

This means that for the integration we need a quadrature rule suitable for dealing

with functions with logarithmic singularities. See Section 4.6 for details on the

construction of suitable quadrature rules.

4.2.1 Structure of the Matrix

The structure of the matrix of the single-layer operator depends on the choice of

basis functions in time and space. We use piecewise constant basis functions in time,

leading to a block Toeplitz structure for the matrix.

As before we refer to the matrix block corresponding to the time intervals m and n

as Gmn. Several of these block matrices are zero, more precisely

〈χm, V χn〉 = 0, if m < n,

since G(x, t− s) = 0 if s > t.
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Lemma 4.2.3. The diagonal matrix blocks Gnn for n = 1...Nt are symmetric positive

de�nite.

Proof. To show that the matrices on the diagonal are indeed symmetric we look at

the matrix entries

(Gnn)αβ =

∫
Γ

∫
Γ
bα(x)bβ(y)gnn(x− y)dxdy.

The time integrated kernel gnn(x) depends only on x2, so switching x and y above

does not change the value of the integral. Thus, (Gnn)αβ = (Gnn)βα.

The single layer operator has been shown to be coercive in Theorem 2.2.8, as such the

matrix G must be positive de�nite. Thus, the diagonal blocks must also be positive

de�nite.

Together this gives the assertion that the diagonal blocks are symmetric positive

de�nite matrices.

For piecewise constant basis functions in time steps a further simpli�cation is possi-

ble.

Lemma 4.2.4. For a piecewise constant polynomial basis with constant time steps

there holds

Gn1k1 = Gn2k2 if n1 − k1 = n2 − k2.

Proof. Since

(Gnk)αβ =

∫
Γ

∫
Γ
bα(x)bβ(y)gnk(x− y)dsxdsy,

we need only show that gn1,k1 = gn2,k2 . Let l = n1 − k1 = n2 − k2. According to

equation (4.9) we can rewrite gn1,k1 for piecewise constant basis functions as

gn1,k1(x) = h2
t

∫ l

l−1
G(x, s̃ht)(s̃− l + 1)ds̃+ h2

t

∫ l+1

l
G(x, s̃ht)(l + 1− s̃)ds̃.

Since this equation depends only on l the assertion is clear.

Remark 4.2.5. Lemma 4.2.4 does not hold for higher order polynomials in time.

The time-integrated kernel is given by

gmn(x) =

∫
I

∫
I
χm(t)χn(s)G(x, t− s)ds dt.

If χm and χn are not piecewise constant the roles of t and s cannot simply be ex-

changed.



4.3. THE DOUBLE-LAYER OPERATOR 59

Nx

NxNt

Figure 4.6: Structure of the matrix of the single layer operator and the matrix as it
is stored for implementational purposes.

This means that when using piecewise constant polynomial basis functions in time

the matrix of the single-layer operator G has the form

G =


G00 0 0 ... 0

G01 G00 0 ... 0

G02 G01 G00 ... 0
...

...
...

. . .


This means we can save storage space by only saving one block matrix for each n−k
and we store only NtN

2
x matrix entries instead of (NtNx)2. The structure of the

matrix and the structure of the stored matrix are shown in Figure 4.6.

4.3 The Double-layer Operator

Now we look at the discretisation of the double-layer operator. We require this in

order to assemble the right-hand side for the indirect method. It is very similar to the

discretisation of the single-layer operator given in Section 4.2. However, it requires

the evaluation of the normal derivative of the fundamental solution.

The normal derivative has a relatively simple form:

∂

∂ny
G(x− y, t) =

(4πt)−d/2(2t)−1e−‖x−y‖
2/(4t)〈ny, x− y〉 t ≥ 0

0 t < 0,

= G(x− y, t)/(2t)〈ny, x− y〉.

(4.16)



4.3. THE DOUBLE-LAYER OPERATOR 60

One can either evaluate 〈Kg, bα(x)ξm(t)〉 directly or approximate the function g by

a polynomial gh. The use of linear (or higher order) polynomials is necessary in that

case to ensure gh ∈ H1/2,1/4(Σ).

When approximating g by polynomials the advantage is that the matrix of the

double-layer operator can be set up with analytically evaluated time integrals as

in the case of the single-layer operator. This can save computational e�ort. How-

ever, choosing an approximation for the function g leads to an additional error term.

The matrix of the double layer operator is given by:

(Kmn)αβ = 〈bαχm,Kbβχn〉

=

∫
Σ

∫
Σ

∂

∂ny
G(x− y, t− s)bα(x)bβ(y)χn(t)χk(s)dy ds dx dt

=

∫
Γ

∫
Γ

∫ (m+1)ht

mht

∫ (n+1)ht

nht

∂

∂ny
G(x− y, t− s)bα(x)bβ(y)ds dt dy dx

=

∫
Γ

∫
Γ
kmn(x− y)bα(x)bβ(y)dy dx,

where kmn(x− y) is the time-integrated kernel of the double layer operator.

Using the same method as for the time-integration of the single-layer operator, we

split the integration into two domains:

kmn(x− y) = h2
t

(∫ l

l−1

∂

∂ny
G(x− y, sht)(s− l + 1)ds

+

∫ l+1

l

∂

∂ny
G(x− y, sht)(l + 1− s)ds

)
To evaluate this expression, we need the integrals used previously, as well as the

integral ∫ b

a
x−2e−r/4xdx =

[
4r−1e−r/4x

]b
a
. (4.17)

Since the calculations have been done in detail for the single-layer potential we will

only summarise the results of the corresponding calculation for the double layer

potential. As before

ak(x) :=
‖x‖2

4kht
.
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Then the results of the calculation are

km,m(x) = (8π)−d/2〈ny, x〉f̃1(x),

km,m−1(x) = (8π)−d/2〈ny, x〉
(
f̃2(x)− 2f̃1(x)

)
,

km,m−l(x) = (8π)−d/2〈ny, x〉
(
f̃l−1(x)− 2f̃l(x) + f̃l+1(x)

)
, l > 1.

(4.18)

Where

f̃l(x) =
e−al

al
− E1(al).

As in the case of the single-layer operator the analytically evaluated time integrals

have a logarithmic singularity. This makes �nding suitable quadrature rules simpler,

as the same rule can be applied to both operators. The choice of quadrature rules is

discussed in detail in Section 4.6.

4.4 Assembling the Right Hand Side

The direct and indirect methods for solving the Dirichlet problem were given in

equation (4.1). The right hand side for these problems was given by g or 1
2g + Kg,

for the indirect and direct methods respectively. Thus, to solve the resulting linear

systems we need to compute

F (x, t) =
1

2
g(x, t) +K1(g)(x, t)

=
1

2
g(x, t) +

∫
Σ

∂

∂ny
G(x− y, t− s)g(y, s)dy ds (x, t) ∈ Σ,

for the indirect method and

F (x, t) = g(x, t) (x, t) ∈ Σ,

for the direct method.

So, to assemble the right hand side of the linear system, we need to calculate:

(bm)α =

∫
Σ
F (x, t)bα(x)χm(t)dx dt

=

∫
Γ

∫ (m+1)ht

mht

F (x, t)bα(x)dt dx.
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4.5 Solving the Linear System

The next step is to solve the resulting linear system. Due to the block lower triangular

form of the matrix of the single layer operator we can �nd an e�cient solver for the

resultant systems. This simple forwards substitution was suggested in [42]. Thus,

for every n ≤ Nt we solve

Gnnqn = Fn −
n−1∑
k=1

Gnkqk. (4.19)

Since the symmetric positive de�nite matrix Gnn is the same for every step n, it can

be inverted once and then reused. For large problems evaluating the inverse is costly,

in this case we calculate the LU decomposition of the matrix once and then use it

to solve e�ciently in each step.

We obtain a very simple method for solving the linear system both for the direct and

the indirect method. This algorithm only works for constant time steps. A similar

algorithm can be used for variable time step size.

def solveMem(A,B,Nx, Nt ) :
B = B. reshape (−1)
x = ze ro s (B. shape )
for i in range (Nt ) :

sumAx = ze ro s ( [Nx ] )
for k in range ( i ) :

sumAx += dot (A[ ( i−k )∗Nx : ( i−k+1)∗Nx , : ] ,
x [ k∗Nx : ( k+1)∗Nx ] )

x [ i ∗Nx : ( i +1)∗Nx] = so l v e (A[ 0 :Nx , : ] ,
B[ i ∗Nx : ( i +1)∗Nx]−sumAx)

return x

Figure 4.7: The algorithm used to solve the linear system (in Python).

4.6 Quadrature Rules in Space

In Sections 4.2 and 4.3 we saw that evaluating the time integrals for the single- and

double-layer operators results in double integrals of the form∫
Γ

∫
Γ
F (x, y)dx dy,
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where the integrand is given either by

gmn(x− y)bα(x)bβ(y) or kmn(x− y)bα(x)bβ(y). (4.20)

Using the parameterisation γ of the boundary we can easily rewrite this as an integral

over the unit square:∫
Γ

∫
Γ
F (x, y)dx dy =

∫ 1

0

∫ 1

0
F (γ−1(x̃), γ−1(ỹ))|γ′(x̃)| · |γ′(ỹ)|dx̃ dỹ

=

∫ 1

0

∫ 1

0
F̂ (x̃, ỹ)dx̃ dỹ,

(4.21)

where F̂ (x̃, ỹ) = F (γ−1(x̃), γ−1(ỹ))|γ′(x̃)| · |γ′(ỹ)|.

Since the kernel functions gmn and kmn contain exponential integral functions (see

(4.14) and (4.18)) with logarithmic singularities, we need to �nd an e�cient quadra-

ture rule for logarithmic singularities.

There are several ways to evaluate these integrals e�ciently. In higher dimensional

cases I is a double integral over d− 1-dimensional parallelotopes. An algorithm for

calculating those integrals was given in [10].

4.6.1 One-dimensional Rules

First we will discuss some of the one-dimensional quadrature rules that can be used

for the types of integrals that need to be evaluated. In particular, we examine gen-

eralised Gauss-Jacobi, Gauss-Laguerre and composite Gauss-Legendre rules for the

singular coordinates and a Gauss-Legendre quadrature for the regular coordinates.

Generalised Gauss-Jacobi

Gauss-Jacobi rules are used to integrate functions with singularities at the endpoints.

The generalised Gauss-Jacobi rules proposed in [24] generalise these rules so that

they integrate functions with logarithmic singularities. In particular, these rules can

integrate polynomials of degree up to 2n− 1 multiplied by a logarithmic singularity

exactly.
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The rule is given by∫ 1

0
g(x)(1− x)αxβ log(x)dx = −

∫ 1

0
g(x)(1− x)αxβ log(1/x)dx

= −
n∑
ν=1

w(α,β)
ν g(x(α,β)

ν ), α, β > −1, g ∈ P2n−1,

where P2n−1 denotes the set of polynomials of degree ≤ 2n− 1.

Further details on the construction of these quadrature rules, as well as code to

generate them is given in [23].

Gauss-Laguerre

An alternative to the generalised Gauss-Jacobi quadrature is Gauss-Laguerre quadra-

ture. These rules are de�ned as follows∫ ∞
0

xαe−xf(x)dx =
n∑
i=1

wif(xi).

We can easily transform our integrand into the form required in order to use these

rules: ∫ 1

0
g(x) log(x)dx =

∫ 0

∞
g(e−y)e−yydy

= −
∫ ∞

0
y1g(e−y)e−ydy.

Gauss-Legendre

Gauss-Legendre quadrature is not suitable for singular integrands. We will use this

rule for the regular integrands that occur. Let {ti, wi}Ni=1 be N quadrature points

and weights respectively. The quadrature points ti for the quadrature order N are

given by the roots of the Legendre polynomials PN (x). The weights wi are given by

wi =
2

NP ′N−1(ti)P ′N (ti)
. (4.22)

Composite Gauss-Legendre

Next we look at a rule which can be used for more general types of singularities.

We break up the interval of integration and use the Gauss-Legendre rule described

above on each of the intervals.
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Figure 4.8: A comparison of the convergence of the three one-dimensional quadrature
rules for the test function f(x) = log(x)(4 + cos(2πx)).

Let m ∈ N and σ ∈ (0, 1). We de�ne the geometric subdivision [0, 1] = I1 ∪ ... ∪ Im
with

Ij = [σj , σj−1] for j = 1, ...,m− 1, and Im = [0, σm−1].

We then de�ne composite Gauss-Legendre [48] quadrature rules on this subdivision.

For m,n ∈ N and σ ∈ (0, 1) let Ij be given as above. Let

nj =

⌈
n(m+ 1− j)δ

mδ

⌉
for j = 1...m. (4.23)

We de�ne the composite Gauss-Legendre quadrature rule for f as

Qn,m,σ,δf :=
m∑
j=1

Q
Ij
njf, (4.24)

where Q
Ij
n f is the Gauss-Legendre quadrature rule on the interval Ij .

The composite Gauss-Legendre rule uses n1 Gauss-Legendre points in the rightmost

interval I1, and a decreasing number of Gauss-Legendre points towards 0. The total

number of quadrature points is
∑m

j=1 nj ≈ nm/(δ + 1).

Comparing the One-dimensional quadrature rules

Figure 4.6.1 shows a comparison of these three quadrature rules. We see that the

generalised Gauss-Jacobi quadrature converges much more quickly for logarithmic
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singularities than the other two rules for integrands similar to those that appear in

the discretisation of the single and double layer potentials. In all numerical tests

generalised Gauss-Jacobi rules were used in the singular coordinates.

4.6.2 Higher-dimensional Rules

In order to create quadrature rules in higher dimensions, we use Du�y transforms.

A Du�y transform transforms a triangle to square [20]. We use them to move the

logarithmic singularity so that it is only in one coordinate direction. Then we can

subtract the singularity leading to a non-singular integral. These transformations

are possible in arbitrary dimensions, here we use them for the two-dimensional case.

Starting from the integral (4.21) we �rst need to seperate the regular summand Freg

in the integrand from the summand Fsing, which has a logarithmic singularity:∫ 1

0

∫ 1

0
F̂ (x̃, ỹ)dx̃ dỹ =

∫ 1

0

∫ 1

0
F̃reg(x̃, ỹ)dx̃ dỹ +

∫ 1

0

∫ 1

0
F̃sing(x̃, ỹ)dx̃ dỹ.

The �rst integral can be computed using a Gauss-Legendre rule. In the following

sections we will discuss the computation of the second integral depending on the

location of the supports of the two basis functions bα and bβ (see (4.20)).

Identical Elements

In this case the two basis functions bα and bβ have identical supports. This means

that the integrand Fsing can be written as Fsing(x, y) = f(x, y) log |x− y|. To isolate
the singularity which is currently located on the diagonal of the square [0, 1]2, we

�rst divide the domain into to triangles along the diagonal:

I =

∫ 1

0

∫ 1

0
f(x, y) log |x− y|dxdy

=

∫ 1

0

∫ y

0
f(x, y) log |x− y|dxdy +

∫ 1

0

∫ 1

y
f(x, y) log |x− y|dxdy =: I1 + I2.

Then, using the Du�y transform x = (1−t)y for the �rst summand and the transform
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Figure 4.9: Division of the square into two triangles and the Du�y-transformation
of each triangle to a square.

x = y + t(1− y) for the second summand as in Figure 4.9, we get:∫ 1

0

∫ 1

y
f(x, y) log |x− y|dxdy =

∫ 1

0

∫ 1

0
log |t|f(y + (1− y)t, y)(1− y)dtdy

+

∫ 1

0

∫ 1

0
log |y|f(y + 1 + yt, y + 1)ydtdy.

Adjacent elements

In this case the two basis functions bα and bβ have supports which coincide in one

point. Depending on the location of this point the integral needs to be handled

di�erently. First there are singularities in the left upper corner of the square given

by the tensor product of the two intervals. In this case the integrand can be written

as Fsing(x, y) = f(x, y) log(1 + x− y). This gives integrals of the form:

I =

∫ 1

0

∫ 1

0
f(x, y) log |1 + x− y|dxdy

=

∫ 1

0

∫ 1−y

0
f(x, y) log |1 + x− y|dxdy +

∫ 1

0

∫ 1

1−y
f(x, y) log |1 + x− y|dxdy

=: I1 + I2.
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Then using the transformation x = (1− y)t on the �rst summand we get:

I1 =

∫ 1

0

∫ 1−y

0
f(x, y) log |1 + x− y|dxdy

=

∫ 1

0

∫ 1

0
log |y|f(yt, 1− y)ydtdy

+

∫ 1

0

∫ 1

0
log |t+ 1|f((1− y)t, y)(1− y)dtdy.

Further, using the transformation y = sx+ 1− x on the second summand we get:

I2 =

∫ 1

0

∫ 1

1−y
f(x, y) log |1 + x− y|dxdy

=

∫ 1

0

∫ 1

1−y
log |x|f(x, sx+ 1− x)xdxds

+

∫ 1

0

∫ 1

1−y
log |2− s|f(x, sx+ 1− x)xdxds.

Singularities in the right upper corner correspond to the second case of adjacent

elements in which the �rst element is to right of the second element. To isolate

the singularity in this case, the form of the integrand needs to be Fsing(x, y) =

log(−1 + x− y)f(x, y). This gives integrals of the form:

I =

∫ 1

0

∫ 1−y

0
f(x, y) log |x− y − 1|dxdy

=

∫ 1

0

∫ 1−y

0
f(x, y) log |x− y − 1|dxdy +

∫ 1

0

∫ 1

1−y
f(x, y) log |x− y − 1|dxdy

=: I1 + I2.

Then using the transformation y = s(1− x) on the �rst summand we get:

I1 =

∫ 1

0

∫ 1

1−y
f(x, y) log | − 1 + x− y|dxdy

=

∫ 1

0

∫ 1

1−y
log |x|f(1− x, sx)xdxds

+

∫ 1

0

∫ 1

1−y
log |s+ 1|f(x, s(1− x))(1− x)dxds.
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Further, using the transformation x = yt+ 1− y on the second summand we get:

I2 =

∫ 1

0

∫ 1−y

0
f(x, y) log | − 1 + x− y|dxdy

=

∫ 1

0

∫ 1

0
log |y|f(yt+ 1− y, y)ydtdy

+

∫ 1

0

∫ 1

0
log |2− t|f(yt+ 1− y, y)ydtdy.

4.7 Numerical Experiments

In this section we compare the convergence of a boundary element discretisation

with that of a �nite element discretisation of the same problem. For this comparison

we choose a homogeneous problem with Dirichlet boundary conditions (2.3). It is

formulated as follows

(∂t −∆)u = 0, in I × Ω

u = 0, at {t = 0} × Ω

γ0u = g, in Σ.

De�nition 4.7.1. The circle of radius R, centered around x is denoted by

BR(x) := {(y1, y2) : (y1 − x1)2 + (y2 − x2)2 ≤ R2}.

As a domain we choose a circle of radius 1, i.e. Ω = B1(0). Since the exact solution

is known for this particular problem, we choose as a right hand side g(r, ϕ, t) =

t2 cos(ϕ). According to [42] the exact solution is:

u(r, ϕ, t) =

(
rt2 − 4

∞∑
k=1

J1(βkr)

β3
kJ2(βk)

(t− 1

β2
k

(1− e−β2
kt))

)
cos(ϕ), (4.25)

By taking the normal derivative we easily see that the boundary �ux is

q(r, ϕ, t) =

(
t2 − 1

4
t+ 4

∞∑
k=0

1− e−β2
kt

β4
k

)
cos(ϕ). (4.26)
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4.7.1 Finite Element Implementation

The �nite element discretisation requires a time-stepping scheme. We choose a

Crank-Nicolson scheme. Crank-Nicolson is a second-order method, that is implicit

in time. Discretising only in time gives a semi-discrete scheme. The semi-discrete

scheme is given as follows

un+1 − un
ht

=
1

2
[∆un+1 + ∆un] +

1

2
[fn+1 + fn] ,

where as before un = u(tn, ·) and tn = nht.

For the volume mesh in space we use piecewise linear basis functions on a mesh of

triangles. Since our domain is a circle we approximate its boundary by a polygon

and then discretise with triangles. A sample mesh is shown in Figure 4.10.

0.3 0.2 0.1 0.0 0.1 0.2 0.3
0.3

0.2

0.1

0.0

0.1

0.2

0.3

Figure 4.10: The FE mesh used on the domain B1(0). The nodes on the boundary
are marked in green, while the inner nodes are marked in red.

Discretising in space as well as in time leads to the following fully discrete system:(
M +

1

2
htA

)
un+1 = htB +Mun −

1

2
htAun.

We denote the piecewise linear FE basis functions by bj : Ω → R. Then, M is the
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mass matrix, given by

Mjk = 〈bj , bk〉,

A is the sti�ness matrix, given by

Ajk = 〈∇bj ,∇bk〉,

and B is the vector of the right hand side, given by

Bj =
1

2
(〈fn, bj〉+ 〈fn+1, bj〉) .

Then to solve using FEM we need to �nd a smooth extension of g from ∂Ω to Ω.

This extensions is not uniquely de�ned. We denote this extension by g̃.

Next we rewrite equation (2.3) such that it ful�lls zero Dirichlet boundary conditions.

Set ũ = u− g̃ in (2.3) and solve

∂tũ−∆ũ = −(∂t −∆)g̃ =: f in I × Ω

ũ = 0 at {t = 0} × Ω

γ0ũ = 0 in Σ

(4.27)

Here we give two alternatives for the choice of extension g̃ to g(r, ϕ, t) = t2 cos(ϕ).

Alternative 1: Use the extension

g(r, ϕ, t) = r2t2 cos(ϕ).

It follows that the right hand side is given by

f(r, ϕ, t) = −(2t− 3t2) cos(ϕ)

Alternative 2: Use the extension

g(x, y, t) = t2x.

It follows that the right hand side is given by

f(x, y, t) = −2tx.
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Figure 4.11: The pointwise error plotted against time taken in seconds for a BEM
versus a FEM implementation.

4.7.2 Comparison between FEM and BEM

In this section we compare the error of the FE discretisation described in Section

4.7.1 with ht ∼ hx to the error of the BE discretisation of the same problem. We

compare the pointwise error at several time and space coordinates in the domain

and we compare the convergence of the boundary �ux in the L2(Γ)-norm at di�erent

points in time.

The BE discretisation used for this test uses piecewise constant polynomial basis

functions in time and space with ht ∼ hx. The discretisation does not use wavelets

or a sparse grid discretisation.

Figure 4.11 shows the absolute pointwise error at several di�erent points in time

and space plotted against the time taken. We see that the BE method converges

to the exact solution more quickly than the FE discretisation. However, if one were

to compare the computation of the solution in the entire domain an �nite element

implementation would be faster, since evaluating the representation formula requires

the numerical solution of a double integral.

Next we compare the L2(Γ)-error of the boundary �ux at certain points in time.

Since we used piecewise linear basis functions in space for the FE discretisation it

is easy to calculate an approximation to the boundary �ux. We use a four-point

forward �nite di�erence stencil for the approximation. For the BE implementation
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Figure 4.12: The L2-error of the boundary �ux plotted against time taken in seconds
for a BEM versus a FEM implementation.

the boundary �ux is calculated directly and no post-processing is necessary.

Figure 4.12 shows the L2(Γ)-error of the boundary �ux at two di�erent points in time.

Again the BE implementation is faster and shows a higher rate of convergence.

All in all, we conclude that using a boundary element discretisation is particularly

bene�cial when the boundary �ux is the quantity of interest. Boundary elements are

also useful when the solution needs to be evaluated at only a few points. However, if

the solution is needed in the interior of the entire domain a FE implementation may

be the better choice. For an outside domain, which is not bounded, BEM o�ers an

easy alternative to FEM.
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Chapter 5

Error Analysis for Full Tensor

Product Approximation Spaces

In this chapter we give some basic results of the error analysis for the boundary

integral formulation of the heat equation. First we summarise the classical results

from [15] and [42] for di�erent choices of polynomial degrees. Then we give new

results obtained for the case of identical polynomial degrees in time and space.

The results of this chapter are for full tensor product discretisations with piecewise

polynomial basis functions. Results on the error analysis for sparse grid spaces can

be found in Chapter 6.

5.1 L2- orthogonal Projections

Throughout this and the following chapters we will require the properties of L2-

orthogonal operators.

Let X be a closed subspace of L2(Σ). Then there exists a uniquely de�ned projection

operator

ΠX : L2(Σ)→ X ,

such that

〈f, g −ΠX g〉 = 0 ∀f ∈ X , g ∈ L2(Σ).

De�nition 5.1.1. We refer to the projection

ΠX : L2(Σ)→ X

de�ned above as the L2-orthogonal projection.
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5.2 Classical Error Estimates

In the following we give some classical results on the approximation properties of

piecewise polynomial full tensor product spaces XL = Xlx ⊗Xlt ⊂ Hp,q(Σ).

The following well-known theorem on the convergence in the energy norm is taken

from [42].

Theorem 5.2.1. Let ψL ∈ XL be the Galerkin approximation to the Dirichlet prob-

lem and let ψ ∈ Hpx+1,pt+1(Σ) be the solution. Here px and pt are the polynomial

degrees of the spaces Xlx and Xlt respectively. Then

‖ψ − ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ c(h

1
2
x + h

1
4
t )(hpx+1

x + hpt+1
t )‖ψ‖Hpx+1,pt+1(Σ).

We give the detailed proof to illustrate how the improvements of the next section

can be attained. In particular, note that the Aubin-Nitsche argument used in the

following proof is not sharp.

The proof of this theorem requires knowledge of the approximation properties of the

L2-projection operators to the spaces Xlx and Xlt . These are denoted by ΠXlx and

ΠXlt respectively. The polynomial degrees of the spaces Xlx and Xlt are px and pt

respectively and the mesh widths in the spaces are hx and ht.

Lemma 5.2.2 (Section 5, [15]). Let β1, β2 satisfy

−(pt + 1) ≤ β1 < β2 ≤ pt + 1, β2 > −1/2 and β1 < 1/2.

Then,

‖u−ΠXltu‖Hβ1 (I) ≤ ch
β2−β1
t ‖u‖Hβ2 (I), u ∈ Hβ2(I).

Further, let α1, α2 satisfy

−(px + 1) ≤ α1 < α2 ≤ px + 1, α2 > −1/2 and α1 < 1/2.

Then,

‖u−ΠXlxu‖Hα1 (Γ) ≤ chα2−α1
x ‖u‖Hα2 (Γ), u ∈ Hα2(Γ).

For ease of notation we denote by ΠXlx also the projection:

(Πlxu)(x, t) = (ΠXlxu(x, ·))(t), for x ∈ Γ.

Analogously,

(Πltu)(x, t) = (ΠXltu(·, t))(x), for t ∈ I.
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Then ΠXlxΠXlt = ΠXltΠXlx is the L2(Σ)-orthogonal projection onto XL = Xlx ⊗Xlt .

Combining the two estimates from Lemma 5.2.2:

Lemma 5.2.3 (Proposition 5.3, [15]). Let λ, µ, r, s denote values satisfying

−px ≤ λ ≤ 0 ≤ r ≤ px + 1 and

−pt ≤ µ ≤ 0 ≤ s ≤ pt + 1.

Then, for all u ∈ Hr,s(Σ), there exists c ≥ 0 which depends on λ, µ, r, s such that

‖u−ΠXlxΠXltu‖Hλ,µ(Σ) ≤ c(h−λx + h−µt )(hrx + hst )‖u‖Hr,s(Σ),

where ΠXlx ,ΠXlt are the L2 projections on to Xlx and Xlt respectively.

Proof. For this proof λ, µ, r, s are �xed. Remember that λ, µ ≤ 0.

Adding zero gives u−ΠXlxΠXltu = (u−ΠXlxu)+ΠXlx (u−ΠXltu). Using the triangle

inequality and Lemma 5.2.2 we get

‖u−ΠXlxΠXltu‖L2(Σ) ≤ ‖u−ΠXlxu‖L2(Σ) + ‖ΠXlx (u−ΠXltu)‖L2(Σ)

≤ chrx‖u‖L2(I,Hr(Γ)) + hst‖u‖Hs(I,L2(Γ)).

It follows,

‖u−ΠXlxΠXltu‖L2(Σ) ≤ c(hrx + hst )‖u‖Hr,s(Σ). (5.1)

Then we use an Aubin-Nitsche argument to get

‖u−ΠXlxΠXltu‖Hλ,µ(Σ) = sup
v∈H̃−λ,−µ(Σ)

|〈u−ΠXlxΠXltu, v〉|
‖v‖H−λ,−µ(Σ)

= sup
v∈H̃−λ,−µ(Σ)

|〈u, v −ΠXlxΠXltv〉|
‖v‖H−λ,−µ(Σ)

≤ ‖u‖L2(Σ) sup
v∈H̃−λ,−µ(Σ)

‖v −ΠXlxΠXltv‖L2(Σ)

‖v‖H−λ,−µ(Σ)

≤ c(h−λx + h−µt )‖u‖L2(Σ).

We note that (Id−ΠXlxΠXlt ) = (Id−ΠXlxΠXlt )
2 and get

‖u−ΠXlxΠXltu‖Hλ,µ(Σ) = ‖(Id−ΠXlxΠXlt )
2u‖Hλ,µ(Σ)

(5.1)

≤ c(h−λx + h−µt )‖u−ΠXlxΠXltu‖L2(Σ)

≤ c(h−λx + h−µt )(hrx + hst )‖u‖Hr,s(Σ)
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as asserted.

In Chapter 2 we showed the coercivity of the single layer operator. So, using the

classical Lemma of Céa and Galerkin orthogonality Theorem 5.2.1 follows directly

from this Lemma.

This theorem can be applied to di�erent choices of polynomial degrees. The term

(h−λx + h−µt ) in the estimate is determined by the Hµ,λ(Σ)-norm in the left-hand

side of the estimate. For all further estimates we will choose λ = −1
2 and µ = −1

4 ,

leading to estimates in the energy norm of our problem.

Then we need to balance the term (h−λx +h−µt ) with the term (hrx +hst ). If our right

hand side is assumed to be arbitrarily smooth, the only restrictions on r and s come

from the choice of polynomial degree. Due to Theorem 5.2.1 we have the restrictions

r ≤ pt + 1 and s ≤ px + 1. If we choose px = 2pt + 1, then s can be at most pt + 1

and r at most px+ 1 = 2pt+ 2 = 2s. This leaves us with two terms of the same form

and Theorem 5.2.1 gives

‖ψ − ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ c(h2

x + ht)
s+ 1

4 ‖ψ‖H2s,s(Σ)

for a scaling of h2
x ∼ ht. For �xed polynomial degrees px and pt the total number

of degrees of freedom N is proportional to h
−(d−1)
x h−2

x = h
−(d+1)
x . Rewriting the

convergence estimate with respect to degrees of freedom gives

‖ψ − ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ cN−2(s+ 1

4
)/(d+1)‖ψ‖H2s,s(Σ),

with a constant c > 0 depending on the polynomial degrees px and pt.

With the restriction px = 2pt + 1 the basis functions in time and space can not be

chosen independently. In particular, at least piecewise linear basis functions must be

chosen in space. However, from an implementational standpoint it is easiest to work

with low polynomial degrees both in time and space.

We are mainly interested in the case of px = pt = 0, i.e. piecewise constant basis

functions in time and space. These are easiest to implement and they result in a block

Toeplitz structure of the matrix, leading to an easily solvable linear system. Further,

piecewise constant basis functions allow analytic evaluation of the time integrals.

This was detailed in Chapter 4.

When we no longer have the restriction px = 2pt + 1 the optimal scaling between



5.2. CLASSICAL ERROR ESTIMATES 79

hx and ht is not clear. In the following we �nd the optimal scaling for the case

px = pt and then apply it to the case of piecewise constant basis functions. In the

next section we will improve further upon these results.

Let s = px + 1 = pt + 1. Then we have

‖ψ − ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ c(h

1
2
x + h

1
4
t )(hsx + hst )‖ψ‖Hs,s(Σ).

We let σ parameterise the scaling between hx and ht by ht ∼ hσx. Now, our goal is

to �nd the value of σ for which the upper bound on the error of the energy norm in

the above estimate is smallest. This means we need to minimise the expression with

regard to σ.

Clearly,

(h
1
2
x + h

1
4
t )(hsx + hst ) = (h

1
2
x + h

σ
4
x )(hsx + hsσx )

= h
1+2s

2
x + h

1+2sσ
2

x + h
4s+σ

4
x + h

4s+1
4

σ
x .

This means we need to �nd

m := min

{
1 + 2s, 1 + 2sσ,

4s+ σ

2
,
4s+ 1

2
σ

}
.

Lemma 5.2.4. For any d > 2 the minimum m is given by

min

{
1 + 2s, 1 + 2sσ,

4s+ σ

2
,
4s+ 1

2
σ

}
=


4s+1

2 σ, σ ≤ 1

4s+σ
2 , 1 < σ ≤ 2

1 + 2s, else.

Proof. First we note that since 4s+1
2 σ ≤ 1 + 2sσ for σ ≤ 2 and 1 + 2s ≤ 1 + 2sσ for

σ ≥ 1, we can simplify the minimum by removing 1 + 2sσ. So we �nd

m = min

{
1 + 2s,

4s+ σ

2
,
4s+ 1

2
σ

}
.

We easily see that
4s+ 1

2
σ ≤ 1 + 2s⇔ σ ≤ 2 + 4s

1 + 4s
.

Further,
4s+ 1

2
σ ≤ 4s+ σ

2
⇔ σ ≤ 1.
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Figure 5.1: The convergence rate in the energy norm plotted against the value of σ
for d = 2 and s = 1. The maximum is attained at σ = 1.

And �nally,
4s+ σ

2
≤ 1 + 2s⇔ σ ≤ 2.

This concludes the proof

We start by examining the case s = 1, i.e. piecewise constant basis functions, since

this is the case we are most interested in. In this case the convergence rate with

respect to the number of degrees of freedom in the energy norm is given as m
2(d−1+σ)

as shown in Figure 5.1 for d = 2.

As we can see in Figure 5.1 the choice leading to the highest convergence rate for

s = 1 is σ = 1, giving:

‖ψ − ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ cN−

5
4d

L ‖ψ‖H1,1(Σ). (5.2)

Remark 5.2.5. This demonstrates that for s = 1 the optimal scaling in time and

space suggested by Theorem 5.2.1 is ht ∼ hx.

Now we look at the remaining cases, where s ∈ N, s > 1. The results in these cases

are very similar to those when s = 1.

Again we examine the convergence rate in the energy norm m
2(d−1+σ) , which is shown

in Figure 5.2 for a few values of s. We note that for these values of s the scaling σ

which leads to the highest convergence rate in the energy norm is 1, i.e. we choose

ht ∼ hx.
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Figure 5.2: The convergence rate in the energy norm plotted against the value of σ
for d = 2 and s = 2, 3, 4.

In the next section we will improve upon these convergence rates, this will also lead

to a di�erent choice of optimal scaling.

Remark 5.2.6. Let s ≥ 1 and let the dimension d be 2 or 3. In the interval σ ∈
[0, 1] the convergence rate is given by 4s+1

4
σ

d−1+σ , which is monotonically increasing.

Since further both 4s+σ
4(d−1+σ) and 1+2s

2(d−1+σ) are monotonically decreasing for σ > 1 the

maximum must indeed be indeed achieved at σ = 1.

According to Lemma 5.2.4 the estimate for σ = 1 in the energy norm is

‖ψ − ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ cN−

4s+1
4d

L ‖ψ‖Hs,s(Σ),

with the constant c = c(px, pt) > 0.

In Table 5.1 we give a summary of these convergence rates for di�erent polynomial

degrees in time and space for 2 and 3 dimensions. We also summarise the optimal

scalings for these cases.
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Full tensor product, d = 2

(px, pt) conv. rate γ scaling σ

(0, 0) 5
8 1

(1, 0) 5
6 2

(1, 1) 9
8 1

(2, 2) 13
8 1

(3, 1) 3
2 2

(3, 3) 17
8 1

Full tensor product, d = 3

(px, pt) conv. rate γ scaling σ

(0, 0) 5
12 1

(1, 0) 5
8 2

(1, 1) 3
4 1

(2, 2) 13
12 1

(3, 1) 9
8 2

(3, 3) 17
12 1

Table 5.1: Convergence rates and optimal scaling σ for full tensor product discreti-
sation in 2 and 3 dimensions.

5.3 Error Bounds for Equal Polynomial Degrees in Time

and Space

In this section we �nd error bounds for the convergence rate of full tensor product

Galerkin BEM, where px = pt, that are sharper than those obtained with the classical

results in the previous section. These results are new to this work.

The main ingredient used for the new proof are norm equivalences which can be

shown using wavelet bases. The theory behind these is summarised in Chapter 3.

In particular, Theorem 3.3.5 gives that for u ∈ Hr,s(Σ) with u =
∑

(lx,lt)≥0wlx,lt and

wlx,lt ∈Wlx ⊗Wlt , we have

‖u‖2Hr,s(Σ) ∼
∑
lx,lt

22 max{rlx,slt}‖wlx,lt‖2L2(Σ). (5.3)

The norm equivalences given above deliver upper and lower bounds for our estimates.

This means that our estimates are sharper than the estimates derived using an Aubin-

Nitsche argument. Now we use the norm equivalences to calculate new error bounds.

We de�ne the full tensor product index set as follows

IσL = {(lx, lt) : lx ≤ L, lt ≤ σL},
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IσL

σL

lx

lt

L

bσLc

{lx = L+ 1, lt ≥ 0}

{lx ≥ 0, lt = bσLc+ 1}

Figure 5.3: The full tensor product index set IσL.

where σ is a real parameter that can be chosen. As before it denotes the scaling in

time and space. This means

(lx, lt) /∈ IσL ⇔ (lx, lt) ∈ {lx ≥ L+ 1} ∪ {lt ≥ bσLc+ 1}.

The index set is shown in Figure 5.3. Now we write u =
∑

(lx,lt)≥0w(lx,lt). Then by

using an extension to Theorem 3.3.5 and letting v =
∑

(lx,lt)∈IσL
w(lx,lt) ∈ XL we get

inf
v∈XL

‖u− v‖2Hr,s(Σ) ∼
∑

(lx,lt)/∈IσL

22 max{rlx,slt}‖wl‖2L2(Σ)

=
∑

(lx,lt)/∈IσL

22 max{rlx,slt}−2 max{µlx,λlt}22 max{µlx,λlt}‖wl‖2L2(Σ).

This can be estimated as follows

inf
v∈XL

‖u− v‖2Hr,s(Σ) ≤
(

max
(lx,lt)/∈IσL

22 max{rlx,slt}−2 max{µlx,λlt}
)

·
∑

(lx,lt)/∈IσL

22 max{µlx,λlt}‖wl‖2L2(Σ)︸ ︷︷ ︸
∼‖u‖2

Hµ,λ(Σ)

.

This means we need to estimate the maximum in order to get the convergence rates.
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Since we want to �nd estimates for the energy norm we set r = −1
2 , s = −1

4 .

max
(lx,lt)/∈IσL

22 max{rlx,slt}−2 max{µlx,λlt} = max
(lx,lt)/∈IσL

2−max{lx, lt2 }−2 max{µlx,λlt}

The term 2−(max{lx, lt2 }+2 max{µlx,λlt}) reaches its maximum when the negative expo-

nent is as small as possible. We de�ne

G(lx, lt) := max

{
lx,

lt
2

}
+ 2 max{µlx, λlt}. (5.4)

Then we need to �nd

n := min
(lx,lt)/∈IσL

G(lx, lt).

To �nd this minimum we use some properties of monotonically increasing functions.

De�nition 5.3.1. The function F (lx, lt) is a monotonically increasing function if

F (lx + k, lt) ≥ F (lx, lt), ∀k ≥ 0

F (lx, lt + k) ≥ F (lx, lt), ∀k ≥ 0.

Lemma 5.3.2. Let F be a monotonically increasing function. Then its minimum

outside the set IσL is

min
(lx,lt)/∈IσL

F (lx, lt) = min{F (L+ 1, 0), F (0, bσLc+ 1}.

Proof. Let lx ≥ L+ 1 Then there holds

F (lx, lt) ≥ F (L+ 1, lt)

by de�nition of monotonically increasing. Analogously if we let lt ≥ bσLc+ 1, there

holds

F (lx, lt) ≥ F (lx, bσLc+ 1)

Together this tells us that the minimum must lie in the subset

{(lx, lt) : lx = L+ 1 or lt = bσLc+ 1} ⊂ {(lx, lt) /∈ ILσ}.

In Figure 5.3 this subset is depicted by the blue lines.
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Now let lx = L+ 1 and lt ≥ 0, then there holds

F (lx, lt) ≥ F (L+ 1, 0).

Analogously, for lx ≥ 0 and lt = bσLc+ 1 we have

F (lx, lt) ≥ F (0, bσLc+ 1).

This shows that the minimum can only be attained at (L+ 1, 0) or (0, bσLc+ 1) as

desired.

To estimate the convergence rates we require the minimum n. Clearly, the function

of the exponent G(lx, lt) is a monotonically increasing function. Using Lemma 5.3.2

this means that n is given by

n = min
(lx,lt)/∈IσL

G(lx, lt) = min{G(L+ 1, 0), G(0, bσLc+ 1)}

= min

{
L+ 1 + 2µ(L+ 1),

bσLc+ 1

2
+ 2λ(bσLc+ 1))

}
= min

{
(L+ 1)(2µ+ 1), (bσLc+ 1))

(
4λ+ 1

2

)}
∼ min

{
2µ+ 1, σ

4λ+ 1

2

}
(L+ 1).

Thus, the minimum is

n ∼ (L+ 1)

σ 4λ+1
2 , σ ≤ 4µ+2

4λ+1

2µ+ 1, else.

In Figure 5.4 we examine the case µ = λ more closely. The polynomial degrees

restrict the choice of µ and λ, since we require λ ≤ px + 1 and µ ≤ pt + 1 to ensure

that the approximation space is embedded in the appropriate Sobolev space. The

�gure shows the exponent n for di�erent values of µ.

We know that the number of degrees of freedom for the full tensor product spaces is

given by:

NL = dimXL ∼ 2L(d−1+σ).
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Figure 5.4: The exponent n against σ for several choices of µ = λ.

We have now proven the following theorem.

Theorem 5.3.3. Let d > 1 and let µ, λ ful�ll λ ≤ px + 1 and µ ≤ pt + 1 and let

c > 0 be a constant depending only on the polynomial degrees px and pt. Then the

convergence in the energy norm is

‖u− uh‖2
H−

1
2 ,−

1
4 (Σ)
≤ cN

− 2µ+1
d−1+σ

L ‖u‖2Hµ,λ(Σ), for σ ≤
4µ+ 2

4λ+ 1
,

and

‖u− uh‖2
H−

1
2 ,−

1
4 (Σ)
≤ cN

− (4λ+1)σ
2(d−1+σ)

L ‖u‖2Hµ,λ(Σ), for σ >
4µ+ 2

4λ+ 1
,

where the scaling in space and time is given by ht ∼ hσx.

In Figure 5.5 we see a plot of the convergence rates for the case px = pt = 0 and

in Table 5.2 we give the convergence rates and optimal choices of σ for some other

values of µ = λ.

In two dimensions and for px = pt = 0 the convergence rate at σ = 6
5 is 2γ = 15

11 =

1.36 for the squares of the error. At σ = 1 the rate is expected to be 5/4 = 1.25

and at σ = 2 we expect a rate of exactly 1. These rates coincide with those of the

classical error estimates for σ ≤ 1 and for σ ≥ 2. However the maximum is now

attained at 6
5 and it is greater than the convergence rate at σ = 1, suggesting that

this scaling should be used instead.

As µ and λ increase the improvement becomes smaller. These results give the largest

improvement for the case µ = λ = 1. This happens since for large µ = λ the term
4µ+2
4µ+1 approaches 1 and our results approach the results given in the previous section.
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Figure 5.5: Convergence rate of the energy norm squared plotted against σ for µ = 1.
The blue line shows the results of the classical error analysis again, while the red line
shows our improvements.

Full tensor product, d = 2

(px, pt) conv. rate γ scaling σ

(0, 0) 15
22

6
5

(1, 1) 45
38

10
9

(2, 2) 91
54

14
13

(3, 3) 153
70

18
17

Full tensor product, d = 3

(px, pt) conv. rate γ scaling σ

(0, 0) 15
32

6
5

(1, 1) 45
56

10
9

(2, 2) 91
80

14
13

(3, 3) 153
104

18
17

Table 5.2: Improved convergence rates and optimal values of σ for full product
discretisations in 2 and 3 dimensions.

5.4 Numerical Experiments

In this section we give some tests to con�rm the convergence rates in the energy

norm that were derived in this chapter.

First we give some brief de�nitions for Bessel functions, since they are needed to

give the exact solutions for some of the tests. Then we move on to giving numerical

experiments. First we show tests on a circle. These have the advantage that the

exact solution can be calculated easily. One method for calculating solutions of the

heat equation on a circle is given in Appendix A. These tests were also used in [42].
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Then we give results calculated on ellipses of varying eccentricity and on a star-

shaped domain. For these tests the exact solutions are not known, however, they

o�er a more challenging test for these methods.

5.4.1 Bessel Functions

Bessel functions, are the solutions to the Bessel di�erential equations:

z2∂
2f(z)

∂z2
+ z

∂f(z)

∂z
+ (z2 − α2)f(z) = 0, (5.5)

for an arbitrary complex number α.

De�nition 5.4.1. We denote by Jk k-th -Bessel function of the �rst kind. More

precisely, a solution to (5.5) for α = k, which is �nite at the origin x = 0.

5.4.2 Experiments on Circles

We solve the Dirichlet problem on a circle of radius R = 1, i.e. on the domain

Ω = BR(0). With T > 0 we denote a �nite time horizon and with I := (0, T ) the

time intervall. We set Q := I × Ω the space-time cylinder with mantle Σ = I × Γ.

Then we want to �nd u : Q→ R satisfying:

(∂t −∆)u = 0, in Q

u = 0, at {t = 0} × Ω

γ0u = g, in Σ,

(5.6)

where γ0 is the trace operator.

The tests in this section show numerical results for three di�erent choices of the

right hand side g. In all three cases the exact boundary �ux ψ is known. Using the

coercivity and continuity of V in H−
1
2
,− 1

4 (Σ) and Galerkin orthogonality, we have

‖ψ − ψL‖2
H−

1
2 ,−

1
4 (Σ)

∼ 〈V (ψ − ψL), ψ − ψL〉

Galerkin orth.
= 〈V (ψ − ψL), ψ〉

We use this equation to calculate the error for all experiments in this section. For

simplicity we plot the error in the energy norm squared.
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Figure 5.6: A radial cut of the solution at four di�erent time steps, where the exact
solution is shown in black and the discrete approximations in colour (right) and the
solution u(r, t) at the time step t = 1 (right). Both plots are calculated with 16
elements in space and 256 in time with constant basis functions.

Tests for Space-independent Right Hand Side

The �rst example we choose has a right hand side which is constant in space, in

particular we choose g(x, t) = t2.

In this case the exact solution due to [42] (note the sign error in that work) in polar

coordinates is

u(r, ϕ, t) = t2 + 4

∞∑
k=1

J0(αkr)

α3
kJ1(αk)

(
t− 1

α2
k

(1− e−α2
kt)

)
,

where αk are the roots of the 0-th Bessel function J0 with α1 < α2 < .... This

solution is radially symmetric.

In Figure 5.6 we give plots of this exact solution and the approximated solution. One

can see that the approximation is good, particularly in the center of the domain, but

cannot be calculated near the boundary of the domain. Since the representation

formula (2.9) used to calculate these values has a singularity at the boundary of the

domain, this is not surprising.

The exact boundary �ux is given by

q(ϕ, t) = t+ 4

∞∑
k=0

1− e−α2
kt

α4
k

.
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Figure 5.7: Convergence of the boundary �ux in the energy norm for the right hand
side g(x, t) = t2.

To test the convergence rates we now calculate the convergence of the solution to

the exact boundary �ux given above. Let qL be the approximated boundary �ux in

the discrete space X σL . Then the expected convergence rate in the energy norm is

‖q − qL‖2
H−

1
2 ,−

1
4 (Σ)
≤ cN−

15
11

L ‖u‖2H1,1(Σ), for σ =
6

5
, (5.7)

according to Theorem 5.3.3.

Figure 5.7 shows the convergence rates in the energy norm for this right hand side.

The red plot shows the convergence when ht ∼ h6/5
x . Note that we have plotted the

squares of the energy norm, and as such our expected convergence rate is 15
11 . As we

can see the convergence rate coincides with the expected values.

Since for this particular solution the boundary �ux is only time-dependent, we do

not have to re�ne in space to improve convergence. In order to show convergence to

a higher accuracy, we also show a test in which only 4 elements in space are used

and only ht is re�ned. This is also shown in Figure 5.7.
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Figure 5.8: A radial cut of the solution at four di�erent time steps, where the
exact solution is shown in black and the discrete approximations in colour (right)
and the solution u(r, ϕ) at the time step t = 1 (left). Both plots were calculated
with constant basis functions in time and space, with 8 elements used in each.

Tests for a Stationary Right Hand Side

Next we look at a solution which is stationary. The right hand side we choose for

this test is g(r, ϕ, t) = R cos(ϕ).

In this case the exact solution is easy to calculate, it is

u(r, ϕ, t) = r cos(ϕ).

The solution and its boundary �ux are constant in time as can be seen in Figure 5.8.

This �gure shows the solution at t = 1 and a radial cut of the solution at di�erent

time steps. Even though only a few degrees of freedom are used in space, the discrete

solution nevertheless provides a good approximation. The exact boundary �ux in

this case is

q(ϕ, t) = cos(ϕ).

Figure 5.9 shows the convergence rates of the squares of the energy norm for this right

hand side. The red plot shows the convergence when ht ∼ h
6/5
x and our expected

convergence rate is 15
11 according to Theorem 5.3.3. As we can see the convergence

rate is close to the predicted values.

For this solution the boundary �ux is constant in time, so we do not have to re�ne

in time to improve convergence. In order to show convergence to a higher accuracy,

we also show a test in which only 1 element is used in time and only the mesh width

hx is re�ned. This is also shown in Figure 5.9
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Figure 5.9: Convergence of the boundary �ux in the energy norm for the right hand
side g(r, ϕ, t) = R cos(ϕ).

Tests with a Time- and Space-dependent Right Hand Side

The last test calculated on the circle combines the two previous tests, using the right

hand side g(r, ϕ, t) = t2 cos(ϕ). This right hand side leads to a solution that is not

constant in time or space. The exact solution for this problem is

u(r, ϕ, t) =

(
rt2 − 4

∞∑
k=1

J1(βkr)

β3
kJ2(βk)

(
t− 1

β2
k

(
1− e−β2

kt
)))

cos(ϕ), (5.8)

where βk are the roots of the �rst Bessel function J1 with β1 < β2 < .... In Figure

5.10 we show the calculated solution u at the time steps t = .25, .5, .75 and 1. We

see that the di�erences in the extrema of solution increasing as time passes.

Taking the normal derivative of the exact solution, it is easy to see that the exact

boundary �ux is

q(r, ϕ, t) =

(
t2 − 1

4
t+ 4

∞∑
k=0

1− e−β2
kt

β4
k

)
cos(ϕ). (5.9)

To check the convergence rates we again calculate the convergence of the solution to

the exact boundary �ux given above. The expected convergence rate of the squares

of the energy norm is 15
11 , where the scaling ht ∼ h

6/5
x is chosen.



5.4. NUMERICAL EXPERIMENTS 93

Figure 5.10: The approximated solution using the indirect method for the right hand
side g(r, ϕ, t) = t2 cos(ϕ) at four di�erent time steps, t = 1, 2, 3, 4. Piecewise constant
basis functions were used in time and space, with 16 elements used in each.

Figure 5.11 shows the convergence rates in the energy norm for this right hand side.

The red plot shows the convergence when ht ∼ h
6/5
x . Again we have plotted the

squares of the energy norm, and our expected convergence rate is 15
11 . As we can see

the convergence rate is close to the predicated rate.

We also run tests with two other values of σ. When σ = 1 we have as expected a

slightly larger error. The convergence rate in this case is expected to be 5
4 . Lastly,

when σ = 2 we expect a slower convergence rate of 1. The numerical tests in Figure

5.11 con�rm these rates.



5.4. NUMERICAL EXPERIMENTS 94

101 102 103 104 105 106

10−7

10−6

10−5

10−4

10−3

10−2

10−1

number of degrees of freedom

re
la
ti
ve

er
ro
r
in
‖
·‖

2 H
−

1 2
,−

1 4
(Σ

)

ht ∼ hx
ht ∼ h6/5

x

ht ∼ h2
x

N
−5/4
L

N
−15/11
L

Figure 5.11: Convergence of the boundary �ux in the energy norm for the right hand
side g(r, ϕ, t) = Rt2 cos(ϕ).

5.4.3 Experiments on Ellipses

In this section we give some more challenging tests on ellipses. For these tests it is

simpler to use the indirect method, as the exact solution is not known. We use a

value calculated with as many degrees of freedom as possible, as an approximation

of the exact solution to calculate the error.

In Figure 5.12 we show the approximated solutions for two ellipses with di�erent

right hand sides. These tests are described in the following sections.
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Figure 5.12: The approximated solution on an ellipse for the right hand side g(ϕ, t) =
t2 cos(2ϕ) at the time-step t = 1 (left), calculated with 16 elements in time and space.
The approximated solution for the right hand side g(ϕ, t) = t2 cos(4ϕ) at the time-
step t = 1 (right), calculated with 64 elements in time and space.
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Figure 5.13: Convergence of the boundary �ux in squares of the energy norm for the
right hand side g(ϕ, t) = t2 cos(2ϕ) on an ellipse with eccentricities a = 0.8, b = 0.5
(left) and for g(ϕ, t) = t2 cos(4ϕ) on an ellipse with eccentricities a = 1, b = 0.3
(right).

Tests for Time- and Space-dependent Right Hand Side

The �rst test is on an ellipse with semi-axes: a = 0.8, b = 0.5. The right hand side

that was chosen, is g(ϕ, t) = t2 cos(2ϕ). The solution is shown in Figure 5.12.

In Figure 5.13 one can see that the correspondence to the expected rates is good for

σ = 2, where we expect a rate of exactly 1. At σ = 1 the rate should be 5/4 = 1.25,

and is in fact somewhat higher than that. In particular, the error for σ = 1 is smaller

than the error for σ = 6
5 . The reason for this discrepancy is not clear. The expected

convergence rate for σ = 6
5 is 15

11 , and Figure 5.12 shows a good correspondence to

this rate.

The next test features a thinner ellipse with a = 1, b = 0.3. The right hand side was

chosen to be more oscillatory than in the previous case, with g(ϕ, t) = t2 cos(4ϕ).

This solution is shown in Figure 5.12. This plot was generated using 64 elements in

time and space, more elements were necessary to resolve the oscillations.

One can see in Figure 5.13 that due to the larger number of oscillations, the pre-

asymptotic range has increased. Three uniform re�nements are necessary, before

the convergence curves reach their asymptotic rates. At σ = 1 the rate should be

5/4 = 1.25 and is again somewhat higher. At σ = 6
5 the expected convergence rate

for the squares of the energy norm is 15
11 and we see a good correspondence to this

rate. The error for σ = 1 is smaller than the error for σ = 6
5 as in the previous test

using ellipses, and unlike the tests on the circle. It is unclear why σ = 1 leads to
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Figure 5.14: The approximated solution on the exterior of an ellipse for the right
hand side g(ϕ, t) = t2 cos(ϕ), at the time-step t = 1 (left), and the time evolution of
the solution at the point x = (.9, .9), with the exact solution shown in black (right).

higher convergence rates for ellipses.

Tests for an Exterior Problem on an Ellipse

In this section we give a numerical experiment for an exterior problem. More exactly,

we solve the heat equation on the exterior of an ellipse. Using the boundary integral

formulation of the heat equation, this problem can be handled with the same method

as an interior problem. The only change to the tests, given previously for the interior

problems on ellipses, is that the outer normal now points into the ellipse.

For this test we used an ellipse with eccentricities a = 0.8, b = 0.5. We used the

fundamental solution itself as a right hand side

g(x, t) = G(x, t).

This means, that we have the exact solution and its boundary �ux in the entire

domain. The solution at time-step t = 1, and the time evolution of the solution are

shown in Figure 5.14.

We show tests for the exterior problem only for the optimal scaling σ = 6
5 . In Figure

5.15, we plot the convergence in the energy-norm squared. As in the previous tests for

ellipses there is a pre-asymptotic range where there is no convergence. However, after

three steps we see a good correspondence with the theoretically expected convergence

rate of 15
11 .
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Figure 5.15: Convergence of the boundary �ux in the energy norm squared for the
right hand side g(x, t) = G(x, t), for the exterior of an ellipse.

5.4.4 Experiments on Star-shaped Domains

In this section we show one experiment on the star-shaped domain parametrised by

(4.6). This domain was chosen to show the convergence of the method on a smooth

domain, that is less symmetric than the circle and ellipse.

The right hand side that was chosen for this test is g(ϕ, t) = t2. In Figure 5.16

we show the approximated solution to this problem at the time step t = 1. This

solution was calculated with 16 elements in time and space. For this problem the

exact solution and boundary �ux are not known. To calculate the convergence, we

use the last calculated value as an approximation to the exact solution.
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Figure 5.16: The approximated solution on a star-shaped domain at the time-step
t = 1
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Figure 5.17: Convergence of the boundary �ux in the energy norm squared for the
right hand side of g(x, t) = t2, on a star-shaped domain.

We used the optimal scaling σ = 6
5 for this test. For that scaling, the expected

convergence rate for the squares of the energy norm is 15
11 . In Figure 5.17 we plot

the convergence of the squares of the energy norm for the problem. We see that the

calculated convergence rate is close to the predicted rate for this test.
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Chapter 6

Sparse Grids

This chapter introduces sparse grids. We de�ne their structure and summarise their

approximation properties. Two types of sparse grid index sets will be studied, the

standard sparse grid index set and an optimised sparse grid index set.

Sparse grids (see e.g. [54], [3], [9]) have been applied successfully to a variety of

di�erent problems, such as quantum mechanics [22], high- dimensional quadrature

[25] or elliptic partial di�erential equations [27].

The approximation properties of standard (Smolyak) sparse grids for the BEM for-

mulation of the heat equation will be summarised in Section 6.2.1. Further, we show

new results obtained for the approximation of the optimised sparse grids applied

to the heat equation in Section 6.2.2. These results are useful as they allow more

general choices of polynomial degree for the basis functions.

We also explain the combination technique, which gives a faster algorithm for sparse

grid methods (see [33], [22], or [26]) in Section 6.3. Finally, we give numerical results

for these methods in Section 6.4.

6.1 Construction of Sparse Grid Spaces

Essentially the idea behind sparse grid methods is truncating a tensor-product ex-

pansion of a one-dimensional multilevel basis . The main advantage to using sparse

Galerkin discretisations is that they yield a mild dependence on the dimension. More

precisely, sparse grid methods scale in dimension with O(N(logN)d−1), while the full

tensor product scales with O(Nd), where N is the number of degrees of freedom.

We use sparse grids to improve the cardinality of the tensor product in space-time.
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These have a natural tensor product structure between space and time which makes

such a discretisation easy. In general the spatial dimensions do not have a tensor

product structure, so applying sparse grids there as well is more di�cult.

The �rst step in de�ning sparse grid structures is the de�nition of one-dimensional

multilevel decompositions. They can then be combined to form sparse grid spaces.

Let X xL be the discrete space in the spatial dimensions and let X tL be the discrete

space in time. Assume there exists a multilevel decomposition of these spaces

X xL =Wx
0 ⊕ · · · ⊕Wx

L,

X tL =Wt
0 ⊕ · · · ⊕Wt

L.

A variety of di�erent bases can be used to obtain the required multilevel decom-

position. We will mainly use the wavelet bases described in Chapter 3. Another

commonly used basis is the piecewise linear spline basis [27].

Figure 6.1 shows the one-dimensional multilevel decomposition given by the Haar

wavelet basis. One can easily see the hierarchial structure of the subspaces, this

structure is also present for other multilevel decompositions.

The full tensor product space from Chapter 4 can easily be rewritten using the above

multilevel decompositions.

X xL ⊗X tL =
(
⊕Li=0Wx

i

)
⊗
(
⊕Lj=0Wt

j

)
=

∑
max{i,j}≤L

Wx
i ⊗Wt

j .

The sparse grid method relies on cutting o� the above sum in a way that balances the

accuracy of the approximation space and the cardinality of each complement space.

When approximating a smooth function the spaces with a large number of degrees

of freedom in both time and space are not the most important ones. Instead spaces

which are re�ned heavily in only one of the dimensions are needed. In particular,

computationally expensive spaces such as Wx
L⊗Wt

L with a dimension of 22L are not

necessary to decrease the error.

The general form of a sparse grid space in two dimensions is

X̂L :=
⊗

(`x,`t)∈IL

Wx
`x ⊗W

t
`t ⊂ X = H−

1
2
,− 1

4 (Σ)

where IL is an index set. In the following sections we discuss two di�erent choices
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Figure 6.1: The multilevel one-dimensional Haar wavelet basis on 3 levels. The dots
are at the center of the basis function they represent. The black dots represent basis
functions on that level. The un�lled dots represent the location of basis functions
on previous levels. On the right the tree structure of this multilevel decomposition
is shown.

for these index sets. In Figure 6.2 we show how the space is set up for a standard

sparse grid index set (see e.g. [28]).

De�nition 6.1.1. The standard anisotropic sparse grid index set is de�ned as follows

ÎσL = {(`x, `t) : `t/σ + `xσ ≤ L} ,

where σ is a free variable. In this case we write XL = X σL .

In Figure 6.3 we plot this index set for the choices σ = 1 and σ =
√

2.

In the following section on the error anlysis the optimal choice for the free variable

σ will be clari�ed. The choice depends on the spatial dimension d.

We remember that the L2-orthogonal projection from a given approximation space
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I = {lx + lt ≤ 2}
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Figure 6.2: The standard sparse grid index set on the left and to the right the
corresponding basis functions. The basis functions are represented by markers at
the center of their support.

X (De�nition 5.1.1) is given by

ΠX : L2(Σ)→ X .

Independentally of the choice of approximation space we can make the following an

Aubin-Nitsche argument. Let us assume the solution ψ ∈ L2(Σ).

‖ψ −ΠXψ‖
H−

1
2 ,−

1
4 (Σ)

= sup

ξ∈H
1
2 ,

1
4 (Σ)

〈ψ −ΠXψ, ξ〉
‖ξ‖

H
1
2 ,

1
4 (Σ)

= sup

ξ∈H
1
2 ,

1
4 (Σ)

〈ψ −ΠXψ, ξ −ΠX ξ〉
‖ξ‖

H
1
2 ,

1
4 (Σ)

Then we can estimate

‖ψ −ΠXψ‖
H−

1
2 ,−

1
4 (Σ)
≤ ‖ψ −ΠXψ‖L2(Σ) sup

ξ∈H
1
2 ,

1
4 (Σ)

‖ξ −ΠX ξ‖L2(Σ)

‖ξ‖
H

1
2 ,

1
4 (Σ)

≤ ‖ψ‖Hsx,st
mix

(Σ)

‖ψ −ΠXψ‖L2(Σ)

‖ψ‖Hsx,st
mix

(Σ)︸ ︷︷ ︸ sup
ξ∈‖ψ‖

H
1
2 ,

1
4 (Σ)

‖ξ −ΠX ξ‖L2(Σ)

‖ξ‖
H

1
2 ,

1
4 (Σ)︸ ︷︷ ︸

small for small for full tensor

standard product grids

sparse grids

for any approximation space X .

This argument leads to the idea of �nding a compromise between the full tensor
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`t

`x

`t

`x

lt

lx

Figure 6.3: Index sets for the full tensor product discretisation and for the sparse
tensor products with σ = 1 and σ =

√
2 respectively, as well as the optimised sparse

grid index set for T = 1
2 , 0,−

1
4 ,−2.

product discretisation and the sparse grid discretisation. The optimised sparse grid

space is such a space for certain parameters.

The optimised sparse grid index sets were �rst introduced in [31]. They give optimal

results for the sparse grid convergence in Sobolev norms of the spaces Hs(Ω), s ∈ R.
We use these index sets to discretise the anisotropic Sobolev spaces H−

1
2
,− 1

4 (Σ).

Due to the anisotropy in the Sobolev space it is bene�cial to also introduce an

anisotropy in the index set. Care has to be taken when comparing to [31], where this

anisotropy is not present in the de�nition.

De�nition 6.1.2. The optimised sparse grid index set is de�ned as follows

JTL = {(lx, lt) : lx + lt/2− T max{lx, lt/2} ≤ (1− T )L} .

where T ∈ [−∞, 1) is a free variable. In this case we write XL = X TL .

These index sets allow more �exibility through the parameter T . The index set for

T = 0 corresponds to the standard sparse grids and T = −∞ corresponds to full

tensor product spaces.

The index set is plotted in Figure 6.3 for di�erent values of T . One can see that as

the T gets smaller the index set gets larger, eventually approaching the full tensor

product space.
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6.2 Error Analysis

In this section we give an error analysis for the discretisation of the heat equation

using sparse grid spaces. First we give an error analysis for the standard sparse grid

spaces following the proofs in [12]. Then we give some new results for the error

anlysis for optimised sparse grid spaces.

To apply these methods we �rst reiterate the discrete formulation of the heat equa-

tion.

Given XL ⊂ X := H−
1
2
,− 1

4 (Σ). Find ψL ∈ XL such that

Indirect Method: 〈ηL, V ψL〉 = 〈ηL, (
1

2
I +K)g〉 ∀ηL ∈ XL,

Direct Method: 〈ηL, V ψL〉 = 〈ηL, g〉 ∀ηL ∈ XL.
(6.1)

We showed in Chapter 2.2 that the single layer operator V is coercive. This means

that we immediately get a best approximation property for the discrete spaces from

the classical Lemma of Céa. We will use this property in both sections.

6.2.1 Error Analysis for Standard Sparse Grids

In this section we �nd and prove error estimates for the standard sparse grid spaces.

This section follows [12] closely. This proofs are given for completeness.

The error estimate relies mainly on an Aubin-Nitsche argument for the L2-orthogonal

projection.

De�nition 6.2.1. We denote by

ΠXσL : L2(Σ)→ X σL

the L2-orthogonal projection onto the discrete space X σL .

The main result of this section is given below.

Theorem 6.2.2. Suppose ψ ∈ H̃(d−1)µ,µ
mix (Σ) for µ, px, pt satisfying

µ =
px + 1

d− 1
, and pt + 1 ≥ µ. (6.2)
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Then the error of the sparse tensor Galerkin approximation ψL ∈ X σL , with σ =
√
d− 1 is

‖ψ − ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ cN−λL (log(NL))µ+ 1

2 ‖ψ‖
H

(d−1)µ,µ
mix

(Σ)
, (6.3)

where NL is the number of degrees of freedom and λ = µ+ 1
2(d+1) .

Proof. Due to coercivity of the single-layer operator we can estimate the Galerkin

error by

‖psi− ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ c‖ψ −ΠXσLψ‖H− 1

2 ,−
1
4 (Σ)

.

Further, let us assume that ψ ∈ L2(Σ). Then, we can use an Aubin-Nitsche argument

to get the following estimate

‖ψ −ΠXσLψ‖H− 1
2 ,−

1
4 (Σ)

= sup

ξ∈H
1
2 ,

1
4 (Σ)

〈ψ −ΠXσLψ, ξ〉
‖ξ‖

H
1
2 ,

1
4 (Σ)

= sup

ξ∈H
1
2 ,

1
4 (Σ)

〈ψ −ΠXσLψ, ξ −ΠXσL ξ〉
‖ξ‖

H
1
2 ,

1
4 (Σ)

≤ ‖ψ −ΠXσLψ‖L2(Σ) sup

ξ∈H
1
2 ,

1
4 (Σ)

‖ξ −ΠXσL ξ‖L2(Σ)

‖ξ‖
H

1
2 ,

1
4 (Σ)

(6.4)

The above result holds for all discrete spaces XL. In order to show the desired

convergence results we use some well-known properties of sparse grid spaces. More

precisely, we use Corollary 4.5 from [28]. It states that for 0 < r < px + 1 and

0 < s < pt + 1

‖ξ −ΠXσL ξ‖L2(Σ) = inf
ξL∈XσL

‖ξ − ξL‖L2(Σ) ≤ cN−αL (logNL)β‖ξ‖Hr,s
mix

(Σ), (6.5)

with a convergence rate of α = min{r,sσ2}
max{d−1,σ2} and with some β ≥ 0, that will be

speci�ed later.

Our goal is to choose the free variable σ such that the convergence rate α is as large

as possible. In our setting we have s = µ and r = (d − 1)µ. This means that the

convergence rate is

α =
min{µ(d− 1), µσ2}

max{d− 1, σ2}
,

which attains its maximum of αmax = µ at σ2 = d− 1.
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We remember that Hk,k/2(Σ) ⊂ H(d−1)µ,µ
mix (Σ) for k ≥ (d+ 1)µ. This gives

‖ξ −ΠXσL ξ‖L2(Σ) ≤ cN−αL (logNL)β‖ξ‖
H
µ,µ(d−1)
mix

(Σ)
≤ cN−αL (logNL)β‖ξ‖Hk,k/2(Σ).

Setting α = 1
2(d+1) and k = 1

2 by [28] we get

sup

ξ∈H
1
2 ,

1
4 (Σ)

‖ξ −ΠXσL ξ‖L2(Σ)

‖ξ‖
H

1
2 ,

1
4 (Σ)

≤ cN
− 1

2(d+1)

L (logNL)
1

2(d+1)
+ 1

2 .

Further, using (6.5) we can estimate

‖ψ −ΠXσLψ‖L2(Σ) ≤ cN
−µ
L (logNL)µ+ 1

2 ‖ψ‖
H

(d−1µ,µ)
mix

(Σ)
.

Combining these two results using (6.4) we get as desired

‖ψ −ΠXσLψ‖H− 1
2 ,−

1
4 (Σ)
≤ cN

−µ− 1
2(d+1)

L (logNL)
1

2(d+1)
+µ+1 ‖ψ‖

H
(d−1)µ,µ
mix

(Σ)
.

Remark 6.2.3. In the case d = 2 and by choosing σ = 1 we get

‖ψ − ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ cN−px−

7
6

L (log(NL))px+ 3
2 ‖ψ‖

Hpx+1,px+1
mix

(Σ)
, (6.6)

where px ≤ pt.

Remark 6.2.4. In the case d = 3 and by choosing σ =
√

2 we get

‖ψ − ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ cN−

px
2
− 5

8
L (log(NL))

px
2

+1 ‖ψ‖
H

2(px+1),px+1
mix

(Σ)
, (6.7)

where px ≤ 2pt + 1.

Corollary 6.2.5. Suppose g ∈ H̃k, k
2 (Σ) and µ, λ, px, pt satisfy the requirements of

Theorem 6.2.2 and

k =
d+ 1

d− 1
(px + 1) + 1.

Then the error of the sparse tensor Galerkin solution ψ ∈ X
√
d−1

L has the bounds

‖ψ − ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ cN−λL (logNL)λ+1 ‖g‖

Hk, k2 (Σ)
.

Proof. See Corollary 4.8 in [12]. The proof uses the embedding H
(d+1)µ,

(d+1)µ
2

mix (Σ) ⊂
H(d−1)µ,µ(Σ) and the fact that the single layer operator V is an isomorphism in the
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appropriate anisotropic Sobolev spaces.

The convergence rates for di�erent dimensions and choices of polynomial degrees are

summarised in Table 6.1 for d = 2 and in Table 6.2 for d = 3. The convergence

rates given for full tensor products are improved from [12] using the results from

Section 5. The regularity refers to the required regularity on the right hand side for

these methods, i.e. in Hk, k
2 (Σ).

The table shows that in discretisations with low polynomial degree the sparse grids

yield higher rates than the full tensor products. However, they require slightly higher

regularity assumptions on the data. They also have restrictions on the choice of

polnomial degrees in time and space due to (6.2) in Theorem 6.2.2.

In the case we are most interested in: piecewise constant basis functions, i.e. px =

pt = 0 and d = 2, the convergence rate in the energy norm using these sparse grids

is almost twice as high as that of full tensor products. This large improvement can

be seen in the numerical tests of these methods given in Section 6.4.

For d = 3 the improvements to the convergence rates γ in the energy norm using

sparse grids are not quite as large as in d = 2. For example, when px = pt = 0 the

improvement is from 15
32 ∼ 0.47 to 5

8 = 0.625.

Tests with px = 2pt + 1 are also given since these give optimal results for the full

tensor products. In d = 3 we see that even in this case the sparse grids outperform

full tensor product grids.

Full tensor product, d = 2

(px, pt) conv. rate γ regularity k σ

(0, 0) 15
22 3 6

5

(1, 0) 5
6 3 2

(1, 1) 45
38 5 10

9

(3, 1) 3
2 5 2

Standard sparse grids, d = 2

(px, pt) conv. γ regularity k

(0, 0) 7
6 4

(1, 0) - -

(1, 1) 13
6 7

(3, 1) - -

Table 6.1: Convergence rates and required regularity assumptions on the right hand
side for full and sparse tensor product discretisation in 2 dimensions.
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Full tensor product, d = 3

(px, pt) conv. rate γ regularity k σ

(0, 0) 15
32 3 6

5

(1, 0) 5
8 3 2

(1, 1) 45
56 5 10

9

(3, 1) 9
8 5 2

Standard sparse grids, d = 3

(px, pt) conv. γ regularity k

(0, 0) 5
8 3

(1, 0) 9
8 5

(1, 1) 9
8 5

(3, 1) 17
8 9

Table 6.2: Convergence rates and required regularity assumptions on the right hand
side for full and sparse tensor product discretisation in 3 dimensions.

6.2.2 Error Analysis for Optimised Sparse Grids

The Aubin-Nitsche argument given earlier led to the idea of �nding a compromise

between standard sparse grid spaces and full tensor product spaces. In this section

we give an error analysis for some such spaces, those based on optimised sparse grid

index sets.

We remember that the index set for the optimised sparse grids are given by

JTL =

{
(lx, lt) : lx +

lt
2
− T max

[
lx,

lt
2

]
≤ (1− T )L

}
.

We will refer to the sparse grid space resulting from this choice of index set as follows.

X TL :=
⊗

(`x,`t)∈JTL

Wx
`x ⊗W

t
`t . (6.8)

Our goal in this section is to �nd convergence estimates in these spaces.

As in Chapter 5 the main ingredient used for the convergence proof are norm equiv-

alences, which can be shown using wavelet bases.

Let ψj,k be a biorthogonal wavelet basis.

Then we recall from Chapter 3 the following norm equivalences. Let

ψ =
∑

(lx,lt)≥0

wl with wlx,lt ∈W x
lx ⊗W

t
lt .
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Then,

‖ψ‖2Hsx,st (Σ) ∼
∑

(lx,lt)≥0

22 max{sxlx,stlt}‖wlx,lt‖2L2(Σ) and

‖ψ‖2
H
sx,st
mix

(Σ)
∼

∑
(lx,lt)≥0

22sxlx+2stlt‖wlx,lt‖2L2(Σ).

More speci�cally for the energy norm and the mix-spaces that we require in the

following estimates, we have

‖ψ‖2
H−

1
2 ,−

1
4 (Σ)
∼

∑
(lx,lt)≥0

2−max{lx,lt/2}‖wlx,lt‖2L2(Σ) and

‖ψ‖2
H
s, s2
mix

(Σ)
∼

∑
(lx,lt)≥0

22slx+slt‖wlx,lt‖2L2(Σ).

Next we combine these two estimates to get an approximation in the energy norm.

We choose the discrete approximation ψL =
∑

(lx,lt)∈JTl
wlx,lt and use the best ap-

proximation property to get

inf
ψL∈XTL

‖ψ − ψL‖2
H−

1
2 ,−

1
4 (Σ)
≤

∑
(lx,lt)/∈JTL

2−max{lx,lt/2}‖wl‖2L2(Σ)

≤ max
(lx,lt)/∈JTL

2−max{lx,lt/2}−(2slx+slt)
∑

(lx,lt)/∈JTL

2(2slx+slt)‖wl‖2L2(Σ)

≤ max
(lx,lt)/∈JTL

2−max{lx,lt/2}−(2slx+slt)‖ψ‖2
H
s,s/2
mix

(Σ)
.

(6.9)

for any −∞ ≤ T ≤ 1.

In order to estimate the convergence we �nd the maximum for (lx, lt) /∈ JTL . The

maximum is attained when the negative exponent m̃ := max{lx, lt/2} + 2slx + slt

attains its minimum. We have not yet chosen T and in the following will choose T
to maximise the convergence rate.

m̃ = min
(lx,lt)/∈JTL

(max{lx, lt/2}+ 2s(lx + lt/2))

= min
(lx,lt)/∈JTL

(
2s(lx + lt/2) + max{lx, lt/2}

)

= min
(lx,lt)/∈JTL

(
2s(lx + lt/2− T max{lx, lt/2}) + (1 + 2sT ) max{lx, lt/2}

)
= 2s(b(1− T )Lc+ 1) + (1 + 2sT ) min

(lx,lt)/∈JTL
max{lx, lt/2}
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The last equation holds since (lx, lt) /∈ JTL , if (lx+lt/2)−T max{lx, lt/2} were smaller
than (1− T )L+ 1 it would by de�nition of the index set lie in JTL .

The function G(lx, lt) := max{lx, lt2 } is monotonically increasing. Thus, by analogous
arguments to those of Lemma 5.3.2 we get

min
(lx,lt)/∈JTL

G(lx, lt/2) = min

{
G(L+ 1, 0), G(0, 2L+ 1), G

(⌊
2

1− T
2− T

L

⌋
+ 1

)}
= min

{
L+ 1,

⌊
2

1− T
2− T

L

⌋
+ 1

}

=

L+ 1, T ≤ 0⌊
21−T

2−T L
⌋

+ 1, 0 ≤ T ≤ 1.

We will handle the two di�erent cases T < 0 and T ≥ 0 seperately. Firstly, if T < 0:

m̃ = 2s [b(1− T )Lc+ 1] + (1 + 2sT )(L+ 1)

≤ 2s((1− T )L+ 1) + (1 + 2sT )(L+ 1)

= (1 + 2s)(L+ 1) + 2sT

On the other hand if T ≥ 0:

m̃ = 2s [b(1− T )Lc+ 1] + (1 + 2sT )

(⌊
2

1− T
2− T

L

⌋
+ 1

)
≤ 2s(1− T )L+ 2s+ (1 + 2sT )

(
2L

1− T
2− T

+ 1

)
= 2(1− T )

[
s+

1

2− T
+

2sT
2− T

]
L+ 2s+ 1 + 2sT

≤ (2s+ 1 + 2sT )

(
2L

1− T
2− T

+ 1

)
Remark 6.2.6. If we choose T = − 1

2s and combine this estimate with the best

approximation estimate from equation (6.9), we get

inf
ψL∈XTL

‖ψ − ψL‖2
H−

1
2 ,−

1
4 (Σ)
≤ c2−(1+2s)L

∑
l=(lx,lt)/∈JTL

2(2slx+slt)‖wl‖2L2(Σ)

≤ c2−(1+2s)L‖ψ‖2
H
s, s2
mix

(Σ)
.

(6.10)

In order to �nd the convergence rates for this choice of index sets we now need to

calculate the cardinality of the optimised sparse grid space X TL in dependence of

spatial dimension d and the choice of T .
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lt

lx

IT ,−L

IT ,+L

Figure 6.4: The two index sets IT ,+L and IT ,−L for T = −2.

Lemma 6.2.7. The dimension of the approximation spaces X TL is

dimX TL ≤ c


2d

1−T
2−T L if 2 < d1−T

2−T

22L if d1−T
2−T < 2 < (d+ 1)1−T

2−T

2(d+1)L 1−T
2−T else.

Proof. The index set corresponding to X TL is

JTL =

{
lx +

lt
2
− T max

{
lx,

lt
2

}
≤ (1− T )L

}
.

In order to calculate the dimension of X TL more easily we will divide this index set

into two parts.

IT ,+L :=

{
lt
2

+ (1− T )lx ≤ (1− T )L

}
∩
{
lx ≥

lt
2

}
and

IT ,−L :=

{
lx +

lt
2

(1− T ) ≤ (1− T )L

}
∩
{
lx ≤

lt
2

}
.

These two index sets are shown in Figure 6.4. Now, the dimension is given as

dimX TL =
∑
l∈ITL

2(d−1)lx+lt =
∑
l∈IT ,+L

2(d−1)lx+lt +
∑

l∈IT ,−L

2(d−1)lx+lt .

We look at the two summands individually.

The index set IT ,+L is simply a triangle, to simplify the sum we will use a transfor-
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mation. The index set IT ,+L has the vertices(
(0, 0), (L, 0),

(1− T
2− T

L,
1− T
2− T

2L
))

.

Using a standard a�ne transformation onto these vertices we can reparameterise the

index set IT ,+L as

(lx, lt) =

(
l̃t +

⌊
l̃x

1− T
2− T

⌋
, 2

⌊
l̃x

1− T
2− T

⌋)
.

where l̃x = 0, ..., L, l̃t = 0, ..., L− l̃x.

Then we get

∑
l∈IT ,+L

2(d−1)lx+lt =

L∑
l̃x=0

L−l̃x∑
l̃t=0

2(d−1)l̃t+(d+1)bl̃x 1−T
2−T c

=
L∑

l̃x=0

2(d+1)bl̃x 1−T
2−T c

L−l̃x∑
lt=0

2(d−1)l̃t

︸ ︷︷ ︸
≤2·2(d−1)(L−l̃x)

≤ 2 · 2(d−1)L
L∑

lx=0

2(d+1)bl̃x 1−T
2−T c−(d−1)l̃x

≤ 2 · 2(d−1)L
L∑

lx=0

2[(d+1) 1−T
2−T −(d−1)]l̃x

since (d+ 1)1−T
2−T − (d− 1) is always positive, we get in total

∑
l∈IT ,+L

2(d−1)lx+lt ≤ c2(d−1)L2(d+1)L 1−T
2−T −(d−1)L = c2(d+1)L 1−T

2−T .

Next we use a similar a�ne transformation on the second index set IT ,−L , which has

the vertices (
(0, 0), (0, 2L),

(1− T
2− T

L,
1− T
2− T

2L
))

This gives the following reparameterisation.

(lx, lt) =

(⌊
l̂x

1− T
2− T

⌋
, 2l̂t + 2

⌊
l̂x

1− T
2− T

⌋)
.

where l̂x = 0, ..., L, l̂t = 0, ..., L− l̂x.
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For this index set we get:

∑
l∈IT ,−L

2(d−1)lx+lt =
L∑

l̂x=0

L−l̂x∑
l̂t=0

22l̂t+(d+1)bl̂x 1−T
2−T c

=
L∑

l̂x=0

2(d+1)bl̂x 1−T
2−T c

L−l̂x∑
l̂t=0

22l̂t

︸ ︷︷ ︸
≤c22(L−l̂x)

≤ c22L
L∑

l̂x=0

2(d+1)bl̂x 1−T
2−T c−2l̂x ≤ c22L

L∑
l̂x=0

2[(d+1) 1−T
2−T −2]l̂x .

We now split into two cases. In those where (d+1)1−T
2−T −2 is negative the remaining

sum is bounded from above by 1 and we get in total∑
l∈IT ,−L

2(d−1)lx+lt ≤ c22L.

On the other hand if (d+ 1)1−T
2−T − 2 is positive, we estimate

∑
l∈IT ,−L

2(d−1)lx+lt ≤ c2(d+1) 1−T
2−T L.

Now we can add up the two summands to get the estimate for the dimension of the

entire approximation space

dimX TL =
∑
l∈IT ,+L

2(d−1)lx+lt +
∑

l∈IT ,−L

2(d−1)lx+lt

≤ c


2d

1−T
2−T L if 2 < d1−T

2−T

22L if d1−T
2−T < 2 < (d+ 1)1−T

2−T

2(d+1)L 1−T
2−T else.

Remark 6.2.8. We can rewrite this result for d = 2 in a simpler form:

dimX TL ≤ c

22L if T > −1

23L 1−T
2−T else.

We now examine the convergence rates in the energy norm for d = 2 to �nd the
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optimal choice of T for that dimension. The same methodology can be applied to

higher dimensions.

We now give the main result of this section.

Theorem 6.2.9. Let d = 2 and suppose that ψ ∈ Hs,s/2
mix (Σ) with 1 ≤ s ≤ min{px +

1, pt + 1}. Then for all T in the interval [−1, 0) the error of the optimised sparse

tensor Galerkin approximation ψL ∈ X TL is

inf
v∈XTL

‖u− v‖
H−

1
2 ,−

1
4 (Σ)
≤ cN−

(1+2s)
4

L ‖u‖
H
s, s2
mix

(Σ)
.

This gives the highest convergence rate attained under the constraint T < 0.

Further, if T ≥ 0 then the highest convergence rate is reached at T = 2 −
√

3 + 1
2s

and the error is

inf
v∈XTL

‖u− v‖
H−

1
2 ,−

1
4 (Σ)
≤ cN

−(s(1+T )+ 1
2

) 1−T
2−T

L ‖u‖
H
s, s2
mix

(Σ)
.

Proof. Above we have almost �nished showing this result. We combine the calcula-

tion from Lemma 6.2.7 with the best approximation results.

First let 0 > T > −1. Then we get

inf
v∈XTL

‖u− v‖
H−

1
2 ,−

1
4 (Σ)
≤ cN−

(1+2s)(L+1)+2sT
2·2L

L ‖u‖
H
s, s2
mix

(Σ)

≤ cN−
1+2s

4
L ‖u‖

H
s, s2
mix

(Σ)
.

Further, if T < −1,

inf
v∈XTL

‖u− v‖
H−

1
2 ,−

1
4 (Σ)
≤ cN

− (1+2s)(L+1)+2sT
2·3 1−T

2−T L

L ‖u‖
H
s, s2
mix

(Σ)

≤ cN
− 1+2s

6 1−T
2−T

L ‖u‖
H
s, s2
mix

(Σ)
.

In this case the convergence rate is highest when 1−T
2−T is smallest, i.e. when T = −1.

This choice gives

inf
v∈XTL

‖u− v‖
H−

1
2 ,−

1
4 (Σ)
≤ cN−

1+2s
4

L ‖u‖
H
s, s2
mix

(Σ)
,

as desired.
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If T > 0, we have

inf
v∈XTL

‖u− v‖
H−

1
2 ,−

1
4 (Σ)
≤ cN−

(1+2s+2sT )(2L 1−T
2−T +1)

2·2L
L ‖u‖

H
s, s2
mix

(Σ)

≤ cN
− 1

2
(1+2s+2sT ) 1−T

2−T
L ‖u‖

H
s, s2
mix

(Σ)
.

We now �nd the value of T that maximises (1+2s+2sT )1−T
2−T . To �nd the maximum

we derive the expression,

d

dT

[
(1 + 2s+ 2sT )

1− T
2− T

]
= 2s

1− T
2− T

− (1 + 2s+ 2sT )
1

(2− T )2
.

Setting this expression to zero gives us the extrema

2s
1− T
2− T

− (1 + 2s+ 2sT )
1

(2− T )2
= 0⇔ T 2 − 4T + (1− 1

2s
) = 0.

This gives us T = 2 −
√

3 + 1
2s as the value which maximises the expression, as

required.

Remark 6.2.10. If we choose constant polynomial degrees px = 0 and pt = 0 and

T ∈ (0, 1], then the regularity is s = 2 and the convergence estimate is:

inf
ψL∈XTL

‖ψ − ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ N−3/4

L ‖ψ‖
H2,1
mix

(Σ)

Corollary 6.2.11. Suppose that g ∈ H̃s, s
2 (Σ) with s ≥ min{px + 1, pt + 1}. Then

the error of the optimised sparse tensor Galerkin solution ψL ∈ X TL to (6.1) has the

bounds

‖ψ − ψL‖
H−

1
2 ,−

1
4 (Σ)
≤ cN−γL ‖g‖H2s,s(Σ),

with the convergence rate

γ =

−(s(1 + T ) + 1
2)1−T

2−T if T = 2−
√

3 + 1
2s ,

1+2s
4 if T > −1.

Proof. According to Lemma 2.1.11 we have the following embedding

Hr, r
2 (Σ) ⊂ Ha,b(Σ) for r ≥ a+ 2b.
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This implies,

‖ψ‖
Hs, s2 (Σ)

≤ ‖ψ‖H2s,s(Σ).

Further, Theorem 2.2.7 yields that the mapping

V : H̃s, s
2 (Σ)→ H̃s+1, s+1

2 (Σ)

is an isomorphism. This together with Theorem 6.2.9 gives the assertion.

In the Tables 6.3 and 6.4 we compare the convergence rates obtained with the opti-

mised sparse grids to the convergence rates we proved in the previous section for the

standard sparse grids with σ = 1 and σ =
√

2 respectively.

We see that the rates for the optimised sparse grids are lower than those for the

standard sparse grids especially for high polynomial degrees. However, they require

lower regularity assumptions on the right hand side and have no restrictions on the

choice of polynomial degrees.

Further, one can see that in higher dimensions, such as d = 3, the optimised sparse

grids start yielding higher convergence rates for some con�gurations of polynomial

degree.

Note that the choice T = 0 does not lead to the standard sparse tensor product we

are comparing with in d = 2 since σ was chosen to be 1. Allowing the same �exibil-

ity of scaling in time and space for the index set JTL might improve the convergence

results.

Standard sparse grids, d = 2

(px, pt) conv. rate γ reg. r

(0, 0) 7
6 ∼ 1.17 4

(1, 0) - -

(1, 1) 13
6 ∼ 2.17 7

(3, 1) - -

Optimised sparse grids, d = 2

T conv. rate γ reg. r

2−
√

7
2

9
2 −
√

14 ∼ 0.76 2

2−
√

7
2

9
2 −
√

14 2

2−
√

13
2

17
2 − 2

√
13 ∼ 1.28 4

2−
√

13
2

17
2 − 2

√
13 4

Table 6.3: Convergence rates and required regularity assumptions on the right hand
side for standard and optimised sparse and for full tensor product discretisations in
2 dimensions.
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Standard sparse grids, d = 3

(px, pt) conv. rate γ reg. r

(0, 0) 5
8 = 0.625 3

(1, 0) 9
8 = 1.125 5

(1, 1) 9
8 = 1.125 5

(3, 1) 17
8 = 2.125 9

Optimised sparse grids, d = 3

T conv. rate γ reg. r

2−
√

7
2

9
2 −
√

14 ∼ 0.76 2

2−
√

7
2

9
2 −
√

14 2

2−
√

13
2

17
2 − 2

√
13 ∼ 1.28 4

2−
√

13
2

17
2 − 2

√
13 4

Table 6.4: Convergence rates and required regularity assumptions on the right hand
side for standard and optimised sparse and for full tensor product discretisations in
3 dimensions.

6.3 The Sparse Grid Combination Technique

The combination technique for the solution of sparse grid problems was �rst intro-

duced in [33]. The basic idea behind the technique is to �nd a sparse grid approx-

imation using a linear combination of smaller full grid solutions. The advantage of

this is that the necessary full grids are much smaller than the full sparse grid and

can be computed more quickly, while still giving the same accuracy. It also gives

an easier implementation since the need for the solution in a sparse grid space is

replaced with the solution of several full grids. Further, the solution of the systems

corresponding to these full grids can be performed in parallel, see e.g. [26] and [30].

No general proof of convergence for the combination technique exists. However, it

has been shown in [29] that it produces the same order of convergence with the same

complexity as the Galerkin approach in the standard sparse tensor product case for

certain elliptic operators.

The combination technique can also be used for the discretisation with more general

sparse grid spaces, however, there the rates of convergence are not clear.

First we revisit the setting of our speci�c problem. We are working on a tensor

product domain Σ = I × Γ. As before, our discrete spaces in time and space are

X x0 ⊂ X x1 ⊂ ... ⊂ X xlx ⊂ ... ⊂ L
2(Γ) ⊂ H−

1
2 (Γ) and

X t0 ⊂ X t1 ⊂ ... ⊂ X tlt ⊂ ... ⊂ L
2(I) ⊂ H−

1
4 (I).
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We are solving one of the following problems:

Find ϕ ∈ H−
1
2
,− 1

4 (Σ) such that

〈V ϕ, η〉 = 〈g, η〉, for all η ∈ H−
1
2
,− 1

4 (Σ) (Direct method)

or 〈V ϕ, η〉 = 〈(1

2
+K)g, η〉, for all η ∈ H−

1
2
,− 1

4 (Σ) (Indirect method)

Before giving the combination technique we �rst de�ne the following projection.

De�nition 6.3.1. Let Π̂lx,lt be a mapping

Π̂lx,lt : H−
1
2
,− 1

4 (Σ)→ X xlx ⊗X
t
lt ,

which satis�es Galerkin-orthogonality

〈V (ϕ− Π̂lx,ltϕ), v〉 = 0, ∀v ∈ X xlx ⊗X
t
lt .

We refer to this projection as the Galerkin projection.

The Galerkin projection is well-de�ned due to the coercivity of the single-layer op-

erator V .

Then we de�ne the combination technique sparse grid solution ϕL using the Galerkin

projection:

ϕL =

(
L∑
l=0

Π̂l,L−lϕ−
L∑
l=0

Π̂l−1,L−lϕ

)
∈ X σL , σ = 1. (6.11)

This combination of spaces is shown in Figure 6.5. Essentially one adds the spaces

denoted by + and then subtracts the spaces denoted by − on the �gure.

Note that another of the advantages of the combination technique is that we solve

only systems of full tensor products and do not require a multilevel decomposition.

This gives us greater �exibility in the choice of basis functions.

Now we consider all such spaces X xlx ⊗X
t
lt
such that

lx + lt = L− l, l = 0, 1, lx, lt ≥ 0.

We look at the solution in one of the full tensor product spaces X xlx⊗X
t
lt
. The related
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lt

lx

+

+

+

+

+

−

−

−

−

Figure 6.5: The sign contributions of the subspaces used for the combination tech-
nique for standard sparse grids with σ = 1.

Galerkin solution ϕlx,lt is the solution of

Find ϕlx,lt ∈ X xlx ⊗X
t
lt such that

〈V ϕlx,lt , η〉 = 〈g, η〉, for all η ∈ X xlx ⊗X
t
lt (Direct method)

or 〈V ϕlx,lt , η〉 = 〈(1

2
+K)g, η〉, for all η ∈ X xlx ⊗X

t
lt (Indirect method).

Further, let alx,lt be the vector corresponding to the solution ϕlx,lt , i.e.

ϕlx,lt =
∑
k1,k2

ak1,k2bk1,k2(x),

where bk1,k2 are the basis functions of X xlx ⊗X
t
lt
.

Then the summation of two vectors of di�erent sizes is calculated as follows. Let the

vectors u and v have the coe�cients ajx,jt and cjx,jt respectively. Then,

ulx,lt + vkx,kt =
∑

(jx,jt)

(ajx,jt + cjx,jt)bjx,jt(x),

where unknown coe�cients are assumed to be 0.

Now we combine the vector solutions ulx,lt to the problems in X xlx ⊗X
t
lt
according to

equation (6.11), giving us a sparse grid approximation.
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Remark 6.3.2. If we want to use the combination technique for an anisotropic

sparse grid index set, i.e. for a set of the form

ÎσL = {(lx, lt) : σlx + lt/σ ≤ L}.

Then the formula is changed as follows (see [29])

dσ2lxe+ lt = dσLe − l, l = 0, 1.

6.4 Numerical Experiments

In this section we verify the given convergence rates with numerical experiments. We

start with experiments for the standard sparse grid rule. We use the tests described

in more detail in 5.4.

We solve the Dirichlet problem on a circle with radius 1, i.e. we want to �nd

u : Q→ R satisfying:

(∂t −∆)u = 0, in I ×B1(0)

u = 0, at {t = 0} ×B1(0)

γ0u = g, in I × ∂B1(0),

(6.12)

where we choose the right hand side g(ϕ, t) = t2 cos(ϕ). The exact boundary �ux

for this problem is (5.9).

In Figure 6.6 we compare the convergence rates of the square of the energy norm

of the full tensor product discretisation and the standard sparse grid discretisations

with σ = 1 in both. The convergence rate for the full tensor product discretisation,

namely 15
11 , is as expected from Chapter 5. The convergence rates are given in Table

5.2. The expected convergence rate for the square of the energy norm for the standard

sparse grid method is 14
6 . These rates are summarised in Tables 6.1 and 6.2. The

tests show a correspondence to the expected rates.

Tests for the optimised sparse grid index sets are not given here since the index set

only starts diverging from the standard sparse grid index set with σ =
√

2 at L = 8,

which makes it di�cult to con�rm the expected rates.

Lastly, we give some numerical results for the combination technique. The left plot in

Figure 6.7 shows convergence of the energy norm against the total number of degrees
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−15/11
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−14/6
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Figure 6.6: Convergence of the squares of the energy norm for the right hand side
g(ϕ, t) = t2 cos(ϕ) on a circle of radius 1.

of freedom. As expected, the convergence rates are identical to those obtained by

implementing the sparse grid method using a multilevel decomposition. However,

as the right plot in Figure 6.7 shows the combination technique provides a large

improvement in the time taken for the calculation.
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sparse grids combination technique
sparse grids direct implementation
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sparse grids direct implementation

Figure 6.7: Convergence of the relative error in the energy norm squared versus
number of degrees of freedom (left) and time taken in seconds (right) for the standard
sparse grid space with the combination technique and without.
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Chapter 7

Matrix Compression

In this chapter we discuss the compression of the matrix of the single-layer heat op-

erator. In general, the discretisation of boundary integral equations leads to densely

populated matrices. The resulting linear systems cannot be solved in linear time.

One way to regain sparse matrices is to use a wavelet basis, and then remove small

entries with a matrix compression.

First, we give some new results derived for the matrix compression in space using a

piecewise constant wavelet basis. This allows us to reduce the number of non-zero

matrix entries in each time block from O(N2
x) to O(Nx).

Results on the matrix compression have already been derived in [8] for B-spline

wavelets in two dimensions. They have shown that the use of B-spline wavelet basis

functions in time and space allows the compression of the matrix of the single-layer

heat operator. This reduces the number of non-zero matrix entries from O(N2
xN

2
t )

to O(NxNt). These results are summarised in Section 7.4.

These results can not be applied to piecewise constant wavelets due to the low num-

ber of vanishing moments of the Haar wavelet. In the �rst part of this section we

show a matrix compression using a piecewise constant wavelet with three vanishing

moments in time. We use piecewise constant polynomial basis functions in time in-

stead of a wavelet basis de�ned on intervals. In Chapter 4 we showed that we only

need to store O(Nt) time blocks when we are using piecewise constant basis functions

and we only need to invert a symmetric positive de�nite sparse matrix with O(nx)

entries. This means it is not necessary to use wavelet basis functions in time as well.

This chapter concludes with some remarks on implementational issues such as reusing

calculated integrals and calculating the distances between supports of the basis func-
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tions. Finally we give numerical results for the piecewise constant wavelet basis.

7.1 Background and Notation

We discretise the integral operator V by a wavelet basis ψjk in space and piecewise

constant functions in time. The construction of several suitable wavelet bases was

described in Chapter 3.

Let G be the matrix of the single layer heat potential. For ease of notation we denote

the block matrix Gmn corresponding to the m-th and n-th time interval by v, more

precisely

vα,β := (Gmn)α,β =

∫
Γ

∫
Γ
gmn(x− y)bα(x)bβ(y)dsy dsx,

where bα and bβ denote the basis functions in space. Further, we remember that we

denoted the time integrated kernel by gmn.

The discretisation by biorthogonal wavelet bases leads to numerically sparse matrices

v. In the �rst compression step, the matrix entries, for which the distances of the

supports of the corresponding ansatz and test functions are bigger than a certain

cut-o� parameter, are set to zero. Since the resulting matrix is still not sparse, the

second compression step sets some of the matrix entries with overlapping supports

to zero as well.

This has been covered extensively in the case of elliptic equations, see e.g. [34] and

[45]. Here we apply similar arguments to the case of the heat equation.

In the following we prove that the matrix compression does not result in a loss of

accuracy, for a piecewise constant wavelet with three vanishing moments (see Section

3.3.1). In this case the mother wavelet is:

ψ(x) :=



−1
8 x ∈ [−1, 0],

1 x ∈ [0, 1
2 ],

−1 x ∈ [1
2 , 1],

1
8 x ∈ [1, 2],

0 otherwise.



7.1. BACKGROUND AND NOTATION 125

We denoted the parameterisation of the boundary Γ by γ. Thus, we can de�ne the

wavelet basis functions as

ψjk = (ψ̃jk ◦ γ−1)(x), x ∈ Γ,

where ψ̃jk = 2j/2ψ(2jx− k).

Further, we denote the supports of the wavelet basis functions by

Ωj,k := convhull{x ∈ Γ : ψjk(γ
−1(x)) 6= 0}.

7.1.1 Di�erentiation Rules

To prove that the matrix compression does not result in a loss of accuracy, we will

need the following two well-known di�erentiation rules.

Lemma 7.1.1 (Formula of Fáa di Bruno, [21]). Let g be de�ned in a neighborhood

of x and have derivatives of order up to n at x. Further, let f be de�ned in a

neighborhood of g(x) and have derivatives of order up to n at g(x). Then

∂nxf(g(x)) =
∑
In

n!∏n
j=1 kj !

∂ax (f(g(x)))
n∏
j=1

(
∂jxg(x)

j!

)kj
,

with a =
∑n

j=1 kj and In := {k1 + 2k2 + ...+ nkn = n}.

Corollary 7.1.2. Applying this rule in the case ∂kxg(x) = 0, for k > 2 gives

∂nxf(g(x)) =
∑

k1+2k2=n

n!

k1!k2!
∂k1+k2
x (f(g(x))) (∂xg(x))k1

(
∂2
xg(x)

2

)k2

.

Lemma 7.1.3 (Leibniz Rule, [1]). Let f and g have derivatives of order up to n.

Then their product f · g also has derivatives of order up to n and its n-th derivative

is given by

∂nx (f(x)g(x)) =

n∑
k=0

(
n

k

)
∂kxf(x)∂n−kx g(x).

Corollary 7.1.4. Applying this rule in the case ∂kxg(x) = 0, for k > 1 gives

∂nx (f(x)g(x)) =

n∑
k=0

(
n

k

)
∂kxf(x) ∂n−kx g(x)︸ ︷︷ ︸

=0, for k<n−1

= ∂nx (f(x))g(x) + n∂n−1
x (f(x))∂x(g(x)).
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We will also need an expression for derivatives of the exponential integral function

E1(x).

Lemma 7.1.5. For any n ≥ 1, x > 0 there holds

∂nx (E1(x)) = e−xx−nn!(−1)n
n−1∑
k=0

xk

k!
. (7.1)

Proof of Lemma 7.1.5. By de�nition of the exponential integral function (see De�-

nition 4.2.2), the �rst derivative is clearly

∂x(E1(x)) = ∂x

(∫ ∞
x

e−tt−1dt

)
= −e−xx−1.

We can now use the Leibniz rule (see Lemma 7.1.3) to �nd the higher derivatives

∂n+1
x (E1(x)) = ∂nx (−e−xx−1) = −

n∑
k=0

(
n

k

)
(∂kxe

−x)(∂n−kx x−1)

= −
n∑
k=0

n!

k!
(−1)ke−x(−1)n−kx−1−(n−k).

Rearranging the terms of the sum gives the required result.

7.2 First compression step

In the �rst matrix compression we set to zero those matrix entries that correspond to

wavelet basis functions with supports that are far apart. We denote this compressed

matrix by vε, its entries are given by

(v(j,k),(j′,k′))
ε =

0, if dist(Ωj,k,Ωj′,k′) > Bj,j′ ,

v(j,k),(j′,k′), else.
(7.2)

where the cut-o� parameter is

Bj,j′ ≥ amax

{
2−j , 2−j

′
, 2

J(2δ+1)−j(4+δ)−j′(4+δ)
5

}
, (7.3)

with a, δ ∈ R, a > 1, 2 < δ < 3 and J denoting the highest level.

Next, we show that by setting these entries to zero we did not lose accuracy or the

stability of the underlying Galerkin scheme. To show this, we need estimates for the

derivatives of the time-integrated kernel. We start by showing the following lemma.
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Lemma 7.2.1. As in equation (4.15) let

fl(x− y) = lE1(al) + al E1(al)− le−al ,

where al = ‖x−y‖2
lht

. Then, there exists a constant cα,β,l > 0 independent of x, y such

that the derivatives of this term ful�ll the following estimates∣∣∣∂αx ∂βy fl(al)∣∣∣ ≤ cα,β,l‖x− y‖−(α+β),

where l ≥ 1, α+ β > 0, x, y ∈ Γ ⊂ Rd and x 6= y.

Proof of Lemma 7.2.1. Due to the symmetry of fl it su�ces to �nd the derivatives

with respect to x. The derivatives with respect to y have the same form.

For ease of notation we set z := x− y in the following.

Combining the formula of Fáa di Bruno (see Lemma 7.1.1) and Lemma 7.1.5, which

gives the derivatives of E1 we get:

∂nx (E1(al)) =
∑

k1+2k2=n

n!

k1!k2!
(−1)k1+k2Fk1+k2(al)(2‖z‖)k1

(
1

lht

)k1+k2

=
∑

k1+2k2=n

bk1,k2Fk1+k2(al)a
k1/2
l ,

(7.4)

where we denote the n-th derivative of E1 by Fn. Thus,

F0(x) := E1(x),

and

Fn(x) := e−xx−n(−1)nn!
n−1∑
k=0

xk

k!
, n ≥ 1. (7.5)

The coe�cients of the sum are given by

bk1,k2 =
n!

k1!k2!
2k1

(
1

lht

)k1+k2−k1/2

.

Next, we �nd derivatives for terms of the form E1(al)al. We use the Leibniz rule (see
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Lemma 7.1.3) and the de�nition of Fn given in (7.5):

∂nx E1(x)x = n∂n−1
x E1(x) + (∂nx E1(x))x

= nFn−1(x) + xFn(x).

For n ≥ 2 this expression can be simpli�ed as follows.

xFn(x) + nFn−1(x)

= e−xx−n(−1)nn!

n−1∑
k=0

(
xk+1

k!

)
+ e−xx−n+1(−1)n−1(n− 1)!

n−2∑
k=0

(
xk

k!

)

= e−xx−n(−1)nn!

(
n−1∑
k=0

xk+1

k!
−
n−2∑
k=0

xk

k!

)
︸ ︷︷ ︸

=
xn

(n− 1)!

= e−x(−1)nn.

Taken together with the formula of Fáa di Bruno this gives (for n ≥ 2)

∂nx (E1(al)al) =
∑

k1+2k2=n

bk1,k2

(
e−al(−1)k1+k2(k1 + k2)

)
a
k1/2
l . (7.6)

Lastly, we have terms of the form e−al . These terms are easy to derive using the

formula of Fáa di Bruno:

∂nxe
−al =

∑
k1+2k2=n

n!

k1!k2!
(2‖z‖)k1

(
1

lht

)k1+k2

(−1)k1+k2e−al

=
∑

k1+2k2=n

bk1,k2a
k1/2
l (−1)k1+k2e−al .

(7.7)

Now we can add up the three terms (7.4), (7.6) and (7.7) to �nd an expression for

the derivatives of fl(al) .

∂nxfl(al) =
∑

k1+2k2=n

bk1,k2

(
lF|k|(al) + (−1)|k|e−al(|k| − l)

)
a
k1/2
l , n ≥ 2,

where |k| = k1 + k2.
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Reordering these terms gives

∂nxfl(al) =
∑

k1+2k2=n

b̃k1,k2a
−n/2
l

(
|k|!e−al l

|k|−1∑
i=0

ail
i!

+ e−ala
|k|
l (|k| − l)

)
, (7.8)

where b̃k1,k2 = (−1)k1+k2bk1,k2 .

We note two inequalities that hold for all x > 0 and for all n ≥ 1

e−x
n−1∑
k=0

xk

k!
≤ 1,

and

e−xxn ≤
(n
e

)n
.

Taking the two inequalities above together and inserting them into (7.8) gives us the

following estimate for n ≥ 2.

∂nxfl(al) ≤
∑

k1+2k2=n

b̃k1,k2a
−n/2
l

(
l(k1 + k2)! +

(
k1 + k2

e

)k1+k2

(k1 + k2 − l)
)
.

Now we estimate the absolute value of this sum for n ≥ 2:

|∂nxfl(al)| ≤ cn,0,l|al|−n/2,

where

cn,0,l =

∣∣∣∣∣∣
∑

k1+2k2=n

b̃k1,k2

(
l(k1 + k2)! +

(
k1 + k2

e

)k1+k2

(k1 + k2 − l)
)∣∣∣∣∣∣ .

The remaining case to be covered is n = 1. Deriving fl once gives

∂xfl(al) = (∂xal)(−e−ala−1
l + E1(al)− e−al + e−al)

=
2√
lht

a
1/2
l (E1(al)− e−ala−1

l ).

We can estimate the absolute value of this derivative as follows

|∂xfl(al)| ≤ |al|−1/2b1
∣∣E1(al)al − e−al

∣∣︸ ︷︷ ︸
≤2

≤ c0,0,l‖z‖−1,
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where the constants are given by c0,0,l = 4
√
lht.

Corollary 7.2.2. The time integrated kernel gm,m−l(x − y) ful�lls the following

estimate ∣∣∣∂αx ∂βy gm,m−l(x− y)
∣∣∣ ≤ cα,β,l‖x− y‖−(α+β),

where α+ β > 0, x, y ∈ Γ ⊂ Rd and x 6= y.

Proof of Corollary 7.2.2. According to equation (4.14) the time integrated kernel can

be written as follows

gm,m(x) = ht(4π)−d/2f1(x),

gm,m−1(x) = ht(4π)−d/2(−2f1(x) + f2(x)),

gm,m−l(x) = ht(4π)−d/2(fl−1(x) + fl+1(x)− 2fl(x)), l > 1.

Then, combining the Lemma 7.2.1 and the triangle inequality, the required estimate

follows immediately.

We now use the above lemma to show that the matrix entries, that are set to zero

during the �rst matrix compression, are su�ciently small.

Lemma 7.2.3. Let dist(Ωj,k,Ωj′,k′) > 0. Then, there exists a constant cl > 0

depending only on l, such that the coe�cients of v ful�ll

∣∣v(j,k),(j′,k′)

∣∣ =
∣∣〈V ψjkχm, ψj′k′χn〉∣∣ ≤ cl2− 7

2
(j+j′) dist(Ωj,k,Ωj′,k′)

−6,

where χm were the piecewise constant basis functions used in time.

Proof. The entries of the matrix v are given by

v(j,k),(j′,k′) =

∫
Ωj,k

∫
Ωj′,k′

gmn(x− y)ψjk(x)ψj′k′(y)dydx, (7.9)

where ψjk are the wavelet basis functions and Ωj,k gives their support.

Let x ∈ Ωj,k = supp(ψjk) be �xed. Then, we can approximate the function

y 7→ gmn(x− y),

by a Taylor series (see e.g. Chapter 25, [1]). We cut o� this Taylor series after the

second term, giving

gmn(x− y) =
∑
α≤2

cα(y0, x)(y − y0)α +R(y, y0, x), (7.10)
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where R is the remainder. We will write this remainder in its integral form for

convenience

R(y, y0, x) = c(x)(y − y0)3

∫ 1

0
(1−m)2∂3

ygmn(x− ỹm)dm,

where we write ỹm = y0 +m(y − y0).

The basis functions ψjk have three vanishing moments. This means that∫
Ωj′,k′

ψj′k′(y)(p ◦ γ−1)(y) = 0,

for all polynomials p of degree less than three. As such, if we insert (7.10) into

equation (7.9), all polynomials of degree less than three vanish. More precisely, the

terms ∑
α≤2

cα(y0, x)(y − y0)α

vanish and we are left with the integral of the remainder R.

We still have a remaining dependence on x. To remove it we form a Taylor series

with regard to x around the point x0 ∈ Ωj,k. Let y ∈ supp(ψj′k′) be �xed. Then the

Taylor-series of order two of the function

x 7→ R(y, y0, x)

around x0 is given by

R(y, y0, x) =
∑
β≤2

cβ(y, x0)(x− x0)β +R1(y, y0, x, x0). (7.11)

Here R1 denotes the remainder of the second Taylor series.

We insert (7.11) into equation (7.9) and since ψjk(x) have three vanishing moments,

the terms ∑
β≤2

cβ(y, x0)(x− x0)β

vanish from the integral and we are left with the remainder

R1(y, y0, x, x0) = c(x− x0)3

∫ 1

0
(1−m)2∂3

xR(y, y0, x̃m, x0)dm,

where x̃m = x0 +m(x− x0).
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Next, we estimate the absolute value of R1, the remainder of the second Taylor

polynomial. This gives

|R1(y, y0, x, x0)| ≤ c‖x− x0‖3
∣∣∣∣∫ 1

0
(1−m)2∂3

xR(y, y0, x̃m, x0)dm

∣∣∣∣
≤ c‖x− x0‖3‖y − y0‖3

∣∣∣ ∫ 1

0

∫ 1

0
(1−m1)2(1−m2)2∂3

x∂
3
ygmn(x̃m1 − ỹm2)dm1dm2

∣∣∣.
Since we assumed dist(Ωj,k,Ωj′,k′) > 0, we have x̃m1 6= ỹm2 . Consequently by

Corollary 7.2.2, gmn(x̃m1 − ỹm2) is bounded. This means that we can estimate the

integral as follows,

∣∣∣ ∫ 1

0

∫ 1

0
(1−m1)2(1−m2)2∂3

x∂
3
ygmn(x̃m1 − ỹm2)dm1dm2

∣∣∣
≤ sup

x∈Ωj,k
y∈Ωj′,k′

∣∣∂3
x∂

3
ygmn(x− y)

∣∣ · ∣∣∣∣∫ 1

0

∫ 1

0
(1−m1)2(1−m2)2dm1dm2

∣∣∣∣︸ ︷︷ ︸
=

1

9

.

Next, we use Corollary 7.2.2 to estimate the derivatives of the time-integrated kernel

gmn. Clearly we have that

sup
x∈Ωj,k
y∈Ωj′,k′

∣∣∂3
x∂

3
ygmn(x− y)

∣∣ ≤ c sup
x∈Ωj,k
y∈Ωj′,k′

‖x− y‖−6 = c sup
x∈Ωj,k
y∈Ωj′,k′

dist(x, y)−6

≤ cdist(Ωj,k,Ωj′,k′)
−6.

Now we are ready to estimate the absolute value of the matrix entries:

∣∣v(j,k),(j′,k′)

∣∣ =

∣∣∣∣∣
∫

Ωj,k

∫
Ωj′,k′

gmn(x− y)ψjk(x)ψj′k′(y)dydx

∣∣∣∣∣
≤ cdist(Ωj,k,Ωj′,k′)

−6

∣∣∣∣∣
∫

Ωj,k

∫
Ωj′,k′

‖x− x0‖3‖y − y0‖3ψjk(x)ψj′k′(y)dydx

∣∣∣∣∣
We showed in Section 3.3.1 that the supports of the wavelet basis functions have

length 3 · 2−j . It folllows, that the distance between x and x0 can be at most 3 · 2−j .
Analogously, the distance between y and y0 is at most 3 · 2−j′ . Thus,

‖x− x0‖3‖y − y0‖3 ≤ c2−3(j+j′).
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It remains to estimate the integrals over the wavelet basis functions

ψjk(x) = 2j/2ψ(2jx− k).

Using their properties given in 3.3.1 we get∣∣∣∣∣
∫

Ωj,k

ψjk(x)dx

∣∣∣∣∣ ≤
∫

Ωj,k

|ψjk(x)|︸ ︷︷ ︸
≤2j/2

dx ≤ 3 · 2j/22−j .

Taken together we have

∣∣v(j,k),(j′,k′)

∣∣ ≤ c2−3(j+j′)2−j/22−j
′/2 dist(Ωj,k,Ωj′,k′)

−6

as required.

Remark 7.2.4. This proof only used the fact that the wavelets have three vanishing

moments, which means that any wavelet with three vanishing moments can be used.

If a wavelet with higher vanishing moments is used, a higher proportion of the matrix

entries are small.

Let R be the matrix containing the error made by the matrix compression. It is

given by

R = (r(j,k),(j′,k′)) = (v(j,k),(j′,k′))− (vε(j,k),(j′,k′)). (7.12)

We remember that the entry vε(j,k),(j′,k′) in the compressed matrix was zero if the dis-

tance between the supports of the corresponding wavelet basis functions was smaller

than a cut-o� parameter Bj,j′ . Next we need to show that the entries of the error

matrix R are su�ciently small. To do so we use the previous lemma, which showed

that the entries set to zero are small.

Let Ĩj be the index set of indices corresponding to the level j. It contains 2j elements.

Lemma 7.2.5. If for the cut-o� parameter we have Bj,j′ ≥ amax{2−j , 2−j′} with
a > 1, the following estimate holds:∑

k∈Ĩj

|r(j,k),(j′,k′)| ≤ c2−
7
2

(j+j′)2jB−5
j,j′ . (7.13)
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Proof. The sum can be written as∑
k∈Ĩj

|r(j,k),(j′,k′)| =
∑

{k∈Ĩj : dist(Ω(j,k),Ω(j′,k′))>Bj,j′}

|v(j,k),(j′,k′)|

Lemma 7.2.3
≤ c2−

7
2

(j+j′)
∑

{k∈Ĩj : dist(Ω(j,k),Ω(j′,k′))>Bj,j′}

dist(Ω(j,k),Ω(j′,k′))
−6

The index set {k ∈ Ĩj : dist(Ω(j,k),Ω(j′,k′)) > Bj,j′} contains at most Nj = 2j

elements. It follows that∑
{k∈Ĩj : dist(Ω(j,k),Ω(j′,k′))>Bj,j′}

[
dist(Ω(j,k),Ω(j′,k′))

]−6 ≤ c2j
∫
|x|≥Bj,j′

|x|−6dx

≤ c2jB−5
j,j′ .

In total this gives the assertion.

Lemma 7.2.6. If the cut-o� parameter Bj,j′is su�ciently large, or more precisely,

if

Bj,j′ ≥ amax

{
2−j , 2−j

′
, 2

J(2δ+1)−j(4+δ)−j′(4+δ)
5

}
with a, δ ∈ R, a > 1 and 2 < δ < 3, we get the following bound on the entries of the

error matrix r.∑
k∈Ĩj

2−j/22−(j+j′)|r(j,k),(j′,k′)| ≤ c2−j
′/2a−72j(δ−1)2j

′(δ−1)2−J(2δ+1).

Proof. Applying Lemma 7.2.5 gives

∑
k∈Ĩj

2−j/22−(j+j′)|r(j,k),(j′,k′)|
Lemma 7.2.5
≤ c2−j/22−(j+j′)2−

7
2

(j+j′)2jB−5
j,j′

≤ c2−4(j+j′)2−j
′/2B−5

j,j′ .

We assume without loss of generality that j ≥ j′. If this is not the case, the roles

can be reversed. For ease of notation we de�ne

η := max

{
2−j , 2−j

′
, 2

J(2δ+1)−j(4+δ)−j′(4+δ)
5

}
We now look at the di�erent values the maximum can attain separately. Under the

assumption j ≥ j′, there are only two cases.
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Case 1: If η = 2
J(2δ+1)−j(4+δ)−j′(4+δ)

5 , we know that Bj,j′ ≥ a2
J(2δ+1)−j(4+δ)−j′(4+δ)

5 .

Then, using the above we get∑
k∈Ĩj

2−j/22−(j+j′)|r(j,k),(j′,k′)| ≤ c2−j
′/2a−52j(δ−1)2j

′(δ−1)2−J(2δ+1),

which gives the assertion.

Case 2: If η = 2−j
′
, we know that Bj,j′ ≥ a2−j

′
. This gives us∑

k∈Ĩj

2−j/22−(j+j′)|r(j,k),(j′,k′)| ≤ 2−4(j+j′)2−j
′/2B−5

j,j′

≤ ca−52−4j2j
′/2

It remains to show that

2−4j2j
′/2 ≤ 2j(δ−1)2j

′(δ−1)2−J(2δ+1),

when J(2δ+1)−j(3+δ)−j′(3+δ)
5 ≥ −j′ and 1 < δ < 2.

Since

J(2δ + 1)− j(3 + δ)− j′(3 + δ) ≥ 5j′

⇔ −J(2δ + 1) + j(δ − 1) + j′(δ − 1) ≤ j′ − 4j

we obtain the assertion.

De�nition 7.2.7. We de�ne the spectral norm of a matrix as follows:

‖A‖ := max
‖x‖2=1

‖Ax‖2. (7.14)

Lemma 7.2.8 (Schur's Lemma, Lemma 6.2.3 [45]). Let (Aij)ij∈I be a matrix and let

I be a countable index set. Then, for every vector u = (ui)i∈I and for an arbitrary

s ∈ R we have

‖Au‖ ≤ c

sup
i∈I

∑
j∈I

2s(i−j)|Aij |

 1
2 (

sup
j∈I

∑
i∈I

2s(j−i)|Aij |

) 1
2

‖u‖.

De�ne the matrices R(j,j′) by

(R(j,j′))k,k′ := 2−(j+j′)|r(j,k),(j′,k′)|. (7.15)
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Lemma 7.2.9. The spectral norm of R(j,j′) is bounded by

‖R(j,j′)‖ ≤ ca−52−J(2δ+1)2j(δ−1)2−j
′(δ−1). (7.16)

Proof. Applying Schur's Lemma with s = 1
2 gives

‖R(j,j′)‖ ≤

 sup
k′∈Ĩj′

∑
k∈Ĩj

2−(j+j′)2−(j′−j)/2|r(j,k),(j′,k′)|

1/2

·

sup
k∈Ĩj

∑
k′∈Ĩj′

2−(j+j′)2−(j−j′)/2|r(j,k),(j′,k′)|


1/2

.

Since (a+ b)2 ≥ 0 we have a
1
2 b

1
2 ≤ a+b

2 . Using this estimate we get

‖R(j,j′)‖ ≤ c
(

sup
k∈Ĩj

∑
k′∈Ĩj′

2−(j+j′)2−(j−j′)/2|r(j,k),(j′,k′)|

+ sup
k′∈Ĩj′

∑
k∈Ĩj

2−(j+j′)2−(j′−j)/2|r(j,k),(j′,k′)|
)

Finally, applying Lemma 7.2.6 gives the assertion:

‖R(j,j′)‖ ≤ ca−52−J(2δ+1)2j(δ−1)2−j
′(δ−1).

It remains to check that vε is su�ciently sparse to allow the solution of the linear

system in linear complexity. The number of non-zero matrix entries is estimated in

what follows.

Theorem 7.2.10 (Theorem 8.2.11, [45]). Here the number of degrees of freedom is

given by NJ = 2J . The compressed matrix vε contains

O
(

(logNJ)bNJ

)
non-zero entries. The constant b > 2 depends on the spatial dimension d and on the

number of vanishing moments of the wavelet and dual wavelet.

Proof. Since the proof depends only on the structure of the wavelet basis, the proof

from [45] can be applied without change.
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Remark 7.2.11. The number of non-zero matrix entries still contains a logarithmic

term, to attain linear complexity O(NJ) we need to remove further matrix entries.

7.3 Second compression step

The �rst compression step does not sparsify the matrix enough to achieve linear

complexity in solving the resulting linear system. In the second step we set to zero

some entries for which the supports of the ansatz and test functions overlap as well.

Then, we show that the number of nonzero entries in the matrix reduces to O(Nj),

where Nj is the number of degrees of freedom, without a loss of accuracy or stability.

We recall, that the scaling functions associated with the piecewise constant wavelet

basis are

φjk = 2j/2φ(2jγ−1(x)− k),

with φ = χ[0,1]. Further, we recall that the piecewise constant basis functions used

for the time discretisation are denoted by χn(t) and that the elements

Ωjk = conv hull {x ∈ Γ : ψjk(γ
−1(x)) 6= 0}.

Lemma 7.3.1. There exists a constant c > 0, such that the following estimate holds

|〈V ψjk′χm, φjkχn〉| ≤ c2−4j
[
dist(Ωj,k′ , γ(suppφjk))

]−3
,

with j0 < j < J .

Proof. To show this result we use a similar technique to that used in Lemma 7.2.3.

Let x ∈ Ωj,k′ and let y ∈ suppφjk. Then, we use a Taylor-series of degree two around

the point x ∈ Ωj,k′ to represent the function x→ gmn(x− y). This gives

gmn(x− y) =
∑
α<3

cα(y, x0)(x− x0)α +R(x, x0, y).

When we insert this representation into the integrals, giving

|〈V ψjk′χm, φjkχn〉| =

∣∣∣∣∣
∫

Ωj,k′

∫
suppφjk

gmn(x− y)ψjk′(x)φjk(y)dydx

∣∣∣∣∣ ,
the terms (x−x0)α, for α < 3 vanish due to the three vanishing moments of ψjk′ . For

ease of notation let x̃m = x0 + m(x − x0). This leaves integrals over the remainder
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R:

|〈V ψjk′χm, φjkχn〉| =

∣∣∣∣∣
∫

Ωj,k′

∫
suppφjk

gmn(x− y)ψjk′(x)φjk(y)dydx

∣∣∣∣∣ .
This can be estimated as follows

|〈V ψjk′χm, φjkχn〉| ≤ c
∫

Ωj,k′

∫
suppφjk

|x− x0|3H(x, y)|ψjk′(x)φjk(y)|dydx,

where

H(x, y) =

∫ 1

0
(1−m)2

∣∣∂3
xgmn(x̃m − y)

∣∣ dm,
which can be estimated as follows

H(x, y) ≤ c sup
x∈γ−1(Ωj,k′ )

y∈supp(φjk)

|∂3
xgmn(x− y)|.

Since we have dist(Ωj,k′ , γ(supp(φjk))) > 0, we can apply Lemma 7.2.1 to the time-

integrated kernel:

sup
x∈γ−1(Ωj,k′∩Γ)

y∈supp(φjk)

|∂3
xgmn(x− y)| ≤ c|x− y|−3

≤ cdist(Ωj,k′ , suppφjk)
−3.

Analogously to the estimates for integrals over the wavelet basis functions in Lemma

7.2.3 we estimate as follows.

|〈V ψjk′χm, φjkχn〉| ≤ c2−3j2−j/22−j/2 dist(Ωj,k′ , suppφjk)
−3

≤ c2−4j dist(Ωj,k′ , suppφjk)
−3.

Corollary 7.3.2. There holds∣∣∣∣∣
∫

Ωj,k′

gmn(x− y)ψjk′(y)dy

∣∣∣∣∣ ≤ c2− 7
2
j dist(x,Ωj,k′)

−3,

for all x in Γ.

Proof. Using the vanishing moments of ψjk′ and Lemma 7.2.1, this lemma can be

shown analogously to Lemma 7.3.1.
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Figure 7.1: A wavelet ψ and its support and singular support.

Next, we de�ne the so-called singular support of a function.

De�nition 7.3.3. The singular support of ψjk is de�ned as the set of points at which

ψjk is not a smooth function. We denote the singular support of ψjk by

ΩS
j,k := sing suppψjk.

Remark 7.3.4. The singular support of the mother wavelet ψ is shown in Figure 7.1.

We see, that the singular support of the wavelet basis functions consists only of 5

distinct points.

In the following proofs we always assume that j ≥ j′.

Lemma 7.3.5. We can estimate the absolute value of the matrix entries as follows

∣∣v(j,k),(j′,k′)

∣∣ ≤ c2−3j2−|j−j
′|/2 dist(Ωj,k,Ω

S
j′,k′)

−2,

with j0 ≤ j ≤ J .

Proof. The matrix entries can be written as

|v(j,k),(j′,k′)| =

∣∣∣∣∣
∫

Ωj,k

∫
Ωj′,k′

gmn(x− y)ψjk(x)ψj′k′(y)dydx

∣∣∣∣∣
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Now we can apply Corollary 7.3.2 to estimate

|v(j,k),(j′,k′)| ≤
∫

Ωj,k

∣∣∣∣∣
∫

Ωj′,k′

gmn(x− y)ψj′k′(y)dy

∣∣∣∣∣︸ ︷︷ ︸
≤c2−

7
2 j
′
dist(x,Ωj′,k′ )

−3

|ψjk(x)|dx

Further, using the estimate |ψjk(x)| ≤ 2j/2 we obtain

|v(j,k),(j′,k′)| ≤ c2−
7
2
j′2j/2

∫
Ωj,k

dist(x,Ωj′,k′)
−3dx.

Let x0 ∈ sing suppψj′k′ , and let x ∈ Ωj,k. Then we can estimate,∫
Ωj,k

dist(x,Ωj′,k′)
−3dx ≤

∫
Ωj,k

‖x− x0‖−3dx

≤ cdist(Ωj,k,Ω
S
j′,k′)

−2,

which gives the assertion.

Having de�ned the singular support it is now possible to give the form of the second

compression matrix (vε)′ as follows

(vε)′(jk),(j′k′) =


vε(jk),(j′k′), if j′ ≤ j and dist(Ω(j,k),Ω

S
(j′,k′)) ≤ B

S
j,j′ ,

vε(jk),(j′k′), if j′ > j and dist(ΩS
(j,k),Ω(j′,k′)) ≤ BS

j,j′ ,

0, else.

where the second cut-o� parameter

BS
j,j′ = a′max

{
2−j , 2−j

′
, 2

J(2δ′+1)−3 max{j,j′}−(j+j′)(δ′+1)
2

}
, (7.17)

with a′, δ′ ∈ R and 2 < δ′ < 3, a′ > 1.

Remark 7.3.6. Lemma 7.3.5 tells us that

∣∣v(j,k),(j′,k′)

∣∣ ≤ c2−3j2−|j−j
′|/2 dist(Ωj,k,Ω

S
j′,k′)

−2.

Consequently, ∣∣∣v(j,k),(j′,k′) − (vε(j,k),(j′,k′))
′
∣∣∣ ≤ c2−3j2−|j−j

′|/2(BS
j,j′)

−2.
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Let the error matrix corresponding to the second compression be given as

r′(j,k),(j′,k′) = v(jk),(j′k′) − (vε)′(jk),(j′k′).

Further, let the block matrix corresponding to the levels j, j′ be denoted by

(R′(j,j′))k,k′ = 2−(j+j′)r′(j,k),(j′,k′).

It remains to show, that the second compression does not reduce the convergence

order.

Lemma 7.3.7. There holds

‖R′(jj′)‖ ≤ c · (a
′)−22−J(2δ′+1)2(j+j′)δ′2j−j

′
,

with a constant c > 0 independent of a′.

Proof. This proof follows the same lines as the proof of Lemma 7.2.9. To show the

result we apply Schur's Lemma and use a1/2b1/2 ≤ a+b
2 , giving

‖R′(jj′)‖ ≤ c
(
sup
k′∈Ij′

∑
k∈Ij

2−(j′−j)/22−(j+j′)|r′(jk),(j′k′)|

+ sup
k∈Ij

∑
k′∈Ij′

2−(j−j′)/22−(j+j′)|r′(jk),(j′k′)|
)

Applying Lemma 7.3.5 to this estimate gives

|r′(jk),(j′k′)| ≤ c2
−3j2−(j−j′)/2(BS

j,j′)
−2.

Now we insert the de�nition of BS
j,j′ into the equation. Since we have restricted

ourselves without loss of generality to the case j ≥ j′ there are two cases to account
for.

Case 1: If BS
j,j′ = 2

J(2δ′+1)−3 max{j,j′}−(j+j′)(δ′+1)
2

In this case we can estimate

|r′(jk),(j′k′)| ≤ c(a
′)−22−(j−j′)/22−J(2δ′+1)2(j+j′)(δ′+1).

Case 2: If BS
j,j′ = 2−j

′
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In this case we obtain

|r′(jk),(j′k′)| ≤ c(a
′)−22−3j2−(j−j′)/222j′ .

Since

2−3j2−(j−j′)/222j′ ≤ 2−(j−j′)/22−J(2δ′+1)2(j+j′)(δ′+1),

when 2j′ ≥ J(2δ′+ 1)− 3j − (j + j′)(δ′+ 1) this can be estimated by the same term

as in the �rst case.

Further, we can remove all summands corresponding to zero entries in r′. We call

the index sets with the removed indices Ij ⊂ Ij and Ij
′ ⊂ Ij′ , respectively. Thus,

‖R′(jj′)‖ ≤ c(a
′)−2

(
sup
k′∈Ij′

∑
k∈Ij

2(j+j′)δ′2−J(2δ′+1)

+ sup
k∈Ij

∑
k′∈Ij′

2−(j−j′)2(j+j′)δ′2−J(2δ′+1)
)
.

Using the de�nition of the �rst compression we �nd that Ij contains at most O(2j−j
′
)

non-zero entries and Ij
′
contains at most O(2j

′−j) non-zero entries.

This gives

‖R′(jj′)‖ ≤ c(a
′)−2

(
2(j+j′)δ′2−J(2δ′+1)2j−j

′
+ 2j

′−j2−(j−j′)2(j+j′)δ′2−J(2δ′+1)
)

≤ c(a′)−22(j+j′)δ′2−J(2δ′+1)2j−j
′
.

as asserted.

We would like to show that the convergence rates of the original Galerkin scheme are

preserved for the compressed scheme. This is easily seen using the following version

of Strang's Lemma.

Theorem 7.3.8 (Theorem 6.1, [8]). Let H be a separable Hilbert space with norm

‖ · ‖, and let Hn be a sequence of �nite-dimensional subspaces of H. Let Pn denote

the orthogonal projection onto Hn.

Further, let A be a bijective, continuous operator on H and An an injective sequence

of operators on Hn. Then the error between the exact solution y of the problem

Ay = f
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and the approximated solution yn of

Anyn = Pnf

can be estimated as follows

‖y − yn‖ ≤ c‖y − Pny‖+ ‖PnAyn −Anyn‖.

Remark 7.3.9. After applying this theorem to the error of the compressed scheme

we can estimate the second summand using the estimates derived for R′.

Finally, we have to show that after the second matrix compression we are left with

only O(NJ) matrix entries. This is covered by the following theorem.

Theorem 7.3.10. The matrix (vε)′, de�ned by the two matrix compressions contains

O(NJ), NJ = 2J

non-zero entries.

Proof. Since the proof depends only on the structure of the wavelet basis, the proof

of Theorem 8.2.10 from [45] can be applied without change.

7.4 Wavelets in Time

The wavelet basis suggested in [8] uses the B-spline wavelet forms a basis in space,

denoted by ψXjk and the wavelets on the interval as a basis in time, denoted by ψTjk.

These wavelets have been described in Section 3.3.2 and 3.4 respectively. We give

here the results for the matrix compression using these wavelets.

We denote the matrix of the single layer operator with this basis by w. As before

we denote the matrix sub-block corresponding to the levels j and j′ by wj,j′ .

To de�ne the compressed matrix when wavelets are used in time and space we need

to de�ne the distance between elements. Let λ = (j, k) and λ′ = (j′, k′), then

dist(λ,λ′) = dist {supp ψXj,k, suppψXj′,k′}2 + dist {supp ψTj,k, suppψTj′,k′}.

Then for j, j′ the compressed blocks of the matrix are

wεj,j′ =
(
wελ=(j,k),λ′=(j′,k′)

)
j,k,j′,k′

,
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where

wελ,λ′ =

0, if dist λ,λ′ ≥ δj,j′

wλ,λ′ , else.
(7.18)

Theorem 7.4.1 (Propostion 5.5, [8]). Let the compression parameter δj,j′ > 0, then

# non-zero entries wεj,j′ ≤ c23(j+j′) min{2−3j + 2−3j′ + 2−j−2j′ + 2−j
′−2j

+
√
δj,j′(2

−2j + 2−2j′) + δj,j′(2
−j , 2−j

′
), 1}

Theorem 7.4.2 (Proposition 5.6, [8]). Let the compression parameter δj,j′ > 0, then

‖wj,j′ − wεj,j′‖ ≤ c2−bj2−(b−3)j′δ−bj,j′ max{δ3/2
j,j′ , 2

−3j , 2−3j′},

with b = m̃X + 2m̃T + 3
2 , where m̃

X and m̃T are the number of vanishing moments

of the dual system in space and time respectively.

7.5 Implementation

In this section we discuss some of the issues related to the implementation of wavelet

bases and in particular of the matrix compressions given for piecewise constant

wavelets.

Firstly we ensure that we do not reevaluate the same integrals several times. Then

we discuss a method for calculating the distances between the elements in space as

this is needed for the matrix compression.

7.5.1 Reevaluating Integrals

To compute the matrix of the single layer heat potential one has to compute the

coe�cients

〈V ψjkχm, ψj′k′χn〉. (7.19)

We de�ne coe�cients of the matrix corresponding to the single scale basis φjk are

given by

α(j,k,m),(j′,k′,n) = 〈V φjkχm, φj′k′χn〉.

Our goal is to write the wavelet basis functions ψjk as linear combinations of the

single scale functions φjk . We use this representation to write the matrix entries

unsing only the coe�cients α(j,k,m),(j′,k′,m′) as follows:

〈V ψjkχm, ψj′k′χn〉 =
∑
l

∑
l′

blbl′α(j+1,2k+l,m),(j′+1,2k′+l′,n).
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with coe�cients bl as given in re�nement relation (3.6) in [34].

The formulas require some of the values for α(j,k,m),(j′,k′,n) to be calculated several

times.

To avoid reevaluation of the expensive integrals α(j,k,m),(j′,k′,n) we use a technique

called memoization. A memoize function speeds up a computation by storing the

results of a function call and returning the result when the input occurs again. In

Figure 7.2 we give an implementation of the memoize function, it can be applied to

speed up any function that gets called multiple times with the same input.

def memoize ( f ) :
# The memoized ve r s i on o f f l o o k s up i t s
# func t i on arguments in t h i s d i c t i ona r y :
class memodict ( dict ) :

# Only when the va lue f o r t h i s argument
# was not found , the f o l l ow i n g func t i on
# i s c a l l e d :
def __missing__( s e l f , key ) :

# We c a l c u l a t e the va lue f ( key ) ,
# s t o r e i t , and re turn i t .
r e t = s e l f [ key ] = f ( key )
return r e t

return memodict ( ) . __getitem__

Figure 7.2: A memoize decorator function (in Python).

7.5.2 Calculating distances between elements

To calculate the compressed matrix we need to calculate the distance between sup-

ports and singular supports of the wavelet basis functions. For the �rst compression

it is su�cient to calculate the distances between supports. However, for the second

compression we also need to evaluate the distance between the singular supports of

wavelet functions.

In the case of the circle the distances between the elements can be calculated directly.

More precisely, if the mesh is su�ciently re�ned the distance between the support of

ψjk and ψj′k′ is proportional to the distance between the supports of the basis after

projection to the (periodic) unit interval. Distances on the unit interval are easy to

calculate.

In the more general case of a smooth closed curve, there is no simple formula that
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Ωj,k

Ωj′,k′

Γ

x1

r1

x2

r1

ηj,k,j′,k′

Figure 7.3: Calculating the distance between the supports of two basis functions ψjk
and ψj′k′ .

can be e�ciently evaluated. We use the following method to estimate the distances

instead.

We denote the estimate for the distance between two elements Ωj,k = supp ψjk and

Ωj′,k′ = supp ψj′k′ by ηj,k,j′,k′ . The calculation of the distance is shown in Figure

7.3.

We �nd the smallest circles Br1(x1) and Br2(x2) such that x1, x2 ∈ Γ and such that

they contain the elements Ωjk and Ωj′k′ respectively. Then we take the distance

between the circles ηj,k,j′,k′ . This method will underestimate the distance between

the two elements. Particularly, when there are few elements in the spatial mesh, this

means that the matrix will not be sparsi�ed as strongly as it should be.

7.6 Numerical Experiments

In this section we give some numerical experiments using wavelet basis functions in

space and piecewise constant basis functions in time. First we discuss the structure

of the matrix of the compressed and uncompressed wavelet schemes. Then we give

numerical results on the speed-up attained by using a matrix compression and verify

that the compressed scheme does not lead to a loss of accuracy. Finally, we explore

the impact the choice of the cut-o� parameters a, δ and a′, δ′.
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7.6.1 Structure of the Matrix
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Figure 7.4: The natural logarithm of the matrix coe�cients of the single layer heat
operator with four time blocks (left), and the non-zero matrix entries after the matrix
compression (right).

The structure of the matrix is shown in in Figure 7.4. The left plot shows the

natural logarithm of the matrix entries. We can see that essentially the matrix

blocks corresponding to one time step have a �nger structure, and all entries not in

the �nger structure are small. The right plot shows the structure of the matrix after

the small entries have been set to zero.

In Figure 7.5 we plot the time-integrated heat kernel for z = x − y. When we

have identical time intervals, i.e. l = 0 the heat kernel becomes more peaked and

approaches the δ function. For time intervals which are further apart, i.e. l > 0, the

heat kernel is smaller.

Due to this behavior the block matrices in Figure 7.4 corresponding to larger l values

have smaller matrix entries than the block matrices on the diagonal corresponding

to identical time intervals.

This type of matrix structure implies that di�erent compression rates for di�erent

time steps may be e�ective. In the following, the same compression is used for all

time steps.

7.6.2 Speed Comparisons

In this section we compare the time needed to set up and solve the linear system,

for the compressed and uncompressed case.
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Figure 7.5: Plot of the analytically evaluated time integrals gm,m−l for z ∈ [0, 1] for
di�erent values of l.

Time taken to solve the linear system

jmax compressed matrix no compression

3 0.00037 0.00039
4 0.00131 0.00135
5 0.00643 0.00665
6 0.05680 0.05698
7 0.72420 0.74965
8 10.5130 11.3976

Table 7.1: The time taken in seconds to solve the linear system for the compressed
and uncompressed matrix.

In Table 7.1 we show the time taken in seconds to solve the linear system with matrix

compression and without. The compressed system can be solved faster than the un-

compressed system in all cases. However, the time needed to solve the uncompressed

system is also low. This is probably due to the e�cient solver. When the number of

degrees of freedom is increased we expect the compressed system to be considerably

faster to solve.

Next we look at the time it takes to assemble the matrix, this is shown in Table

7.2. Here we can compare the time taken to assemble the matrix with and without

compression, and also the time it takes to assemble the compressed matrix with the

time saving measures discussed in Section 7.5.1. We see that the memoization is

necessary to ensure the speed-up.
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We see that the matrix compression gives a large improvement to the time taken to

assemble. The memoize function yields a further improvement in time taken. In total

we can quickly assemble much larger systems when using the matrix compression.

jmax compressed matrix compressed matrix no compression
with memoize without memoize with memoize

3 0.37 0.7460 0.3713
4 2.99 4.05 6.6358
5 13.70 15.84 28.3224
6 37.32 55.49 76.0679
7 82.77 187.28 209.0140
8 206.9 886.7 -
9 417.4 3617.9 -

Table 7.2: The time taken in seconds to assemble the matrix for the compressed and
uncompressed matrix.

7.6.3 Complexity and Accuracy

In this section we verify the complexity and accuracy results from the previous sec-

tions.

In Table 7.3 we compare the number of non-zero matrix entries. For ease of compari-

son we plot this data in Figure 7.6. We expect that the after the matrix compression

the number of non-zero matrix entries decreases from O(n2) to O(n). We see that

the numerical experiments verify this.

Number of non-zero matrix entries

jmax N no compression compressed matrix

3 8 64 24
4 16 576 304
5 32 3136 1264
6 64 14400 3984
7 128 61504 11200

Table 7.3: The number of non-zero matrix entries for the compressed and uncom-
pressed wavelet basis.

Lastly, we verify that the matrix compression does not lead to a loss of accuracy. We

use the same problem (5.6) as was used in Chapter 5. As a domain we use a circle

and as a right hand side we use g(ϕ, t) = cos(ϕ)t2. We use the scaling σ = 2, i.e.

ht ∼ h2
x.
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Figure 7.6: The number of non-zero matrix entries for the compressed and uncom-
pressed matrix.

Figure 7.7 shows the convergence in the energy norm. As expected, the convergence

rates are exactly those of Chapter 5. The piecewise constant wavelet basis spans

the same discrete space as the piecewise constant polynomial basis functions used in

that chapter.
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Figure 7.7: Plot of the convergence with the right hand side g(ϕ, t) = cos(ϕ)t2.
Constant basis functions are used in time and piecewise constant wavelets are used
in space.
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7.6.4 Sensitivity to Compression Parameters

In this section we discuss how the constants a, δ and a′, δ′ in the de�nition of the

cut-o� parameters Bj,j′ and B
S
j,j′ given in equations (7.3) and (7.17) a�ect the accu-

racy of the scheme and the number of non-zero matrix entries. A similar comparison

was shown in [34] for the Laplace equation.
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Figure 7.8: The e�ect of varying the parameters a, a′ and δ, δ′ of the compression
on the proportion of non-zero matrix entries (in percentage) to the total number of
matrix entries (top) and on the error of the energy norm (bottom).
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In the bottom of Figure 7.8 we plot the error of the energy norm
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and the number of non-zero matrix entries in dependance of the parameters of the

two matrix compressions. We used a = a′ and δ = δ′ in the plots.

We see that number of non-zero matrix entries is lowest when we choose the param-

eters as small as possible, and the error is smallest when the parameters are chosen

as large as possible. These results are similar to those attained in [34] for the elliptic

case. In total the e�ects of varying the compression parameters is small and a choice

in the middle of the admissable ranges can be made.
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Chapter 8

Conclusions

In this chapter we brie�y summarise the main results of this thesis. Then, we o�er

an outlook on possible directions for future research.

8.1 Summary

We started this thesis with an introduction of wavelets, in particular of biorthogonal

wavelets, and an introduction of the boundary reduction of the non-stationary heat

equation. The �rst two chapters reiterated elementary results on both topics, that

were used in the subsequent chapters.

In Chapter 4 we discussed the Galerkin discretisation of the boundary integral for-

mulation of the heat equation. This chapter contained a comparison between FEM

and BEM. The take-away from this comparison was that BEM are faster in terms

of CPU time when individual point evaluations of the solution are needed in the

domain, or when the boundary �ux itself is required.

In this chapter we also gave analytical formulas for the time integrals, both for the

single- and double-layer heat operators. This meant, that when setting up the ma-

trices corresponding to these operators, we were left with integrals in space, over in-

tegrands with logarithmic singularities. To evaluate these integrals, we gave e�cient

quadrature rules for dealing with integrands with logarithmic singularities. Taken

together, this gave us an e�cient method for numerically evaluating all needed inte-

grals.

Chapter 5 gave an error analysis of the full-tensor product approximation spaces

for the boundary reduced heat equation. In particular, we examined the choice of

scaling between mesh width, in space hx, and in time ht. We found, that when using
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piecewise constant polynomial basis functions in time and space, the scaling ht ∼ h
6
5
x

leads to higher convergence rates in the energy norm. These results are supported

by numerical experiments.

In Chapter 6 we introduced sparse grid discretisations. In [12] theoretical results for

the convergence rates in the energy norm for a standard sparse grid method were

proven. We veri�ed these rates with numerical experiments. Next, we found bounds

for the error in the energy norm for an optimised sparse grid space. These results

show an improvement over the standard sparse grid spaces in three dimensions. How-

ever, in two dimensions it is preferable to use the standard sparse grid index set.

Finally, in Chapter 7 we discussed matrix compression. These can be applied without

loss of accuracy when a wavelet basis with a su�ciently high number of vanishing

moments is used. We use wavelet basis functions only in time, and show that each

matrix block has only O(Nx) non-zero entries, since we already showed in Chapter

4 that we only need to store O(Nt) matrix blocks. We compare this with the results

of [8], in which wavelet basis functions are used in time and space. Both methods

leave in total O(NxNt) non-zero matrix entries. However, our method is easier to

implement and allows for piecewise constant wavelet bases in space.

In total, we have achieved both of our main goals. We have reduced the complexity

to

O(h−(d−1)
x )

using boundary reduction. We have used wavelet matrix compressions to reduce

the matrix to a sparse matrix, and to solve the linear system in linear complexity.

Further, we have also shown methods for increasing the convergence rates in the

energy norm, i.e. sparse grid discretisations and a di�erent scaling for full tensor

product discretisations.

8.2 Future Work

There are some possible extensions to the theory for the optimised sparse grids.

Currently, they do not out-perform standard sparse grids even though they should

be more �exible. This is due to the scaling of the optimised sparse grids being σ = 2.

Allowing more �exibility in the scaling between time and space may lead to higher
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convergence rates. Changing the index set to

JT,σL =

{
(lx, lt) : lx +

lt
σ
− T max{lx, lt/2} ≤ (1− T )L

}
,

should lead to an improvement over the standard sparse grid discretisation.

On the implementational side, there are several numerical experiments that could

produce interesting results. For example, it would be interesting to allow higher or-

der polynomials as basis functions, and to allow higher spatial dimensions, in order

to verify the theoretical results. Further, one might allow more general domains,

such as piecewise smooth domains, i.e. polygons.

Using the improvements to CPU speed, gained from the boundary element imple-

mentation, it may be possible to solve high dimensional versions of the problem to

allow uncertainity in the domain or data. Another possibility would be to modify

the method to allow some forms of non-linearity.
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Appendix A

Solutions to the Heat Equation on

the Circle

In this appendix we describe one method of deriving analytic solutions to the heat

equation on the circle. We use these solutions to verify our numerical results.

We describe the points of the unit circle B1(0) by scaled polar coordinates (r, ϕ)

where the angle ϕ ∈ [0, 1] and the radius r ∈ [0, 1]. For simplicity we assume zero

initial conditions, i.e. that u(·, t = 0) = 0.

We transform to a Dirichlet problem where the inhomogeneous condition appears as

a forcing function.

Let g̃(r, ϕ, t) denote the harmonic extension of the boundary conditions g to the

entire unit disk, i.e.:

∆g̃(r, ϕ, t) = 0 in Ω, t > 0

g̃(r, ϕ, t)|Γ = g(r, ϕ, t) t > 0

Then we set U = u− g̃. U satis�es:

∂tU(r, ϕ, t)−∆U(r, ϕ, t) = −∂tg̃(r, ϕ, t) in Q

U(r, ϕ, 0) = 0 in Ω

U(r, ϕ, t) = 0 in Σ

Now we can apply Duhamel's principle, which states that the solution to this problem

is

U(r, ϕ, t) =

∫ t

0
v(r, ϕ, t, s) ds,
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where v is the solution to

∂tv −∆v = 0 in Q, t > s

v|Γ = 0 t > s

v(r, ϕ, s, s) = −∂tg̃(r, ϕ, s) in Q

(A.1)

The variable s is viewed as a parameter.

Duhamel's principle can be applied to general problems, however, in the case of the

unit disk it is particularly useful since the equation for v can be easily solved using

separation of variables.

The solution v(r, ϕ, t, s) is by separation of variables:

v(r, ϕ, t, s) = R(r, s)H(ϕ, s)T (t, s).

First we solve for t.

∂tT (t, s) = T (t, s)
R(r, s)H(ϕ, s)

∆R(r, s)H(ϕ, s)︸ ︷︷ ︸
independent of t

So we have a solution of the form

T (t, s) = e−λt,

where λ can still be chosen freely. Once we insert this, the remaining problem has

the form of the Sturm-Liouville problem:

λR(r, s)H(ϕ, s) + ∆R(r, s)H(ϕ, s) = 0.

Separating the variables and multiplying by r2/R(r, s)H(ϕ, s) gives

r∂r(r∂rR(r, s))
1

R(r, s)
+ λr2 = −∂2

ϕH(ϕ, s)
1

H(ϕ, s)
= µ 6= µ(r).

In order to keep the required boundary conditions we need:

H(π, s) = H(−π, s) and ∂ϕH(π, s) = ∂ϕH(−π, s).
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So the problem that needs to be solved is

∂2
ϕH + µH = 0.

This problem only has non-trivial solutions for µ = m2 with m ∈ N0.

In this case the solutions to the problem are

H(ϕ, s) = a(s)eimϕ and H(ϕ, s) = a(s)e−imϕ

and any linear combination of these solutions.

Next we look at the solution for R(r, s). The equation to be solved is

r2∂2
rR(r, s) + r∂rR(r, s) + (λr2 −m2)R(r, s) = 0

R(1, s) = 0 and |R(r, s)| <∞.

The boundary conditions for R come from the boundary conditions for v.

We set p =
√
λr and substitute R(r, s) = R(p, s) giving

p2∂2
pR(p, s) + p∂pR(p, s) + (p2 −m2)R(r, s) = 0

R(
√
λ, s) = 0 and |R(r, s)| <∞.

The equation above is Bessels equation. It has two linearly independent solutions

Jm(s) and Ym(s), the Fourier-Bessel functions of �rst and second type respectively.

Jm(s) is bounded at 0, while Ym(s) is not, so it is clear that we use Jm(s) as solutions.

So we have

R(p) = cm(s)Jm(p)

and any linear combination of these as solutions.

To satisfy the Dirichlet boundary conditions of the problem p =
√
λr must be a zero

of Jm at r = 1. It follows that λ = α2
k,m, where αk,m is the k-th zero of the m-th

Fourier-Bessel function.

In total this gives

v(r, ϕ, t, s) =

∞∑
m=−∞

∞∑
k=1

Ak,m(s)Jm(αk,mr)e
−α2

k,mteimϕ. (A.2)
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The boundary conditions of the problem for v give us the necessary information to

determine the coe�cients Ak,m.

We need
∞∑

m=−∞

∞∑
k=1

Ak,m(s)Jm(αk,mr)e
−α2

k,mseimϕ = −∂sg̃(r, ϕ, s).

This gives for the solution of the original problems

u = g̃(r, ϕ, t) +

∫ t

0
v(r, ϕ, t, s)ds

= g̃(r, ϕ, t) +
∞∑

m=−∞

∞∑
k=1

∫ t

0
Ak,m(s)ds Jm(αk,mr)e

imϕe−α
2
k,mt.

(A.3)

Application to g(t) = t2

Since g does not depend on r and ϕ harmonic extension of g is is g itself.

Since −∂tg̃ does not depend on ϕ the dependence on ϕ can be dropped. So all

coe�cients with m 6= 0 are zero.

What remains is

v(r, ϕ, s, s) =
∞∑
k=1

Ak,0(s)e−α
2
k,msJ0(αk,0r) = −s2.

Now it remains to �nd the coe�cients Ak,0. We know that Ak,0(s)e−α
2
k,ms should be

the Fourier-Bessel coe�cients for the function −∂g̃(s) = −2s. This gives

Ak,0(s)e−α
2
k,ms =

−2s

αk
1
2J1(αk0)

.

It follows that u has the form

u = g̃(r, ϕ, t) +

∞∑
k=1

∫ t

0
Ak,0(s)ds Jm(αk,0r)e

−α2
k,0t

= t2 +

∞∑
k=1

∫ t

0

−2seα
2
k,ms

αk
1
2J1(αk0)

ds Jm(αk,0r)e
−α2

k,0t

= t2 +

∞∑
k=1

−4

αkJ1(αk0)

∫ t

0
seα

2
k,msds Jm(αk,0r)e

−α2
k,0t

= t2 + 4

∞∑
k=1

J0(αk0r)

α3
k0J1(αk)

(t− 1

α2
k0

(1− e−α2
k0t).
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