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Abstract 
 
A grid-based approach to fluvial flood modelling has been investigated in this 

dissertation. A spatially-distributed hydrological model can simulate flow on an area-

wide basis and a runoff production is used to estimate river flows with a simple kinematic 

wave scheme. Initialization errors, (rainfall) input errors and forecast model errors are the 

main sources of uncertainty in flood modelling. Since, there is uncertainty associated 

with rainfall inputs whatever the resolution of the flood forecasting model, an approach 

has been developed that uses an ensemble forecasts of rainfall as an input to an ensemble 

flood model. It seems natural to combine this approach with an ensemble data 

assimilation system. The Ensemble Kalman Filter (EnKF) is a data assimilation method 

may be used to solve the initialization problem in flood forecasting. The key idea of the 

EnKF algorithm is to use a statistical sample of forecasts to calculate a state estimate and 

an error covariance matrix that measures the uncertainty in the estimate. 

  Two main methods used in this dissertation. We developed a simplified one-

dimensional (1-D) distributed flow model and implemented an Ensemble Transform 

Kalman Filter (ETKF) for use with rainfall inputs and the simple flood model, as an 

illustration of the initialization problem in flood forecasting. We carried out numerical 

experiments where we used one forecast of the model as a reference or ‘truth’ trajectory. 

Experiments with the simplified 1-D distributed flood model show that low order 

numerical schemes tend to have numerical diffusion. Experimental results with the ETKF 

are presented also to show that the usage of the simple flood model and the sequential 

nature of the ETKF may lead to filter convergence. The ETKF estimates converge to the 

true state as the ensemble size increases and if more (imperfect) observations are 

assimilated over time. Description of the problems that were encountered in 

implementing these two methods and justification of the solutions that were adopted are 

given in detail in this dissertation.  
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Chapter 1 

 

Introduction 

 
1.1 Background 
 

Two main categories of flood forecasting models have developed in the last decades, 

‘lumped conceptual models’ and ‘physically based distributed models’ (Tingsanchali, 

1974). In this thesis, we focus on distributed hydrological models, such as the Grid-to-

Grid flow model by Moore et al., (2006), where a vital issue is the spatial discretization 

since stream flow data are integrated over catchment areas. Distributed flood models 

have the ability to take into account changes in the landscape such as topography and 

land-use and provide spatially and temporally distributed output variables (Moore et al., 

2006).  

  The main sources of uncertainty in flood modelling are initialization errors, (rainfall) 

input errors and forecast model errors (Leahy et al., 2007). Initialization errors can be 

reduced by implementing data assimilation methods and well known examples, which are 

often used in practice, are the Kalman Filter (KF) and its generalizations, such as 

Ensemble Kalman Filter (EnKF) techniques (Koster et al., 2004). An ensemble approach 

has been developed to try and deal with rainfall uncertainty, by using ensemble rainfall 

forecasts as an input to an ensemble flood model. Generally, ensemble flood forecasting 

is becoming more popular, using ensemble rainfall inputs from Numerical Weather 

Prediction (NWP) forecasts (Roberts, 2005). The Ensemble Kalman Filter is a natural 

candidate for initializing ensemble flood models, however, unlike the standard Kalman 

Filter; it has not been developed for situations where inputs play a significant role 

(Reichle et al., 2002).  
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  The basic idea of the Ensemble Kalman Filter (EnKF) is to use a statistical sample of 

state estimates instead of a single estimate. The mean of this ensemble sample represents 

the ‘best’ state estimate, while the variance provides a measure of the spread of the 

ensemble errors (Leahy et al., 2007). Also, with the use of a statistical sample in EnKF 

algorithm we calculate the error covariance matrix from this ensemble instead of 

maintaining a separate covariance matrix and that leads in a better representation of 

nonlinearity and is less expensive than the Extended Kalman Filter (Evensen, 2003). 

Finally, another benefit of the EnKF comes from the calculation of the Kalman gain 

matrix for all statistical members which decreases the fixed cost of the additional 

ensemble members (Leahy et al., 2007). 

 

 

1.2 Goals 
 

The goals of this thesis are 

 

• To design and implement a simplified one dimensional (1-D) distributed flow 

model, based on some of the ideas from the distributed Grid-to-Grid model 

(Moore et al., 2006 and Bell et al., 2007). 

   

• To implement an Ensemble Square Root Filter (EnSRF), (Livings et al., 2008); 

the Ensemble Transform Kalman Filter (ETKF), (Bishop et al., 2001) in 

conjunction with this simplified 1-D distributed flow model.  

 

• To modify the ETKF for use with rainfall inputs. 

 

• To investigate the effects of ensemble size and observation frequency on the 

behaviour of the forecast - assimilation dynamical system.   
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1.3 Principal Results 
 

A simplified 1-D distributed flow model is selected for implementation in Chapter 4. It is 

found to be useful to follow a related to the Grid-to-Grid routing scheme that described in 

Chapter 2 and to assume periodic boundary conditions for reasons of simplicity. 

Experiments with this simplified 1-D distributed flood model in Chapter 4 (Section 4.6) 

show that low order numerical schemes, such as the upwind scheme (first order accurate 

in time and space) used to integrate the simple kinematic wave equation (4.1) of the flow 

model in Section 4.1, tend to have numerical diffusion. 

  The Ensemble Transform Kalman Filter (ETKF) using rainfall inputs and the simple 

flood model, which described in Chapter 4, is selected for implementation in Chapter 5. 

Experiments with the ETKF, in Chapter 6, show that the usage of a simplified low 

dimensional distributed flow model and the sequential nature of the ETKF may lead to 

filter convergence. In view of the experimental results in Chapter 6, we expect that the 

assimilation results might be quite different when obtained on the basis of a more active 

assimilation model than the one we use in this research. Such a model will be if we 

increase the dimension of the state space, the number of days we run the model and the 

size of ensemble members.  

 

 

1.4 Outline 
 

In Chapter 2 two main points are selected for discussion. Firstly, we present an overview 

of flood forecast models, focusing on the Grid-to-Grid flow model (physically based 

distributed model), and then consider the application of these models to extreme flood 

conditions. The second focus is on sources of uncertainty in flood modelling. 

  Chapter 3 describes data assimilation methods which are useful in flood forecasting, 

since the use of real-time flood models requires attention to uncertainty estimation and 

model initialization (i.e. state estimation); problems which can be solved using data 

assimilation techniques. In particular, this Chapter presents basic information about 
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ensemble forecasting, data assimilation and describes the techniques of Kalman and 

Ensemble Kalman Filters.  

  In Chapter 4, as a subject for experiments, a simplified 1-D distributed flow model is 

introduced. It describes the methodology of the simple flood model and presents some 

basic validation results with problems that were encountered and new ideas that used in 

the implemented simple flood model.  

  In Chapter 5 we describe the implementation of an Ensemble Kalman Filter (EnKF); the 

Ensemble Transform Kalman Filter (ETKF) using the MATLAB code written for 

Livings, (2005), through modifications and additions have been made for this thesis.  The 

purpose of this Chapter is to provide a complete interpretation of the ETKF and the key 

idea is to modify an EnKF for use with inputs and a simple flood model, as described in 

Chapter 4. 

  Chapter 6 presents the experimental results using the ETKF described in Chapter 5. It 

also provides explanations of the features observed and presents new ideas that used in 

the implementation of the ETKF. 

  Finally, Chapter 7 gives a conclusion of the results and suggests some ideas for further 

work.  
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Chapter 2 

 

Flood Forecasting 
  

 

With the incidence of severe weather and flooding on the increase around the world, 

there is a need to improve flood forecasting and warning (Dehotin & Braud, 2008). 

Floods cause physical damage, loss of basic sanitation that leads to disease, economic 

hardship due to rebuilding costs and food shortages. They are also the most frequent and 

costly natural disasters in terms of human hardship and economic loss (Perry, 2000). By 

improving flood forecasts it becomes possible to take mitigating actions in advance of the 

flood and hence avoid millions of pounds worth of damage and even human fatalities. 

  Two main points are selected for discussion in this Chapter. Firstly we present an 

overview of flood forecast models and then consider the application of these models to 

extreme flood conditions. The second focus is on sources of uncertainty in flood 

modelling. 

 

 

2.1 Flood Forecasting Models 
 

Over the years categories of flood forecasting models have developed. These categories 

range from simple empirical flood models, known as ‘lumped conceptual models’, to 

integrated catchment models, combining rainfall-runoff production, flow routing and 

hydrodynamic components, known as ‘physically based distributed models’ 

(Tingsanchali, 1974). 

  Lumped models are simple empirical models that take in rainfall data and provide an 

estimate of river flow only at a single point (usually the catchment outlet). Such models 

typically contain many parameters that must be calibrated using rainfall and flow-gauge 
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observations, in order to give accurate results. An example of a lumped conceptual model 

is the Probability Distributed Model or PDM (Moore, 2007), which is a rainfall-runoff 

model that transforms precipitation to flow at the catchment outlet. A detailed description 

of the model is given by Moore, (2007).  

  In this thesis, we focus on distributed hydrological models where a vital issue is the 

spatial discretization, since stream flow data are integrated over catchment areas. For a 

given data set and a given catchment, the spatial disretization is adaptable to the 

modelling objectives such as quantification of flood risk and determination of the water 

balance components of each catchment (Dehotin & Braud, 2008). Distributed flood 

models have the ability to take into account changes in the landscape such as topography 

and land-use and provide spatially and temporally distributed output variables such as 

runoff, water storage, groundwater recharge etc. Hence, it is clear that the distributed 

hydrological models are catchment focused and can be of real value for flood forecasting, 

especially for the ungauged (without the use of instruments) problem and for forecasting 

at any location (Moore et al., 2006). 

  An example of distributed flood model is the grid-to-grid or cell-to-cell area-wide 

model (Moore et al., 2006). This flood model is also a rainfall-runoff model which 

transforms rainfall and potential evaporation data to flow at every point within a 

catchment. The grid-to-grid model was developed to examine the possibility of using a 

higher-resolution (1km×1km) grid based river flow routing model for spatial domains 

(locations where there is a big risk of flood damage) in simulating daily or sub-daily river 

flows (Bell et al., 2007). In the next Section we describe a methodology for catchment 

discretization based on the grid-to-grid flood model of Moore et al., (2006). However, 

before we start describing the grid-to-grid model we would like to explain the reasons we 

chose in this thesis to represent an overview of this distributed flood forecasting model. 

  Lumped conceptual models focus on storage of soil water, are quite complex and can 

usually provide a reliable forecast at least for gauged problems. However, the grid-to-grid 

flood model is a simple distributed model which can be applied to ungauged sites and is 

preferred since we are able to forecast at any location across a domain of our interest and 

under extreme rainfall conditions. Another benefit that will come from the application of 
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this flood forecast model is the fact that has minimal data requirements, since only a 

small number of spatial parameters are needed. 

  A number of studies (Michaud & Sorooshian, 1994) compared simple distributed and 

lumped conceptual models. Several distributed flood models use algorithms similar to 

those of conceptual lumped models for runoff production, but in many cases methods 

have been devised to estimate the spatial variability of model parameters within a basin. 

In lumped models, model parameters are related to physical properties of a basin and in 

distributed models initial parameters are estimated using spatial datasets (Reed et al., 

2004). Results have shown that simple distributed models are more or less as accurate as 

lumped models (Michaud & Sorooshian, 1994). Both models have advantages and 

limitations concerning hydrological, meteorological and data conditions. But the grid-to-

grid model is favoured because we can use it as tool for studying spatially hydrologic 

procedures, since it takes into account the spatial variations in rainfall and runoff. 

Parameter, space and data limitations can result in the accuracy of the distributed flood 

model but we still can have good results. Advantages and disadvantages of these two 

modelling paradigms are given in detail by Reed et al., (2004). 

 

 

2.2 Grid-to-Grid Model 
 

The grid-to-grid model (Moore et al., 2006) is a distributed rainfall-runoff model. The 

main input is precipitation and the main model output is basin flow. More specifically, in 

the grid-to-grid model, the focus is on the relationship between the runoff production and 

the grid-to-grid routing scheme and how they depend on topography, land cover, geology 

and soil information (Moore et al., 2006). 

  Figure 2.1 illustrates the general form of the grid-to-grid model and shows the 

relationship of two main modelling components: runoff production and grid-to-grid flow 

routing (Moore et al., 2006). In this grid-to-grid area-wide approach, rainfall climatology 

information and spatial data sets of geology, terrain, soil and land cover properties are 

used to spread the rainfall around the catchment and for the runoff production 
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respectively. A runoff production scheme operates within each grid square and the 

resulting runoffs considered in the model are surface flow due to precipitation excess and 

subsurface flow. We consider a simple formulation for the grid-to-grid flow routing 

which is a model for water movement over the whole terrain (land and river) and the sub-

surface. The generated runoffs are translated from cell to cell using a routing scheme 

which depends on drainage area, slope, flow direction and flow duration (Moore et al., 

2006). The flow components of the runoff are routed with a set of mathematical 

approaches which are given in detail in Section 2.2.3. Hence, the grid-to-grid flood model 

is a natural area-wide approach for providing full national coverage grid estimates of 

runoffs and routed river flows (Moore et al., 2006). 

 

 
 

 

 

 

 
Figure 2.1 Framework for a Grid-to-Grid flood forecasting model (after Moore et al.,  

                  2006).    
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2.2.1 Runoff Model 
 

It should be pointed out that the runoff production within each grid square is controlled 

by the capacity of the soil to take up water. For each grid square or a river basin, consider 

a single storage of maximum water storage capacity maxS , representing the absorption 

capacity of the soil column at that point (Moore, 2007). Figure 2.2 shows a single store, 

where the tank with an initial depth of water storage, 0S , takes up water from rainfall, P , 

and loses water by evaporation, E , generating direct runoff, q , if the storage capacity of 

the tank is exceeded. It is also possible to assume that the basin is initially dry so that the 

initial depth of water in storage 0S  is taken equal to zero. In this case the rain falls at a 

net rate P  and the resulting runoff is given when the tank fills and spills. 

 

maxS  

 
Figure 2.2 Diagram showing runoff production from Moore, 2007. 

 

  Each different point in a catchment has a different value of initial depth of water in 

storage and a different value of maximum water storage capacity. In particular, 

mathematically the runoff production is expressed by: 

  

⎩
⎨
⎧ −−−

=
0

)( 0max SSEP
q     

if
if

,
,    

0)(
0)(

0max

0max

<−−−
>−−−

SSEP
SSEP                                 (2.1) 
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where q  is the resulting runoff, P  is the depth of precipitation, E  is the evaporation, 

maxS  is the maximum water storage capacity for each grid-square and 0S  is the initial 

depth of water in storage. The details of how the maximum water storage capacity, maxS , 

can be calculated will be discussed in Section 2.2.2. 

 

 

2.2.2 Maximum Water Storage Capacity 
 

There are several different ways to calculate the maximum water storage capacity, maxS , 

for each grid-square but a simple formulation that is used by the grid-to-grid model 

(Moore et al., 2006) is given mathematically by: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

max
maxmax 1

g
gcS                                                                                                     (2.2) 

 

for maxgg ≤ , where g  is the average topographic gradient, maxg  is the upper limit of 

gradient and maxc is the upper limit of storage capacity. The last two parameters act as 

regional parameters for the runoff production process and that allows the values of the 

structural parameter, maxS , to be determined using only these two. This simple scheme 

does not take account of soil, geology and land cover properties. 

  More complex formulations aim to allow the use of soil, geology and terrain properties 

as a part of the flood forecasting process. These take account of the lateral drainage, the 

groundwater flow, the percolation and the volume of soil water and groundwater. 

Examples of such schemes are given by Moore et al., (2006). 
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2.2.3 Grid-to-Grid Flow Routing 
 

In the Grid-to-Grid flow model the runoff production is routed by using the simple 

kinematic wave equation: 
 

)( Ruc
x
qc

t
q

+=
∂
∂

+
∂
∂                                                                                                       (2.3) 

 

where q  is the channel flow, c  is the kinematic wave speed, u  is the lateral inflow per 

unit length of river and R  is the return flow. 

  The flood model is applied separately in two different layers, as figure 2.3 shows. In this 

case there are two pathways of water movement, one on the surface (fast) and one on the 

sub-surface (slow). Assuming different wave speeds, c , over surface and sub-surface as 

well as over land and river, the water is transferred from one grid cell to another. 

Mathematically in one dimension the difference between the parallel fast and slow 

pathways of water movement is expressed by the following equations: 
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where the inflow and the return flow can vary with the surface type and pathway. As 

figure 2.3 highlights, the return flow term allows for flow transfers between the sub-

surface and surface pathways to represent surface/sub-surface flow interactions on hill-

slopes and in channels and provides a regionally way of combining the fast and slow 
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components of river flow (Bell et al., 2007). The subscripts l  and r denote the flow over 

land and over river pathways respectively and the subscript b  denotes the sub-surface 

pathways of water movement.  

 

 
 

Figure 2.3 Schematic of the Grid-to-Grid model structure from Bell et al., 2007. 

 

    To approximate the four partial differential equations by finite differences, we divide a 

chosen model domain by a set of lines parallel to x-axis and t-axis to form a grid or a 

mesh. We shall assume that the sets of lines are equally spaces and the line spacings are 

equal to x∆  and t∆  such that n  and k  denote positions in discrete space and time and 

the crossing points are given by ),( tktxnx kn ∆=∆= . Each equation is discretized in 

Moore et al., (2006) using the finite difference scheme 
 

)()1( 1
11

n
k

n
k

n
k

n
k

n
k Ruqqq +++−= −

−− θθ ,                                                                             (2.4) 

 

where the approximate values will be denoted by ),(),( tkxnqtxqq kn
n
k ∆∆==  and 

represent the flow out of the n th space at time k . Also, in the finite difference scheme 

(2.4), θ  is the dimensionless wave speed, n
ku  is the lateral inflow of the n th space at time 
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k and n
kR  is the return flow of the n th space at time k . Equation (2.4) thus represents 

flow out of the n th space at time k , n
kq , as a linear weighted combination of the flow out 

of the reach at the previous time 1−k , n
kq 1−  , the inflow to the reach from upstream at the 

previous time 1−k , 1
1
−
−

n
kq  , and the total lateral inflow along the reach at the same time 

k , where the total lateral inflow is given by the sum of lateral inflow n
ku  and return flow 

n
kR  (Moore et al., 2006).  

  However, this scheme is not consistent (we believe there is a typographical error in the 

paper of Moore et al., 2006). Hence, instead we analyse a similar to the following 

difference scheme,  
 

)()1( 1
11

n
k

n
k

n
k

n
k

n
k Rutqqq +∆++−= −

−− θθθ                                                                          (2.5) 

 

which is stable and accurate, simple and quick to run. In the finite difference scheme 

(2.5), 
x
tc

∆
∆

=θ  is the dimensionless wave speed and for stability we require 10 << θ . 

But the most useful result of that selection is the fact that the scheme allows for different 

values of the dimensionless wave speed,θ , for different pathway (surface or sub-surface) 

and surface type (land or river) combinations, since θ  depends on the different values of 

the kinetic wave speed c . In Chapter 4, which is about the implementation of a simplified 

1-D distributed flow model using similar to the grid-to-grid routing scheme, we give an 

analytic description of how we determine the dimensionless wave speed θ  and the order 

of accuracy of the finite difference scheme. 

 

                        

2.2.4 Parameterization 

                                                     

In the grid-to-grid flood model the flow-routing and the return flow are parameterized as 

water depths by Moore et al., (2006) as follows: 
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• The routing is given by: n
k

n
k Sq κ= , where κ  is a parameter that depends on soil, 

geology, terrain and land cover and n
kS  is the depth of water in store over the grid 

square of the n th reach at time k . 

• The return flow is given by: n
k

n
k rSR = , where r  is the return flow fraction. Since 

the return flow fraction is proportional to the depth of the water of the sub-surface 

store, can take values between zero and one. In this case n
kS  represents the depth 

of water in the sub-surface store of the n th reach at time k . The return flow takes 

usually positive values, but it can be also negative since it represents the water 

movement between the sub-surface and surface pathways and influent “stream” 

conditions (Moore et al., 2006). 
 

However, in Moore et al., (2006) paper there is no analysis of how it is possible to 

parameterize the inflow as water depth. Hence, working with the same formula as above 

we conclude to the next:  
 

• The inflow is given by: n
k

n
k Su σ= , where σ  is a parameter that depends on the 

topography and n
kS  is the depth of water in store over the grid square of the n th 

reach at time k . 

 

 

2.3 Sources of Uncertainty in Flood Forecasting 
 

The main sources of uncertainty in flood forecasting are divided in three categories in 

Leahy et al., (2007): 
 

1. Input Uncertainty of Rainfall 

2. Model Uncertainty 

3. Output Uncertainty 
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Figure 2.4 highlights where the main source of errors in the flood forecasting procedure. 

These uncertainties are discussed in detail in the following Sections, rainfall input 

uncertainty (Section 2.3.1), model uncertainty (Section 2.3.2) and output uncertainty 

(Section 2.3.3). 

 
 

 
 

Figure 2.4 Error framework for rainfall-runoff models used in flood forecasting after   

                  Leahy et al., 2007. 

 
 
 
2.3.1 Input Uncertainty of Rainfall 
 

The main source of uncertainty for models of both distributed and lumped forms is the 

rainfall input (Leahy et al., 2007). For the distributed rainfall-runoff model, the main 

input is precipitation and the model output is basin flow. Hence, errors in rainfall 

measurement lead for example to inaccurate values of water in store and this is one of the 

situations we need to improve. There are important uncertainties even when precipitation 
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input to a flood forecasting model is based on recorded rainfall, since radar methods can 

observe large areas but they do not directly measure rainfall (Leahy et al., 2007). 

  Recently, a new technique has been developed by the Met Office and CEH (Centre for 

Ecology and Hydrology) to produce an ensemble rainfall forecast. This is designed to 

sustain research on probabilistic flood forecasting and to take into account the uncertainty 

in predicting the movement of areas of precipitation (Roberts, 2005). The ensembles are 

normally developed as extensions of radar extrapolation methods, in combination with 

operational Numerical Weather Prediction (NWP) forecast models, which are able to 

simulate the physics and the dynamics of the atmosphere and hence to initiate 

precipitation. In particular, Numerical Weather Prediction (NWP) model outputs are used 

to forecast rainfall. In these models the grid size is often larger than the one in flood 

forecasting models and hence small errors in the location of the weather systems by NWP 

models may result in inaccurate values of forecast rainfall (Leahy et al., 2007).  

  It is not possible to represent the exact state of the atmosphere at the start of a weather 

forecast. The start of a forecast is named ‘analysis’ and for each forecast we require the 

best possible ‘analysis’, since an inaccurate analysis will lead to an inaccurate forecast. 

The particular difficulty we face lies in the fact that a rainfall analysis must be consistent 

with the model dynamics. The analysis of a forecast must be as close as possible to 

available observations (rainfall) by means of a process called data assimilation (Roberts, 

2005). Data assimilation is a tool that combines observational data and numerical models 

to produce an analysis which is considered as the best estimate of the current state of a 

dynamical system. The details of this approach will be discussed in Chapter 3. 

  A particularly good way of representing forecast uncertainty is to generate probabilities 

which are able to provide information in a way that is suitable for input into a rainfall-

runoff/river-flow model. Because precipitation amount is very difficult to predict 

meteorologically, the uncertainty associated with any single estimate is high and varies 

from case to case. To allow the forecaster to deal with the degree of uncertainty, to make 

use of probabilistic flood forecasting, to formulate a scheme for processing of 

information from different sources and to automate all algorithmic processing tasks are 

the objectives that require much research and remains a challenge for models (Roberts, 

2005).  
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2.3.2 Model Uncertainty 
 

We are not able to entirely model every process of the ‘real’ world, especially if that has 

to do with flood forecasting. Any flood forecasting model is a gross simplification of 

reality (Leahy et al., 2007). Since we want to achieve a model that works, we make 

assumptions which lead to errors. These errors however are not resolved with more data 

and therefore remain constant through an event (Leahy et al., 2007). 

  Errors will also be introduced due to model parameters. In practice, in flood forecasting 

models the model parameters are used to account errors such as errors in the volume and 

the distribution of precipitation (Leahy et al., 2007). Most of the model parameters have a 

physical meaning and are determined by the spatial distribution of topography, soil and 

land cover. However, in flood forecasting parameter errors tend to decrease with time, 

since more recorded and previous runoff data are available to calibrate the model 

parameters (Leahy et al., 2007). 

  

 

2.3.3 Output Uncertainty 
 

The rainfall in flood forecasting models is transformed into flow using a runoff routing 

model, as we represent in previous Sections (2.2 and 2.2.1). This means that the 

hydrological models calculate flow, but the output data is measured in height. Hence, 

there is a need to ‘translate’ height into flow and this conversion may lead to errors. The 

higher the level, the fewer flow measurements we get and that lead to largest errors in 

flash flood events. There can also be errors in the height measurements themselves, for 

example due to wave action. These uncertainties, in comparison to model errors tend to 

be constant throughout a flood event, since they are proportional to the magnitude of the 

flow and new observations of height will not contribute to any reduction (Leahy et al., 

2007). 
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2.4 Case study: The Boscastle Flood 
 

Sometimes the only indication about the precipitation in an area comes from a rainfall 

radar observation a few minutes before the flood event occur and usually the information 

is not available with the desired accuracy. A serious flash-flood occurred in the village of 

Boscastle close to the north cost of Cornwall (SW England) on 16th August 2004. This 

flash-flood associated with violent convective storms of a short duration and was the 

result of a sea breeze effect. Sea breeze circulations, driven by the temperature contrast 

between land and sea, led to intense thunderstorms over the area around Boscastle at 

around 10.30 UTC on 16th August 2004 and continued until around 16.30 UTC. 

Flooding developed from rainfall lasting for hours and occurred because the precipitation 

was concentrated over the small catchment in Boscastle area (Roberts, 2005).  

  In this Section we compare three different forecasts using the 12-km, 4-km and 1-km 

grid-space forecast models. Figure 2.5 shows the rainfall accumulation from 12 to 

18UTC, when the highest rainfall occurred in Boscastle area. The dashed circle is a 20km 

radius and is centred at the village of Boscastle (May et al., 2004). The 12-km grid-space 

forecast model failed to predict the localized intense rainfall that led to flash-flood and 

subsequently caused loss of life, human suffering and damage to buildings. The 4-km 

grid-length model would have provided more useful guidance to forecasters, since it 

produced much higher rainfall accumulations in regions near Boscastle. The first two 

panels of figure 2.5 illustrate that the 4-km forecast was much better than the 12-km 

forecast in predicting high rainfall accumulation, however the peak accumulations were 

not in the correct location (May et al., 2004). In particular, actual peak rainfall 

accumulations reached about 200mm (gauge). The 12-km grid-length model did not even 

manage any accumulations greater than 10mm, in contrast to the 4-km and 1-km grid-

space forecast models (Roberts, 2005). In the 1-km forecast we observed less rain than in 

the 4-km but in Boscastle area. However, the 4-km and 1-km grid-space forecast models 

did predict very high accumulations, since were better able to resolve the topography and 

that means that were capable to represent surface terrain much more accurately than the 

12-km forecast model did. 
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Figure 2.5 Rainfall accumulations over SW England during the period 12 to 18UTC on 

16th August 2004 from 12-km, 4-km and 1-km grid-space forecast models starting from 

00UTC by May et al., 2004.           
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  The 4-km grid-length forecast model was able to resolve the thunderstorms and the 

complex flow around the coast. On the other hand, the 1-km grid-space forecast model 

was able to resolve the showers and the local orography more accurately (May et al., 

2004). Finally, the 12-km forecast model was unable to represent the catchment properly 

and did not indicate greater average values over the catchments in the area of Boscastle. 

Hence, the 4 and 1-km grid-space models, as described before, were much better and did 

predict higher average rainfall accumulations over catchments in the vicinity of 

Boscastle, though without indicating a serious flood risk (Roberts, 2005).  

  In observe, a 4-km grid-length model is more practicable than a 1-km model but a major 

advantage a 1-km grid-space model has over the 12-km and 4-km grid-length models is 

the fact that allows the simulation of rainfall rates that can be directly compared with 

those measured by radar and rain gauges. In this case, is given the possibility to make 

direct use of model output to warn of local flood risk. But locations, timings and rainfall 

rates may be wrong and this can be crucial for flood prediction, particularly for small 

catchments such as Boscastle. Finally, denser grid spacing like the grid spacing of 1-km 

can include and develop more accurately representation of cloud structure and 

precipitation and hence to give more realistic simulations of extreme storms (Roberts, 

2005).   

  The purpose of combining these three forecasts can be a more realistic view of the 

forecast uncertainty (Roberts, 2005). Figure 2.5 illustrates that a combination of forecasts 

picked out the vicinity of Boscastle as being more at flood risk than elsewhere. The 

Boscastle flood was one of the serious examples, occurred in England, of a flash-flood 

caused by rain from localized thunderstorms falling into a small river in a fast response 

catchment (Roberts, 2005). Recently, a framework for extreme flood forecasting has been 

set down and developed. This framework (see, e.g., Moore et al., 2006) in the beginning 

selects different meteorological information and then identifies case study catchments 

that they may affect. The case studies have given examples of successful high-resolution 

forecasts of extreme flood producing situations. However, until now we do not really 

know how accurate a high resolution forecast of a severe event is to small changes in 

initial conditions.  
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2.5 Summary 
 

This Chapter has demonstrated the need to improve the flood forecasting models (lumped 

conceptual and physically based distributed models) and warning, since floods cause loss 

of life, human suffering and economic hardship due to rebuilding costs. The distributed 

Grid-to-Grid model (Section 2.2) show promise in providing an integrated approach to 

modelling for any location and since there is uncertainty associated with rainfall forecasts 

whatever the resolution of the flood forecasting model; the Grid-to-Grid model needs 

improvement. 

  The main sources of uncertainty in flood modelling are divided in three categories by 

Leahy et al., (2007): input uncertainty of rainfall (Section 2.3.1), model uncertainty 

(Section 2.3.2) and output uncertainty (Section 2.3.3). An ensemble approach has been 

developed to try and deal with rainfall uncertainty, by using ensemble rainfall forecasts as 

an input to an ensemble flood model. It seems natural to combine this approach with an 

ensemble data assimilation system. These ideas are discussed in Chapter 3. Finally, in 

Section 2.4 is demonstrated a serious flash-flood event which occurred in Boscastle (SW 

England). This extreme flood was a result of errors in Numerical Weather Prediction 

(NWP) products which used as rainfall inputs in flood forecasting models and led in 

uncertainties in flood forecasting. The use of ensemble rainfall forecasts in conjunction 

with sophisticated model initialization methods is the focus of Chapter 3. 
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Chapter 3 

 

Ensemble Flood Forecasting  
 

 

In Chapter 2 was mentioned that the use of real-time flood models requires attention to 

uncertainty estimation and model initialization (i.e. state estimation). Knowledge of the 

uncertainty in flood forecasting and resulting flood warnings, especially in flood risk 

areas, has become of interest the last decade (Zappa et al., 2008). Model initialization and 

updating of distributed flood models is not yet well established, compared to lumped 

conceptual models. For that reason, there is a pressing need to look at forecast updating 

methods such the state-correction (Moore et al., 2006).   

  The basic subject of this Chapter is the description of data assimilation methods which 

are useful in solving the aforementioned problems in flood forecasting. In particular, this 

Chapter presents basic information about ensemble forecasting, data assimilation and 

describes the techniques of Kalman and Ensemble Kalman Filters.  

 

 

3.1 Rainfall Inputs  
 

Rainfall inputs are the main source of uncertainty in flood forecasting models during a 

flood event. One approach to reducing this uncertainty is to make use of rainfall inputs 

generated from numerical weather forecasts. Implementation of an ensemble of rainfall 

forecast realization inputs into a lumped conceptual flood model (PDM rainfall-runoff 

model) has already been examined (Roberts, 2005). This ensemble approach of rainfall 

forecasts helps to quantify the accuracy of the flow forecast and hence the likelihood of a 

flood event. This is useful in issuing warnings for the risk of a flood (Pierce et al., 2005). 

A new technique also, called STEPS, is a new nowcasting system under development and 
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capable of providing ensembles of rainfall forecasts (Moore et al., 2005). This technique 

developed within the Gandolf and Nimrod systems (rainfall advection nowcasting 

systems) to produce an ensemble of advection forecasts in which small-scale features are 

replaced by random noise as the forecast progress (Roberts,  2005). This, thus, will give 

the additional information of an ensemble of precipitation predictions and provide a 

probabilistic forecast approach (Roberts. 2005); a more detailed review is given by 

Roberts, (2005) and Moore et al., (2005).  

 

 

3.2 Model Initialization 
 

Model initialization (i.e. state estimation) and updating for lumped models are well 

established, but this is more challenging for distributed models. An example of updating 

methods for flood forecasting (in a lumped conceptual flood model) is given in Moore et 

al., (2005). Particularly, observations of the state of the river basin, such as observations 

relate to river flow, are used in real-time forecasting to improve forecast performance. 

State correction is the most natural technique of forecast updating, and improvement in 

model performance is given by the use of direct or related measurement of a model state. 

River flow can be used to estimate a model error and provides a basis for updating the 

state. For correction the model states, that are chosen, are the fast and slow response 

flows from the flood model and finally the corrected flows will sum to the observed flow 

(Moore et al., 2005). On the other hand, forecast updating methods in distributed flood 

models (at ungauged sites) may appear limited and research is needed. Progress in these 

problems may be achieved by the use of data assimilation methods, such as those used in 

numerical weather prediction (Moore et al., 2005).  

  Data assimilation is fundamental in Numerical Weather Prediction (NWP), since it 

provides and estimates initial conditions, known as the ‘analysis’ of forecast models 

using physical state variables. In particular, data assimilation is a tool that combines 

observational data and numerical models and tries to balance the uncertainty between 

forecast and data (Kalnay, 2002). Many data assimilation techniques have their 
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foundation in Kalman filtering theory, which we will describe in subsequent Sections. 

Note that the Ensemble Kalman Filter is a natural candidate for use in ensemble flood 

models such as those we described above with rainfall inputs; however, unlike the 

standard Kalman Filter, it has not been developed for situations where inputs play a 

significant role. Hence, we will describe the ensemble filter from this literature in this 

Chapter and develop it in Chapter 5 to include inputs. 

     

 

3.3 The Kalman Filter 
 

This Section introduces some notation and gives some desired properties for the Kalman 

Filter. This is an established sequential data assimilation technique which is characterized 

by alternate forecast and analysis steps. Generally, in the forecast step a previous state 

estimate is evolved forward in time to give a forecast state at the time of the latest 

observations. In the analysis step these observations are used to update the forecast state 

and to determine the state of the dynamical system by giving an improved state estimate 

called the ‘analysis’ (Welch & Bishop, 2006). For a detailed treatment see Welch & 

Bishop, (2006). 

  We assume a state vector x  of size n  that describes the state of the forecast model. In 

particular, the true state of the system at time kt  will be denoted by )( k
t tx . The analysis 

at this time (denoted with the superscript a ) and the forecast (denoted with the 

superscript f ) are given by )( k
a tx  and )( k

f tx  respectively and are of size n . The 

observation vector, of size p , at time kt  will be denoted by )( kty .  

  We shall assume that we use random variables to model errors in the flood forecasting 

model and in observations. We denote these errors tff xxe −=  and taa xxe −=  for the 

forecast and analysis, respectively. We assume that these forecasts and analyses are 

unbiased so that 0=fe  and 0=ae . Finally, in this Section we will use error 

covariance matrices which provide information about the size and correlation of the error 
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components and are given by Ttftff ))(( xxxxP −−=  and Ttataa ))(( xxxxP −−=  

(Welch & Bishop, 2006). Note that the errors and means are all for a single time kt .  

 

 

3.3.1 The Kalman Filter Algorithm 
 

The Kalman Filter (Gelb, 1974) was developed for linear dynamic systems and provided 

a means of explicitly taking account of input, model and output errors (Srikanthan et al., 

2007). In this Section, we follow the description of the Kalman Filter algorithm in Welch 

& Bishop, (2006). We consider the general problem of trying to estimate the state vector 

x  of a discrete-time controlled process (indicates that the problem is done in steps rather 

than continuously). The true state of the system at the current time kt , satisfies  

 

)()()()( 111 −−− ++= kkk
t

k
t tttt ηNuMxx ,          (3.1) 

 

and the observation vector at the same time 
 

)()()( kk
t

k ttt εHxy += .                                                      (3.2) 

 

  In equation (3.1) M  is a known matrix )( nn×  which relates the state x  at the previous 

time 1−kt  to the state at the current time kt . It is worth noting that in practice this matrix 

might change with each time step, but in this description of the Kalman Filter algorithm 

we assume it is constant. In the context of a flood forecasting model, state vector x  will 

be the river flow and the optional control input u , of size l , will denote the rainfall input. 

Hence, in this equation matrix N , )( ln× , relates the rainfall input u  to the river flow x . 

Finally, )( 1−ktη  is a Gaussian, random, unbiased and uncorrelated model noise at the 

previous time 1−kt  with mean zero and known covariance matrix Q  (Welch & Bishop, 

2006). 

  In equation (3.2) matrix H  is a )( np×  known matrix that maps state variables x  to 

observed variables y . An example of what an observation operator might do is the 
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interpolation from model grid to the location of an observation. Also, )( ktε  is a Gaussian, 

random, unbiased and uncorrelated observation noise at the same time kt  with mean zero 

and known covariance matrix R  (the observation error covariance matrix, a )( pp×  

matrix which describes the random errors in )( kty ). Note that in practice matrix H  might 

change with each time step or measurement, but here we assume it is constant (Welch & 

Bishop, 2006). Furthermore, it is important to be mentioned that there is no correlation 

between model noise and observation noise at any times (Livings, 2005).  

  The Kalman Filter algorithm at time kt  is given by the sequence of the following 

equations. In particular, the equations of the Kalman Filter divided into two groups, in the 

time update equations (3.3) and (3.4) and in the measurement update equations (3.5), 

(3.6) and (3.7), (Welch & Bishop, 2006). 

 

1. State forecast: )()()( 11 −− += kk
a

k
f ttt NuMxx .                                                          (3.3) 

                                                     

2. Forecast Error Covariance matrix: )()()( 11 −− += k
T

k
a

k
f ttt QMMPP .                    (3.4) 

 

3. Kalman gain matrix: 1])([)()( −+= RHHPHPK T
k

fT
k

f
k ttt  .                                 (3.5) 

 

4. Analysis: )]()()[()()( k
f

kkk
f

k
a ttttt HxyKxx −+=  .                                               (3.6) 

 

5. Analysis Error Covariance matrix: )(])([)( k
f

kk
a ttt PHKIP −= .                           (3.7)  

 

  It is important to be mentioned that the time update equations (3.3) and (3.4) evolve the 

state and covariance estimates forward from time 1−kt  to time kt . Matrices M  and N , in 

equation (3.3), are defined based on knowledge of the process, but the determination of 

the process noise covariance Q , in equation (3.4), is more difficult since we normally do 

not have the ability to directly observe the process we are estimating (Welch & Bishop, 



 27

2006). Finally, matrix )( 1−k
a tP , in equation (3.4), is the ‘state error covariance matrix’ 

which is a )( nn×  matrix and describes the random errors in the ‘initial guess’. 

  It is worth noting that the measurement update equations (3.5), (3.6) and (3.7) alter the 

projected estimate by an actual measurement at that time (Welch & Bishop, 2006). The 

first step during the measurement update is to compute the )( pn×  Kalman gain matrix 

K  which minimizes the ‘a posteriori’ error covariance )( k
a tP  in equation (3.7). In the 

implementation of the filter, the observation error covariance matrix R  is measured prior 

to operation of the filter. Measuring this matrix is usually practical and possible, since in 

general we are able to take some sample measurements in order to determine the variance 

of the observation noise. The following step is to calculate an ‘a posteriori’ state estimate 

)( k
a tx  as a linear combination of an ‘a priori’ estimate )( k

f tx  and a weighted 

difference between the actual measurement )( kty  and the measurement prediction 

)( k
f tHx , as given in equation (3.6). The final task of this procedure is to compute the 

analysis error covariance matrix )( k
a tP  as given in equation (3.7). After each time and 

measurement update, the same procedure is repeated with the previous ‘a posteriori’ 

estimates used to predict the new ‘a priori’ estimates (Welch & Bishop, 2006).  

  In the ‘real’ world most physical systems and models, such as the flood forecasting 

models, represent nonlinearities and the Kalman Filter method is not so useful since it 

works only for linear systems. For these cases, later on, Extended Kalman Filter (EKF) 

methods was developed to deal with nonlinearity (Welch & Bishop, 2006). The Extended 

Kalman Filter can work well, but since the nonlinearities in the flood models were 

usually strong, the linearization led to inaccurate values and hence a natural framework 

based on the Ensemble Kalman Filter (EnKF) has been developed for flood forecast 

modelling (Srikanthan et al., 2007). Also, another reason that makes the usage of an 

EnKF more useful was the computational expenses of the EKF (Srikanthan et al., 2007).  
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3.4 The Ensemble Kalman Filter 
 

In the last decade the Ensemble Kalman Filter (EnKF) and its derivatives have been used 

extensively in real time flow forecasting, especially with the Probability Distributed 

Model (Moore et al., 2005). For a review of EnKF algorithms see Evensen, (2003). It is 

important to be noticed, that the EnKF was not originally designed to take into account 

(rainfall) inputs, but the use of EnKF allows combination of uncertainties associated with 

rainfall and flood model in a systematic way in real-time flow forecasting and it has been 

used by a number of researchers in the past.  

  The basic idea of the Ensemble Kalman Filter is to use a statistical sample of state 

estimates instead of a single estimate and an error covariance matrix that measures the 

uncertainty in the estimate (Livings et al., 2008). The mean of this ensemble sample 

represents the ‘best’ state estimate, while the variance provides a measure of the spread 

of the ensemble errors (Leahy et al., 2007). Also, with the use of a statistical sample in 

EnKF algorithm we calculate the error covariance matrix from this ensemble instead of 

maintaining a separate covariance matrix and that leads in a better representation of 

nonlinearity and is less expensive than the Extended Kalman Filter (Evensen, 2003). 

Finally, another benefit of the EnKF comes from the calculation of the Kalman gain 

matrix for all statistical members which decreases the fixed cost of the additional 

ensemble members (Leahy et al., 2007). 

  Figure 3.1 shows a schematic diagram of Ensemble Kalman Filter (EnKF), where the 

uncertainty of the state is represented by the spread of the ensemble at forecast and 

update steps (Leahy et al., 2007). Before we start describing the diagram, we have to 

notice that the evolution model could be nonlinear and that the filter gives a reduction in 

uncertainty of the estimates. In the time step 1−t  the EnKF algorithm begins, where the 

big blue ellipse denotes the uncertainty associated with the initial state and the red dot 

denotes the unknown true state. As a starting point we chose an ensemble of state 

estimates and we run the model using these statistical points and an ensemble of input for 

the next time step (Leahy et al., 2007). This ensemble of state estimates is thus applied in 

the nonlinear system to produce the forecast ensemble (Tippett et al., 2003). The updated 



 29

state from the previous time step is also used for the approximation of the probability 

function of the actual state (Srikanthan et al., 2007). The light blue ellipses represent the 

model state prediction with uncertainty and the pink ellipses denote the measurement 

uncertainty. Finally, the Ensemble Kalman Filter combines the forecast with 

measurements and then the updated state estimate, associated with uncertainty, is shown 

as blue circles. During the flood event we repeat the forecast and update steps with the 

sequence of the aforementioned procedure (Leahy et al., 2007). A more analytically 

presentation of this process is given in Leahy et al., (2007). 

 
  

Time (t)

Measurements 
with uncertainty

True state

Updated state estimate 
with uncertainty

Model state prediction
with uncertaintyInitial state 

with uncertainty

True state

(t-1) (t)

(t+1)

 
 

Figure 3.1 Schematic diagram of Ensemble Kalman Filter (EnKF) from Leahy et al.,  

                   2007. 

 

  It is worth noting that there are different types of EnKF implementation (perturbed 

observation, square root etc.). In the following Sections we focus on a particular class of 

ensemble filter known as Ensemble Square Root Filter (EnSRF), based on papers of 

Tippett et al., (2003) and Livings et al., (2008). Finally, a specific implementation of an 

EnKF; the Ensemble Transform Kalman Filter (ETKF) which based in Livings, (2005), is 

given in Section 3.6 and will be also, in Chapter 5, the implementation used for the 

experiments in this thesis. 
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3.4.1 Notation 
 

The members of an ensemble sample in state space will be indicated by ix , where i  

denotes the individual members of an ensemble and takes values between 1 and 

N ( N indicates the size of an ensemble). We assume that the evolution of each ensemble 

member is independent of all other ensemble members (Livings et al., 2008). 

Subsequently, the ensemble mean will be given by  
 

                                                         ∑
=

=
N

i
iN 1

1 xx ,                                                          (3.8) 

 

where x  is an unbiased estimator of the population mean if the ensemble members ix  are 

drawn independently from the same probability distribution (Barlow, 1989). An initial 

ensemble mean is required at time 0t  equal to )( 0tx .  

The ensemble perturbation matrix is of dimension )( Nn× , with n  the dimension of a 

state vector, and is defined by  
 

                                 ).......(
1

1
21 xxxxxxΧ −−−

−
= NN

.                                 (3.9) 

 

where the x  form the columns of the matrix Χ . 

The ensemble covariance matrix is the )( nn×  matrix given by 
 

                                    T
N

i
ii

T
e N

))((
1

1
1
∑
=

−−
−

== xxxxXXP ,                                   (3.10) 

 

where the division by 1−N  ensures that the ensemble covariance matrix eP  is an 

unbiased estimate (Barlow, 1989) of the state error covariance matrix P  and the equality 
T

e ΧΧP =  may be expressed by saying that Χ  is a square root of eP  (Tippett et al., 

2003). Note that the definition of a square root is different from the definition usually 

used in mathematics; if Χ  is a square root of a matrix P  then PΧ =2 . 
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3.4.2 The Forecast Step 
 

The EnKF moves sequentially from one measurement time to the next and is divided into 

two steps: a forecast step and an analysis step. We start with a brief description of the 

main steps of an EnKF algorithm where given an initial state )( 0t
ax  and error covariance 

matrix aP  we start generating an analysis ensemble of initial states a
ix  for Ni ≤≤1 . 

This analysis ensemble will be used for the next forecast, as the starting point (Livings et 

al., 2008). Then considering a nonlinear dynamical model M  in the state forecast step 

the ensemble is propagated forward in time using the following nonlinear model:  

 

                                            )())(()( 11 −− += kik
a
ik

f
i ttMt ηxx ,                                      (3.11) 

 

where )( 1−ki tη  is a pseudo-random model noise at the previous time 1−kt  with known 

covariance matrix Q  and zero mean (Evensen, 2003). Note that the algorithm as given in 

the literature does not take account of the inputs. The ensemble mean then is given by 

 

                                                     ∑
=

=
N

i

f
i

f

N 1

1 xx ,                                                        (3.12)  

 

and the ensemble perturbation matrix by 

 

                                ).......(
1

1
21

ff
N

fffff

N
xxxxxxΧ −−−

−
= .                     (3.13)  

 

Hence, the ensemble forecast error covariance matrix is defined by 

 

                                                         Tfff
e )(ΧΧP = .                                                  (3.14) 
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3.4.3 The Analysis Step  
 

We assume in the beginning an observation y  of dimension p , and an observation 

operator H  which maps the state vector to the observation vector. We introduce an 

ensemble of forecast observation f
i

f
i Hxy = , where f

iy  represents that observation if f
ix  

is the true state of the system without observation noise, for Ni ≤≤1  (Livings et al., 

2008). As any other ensemble, if we assume the linear case with a linear observation 

operator H , the forecast observation ensemble has an ensemble mean 
  

                                                          ff Hxy = ,                                                         (3.15)                     
 

and an ensemble perturbation matrix  
 

                                                         ff HXY = .                                                         (3.16) 
 

Hence, using equations (3.14) and (3.16) the Kalman gain, as in equation (3.5), will be 

given by 
 

                                          1)( −+= RHHPHPK Tf
e

Tf
ee                                               

                                                 1))(()( −+= RHXHXHXX TTffTTff  

                                                 1))(()( −+= RHXHXHXX TffTff  

                                                 1))(()( −+= RYYYX TffTff  

                                                 1)( −= SYX Tff                                                             (3.17) 
 

where we set  
 

                                                 RYYS += Tff )( ,                                               (3.18) 
 

and R  denotes the )( pp×  observation error covariance matrix. Then the ensemble mean 

updates as 
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                                                                    )( f
e

fa yyKxx −+= ,                                                                             (3.19) 

 

and the analysis ensemble covariance matrix, using equations (3.14) and (3.17), will be 

defined by  
 

                                          f
ee

a
e PHKIP )( −=                                                               

                                                TffTff )())(( 1 XXHSYXI −−=  

                                                TffTff ))()(( 1 XYSYIX −−= .                                    (3.20) 
 

Note that the above equations can be generalized for both linear and nonlinear 

observation operators (Livings et al., 2008). Also, in practice equation (3.20) is not used 

directly in Square Root Filter (SRF) implementations as will be seen in the next Section.  

 

 

3.5 The Ensemble Square Root Filter 
  

In the analysis step of an Ensemble Square Root Filter (EnSRF), the analysis state 

estimate is given, as in equation (3.19), by  
 

                                                 )( f
e

fa yyKxx −+= ,                                               (3.21) 

 

where the observation ensemble mean is equal to )( ff H xy =  and the Kalman gain, 

from equation (3.17), equal to 1)( −= SYXK Tff
e . Note that in comparison with 

equation (3.19) in the ensemble square root filter algorithm the analysis ensemble is equal 

to '
i

a
i xxx += , where the perturbations '

ix  is the i -th column of the )( Nn×  matrix 

aN X1− , with aX  the analysis ensemble perturbation matrix (Livings et al., 2008). 

Then, the analysis perturbation equation is updated separately and is given by  
 

                                                        TXX fa = ,                                                           (3.22) 
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with T  an )( NN ×  matrix which we want to satisfy  
 

                                               fTfT YSYITT 1)( −−= .                                               (3.23)  
 

Thus, using equations (3.22), (3.23) and (3.17), the analysis ensemble covariance matrix  
 

                                                  Taaa )(XXP =  

                                                        Tff ))(( TXTX=  

                                                        TffTff ))()(( 1 XYSYIX −−=                                                                     

                                                        Tff
e

f ))(( XYKX −= ,                                        (3.24) 

 

satisfies equation (3.20). From the above relationship (3.23), we can say that matrix T  is 

a square root of matrix fTf YSYI 1)( −− (Tippett et al., 2003). However, since matrix 
fTf '1' )( YSY −  is difficult to compute it because we have to invert matrix S , in the next 

Section we introduce a different implementation of the EnKF; the Ensemble Transform 

Kalman Filter. Finally, it is important to be mentioned that matrix T  is not unique and 

may be replaced by TU , where U  an )( NN ×  orthogonal matrix (Tippett et al., 2003), 

where 
 

                                             fTfT YSYITUTU 1)()( −−= . 

 

 

3.6 The Ensemble Transform Kalman Filter 
 

The Ensemble Transform Kalman Filter (ETKF) was originally introduced in Bishop et 

al., (2001) and overcomes the aforementioned difficulties in computing the analysis 

update by inverting the matrix S  in equation (3.23). We may verify the identity,  

  

                                     111 ))(()( −−− +=− fTffTf YRYIYSYI ,                               (3.25) 
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by multiplying the left hand side of the equality with  fTf YRYI 1)( −+  and using the 

definition (3.18) of matrix RYYS += Tff )( . In this case is easier to compute the 

)( NN ×  matrix fTf YRY 1)( − , since R  has simpler structure (it is usually diagonal) than 

S . Then the eigenvalue decomposition is given by  
 

                                                     UΛYRY =− fTf 1)( TU ,                                         (3.26)                       
 

where U and Λ  are )( NN ×  orthogonal and diagonal matrices respectively. Hence, we 

conclude that equation (3.25) becomes 
 

                                        111 ))(()( −−− +=− fTffTf YRYIYSYI  

                                                                    UΛI += ( 1)−TU  

                                                                    TUΛIU 1)( −+= ,                                      (3.27) 
 

and since from equation (3.23) fTfT YSYITT 1)( −−=  we found that 2
1

)(
−

+= ΛIUT , 

as the desired matrix square root, where ΛI +  is a diagonal matrix and easy to compute. 

Hence, the analysis ensemble perturbation matrix is equal to  
 

                                                        TXX fa =  

                                                              2
1

)(
−

+= ΛIUX f .                                             
 

  After implementation of the Ensemble Transform Kalman Filter (ETKF) by Livings et 

al., (2008) and after the suggestion of Wang et al., (2004) for a new filter, the Revised 

ETKF, was found that we take better results if matrix T  is equal to  
 

                                                         TUΛIUT 2
1

)(
−

+= ,                                             (3.28)                           
 

which is now a symmetric matrix, since TU  is orthogonal. With that assumption the 

Revised ETKF is unbiased, from Theorem 2 of Livings et al., (2008) and the updated 

ensemble perturbation matrix is finally given by  
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                                                         TXX fa =  

                                                                Tf UΛIUX 2
1

)(
−

+= .                                    (3.29)                 

 

 

3.7 Summary  
 

In Chapter 3 was presented basic information about ensemble forecasting, considering the 

model initialization problems in Section 3.2. An introduction to data assimilation 

methods and how we can relate them with flood forecasting models is provided by the 

Kalman Filter description in Section 3.3. This sequential data assimilation technique 

developed for linear dynamic systems and provided a means of explicitly taking account 

of input, model and output uncertainties. For nonlinear dynamic systems Ensemble 

Kalman Filter (EnKF) techniques were presented in Section 3.4 which provide an 

alternative method of estimating these uncertainties by the use of an ensemble of state 

estimates instead of a single state estimate and without maintaining a separate error 

covariance matrix. The basic idea of this Chapter was to represent sequential data 

assimilation techniques useful in solving the initialization problem in flood forecasting 

models. For that reason, in Section 3.5 described the Ensemble Square Root Filter and 

later in Section 3.6 an Ensemble Transform Kalman Filter (ETKF) algorithm which is an 

ensemble approach that developed to try and deal with rainfall uncertainty, as we will see 

in Chapter 5.  

  The following Chapter discusses the selection of a simplified one-dimensional (1-D) 

distributed flood forecasting model for implementation. It describes also some problems 

that were encountered in implementing the simplified 1-D distributed flow model using a 

finite difference scheme similar to the Grid-to-Grid routing scheme that was presented in 

Chapter 2, and the solutions that were accepted by representing basic experimental 

results.  
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Chapter 4 

 

A Simplified 1-D Distributed Flow Model 
 

 

This Chapter is about the implementation of a simplified one-dimensional (1-D) 

distributed flow model and the presentation of basic validation results. The experiments 

with the simple flood model differ in the time and length scale and in the values of model 

parameters. 

 

 

4.1 Simplified Distributed Flow Routing 
 

The simplified 1-D distributed flood model we will present in this Chapter is a new 

simple flow model that we developed. Our simplified 1-D distributed flow model is 

related to the routing scheme that described in Section 2.2.3. The basis of the distributed 

flow routing scheme is the simple kinematic wave equation  
 

)( EPa
x
qc

t
q

−=
∂
∂

+
∂
∂ ,                                                                                                    (4.1) 

 

where in the left hand side of equation (4.1), t  and x  denote time and space respectively, 

q  represents the channel flow and c  the kinematic wave speed. In the right hand side of 

equation (4.1), a  is a parameter which could depend on the soil, geology, terrain and 

land cover, P  is the rainfall rate and E  is the evaporation rate. In Table 4.1 we give the 

dimensions of these physical parameters, where L  and T  denote the length scale and 

time scale, respectively. However, for the rest of this thesis, we assume that the equation 

(4.1) and the functions of precipitation and evaporation as given in Section 4.2 have been 

non-dimensionalized. It is worth to be mentioned that the left hand side of equation (4.1) 
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comes from the left hand side of the simple kinematic wave equation (2.3), which is used 

as the basis for the Grid-to-Grid routing scheme. The right hand side of equation (4.1) 

was chosen equal to )( EPa −  for reasons of simplicity. Note that this allows us to 

calculate the analytic solution of equation (4.1), as we will describe in Section 4.2.  

 

Parameter name 
   
Dimensions                  Description 

 
Channel flow rate: q     TL /3                    River flow 
 
Kinetic wave speed: c     TL /         Related to the flow velocity            

Parameter a      T/1  
      
  Could depend on soil, land cover etc.  

 
Precipitation rate: P     TL /3                 Rainfall input 
 
Evaporation rate: E     TL /3                  Rainfall loss 

 
Table 4.1 Routing model parameters. 

 

We solve equation (4.1) for channel flow ),( txq  on the domain π20 ≤≤ x , 0≥t  with 

an initial condition given by  
 

                                                   )()0,( xfxq = ,        π20 ≤≤ x                                    (4.2) 
 

for a smooth, periodic function )(xf , such that )2()( π+= xfxf . 

Our solution also satisfies periodic boundary conditions, 
 

                                                   ),2(),( txqtxq π+= .                                                   (4.3) 
    
Note that the assumption of periodic boundary conditions is not very realistic, since few 

rivers have a loop shape. However, we have chosen these conditions to make our flow 

model easier to implement numerically. 
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4.2 Analytic Solution 
 

In this Section we present the analytic solution of equation (4.1) for specific functions of 

the initial condition, the precipitation P  and the evaporation E . Our choice of initial 

condition for this particular problem is given by  
 

                                                    )()0,( xfxq =  

                                                               )sin(1 x+= ,                                                     (4.4) 
                                                                                                                 
for π20 ≤≤ x . Then, we distribute precipitation and evaporation over the hours of day 

and we assume that the precipitation P  is changing over time with the following function 
 

                                                  )sin(1)( δ++= wttP ,                                                  (4.5)  
 

which is a time varying function with w  the frequency of rainfall and δ  the phase. The 

above assumption for precipitation P  is not very realistic, but the simple function we 

chose is useful for the calculation of the analytic solution, to enable us to validate the 

code. We assume that time 0=t  corresponds to midnight on the first day ( 1=t  is 

midnight on the second day) and each time unit corresponds to 24 hours. The first panel 

of figure 4.1 shows the evolution of precipitation during the hours of daylight and 

darkness. Usually, in countries such as England and Northern European countries, 

precipitation events occur, during the summer, late in the evening (for examples of flash 

flood events see Roberts, 2005). Hence, for the case of precipitation we chose the phase 

πδ = , since we wanted to achieve the peak of the rainfall later in the evening during the 

summer. As figure 4.1 illustrates, the peak of the rainfall during the hours of daylight is 

nearly at 18UTC (near to 0.8) at the evening. Finally, considering that evaporation E  

varies sinusoidally (Moore & Weiss, 1980), it is then given by  
 

                                                 )sin(05.0)( γβ ++= zttE ,                                           (4.6) 
 

which is also a time varying function with β  a parameter that shows the magnitude of 

the evaporation during the day, z  the frequency of the evaporation and γ  the phase. For 
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that case, we chose the phase 4/5πγ = , since we wanted to achieve the peak of the 

evaporation, as the second panel of figure 4.1 shows, nearly at 15UTC (near to 0.6) in the 

afternoon. Note that in the practical real-time circumstances rainfall and evaporation are 

very difficult to be measured. 

  It is worth to be mentioned the fact that we assume for this flood model that the values 

of rainfall are twenty times more than the values of evaporation during one day. With this 

assumption we expect, by running the simplified 1-D distributed flow model for more 

than 4 days, to observe bigger values of river flow for the last experimental days than for 

the first day.  

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

Time (Days)

Pr
ec

ip
ita

tio
n

Rainfall during 1 day

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

Time (Days)

Ev
ap

or
at

io
n

Evaporation during 1 day

 
 

Figure 4.1 The evolution of precipitation and evaporation over the hours of daylight and  

            darkness. 

 

  To find out the analytic solution of the distributed flow routing scheme (4.1) we use the 

method of characteristics (Scott, 2003) of the first-order partial differential equations 

(PDEs). The key idea is to change coordinate system from ),( tx  to a new one ),( 0 sx  in 

which PDE (4.1) becomes an ordinary differential equation (ODE) along appropriate 

curves, named ‘characteristic curves’, in the tx −  plane. The new variable 0x  will be 
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constant along the characteristics and will be points along the 0=t  axis in the tx −  

plane; on the other hand the new variable s  will vary along the characteristic line. If, we 

use the form  
 

                                                   ))(),((),( stsxqtxq = ,     
                                         
where ))(),(( stsx  is a characteristic line we have, using the chain rule, that 
  

                                             
ds
dt

t
q

ds
dx

x
qstsxq

ds
d

∂
∂

+
∂
∂

=))(),(( .                                      (4.7) 

 

The left hand side of the PDE (4.1) is given if we set c
ds
dx

= and 1=
ds
dt ; the right hand 

side of equation (4.1) is given if we set )( EPa
ds
dq

−= . Thus, to find the solution of the 

PDE we have to solve these ODEs. We start by taking 
 

                                                             1=
ds
dt ,                                                               (4.8) 

 

with initial condition 0)0( =t  and we obtain that st = . Then solving 
 

                                                             c
ds
dx

= ,                                                              (4.9) 

 

with initial condition 0)0( xx =  we can easily observe that 0xcsx +=  which implies that 

0xctx += , which is the characteristic curve and 0x  is the point where each curve 

intersects the x - axis in the tx −  plane. Finally, by taking 
 

                                                        )( EPa
ds
dq

−= ,  

 

and using the functions for precipitation P  (4.5) and evaporation E  (4.6), as defined 

before, we have that   
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                                    ))sin(05.0()sin(1( γβδ ++−++= ztwta
ds
dq .                        (4.10) 

 

By integrating this equation, where st = , we obtain  
 

                   )()cos()cos()05.01(),( 0xgzt
z
awt

w
atatxq ++++−−= γβδ .               (4.11) 

 

To determine the function )( 0xg  in equation (4.11) we use the initial conditions which 

are given by:  
  

                                    )()cos()cos()0,( 00 xg
z
a

w
axq ++−= γβδ  

                                                 )( 0xf= , 

 

where from equation (4.4) we have )sin(1)()( 0 ctxctxfxf −+=−= . We conclude that 

the final solution of the PDE (4.1) is given by  
 

).sin(1)cos()cos()cos()cos()05.01(),( ctx
z
a

w
azt

z
awt

w
atatxq −++−++++−−= γβδγβδ      (4.12) 

 

Note that the above analytic solution obeys the initial and boundary conditions. Finally, 

by writing the characteristic curves as  
 

                                                          
c
x

x
c

t 01
+= , 

 

it is easy to see that in the tx −  plane, the characteristics are parallel lines with slope 
c
1 , 

which depends only on the constant c . Hence, since the characteristic curves are straight 

lines with slope 
c
1  and the velocity c  is constant, all points on the solution profile will 

move at the same speed c .  
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4.3 Numerical Implementation 
 

To approximate the partial differential equation (4.1) by finite differences, we divide a 

chosen model domain by a set of lines parallel to x-axis and t-axis to form a grid. We 

assume that the sets of lines are equally spaced and the line spacings are equal to x∆  and 

t∆ . Then the crossing points are given by ),( tktxnx kn ∆=∆= , such that n  and k  denote 

positions in discrete space and time respectively, and we seek approximations of the 

solution at these grid points. These approximate values will be denoted by  
 

                                              ),(),( tkxnqtxqq kn
n
k ∆∆==           

 

and represent the flow out of the n th reach at time k . We apply that one dimensional 

flood model in one layer where it performs routing of channel flow using the kinematic 

assumption. In this case there is only one pathway of water movement, on the surface. 

Also, in the beginning as a simple example, precipitation, evaporation and routing 

parameters are considered to be spatially uniform over the area corresponded to a channel 

plane, but generally may vary from plane to plane.                                     
  We choose the upwind scheme (explicit finite difference scheme) to discretize equation 

(4.1) and we first consider the following simple approximations of the time and space 

derivatives. The approximation of the time derivative of equation (4.1) is given by: 
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and the approximation of the space derivative by: 
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Using equations (4.13) and (4.14), we have that the simple kinematic wave equation (4.1) 

is approximated as: 
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and finally, from the above equation, we obtain the following finite difference 

representation for the approximate values at time k : 
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where θ  is the dimensionless wave speed equal to 
x
tc

∆
∆

=θ , n
kP  and n

kE  represent the 

precipitation and the evaporation of the n th space at time k , respectively.  

 

 

4.4 Accuracy of the finite difference scheme 
 

To determine the order of accuracy of equation (4.15) we use the truncation error which 

defined by 
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Assuming that the channel flow q , the precipitation P  and the evaporation E  are 

smooth functions of space and time, we expand in Taylor series about ),( 1−kn tx  in 

powers of x∆  and t∆ : 
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We can make the substitution of equations (4.18), (4.19), (4.20), (4.21) and (4.22) into 

the truncation error n
kτ  (4.17) and cancel:                                                                         
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Assuming that channel flow q , precipitation P  and evaporation E  satisfy the PDE (4.1) 

and using the relationship )( EPacqq xt −=+ , we have that the final structure of the 

truncation error n
kτ   is revealed more clearly by the following: 
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where we conclude that  
 

                                                 )()( xtn
k ∆Ο+∆Ο=τ ,                                                   (4.24) 

 

which shows that the scheme is first order accurate in time and first order accurate in 

space.  

 

  

4.5 Stability of the finite difference scheme 
 

To analyse the stability of the finite difference scheme (4.15), we are going to represent 

the approximated solution at some particular time step by a finite Fourier series and 

examine the stability of each individual component. We start the Von Neumann’s 

stability analysis (Wesseling, 1996) by assuming that the approximate solution n
kq  is 

given by a Fourier mode as follows: 
 

                                                       )()( xnip
k

n
k eAq ∆= , 

 

where A  is the mode amplification factor and p  is the mode wave number. Then, we 

substitute the above expression into the equation (4.15) and for reasons of simplicity we 

assume that the right hand side of equation (4.15) is equal to zero. Note that this may 

have implications for the applicability of the stability analysis to the numerical scheme 

(4.15). This will be discussed further in Section 4.6. Hence, we obtain that: 
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and if we divide this equation with xipne ∆  we have: 
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Finally, assuming that 
x
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amplitude of mode p  satisfies:  
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and the mode is therefore stable if 1
1

≤
−k

k

A
A

. For our scheme, we require that 
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The left hand side of this inequality is the equation of a circle with centre )1( θ−  and 

radius θ . Hence, we require 1≤
∆
∆

=
x
tcθ , where 0>c  and we conclude that the upwind 

scheme (4.15) is stable if 10 << θ .                                        
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4.6 Validation of the numerical implementation 
 

Since so far we gave an analytic description of the simplified 1-D distributed flow model 

methodology, we have also in this Section to give some basic validation results. Before 

we start describing the modelling process and giving some experimental results we need 

to describe how we chose the initial conditions and the model parameters in the 

implemented flow model.  

  Following the process of the simplified distributed flow routing described in Section 4.1 

all the experiments were carried out using a MATLAB code. To start the calculations we 

take the initial condition, precipitation and evaporation as equations (4.4), (4.5) and (4.6) 

respectively, in Section 4.2, so that we can evaluate the numerical model’s performance 

against an analytic solution. Then, if we carry out a calculation in a periodic domain, with 

period π2 , we soon discover that the experimental results depend critically on the values 

of t∆ , x∆ , c  and a . The entire space has divided into discrete intervals x∆ , which are 

taken equal to π2 /(number of space grid points). We first divide the entire space into 40 

grid points ( 1571.0=∆x ) and then into 150 and 450 grids. For these specific state space 

dimensions the flow model has been trialled for different times (days) of time interval 

01.0=∆t  and for different values of model parameters. These different trials of the flow 

model help us understand how easily and widely the simplified distributed flood model 

could be applied to address the ungauged forecasting problem at any location within a 

chosen domain (Moore et al., 2006). It is worth noting that longer time steps (than 

01.0=∆t ) and longer space steps (than 0140.0=∆x ) are more economical but less 

accurate, so the choice in this research involves dealing with the trade-off between 

accuracy and efficiency. 

  Topographic feature such as slope, aspects etc. are important to determine direction of 

grid flow. Soil, geology and land cover features are also important in determining the 

rainfall loss-evaporation. Soil, geology and land cover properties are taken account in our 

model by using parameter a  in the simple kinematic wave equation (4.1). That has both 

disadvantages, since we do not have ‘reliable’ soil/geology information to run the flow 

model and advantages, since the resulting model requires only a small number of regional 
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parameters for application and hence that makes our model simple and quick to run. By 

several times running the model we observed that ‘good values’ for parameter a  are 0.05 

and 0.005. The basic criteria for determining these values were to find out a particular 

value of a  that will not affect the role of precipitation and evaporation in equation (4.1) 

and to give the expected result; increasing river flow values during the last experimental 

days, since we assume more precipitation than evaporation during the day.    

  Finally, the model parameters and the parameters of precipitation and evaporation have 

to be obtained through experiments by running the model several times. Typical 

parameter values are summarized in Table 4.2.   

 

Parameters Values Parameters Values 
 
c  0.5 β  0.05 
 
a  0.05 or 0.005 z  π2  
 
w  π2  γ  4/5π  
 
δ  π    

 
Table 4.2 Typical values of model, precipitation and evaporation parameters. 

 

  

4.6.1 Qualitative behaviour of the flow model  
 

We start by looking at the results of experiments using the initial condition (4.4) and 

running the simplified 1-D distributed flow model for 80 days, with time step 01.0=∆t . 

The experiments, as mentioned before, were carried out using a MATLAB code and we 

first assume that the value of parameter a  is taken equal to 0.05 and then equal to 0.005 

(plots shown in Appendix A). We start with examples that show the evolution of river 

flow against time for the above values of the model parameters (Table 4.2) and for 

different state space dimensions (40, 150 and 450 space grid point), as in figure 4.2.      
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  In this figure we give analytic and approximate solutions of equation (4.1) by running 

the flood model for different values of x∆ . In each panel, along the x-axis we plot the 

time (days) and in y-axis the river flow (volume/time). The first panel in figure 4.2 shows 

the analytic solution (4.12) obtained as we described in Section 4.2.  The second panel 

(a.) gives the numerical solution of the finite difference scheme (4.16) in a periodic 

domain with period π2 , for state space dimension equal to 40. The third (b.) and the 

fourth (c.) panel illustrate again the approximate solution but for different number of 

space grid points; 150 and 450 grids respectively. These are examples of the evolution of 

the flow model subject to a small number (40), to a medium number (150) and a large 

number (450) of space grid points, since we want to show the problems that we face with 

the numerical diffusion for small state space dimension. Note that the river flow values 

are taken at a specific grid point. However, the behaviour is qualitatively similar at all 

grid points. 

  These experiments have revealed two main points. Firstly, we are able to see that the 

river flow (and the error also) increases with time. This is to be expected since the rain-

rate is twenty times larger than the evaporation rate. The most important result of this 

experiment in figure 4.2 has to do with the numerical diffusion. As we can see in the 

second panel (a.) for number of grid points equal to 40 the approximate solution behaves 

differently from the analytic solution. The amplitude of the river flow oscillations 

decreases. This is a consequence of the use of our numerical scheme, which has a 

diffusive character (Morton & Mayers, 2005). In Section 4.3, we discussed that time and 

space are divided into a discrete grid and the simple kinematic wave equation (4.1) is 

discretized into finite difference equation (4.15), which in general is more diffusive than 

the original differential equation (4.12). Consequently, the approximate solution behaves 

differently from the analytic solution, since the simulated system depends on the type of 

discretization that is used, which is the upwind scheme. This scheme is first order 

accurate in time and space and that is one of the reasons that cause numerical diffusion 

(Morton & Mayers, 2005) especially if we run the flood model for small number of space 

grid points and for more than 30 days. Usually, higher order numerical methods tend to 

have less numerical diffusion than low order numerical schemes, such as the upwind 

scheme that we use in these experiments. As noted by Morton & Mayers, (2005), one of 
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the approaches that is useful to manage the numerical diffusion is to be careful to have 

sufficiently many spatial grid points. It is clear from figure 4.2 (b.) and (c.) that we 

indeed observe better results if we increase the number of grid points.   
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Figure 4.2 A sequence of plots of river flow against time for 80 days, at equal time 

intervals 01.0=∆t  and 05.0=a . The first panel shows the analytic solution, the second 

(a.), third (b.) and fourth (c.) panels show the numerical solution; these are examples of 

the evolution of the flood model with 40, 150 and 450 spatial grid points respectively.  

 

  So far we have shown the qualitative behaviour of the flow model with time and 

demonstrated the effect of varying the spatial grid on numerical diffusion, but we have 

not yet given examples of the effect of changing the time step. Figure 4.3 shows five 

parallel river flow curves, for time 50=t days at different time intervals t∆ = 0.01, 0.03, 

0.05, 0.07 and 0.1. On the x-axis we plot the space and in y-axis the river flow. This 

figure illustrates the numerical solution of the finite difference scheme (4.16), for state 

space dimension equal to 100 by running the flood model for a specific grid point. 

However, the behaviour is qualitatively similar at all grid points. 
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  For the different time steps chosen we obtain different results. Each flow curve moves 

to the right by increasing also (slightly) the peak value of the river flow and the minimum 

value. We expected to obtain these experimental results since a longer time step is less 

accurate. Note that, by increasing the time interval we increase also the values of the 

dimensionless wave speed θ , which we require strictly to be less than one for stability. 

For 1.0=∆t  we obtain 7958.0=θ  where we start observing unstable model behaviour. 

Thus, the higher the spatial resolution the shorter the time interval must be to maintain 

accuracy.     
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Figure 4.3 The model was run for time 50=t  days at different time intervals t∆  equal 

to 0.01, 0.03, 0.05, 0.07 and 0.1. In the figure are shown parallel river flow curves against 

space with state space dimension equal to 100 and 05.0=a . In the legend of figure dt is 

the same as t∆ .  
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4.6.2 Validation of the flow model 

 

Our basic measure of estimation error is the difference between the exact solution and the 

approximate solution at any given time and space. A suitable spatially averaged version 

of this measure is the root-mean-square (rms) error averaged over all the grid points in 

the domain. 

  In the first panel of figure 4.4, we plot log(rms-error) against )log( t∆ . For time 50=t  

days we show the (rms) errors for 1571.0=∆x  and for a variety of values of t∆ . In the 

second panel of figure 4.4, we plot log(rms-error) against )log( x∆ . For time 50=t  days 

we show the (rms) errors for 01.0=∆t  and for a variety of values of x∆ . In both panels 

the errors are plotted symbols ∗  and the line has a gradient of one. 

  We are able to see, in this figure, that the error decreases for shorter time steps (first 

panel) and smaller grid spacings (second panel). Furthermore, we obtained in Section 4.4 

that the truncation error of our numerical scheme should be  
 

                                                  )()( xtn
k ∆Ο+∆Ο=τ . 

  
Thus we expect, for a fixed x∆  that )log(~)log( terror ∆  and for a fixed t∆  that 

)log(~)log( xerror ∆ . It is clear, in both panels of figure 4.4, the fact that most of the 

points lie on a line parallel to the line of gradient 1, indicating that the scheme is indeed 

first order accurate in time (from the first panel) and space (from the second panel). The 

points are not lying exactly on the line which passes through zero maybe due to the fact 

that the stability analysis equations are valid for one time step and not for 50 days.  Also, 

every time that we are trying to explain the experimental results we must take under 

consideration the fact that the numerical scheme we use tend to have numerical diffusion. 

Finally, in the first panel of figure 4.4 we observe also that the point for time interval 

2.0=∆t  tends to be out of the line that defined from the other points. That happens 

because the value of θ  increases and hence the flow model starts having unstable 

behaviour.   
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Figure 4.4 Simulated observed values for the simplified 1-D distributed flow model for 

50 days. In the first panel, we plot log(rms-error) against )log( t∆  for 1571.0=∆x . In the 

second panel, we plot log(rms-error) against )log( x∆  for 01.0=∆t . In both panels the 

errors are plotted symbols ∗  and the line has a gradient of 1.  
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4.7 Summary 
   

In this Chapter, we described our new simplified 1-D distributed flow model and its 

numerical implementation. In the presentation of the methodology of the flood model 

main point was the assumption of periodic boundary conditions (not very realistic). We 

showed also that the numerical scheme (upwind scheme), which used to discretize the 

simple kinematic wave equation (4.1) for our experiments in the MATLAB code, is first 

order accurate in time and space, but suffers from numerical diffusion.  

  Particularly, the experiments in Section 4.6 have revealed one main feature, after 

demonstrating the order of accuracy of the numerical scheme and showing the qualitative 

behaviour of the numerical model with time and in space for several time steps. This 

main feature states as: low order numerical schemes, such as the upwind scheme that 

used in the experiments with the flow model, tend to have numerical diffusion. A useful 

approach to manage with this problem is to be careful to have sufficiently many spatial 

grid points, since after several runs of the flow model we observed better results for large 

state space dimension. A higher order numerical method may be identified as an area for 

further investigation. Finally, it is worth noting that the choice of space and time steps 

plays also significant role for future Chapters, especially, for demonstrating the filter 

behaviour in Chapters 5 and 6. Chapter 5 is about the implementation of an EnKF 

algorithm, the ETKF, using the MATLAB code written for Livings, (2005), through 

modifications and additions have been made for this thesis. The key idea is to modify 

ETKF for use with rainfall inputs and the simplified 1-D distributed flow model. And in 

Chapter 6 we give the experimental results of the implemented ETKF. 

  We concluded also that the method suffers from some arbitrary choices. These include 

the choice of the parameter a  (a parameter in the simple flow model that we chose to 

depend on soil, geology, land cover etc.). Parameter, space and time limitations can result 

in the accuracy of the distributed flood model but we still can have good results, as we 

observed. Finally, the experiments have revealed that for numerical stability ‘safe’ ranges 

for the dimensionless wave speed θ  are between zero and one. 
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Chapter 5 

 

Implementing an Ensemble Kalman Filter 
 

 

In this Chapter we describe the implementation of an EnKF; the Ensemble Transform 

Kalman Filter (ETKF). We present, also, a new modification of the ETKF for use with 

(rainfall) inputs and a simple flood model. 

 

 

5.1 Implementing the ETKF 
 

In Section 3.6 we gave a description of the ETKF algorithm, but in this Section we 

describe the Livings, (2005) unbiased implementation of the ETKF. It is worth noting 

that the eigenvalue decomposition, equation (3.26) 

 

                                               UΛYRY =− fTf 1)( TU ,                                                  

 

produced eigenvalues and eigenvectors with significant imaginary parts in Livings, 

(2005) first implementation. Livings, (2005) found a way to avoid these problems by 

developing a new implementation. The new implementation introduces a scaled forecast 

observation ensemble perturbation matrix, 
 

                                                        ff YRY 2
1

ˆ −
= .                                                        (5.1) 

 

Hence, from the above relationship, equation (3.26) becomes  
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                                               fTffTf YYYRY ˆ)ˆ()( 1 =− .                                             (5.2) 

 

Using the Singular Value Decomposition (SVD) by Livings, (2005) we have that  

 

                                                    TTf VUΣY =)ˆ( ,                                                       (5.3) 

 

where U  is the )( NN ×  orthogonal matrix, Σ  is the )( pN ×  diagonal matrix and V  is 

the )( pp×  orthogonal matrix. Note that U  matrix in equation (5.3) is in fact the same  

U  matrix in equation (3.26). The singular value matrix, Σ ,  and the diagonal matrix of 

eigenvalues, Λ ,  are related by TΣΣΛ = .  

The updated ensemble perturbation matrix is then  

 

                                                     TXX fa =  

                                                            TTf UΣΣIUX 2
1

)(
−

+= .                                      (5.4) 

 

This choice of matrix T ensures that the filter is unbiased in the sense of Livings et al., 

(2008). Using equation (3.17) and the SVD (5.3) we conclude to the following expression 

of the Kalman gain 

 

                                             1))(()( −+= RYYYXK TffTff
e  

                                                   2
1

1))ˆ(ˆ()ˆ(
−−+= RIYYYX TffTff  

                                                   2
1

1)(
−−+= RVIΣΣUΣX TTf .                                      (5.5) 

 

Finally, instead of computing the Kalman gain eK  and then the ensemble mean 

)( f
e

fa yyKxx −+= , it is better to build up the product 
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1
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from right to left and then update the ensemble mean by UzXxx ffa += . With this 

process we avoid storing the Kalman gain eK  and we only need to store a vector at each 

stage of building up z  (Livings, 2005).  

  The experimental results by implementing the ETKF algorithm in MATLAB are given 

in detail in Chapter 6. Note that the SVD (5.3) is performed using the standard MATLAB 

svd function which uses the LAPACK routine DGESVD (Anderson et al., 1999). 

 

 

5.2 Implementing the ETKF for use with inputs 
 

In Chapter 3 (Section 3.6) and in Section 5.1 we gave an analytic description of the 

ETKF algorithm that we will use in our research. However, we have not yet considered 

how to deal with the precipitation inputs. For this case, the true state of the system at time 

kt , satisfies 

 

                                       ))(),(),(()( 111 −−−= kkk
t

k
t tttft ηuxx ,                                        (5.7) 

 

where f  is the function that relates the state at the previous time step 1−k  to the state at 

the time step k . This function in our research is given by the finite difference scheme 

(4.16) we used to discretize the simple kinematic wave equation (4.1) of the simple flow 

model (implemented in Chapter 4). Finally, this function includes as parameters any 

function of the (rainfall) input u  and any function of the model noise η  at the previous 

time step 1−k .  

  In Section 3.3.1 we gave an analytic description of the Kalman Filter algorithm that deal 

with rainfall inputs. Hence, using these equations from Section 3.3.1, the analogous 

equations for the ETKF are given as follows by assuming two different cases for the 

precipitation inputs.  
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Case 1: Rainfall input u  is perfectly known. 

In this case there is only one input u  and the only change to the algorithm described in 

Section 3.3.1 is to take account of the inputs in the forecast step as in equation (3.3). 

Considering a nonlinear dynamical model M  in the state forecast step the ensemble is 

propagated forward in time using the following nonlinear model:  

 

                                   )()())(()( 111 −−− ++= kikk
a
ik

f
i tttMt ηNuxx ,                                (5.8) 

 

for  Ni ≤≤1 . In this relationship )( k
f
i tx  represents the ith ensemble forecasted state at 

time kt , )( 1−k
a
i tx  is the ith updated ensemble state at the previous time 1−kt ,  )( 1−ktu  is the 

precipitation input at the previous time 1−kt  and )( 1−ki tη  is a Gaussian pseudo-random 

model noise at the previous time 1−kt  which for our implementation we assume that is 

equal to zero. Matrix N , in equation (5.8), is defined based on knowledge of the process 

given in Section 3.3.1. Note that a more complex (nonlinear) relationship between the 

state and input u  is possible, and could be dealt with in the same way. The case 

described here is the case we have done our experiments on. 

  Then, the ensemble mean, the ensemble perturbation matrix and the ensemble 

covariance matrix are given by equations (3.12), (3.13) and (3.14) from Section 3.4.2. We 

assume, after, as in Section 3.4.3 an observation y  of dimension p , and an observation 

operator H  (possibly nonlinear) which maps the state vector to the observation vector. 

We introduce an ensemble of forecast observation ))(()( k
f
ik

f
i tHt xy = , where )( k

f
i ty  

represents that observation if )( k
f
i tx  is the true state of the system at time kt  without 

observation noise, for Ni ≤≤1  (Livings et al., 2008). For the case of imperfect 

observations we give an ensemble of forecast observation )())(()( kik
f
ik

f
i ttHt εxy += , 

where )( ki tε  is a Gaussian, random, unbiased and uncorrelated observation noise at the 

same time kt  with mean zero and known covariance matrix R . Then we follow the 

procedure described in Section 5.1, where instead of computing the Kalman gain eK  and 

then the ensemble mean (3.21), it is better to build up the product (5.6) from right to left 
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and then update the ensemble mean by UzXxx ffa += . The above equations can be 

generalized for both linear and nonlinear observation operators (Livings et al., 2008). 

Case 2: Rainfall input u  is uncertain and can be treated as a random variable. 

In this case we may have an ensemble of inputs, so we can obtain for the forecast step 

 

                                   )()())(()( 111 −−− ++= kikik
a
ik

f
i tttMt ηNuxx ,                               (5.9) 

 

where )( 1−ki tu  is the rainfall input of the ith ensemble member at the previous time 1−kt . 

Then, the procedure is similar to the one described above but the difference pointed to the 

calculation of the forecast error covariance matrix fP , equation (3.4). Assuming that we 

have input errors, we calculate the forecast error covariance matrix including these errors. 

Something similar was done in the Srikanthan et al., (2007) but for the perturbed 

observation filter where in addition to representing the noise )( 1−ki tη  with zero mean and 

know covariance matrix Q , this EnKF represents the multiplicative model errors through 

forcing data perturbations. The input data perturbations are made by adding the Gaussian 

noise )( ki tζ  with mean zero and known covariance matrix to the rainfall input data at 

each time step: 
  
                                                  )()()( kikki ttt ζuu += .                                               (5.10) 

 

Finally, as mentioned before, for our experiments in Chapter 6 we just use single 

(rainfall) inputs which specified a priori as we did in the implemented simplified 1-D 

distributed flow model. Hence, the possibility of working as described above with an 

ensemble of inputs may be an area for further investigation. The assumption also of 

treating rainfall input u  as a Gaussian or non-Gaussian variable would be an interesting 

work.  
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5.3 Summary 
 

The purpose of this Chapter was to provide a presentation of the ETKF algorithm 

implementation. We started in Section 5.1 with a brief description of the unbiased ETKF 

algorithm as a solution to avoid problems we faced with the eigenvalue decomposition in 

Chapter 3, with main point the use of the Singular Value Decomposition (SVD) which is 

performed in our experiments using the standard MATLAB svd function. Later, in 

Section 5.2 we discussed new ideas for use of (precipitation) inputs with the ETKF, 

focusing in two cases. For the first case we considered that rainfall inputs are perfectly 

known single inputs and in the second case that are random variables (e.g. ensemble of 

inputs).  

  In Chapter 6 we present experimental results using our filter implementation with the 

simplified flood model of Chapter 4. 
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Chapter 6 

 

Experimental Results  

 
This Chapter presents the results of experiments with an ETKF implemented as described 

in Chapter 5 using observations of the simplified 1-D distributed flow model as 

implemented in Chapter 4. The experiments with the ETKF differ in the analysis step, the 

ensemble size, the number of observations and whether we assume perfect or imperfect 

background. 

 

 

6.1 Experiments with the ETKF 
 

In this Section we present the experimental results with the ETKF implemented as 

described in Chapter 5. The experiments were carried out using our MATLAB code, 

where the filtering part was written by Livings, (2005), but changes and additions have 

been made for this thesis. Note that the filter code was validated in Livings, (2005) 

experiments. 

  Before we start giving some experimental results we need to describe briefly the filter 

procedure. In the beginning, of the filter code, we declare the global variables; model, 

precipitation and evaporation parameters, as defined in Chapter 4 (Table 4.2) for the 

implementation of the simplified 1-D distributed flow model. We set the initial 

conditions equal to (4.4), which differ for each ensemble member, and we generate the 

true state using the finite difference scheme (4.16) we used to discretize the simple 

kinematic wave equation (4.1) in the flood model in Chapter 4. We generate, then, the 

observations using the truth. We assume perfect (without observation noise) or imperfect 

(with observation noise) observations which in our experiments differ in time and space. 
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Particularly, we run the filter code assuming imperfect observations and we generate the 

ensemble of observations at each update time by giving noise with zero mean and 

covariance equal to the observation error covariance matrix R . An initial ensemble of 

state estimates is then chosen. This ensemble of vectors is drawn from a normal 

distribution with a given covariance matrix and the true initial state. We assume in our 

experiments perfect or imperfect background, where for the first case the ensemble is 

translated so that the ensemble mean coincides exactly with the true initial state. These 

sample points are then propagated through the system. The approximation of forecast 

state error covariance matrix is made by propagating the ensemble of model states using 

the updated state from the previous time step. Note that there is no model noise in the 

ensemble forecasts as well as in the truth forecast. Finally, we have to mention that 

rainfall inputs (single inputs) and evaporation are specified a priori inside the flow model.   

  Figures 6.1 and 6.2 show the experimental results by running the ETKF for 10 days over 

0.01-time interval and a state space of dimension n =150 (this choice ameliorates 

numerical diffusion in the model, see Section 4.6). The main point of these figures is to 

compare the results, if we assume that the estimates are derived with the ETKF using 

ensemble members 4=N  and we run the ETKF for different number of imperfect 

observations over time. The ensemble size is rather small, although that is more like 

operations. Examples assuming ensemble size 27=N  are given in Appendix B. 

Specifically, in figures 6.1 and 6.2 we give a sequence of plots where in each graph we 

simulate 1, 5, 10 and 20 distinct measurements (imperfect observations) that have errors 

normally distributed around zero with standard deviation 1.0; in figure 6.1 we assume 

perfect background and in figure 6.2 imperfect. All coordinates are observed in space but 

in the 1st panel of figures observation is taken at the last time grid point (the last day), in 

the 2nd panel the measurements are taken every 200 time steps, in the 3rd panel of figures 

every 100 time steps and finally in the 4th panel observations are taken every 50 time 

steps up to the 10th day. Figures 6.1 and 6.2, generally, illustrate the difference between 

the filter and the truth. Specifically, each panel in these figures represents the first 

component of the output of the ETKF plotted relative to the truth. The value of the true 

state is indicated by the dotted line at zero. The three solid lines show ensemble mean 

(red line) and ensemble mean ±  ensemble standard deviation. Finally, in each panel the 
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first component of assimilated observations are given as + with error bars indicating the 

observation standard deviation. 

  All graphs in figure 6.1 start with the same ensemble and show the expected result, filter 

convergence by taking more observations over time. Comparing the panels in figure 6.1 

we observe that if more observations are assimilated, during the 10 days we run the 

ETKF, the true state is often inside the band given by the ensemble mean ±  ensemble 

standard deviation, indicating that the filter has stable behaviour. It should also be noted 

that the excellent estimates obtained in our experiment reflect the fact that we assume 

perfect background which indicate positions that start from the ‘correct’ point, and the 

fact that the model used in the forecast step is the same as the model used to generate the 

truth. In the first panel of this figure, when no observations are assimilated, we observe 

divergent and convergent behaviour (just after the 2nd and 8th day) of the ensemble spread 

(indicated by ±  ensemble standard deviation). Specifically, by plotting the ensemble 

members (for the first panel when no observations are assimilated; plots are not shown) 

we observe that the ensemble members have different frequency of oscillation about the 

true trajectory. That might happen, since the initial conditions differ for each ensemble 

member and precipitation, evaporation play a significant role in the filter (affect solution 

behaviour). As it concerns the behaviour of the ensemble standard deviation in the last 

three panels of both figures, we are able to observe that become smaller after the first 

observation. It is worth noting that the observation variance is specified a priori and it 

remains fixed through the experiments. We conclude, thus, that we observed better 

results for more measurements over time, since the filter taking notice of observations. 

That indicates stable filter behaviour, but the possibility of generalizing the experimental 

results may lead to errors for reasons that are given in detail later in this Section.     

  In figure 6.2, as mentioned before, we assume imperfect background (position that starts 

from ‘wrong’ point). That affects, as we expected, the filter behaviour. All the panels 

(especially the first three) in this figure indicate the fact that the true state is often outside 

the band given by the ensemble mean ±  ensemble standard deviation. It is clear also, 

especially in the last three panels, that the ensemble spread is too small. We expected to 

observe that results, since we work with a random sampling problem, where sometimes 

the samples do not lie within the band given by the ensemble mean ±  ensemble standard 
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deviation. Note, finally, that the choice of the ensemble size play significant role and we 

have to point out that for larger number of ensemble members we observe ‘better’ results. 

These are illustrated in Appendix B. 

  Generally, the use of small ensemble sizes often leads to less accurate results (Livings et 

al., 2008). It is useful to consider how the ETKF estimates converge to the true state as 

the ensemble size increases. Hence, for that purposes, figure 6.3 illustrates individual 

ensemble members with the assumption of imperfect observations. For the experimental 

results in figure 6.3 we run the ETKF for 10 days over 0.01-time interval and a state 

space of dimension n =150, since for small number of space grid points we face problems 

(numerical diffusion) with the implemented flood model. Each panel of figure 6.3 is for 

4, 10, 50 and 100 ensemble members respectively which are represented as red lines. In 

these experiments, we observe all the components in space and we assume 20 

measurements over time plotted as error bars of the 20th coordinate. In figure 6.3, we 

assume perfect background and we use the same observations for each ensemble. The 

case of imperfect background is illustrated in Appendix B. An important feature of the 

these experimental results is the fact that the ensemble spread is getting smaller after the 

first observation; and that is clear in all panels of figure 6.3. Finally, we are able to 

observe that after the first couple of observations are assimilated, the ETKF estimates 

converge to the true state, as we expected. That becomes more obvious when the 

ensemble size is increased, as in the last three panels of figure 6.3.  

  It is very important to be mentioned that after several trials of the filter we chose again, 

for all the experiments, to run the simplified 1-D distributed flow model and hence the 

ETKF for value of parameter a  equal to 0.05 (the parameter that was chosen in our 

research to depend on soil, geology, land cover etc.). With that value we allow to rainfall 

and evaporation to have the significant role in the filter, but at the same time we keep a 

balance as it concerns the increasing values of river flow during the last experimental 

days. Note that in Chapter 4, we made the assumption that is raining 20 times more than 

we have evaporation. Hence, it was expected, by increasing the value of the parameter 

(increasing also the forecast errors) to observe filter divergence and by decreasing the 

value (decreasing the forecast errors) to obtain stable filter behaviour, whether we assume 

perfect or imperfect background (the plots are not shown). 
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Figure 6.1 Imperfect observations, perfect background. The 1st, 2nd, 3rd and 4th panel 

show the first component of the output of the ETKF plotted relative to the truth for 

number of observations 1, 5, 10 and 20 over time, respectively. Ensemble size is taken 

equal to 4=N . 
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Figure 6.2 Imperfect observations, imperfect background. The 1st, 2nd, 3rd and 4th panel 

show the first component of the output of the ETKF plotted relative to the truth for 

number of observations 1, 5, 10 and 20 over time, respectively. Ensemble size is taken 

equal to 4=N . 
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Figure 6.3 ETKF, perfect background, N = 4, 10, 50 and 100 the ensemble members for 

the 1st, 2nd, 3rd and 4th panel, respectively. Red lines show individual ensemble members 

and the imperfect observations are plotted as error bars.  
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  So far we show the behaviour of the filter if we observe all the components in space and 

changing the assimilated observations in time. It is worth presenting the experimental 

results by keeping the number of imperfect observations stable over time (20 

measurements in time) and changing the number of observations in space. In the 

following figures 6.4 and 6.5, we present a sequence of plots by assuming that we 

observe 1, 15 and 50 components in space (panels in figures 6.4 and 6.5 are with the 

same sequence). In the first case we observe only the first component, in the second case 

we observe every 10 grid points and in the last case every 3. For the following 

experimental results we run the ETKF for 10 days over 0.01-time interval and a state 

space of dimension n =150. Also, we assume perfect background and size of ensemble 

members 27=N . The experimental results, in figure 6.4, illustrated by giving the first 

component of the output of the ETKF of an observed grid point plotted relative to the 

truth and in figure 6.5 of an unobserved grid point. Note that the assimilation is able to 

adjust the unobserved components towards the truth even though they are not observed. 

The dotted line at zero represents the true state. The red line represents the ensemble 

mean and the other two lines indicate ensemble mean ±  ensemble standard deviation.  

  It is worth noting, if we compare these two figures, that the filter behaviour is different 

for the observed and unobserved points, as we expected. Since, these figures represent the 

difference between the filter and the truth we are able to obtain, in figure 6.4 that the true 

state is inside the band defined by the ensemble mean ±  ensemble standard deviation, 

especially in the last panel, where more observations are used. Also, it is important to be 

mentioned for the same figure that the size of the ensemble spread is getting smaller as 

we take more measurements. Finally, in the second panel of figure 6.4, though the small 

number of the assimilated observations, a further consequence may be unstable filter 

behaviour in comparison with the last panel where the filter converges. On the other 

hand, in figure 6.5 the true state is often outside the band defined by the ensemble mean 

±  ensemble standard deviation in the third panel, but in the other two is inside. That 

might happen because the filter gives more weight than it should to the forecast in the 

next analysis step and less to the observation. Note also that the problem is a random 

sampling problem and thus we expected these experimental results.  
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Figure 6.4 The 1st, 2nd and 3rd panel show the first component of the output of the ETKF 

of an observed space grid point plotted relative to the truth for number of imperfect 

observations 1, 15 and 50 in space, respectively. Ensemble size is taken equal to 27=N .  
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Figure 6.5 The 1st, 2nd and 3rd panel show the second component of the output of the 

ETKF of an unobserved space grid point plotted relative to the truth for number of 

imperfect observations 1, 15 and 50 in space, respectively. Ensemble size is taken equal 

to 27=N .  
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  The ETKF has been performed within contexts of the simplified 1-D distributed flow 

model, which is a low dimensional model and offers the obvious advantage of a much 

reduced dimensionality n  of the state vector x  (in terms of calculations in the 

implemented filter). In this implementation of the ETKF we make use of a state space of 

dimension 150=n  (such a small number), for computational reasons. This is an 

important limitation as reviewed in Ehrendorfer, (2007) and the possibility of 

generalizing the experimental results may lead to errors, in terms of filter divergence or 

convergence. In our research we obtained stable filter behaviour (filter convergence). 

Also, the sequential nature of the ETKF may lead to filter convergence or to unphysical 

stationary (same filter behaviour) results (Ehrendorfer, 2007). The nature of the 

stationary properties of the KF and EnKF has been considered in detail by Daley and 

Menard, (1993) and Ehrendorfer, (2007), but in our research we did not face problem 

with stationary filter behaviour. Hence, in view of the above discussion and presentation 

of the experimental results we expect that the assimilation results might be quite different 

when obtained on the basis of a more active assimilation model. Such a model will be if 

we increase the dimension of the state space, the number of days (that we run the model) 

and the size of ensemble members. Thus, we need to take into account the above issues, 

when trying to explain the experimental results and the filter behaviour. Although, the 

carefully usage of the simplified distributed flow model offers advantages and should be 

considered useful for assimilation methods, especially with EnKF methods. 

 

 

6.2 Summary 
 

In this Chapter we represented the experimental results with an Ensemble Square Root 

Filter; the implemented Ensemble Transform Kalman Filter (ETKF), of Chapter 5, in 

conjunction with the simplified 1-D distributed flow model of Chapter 4. The ETKF was 

modified for use with single inputs which specified a priori in the filter. The possibility to 

deal with random inputs (e.g. an ensemble of inputs) requires further investigation. One 

of the purposes of this thesis was to investigate the effects of ensemble size and 
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observation frequency on the behaviour of the forecast-assimilation dynamical system.     

Hence, it is important to be mentioned that the use of small ensemble sizes often led to 

less accurate results, since we observed that the ETKF estimates converge to the true 

state as the ensemble size increases. It was clear also, from the experiments, the fact that 

if more observations were assimilated, during the days we run the filter, the true state was 

often inside the band defined by the ensemble mean ±  ensemble standard deviation, 

indicating filter convergence. Moreover, the experiments have revealed and the following 

main points. The first feature pointed in the fact that the choice of perfect or imperfect 

background may affect the filter behaviour.  The selection of perfect background usually 

led in stable filter behaviour and for the selection of imperfect background we had to take 

into consideration the fact that the problem was a random sampling problem, where 

sometimes the samples do not lie within the band of ensemble mean ±  ensemble 

standard deviation. The second feature was the fact that although we observed stable 

filter behaviour, the usage of the simplified low-dimensional (1-D) distributed flow 

model and the sequential nature of the ETKF may lead to this filter convergence. Finally, 

the choice of the values of parameter a  which controls the behaviour of the rainfall 

inputs in our research may lead to different results than the one we observed. However, 

parameter, space, time, ensemble size and background limitations can result in the 

accuracy of the filter but we still can have good results. 
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Chapter 7 

 

Conclusions 
 

 

7.1 Summary and Discussion 
 

The purposes of this dissertation were to design and implement a simplified one 

dimensional (1-D) distributed flow model, using a similar to the Grid-to-Grid routing 

scheme (Moore et al., 2006) and to modify an Ensemble Kalman Filter (EnKF), the 

Ensemble Transform Kalman Filter (ETKF), for use with (rainfall) inputs and the 

simplified 1-D distributed flow model. 

  In Chapter 2, we introduced an overview of flood forecast models, focusing on the 

distributed Grid-to-Grid flow model (Moore et al., 2006), and we represented briefly the 

sources of uncertainty in flood modelling which divided in three categories by Leahy et 

al., (2007): input uncertainty of rainfall, model uncertainty and output uncertainty. An 

ensemble approach has been developed to try and deal with rainfall uncertainty, by using 

ensemble rainfall forecasts as an input to an ensemble flood model. It seems natural to 

combine this approach with an ensemble data assimilation system and these ideas were 

discussed in Chapter 3. 

  Our fundamental issue in Chapter 3 related to the description of data assimilation 

techniques, such as the Kalman (presented in Welch & Bishop, 2006) and Ensemble 

Kalman Filter methods which are valuable in flood forecasting. The Kalman Filter (KF) 

developed for linear dynamic systems and provided a means of explicitly taking account 

of input, model and output uncertainties. For nonlinear dynamic systems EnKF 

techniques (presented in Evensen, 2003) provided an alternative method of estimating 

these uncertainties by the use of an ensemble of state estimates instead of a single state 

estimate and without maintaining a separate error covariance matrix. These data 
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assimilation methods are useful in flood forecasting, since the use of real-time flood 

models requires attention to uncertainty estimation and model initialization (i.e. state 

estimation); problems which can be solved using these techniques. It is important to be 

mentioned, that the EnKF was not originally designed to take into account (rainfall) 

inputs and hence the algorithms described without that assumption.     

  In Chapter 4, the key idea was to introduce a new simplified 1-D distributed flood 

model, as a subject for experiments, assuming periodic boundary conditions. The 

assumption of periodic boundary conditions was not very realistic, since few rivers have 

a loop shape. However, we have chosen these conditions to make our flow model easier 

to implement numerically. We gave an analytic description of the flow model 

methodology; focusing on the numerical scheme (upwind scheme which is first order 

accurate in time and space) we chose to integrate the simple kinematic wave equation 

(4.1). The experimental results, of the simplified 1-D distributed flow model, show that 

low order numerical schemes, such as the upwind scheme tend to have numerical 

diffusion. A useful approach to manage with this problem was to be careful to have 

sufficiently many spatial grid points, since after several runs of the flow model we 

observed better results for large state space dimension. We concluded also that the 

method suffers from some arbitrary choices. These include the choice of the parameter a  

(a parameter in the simple flow model that we chose to depend on soil, geology, land 

cover etc.). Moreover, an important limitation of our research was that we have used 

prescribed functions for precipitation and evaporation inputs and not any real data to 

compare our flow model performance with reality. However, the character of the partial 

differential equation (PDE) we chose to solve (hyperbolic with forcing) is similar to that 

used in more realistic models such as the Grid-to-Grid model by Moore et al., (2006), 

where the several trials of this model on simply responding catchments could help us 

understand how easily and widely the simplified distributed flood model could also be 

applied to address the ungauged forecasting problem at any location within a chosen 

domain. Hence, parameter, space and time limitations can result in the accuracy of the 

distributed flood model and in the applicability of our work but we still can have good 

results, and the approach we described in this thesis is a sensible way forward for 

research. 
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  Chapter 5 was about the presentation of an implemented EnKF; the ETKF using the 

MATLAB code written for Livings, (2005), through modifications and additions have 

been made for this thesis. The purpose of this Chapter was to provide a complete 

interpretation of the ETKF and to present new ideas that used in the implemented ETKF. 

The key idea was to modify the ETKF for use with inputs and a simple flood model, as 

described in Chapter 4. For our implementation we used single inputs and the possibility 

of working with an ensemble of inputs may be an area for further investigation.  

  Finally, in Chapter 6 we gave an analytic presentation of the experimental results using 

the ETKF implementation of Chapter 5. We gave explanations of the features we 

observed from the experiments and of the problems that were encountered with the 

implemented ETKF. We observed that the filter behaviour depends on the assumption of 

perfect or imperfect background and on the size of ensemble members. The selection, in 

our experiments, of perfect background usually led in stable filter behaviour. And the use 

of small ensemble sizes often led to less accurate results, since we observed that the 

ETKF estimates converge to the true state as the ensemble size increases. The 

experiments revealed also the following main point. From the ETKF experiments we 

observed stable filter behaviour, but the usage of the simplified low-dimensional (1-D) 

distributed flow model and the sequential nature of the ETKF may led to this filter 

convergence. Hence, in view of the experimental results in Chapter 6, we expect that the 

assimilation results might be quite different when obtained on the basis of a more active 

assimilation model. Such a model will be if we increase the dimension of the state space, 

the number of days and the size of ensemble members. The filter, also, may suffer from 

some arbitrary choices such as the choice of the parameter a  (a parameter in the simple 

flow model that we chose to depend on soil, geology, land cover etc. and controls the 

behaviour of rainfall inputs). The assumption of taking the model error equal to zero in 

the filter, the fact that we chose not applying the usual covariance inflation and 

localization that is common in EnKF usage and the use of a square root filter rather than a 

perturbed observation filter may limit also the applicability of our work, but, although 

these limitations, this filter is a sensible way forward for research and operations.  
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7.2 Further work 
 

Three main areas may be identified for further investigation, as it concern the 

implementation of the simplified 1-D distributed flow model (Chapter 4) and the 

implemented ETKF (Chapter 5): the numerical scheme used to integrate the simple 

kinematic wave equation of the simplified 1-D distributed flood model, the assumption of 

no spatially uniform model parameters and the assumption of random (rainfall) inputs. 

 

• A higher order numerical method, instead of the upwind scheme (first order 

accurate in time and space) used for the purposes of this thesis, may be identified 

as an area for further investigation in the terms of discretize the simple kinematic 

wave equation (4.1) in Chapter 4. The aforementioned numerical scheme tends to 

have numerical diffusion. 

 

• Precipitation, evaporation and routing parameters are considered to be spatially 

uniform over the area corresponded to a channel plane. Hence, an area for further 

investigation may be the assumption to vary these parameters from plane to plane.       
 

• Implementation of the ETKF for use with random inputs (e.g. an ensemble of 

inputs as described in Chapter 5) instead of single inputs which specified a priori 

in our ETKF experiments may be identified as an area for further investigation. 

For the case we have an ensemble of inputs, a realistic assumption about the 

distribution of the precipitation will be the assumption of non-Gaussian rain, since 

rainfall can not have negative values. However, something similar was presented 

in the Srikanthan et al., (2007) paper for the perturbed observation filter, where 

Gaussian rain used. Hence, it would be an interesting work to use log-normal 

inputs and try to correct them using further observations, perhaps by smoothing 

rather than filtering.   
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Appendix A 
 

Graphs of the simplified 1-D distributed flow 

model 
 
This Appendix is a supplement to Section 4.6. Figures A.1 and A.2 correspond to figures 

4.2 and 4.3 of Chapter 4 and represent the experimental results by running the flood 

model for value of parameter a  equal to 0.005. They have been placed in Appendix 

because they mainly used for comparison of the results observed in Section 4.6, where 

05.0=a . By changing the value of parameter a  in this case we try to keep a balance 

between the values of rainfall input and rainfall loss-evaporation in the flood model. 

Figure A.1 shows a sequence of plots of the river flow against time (80 days), at equal 

time intervals 01.0=∆t . There are again four panels, where the first panel illustrates the 

analytic solution and the other three panels the numerical solution.  The second panel (a.) 

is an example of the evolution of the flood model subject to a small (40) number of grid 

points. The third panel (b.) is for 150 and the last panel (c.) for large (450) number of 

(space) grid points. Finally, figure A.2 shows parallel river flow curves against space 

with state space dimension equal to 100, for 50 days at different time intervals t∆  equal 

to 0.01, 0.03, 0.05, 0.07 and 0.1. The solutions in both figures A.1 and A.2 are obtained 

in a periodic domain, with period π2 .  
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Figure A.1 A sequence of plots of river flow against time (80 days at equal time 

intervals 01.0=∆t ) for different state space dimensions (40, 150 and 450 spatial grid 

points) and 005.0=a . This corresponds to Figure 4.2. 
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Figure A.2 The model was run for time 50=t  days at different time intervals t∆  equal 

to 0.01, 0.03, 0.05, 0.07 and 0.1. In the figure are shown parallel river flow curves against 

space with state space dimension equal to 100 and 005.0=a . This corresponds to Figure 

4.3. 
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Appendix B 
 

Graphs of the ETKF 
 
This Appendix is a supplement to Chapter 6. Figures B.1, B.2 and B.3 correspond to 

figures 6.1, 6.2 and 6.3 of Chapter 6 and represent the experimental results by running the 

ETKF for ensemble size 27=N  for figures B.1 and B.2 and for imperfect background 

for figure B.3. They have been placed in Appendix because they mainly used for 

comparison of the results observed in Chapter 6. By increasing the ensemble size we 

observed ‘better’ results; filter convergence for both assumptions of perfect and imperfect 

background in figures B.1 and B.2. Assuming imperfect background in figure B.3 we 

observed that after the fourth observation is assimilated, the ETKF estimates converge to 

the true state. The ETKF was run making all the assumptions as in Chapter 6 for each 

figure.  
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Figure B.1 Imperfect observations, perfect background. The 1st, 2nd, 3rd and 4th panel 

show the first component of the output of the ETKF plotted relative to the truth for 

number of observations 1, 5, 10 and 20 over time, respectively. Ensemble size is taken 

equal to 27=N .  This corresponds to Figure 6.1. 
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Figure B.2 Imperfect observations, imperfect background. The 1st, 2nd, 3rd and 4th panel 

show the first component of the output of the ETKF plotted relative to the truth for 

number of observations 1, 5, 10 and 20 over time, respectively. Ensemble size is taken 

equal to 27=N .  This corresponds to Figure 6.2. 
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Figure B.3 ETKF, imperfect background, N = 4, 10, 50 and 100 the ensemble members 

for the 1st, 2nd, 3rd and 4th panel, respectively. Red lines show individual ensemble 

members and the imperfect observations are plotted as error bars. This corresponds to 

Figure 6.3. 
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