Abstract

The flow over an isolated two-dimensional mountain is investigated using a vertical slice
version of the Met Office Unified model. The upstream flow is of constant wind speed U
and constant Brunt-Vaisala frequency N. The dimensionless parameters for this problem
are the Froude number Fr = U/NH, Rossby number Ro = U/fL and the ratio f/N,
where L is the half-width of the mountain, f is the Coriolis parameter and H is the
maximum height of the mountain. The solution is approximately determined by Ro and
Frif H/L is fixed. It is found that the limit f — 0 is singular (i.e. the flow solution does
not converge to the f = 0 solution), and there exist multiple solutions; one for f = 0 and
two obtained in the limits f — 0" and f — 0~. A barrier jet on the upstream side of
the mountain exists within the Rossby radius of deformation Lr = NH/f. The strength
of the barrier jet increases linearly as both f and N increase at the same rate keeping
f/N constant. Vertical kinetic energy is used as a measure of gravity wave activity. It
is found that for f > fy/4 vertical KE decreases as f increases. As Ro decreases, it
is shown that there is second-order convergence to the semi-geostrophic solution. For
f > 0 pressure drag on the mountain decreases as f increases. When both f and N are

decreased together the drag does not vary by more than 20% from the mean value.
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Chapter 1

Introduction

The problem of stratified flow over mountains has been studied for several decades. A
“classical” problem in this field of study is that of steady, Boussinesq, hydrostatic, non-
rotating flow, unbounded above (Smith 1989).

There are a wide range of scales that must be considered, for example, the nature of
a disturbance caused by a narrow hill is quite different to that of a broad plateau, even if
the height of the terrain and other factors are the same. For small-scale mountains or hills
which are 100m to 50km wide, the flow can be considered without including the Coriolis
force. For mesoscale and synoptic-scale mountains (wider than 50km) the rotation of
the Earth cannot be neglected. Examples of such mountains include the Scandinavian
mountain range (width ~ 300km), the Alps (width ~ 250km), and the Canadian Rockies
(width ~ 400km) (Smith 1979b).

There are many features of airflow over mountains, both upstream and downstream
of the mountain. A few examples include upstream blocking, barrier jets, gravity waves,
trapped lee waves and fohn winds.

The blocking of low-level air is one of the most important ways in which mountains
affect the air flow. The heavy surface air may have difficulty in running upslope and due
to this, the surface level flow tends to slow as it approaches the mountain (Smith 1979a).
In the nonrotating case this upstream layer of stagnant fluid will eventually be of infinite

extent. However, in the rotating case the Coriolis force limits this extent to a maximum



length on the order of the Rossby radius of deformation before receding back toward the
mountain. Thus, the Coriolis force is the major factor which limits the strength and
extent of the flow blocking (Pierrehumbert and Wyman 1985).

An effect of flow blocking is that it causes air at levels just above the mountain top to
be forced down the lee-side of the mountain as a type of fohn (Shutts 1998). A fohn is a
warm, dry wind that descends in the lee of a mountain range. ‘Féhn’ is the regional name
for this type of wind in the European Alps. It has a different name in other regions, such
as the ‘chinook’ of the Rocky Mountains, or the ‘nor'wester’ in New Zealand. Winds of
this type are noted for their violence and gustiness. For example, on the eastern slopes
of the Rocky Mountains wind speeds have reached in excess of 56ms™"' (Quaile 2001).

Many patterns of the flow over mountains are gravity waves, in which the vertical
displacement from equilibrium is restored by gravity, with subsequent under- and over-
shooting of the equilibrium level giving rise to a series or train of waves (McIlveen 1997).
Gravity waves can appear as vertical displacements of potential temperature contours
which tilt upstream with height, indicating an upward transport of energy and a down-
ward transport of momentum (Sprenger and Schir 2001). Another example of mountain
waves are lee waves, which Pierrehumbert and Wyman (1985) describe as undular motions
that, given sufficient time, extend arbitrarily far downstream of the mountain without

diminution of amplitude.

In order to describe the flow problem, dimensionless parameters are used. By varying
these, different regimes of flow can be investigated. There are many of these parameters
to choose from but only a selection are used in this project. However, these still enable us
to simulate a range of flow solutions. We now introduce three dimensionless parameters
which are of importance here.

One important dimensionless parameter is the Rossby number, Ro. Here, we give a
brief description of how this number is derived. The full horizontal momentum equation

(introduced properly later in Section 2.1) can be written

Dv 1
— k - =0
Dt+f ><V+pVHp
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where Vg = (%, a%) and f is the Coriolis parameter. We perform scale analysis on

this equation by using U = horizontal speed scale, L = horizontal length scale and L/U =

time scale. Thus we can scale each term of the horizontal momentum equation as follows:

U? A
Term 1 ~ — Term 2 ~ fU Term 3 ~ =L,
L pL

If we compare the magnitudes of Terms 1 and 2 we obtain

Term 1 U? U

~ =—=R
Term 2~ LfU _ fL ¢

and this is the Rossby number. The smallness of Ro is a measure of the validity of the
geostrophic approximation, and the importance of the effect of rotation (Holton 1992).
So for Ro < 1 the horizontal momentum equation can be approximated by neglecting
Term 1 and the flow is called “geostrophic”, which represents an exact balance between
the pressure gradient and the Coriolis force.

Another dimensionless parameter of interest is the Froude number defined as

Fr=— (1.1)

5SS

z

where H is the height of the mountain and the Brunt-Vaisala frequency N = (%—)%
where ¢ is acceleration due to gravity and 6 is a reference potential temperature.. The
Froude number is a measure of the importance of stratification. If F'r < 1 stratification
effects are important, and the smaller F'r is, the more important these effects are. The
stronger the stratification, the weaker the vertical velocity and vertical displacements
(Cushman-Roisin 1994). Note that H is a depth scale, which could also have been chosen
to be the total height of the domain or a height scale related to a shear in U. However,
since U (as well as N) are constant with height in this project and the mountain is an
appreciable height, mountain height is the depth scale chosen.

The ratio of Ro and Fris NH/fL, or AN/f where A is the aspect ratio H/L. Thus,

if A is held constant, a third important parameter is the ratio f/N.
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Figure 1.1 indicates how the flow is influenced for different values of Ro and F'r.
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t Three-dimensional
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Figure 1.1: Influence of rotation and stratification on the flow as a function of Ro and Fr.

(Adapted from Cushman-Roisin (1994))

The problem considered in this project is that of a flow of constant speed with height
(U) and constant stratification with height (N). This flow goes over an isolated, two-

dimensional cosine mountain of half-width L and maximum height H (Fig. 1.2).
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Figure 1.2: Schematic of the flow problem considered in this project. The mountain is a cosine
shape of half-width L and mazimum height H. The upstream flow speed U and the stratification

N are both constant with height.

We can think of the mountain as a ridge which extends infinitely far in the y di-
rection. This is ‘frontal scaling’ in which one dimension is infinitely larger than the other
and thus the use of semi-geostrophic theory is appropriate in this project. Cullen (2000)
states that semi-geostrophic theory is second-order accurate (or better) if one horizontal
length-scale is larger than the Rossby radius of deformation or if the ratio of horizontal to
vertical scales is is greater than f/N, while it is asymptotically valid (first-order accurate)

for all small Ro cases.

The methodology and results of this project are set out as follows. In Chapter 2 we
introduce the full Euler equations which are the ones solved by the model used in this
project. In order to analyse their solutions we first simplify these equations by using the
Boussinesq and anelastic approximations. We then non-dimensionalise and linearise these
basic equations and solve them to obtain non-trivial solutions which describe different
regimes of flow.

In Chapter 3 we present a brief overview of the model being used, which is a vertical

slice version of the Met Office Unified model. A more comprehensive description of this



model is given by Cullen et al. (1997). Experiments are then conducted to find the choice
of CFL number and weighting parameter o which give the fastest convergence to steady
state (Section 3.2). Experiments are also conducted to find the steady state solutions as
f varies, and steady states as U varies.

An aim of this project is to explore regimes where rotation is important. In Chapter
4 we begin by examining the singularity of the limit f — 0 and we indeed expect it
to be singular in accordance with experiments conducted by Sprenger and Schér (2001).
The demonstration of this singularity is another aim of the project. We then see how
the upstream influence varies with f. We expect that as f decreases upstream influence
increases. Cullen et al. (1987) found that in the absence of rotation there is no limit on
the upstream influence, but if rotation is present this distance is restricted. The variation
of vertical kinetic energy and pressure drag with f is also investigated since vertical KE
is a useful measure of gravity wave activity.

In Chapter 5 we investigate the importance of the strength of the upstream flow speed.
Since both Ro and F'r depend on U they will vary at the same rate. Another of our aims
is to show that the limit solution for small Ro and F'r shall be semi-geostrophic and in this
chapter we investigate the convergence to this solution. The semi-geostrophic solution is
very singular so validating its limit is non-trivial. An aim of the project is to demonstrate
the expected sensitivity of the semi-geostrophic limit to Ro and Fr. From Sprenger and
Schir (2001) we expect the amplitude of vertical displacements to decrease as U decreases.

In Chapter 6 we see how both rotation and stratification effect the flow solution in
the form of the dimensionless parameter f/N, which is kept constant in each of the
experiments. We will demonstrate how well the flow is determined by Ro and F'r by
achieving the same values as in Chapter 5 by varying f and N instead of U. We expect
to show that the solution is accurately determined if it is in a linear regime (as we discuss
in Chapter 2).

Finally, in Chapter 7 we discuss the main conclusions drawn from this project.



Chapter 2

Linear Analysis of the Basic

Equations

2.1 Linearisation of the basic equations

We must begin by introducing the full Euler equations

% %g_p —fv=0 (2.1)

% %(O;’_p + fu=20 (2.2)

%+%%+g:0 (2.3)

g—z =0 (2.4)

% +pVau= (2.5)

where D% = % + u% + vaa—y + w%, p is density (kgm™2), g is acceleration due to

gravity (ms~2) and 6 is potential temperature (K). Equations (2.1) and (2.2) are the



horizontal momentum equations, (2.3) is the vertical momentum equation, (2.4) is the
thermodynamic equation and (2.5) is the mass conservation equation. These are the
equations that are being solved by the model used in this project.

For the purposes of understanding the solution some approximations are now made,
including the Boussinesq and anelastic approximations, in order to reduce the above
equations to a simpler form. In the Boussinesq approximation density is replaced by
a constant mean value, p,.r, everywhere except in the buoyancy term in the vertical
momentum equation (Holton 1992), and the anelastic approximation is made such that
V.(preru) = 0. Also, a reference state is subtracted with uniform 6.

If, for these purposes, we assume that p ~ 1kgm =3 the basic, anelastic, incompressible

Dp

(37 = 0) Boussinesq equations are

p* = pRT (2.6)

ou* ou* ou* ou*  Op*
* * * _ * — 2.
o +u P + v o +w 9 + pp fvr=0 (2.7)

ov*  Op*

5 u* o T v o +w* 5 T ay + fu* =0 (2.8)
N N
883: +u gi: v gz: +w*gzz =0 (2.10)

ou*  ov*  ow* _0 (2.11)

ox* + oy* + 0z*

where (2.6) is the equation of state for dry air (R = 287.Jkg 'K ! is the gas constant
for dry air), (2.7) and (2.8) are the horizontal momentum equations, (2.9) is the verti-
cal momentum equation, (2.10) is the thermodynamic equation and (2.11) is the mass

conservation equation. The ‘x’ indicates that the equations are dimensional.



We now non-dimensionalise Eqs. (2.7) - (2.11) by using scalings of the form

u* = Uu
v* = Uv
w* = Wuw
t" =Tt
=Lz
y =Ly
2z =Hz
61 = 0,0
p" = Pp

and we choose U = LT~!, W = HT ! and P = L*>T~2.
By using the above scalings and multiplying through by 7//U, the non-dimensional

horizontal momentum equations become
ou ou ou Ju Op 4

+U—+v—+w-—+ - Ro

ot Ox dy 0z Oz v="0 (2.12)

uw=0 (2.13)

and we see that the dimensionless Rossby number is now present as a control pa-
rameter. Doing the same as above but this time multiplying through by 7'/W, the non-
dimensional vertical momentum equation becomes
ow ow ow ow _,0p

-~ it it L ATEIE _gh = 2.14
8t+u8x+vay+w8z+ o g0 =0 (2.14)

where the aspect ratio A = H/L, and dimensionless ¢ = ¢*T?/H. Trivially, the

non-dimensional thermodynamic and continuity equations are

00 00 00 00
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and

ou Ov Ow

— 4+ —+ —=0. 2.1
8z+8y+8z 0 (2.16)

We now define the linearised, non-dimensional form of the Boussinesq hydrostatic

balance approximation to be

AZ% = ¢0. (2.17)

We linearise about a state of rest (p = p(2), # = 6(z)) and divide the dependant vari-
ables into constant basic state portions (denoted by overbars) and perturbation portions

(denoted by primes), i.e.

u=u
v=1'
w=w
p=pz)+¢
0=0(z)+6.

Substituting for u, v, w and p in (2.7) and (2.8), and cancelling products of perturba-
tion terms (because we assume these to be small compared to the dominant terms) gives

the linearised horizontal momentum equations

ou  op 1

E + % - RO v =0 (2.18)
ov'  op 4

—+— 4+ R =0. 2.19
T + By + Ro "u (2.19)

Doing the same for (2.9) but also substituting for 6 gives

ow’ o (0p Op — ;L
8t +A <$+a—z>—90—90—0,

10



and by using (2.17) we obtain the linearised vertical momentum equation

ow' +A_28_p’ B

ot 0. 90 =0

Finally, the linearised mass conservation and thermodynamic equations are

ow o, o
or 0y 0z

o0 00

respectively.

(2.20)

(2.21)

(2.22)

We see that the Froude number has not yet been introduced into the equations. To

do this we take 2 of Eq. (2.20), giving

0%’ 0%y o0’
A~? —g— =0.
a2 Y ot o
Substituting in for aa_at’ from Eq. (2.22) gives
o' 0%y’ 00
A_2 127
o T e T, =
We now define
00
Fr—2 = g—A?
" 9az
and note that
0
N2 — g*a_ — —QFT—QA—Q
0z*

SO
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N2H?
Fr=2 = N?T?%A% = = u .

So F'r has been introduced into the equations after linearisation. Solutions of the
nonlinear equations will thus depend only on Ro, A and ¢. If the linearisation is accurate,

the solution will depend on Ro, A and F'r.

2.2 Solution of the linearised equations

We now assume solutions of the form

u= aei(wt+km+ly+mz)
v =7 ei(wt+km+ly+mz)
w= 0 ei(wt+km+ly+mz)
p= ﬁei(wt+km+1y+mz)
0 — éei(wt+kx+ly+mz)

and upon substitution these give

iwi+ikp — fo =0
iwi +ilp+ fi =0
0
i +imp — 2 =0
0o
ikt —+ 10 +imw = 0
.00
1wl + —w = 0.
0z

Non-trivial solutions to this system of equations are given by

12



iw—f 0 ik 0

fiw 0 il 0
det| 0 0 iw im —£|=0.
0
tk il im 0 O

0 0 2 0 jw

We assume that N? = 0%% is independent of z and we obtain

—iw? (k% + 12 + m?) + iw f*m? + iw(k* + *)N? = 0

f?m? 4 (k? + [12) N2
= w=0 or  w= :i:\/ PR (2.23)

We now define a characteristic time scale T = w™!, horizontal length scale L

(k2+12)~% and height scale H = m . Three cases of (2.23) can be investigated as follows:

Case 1: m* > k* +I* and f*m?* > (k* + [*)N? (L/H > 1)
In this case the solution reduces to

f2m2

_ _ g
5 = w==xf = T=4f

w==+

m

leading to shallow disturbances such as inertial waves.

Case 2: m* < k* +I* and f*m?* < (k* + [*)N? (L/H < 1)
In this case the solution reduces to

(k2 + )N?

— _ -1
mp- & w=N = T=+N

leading to deep disturbances such as buoyancy oscillations.

13



Case 3: m? > k? + 1% but f?*m?* < (k* + I*)N? (L/H > 1)
In this case the solution reduces to

(F+P)N> w N
m? V2 m

leading to internal gravity waves.

w ==+

We expect these solutions to be typical of the wave solutions of the fully compressible

equations.

2.3 Description of the semi-geostrophic solution

Shutts (1998) describes a semi-geostrophic model of upstream blocking. The semi-geostrophic
solution shows a blocked region and barrier jet upstream of the mountain. High potential
temperature air is forced to descend on the lee side of the mountain. He states that isen-
tropes that were initially level with the mountain top may be pulled right down to the
lowest level. He assumes that fluid instantaneously jumps from mountain crest height to
a new downstream position conserving absolute momentum, and such a process involves
the creation of unbalanced motion which must be dissipated. He further states that this
energy dissipation occurs with a hydraulic jump near the leading edge of the downstream
fluid. The rate of energy dissipation is equal to the pressure drag on the mountain. This
can be calculated from the hydrostatic pressure difference resulting from the difference
between the potential temperature of the summit level air which is blocked by the moun-
tain and that of the air at the mountain top which is pulled down on the downstream

side. This drag is thus independent of the wind speed.
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Chapter 3

Steady State Experiments

3.1 Overview of the model

The experiments in this project are conducted using a vertical slice version of the Met
Office Unified model. The model makes use of a semi-implicit integration scheme and
semi-Lagrangian advection (Cullen et al. 1997). There is no CFL criterion and so in the
scheme u; does not depend upon its immediate neighbours and thus there is no restriction
on At. The idea of semi-Lagrangian schemes is to achieve stability even for large At by
choosing the most appropriate interval for interpolation, so satisfying the CFL criterion.
However, stability is still limited by a trajectory crossing condition. Some disadvantages
of semi-Lagrangian schemes are that more computer time is required per time step, they
are not particularly accurate with fast forcing such as semi-implicit gravity waves and
they are overly diffusive on coarse grids.

Other features of the model are the inclusion of non-hydrostatic effects and the use of
a semi-implicit algorithm for solving the fully compressible equations. Finite differences
are used and the ‘Charney-Phillips’ vertical arrangement of variables (Fig. 3.1) is used
to improve the geostrophic adjustment properties (Cullen et al. 1997).

The time integration scheme used in the model is based on the second order implicit
Trapezoidal scheme

A
a1 = w4 SR+ F ()

15
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Figure 3.1: Position of the variables of the Charney-Phillips grid where m = Exner pressure

(taken from Cullen et al. (1997)).

which is then generalised by

u" =" %[QF(UHH) + (1 —a)F(u")]

where « is a weighting parameter between 0 and 1. Three choices of « can occur as

follows:
a < % unstable
a= % scheme 209 order accurate
a > % damping occurs.

In this model the orography is grown in the first part of the run to ensure a smooth

start.

16



3.2 Choice of CFL and «

An important consideration in all numerical modelling is how computationally expensive
the model is, i.e. how much computer time is needed to achieve the required result. In
the model used here the value of the CFL number determines the timestep. A larger CFL
number will give a larger timestep. We obviously want to use as little computer time as
possible and so we want to find the least number of timesteps and the longest timestep
necessary for steady state, i.e. the solution in which the fields no longer vary with time.
We require this steady state in order to see the response to the presence of the ridge.

The value of the weighting parameter a will also affect how quickly the solution reaches
steady state. As stated in the previous section damping of the solution occurs for o > %
So in this section we set the Coriolis parameter f to zero and investigate different values
of CFL and «a to see which combination gives the fastest convergence to steady state.

Values of CFL investigated here are 0.2 and 0.4. Higher values were tried but these
caused the model to fail in the region of strong downslope winds. Values of « investigated
are 0.8 and 1.0. To keep each experiment consistent we keep the product of CFL and
the number of timesteps for the orography to grow to its final height, equal to 20. Thus
for CFL = 0.2 the orography takes 100 timesteps to grow, and for CFL = 0.4 it takes 50
timesteps to grow.

Figure 3.2 shows graphs of how the u and w fields for each combination of CFL and «
tend to steady state. We can see that for CFL = 0.4 the differences in the fields between
time steps are less than for CFL = 0.2 from 150 time steps and from here these differences
remain small and reasonably constant. Thus the solution tends to steady state in a lesser
number of timesteps than for CFL = 0.2. Also, for CFL = 0.4 and for a = 1.0 steady
state is reached at the same time as for @« = 0.8 but the difference in each field between
timesteps is slightly less.

For subsequent experiments in this project we therefore choose standard values of CFL

= 0.4 and o = 1.0.

17
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Figure 3.2: Timesteps for solution to reach steady state for (a) u field and (b) w field. The

values of CFL and « for each experiment are given in the legend.
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3.3 Steady state for f — 0

In these experiments we now switch rotation on and attempt to find the steady state
solution of flow over an isolated cosine hill of half-width L = 300km and height H =
2400m. In the vertical the model has 20 levels with a grid length of 0.5km. The horizontal

grid length is 50km.

For the steady state solution (%7; = % + u% + w% = 0) our y-component equation
of motion (2.2) becomes
10
fU=--% (3.1)
p Oy

where U is the wind speed in the = direction. As we keep U at a constant value of

!and vary f we must also vary the right-hand side of (3.1) by the same factor so

10ms™
as to always keep the equation in balance. For example, if we halve the value of f we
must also halve the value of the right-hand side.

From the linear analysis in Section 2.2 we can say that Case 1 is applicable here
because our mountain half-width L = 300km and mountain height H = 2400m (L/H >
1). This gave a characteristic timescale T' = f~!. The time to reach geostrophic balance
will be of order this timescale and so the time for the solution to reach steady state
should be a few times f~!. This will increase with decreasing values of f and decrease
with increasing values of f. However, the downstream flow is turbulent and so the solution
will never reach steady state.

Table 3.1 gives the values of f used in this experiment. A value of f = f,/6 was
also tried but this solution did not converge to a steady state. Increasing the domain

length further may have solved this problem but then the experiment would become too

computationally expensive.
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Table 3.1: Values of f used in experiment.

f Value f=t (hr)

2fp  2.5260 x 10~ 457! 1.1
fo 12630 x 10"*s! 2.2
fo/2 0.6315 x 10~*s~! 4.4
fo/4 0.3158 x 1074571 8.8

Zero 0.0 -

For f = 2f, and f, the length of the domain is 4000km with the mountain centred at
2000km. For f = fy/2 the domain length is also 4000km but with the mountain centred
at 2500km to ensure that the region of upstream influence (discussed later in Section
4.2) does not interfere with the left-hand boundary. For f = fy/4 the domain length is
6000km with the mountain centred at 3000km, again to allow for the region of upstream
influence.

The steady state for a particular value of f is found by calculating the difference in
a particular field between successive timesteps for only the left half of the domain where
there are no turbulent features. For example, the difference in the u field is calculated

using

>t~y

where [ is the number of u values in the domain.

In the model the orography is ‘grown’ from nothing to its final height in 50 timesteps.
Therefore steady state can certainly not be reached before this time. For f = 2fo, fo, fo/2
the timestep is 2025s and so the mountain is fully grown in 28.1hr. For f = f,/4 the

timestep is 2017s and the mountain is fully grown in 28.0hr. Figure 3.3 shows graphs
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Figure 3.3: Times for solution to reach steady state for (a) 2fq, (b) fo, (¢) fo/2 and (d) fo/4.

The legend shown in (a) applies to all graphs.

of how the u, v and w fields for each f tend to steady state. For f = 2fq, fo, fo/2 the
steady states are taken to be 112hr (200 timesteps), 112hr and 253hr (450 timesteps)

respectively. For f = f;/4 the steady state is taken to be 504hr (900 timesteps).

3.4 Steady state for U — 0

For this experiment our equation of motion (3.1) still applies but this time we are keeping

f at a constant value of fy = 1.2630 x 10~*s~! and varying U towards zero. The same

21



principle applies here as in the previous section in that if we halve the value of U we must

also halve the value of the right-hand side.

Table 3.2: Values of U used in experiment.

U Value

22Uy  20ms~!
Uy 10ms !
Up/2 5ms1
Up/4 2.5ms™!

Again, the time for the solution to reach steady state should be a few times f~! and
only the left half of the domain is considered when using (3.2).

Table 3.2 gives the values of U used in this experiment. The timestep is also determined
by the value of U and so it is still necessary to do the steady state experiments even
though f is being held constant. The model would not run for values of U smaller than
2.5ms~! which may be due to the timestep becoming too large for the given Courant
number. For U = 2Uy, Uy, Uy/2,Uy/4 the timesteps are 1012s, 20255, 4050s and 8101s
respectively. Therefore the times for the mountain to fully grow are 14.1hr, 28.1hr, 56.3hr
and 112.0hr respectively.

Figure 3.4 shows graphs of how the u, v and w fields for each U tend to steady state.
For U = 2U,, Uy, Uy/2,Uy/4 the steady states are taken to be 112hr (400 timesteps),
112hr (200 timesteps), 112hr (100 timesteps) and 338hr (150 timesteps) respectively.
Note that for the first three the time to reach steady state is the same since we are not
varying f, which is what this timescale depends on. However, this is not the case for
U = Uy/4 because, as stated above, the mountain has only just finished growing at 112hr

and so a longer time is needed to reach a satisfactory steady state.
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Chapter 4

Sensitivity of Solution for f — 0

4.1 Singularity of the limit f — 0

As the Coriolis parameter f decreases we might expect the steady state solution to con-
verge towards the f = 0 state. Sprenger and Schéir (2001) however, found that this is not
the case. They conducted numerical experiments with values of f = fo, fo/3, fo/6 and
fo/12. The flow fields for the f,/6 and fo/12 experiments displayed negligible difference
and so their results demonstrated that the limit f — 0 is singular, i.e the flow fields did
not converge with decreasing f towards the f = 0 state. This can be explained by looking
back at our steady state equation of motion (3.1). Even if there is a weak f there is still
a weak pressure gradient leading to flow in the y direction, whereas for the f = 0 state
there is no pressure gradient and so no flow in the y direction.

Sprenger and Schir (2001) also conducted an experiment with f = —f;/12 which
produced the same solution as for the f = f;/12 case, except for a change in sign. They
therefore hypothesised that in the absence of rotation the flow problem has multiple
solutions; one for f = 0 and two obtained in the limits f — 0" and f — 0.

We now look at how the results of the numerical experiments in this project compare
with the above theory. Figure 4.1 shows the steady state v fields for the f values discussed
in Section 3.3. A plot for the f = 0 case is not shown since v is zero everywhere.

We see that a pronounced v wind continues to exist in the form of a barrier jet (dis-
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Figure 4.1: Steady state v fields for (a) 2fo, (b) fo, (¢) fo/2 and (d) fo/4. Contour values are

in accordance with the colour bar in ms™!.

cussed in Section 4.2) even for f = fy/4. It is clearly not converging to the f = 0 state,
i.e. zero v wind everywhere. An experiment with f = —f;/4 was also carried out and
this produced the same v field as for the f = f/4 case except for a change of sign. We

therefore also hypothesise that the limit f — 0 is singular and has multiple solutions.
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4.2 Variation of upstream influence with f

Upstream blocking has been recognised as a feature of mountain flows for many years. If
the Froude number (1.1) of a stratified flow over a (two-dimensional) obstacle is sufficiently
large, fluid near the ground would be blocked on the upstream and not flow over the
obstacle. In particular, for two-dimensional topography when U and N are constant with
height, the criterion for blocking is NH/U 2 2 (Baines 1987). In the presence of rotation
the air trajectories within the blocked region may be substantially deflected laterally from
those at higher levels (Shutts 1998) and thus take the form of a barrier jet on the upstream
side of the obstacle. This region of blocking, or upstream influence, is of the order of the

Rossby radius of deformation Lp (4.1).

Lp=—r (4.1)

The distance Ly is taken from the centre of the mountain as shown in Fig. 4.2.

Figure 4.2: Schematic showing the upstream blocking of a mountain, height H, and barrier jet

(indicated by the ® ). The extent of the blocking is the distance L.

In the nonrotating case a mountain with sufficiently large Froude number generates an
upstream blocked layer of infinite extent. However, in the rotating case the blocked region

can extend far upstream when the Coriolis forces are small (Pierrehumbert and Wyman

26



1985). We can see from (4.1) that as f decreases L increases and so as f — 0, Lr — 0.
Similar results were found by Cullen et al. (1987). They conducted experiments with
a stratified flow over a mountain barrier and in the absence of rotation they found no
limit on the upstream influence as dense air was blocked by the mountain. With rotation
present the upstream influence was restricted to a finite distance.

We can also measure the distance of upstream influence using

§p = Jme (4.2)

where 0z is the distance that an air parcel is ‘pushed back from where it wants to be’
by the orography, and v,,,, is the maximum wind speed in the barrier jet. We again see
that as f decreases, this distance increases.

We now compare our results with the above theory. To begin with we can see a well
defined barrier jet for each f value in Fig. 4.1 in the form of high v values on the upstream
side of the mountain. This immediately agrees with the theory.

The distance of upstream influence for each f is found by calculating the horizontal
upstream distance from the centre of the mountain that the value of v decreases to 10%
of it’s maximum value in the jet. We shall call this model-produced distance L,,.

The variation of L,, with f is shown in Fig. 4.3 along with the theoretical deformation
radius Lp as given by (4.1). Also shown is the variation of dx as calculated using (4.2)
with the model-produced values of v,,,,.

We can see that the distance dz is in close agreement with the theoretical Lr and
that it decreases as f increases, as it should do. However, the distance L,, follows the
same trend but has much larger values. The difference between L,, and Lg is of the order

1000km.
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4.3 Variation of vertical kinetic energy with f

In experiments conducted by Sprenger and Schér (2001) it was found that the potential-
temperature contours tilted upstream with height, indicating an upward transport of
energy and a downward transport of momentum.

The vertical kinetic energy is given by

1
vertical KE = / §pw2 dx dy dz (4.3)
v

where V' is the volume of the region of interest. We use this as a measure of gravity

wave activity since the vertical KE is proportional to w? and we can conclude that as the
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amplitude of the displacements of potential temperature contours increase, so does the
component of vertical velocity w.

The potential temperature and w fields for each f used in our numerical experiments
are shown in Figs. 4.4 and 4.5 respectively.

We can see clearly defined vertically propagating gravity waves for each value of f
(Fig. 4.4) and as f decreases the amplitude of the displacement of the isentropes appears
to increase. The flow becomes more turbulent and is very turbulent for f = f;/4 (Fig.
4.4(d)), however the flow for f =0 (Fig. 4.4(e)) is not as turbulent as this. The w fields
(Fig. 4.5) also clearly show the vertically propagating gravity waves and the maximum
value of w appears to increase as f decreases. Therefore, we expect that as f decreases,
the vertical kinetic energy increases.

A diagnostic calculation of the vertical kinetic energy is performed using (4.3). Above
the mountain top the vertical KE of the balanced flow is negligible and so we use this as
a measure of the gravity wave activity. Below the mountain top even the balanced flow
implies large vertical KE. The region above the mountain over which we calculate the KE

is the same size for each solution and is defined by

1 x 105m < 2 < 4 x 105m, 4000m < z < 10000m  f = 0,2f0, fo, fo/2
2 x 105m < z < 5 x 10%m, 4000m < z < 10000m  f = fo/4

2 is evaluated and all values added together to

At each grid point in the region pw
calculate the total vertical KE. The variation of this energy with f is shown in Fig. 4.6.
As expected we see that the vertical KE increases as f decreases, however the value
for f = 01is less than that for fy/4. This may be further evidence of the singularity of the

limit f — 0 (previously discussed in Section 4.1 in that the solution does not converge

with decreasing f to the f = 0 state.
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KE

Figure 4.6: Variation of vertical kinetic energy with Coriolis parameter f.

4.4 Variation of pressure drag with f

Wind speed tends to be low on the windward slope of a mountain or ridge and faster on
the leeward slope. From Bernoulli’s equation, this requires a pressure difference across
the mountain—high pressure upwind and lower pressure downwind (Smith 1979a) . The
pressure difference results in a net drag on the mountain which can be computed as the

horizontal pressure force on the mountain

o d
D = / p(x,z = O)é dx (4.4)

where 7 is a height coordinate.

For the balanced solution there is drag due to upstream blocking (Shutts 1998), then
for larger Ro there is additional wave drag.

The effect of rotation is to reduce the drag. As the parameter Ro~* = Lf /U increases,
the flow gradually loses its wavelike character in the vertical plane (Smith 1979b). Olafsson
and Bougeault (1997) consider the fluid being decelerated as it approaches the mountain.

The deceleration weakens the Coriolis force, and there is a net force acting to turn the flow
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left. Kinetic energy is transferred from flow in the z direction to flow in the y direction.
The movement along the x axis sources the kinetic energy that counteracts the buoyancy
force and forms the mountain wave. Therefore one may expect less pronounced waves in
the presence of rotation.

In our experiments the drag on the mountain is calculated on the bottom row of the

domain using an approximation to (4.4), i.e.

[V

7
Tig1 7 Tio1 T Tiv1 + 7 Tio1 T
DNy _ ~N" - 45
Z_Egz%( 5 5 ) 51%( 5 5 ) (4.5)

J
=3

where 7 = 0 is the left hand edge of the mountain base, ¢ = J is the right hand edge

of the mountain base and % is the centre point of the mountain.

Pressure drag

Figure 4.7: Variation of the pressure drag across the mountain with Coriolis parameter f.

From Fig. 4.7 we see that the pressure drag increases as f decreases as predicted,
apart from when f = 0 when it is much less. This again may also be evidence of the

singularity of the limit f — 0.
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Chapter 5

Sensitivity of Solution to upstream

flow speed U

I are used

For the experiments in this chapter standard values of f = fy and N = 0.01s~
and U is varied according to the values given in Table 3.2. Thus as U decreases, Ro and

F'r decrease at the same rate.

5.1 Variation of vertical kinetic energy with U

Smith (1979a) considers the limit of very slow wind speeds and strong stratification so
that F'r is small. In this situation there will be little vertical motion and the fluid particles
will deflect horizontally. He states that as F'r increases vertical deflections will occur. We
could then argue that the vertical kinetic energy will also increase.

Sprenger and Schér (2001) conducted experiments in the rotating case where the

upstream flow speed was varied from a standard value of 10ms~! to values of 5ms™!

and 20ms~!.

They noted that in general, a decrease of the upstream velocity inhibited
wavelike features downstream. So we expect to find that as we decrease U, the amplitude
of the displacement of the isentropes decreases. Thus the component of vertical velocity
w should also decrease. In our experiments we again use (4.3) to calculate the vertical KE

in a region above the mountain. We have said previously that this is a measure of gravity

wave activity and so we should find that the vertical KE too decreases with decreasing
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values of U. We shall get the balanced solution as Ro, Fr — 0 with Ro/Fr fixed.

The 6 and w fields for each U used in our numerical experiments are shown in Figs.
5.1 and 5.2 respectively. Figure 5.1 clearly shows decreasing displacement amplitudes
of the isentropes as U decreases. As the value of U becomes very small (Fig. 5.1(d)),
Ro becomes very small and the solution gets closer to the steady state, wave-free semi-
geostrophic solution.

From Fig. 5.2 we can see also the decreasing wave activity as U decreases. In fact
the downward values of w on the immediate lee of the mountain decrease quite uniformly
with decreasing U. Thus, quite logically, the fohn effects are almost negligible for small

U values.
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The variation of vertical KE with U is shown in Fig. 5.3. As expected we see that this
energy decreases as U decreases. It would be of interest to examine whether this variation
conforms to a power law and so a plot of % log K E versus log U is also given (Fig. 5.4). The
line of best fit through the points is given by the equation % log KE = 2.468 log U +4.250.

We therefore have a relationship between v K E and U given by the power law

\/ﬁ — U2.468 x 104.250.

Due to the frontal scaling discussed previously in Chapter 1 this suggests second-order

convergence to the semi-geostrophic solution.
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5.2 Variation of pressure drag with U

In Section 4.4 we found that pressure drag increased as f decreased, i.e. as Ro increased.
Since Ro = U/fL and f remains constant in the experiments here, we could expect that
as U increases, pressure drag also increases. Experiments conducted by Smith (1979b)
showed that as the incident velocity decreased, so did the drag. This is indeed the case for
our numerical experiments as shown in Fig. 5.5, yet it is only a weak dependence. Again
Eq. (4.5) is used to compute the pressure force on the mountain. We see a reasonably
linear relationship as U decreases from 20ms~! to 5ms~!. However, the drag is slightly

increased for U = 2.5ms™".

x10°

Pressure drag

0 | | | | | | | |
2 4 6 8 10 12 14 16 18 20

U (m/s)

Figure 5.5: Variation of the pressure drag across the mountain with upstream flow speed U.

In the semi-geostrophic limit solution with very small U there is still drag because
the mountain still blocks the oncoming flow, but as U (Ro) gets bigger the wave activity
increases and there is drag due to the waves and also drag due to the semi-geostrophic
solution. If U = 0 then there would be zero drag, but we did not have access to the code

in which to compute the purely semi-geostrophic balance solution.
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Chapter 6

Sensitivity of Solution to Rotation

and Stratification

For the experiments in this chapter we vary the values of f and N but keep the value of the

—!and

dimensionless parameter f/N constant. Using standard values of f; = 1.263x 107 *s
No = 0.01s7! we get a value of f/N = 0.01263. Therefore, experiments are conducted
using 2fo and 2Ny, fo and Ny, fo/2 and Ny/2, and fy/4 and Ny/4. Thus Ro and Fr

increase at the same rate.

6.1 Effect on upstream influence distance and barrier

jet

From the equation for the Rossby radius of deformation, Lg (4.1) we see that since we are
keeping f/N constant, this theoretical value will remain at 190km. In our experiments,
the model distance of upstream influence, L,,, is calculated as described in Section 4.2
and the additional measure, dx (4.2) is also calculated. The variation of these are plotted
against what we term the ‘scaling factor’ in Fig. 6.1 and the constant value of Lg is also
shown for comparison. The scaling factor is just the factor of both f and /N used in each

experiment.
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Figure 6.1: Variation of distance of upstream influence with scaling factor (the factor by which

both f and N are scaled in each experiment).

We could argue that the N = 2Ny, Ny, Ny/2 values of L,,, remain of a similar magnitude
but the N = N,/4 value is different. A possible explanation for this is that we may not
have completely reached steady state for this value of f and thus the upstream influence
has not settled at its steady state value. Also, for dz the N = 2Ny, Ny, No/2 values
remain in close agreement with Lp but the N = Ny/4 value varies from the others by
approximately 70%.

Figure 6.2 shows plots of the v component of wind for each experiment. We can im-
mediately see that the strength of the barrier jet upstream of the mountain decreases as
f and N are scaled down. Since we had to calculate v,,,, for the calculation of dx above

we can now plot this as a function of the scaling factor (Fig. 6.3).
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Figure 6.2: Steady state v fields for (a) 2fo,2Ny, (b) fo, No, (¢) fo/2,No/2 and (d) fo/4, Noy/4.
Contour values are in accordance with the colour bar in ms 1.

From Fig. 6.3 we see an excellent linear relationship between the factor by which f and
N are scaled and the maximum value of v in the barrier jet. Note that the point at the
origin has been included because we know from Section 4.1 that when f = 0 the v field

is zero everywhere. The line of best fit through the points is given by the equation

Umaz = 1785 5 — 0.903

where Sy y is the scaling factor.
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Figure 6.3: Variation of vmaey with scaling factor. The equation of the line of best fit is Vymer =

17855 — 0.903.

Therefore, we could conclude that f/N is a useful parameter for determining the

strength of the barrier jet.

6.2 Effect on vertical kinetic energy

As we have already seen from Section 4.3 that the effect of increasing Ro without any
change in NV is an increase in vertical kinetic energy. Here, we are also varying N and so
Fr becomes an important parameter. We have already argued in Section 5.1 that with
increasing F'r the vertical KE also increases. Therefore as we increase N we expect the
vertical KE to decrease.

Figures 6.4 and 6.5 show the # and w fields for the experiments in this chapter. Note
that we have rearranged the panels so that Fig. 6.4(a)-(c) can easily be compared to Fig.
5.1(a)-(c) respectively. The solution in Fig. 6.4(d) does not reproduce the same Ro and

Fr as any of the experiments in Chapter 5 and so will not be used for comparison.
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Figure 6.4: Steady state 0 fields for (a) fo/2,No/2, (b) fo, No, (c) 2fo,2Ny and (d) fo/4, No/4.

Contour values are in accordance with the colour bar in K.

We expect solutions with the same Ro and F'r to be the same even though different vari-
ables may have been changed. Fig. 6.4(a) compares well with Fig. 5.1(a). The differences
between the solutions downstream can be attributed to the right-hand boundary being
closer to the mountain in Fig. 6.4(a) than Fig. 5.1(a). Figure 6.4(b) compares very well
with Fig. 5.1(b). We suggest that these solutions in panels (a) and (b) are linear. When
this is the case, Ro and Fr determine the solution well. Figure 6.4(c) is similar to Fig.
5.1(c) but does not agree completely. We suggest that this solution is nonlinear in which
Ro and F'r do not determine the solution as well.

We can see from Figs. 6.4(a)-(c) that as Ro and Fr decrease the gravity wave activity
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appears to decrease. The vertical velocity fields (Figs. 6.5(a)-(c)) also show this decrease
in vertical activity. However, in the f;/4, Ny/4 case (Figs. 6.4(d) and 6.5(d)) F'r > 1 and
Ro > 1. There are displacements centred over the mountain with amplitude that seems
to decrease with height, followed by longer wavelength disturbances downstream of the
mountain. The majority of the vertical motion occurs symmetrically over the mountain
with upward motion upstream of the mountain throughout the height of the domain, and
similarly downward motion downstream of the mountain (Fig. 6.5(d)). These vertical
velocities are comparably weaker than in the previous cases.

Figure 6.6 shows the variation of the vertical kinetic energy with the scaling factor
S¢n. There is a clear increase of energy as the the scaling factor decreases, i.e. as f and

N decrease (F'r and Ro increase), to a factor of 1/2. However, for Sy y = 1/4 the vertical
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KE is still substantial but less than for the Sy 5y = 1/2 case. This could again be due to
the apparent reduction in gravity wave activity as discussed above.

The scaling factors 2, 1 and 0.5 correspond to Ro = 0.13, 0.26 and 0.53 respectively.
The trend of the vertical kinetic energy between these points compare swell to the points
corresponding to U = 5, 10 and 20 in Fig. 5.3. We expect this to be the case.

We could conclude that f/N is a useful parameter for investigating gravity wave ac-

tivity.

25

KE

0 I I I
0 0.5 1 15 2

Scaling factor of f and N

Figure 6.6: Variation of vertical kinetic energy with scaling factor.

6.3 Effect on pressure drag across the mountain

Figure 6.7 shows how the pressure drag across the mountain varies with the scaling factor
of f and N. The drag does not vary by more than 20% from the mean value of the four
points. Thus we could argue that by scaling f and N by the same factor and keeping

f/N constant, the pressure drag remains unaffected.
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The points corresponding to Syy = 1 and 0.5 agree extremely well with the points
corresponding to U = 10 and 20 in Fig. 5.5. The point for Sy y = 2 does not compare so
well with U = 5.

Pressure drag
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0 0.5 1 15 2

Scaling factor of f and N

Figure 6.7: Variation of the pressure drag across the mountain with scaling factor.
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Chapter 7

Discussion

A vertical slice version of the Met Office Unified model has been used to investigate the
flow over an isolated cosine mountain. The stratification, N, and upstream flow speed,
U, are both constant with height. The project aimed to simulate some of the features
of flows over orography by varying just three dimensionless parameters. These were the
Froude number (Fr = U/NH), Rossby number (Ro = U/fL) and ratio (f/N).

One of the main results of the project is that the limit f — 0 is singular, i.e. the v
fields of the flow solution did not converge towards the f = 0 solution. It also has multiple
solutions; one for f = 0 and two obtained in the limits f — 0" and f — 0.

A well defined barrier jet exists even for small value of f because, from the horizontal
momentum equation, a weak pressure gradient will still exist. As both f and N are
scaled up the strength of the barrier jet increases linearly with the scaling factor. This
suggests that the dimensionless parameter f/N is useful for determining the strength of
the barrier jet. The barrier jet exists within the distance of upstream influence. The
distance 0x = Ve, /[ agrees well with the theoretical Rossby radius of deformation, Lg,
as f varies but the model upstream distance, L,,, differs substantially from both of these.

Vertical kinetic energy is used as a measure of gravity wave activity above the moun-
tain. The amplitude of these waves increases as f decreases, however, for the f = 0 case
the wave activity is less than for the f = f/4 case. Thus, we see that the vertical kinetic

energy increases as f decreases apart from when f = 0 when it is much less than when
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f = fo/4. As f and N are both scaled down the gravity wave activity increases. In
the case of decreased N, vertical displacements with increased amplitude become more
possible. When f = f;/4 and N = Ny/4, Ro and Fr exceed 1 and gravity wave activ-
ity appears to lessen. Therefore, vertical kinetic energy increases as the scaling factor
decreases, apart from when the factor becomes less than 1/2 when the energy begins to
decrease.

By decreasing U with all other parameters held constant, Ro and F'r are decreased
at the same rate. As Ro decreases wave activity decreases and the solution gets closer to
the semi-geostrophic solution. Convergence to this solution is second-order, as shown by
the power law relationship between /KE and U.

A drag on the mountain occurs when there is a pressure difference across it. As f
decreases, the pressure drag increases in agreement with Smith (1979b). However, the drag
for the f = 0 case is less than is less than that for the other f values. In the experiments
where just U decreases so does the drag, though this is only a weak dependence. An
interesting result is obtained when f and N are decreased together. Here, the pressure
drag does not vary from the mean value by more than 20%. Therefore, we conclude that
the pressure drag is unaffected by the scaling of f and N.

We expected solutions with the same Ro and Fr to be the same. The solutions in
Chapter 6 for Ro = 0.53 and 0.26 agreed well with the corresponding solutions of Chapter
5 and we concluded these solutions were linear. The solutions for Ro = 0.13 agreed less
well and we concluded this solution was nonlinear.

There are many other experiments that could have been conducted to further this
project. An interesting one would have been to have two mountains with the distance
between them being varied. Gap flows such as those discussed by Sprenger and Schar
(2001) would occur as the upstream influence distance of the second mountain interfered
with the lee side of the first mountain. Other experiments could have included changing

the shape of the orography, and maybe varying its height.
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