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Abstract

Numerical reservoir simulation is an important area of research within the oil in-
dustry. An accurate prediction of the performance of a reservoir under a recovery
strategy is needed to assess the optimum oil recovery, and hence to determine the
economics of the project.

The industry uses a standard mathematical model to simulate reservoir fluid
flow, known as the Black-Oil model. A variant of the Black-Oil model, consisting
of a system of three hyperbolic mass conservation laws and a parabolic pressure
equation is investigated. The system of conservation laws exhibits local linear
degeneracies and eigenvector deficiencies, and is solved using the Higher Order
Godunov method which includes modifications to the basic numerical scheme to
deal with such degeneracies. This numerical method is Total Variation Diminish-
ing (TVD) ensuring oscillation free solutions and achieves second order accuracy
in both space and time.

Analytic solutions of 3-phase incompressible Buckley-Leverett problems are
constructed and compared with the numerical results of the scheme. A locally
implicit procedure is also used to model source terms for injection and production
of fluid.

The particular Black-Oil model used has a ‘volume error discrepancy’ due to
a splitting of the flow equations. The impact of the volume error discrepancy
on the numerical results is examined, and two potential techniques of reducing it
investigated. The effect of fluid compressibility on the volume error discrepancy
is also investigated.

The commercial reservoir simulation code (VIP) uses a flux-limiter TVD
scheme to achieve second order accurate numerical solutions. Numerical re-
sults from this scheme are compared with those from the Higher Order Godunov
scheme, applied to the degenerate system of conservation laws forming the Black-

Oil model, both in terms of quality and efficiency.
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Chapter 1

Introduction

1.1 Oil Reservoir Engineering

Oil reservoir engineering encompasses the processes of reservoir characterisation,
mathematical modelling of the physical processes involved in reservoir fluid flow,
and finally the numerical prediction of a given fluid flow scenario. The basic
problem associated with oil recovery involves the injection of fluid or combinations
of fluids and/or chemicals into the reservoir via injection wells to force as much
oil as possible towards and hence out of production wells. Accurate prediction
of the performance of a given reservoir under a particular recovery strategy is
essential for an estimation of the economics, and hence risk, of the oil recovery
project. Therefore a large amount of research, and money, is directed towards
the above processes, by the oil industry.

The reservoir characterisation process provides the physical parameters, such
as size, resident fluid and rock composition and properties, which are needed
by the mathematical model. Given the physical parameters, the mathematical
model describes the fluid flow with a set of partial differential equations and
other relations, which are derived from physical principles. The resulting set of
partial differential equations are too complex, for most realistic reservoir fluid flow
models, to be solved by analytic methods. Therefore numerical methods are called
upon to perform this task, resulting in the field of numerical reservoir simulation.
Design of oil recovery strategies is heavily influenced by numerical simulation,

by simulating various injection strategies the optimum recovery technique can



be assessed. Simulation is also useful for aiding understanding of the physical
processes involved in reservoir fluid flow.

An oil reservoir can be described as a region of porous rock containing mixtures
of oil, gas and water trapped in the rock pores, surrounded above, below, and
to the sides by impermeable rock. The available pore volume in the rock, in
which the fluid resides, is given by the rock porosity which is defined as the
rock pore volume divided by the bulk volume. Another important parameter
characterising reservoir rock is the permeability which is a measure of how readily
fluid flows through the rock under the influence of the forces causing the flow.
Oil reservoirs are located in many parts of the world both inshore and offshore,
for example land based reservoirs in the United States and reservoirs under the
North Sea. Reservoirs vary in size, usually being very large in area and can
be in the region of 200 feet thick, resulting in very large field scale simulation
operations. Many different types of rock may exist in the reservoirs, with the
porosity of most commercially productive reservoirs being 10-25%, and with rock
permeability ranging from 0.5 to 3500 milliDarcy’s [14]. In practice reservoirs are
not homogeneous in nature, the main reason for this being the variation of the
permeability field. Fractures in the rock and shales (impermeable laminates) also
add to the complexity of the simulation project.

Three types of oil recovery technique exist and are referred to as primary, sec-
ondary and tertiary (also known as enhanced oil recovery EOR). In the primary
process, oil is forced out of the reservoir, at a production well, by the naturally
prevailing pressure gradients, but is only effective at producing a few percent of
the original oil in the reservoir, before the pressure gradients subside. The pres-
sure gradient, which forces the oil towards the production well, may be restored
by injection of fluid such as water, known as waterflooding, to help force more oil
to the production well. The technique of injecting water (and/or gas) to restore
the pressure gradients in the reservoir is known as secondary recovery.

The efficiency of wateflooding may be improved by lowering the water-oil
mobility ratio M (= Myater/Moir). Fluid mobility is defined as M, = k,/u,,
where k, is the relative permeability of the fluid phase p which quantifies how

the presence of other fluid phases hinders its flow and g, is the phase viscosity.



A mobility ratio M of greater than unity is referred to as unfavourable since
the water is more mobile than the oil and can ‘finger’ through the oil zone,
a process known as viscous fingering. This results in a reduced oil recovery
efficiency, but may be improved by decreasing the ratio M by increasing the water
viscosity. This can be accomplished by addition of chemicals such as polymers to
the water, the displacement of oil by water then occurring in a piston-like way.
Application of secondary recovery techniques can result in a 20-50% recovery of
oil [14], depending on the oil and reservoir properties.

Tertiary recovery (EOR) involves one of a number of procedures, such as injec-
tion of chemicals, miscible displacement processes and thermal recovery methods,
which are described in [14]. These methods are designed to increase the recovery
from reservoirs previously depleted by secondary recovery techniques. Chemi-
cal and miscible displacement processes are used to recover low viscosity oils by
controlling the mobility ratio or decreasing the interfacial tension between the
oil and the other fluids. The thermal methods of steamflooding and combustion
techniques are used to recover high viscosity oils, with the heat transferred to the
oil reducing its viscosity causing it to flow more easily. In this thesis we consider
injection of water and immiscible gas and therefore consider secondary recovery

techniques only.

1.2 Mathematical Modelling of Reservoir
Fluid Flow

A number of mathematical models exist for the description of fluid flow in oil
reservoirs. These can be divided into categories as to whether the fluid flow
is considered to be compressible or incompressible and whether the fluid compo-
nents are immiscible or miscible. A fluid component is deemed compressible if the
volume it occupies is dependent on its pressure. The compressibility associated
with the reservoir rock may also be modelled. Fluid components are considered
miscible if they are able to mix in all proportions without any interface form-
ing between them. The physical parameters of the resulting fluid mixture, for

example viscosity and density, are then obtained from a relation involving the



individual fluid component parameters and are known as mixing laws. This is in
contrast to immiscible fluids in which different phases exist which exhibit distinct
properties and behaviour. We only consider immiscible flow in this thesis and so
describe miscible flow no further.

The mathematical models that describe most isothermal flow situations are
derived from four main physical principles. These are: conservation of mass
of the fluid components, Darcy’s law which describes how the fluid phases flow
through the reservoir, thermodynamic equilibrium which determines how the fluid
components combine to form phases, and lastly the condition that the fluid fills
the rock pore volume. Description of immiscible, incompressible flow of 2 or 3
fluid components is accomplished with the classical Buckley-Leverett models, see
Trangenstein [49]. These models consist of a mixed elliptic-hyperbolic system of
partial differential equations, with the elliptic equation being for pressure and
a system of hyperbolic conservation laws describing conservation of mass of the
fluid components.

Addition of compressibility effects (and mass transfer between phases) to the
3-phase Buckley-Leverett model results in the oil industry standard Black-Oil
model, which is a mixed parabolic-hyperbolic system of partial differential equa-
tions. Similar to the incompressible case, the model consists of a system of hyper-
bolic conservation laws in component densities, but this time a parabolic pressure
equation. In the incompressible case, the fluid pressure and component densities
are independent, but this is not the case when compressibility is introduced, due
to the condition that the fluid fills the rock pore volume (volume balance con-
dition). This results in the coupling of the pressure field with the conservation
laws and hence pressure and component density can not be solved for separately.
Therefore the flow equations may be solved, in an unsplit form, with a totally
implicit discretisation, otherwise have to be split (or separated out) for solution
to be possible.

A number of ways of separating the parabolic and hyperbolic character of the
flow equations exist. The industry standard procedure of accomplishing this is
use of the IMPES method (IMplicit Pressure Explicit Saturation), see Aziz and

Settari [1], and is also outlined in Chapter 7. However, an alternative method



has been presented by Trangenstein and Bell in [46] and is the formulation of
the flow equations used in this thesis. This method decouples the parabolic
and hyperbolic behaviour by a linearisation of the volume balance equation to
form the parabolic equation for pressure, however this introduces a ‘volume error
discrepancy’ which is a consequence of the linearisation and indicates that the
volume balance equation is not exactly satisfied.

An alternative compressible fluid flow model exists, called the compositional
model, which is used when the modelling capabilities of the Black-Oil model
are inadequate. This model uses a more accurate representation of hydrocarbon
phase behaviour which is needed to model, for example the EOR technique of
miscible gas injection. However, use of this more sophisticated model is more

computationally demanding and so its use is limited.

1.3 Numerical Methods for Reservoir
Simulation

Both finite difference and finite element methods are used in oil reservoir simula-
tion, although in this thesis we concentrate solely on finite difference methods for
solution of the Black-Oil flow equations. The classical finite difference method
employed in the industry is known as one-point upstream weighting (or upwind),
and achieves first order accuracy in space and time. A second order extension
exists, referred to as two-point upstream weighting which uses an extrapolation
technique to attain improved spatial accuracy. These methods use information
one point (or two points) upstream to calculate numerical fluxes, resulting in
first order (or second order) spatial accuracy, whilst both achieving first order
time accuracy. However the two-point scheme may introduce oscillations into the
results, much akin to the classical second order schemes of Lax Wendroff [29]
and Warming and Beam [54]. A ‘constrained’ version of the two-point scheme
exists, in which the results of the extrapolation are constrained to lie between
neighbouring cell centred values, but this version can sometimes yield unphysical

shocks.

Classical first order accurate numerical methods suffer from large amounts of



numerical diffusion, resulting in the smearing of shock fronts over many grid cells.
Whereas the classical second order methods, although increasing the resolution
of the shocks suffer from spurious oscillation in their vicinity. Hence work in
the oil industry on high resolution (second order accurate), oscillation free Total
Variation Diminishing (TVD, see [24]) numerical schemes was undertaken. A
number of TVD flux-limiter type methods had been independently proposed,
outside the oil industry, by a number of authors, for example Roe [34] and Van
Leer [50]. However explicit and implicit TVD flux-limiter schemes have been
developed for use in the oil industry by, for example, Blunt and Rubin [7] and
Rubin and Edwards [36]. These methods are based on the types of numerical
fluxes typically used in the oil industry, rather than using the Lax Wendroff flux,
as in [34] and [50]. Originally reservoir simulation codes only achieved first order
accuracy in space and time, but with advent of the flux-limiter schemes in [7]
and [36] can now achieve second order accuracy whilst being free of numerical
oscillations, i.e. TVD. Flux Corrected Transport (FCT), another high resolution
non-oscillatory method [8, 9, 56], has also been applied, but to the more restricted
circumstances of incompressible miscible flow.

There has also been a recent interest in the application of Godunov type
methods to reservoir simulation. These methods, originally developed by Go-
dunov [20], have undergone extensive development and are applied to a wide
range of problem areas. Solutions of Riemann problems are central to these types
of scheme and the analytic framework of the conservation laws is incorporated
into the numerical scheme. In this thesis we apply the Higher Order Godunov
method [2, 10] to the system of conservation laws arising from the Black-Oil
model [46]. The scheme includes modifications for certain types of degeneracies
present in the system of conservation laws, specifically local linear degeneracies
and eigenvector deficiencies which the Black-Oil model possesses, and therefore
is particularly suited to numerical reservoir simulation. The scheme relies on a
knowledge of the characteristic structure of the conservation laws to achieve sec-
ond order accuracy in space and time, and in the solution of Riemann problems
at cell edges to compute numerical fluxes. We use the 1-D and 2-D schemes to

perform numerical reservoir simulations in 1 and 2 dimensions.



1.4 Structure and Contents of the Thesis

The thesis can be considered as having two main themes. Firstly, the reduction of
numerical errors associated with Black-Oil simulations using the Black-Oil model
[46] with the inherent volume error discrepancy. This is achieved through an
investigation of the impact of the volume error discrepancy on the numerical
results and possible ways of decreasing the volume error discrepancy. The com-
pressibility of the reservoir fluids is also thought to have an effect on the level
of volume error discrepancy, see [48], and hence the numerical errors. This is
therefore investigated in the context of the Black-Oil model.

Secondly a comparison is made of the TVD flux-limiter scheme [36], present in
the commercial reservoir simulation code VIP used by B.P., and the Higher Order
Godunov scheme [2], when applied to the system of degenerate conservation laws
associated with the Black-Oil model. The performance of the schemes, and their
relative efficiency, when applied to the degenerate systems of conservation laws is
discussed. Three types of reservoir simulation problem are performed to compare
the numerical results from both the schemes.

We now describe the structure and contents of the rest of this thesis, of which
the next three chapters are of a review nature. In the next chapter we give an
overview of the theory and nomenclature associated with hyperbolic conservation
laws that we use throughout this thesis. Both the analytic structure and numer-
ical solution of conservation laws are examined. We also outline some numerical
schemes recently developed for use in the oil industry. Chapter 3 contains a de-
scription of the Black-Oil model [46] used to model the compressible flow of the
reservoir fluid. We outline the physical principles involved and supply all the flow
equations. In Chapter 4 we describe the Higher Order Godunov method [2, 10],
for degenerate systems of conservation laws, used to solve the hyperbolic system
arising from the Black-Oil model.

In Chapter 5 we describe the implementation of the Higher Order Godunov
method on the Black-Oil equations, a Fortran code having been written to per-
form the reservoir simulations in 1 and 2 dimensions. The 1-D code was vali-

dated by comparison of numerical results with those given by Trangenstein and



Bell [46], we show results of three of these simulations. We also present results
of a 2-D Areal problem, which have not previously been seen in the literature.
In this chapter we also investigate the accuracy of the Higher Order Godunov
method when applied to degenerate systems, by comparing the numerical results
of 3-phase incompressible Buckley-Leverett simulations with the corresponding
analytic solutions which we construct. The incorporation of source terms in 1
and 2 dimensions, to model injection of fluid into, and production of fluid from
the reservoir, in conjunction with the Black-Oil model and Higher Order Go-
dunov method, is also described. Locally implicit procedures are used to model
the source terms, to remove the numerical stability problem associated with their
use.

In Chapter 6 we investigate the impact of the volume error discrepancy on
the numerical results of 2-component 2-phase reservoir simulations, and describe
potential techniques of reducing the volume error discrepancy. The techniques
investigated are an iterative solution of the volume balance equation for pressure,
which is performed locally in each grid block, and a global second order pressure
correction procedure. The effect of fluid compressibility on the volume error
discrepancy is also investigated.

Chapter 7 is devoted to a comparison of the TVD flux-limiter scheme used
in the reservoir simulation code VIP and the Higher Order Godunov scheme.
Numerical results from three types of reservoir simulation problem are used to aid
the comparisons, these being a standard 1-D, 2-D Areal, and a 2-D cross-sectional
simulation. The results from the latter of the three problems is of particular
interest since these problems exhibit counter-current flow and will hence be a good
test of the numerical methods, especially the Higher Order Godunov method.

Finally in Chapter 8 we summarise the work undertaken and outline ideas for

further work.



Chapter 2

Hyperbolic Conservation Laws

2.1 Introduction

In this chapter we review some of the theory and nomenclature, associated with
hyperbolic conservation laws, which we use throughout this thesis. Firstly an
indication of how hyperbolic conservation laws are derived and characterised is
given. Particular attention is given to systems that exhibit two types of degen-
eracies which commonly arise in the modelling of flow in porous media. We then
concentrate on the analytic solution of systems of conservation laws, in particular
weak solutions, which are needed because discontinuities typically arise in reser-
voir simulation problems. Indeed the majority of problems of interest which are
modelled by hyperbolic conservation laws exhibit discontinuous solutions, which
either develop with time or result from discontinuities in the initial data. How-
ever weak solutions are known to be non-unique, and so a way of ensuring the
physically correct solution is needed. This is accomplished by requiring the so-
lution to satisfy an appropriate entropy condition, examples of which are given.
The Riemann problem is then outlined along with the types of analytic solution
possible.

Since analytic solutions to reservoir engineering problems usually do not exist
or are very difficult to construct, we concentrate on numerical solutions. Conser-
vative finite difference approximations are used for reasons described later. Accu-
racy and stability considerations associated with such schemes are then discussed.

Classical first order and second order numerical schemes are described along with



their deficiencies and explanations of how these deficiencies arise. Hence work
was prompted by a number of authors on high resolution, non-oscillatory Total
Variation Diminishing (TVD) schemes, some of which we review. An example
of two types of TVD scheme are given, firstly the flux-limiter type scheme, then
a variant of the MUSCL family of schemes which is of Godunov type. Another
type of high resolution, non-oscillatory scheme, although not necessarily TVD,
namely Flux Corrected Transport (FCT) is also described.

Finally we look at how modern numerical methods for hyperbolic conservation
laws have been applied in the oil industry for numerical reservoir simulation. In

particular Implicit and Explicit TVD schemes as well as FCT will be discussed.

2.2 Derivation

A conservation law is a relation which holds in a region of space that relates the
rate of change with time of a quantity to the flux of that quantity through the
boundary of the region. The relation says that in the absence of sources and sinks
the quantity being conserved in the region may not be created or destroyed. Hence
hyperbolic conservation laws are derived from physical principles and represent
conservation of a state variable U which may be a scalar or vector function of
space and time. The state variable may be mass, momentum, energy etc. or a
vector of these quantities.

The Gauss divergence theorem may be used on a control volume to derive an
integral form of the conservation laws which are valid for non-smooth functions
U. If however, U is a differentiable function, and hence smooth, the integral form
may be converted to the more common differential form of the conservation laws,
namely

U +F, =0, (2.2.1)

where U = U(z,t) is an K vector and F is a vector valued function of U, with
K =1 corresponding to the scalar case. The vector U is the conserved variable
and the quantity F is termed the flux function. The differential equation as it
stands does not represent a complete description of the problem in hand. An

initial condition of the form U(x,0) is also needed to ensure the problem is well

10



posed. The differential equation along with the initial condition is said to hold
on a region {2, the boundary of which is denoted by df2. Boundary conditions on
02 may be needed depending on the structure of the problem, i.e. whether there

is inflow, outflow or reflection from the boundaries.

2.3 Characterisation

The equation (2.2.1) is said to be in conservation form, with the quasi-linear form

being given by
ou  IJF oU
9t a0 ox
oF

where 5O is an K x K matrix called the Jacobian matrix. If % is a function of

0,

x and t only then the conservation laws are termed linear, whereas if % is also
a function of U then we have a non-linear system. The system (2.2.1) is termed
hyperbolic if all the eigenvalues of the Jacobian matrix are real. If the eigenvalues
are also distinct then the system is referred to as strictly hyperbolic. If this is

the case then the eigenvectors and eigenvalues of the Jacobian satisfy

OF
—X = XA
ou ’

where A is a real diagonal matrix and X a real non-singular matrix. The entries
of A are termed characteristic wavespeeds and the columns of X, denoted by x;,
the characteristic directions. A loss of strict hyperbolicity occurs when two or
more wavespeeds coincide at a point, which is referred to as an umbilic point.

A particular eigenvalue and its corresponding eigenvector define a character-

istic field of the system. The characteristic field is said to be genuinely non-linear
if
Ok

gu X7

for all U, where k& enumerates the characteristic field. In the scalar case this
condition reduces to f” # 0, which corresponds to the well known convexity

condition f” > 0 or the concave condition f” < 0. Alternatively if

'XkEO,

ou
for all U then the k' field is termed linearly degenerate.
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In this thesis we consider systems of conservation laws which exhibit certain
pathologies in their wave structure as previously mentioned. In particular we
consider systems with the following two degeneracies, namely those which ex-
hibit local linear degeneracy and eigenvector deficiencies in the wavefields. A
local linear degeneracy occurs at a specific value of U for which the genuine
non-linearity condition fails. An eigenvector deficiency arises when two or more
eigenvalues coincide and their corresponding eigenvectors are parallel. Other de-
generacies are also possible such as elliptic, parabolic and rotational but we do

not consider these.

2.4 Analytic Solutions

2.4.1 The Weak Form

The differential form of the conservation laws preclude discontinuous solutions,
however the problems of interest to us, namely the simulation of flow in porous
media, typically exhibit discontinuous solutions hence we need to consider the
weak form of the conservation laws. The weak form is an integral formulation
and hence discontinuous solutions are admitted. It is obtained by multiplying the
conservation laws by a smooth test function ¢ which has compact support, i.e. is

zero outside of some finite interval, and integrating over the region, resulting in
[ [ 16U+ R dedt =~ [ 6(z,0U(z,0) d.
0 —o0 — o
For more details see Smoller [41] or any other standard text on hyperbolic conser-
vation laws. The conservation laws are then satisfied in the sense of distributions
and discontinuous solutions are now allowed since the act of integrating by parts
moves the derivatives onto the test function. Admission of discontinuous solu-

tions has a consequences in that weak solutions are non-unique, hence a way of

selecting the physically correct solution is required.

2.4.2 Entropy Conditions

The way in which a discontinuity is determined as being physically correct is if

it satisfies a condition known as an Entropy Condition. The entropy condition

12



requires that the physically meaningful solution to the conservation laws is the
limit of the solution to a modified differential equation, with an infinitesimal

amount of diffusion, namely
Ut —I_ Fx = eUamm

as the diffusion tends to zero, i.e. € | 0. This condition is thought, see for example
Trangenstein [49], to be reasonable when considering reservoir flow problems,
particularly so when diffusive forces such as capillary pressure and mixing are
ignored. This is because enforcement of the entropy condition ensures that the
solutions to the conservation laws are related to more realistic flow models which
do include diffusive forces.

Work by Oleinik [31] and Lax [28] has provided straightforward quantitative
versions of the entropy condition. Oleinik showed that the scalar Riemann prob-
lem has an admissible shock from u” to u® if and only if

flu) — f(u) flu) — fu)

> g >
u—ul - = u— uft

Y

for all v between u” and u® and termed this condition E, where ¢ is the shock

speed and is given by

Condition E applies to both convex and non-convex scalar conservation laws,
whereas Lax showed that the convex problem has an admissible weak shock if the
shock speed o satisfies

a(u®) > o > a(ul),

where a(u) (= f'(u)) is the wavespeed of the scalar conservation law. This
second condition states that the characteristics should go into the shock as time
progresses. For convex f Oleinik’s condition reduces to that of Lax. A similar

condition for systems is also due to Lax and is expressed by
)\k(UL) >0 > )\k(UR),

where A denotes one of the characteristic wavespeeds of the system, and is only

valid for genuinely non-linear fields. If satisfied for a particular k the discontinuity

13



is referred to as a k shock. In the case of characteristic fields which are not
genuinely non-linear another entropy condition is required. This extended entropy

condition is due to Liu [30] and is given by
)\k(UL) Z g Z )\k(UR),

and is less restrictive than the Lax condition for genuinely non-linear fields by

allowing equality of the shock speed with one of the wavespeeds.

2.4.3 The Riemann Problem

The Riemann problem is defined as the initial value problem (2.2.1) with a single
discontinuity in the initial data,

Ul if 2 <0

U(z,0) = )

UR if >0
where U” and U¥ are constant states to the left and right respectively of the
initial discontinuity at * = 0. The Riemann problem is very important in the
theory of hyperbolic conservation laws since it serves as a component of a number
of numerical schemes.

The solution to the Riemann problem is composed of two types of elementary
waves, termed shocks and rarefactions, usually connected by constant states.
Another type of wave termed a contact discontinuity may also arise. A shock is a
discontinuity that satisfies an appropriate entropy condition and travels with the
Rankine-Hugoniot shock speed which is given below. An expression for the speed
of a propagating shock can be obtained from the weak form of the conservation

laws, and is given by the following well known Rankine-Hugoniot jump condition

for the scalar case where u” and uf' are the states to the left and right of the
shock. For details on its derivation see Smoller [41]. Similarly in the system case
the jump condition

F(U) — F(UY) = o(U% - UY),
must hold for the discontinuity with these left and right states to be a valid shock.
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The contact discontinuity is not a valid shock, but is a valid discontinuity
and may arise if one of the characteristic fields is linearly degenerate. In this
case the wavespeeds on both sides of the discontinuity are equal and hence the
discontinuity moves with speed equal to the wavespeed.

A rarefaction is a smoothly varying solution which is a function of the sim-
ilarity variable x/t only. The following characterisation of rarefaction solutions

exists, a k—rarefaction is defined by

)\k(UR) > )\k(U) > )\k(UL),

where U is any state on the rarefaction wave and U* and U¥ are states to the
left and right of the wave.

Classical hyperbolic theory, see Lax [28], states that for an K —system the
Riemann problem solution is composed of K distinct waves connecting U” to UF.
For a strictly hyperbolic system these waves can only be connected by constant
states, but for a system that exhibits local linear degeneracies, rarefaction-shock
compound waves become a possibility, see Liu [30]. For example a 1—rarefaction
may be connected to a 1—shock, in fact the two waves must be of the same family
because at the connection point the fastest wavespeed in the rarefaction must be
equal to the first characteristic speed to the left of the shock. Shock-rarefaction
compound waves are also a possibility. However, some types of compound waves
are precluded, depending on the number of components in the system K and the
degree of the flux function, for example see Schaeffer and Shearer [38]. Also, at
points where strict hyperbolicity fails, transitional waves are possible in which a
wave of one family may transition into a wave of another family. For example at
an umbilic point where the first and second wavespeeds are equal a 1-wave may

transition into a 2-wave at that point.
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2.5 Numerical Solutions

2.5.1 Conservative Difference Schemes

We shall consider conservative difference schemes for numerically solving the sys-
tem (2.2.1), as we want to retain the conservation property of the equations.
This is important because not only do we maintain conservation, but an impor-
tant theorem of Lax and Wendroff [29] will then apply. This theorem states that
if the numerical scheme is convergent then it converges to a weak solution of the
conservation laws (2.2.1). As a consequence shock wave solutions will satisfy the
Rankine-Hugoniot relation for the shock speed, so that shocks will appear in the
correct locations. This type of difference scheme may be derived by integrating
the conservation laws over a box in x,¢ space defined by [:z:j_%, l’j_l_%] x [t 17

and applying the Gauss divergence theorem, which results in

Ul = U - T (FIT - FT

S -F, (2.5.2)

I o)

where we have used standard notation and Az = Tipr—a; 1 and At = ¢t — ¢,

The quantity U7 is an integral averaged value of U over the interval, i.e.

n 1 $$+% :
U? = H/gg U(jAz,nAt) dx.

[N

I—

1
The Fj:f is termed the numerical flux and is defined by
2

n+l 1 2fn-l-l
Hie ) FUG )

where n is the unit outward normal to the relevant face of the space-time box.

2.5.2 Explicit and Implicit Schemes

If the fluxes Fj:g in the finite difference update (2.5.2) are functions of quantities
at the current time level then the resulting scheme is termed explicit. In this case
all the quantities on the right hand side of (2.5.2) are known and hence the
update is straightforward. On the other hand, if the fluxes are functions of the

solution at the advanced time level n + 1 then the scheme is implicit and the

resulting update formula needs to be solved by an iterative method since both
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sides of (2.5.2) are functions of U™, In general implicit methods are more
diffusive than corresponding explicit methods. However most implicit methods
have no stability restriction on their time step and hence can use larger time
steps without sacrificing numerical stability. However increasing the time step
will degrade the accuracy of the results, so a balance must be struck between
efficiency and accuracy. Often the type of problem being solved influences the

choice of using an explicit or implicit method.

2.5.3 Accuracy

A fundamental concern when using a numerical scheme is its order of accuracy.
Stability is also a central concern and will be discussed later. Schemes that
achieve first order accuracy in space and time are referred to as low resolution
and suffer from large amounts of numerical diffusion. This means that shocks
will be smeared over a large number of grid cells, and hence a large number of
cells are needed to accurately capture sharp features present. Therefore it is
more desirable to use a higher (second) order method. However classical second
order methods such as the famous Lax-Wendroff [29] and Warming and Beam
[54] schemes although increasing the resolution of shocks suffer from spurious
oscillations behind and in front of shocks respectively.

The different effect the order of numerical scheme has on the type of deficiency
present in the numerical scheme, i.e. diffusion with first order methods and dis-
persion with second order methods, can be explained in terms of the modified
equation. The modified equation is the actual partial differential equation solved
when a finite difference approximation is used to solve the original partial differen-
tial equation. This modified equation should not be confused with the previously
mentioned modified equation, with the inclusion of an infinitesimal viscosity term
in the section on entropy conditions, since they are not connected. Warming and
Hyett give a description of the modified equation approach to analysing finite
difference methods in [55]. The modified equation is derived by expanding each
term of the finite difference equation approximating the partial differential equa-
tion into a Taylor series and eliminating the time derivatives of order higher than

first and the mixed space and time derivatives. This leaves the derivatives that
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were present in the original equation together with spatial derivatives only. The
elimination method should not use the original partial differential equation as
its solution will not satisfy the finite difference equations. Instead the result of

the Taylor series expansion of the finite difference approximation should itself

9
ot

be manipulated by applying = and 8% operators and taking linear combinations
of these forms with the original expansion to remove the required derivatives.
The resulting modified equation will have infinitely many terms but in practice
only the lowest order terms need be considered as these describe the dominant
behaviour. For example when a first order finite difference method is used to
approximate the solution to the linear advection equation analysis shows that

the modified equation is actually of the form
Uy + AUy = HUygy,

where the pu,, term is a diffusion term. Hence the reason for first order methods
suffering from large doses of numerical diffusion. Similarly with second order

methods, the modified equation looks like
Uy —I_ AUy = NUgry,

with the nu,,, term being a dispersive term. This term gives rise to the dispersive
ripples in the Lax-Wendroff and Warming and Beam schemes.

Two examples of scalar first order schemes are the upwind scheme and the
Godunov scheme. In the reservoir simulation community the upwind scheme is

referred to as one point upstream weighting, with flux

fr if 22>

fn-l_% - J ou
ity
J+1 if u <0

Hence the numerical flux is calculated at the grid point from where information
is propagating, i.e. the upstream or upwind direction. The Godunov scheme [20]
follows a different approach in that it utilises the solutions of Riemann problems
at cell edges. The solution is represented by a piecewise constant approximation
at the current time level with u? being an average value of u in cell j. The

solution to the Riemann problem is denoted by R(ul, u®, \) with u® and uf* the
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states to the left and right of the discontinuity at @ = A, where A specifies the
speed of the discontinuity. Godunov’s method takes the cell edge flux to be

n—I—% n n
f4+1, = f(R(ujvuj-Hv 0))7

JT3
i.e. the flux at the state that remains stationary at the original location of the

discontinuity.

2.5.4 Stability

When numerical methods are used to solve conservation laws a very important
concern is the stability of the scheme being used. A necessary condition on the
time step At exists for hyperbolic problems and is referred to as the Courant-
Friedrichs-Lewy (CFL) condition [13]. This condition was derived through the
observation that the domain of dependence of the finite difference scheme must
be contained within the domain of dependence of the conservation law. The

condition for a 3-point difference scheme can be expressed by

At< BT (2.5.3)

maxr

where ), .. 1s the largest wavespeed in the problem at the current time level. The
stability condition can also be expressed in terms of a Courant (or CFL) number

v which is given by
)‘maxAt
Ax

Therefore the necessary condition for stability of a 3-point difference scheme is

VvV =

(2.5.4)

that the Courant number is no greater than 1. A local CFL number may also be

defined and is the right hand side of (2.5.4) evaluated in a particular cell.

2.5.5 TVD Methods

Numerical methods that accurately capture shocks without any oscillation have
been sought for a number of years. One such class of scheme are the so called flux-
limiter schemes, to be described later, which possess the very desirable property
of being Total Variation Diminishing (TVD). The concept of a TVD scheme was

first introduced by Harten [24] and is characterised by

TV(u"t) < TV(u"), (2.5.5)

19



where TV (u") is the total variation of the solution at time level n and is defined
by

TV(u") =3 lujyy — gl
k

The total variation is an important property of a numerical scheme which can be
used to prove convergence of a scheme, and also ensures that oscillations cannot
appear in the solution.

The concept of a TVD scheme is essentially one-dimensional although a def-
inition of the total variation of the solution to the two-dimensional conservation
laws of the form

ut+fx+gy:07

has been given by Goodman and LeVeque [23]. The total variation is defined by
the sum of the variations in both coordinate directions and is given by
TVQ) = TV 4 TV ) = Ay 3 = w5l + A 3y =
7, 7,

Goodman and LeVeque [23] showed that any scheme in two-dimensions which
satisfies the TVD criteria (2.5.5) must be only first order accurate. However,
when most 1-D TVD methods are applied in 2-D they usually work well in prac-
tice. Second order accuracy is maintained on smooth solutions and no oscillatory
behaviour is observed, despite the fact that the scheme is not strictly TVD.

Other types of non-oscillatory scheme, which are not TVD, have been devel-
oped for multidimensional linear advection by for example Roe and Sidilkover
[35]. Their scheme is termed an Optimum Positive Linear Scheme for linear ad-
vection. The coefficients of such schemes are positive quantities, which defines
a positive scheme, and are optimum in the sense that the truncation error is
minimised. This is accomplished by a particular choice of coefficients, subject to
the positivity condition. Extension of numerical schemes to model multidimen-
sional flow is usually made on a dimension by dimension basis, i.e. dimensionally
splits schemes, which will be outlined later. However this approach is reported in
the literature to give poor results if the flow is unsteady or not aligned with the
grid directions, hence the development of the Positive schemes. These schemes
are said to be the multidimensional equivalent of simple upwinding and in 2-D

have been shown to be about 4 times less dissipative than the dimensionally split
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schemes, and permit time steps that can be greater by a factor of 2. Roe and
Sidilkover [35] point out that their scheme can be written in conservation form and
hence will possess the desirable properties previously described for conservative
schemes. First order accuracy only is achieved but a second order generalisation

is reported as having been developed using flux-limiters.

2.5.6 Flux-Limiter Schemes

To describe the main ideas behind the flux-limiter type of scheme we first define
an antidiffusive flux. This is defined as the difference between the first order
flux and second order flux of a particular scheme. Firstly a low order entropy
satisfying scheme is used, which is then supplemented by a limited amount of
the antidiffusive flux. All of the antidiffusive flux is used where the solution is
smooth but only a limited amount is used near steep gradients to ensure the TVD
property. The amount of limiting taking place depends on the local gradient of
the solution at the current time level, i.e. near shocks the most flux-limiting will

take place. For example, consider the linear scalar equation
us +auy, =0 a > 0.

The second order Lax-Wendroff scheme can be used as the underlying scheme,

namely
n n 1
u],+1 =u; — yAuj_% — A_(§(1 — I/)Auj_l_%),
where
B At
v = an,

and with the notation
A_Ujp =Ujy —uj = Auj_l_%.
It can be seen that this is the result of using the first order scheme

utt =

n
f u’ Z/Auj_%,

together with an extra term which is composed of the antidiffusive flux difference
1
—A_(§(1 — Z/)Auj_l_%).
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It is well known that the Lax-Wendroff scheme is not TVD due to the spurious
oscillations it produces near shocks, as previously mentioned. This can be reme-
died by adding only a limited amount of the antidiffusive flux to the first order

scheme by introducing a flux-limiter ¢,

n n 1
u,+1 = u] — Z/Auj_% — A_(¢]§(1 — I/)Au]'_l_%),

J

where ¢; is a function ¢ of a parameter r; which is taken to be a ratio of consec-

utive gradients, i.e.

Au,

1

-1

r; = =
1

J Fﬁ‘g

The limiter function ¢ is then chosen such that the limited antidiffusive flux is
maximised subject to the TVD constraint. Details of this procedure for the linear
and non-linear cases can be found in Sweby [45]. The result of the analysis by
Sweby can be shown graphically, i.e. a region in ¢,r space in which the limiter

must lie to give a second order T'VD scheme, which is given by the shaded area in

Figure 2.1. For example ¢(r) = 1 reverts the scheme back to Lax-Wendroff and

3.0 Warming and Beam
i @(r)=r

25
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Figure 2.1: The second order TVD region, also indicating the limiter functions ¢

corresponding to the Lax-Wendroff and Warming and Beam schemes.

é(r) = r gives the scheme of Warming and Beam. As can be seen from Figure
2.1 these two lines do not lie entirely within the TVD region hence explaining
the non TVD property of these two classical schemes. The following conditions

also exist on the limiter function, firstly it » < 0 then ¢ = 0 so that the sign
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of the antidiffusive flux is maintained. This condition means that second order
accuracy is lost at extreme points of the solution. Secondly the condition ¢(1) = 1
is needed as a general requirement for a second order scheme and ensures Lipschitz

continuity of ¢(r). Lastly the condition

ensures that forward and backward gradients are treated identically.

A number of flux-limiter methods have been presented in the literature by for
example Roe [34] and Van Leer [50], each in the authors own notation. For exam-
ple Roe developed the famous Minmod and Superbee limiters, which correspond
to the lower and upper boundaries of the TVD region respectively. The Van Leer
limiter is also commonly used and is given by a smooth curve lying within the
region. In [45] Sweby translated these limiters into a common formulation (¢, r
formulation as above) so that it could be seen how the various limiter functions

compared both theoretically and numerically.

2.5.7 A MUSCL Type Scheme

We now describe an alternative approach to deriving a second order accurate
TVD scheme. We concentrate on a variant of the Monotonised Upstream centred
Scheme for Conservation Laws, known as MUSCL, originally due to Van Leer
[51], described by Goodman and LeVeque [22]. The derivation of the scheme
is geometrically based rather than the algebraic flux-limiter schemes previously
outlined. The approach is similar to that of Van Leer’s original scheme in that
second order accuracy is obtained by using a piecewise linear approximation to
the solution at each time step rather than a piecewise constant approximation.
Hence the scheme can be viewed as a second order generalisation of Godunov’s
method. In fact any scheme that constructs states at cell interfaces which are
then used to solve the Riemann problem there, is referred to as of Godunov type.
The Higher Order Godunov method of Bell et al. [2], to be described in Chapter
4, is related to the MUSCL scheme since it also uses a slope construction to
derive left and right states at cell interfaces, which are then used to compute a

flux. However the MUSCL scheme solves a linearised Riemann problem at each
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cell interface, whereas the Higher Order Godunov scheme uses a fuller description
of the Riemann problem.

The general principle is as follows. The piecewise constant approximation,
denoted by w(x,t) say, of the solution at the current time level is given in each

grid cell [; = [l'j ey ] by
( ")= 7 for j

The piecewise linear approximation () is constructed in each cell by the

interpolant of

j (256)

i.e. is given by
( =7+ ) for j (257)

The slopes ; must be chosen such that the integral of the piecewise linear ap-
proximation over each cell is the same as with ; = 0 and the total variation of
the resulting profile, is not increased. Hence the piecewise linear representation
maintains conservation as cell averages are preserved. The slope ; can be given

by a number of formulae, a commonly used form is

U U

) sign( i) b i ) 0

0 otherwise

min( “

The two states in (2.5.6) define values of  at edge i - and edge ; _ respec-
tively. Using these two states a function ( ) can be defined which interpolates
the flux function, i.e. () is approximated as a piecewise linear function. The
problem of calculating fluxes at cell edges then reduces to solving a linear problem

with piecewise linear data. Hence the problem can now be expressed as

with initial data (™) given by (2.5.7).

The resulting flux formulae can be found in [22] and are valid for convex
away from sonic points ~ where (7) = 0. Goodman and LeVeque also quote
flux formulae for use when a sonic point is detected. Stability of the scheme is

ensured if the time step satisfies the usual CFL condition (2.5.3).
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Chapter 3

The Black-0il Fluid Flow

Equations

3.1 Introduction

The Black-Oil model is the industry standard mathematical model most often
used in petroleum reservoir simulation. It assumes that the fluid components
are immiscible and includes compressibility and the general mass transfer effects
between the phases that are needed to model primary (pressure depletion) and
secondary (water injection) recovery. The particular form of the model we are
using in our reservoir computations was developed by Trangenstein and Bell [46]
and is one of a number of formulations of the ‘Black-Oil’ type which are distinct
from another class of model termed the compositional model. A compositional
model [47] quite similar to the Black-Oil model [46] has also been developed by
Trangenstein and Bell.

The main difference between the two approaches are that Black-Oil models
consider general fluid components, i.e. collections of individual chemical species
(hydrocarbons) which are then termed either oil or gas, whereas the composi-
tional models consider individual hydrocarbon species such as ethane and butane
etc. Therefore a more accurate description of hydrocarbon phase behaviour is
provided, but the resulting phase equilibrium problem is very complex. Compo-
sitional models are used when the modelling capabilities of Black-Oil models are

inadequate, for example in the simulation of miscible gas injection. However the
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extra computational expense of the iterative techniques needed to solve phase
equilibrium along with the larger systems of conservation laws, because of the
consideration of individual species, limits their applicability.

Reservoir fluid flow equations exhibit both hyperbolic and parabolic behaviour,
for instance fronts separating different fluid states move at a finite speed of prop-
agation whereas pressure effects are quickly felt throughout the reservoir. Both
of these types of behaviour can be treated by a fully implicit discretisation. How-
ever, to effectively treat both types of behaviour present in the flow equations,
different types of numerical procedure are required for each and so a splitting of
the flow equations into a system of hyperbolic conservation laws and a parabolic
pressure equation is used. In addition, implicit discretisations of the unsplit equa-
tions typically use large amounts of numerical diffusion, providing further reason
for use of the sequential (or split) strategy.

In our computations with the Black-Oil model we follow Trangenstein and Bell
and use the Higher Order Godunov method to discretise the hyperbolic part of the
flow equations. This numerical scheme is able to address the problems associated
with eigenvector deficiency and local linear degeneracy which are present in the
Black-Oil model. The pressure equation is discretised using a Backward-Fuler
(implicit) approach.

Sequential methods were first proposed by Sheldon et al. [39] and Stone and
Garder [43] around thirty years ago. These early and some subsequent formula-
tions contained certain anomalies, for instance the hyperbolic and parabolic parts
were not properly separated. Further developments were made, and in 1986 Bell,
Shubin and Trangenstein [5] presented a new sequential method to model two-
phase, two-component fluid flow. This formulation is based on conservation of
mass of the fluid components and does not have the consequences of a ‘volume
error discrepancy’ which is present in their later work. The volume error discrep-
ancy indicates the extent to which the volume balance equation is not satisfied
and is described in Section 3.4. This later work by Trangenstein and Bell [46]
models three-phase, three-component fluid flow, and is the formulation we are
working with. It should be noted that the form of the Black-Oil model used in

this thesis is not currently used in reservoir simulation codes, due to its recent
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development. For a description of the formulations that are used, see Aziz and
Settari [1].
The fluid flow equations are derived from four main principles which are used

to derive most isothermal porous media flow models. These are:

i) Phase equilibrium - determines how the components combine to form phases,
ii) The equation of state - requires that the fluid fills the pore volume,
iii) Darcy’s law for the volumetric flow rates,
iv) Mass conservation equations for each component.

The flow equations are formulated sequentially, therefore they cannot be sat-
isfied exactly at each step of the computation, and so some incompatibility is
introduced. Phase equilibrium, Darcy’s law and the component conservation
laws are satisfied exactly but the equation of state is linearised so that it is only
satisfied approximately. This splitting of the flow equation is termed a ‘volume-
discrepancy splitting’.

In the next four sections of this chapter we describe the formulation, and the
equations that result, of the four main principles used to derive the mathemat-
ical model. Then we summarise the sequential formulation in broad terms and
mention the consequences of the splitting of the flow equations and the resulting
volume error discrepancy. In the last section we describe the parameters of the

model we used for our reservoir computations.

3.2 Thermodynamic Equilibrium

3.2.1 Components and Phases

The fluid in the reservoir is considered to be composed of three components, oil,
gas, and water. These are the separations the fluid chooses at surface tempera-
tures and pressures. However to reach phase equilibrium at reservoir conditions
these components combine to form at most three phases, liquid, vapour and aqua.
At each point in the reservoir the components associate into these phases in or-

der to attain thermodynamic equilibrium. The components flow in phases but
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are conserved by mass, thus it is necessary to determine how the mass of each
component is apportioned into the phases. This phase equilibrium problem can
be expressed as follows: given the pressure p and the vector n = [n,, n,,n,]" of

mass component densities, find the matrix

Nol  Noy 0

N = n n n

gl

0 0 Nuwe

gv ga

of component densities in each of the phases, subject to the mass balance condi-
tion

n = Ne,

where e is a vector of one’s of the appropriate length. Thus it can be seen from the
definition of NV that there is a restriction on the way the components are allowed
to mix in the phases, i.e. oil may be allowed in the liquid and vapour phases, gas
in all three phases and water in the aqueous phase only. Oil and water do not
mix and steam is not treated due to the isothermal nature of the model. At this
point there is not enough information to solve the phase equilibrium problem,

this extra information is provided in the next two sections.

3.2.2 Mass Transfer and Phase Equilibrium

A principal component is associated with each phase, oil with the liquid phase,
gas with the vapour phase and water with the aqueous phase. The amount of each
component in each phase is related to the amount of the principal component in
that phase by the ratio matrix £. When all three phases are formed R is given
by

I R, 0
R=| R 1 R,|=NDy,
0 0 1

where Dy is the diagonal part of N. For example the solution gas ratio defined
by

Ry =ng/na,
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represents the ratio of the amount of gas dissolved in the liquid phase to the
amount of oil in the liquid phase. The ratios R;, R,, and R, must be dimensionless
non-negative functions of pressure and are supplied as part of the model. In fact
the standard Black-Oil model takes both R, and R, to be identically zero and thus
deals with less general mass transfer effects than considered here. The ratios R,
and R, are required to be monotonically increasing functions so that as pressure
increases more mass is transferred between the phases. The same requirement is
not placed on the ratio R,.

Now we can determine how many phases are present. Firstly the matrix
T = R™! is defined, then the vector T'n is formed which represents the amount
of the principal component in each phase. If all three entries of T'n are positive
then all three phases are formed and the fluid is termed saturated. Hence it can

be shown that Dy is given by

Dye =Tn,
and the solution to phase equilibrium by

N = RDy.

Normally the dimensions of n and N would be mass per pore volume. However
the Black-Oil model is formulated such that the mass of a component is measured
in terms of the volume it occupies at surface conditions compared with reservoir
conditions, hence the units of n and N are in standard cubic feet per reservoir
cubic foot.

In the next section we examine the effect of mass transfer on the number of

fluid phases formed.

3.2.3 Undersaturation

Although three components may be present this does not necessarily mean that
three phases are always formed. For example, if gas is allowed to dissolve in
liquid (R; # 0), then for sufficiently high pressures it is possible for all the gas
to dissolve in the liquid phase. Therefore the vapour phase is missing and the

liquid phase is said to be undersaturated. Similarly if R, # 0, i.e. oil is allowed

34



to volatilise into vapour, then it is possible that no liquid is formed and the
vapour phase is undersaturated. In the present work neither R;, R, or R, are
identically equal to zero therefore both types of undersaturation are possible.
Analysis of undersaturated flow, see [46], shows that at most one phase can be
missing due to undersaturation. Therefore both types of undersaturated flow
occurring simultaneously would be impossible. The possibility also exists of a
phase being missing due to the principal component associated with that phase
being missing. If this is the case the fluid will still be termed saturated as the
phase will not be missing due to mass transfer effects. For example if no oil is
present then the liquid phase will not be formed.

When the vapour phase is missing the physical meaning of the negative vapour
component of Tn is that the fluid pressure is higher than the bubble-point pres-
sure pp (p > py) at which the vapour phase forms. The bubble point pressure is
implicitly defined by the requirement that the vapour component of Tn is zero,
ie.

—Ri(pp)ne + ng — Ra(py)n, = 0.

The fact that R, and R, are monotone functions of pressure ensure that p, is
unique. When the liquid phase is missing the volatile oil ratio R, is redefined to

make the liquid component of Tn zero, i.e.

— no

Cony = Ra(p)ny

A dew point pressure could have been defined here, to parallel the previous case
of undersaturation, but as R, is non-monotone this would not necessarily have
been unique. Here we have that R, < R,(p), i.e. not enough oil was present to
volatilise into the vapour phase to the extent indicated by R,(p).

It is possible to derive a combined formulation of undersaturated phase be-
haviour so that the mathematical structure parallels that of saturated flow. This
is achieved by multiplying the relevant flow variables by a constant matrix @)

which effectively removes the column corresponding to the missing phase, i.e.
R=RQ , Dy=0Q"DyQ.

A constant vector q is also defined which will be used later. For example in the
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case of the vapour phase being undersaturated, () and q are given by

0 0 1
Q=110 , a=]0],
0 1 0

10 0
Q=100 o a= |1
0 1 0

Throughout this chapter, quantities denoted with an overbar refer to the reduced
matrix or vector in the undersaturated case.

The solution to phase equilibrium is then given by
N = R DyQ7.

In the case of the liquid phase being undersaturated the matrix N is given by

n, 0 0
N=1Rn, 0 Ry, |
0 0 ny,

i.e. all the oil is contained in the liquid phase and the gas present is dissolved in
both the liquid and aqueous phases. When the vapour phase is undersaturated
the matrix N is given by

0 T, 0
N=10 ng — Ryny, BRany,
0 0 Moy

Here all the oil has volatilised into the vapour phase and the gas in the vapour
phase is equal to the total amount of gas less the gas dissolved in the aqueous
phase. In both cases of undersaturation, as well as saturated flow, all of the water
must be in the aqueous phase.

In the case of undersaturated flow an undersaturation parameter w is used to
develop the flow equations and becomes one of the dependent variables. In the
case of an undersaturated liquid w becomes the bubble point pressure and in the

case of undersaturated vapour w is the volatile oil ratio.
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3.2.4 Compressibility

In this section we examine the compressibility of the reservoir fluids and describe
their effect on the phase volumes.
Fluid compressibility is defined by
LoV 109p

Cf = ———=—

Vap  pdp’

where V' is the volume of the fluid and p is its density. The negative sign is needed
since compressibilities are defined as positive numbers. The compressibilities
of oil and water are considered constant, typical values would be, for oil ¢, ~
2.0 x 10~ °psi™! and for water ¢,, ~ 3.0 x 107 %psi~!. Gas compressibility is usually
considered a function of pressure, and for this work ranges from ¢, ~ 9.0 x
10~*psi™! at 1000 psi to ¢, ~ 3.0 x 10~*psi™* at 3000 psi. Here psi refers to the
unit of pressure in pounds per square inch.

The small compressibilities of oil and water, along with the relatively high
compressibility of gas, and the swelling effects caused by gas dissolving in liquid
lead to important volume changes at reservoir pressures. The Black-Oil model
incorporates these volume changes by relating the volumes of each of the phases
to the amount of the principal component in that phase. To quantify this re-
lationship D, is defined to be the diagonal matrix of phase volumes per pore
volume. The entries of Dy and D, are related by the phase formation volume

factors B;, B, and B,. The matrix of formation volume factors is given by

B 0 0
B=10 B, 0 |=D.Dy,
0 0 B,

and are functions of pressure and the undersaturation variable w in the case of
undersaturated flow. The formation volume factors would normally have the di-
mensions of a specific volume but because of the units of n they relate the volume
of the fluid at reservoir conditions to the volume occupied at standard conditions
(pressure and temperature), and therefore compressibility is introduced through
matrix B.

The functions By, B, and B, are quite complicated to describe because of mass

transfer and undersaturation effects. For example the liquid phase in the case of
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no mass transfer is assumed to have a small compressibility in that as pressure
increases the liquid phase volume decreases. If we then allow mass transfer so
that gas, which is more compressible than oil, is allowed to dissolve in the oil,
then for pressures below the bubble point, increases in pressure cause more gas to
dissolve and the phase volume then increases, and to a greater extent than with
no mass transfer. Above the bubble point pressure the liquid phase is assumed
slightly compressible. These effects can be described by,
l—e¢c,p R =0
Bi(p,p) =% 1+eap ifp<p
1;;0(7;22%) itp > py
Here ¢, is the compressibility of the pure oil component and ¢; is the compress-
ibility of the liquid phase, i.e. oil containing dissolved gas. Analogous formulas
hold for the aqueous phase with ¢, replaced by the compressibility of pure water
¢y and ¢ replaced by the compressibility of water containing dissolved gas ¢,.
The vapour phase formation volume factor B, is somewhat harder to describe,
so we refrain from describing it here.
We are now in a position to calculate the vector u of phase volumes per pore
volume which is given by

u = BTn.

When the fluid is undersaturated the constant matrix ) is again used to define
B =Q"'BQ,

and then u is given by
u=QBTn.
The vector u is used in specifying the equation of state as will be seen later.
We also wish to include rock compressibility, which means that the porosity
(the ratio of the rock pore volume to the total volume) is an increasing function

of pressure,
¢ = do(1 + cr(p — po)),

i.e. as the fluid pressure increases the rock pore volume increases. Here ¢q is the
porosity at the reference pressure py and cg is the rock compressibility, which is

considered constant and is approximately that of water.
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3.3 Darcy’s Law

Darcy’s law specifies how the phases flow through the reservoir and gives the
vector of flow volumes per unit area per unit time, i.e. the phase velocities. For

1-Dimensional flow the law can be written in matrix-vector form as

v=—Lle—— pga—x)ﬁ:, (3.3.1)

and hence Darcy’s law states that the fluid flow is due to a pressure gradient and
a gravitational potential. L is the diagonal matrix of phase mobilities which are

phase relative permeabilities divided by phase viscosities

L = Diag(", v Foy.
Ml oy e
k 1s the total rock permeability, p is the vector of phase densities and % is the
depth gradient of the reservoir. Capillary pressure is not considered here so that
the pressure in each phase is identical and equal to the fluid pressure p.
The total velocity is defined as the sum of phase velocities and obtained from

(3.3.1),

d ad
vr = elv = —eTrelly + el Lpg—«.
Ox dx

Equation (3.3.2) can be used to solve for the pressure gradient and then substi-

(3.3.2)

tution in (3.3.1) gives

Levr Leel ad
= — I— Lpg—«k. 3.3.3
v elLe +1 eTLe] Py :z;/i ( )

This is the form of the Darcy velocities used in the model and is termed a total
velocity splitting. The motivation for this step is that for incompressible flow a
total velocity splitting correctly decouples the elliptic and hyperbolic character
present in the flow equations.

Some of the terms in Darcy’s law are now described in more detail.

3.3.1 Saturations

Saturations are the fractions of the total fluid volume occupied by each of the

phases and are defined by



With this definition, the saturations sum to one even if the volume balance equa-
tion is not satisfied. It should be noted that s must be considered distinct from
u because of the volume error discrepancy associated with this formulation of
the flow equations. However in the case of no volume error discrepancy when

elu = 1 the vectors s and u are identical.

3.3.2 Relative Permeability

Relative permeability describes how the presence of each phase adversely affects
the flow of the other phases and are non-negative functions of the saturations s.
Due to the complex interaction of the phases with the rock pore space the depen-
dence of the relative permeabilities on the rock and fluid properties is not fully
understood. However it is known that as the saturation of a phase approaches
zero, its mobility must tend to zero implying its relative permeability must van-
ish. In reality a phase will become immobile before its saturation reaches zero,
the saturation at which this occurs being termed a ‘residual saturation’. In our
Black-Oil computations we use fairly simple experimentally determined relative

permeability functions, see Stone [42].

3.3.3 Viscosity

The phase viscosity p is the property of a phase that represents it’s resistance to
flow under the influence of the forces causing the flow. In the saturated flow case
the phase viscosities are positive functions of pressure. When the vapour phase
is missing the liquid and aqueous phase viscosities are functions of pressure and

bubble point pressure p;.

3.3.4 Phase Density

The vector of phase densities p is needed in order to determine the effects of

gravity on the flow, and is defined by
P = B_IRTpstp‘

Where p,, is the vector of densities of the components (oil, gas and water) at

standard temperature and pressure (surface conditions).
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3.4 Equation of State

When satisfied exactly, the equation of state (or volume balance equation) states

that the fluid fills the rock pore volume, i.e.
elu=1, (3.4.4)

where as usual e is the vector of one’s. The extent to which this equation is not
satisfied, i.e. the sum of the phase volumes is not equal to the pore volume, is

termed the volume error discrepancy and is given by

elu—1.

In the sequential formulation it is not possible to satisfy all of the fluid flow
constraints simultaneously and so equation (3.4.4) is linearised to form an equa-
tion for pressure. Performing a Taylor’s series linearisation about time level ¢
gives

e’u ~ e u‘ + Ate” (3.4.5)

t+ At

at|,’
It is assumed that we have a volume error discrepancy at time level ¢, i.e. eTu\t +*
1, and we wish to calculate pressure at the advanced time ¢t + At such that there
is no volume error, i.e. eTu‘H_At = 1. Applying these assumptions and since u is

a function of n and p, equation (3.4.5) becomes

loelu  rOudp rouin

e e :
At dp ot on Ot
Multiplication by the porosity ¢ and use of the mass conservation laws to replace
the time derivative of n results in the following equation for pressure

("u-1)o _  g0u  g0u 06 0p 0w d
IV Gl bl v =i il m R

First degree homogeneity properties of the phases are now used to simplify
the term multiplying g—f. Firstly the matrix of partial phase volumes is computed,

which in the saturated case is

du
— = BT.
on
Post multiplying this by N gives
du L
a—N BTN = BR "RDy = D,.
n
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This implies that

—n =u,

on

which says that each phase volume u is a homogeneous function of the first degree
in the fluid composition n. An identical result also holds in the undersaturated
case.

The pressure equation can now be written in the general form

dp o, B
o +w a—x(fvT +g7)=4q, (3.4.6)

with the total velocity vy being given by

v = [—a—x + 4], (3.4.7)

where the coefficients ¢, w, f, g, v, ¢ and 7 depend on the pressure p and com-

ponent density n. For completeness we define them here

c= gbeTg; — eTugjz,
r=elLex |, ’y:((iif:gg;l
f = ND;lLeeTLe
gZNDJILpgg;ZeTlLe—fV
whoer % u e

For a more detailed discussion on the pressure equation, including its numerical

solution, see Section 3 of [49].

3.4.1 Analysis of the Pressure Equation

To examine the character of (3.4.6) we need to examine the coefficient ¢ of %7; and
the coefficient of 2272 which is obtained after substitution of (3.4.7) into (3.4.6)
and is given by

—wlifr = —elLex,

since w and f satisfy w/f = 1. It is known that pressure effects within the

reservoir are of parabolic nature for compressible fluid flow, so we need to ensure
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that the differential equation (3.4.6) is of parabolic type. The transmissibility 7

is positive, hence the coefficient of ajj; is negative, and therefore for (3.4.6) to be

B
parabolic ¢ is required to be negative. Now, as pressure increases the rock occupies

a smaller volume hence porosity ¢ is a non-decreasing function of pressure,g—;’: > 0.

Tou

5, < 0 is required which is the
P

Therefore for ¢ to be negative the inequality e
condition of negative total fluid compressibility. This is guaranteed by placing
restrictions on the formation volume factors B and ratios R, namely

eTaap (BR™) RB™ <0,

with a more complicated condition in the undersaturated case, see [46].

3.5 Conservation of Mass

The mass of each fluid component is required to be conserved. The matrix N D!
represents the density of each fluid component in each phase, hence the conser-

vation of mass equations are
0 0
— —(ND;'v) =0. 3.5.8
2 n6)+ A (ND;Y) (359

The flux function h = ND;'v can also be expressed as h = RB~'v, which is the
form that will be used in the characteristic analysis. Here the vector of Darcy
phase velocities is written in terms of the total velocity vy, i.e. in the form (3.3.3).

The flux is therefore a function of n, p and vy, hence in quasi-linear form we have

on  Ohon 96dp Ohdp  Oh dup  Oh IS

= n—— —— -——— — ——

ot Tonor ~ “opot  Opor vy 0x 960z (3:5.9)

where 6 is a gravitational term, namely

The term % is only nonzero if the porous medium is heterogeneous, i.e. we have

spatial variation in &, and if the depth gradient % is constant. The system is

hyperbolic if and only if the Jacobian matrix

oh

H:ain
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has real eigenvalues for all values of n. We also need to compute the eigenvalues
and right eigenvectors of H to provide information about the structure of the
wave fields, which will be needed by the numerical method that we use to solve
the conservation laws. Both p and vy are considered to be independent of n
for the purpose of the characteristic analysis since the volume balance equation
(3.4.4) is not enforced in the sequential formulation. To calculate the hyperbolic
wavespeeds we must divide the eigenvalues by the porosity ¢ since it multiplies

the time derivative of n in the quasi-linear form of the conservation laws.

3.5.1 Characteristic Analysis

For saturated flow a similarity transformation and eigenvector deflation is used
to derive the matrix of eigenvectors X, of H. The component derivative of the

flux vector h is given by

since only v is a function of n. Expansion of % using the chain rule and further

manipulation yields

Helu = RB‘lgV[] —sel|BR7".
S

Therefore it can be seen that Helu is similar to the matrix

_6V

V=%

[] - SeT]v

which is the same matrix that appears in the characteristic analysis of the 3 phase
incompressible Buckley-Leverett model [49]. Therefore the similarity transforma-

tion defined by
Heu = MVM"', where M; =RB™,

can be considered to map from component densities to saturations. The matrix
V' can now used to deduce one of the eigenvalues of the system because of the

relation

e’V =0,

which arises because the total fluid velocity is independent of s. Thus e is a left

eigenvector of V with eigenvalue zero. This eigenvector is then used to deflate V'

44



as follows:

1 0 0
MyVMS - = ,
c C
where
1 ef
M2 = 5
0 I

(' is a 2 X 2 matrix given by

and c is a 2 vector defined by
c=-C[0 I]s.

We therefore now have a block-eigenproblem to solve with the remaining 2

eigenvalues of Helu being eigenvalues of matrix C, i.e.

0 0
c C

1 0
7z X,

1 0
7z X,

0 0
0 A.

This block-eigenproblem yields four equations which are 0 = 0 twice, C' X. = X A.
and the relation ¢ + Cz = 0 which we need to solve for vector z. If we put
z = —aX, then this last relation can be re-expressed, so that we need to solve

for a where

X Aa=c. (3.5.10)

It is assumed that a real, non-singular matrix X, and a real diagonal matrix A.

can be found so that

CX. = X:A..

The right eigenvectors of H are then given by the columns of

1 —el 1 0
0 I —a T |

and the corresponding full matrix of eigenvalues is then

10
0 X,

X =RB™!

A=




To summarise we have HX = XA where X and A are given above.
When one of the fluid components and hence phases is missing in saturated
dh

flow, the corresponding row and column of the Jacobian matrix 53, and hence

the matrix 2¥, are both zero. This means that the similarity transformation

B8
defined by the matrix M; cannot be used because (RB~')(BR™") # I, hence the
analysis must be reformulated. The remedy is straightforward because we can
work with the Jacobian matrix H directly, since it has a zero row, instead of
deflating matrix V. We still have the zero eigenvalue, and can proceed with the
block-eigenproblem as before.

The two non-trivial eigenvalues obtained from matrix (', i.e. the entries of
A, are the same as the eigenvalues from the 3 phase Buckley-Leverett problem.
This shows that the hyperbolicity of the system is inherited from the relative
permeability model and not the compressibility and mass transfer effects which
complicate the Black-Oil model.

In the case of undersaturated flow a similarity transformation of H is also

used to find the eigenvectors and eigenvalues, with the eigenvectors given by

XUO I —a
0 1 0 1

X=[RB" q]

The analysis proceeds as before, again reducing to a block-eigenproblem. Here q

is a constant vector dependent on which phase is missing, and the vector a solves

1

eTu

Xz (( JAva—al\) = BTHq.

This auxiliary equation, which we need to solve for a, corresponds to (3.5.10) in

the saturated flow analysis. Xz and Az are given by

s, —1 0 0
XU: AU:

Ovg _ Odva
Sa 1 0 dsq D54

Y

where s, is the saturation of the other existing phase. The full matrix of eigen-

values is then given by

(srq)Az 0

eTu

0 A

A=
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the eigenvalue A corresponding to a weighted sum of particle velocities and is given

in the liquid undersaturated and the vapour undersaturated cases respectively by

v Ya
Rlno U + Ranw U and &

Rmn, + R,n., Uy

In fact the two non-zero eigenvalues obtained from the undersaturated charac-
teristic analysis are similar to the eigenvalues obtained from the Polymer Flood
Model [49]. Further details of this characteristic analysis can be found in [46].
For more general details on similarity transformations and eigenvector deflation

see Golub and Van Loan [21].

3.5.2 Remarks on the Characteristic Structure

The characteristic analysis above has shown that for both saturated and under-
saturated flow an eigenvalue exists which is identically zero and hence is linearly
degenerate. This linear advection mode carries no information and has an effect
on the type of results expected in that we now only expect two wave families
in the results rather than three as would be expected from a system of three
hyperbolic conservation laws.

The remaining two eigenvalues in saturated flow and the second eigenvalue
in undersaturated flow are termed Buckley-Leverett modes because of their sim-
ilarity to the eigenvalues of the 3-Phase Buckley-Leverett model [49]. These
Buckley-Leverett modes have the possibility of local linear degeneracies some-
where in the saturation range and thus we would expect to see shock-rarefaction
compound waves in the results. The third eigenvalue in undersaturated flow is
the weighted sum of particle velocities and is linearly degenerate, hence giving
only contact discontinuities.

As long as the flow remains saturated throughout the reservoir or wholly un-
dersaturated then the eigenstructure will be continuous provided that the func-
tions describing the model are continuously differentiable. If the flow should
exhibit a phase change, i.e. a saturated/undersaturated fluid boundary arises
then the eigenstructure will no longer remain continuous. This is because of the
different functional forms for the formation volume factors and ratios for satu-

rated and undersaturated flow.
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3.6 Sequential Formulation

The idea behind the splitting of the equations into a pressure equation and a
system of conservation laws is that, over some time interval, we first solve for
pressure with the composition fixed and compute a total velocity. We then solve
for the new composition with pressure and total velocity fixed, i.e. with the latest
values of p and vr. Thus the sequential method is based on alternately freezing
some of the coefficients over the time step Af. Given the sequential formula-
tion described, it is therefore accepted that mass is conserved at the expense of
developing a volume error discrepancy.

Ideally time step control should be based on the overall temporal activity of
the flow variables together with some kind of criteria to control the errors due to
the splitting of the flow equations. However, there is no such mathematical theory
to guide time step selection for such splittings of flow equations. Instead time
step control is based solely on Courant-Friedrichs-Lewy (CFL) [13] considerations
for the component conservation laws. It is argued in [5] that such a time step is
suitable for correctly capturing the transient behaviour in the parabolic pressure
equation. We will discuss time step control in more detail later on.

The most evident consequence of the sequential formulation and the resulting
volume error discrepancy is that the pressure field is only approximate. Hence
the total fluid velocity and corresponding phase velocities are only approximate.
Another notable consequence is that the wavespeeds and characteristic directions
of the hyperbolic equations are not derived with the effect of the coupling of the
pressure and component density, i.e through the term g—ﬁ. Hence they are not

the true characteristic quantities of the hyperbolic part. For the characteristic

op _
on

analysis p is considered independent of n, hence 0, in reality this is not the
case due to the coupling of p and n through the volume balance equation (3.4.4).
Therefore we have to accept that the use of the split methodology gives only an
approximation to the true flow behaviour of the unsplit equations.

Now we have a system of hyperbolic mass conservation laws and a parabolic
pressure equation, a computational strategy must be decided upon, i.e. whether

to use explicit or implicit numerical methods. Parabolic equations have quite
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a severe restriction on their time step due to stability considerations, i.e. At
should be of the order (Axz)?. For this reason the reservoir simulation community
have used implicit discretisations of the pressure equation so that this restrictive
stability condition does not apply, as most implicit methods are unconditionally
stable. This motivation for use of an implicit method does not carry over to
the solution of the conservation laws. This is because the stability condition for
hyperbolic conservation laws is less restrictive, i.e. At should be of the order Ax.
Also implicit discretisations of conservation laws typically are more diffusive than
explicit methods. For these reasons an explicit method has usually been used to
discretise the hyperbolic conservation laws arising in the sequential formulation
of the Black-Oil model. However there are cases when an implicit method is
desirable, for instance, when the fronts in the problem travel at much slower

speeds than the fluid.

3.7 2-Component 2-Phase Black-0Oil Model

A 2-component 2-phase Black-Oil model exists [5] which was developed by Bell
Shubin and Trangenstein and is the forerunner of the more general 3-phase Black-
Oil model described in this chapter. This model considers the fluid components
of oil and gas and has a solution gas ratio [; only so that the only mass transfer
effect modelled is gas dissolving in oil. The less general mass transfer effects and
the one fewer fluid components leads to a volume balance equation (3.4.4) that
is much simpler than that of the 3-phase Black-Oil model. In fact the volume
balance equation amounts to a quadratic in pressure and hence can be solved
exactly. For this reason the pressure obtained from the parabolic pressure equa-
tion is only used to compute a total velocity, pressure is calculated by solving
the volume balance equation given the component density vector. Volume error
discrepancies do not enter the problem because of the simple nature of the vol-
ume balance equation and its ability to be solved directly for pressure. This mass
conserving and zero volume error discrepancy formulation of the split equations
is thought by Trangenstein and Bell to be the better of the two types in terms

of analytic considerations. Addition of an extra component (water) and general
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mass transfer (inclusion of R, and R,) to this model considerably complicates the
formulation. For instance the volume balance equation can now not be solved
exactly for pressure, it would have to be iteratively solved. Also the characteristic
analysis would be further complicated by the effect of o but a more accurate
representation of the characteristic structure is provided Compared to the formu-
lation with the inherent volume error discrepancy. Later on we compare some
numerical results of the formulation of the flow equations with zero volume error
discrepancy from [5] with the corresponding volume error discrepancy formulation

to asses the impact of the volume error discrepancy.

3.8 Extension To Multidimensions

Extension of the model to multi-dimensions is fairly straightforward. In terms
of notation, all that is needed is to replace derivatives with respect to x with
gradients and to replace the vector of phase velocities v with an array of phase
velocities in each coordinate direction.

In 2-D the pressure equation becomes

ap a Ta Y Yo YN
8t+w 52 (for +g°77°) +w ay(fvT—l—gT)—q.

The superscripts @ and y refer to the directionality of the quantities. The same
analysis can be used to show the equation has parabolic character, since the ar-
guments involve thermodynamic principles which are independent of the number

of coordinate directions. The conservation laws become

O no)+ 2DV + aay(ND;lvy) — o,

which are hyperbolic if and only if the partial derivatives of the flux with respect
to the conserved quantity, n, in any particular direction, has only real eigenvalues

for all n.

3.9 Black-0il Model Parameters

In this section we provide the functional forms which specify the Black-Oil model

parameters which we use in our Black-Oil computations. Actually these are the
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same model parameters as given in [46], so we could try to reproduce the results
therein.

The units in use in the reservoir simulations throughout this thesis are as
follows. The spatial coordinates x,y and z are measured in feet and time is
measured in days. Fluid pressure p is measured in pounds per square inch (psi)
and viscosity is measured in centipoise (cp). As a result the units of the total
rock permeability , appearing in Darcy’s law, must have the units of ft* cp/psi
days. This results in the need to multiply the rock permeability in milliDarcy’s
(mD) by a factor of 0.006328 to ensure consistency of units.

The relative permeability functions are given by,

k= si(1 —s,)(1 — s4),

The vapour and aqueous relative permeability functions are the standard square
saturation functions, the liquid relative permeability is the result of using the
same model in conjunction with Stone’s model [42].

The rock porosity is given by
¢=02(14+1x10""p),

and hence the rock has a compressibility of (cg) = 1.0 x 10=°psi~*. The ratio

functions describing mass transfer effects are given by
Ri(p) = 0.05p,

Ry(p) =9 x107° —6 x 107 %p 4 1.6 x 107" p?,
R.(p) = 0.005p,

and the viscosity functions are given by

0.8—1x10"*p if liquid is saturated
(0.8 —1x107*py)(1 +6.78 x 107°(p — py))  if liquid is undersaturated

Hr =

1, = 0.012 +3 x 10™%p
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0.35 if aqua is saturated
Ha =
0.35(1 +6.78 x 107°(p — py))  if aqua is undersaturated.
We recall the component density vector n has the units of standard cubic feet

per reservoir cubic foot. This results in the formation volume factors having the

units of reservoir cubic feet per standard cubic foot, and these functions are given

by

1—-231x107%p if Ri(p)=0
Bi(p,pp) =13 1+1.5x10* p  if liquid is saturated (p < py)

141.5x10~% py

T72.31x10-% (p—p3) if liquid is undersaturated (p > py)

1
-\ _ ) (610.06p)
Bu(p, ) = 1 R, [ 1 1
( )

(7+0.06p) + & 6+0.06p)  (740.06p

if vapour is saturated

if vapour is undersaturated

1—-6.78 x107° p if R,(p)=0
B.(pypp) =4 1—=3.0x10"° p if aqua is saturated (p < py)

1-3.0x107° py
1+6.78x10~° (p—pp)

if aqua is undersaturated (p > py).

The definitions of B; and B, when R; and R, are zero respectively are provided,
even though we have R;, R, # 0, because R; and R, may be forced to zero when
the relevant fluid component is missing.

From the definition of the aqueous formation volume factor B, above, it can
be seen that the compressibility of water (c,,) is 6.78 x 107 °psi~'. The value of ¢,
that is given by Trangenstein and Bell in [46] is 1.8 x 107°psi~'. The reason for
this discrepancy is thought to be a misprint in [46], Trangenstein having indicated
a revised value for ¢, in a private communication.

Care must be taken with relation to the units of the parameters needed to
specify gravitational effects due to the units used in the other Black-Oil param-
eters. For instance the gravitational acceleration ¢ used in Darcy’s law (3.3.1)
must be removed because it is incorporated through the factor of 0.006328 mul-
tiplying the rock permeability. Also a factor of 1/144 must be included in the

gravitational term to ensure consistency of units. The vector of phase densities
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used in the computations, unless otherwise stated, were

52.787
p =1 0.05154 |,
62.3967

with the units of 1b ft™°, and are only needed when gravitational effects are

included.
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Chapter 4

The Higher Order Godunov

Scheme

4.1 Introduction

The Black-0il model described in the previous chapter exhibits both lack of strict
hyperbolicity and points of local linear degeneracy. Therefore to effectively treat
such a system of conservation laws requires a numerical method that can handle
these properties, by making appropriate modifications to the basic scheme where
necessary. It is expected that such a scheme would make use of the characteris-
tic information associated with the conservation laws. Porous media flow is also
characterised by solutions developing sharp fronts which need to be accurately
captured with minimal diffusion, we therefore require a higher (second) order
oscillation free (TVD) method. The Higher Order Godunov method is there-
fore particularly suited to porous media flow because it includes modifications
for systems with loss of strict hyperbolicity and local linear degeneracies in the
wavefields whilst also being a second order accurate TVD method. Hence we
use this method to solve the system of conservation laws arising in the Black-Oil
model, paying particular attention to the work by Collela [10] and Bell, Collela
and Trangenstein [2].

There has been considerable effort over the last 20 years to develop Godunov
type methods for computing discontinuous solutions to systems of hyperbolic con-

servation laws. These methods, first introduced by Godunov [20], are thought to
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be as close as any, of the currently available numerical techniques, to analytic
solutions of the conservation laws because they incorporate the nonlinear wave
propagation properties of the equations through the solution of Riemann prob-
lems. The main aim of this effort has been to develop viable numerical algorithms
for areas of application such as compressible fluid flow, plasma physics, and com-
bustion. As a result a set of design criteria has emerged for the construction of
high resolution methods for hyperbolic conservation laws, which are summarised
by Bell et al. in [2]. A review of some of these developments can be found in
Harten et al. [25].

Much of the development of Godunov type schemes has assumed two proper-
ties of the hyperbolic system. Firstly that the system should be strictly hyperbolic
with the Jacobian matrix possessing a complete set of smooth right eigenvectors
and secondly that the system should satisfy the Lax conditions, namely that each
mode of wave propagation should either be genuinely non-linear or linearly degen-
erate, [28]. However the extension of numerical algorithms to such systems that
are not strictly hyperbolic or violate the Lax conditions by having local linear de-
generacies in the wavefields, has also been undertaken, even though the analytic
information on which the formulation depends is unclear for such systems.

A Higher Order Godunov method for strictly hyperbolic systems that obey
the Lax conditions has been presented by Collela [10] including extensions to
multidimensions. Bell, Collela and Trangenstein [2] have presented the necessary
modifications to Collela’s original scheme in order that degenerate systems of
hyperbolic conservation laws may be considered. Here and throughout this thesis
when we refer to degenerate systems of conservation laws, we mean systems with
specifically local linear degeneracies and a lack of strict hyperbolicity. However
in most of the literature, such systems are referred to as general systems which
would seem too wide ranging. The extension to degenerate systems is achieved by
adding extra dissipation (diffusion) at such points in order to stabilise the scheme
and ensure satisfaction of the appropriate entropy conditions. The Godunov
methodology would seem a natural choice for degenerate systems since the same
characteristic information used to construct the scheme can be used to detect loss

of strict hyperbolicity and local linear degeneracies.
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We now review the Higher Order Godunov method [2, 10] for degenerate
systems of 1-dimensional conservation laws. In multi-dimensions a central concern
is the choice of the unsplit versus split methodology, this will be discussed later

in the chapter. The extension of the 1-D scheme to higher dimensions as given

by Collela [10], is also described.

4.2 Details of the Scheme

We firstly consider the problem and describe the notation we will use throughout
the rest of the chapter. We want to numerically solve the systems of hyperbolic

conservation laws

ou N oF
o ox
where U = U(x, 1), with initial data

0,

U(z,0) = Up(x),

such that the problem is well posed. Here U is a vector of length K and F is

a vector valued function of U. The system of conservation laws in quasi-linear

form is
ou N JF oU _0
ot ou ox
where the matrix 25 is the Jacobian matrix which we will call H. (We denote the

Jacobian matrix by H rather than the more usual A so as to be consistent with
the Jacobian matrix present in the Black-Oil equations, described in the previous

chapter.) We perform a characteristic decomposition of H as follows
H = RAR™,

where R is the matrix of right eigenvectors of H and A is the matrix of eigenvalues.
The right eigenvectors (columns of R) are denoted by ry.

The Higher Order Godunov scheme proceeds by computing a monotonised
central difference approximation to the slope in the conserved variables, in order
to suppress oscillations at discontinuities and hence ensure the method is TVD.
A left and right state is then calculated at each cell interface using characteristic

information and the monotonised slope. The idea is used that if these left and
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right states, that are used to compute a numerical flux, are second order approx-
imations at the half time level and the cell edge then the overall scheme will be
second order accurate. Of course this is only in regions of smooth flow, the mono-
tonisation process lowers the order of accuracy at discontinuities. The numerical
flux at the cell edge is computed by solving a local Riemann problem there. Even
in problems for which the Riemann problems are well understood analytically,
it is usually more computationally efficient to introduce approximations, for ex-
ample see Roe [33]. In any case there is not much point in solving the Riemann
problem to a greater accuracy than that of the underlying discretisation. This
idea is central to the approximate Riemann problem solution given in [2], which
proceeds by computing a generalisation of the Engquist-Osher numerical flux for
systems.

The Higher Order Godunov scheme, in the 1-dimensional case, can be consid-

ered as a 5-step procedure:

. Beginning with the piecewise constant approximation U7, compute

‘centred’; ‘left” and ‘right’ slopes, whilst maintaining conservation.

2. ‘Limit’ the slopes using monotonicity criteria, again whilst maintaining
conservation. This provides a piecewise linear discontinuous approxi-

mation to the solution at time t.

3. Trace along characteristics, using a Taylor series extrapolation, to de-
rive left and right states at grid cell interfaces at time ¢ 4 %At. It is
possible that the traced states are unphysical, if this is the case the

physical cell centred value is used instead.
4. Solve the Riemann problem with these left and right states.

5. Use a conservative difference approximation to (3.5.8) to produce a

. . . . 1
plecewise constant approximation to U?"’ .

We now describe these main steps of the method in more detail including the
necessary modifications for the treatment of points of non-strict hyperbolicity

and local linear degeneracies.
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4.2.1 Monotonised Slope Computation

We begin with a piecewise constant approximation U” to the solution in each grid

block at the current time level, for example see Figure 4.1. Using this piecewise

Figure 4.1: An example piecewise constant representation of the solution.

constant approximation in the algorithm would only enable the construction of a
first order method. More information about the structure of the solution is needed
for a second order method. For this reason we need to calculate an approximation
to the slope % so that we may express the data as a piecewise linear profile, which
is monotonised to prevent the creation of any new extrema. The monotonised
representation will hence be discontinuous piecewise linear, see Figure 4.2, and
will ultimately prevent the formation of oscillations near discontinuities in the

solution at the advanced time level. Use of an unlimited linear representation

j-1 j j+1 j+2

-------- Discontinuous piecewise linear

Figure 4.2: An example discontinuous piecewise linear representation of the so-

lution.
would result in oscillations occurring near discontinuities, much akin to those
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which occur with the Lax-Wendroff method [29]. We note that this approximation
maintains conservation of the conserved variable U as it preserves cell averages.
A monotonised centred-difference approximation is defined by,

vl AY
ox T Az

L=y

(4.2.1)

where in order to calculate AU; we compute undivided centered, right and left
differences in U and expand these differences in the right eigenvectors rj of the

system Jacobian matrix %, l.e.

1 K
(Uit = Uja) = 3 ajry,
k=1

K
Uj-l-l — U]‘ = Z airk, (422)
k=1

K
U; - U, = ajry,
k=1
the ozi’” being expansion coefficients. This is an analogous procedure to the
scalar case since pre-multiplication of the cell differences by R™! approximately
decouples the system. Hence we have three K x K linear systems to solve for the
ozi’”, where K is the length of the system.
The monotonised slope is then defined by

K
AU = ayry, (4.2.3)

k=1
where the expansion coefficients from (4.2.2) are ‘limited’ to give

min(|ag], v|ak], y]af]) sign(as if afal >0
(lekls vlekl, v]ekl) sign(eg) kY 7 (4.2.4)

ay =

0 otherwise
and where v is a constant parameter. In regions of smooth flow AU will be given
by central differences whereas near extreme points, AU will be set to zero. This
form of ‘limiting’ is described by Van Leer [51], and is usually carried out with
~ = 2 which is adequate for systems that are strictly hyperbolic and genuinely
nonlinear. The parameter v = 2 is the maximum value possible such that the
least amount of slope limiting occurs to ensure the resulting piecewise linear

profile will not create any new extremum in the data. The smaller the value of
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~, the more numerical diffusion added into the scheme, with v = 0 reducing the
scheme to first order. There are three important criteria which the above slope

limiting formula obeys, these are

1. If the cell average is a local extremum then the slope is set to zero,

2. If the sign of a slope is different to that of either of its neighbours then

it is set to zero, i.e. the local trend in slope signs is maintained,

3. The linear profile should not take values beyond those of the neigh-

bouring cell averages.

However, additional limiting is required when local linear degeneracies and
eigenvector deficiencies are detected amongst the ri. A sufficient modification
given by Trangenstein [49], when a local linear degeneracy is detected would
be to set v = 1.5 for that particular wavemode. Local linear degeneracies are
associated with shock-rarefaction compound waves and are detected by testing

for a change in sign of spatial differences of the wavespeeds, i.e.

(A1 = M)Ay — Arjo1) < 0.

It this test is satisfied at grid point j and for wavemode &k then + is reduced to
1.5 for that wavemode. The effect of reducing v is to add extra diffusion at that
point, this reduction of v is the least reduction possible such that local instabilities
are not introduced due to the prescence of the local linear degeneracy and such
that second order accuracy is maintained. After all we do not want to reduce ~
too much and excessively smear the discontinuity. We have also seen a value of
v = 1.0 quoted by Bell et al. [2] for use at such points of local linear degeneracy,
~ = 1.5 is a revised value based on numerical experimentation, reported by Bell
and Shubin [4], and in any case is preferential as it introduces less dissipation.
Thus extra dissipation is added in the vicinity of the shock to ensure it satisfies
the entropy condition.

Near an eigenvector deficiency the right eigenvectors used in (4.2.2) become
nearly parallel, which results in unreliable expansion coefficients because the ma-

trix of eigenvectors is nearly singular. In such cases it is assumed that the portion

60



of the jump
1
5 (Uit = U,

corresponding to

ar 4+ ag v, (4.2.5)

involves an eigenvector deficiency, i.e. r; and r,, are nearly parallel. To detect
for such an eigenvector deficiency the following test given in [2] may be used

K

A — Al < 0.1 Z ag|kik — Kmk|-

k=1
This test estimates whether it is possible for both of the wavespeeds to coincide
in a neighbourhood of the state at which the eigenvectors r;, are evaluated. The &
are called structural coefficients and represent the gradient of the eigenvalue with
respect to the conserved variables in the direction of a particular eigenvector, and

are defined by
RE — (VU)‘k) - Iy

It this test is satisfied then the wavemodes [ and m are assumed to involve an
eigenvector deficiency. To ensure the slope limiting process does not introduce
instabilities it is necessary to treat the entire jump corresponding to (4.2.5) as
one wave because individual components of the jump are badly behaved. This
means that we want to reduce of and «f by the same amount and force the two
components to travel at the same speed. It \;A,, < 0 then both of and «f, are set

to zero. If the wavespeeds are of the same sign an effective wavespeed is defined
B — 1
)‘l — )\m — 5()\1 + )\m)a

and each component limited by the same amount by using the parameters w; and
w,, defined by

w = qfa, wn = ag/al.
The limited slopes are then redefined by setting
ap = min(wy, wy,) Q.

with a similar definition for «,,, and these modified coefficients are then used in

(4.2.2).
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4.2.2 Characteristic Tracing

We now focus on the calculation of the traced left and right states used to de-
termine the numerical flux. The monotonised slopes defined by (4.2.3) are used
to construct time-centred left and right states at the cell edges. Values in cell
j are used to compute U;:?L and U?j?R, the computation being based on a
Taylor series expansion about the cell centre, with the quasi-linear form of the

hyperbolic equations used to replace the temporal derivatives of U. The left state

to second order accuracy in both space and time is given by

Uil = Ui 5 Uit 57U
Ax At
e e (4.2.6)
. Ax At
= Ui+ (7]— 7Hj) U
oF

where H is the Jacobian matrix 5.

For linear problems (4.2.6) can be used to compute a left traced state by
replacing U, with the monotonised slope approximation (4.2.1). A right traced
state is calculated with a similarly derived formula. For nonlinear problems how-
ever, (4.2.6) must be modified to disregard components of U, corresponding to
waves that do not propagate towards the correct cell edge, i.e. for nonlinear
problems different characteristics may propagate towards both cell edges, but we
only want to use information traveling to the left to calculate the left state and
information traveling to the right to calculate the right state, due to the upwind
nature of the scheme. This subtraction of unwanted information is accomplished
by multiplication of the second order terms in (4.2.6) by the characteristic pro-

jection operators defined by
P% = RATR™,
where R is a matrix with columns r;, and AT is a diagonal matrix with
. _ 1 :
AG = 5(1 =+ sign(Ax)),

where if we have A\, = 0 then we take AL, = 1. This procedure is redundant in
the linear case but has been reported by Collela [10] to lead to a more robust

algorithm for strongly nonlinear problems.
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Formally the left and right states at cell edge 7 4+ % are then given by

n—I—%,L n 1 At
U i =Uj 4+ 5B (1= 1) AU,
n+l,R " 1. - At
Uitm = Uk =5l (U4 o Hj) AUju

(We note The first order Godunov scheme may be recovered by setting the AU’s
to zero, i.e. just using the cell centred quantities.) Simplification of these expres-

sions yields,

Uiptm = Uk = SR (T4 o Aj) @,

where A is the matrix of eigenvalues of H and o« is the vector of expansion
coefficients used in the monotonised slope computation. Use of these simplified
expressions means that we do not have to calculate the Jacobian matrix H for
saturated flow with the Black-Oil model. The effect of the projection operators
P* which do not appear in these simplified expressions, is accomplished by
setting to zero components of a for which the corresponding wavespeeds are of
the wrong sign.

If the quasi-linear form of the hyperbolic equations should contain source
terms, as with the Black-Oil model then extra terms will appear in the traced

states. These extra terms modify the traced states as below

n—I—%,L

U
it

ntl At
— U +2’L—|——S'

its 9 "

rR At

7’L+%,R 7’L+%,
— U. —S,;
]-I-% + 9 741

i+t
where S; is the total source term vector associated with cell j.

Since the characteristic tracing step is derived using a Taylor’s series expansion
with removal of information for which the associated wavespeeds have the wrong
sign, it is possible that the traced states could be unphysical. Therefore tests
are included in the algorithm to take account of this. If a particular traced state
is found to be unphysical then the second order tracing terms are set to zero,
leaving the cell centred value and possibly any source term that were present in
the quasi-linear form. If source terms were present we perform the test again and

if this state is still unphysical we then use the physical cell centred value of U.
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4.2.3 Approximate Flux Computation

We now need to solve the Riemann problem at the cell interface with the left
and right states derived from the characteristic tracing step. This is done ap-
proximately by using a generalisation of the Engquist-Osher numerical flux for
systems (see Osher and Solomon [32] and Engquist-Osher [18] [19] for details).
Firstly a path is constructed from U’ to U that approximates the phase space
solution to the Riemann problem, then a numerical flux is computed. Both the
phase space solution and the numerical flux formulae are constructed so as to be
correct to second order in the jump (U — U?%), which preserves second order
accuracy of the method.

For a strictly hyperbolic system the solution of the Riemann problem consists
of up to K distinct waves progressing from U* to U* separated by K — 1 in-
termediate states. Thus the solution in phase (U) space is a collection of state

transitions

U'=U;— U, -+ — U, — Ug=U"

where the transition from Ug_; to Ug occurs along some arc 'k of the Kth wave
curve. For a more detailed description of the structure of the Riemann problem
see Lax [28] and Liu [30].

In the limit of small amplitude jumps the following holds

Ug —Ug_y = oyry + O(|UR - UL|2)7

i.e. the right eigenvectors approximate the wave curves in phase space to second
order in the jump between the left and right states. Here, as is usual it is assumed
the system has been ordered such that the wavespeeds are in nondecreasing order,
ie.

A< Ay <o < Ak

This ordering is due to analytic considerations and is needed to ensure single
valued solutions. Hence the path in state space between the left and right states

can be expressed by

K
UP - U" =3 ayry + O(JUR — U,

k=1
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In the general case of finite amplitude jumps, the phase space solution of the

Riemann problem takes the form
K
U —U" =3 ayRy,
k=1

where Ry is a generalised eigenvector that represents the net change along I'y,
and which is normalised to be of unit length.

The approximate phase space solution is therefore a decomposition of the
jump from U* to U® into K jumps corresponding to each of the wave modes.
To approximate this decomposition a simple phase space solution is used, as was
recommended in [2] for problems involving flow in porous media. We calculate

an expansion state as the average of the left and right states
7 oL R
and then evaluate the generalised eigenvectors at this expansion state
Ek = I'k(U),

so that Rj becomes an approximation to Ry. If we expand UF — U” in terms of
the R, we have,
K
U# - U" =Y @Ry, (4.2.7)
k=1

so that @, approximates ay. It is also assumed that the Rj are orientated so
that the @, are positive. The approximate path in phase space, for example a

2-system is shown in Figure 4.3.

o | length o,
length o, U /

Figure 4.3: The path in phase space, taken by the Riemann problem solution,

connecting the left and right states at the cell interface.
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The intermediate state U? shown in Figure 4.3 given by
Ui — UL —|— &1§1.

The numerical flux is then written as a flux at a reference state plus integral
correction terms which were constructed to be of dissipative form. Firstly to

determine this reference state a mean speed

(F(U") — F(U")) - (U" — U")
[Us — U2 ’

(4.2.8)

g =
is calculated and the reference state is then defined by

U = UY it o>0

— UR otherwise.

If we assume the Jacobian matrix H has a Roe type decomposition [33] i.e.
AF = HAU, where the A refers to the difference between the left and right
states, then the mean speed may be re-expressed as,

AUT H AU
c= —
[|AU[?

Therefore it can be seen that when H is positive definite i.e. AUTHAU > 0, and
will therefore possess non-negative eigenvalues then the reference state will be the
left. This rewriting of the equation for o enables the relation of the wavespeeds
to the determination of the upwind reference state to be seen more clearly.

We now give the approximate Engquist-Osher flux formulae at both reference
states

ag
0

FPO (UL, UR) = F(UL) + kij( / min(Xy, 0) da) Ry, (4.2.9)

FFO(UL, UR) = F(UR) — kﬁj( / ™ max(h, 0) da) Ry

The A, is an approximation to the wavespeed along the line segments T, (which
approximate the I'y) from Uy_; to Uy , i.e. along R;. We now describe the
wavespeed approximation process given in [2], which is illustrated in Figure 4.4.

Firstly we calculate the wavespeeds and the structural coefficients at the two ends
of the path I';, on which we are approximating the wavespeed \.. The structural

coefficients in this case are defined by
Kl — (VU)‘k) . El, (4210)
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U U

Figure 4.4: The parameters needed in the wavespeed approximation process on

path Ty

and provide the second derivative information that is needed to compute a cubic
approximation of the wavespeed )\ along I';. A cubic approximation is used so
that inflexion points in the flux can be represented. An additional simplifying
procedure can also be introduced by replacing the cubic by its piecewise linear
approximation in order to avoid finding zeroes of a cubic in the algorithm. Hence
we need to compute the extrema of the cubic and then the piecewise linear ap-
proximation A, is defined to be the piecewise linear interpolant of the wavespeed
at the two ends of the path and the extremum states. We note that analytic
expressions for the gradients of the wavespeeds in (4.2.10) may be difficult to
obtain, as with the Black-Oil model. In this case an alternative approach may be
used, described by Trangenstein [48], which amounts to sampling the wavespeeds
at two interior points along the path I'; and then again forming a piecewise linear
approximation.

We now turn to the possibility of encountering a point where strict hyperbolic-
ity fails. In a neighbourhood of the eigenvector deficiency two of the eigenvectors
become nearly parallel, which leads to large expansion coefficients in (4.2.7). The
phase space approximation is not reasonable and its use with the flux computa-
tion (4.2.9) can introduce instabilities into the method. The test for eigenvector
deficiency described in [2] uses the structural coefficients, for implementation with
the Black-Oil model these are not available therefore the approximate tests de-

scribed in [48] may be used. When we detect that two wavespeeds may coalesce,
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say A; and A,,, we only modify the treatment of the two wave families involved,
the remaining families are treated as before. Hence we assume that R; and R,,
are nearly parallel and hence the associated expansion coefficients are unreliable.
When more than two wavespeeds are involved the changes are a natural extension
to the two-mode case.

The modifications needed depend on whether the eigenvector deficiency is
associated with a change in sign of the wavespeed during the transition from U’

to UR. To test for this the following are defined

min __ . L R L R
= min( A7, A7 AL AL,

im

ma — max(AF, ML),

Im

If A7 and A79% are of the same sign it is assumed the deficiency is not associated

with a transonic wave. In this case the portion of the jump
alﬁk + amﬁma

is collapsed into a single jump which is denoted by Ry, and is of length aj,,. A
modified flux is then defined, which in the case of the reference state being the
left is

F UL _I_ Z / mln )‘k7 0) dOé) Ek ‘|‘ (/alm min(le, 0) dOé) Elm?

E£Lm 0
where \j,, 1s a linear function which satisfies

At (0) = max(Ar, A7),

X (@) = min( A, A1),

When A" and A7'9% are of opposite signs the integral correction terms are re-
placed by a dissipative term similar to that which is incorporated into Rusanov’s

scheme [37], the modified flux is then given by

_ 1 —
FEO UL )+ Z / min )\k,()) da) Ry — §Vallem7
k£l,m

where

v = max([A7], Al AL A
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The modified flux formulae for the cases when the reference state is the right
state are easy to deduce by comparing with (4.2.9).

The Engquist-Osher flux is known to diminish the total variation of the so-
lution to scalar conservation laws. However for the system case the approximate
paths in state phase, between the left and right traced states, may not be a good
representation of the true paths in state space. This is because at certain points
the system may exhibit a lack of strict hyperbolicity and genuine nonlinearity.
Therefore the calculated flux could possibly introduce some oscillation into the
results. This is then damped out by addition of an artificial viscosity term which
also ensures satisfaction of the entropy conditions and is described in the next

subsection.

4.2.4 Entropy Satisfaction

We need to ensure the numerical solution converges to the correct physical solu-
tion satisfying appropriate entropy conditions. This is ensured by the addition
of a small amount of numerical diffusion. The amount of which must be care-
fully selected otherwise fronts may become excessively smeared. Therefore in the
case of the second order scheme the flux in (4.2.9) is modified by addition of a

quadratic artificial viscosity term

ntz,L Un+§7R) — v l(UR _ UL)7 (4211)

ity 0 its it3

F”"’ % FEO (U

ity

where

VipL = O.Imkax()\f — ko).

This form of viscosity is suggested in the introduction of [2] by Bell et al. but
is not the form that is actually quoted later in the paper. However Collela et
al. [12] describe this form of viscosity for use with their Godunov method. The
viscosity term is only added when the eigenvalue at the right state is greater than
the eigenvalue at the left state, i.e. a compressing wave is present. It can be
seen the artificial viscosity is quadratic in the jump (U — U?) which maintains
second order accuracy of the method.

The form of artificial viscosity term quoted by Bell et al. in [2] was also used
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by Collela and Woodward [11] and is of the form
—01 mkax()‘k,j-l-l — )‘kJ? 0)(U?_|_1 — U?)

This is of O(Az?) and hence also maintains the accuracy of the method. Collela
and Woodward [11], also used the parameter of 0.1. This parameter of 0.1 has
been used successively with a number of Godunov type methods. Some schemes
are reported in [11] to require more viscosity, and hence have a parameter greater
than 0.1.

No artificial viscosity is added for the first order scheme as an ample amount
of diffusion will already be present due to the discretisation. The numerical fluxes
in (4.2.11) are then used in the conservative difference formula to update the cell
averages.

At gl

Ut = U% — = (F]

n+3
L -F). (4.2.12)

=
[
|
Ny

4.3 Extension to Higher Dimensions

4.3.1 Introduction

In multi-dimensions a central concern is the choice of the unsplit versus split
methodology, which can have an effect on the overall computational efficiency of
the scheme. An operator split algorithm would involve applying 1-dimensional
operators in their particular coordinate direction separately, in order to advance
the solution to the next time level. There being a rule by which the separate ad-
vancements of the solution in each coordinate direction are combined to achieve
the correct order of accuracy. For a description of these rules and more details of
operator splitting techniques see Strang [44]. Operator split schemes have been
successful for multi-dimensional problems, in particular their robustness, reso-
lution properties and computational efficiency, compared to the corresponding
unsplit scheme, are usually cited. However situations exist for which their use
is inappropriate, for example when conservation is required in the coupling of a
front tracking algorithm to a conservative difference scheme. Another example
is the advection by an incompressible velocity field, as occurs in some models

of multiphase flow in porous media. It is therefore felt to be more appropriate
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to consider an unsplit scheme, and again follow the work of Collela [10] when
describing a multi-dimensional Higher Order Godunov method. We restrict our-
selves here to the 2-Dimensional scheme since higher dimensional schemes follow
on naturally from this description.

We note that an alternative form of an unsplit multidimensional Higher Order
Godunov method has been developed by Bell, Dawson and Shubin [3]. In this
formulation a limited piecewise bilinear approximation of the solution in each
grid cell is used to ensure oscillation free results. The left and right states at the
cell edges being traced using the geometry of the characteristic surfaces. However
this method has only been applied to scalar conservation laws, the authors of [3]
stating that extension to systems of conservation laws would be difficult; we do

not consider this method any further.

4.3.2 Details of the Scheme

Firstly we state that we are considering the following 2-Dimensional systems of

hyperbolic conservation laws

U OF 09G

9 "o Ty Y

where U = U(x, y,t) and with initial data
U(z,y,0) = Ug(z,y).

The numerical solution procedure largely proceeds as in the 1-Dimensional
case. We calculate left and right traced states at each cell edge and hence solve
the Riemann problems there. The jump between these two states is assumed to
take place perpendicular to the cell edge, hence we solve 1-Dimensional Riemann
problems at all the cell edges. The resulting fluxes, which are calculated in both
coordinate directions at the same time, are then used in a conservative difference
formula to update the cell averages.

We focus our attention on the calculation of the left and right traced states
since that is the portion of the scheme that differs from the 1-D case. In particular
these traced states will contain extra terms arising from the influence of the extra

coordinate direction as we are about to see. We will only consider calculation of
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the state
1
UL
since the other left states are calculated by interchanging the roles of ¢ and j, =
and y, and the right (R) states follows on naturally from our experience of the
1-D algorithm. We proceed as in the 1-D algorithm and use a Taylor’s series
extrapolation to the half time level and the cell edge in the x coordinate direc-

tion. We again use the quasi-linear form, with respect to the = direction, of the

hyperbolic equations i.e. we use

ou U  0G
H*
ot + Dz rm dy =0,

to replace the temporal derivative of U in the formula for U ], , where H” is

2 )

the z-directional Jacobian %. We therefore have

n—I— L aU At aG

U. = U}, Azl — AtH?, —
+2u7 + ( ’ )8:1; 2 dy’

which looks like the 1-D traced states with an extra term due to the extra coor-
dinate direction, i.e. the fact that we are working in two dimensions. We again
apply the characteristic projection operators to the second order tracing terms,
they are neglected here to simplify the exposition.

The tracing of this left state can be viewed as a 2 step procedure by firstly cal-
culating the traced states as in the 1-D case by replacing % with its monotonised

central difference approximation, i.e.

1 At
[ — = Hf)AUY..

UL, =—ur
A1y

2+27]
Secondly we add on the effect of the transverse flux gradient %, ie.

i+L.j HLi T oy (4.3.13)
oG

To complete the calculation the term Em

is approximated by an upwind flux

difference. The simplest choice would be to use Godunov’s first order method to

calculate %—G. This is a sufficiently accurate approximation to give an algorithm
y

that is second order accurate. Equation (4.3.13) is approximated by

U.

R L R R L R
frs = Uk = g, (GM(ULL UL - GRUE LU

i L =g At ( ))
7]+ 7]+ ]_7 ’
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where
GH(Ut, uh,

denotes the flux obtained from solving the Riemann problem with the indicated

left and right states. So Godunov’s first order method used to approximate %

would take

L _ 1"
Ui,j-l—% - Ui,j’
Ul = Ul (4.3.14)

i.e. the cell centred quantities.

However for problems involving moderately strong discontinuities traveling
obliquely to the grid directions, it is necessary to use a more accurate approxima-
tion to the transverse derivative. This is because if the approximation calculated
is sufficiently different from the actual change calculated in the conservation (con-
servative update) step then the solution will overshoot or the discontinuity will
spread. To address this possible problem more accurate left and right states
(4.3.14) are needed in the flux calculations used to approximate the transverse

flux derivative. This is accomplished by using the following left and right states

L _ 17L
Uw-l—% Um‘+§v
R _T7R
Ui,j-l—% = Ui,j-l—%’ (4.3.15)

i.e. the 1-Dimensional traced left and right states in the y direction. For com-

pleteness we also give the right traced state at cell edge ¢ 4+ %,j

_ 1 Al
R n T z
Uity = Ul — g+ M ) AU,
U TR, - AL (GRUY, L UR - GRUY, L UR )
i+l T Tt 2Ay L+ 50 YL+ i+lj—-50 Yitr-1/)

The usual CFL stability condition is used to calculate a stable time step, i.e.

Ax Ay

At < mi
< min( max; ;(A¥,)" max; ;(AY;) )
where A" denotes the eigenvalues of H” (i.e. %) and the XY the eigenvalues of

oG
HY (55)-
The steps in the calculation of the 2-D left and right states can be summarised

by the following:
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1. Compute 1-D left and right traced states at each cell interface in each

coordinate direction,

2. Add on the effect of the transverse flux derivatives to all the traced

states,
3. Solve 1-D Riemann problems at every cell intertace,
4. Use a conservative difference formula to update the cell averages,
S gt _prti g St gt

utl=ur. - —(F 2. —-F. 2)- —(G."
gy gy Ax( it1,j i—1, Ay( ijt+3 hi—%

In the next chapter we describe the implementation of the Higher Order Go-
dunov scheme on the Black-Oil model, and show results of numerical reservoir

simulations in 1 and 2 dimensions.
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Chapter 5

Implementation of the Higher

Order Godunov Method on the
Black-0il Flow Equations

5.1 Introduction

In this chapter we discuss the implementation of the Higher Order Godunov
method on the Black-Oil fluid flow equations. We also describe the general com-
putational details associated with the numerical modelling, such as time step
control and the type of computational grid used, and also discuss the discreti-
sation of the parabolic pressure equation. A 1-D and a dimensionally unsplit
2-D Fortran code were written to numerically solve the flow equations so we may
perform reservoir simulations in 1 and 2 dimensions. The 1-D code was validated
by comparison of results with those presented by Trangenstein and Bell in [46],
who also applied the Higher Order Godunov method to the Black-Oil equations.
We show results of three of these comparison problems.

Results of a 2-D cross-sectional problem, using the same numerical method
and mathematical model, are shown by Bell et al. in [2] but the initial conditions
are not supplied therein. No other 2-D Black-Oil results have appeared in the
literature, so the 2-D code was validated by comparison of results with those from
a commercial reservoir simulator. These comparisons relate more closely to the

discussions in Chapter 7 and can be found there. However, in this chapter we
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present results of a 2-D Areal problem which was used to investigate the effect
on the numerical results of the accuracy of the transverse flux derivatives (4.3.15)
and (4.3.14), described in Section 4.3.2.

It is not possible to construct analytic solutions to the Black-Oil fluid flow
equations but analytic solutions to 3-phase incompressible flow equations are
possible. Comparison of the analytic solutions of these problems with the cor-
responding numerical results has not appeared in the literature. Incompressible
flow problems are a good test of a numerical method since analytic solutions ex-
ist for comparison with numerical results. Construction of analytic solutions in
this case is straightforward since the mathematical model for incompressible flow
reduces to a 2-system of conservation laws. The model also exhibits local linear
degeneracies and eigenvector deficiencies, as does the Black-Oil model, and hence
is a good test of the numerical method, although for the types of problem consid-
ered, namely those with no gravitational effects and therefore no counter-current
flow, the Higher Order Godunov scheme used to simulate the problems is not
fully tested. This is because the phase space construction of the Riemann prob-
lem described in Section 4.2.3, will not be needed because the flux computation
reduces to upwind determination. Physical assumptions and experience of incom-
pressible flow problems are used to aid the solution construction process. The
Higher Order Godunov method was found to be successful at simulating these in-
compressible (Buckley-Leverett) flow problems and so confidence is provided that
the numerical method is resolving the solutions to the analogous Black-Oil model
problems well. Some numerical results of 3-phase incompressible flow problems
were also presented by Bell et al. [6] but these were not compared against analytic
solutions since they were used to investigate the prescence of elliptic degeneracies
in the conservation laws.

Finally in this chapter we describe the incorporation of source terms to model
injection of fluid into and production of fluid from the reservoir. Source terms
are traditionally used in the computer codes used by the reservoir simulation
community to model these processes. However as far as we know source terms
have not previously been used in conjunction with the form of the Black-Oil

model in [46] but have been used with the much simpler Polymer Flood Model
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[49], neither of these models being used in commercial reservoir simulation codes.
Locally implicit procedures are usually utilised when applying source terms to
remove the numerical stability problem associated with their use. We follow this

approach when applying source terms in conjunction with the Black-Oil model

and Higher Order Godunov method.

5.2 Computational Approach

5.2.1 Computational Grids

The discretisations of the differential equations are based on a block (or cell)
centred grid system. The block centred grid is particularly suitable for reservoir
simulation problems because fluid and rock properties can be assigned, and as-
sumed to hold throughout each computational cell. The 1-Dimensional grid is

specified by giving the grid block interfaces which are denoted by

with an analogous definition of the grid in higher dimensions. The block centred
grid can be distinguished from the more standard point (or node) centred grid in
the following way. The block centred grid can be considered as the computational
region having been distributed with cells, with the nodes residing in their centres,
whereas the node centred grid having been distributed with nodes. Therefore the
two ends of the block centred grid align with block edges, whereas in the case of
the point centred grid the ends of the grid align with nodes and hence a half cell
is present at the ends of the grid. Again in two dimensions all the boundaries
of the grid, assuming it is regular, align with block edges. In 1-Dimension grid
block B; is bounded by TiL and Tip1 and is of length Az = Tipl =1

For each grid block B; we define a vector of component densities at time ¢
which is denoted by n?, and provides a piecewise constant approximation to n at
time £. A pressure p? is associated with each n? and at time ¢ = 0, i.e. the initial
conditions, p and n should be paired such that the volume balance equation (3.4.4)

is satisfied. A staggered grid is used with pressure and component densities stored

at grid block centres and with total velocities stored at grid block interfaces, see
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Figure 5.1. This is due to the centred discretisation of Darcy’s law (5.2.2) and is

standard in reservoir simulation work, see Aziz and Settari [1].
n
VTj+1/2

| ‘ | ‘
Xj-1/2 / \ Xj+1/2 Xj+3/2
n n
n j p j

Figure 5.1: The staggered 1-D grid, indicating where the variables pressure (p),

component density (n) and total velocity (vy) are stored.

The use of a block centred grid with the Higher Order Godunov method is also
particularly suitable due to the cell based nature of the scheme. Also specification
of numerical boundary conditions is straightforward. For example at = 0 we
have the first cell edge where we need to specify a flux, so if we have an inflow
boundary we assign the physical inflow flux there. On the other hand if the
boundary is of no-flow type then we simply set the flux to zero. At the other
end of the 1-D grid, at * = x,,,, say, we also need to specify a flux. The no-flow
boundary is treated as before, but if we have an outflow boundary then we can
perform a characteristic tracing of n to the boundary, as in the internal flowfield,

and calculate the resulting outflow flux.

5.2.2 Conservation Law and Pressure Discretisations

The system of conservation laws (3.5.8) is discretised using the Higher Order
Godunov method described in the previous chapter. There are a number of points
regarding implementation with the Black-Oil model worth mentioning. Firstly,
due to the high component density of gas, because of its high compressibility, the
component densities are poorly scaled. This results in an unreliable calculation
of the average wavespeed (4.2.8), used to determine the reference state for the

flux computation. This can be overcome, see [49], by multiplication of U and F
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in (4.2.8) by the formation volume factors at the appropriate state, i.e. left or
right. Secondly, since the characteristic tracing step is derived from a Taylor’s
series expansion, with removal of wavespeeds of the wrong sign, it is possible that
the traced component densities could be unphysical. More specifically we could
trace to a negative component density or to a state outside the current state of
phase equilibrium. When an unphysical traced state is detected the slope An
is set to zero, which leaves the cell centred value plus the source term from the
quasi-linear form of the equation (3.5.9). We then test again and if we still find
an unphysical state we use the cell centred value n?. Each grid block of fluid has
an associated number of fluid phases present, i.e. a particular saturation state,
if we trace to a block edge where a different number of phases are present we
perform the same process as before, i.e. set the slopes to zero and test again.
Under certain reservoir conditions the Higher Order Godunov flux computa-
tion is simplified. Namely, if we have a linear reservoir with no depth variation
then gravitational effects are removed. If we also have pressure boundary condi-
tions that guarantee flow from left to right then the total velocity will be positive
for all time. This guarantees positive wavespeeds which means that the reference
state for the flux computation (4.2.9) will always be the left-hand state, and the

flux computation itself reduces to upwind determination, i.e.
FE0 (Ut U%) = F(UY).

In fact even if gravity is present, as long as no counter-current flow occurs, i.e. all
phase velocities are the same sign (and hence wavespeeds), then flux computation
will still simplify to determination of the upwind direction.

The pressure equation (3.4.6) is discretised using a backward Euler (i.e. im-

plicit) approach, namely

G =)+ (Ax)z(WT)j (72 (or)i T + 8717 = fs(or)iT) — g7

J
= Atg?, (5.2.1)

with the following discretisation of total velocity
(i — o)

(UT);H—} == Az

] T (5.2.2)
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As the numerical solution of the pressure equation is of implicit type there is
no restriction on the time step due to stability considerations. The solution of
(5.2.1) after substitution of (5.2.2) is accomplished by solving a tridiagonal linear
system every time step. This system is straightforward to solve directly via a
standard forward /backward substitution algorithm, and in any case is the most
efficient, see Golub and van Loan [21].

We note however, that the fluid parameters in the discretisations (5.2.1) and
(5.2.2) can only be evaluated at the current time level, because they are functions
of the quantities we are trying to calculate. This results in the approximation
of pressure being second order accurate in space but only first order in time.
The fact that pressure is only first order accurate in time is not thought to be
too serious by Trangenstein [49]. This is because although pressure effects are
quickly felt throughout the reservoir, once the fluid flow has settled down the
pressure field is slowly varying in time because of the small compressibilities in
the reservoir fluids, i.e. the coefficient ¢ of %Z; is of the order 107°. Therefore the
time truncation errors associated with the pressure equation should not be too
large compared to those in the hyperbolic conservation laws.

The transmissibilities T]ﬁ_l_% in (5.2.1) and (5.2.2), at the cell interfaces are

formed by a harmonic weighting

T =T
n o __ 2T] Tit+1
T+l = n
2 T+

the other quantities at the cell interfaces being evaluated by arithmetic averaging,
for example
ff+;— - ;(fyn +17).

The reason for the differing methods of calculation of the quantities needed at
the cell interfaces is as follows. Quantities which are functions of saturation are
termed strong non-linearities whereas quantities which are functions of pressure
are termed weak non-linearities. The strong non-linearities are stated to need
special treatment, i.e. the harmonic weighting as opposed to arithmetic averaging
to obtain the cell edge values, see Aziz and Settari [1]. Actually all four of the
coefficients f, g, v and 7, needed at the cell edges, are functions of saturation

and pressure but Trangenstein [49] only recommends harmonic weighting of the

80



transmissibilities 7. This is because he is very keen to stress the equivalence of the
discretisation, along with the given method of obtaining the cell edge coefficients,
with the mixed finite element formulation of the pressure equation. If all the
coefficients were harmonically averaged, as the above reason dictates, this would

not then be the case.

5.2.3 Time Step Control

Time step control for the component conservation equations is based on CFL [13]

considerations,

Az
A" < \
- S;;Lal’

where ST is the largest wavespeed at the current time level. As we are approx-

imating the solution of the differential equations with the numerical method, the
possibility exists that the maximum wavespeed calculated 57, could be smaller
than the maximum wavespeed in the analytic solution. This would result in the
calculated time step being an unstable one. To allow for this possibility the cal-
culated time step is reduced by a multiplicative factor termed a CFL number. A
CFL number of 0.9 is usually sufficient for use with the Higher Order Godunov
method, to achieve stable numerical solutions.

This time step is also suitable for correctly capturing the transient behaviour
in the parabolic pressure equation. To justify this we can examine how the time

step responds to fluctuations in the pressure field. The time step is inversely

proportional to the wavespeed which is proportional to the total velocity vr, i.e.

Ar A
Smax = vt

At x

Y

and since in the absence of gravitational effects vy o %, we have

(Ae)*

At
x A

(5.2.3)

Time steps of O(Axz?) are of the correct size for ensuring stability in explicit
numerical solutions of parabolic equations, however, we are using an implicit
discretisation which has a far less severe stability criteria, if indeed any. The
relation (5.2.3) tries to ensure that the O(At) and O(Ax?) leading terms in the

truncation error balance.
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When we solve the pressure equation we use a time step based on CFL con-
siderations at the current time level. Once the pressure field at the advanced
time level is obtained we may calculate the maximum wavespeed and hence an
associated stable time step at this level. If this time step is greater than that at
the current time level we complete the update procedure by solving the conserva-
tion laws, if this is not the case we repeat the pressure equation with the stable
time step from the advanced time level. Thus this process represents an extra
technique of ensuring stability and is important in problems with high injection
rates. This strategy of ensuring a stable time step can be summarised by

Az

A" < )
man(Sm(w(l'lZ, pZ)v Smax(n27 PZ“ ))

The time stepping used in the Higher Order Godunov code is based on CFL
criteria with a CFL number of 0.9. However we need to supply the code with
an initial time step since at ¢ = 0 all wavespeeds are zero. We supply a very
small time step of 0.001 days to break the computation in. Also we do not
allow the increase of the time step to go beyond a specified limit, an increase of
a factor of 1.5-2.0 is usually acceptable which has the effect of controlling the
volume error discrepancy which can become large near the wells early on, due to
the comparatively large changes in pressure and component density there. Once
the computations have settled down the usual CFL criteria then takes over in
controlling the time steps. Also, during the course of the computation, if large
volume error discrepancies are generated, for instance O(1072), then the time step
is reduced by a factor of 10 which has the effect of re-establishing the smooth

running of the computation by reducing the discrepancy.

5.2.4 Multidimensional Considerations

In 2-Dimensions, application of the Higher Order Godunov method to the com-
ponent conservation laws is straightforward, there is nothing that needs to be
taken into account that was not mentioned for the 1-D case. However we will
describe the solution of the pressure equation in 2-D because it is more complex
than the 1-D case. The discretisation of the 2-D pressure equation is of the same

type as in the 1-D case but we now have the standard 5-point stencil shown in
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Figure 5.2 instead of the 3-point stencil.

° Pi,j-1

Figure 5.2: The 5 point pressure stencil resulting from the discretisation of the

2-D parabolic pressure equation.

This results in a pentadiagonal matrix equation
Ap =f, (5.2.4)

to solve for pressure, assuming that we used natural ordering to form the matrix
equation, i.e. cycling along the z-direction first. A is a pentadiagonal N x N
matrix where N = N, x N, and is the total number of grid blocks used in the
simulation. N, and N, are the number of grid blocks in the x and y directions
respectively. Vector p is the N vector of unknown pressures pz;!'l and f is the

right hand side vector. A is of block tridiagonal form as below

Mll M12 0
M21 M22 M23 0
0 M32 M33 M34 0

Mo My M

L MNy—lvNy MNyvNy _
Each of the sub-matrices M, ; is itself an N, x IV, matrix, with the matrix entries
M on the diagonal being tridiagonal and the off-diagonal matrices being diagonal.

The linear system (5.2.4) may be solved directly by, for instance, Gaussian

Elimination, however in two dimensions the solution of the pressure equation takes
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up a considerable amount of the total CPU time, i.e. around 20%. Therefore we
require the method of solution to be as efficient as possible so we prefer an iterative
method such as the Successive Line Over Relaxation (SLOR) method, see Varga
[52] for details, or the pre-conditioned Conjugate Gradient method see Golub
and van Loan [21] for general details and Van Der Vorst [533] for the algorithm
used. We tried both methods of solution and found the pre-conditioned conjugate
gradient method to be more efficient as the grid was refined.

We now describe the implementation of boundary conditions for a 2-D Areal
reservoir simulation problem. An Areal problem takes place in the  — y plane,
gravity is assumed to act in the z-direction, therefore there are no gravitational
effects in the problem, if there is no dip angle in either coordinate direction. See
Aziz and Settari [1] for a more detailed description of the Areal problem and for
other types of reservoir simulation performed in 2-D, for example cross-sectional
problems which do include gravitational effects. The Areal region is usually
square with injection of fluid taking place in the bottom left hand corner and
production of fluid in the top right hand corner. All boundaries other than the
injection and production points are of no normal flow type. The computational

region is shown in Figure 5.3.

y_

v=0 Production

Well
V=0 « ->Vv=0
Injection
ell

N2

v'=0

Figure 5.3: The geometry of the Areal problem, indicating the locations of the

wells and the no-flow boundaries.

The grid block in the bottom left hand corner containing the injection well is
shown in Figure 5.4.

We need to specify the four fluxes shown on Figure 5.4 to update the compo-
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Figure 5.4: The injection grid block, indicating the 4 fluxes needed to update the

component density vector.

nent density held at the block B; ;. The two fluxes F G. ., 1 are calculated

it i+ s
using the methods explained in Chapter 4. We see that the fluxes Fi—%,jv Gi,j—%
are located on no-flow boundaries and therefore would expect to set them to zero.
However we also see that the point (x = 0,y = 0) where the injection well is phys-
ically located does not enter into the stencils of our numerical schemes for either
the conservation laws or the pressure equation. Therefore we must find a way of
modelling it, the most obvious way is the inclusion of a local source term in the
hyperbolic conservation laws. However dealing with source terms in hyperbolic
conservation laws is problematical, for instance with explicit treatment of source
terms time steps need to be significantly reduced to ensure stable solutions. We
will discuss the use of source terms to model injection and production wells in
the Black-Oil model equations and their treatment later in this chapter.

There is another way to model injection that is very straightforward, we simply
set the injection conditions to hold on the boundaries of the grid block at points

1 — %,j and 12,5 — %, the fluxes F G, 1 then become the physical injection

i—L,50 i

fluxes. We can justify this by pointing out that the total mass flux into the grid
block is the same as if the injection took place at (v = 0,y = 0). This technique
is also used in the pressure equation discretisation. We also use this process
to model the production well in its containing block. Basically we assume that

production of fluid takes place at two points, N, N, + % and N, + %, Ny, we trace

the component densities to these points and compute an outflow flux to use in the
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conservative finite difference update, the same process as in the 1-D case. Again

this modelling of production is also used in the pressure equation.

5.3 Validation of the Higher Order Godunov
Code

A Fortran code was written to solve the Black-Oil fluid flow equations given
in Chapter 3 using the Higher Order Godunov method described in Chapter 4.
Both a 1-D and a dimensionally unsplit 2-D code were written, the 2-D code being
obtained from extension of the 1-D code. In order to use the the codes to perform
the investigations in this thesis, they need to be validated. The 1-D code was
validated by comparison of results with those given by Trangenstein and Bell in
[46], who also used the Higher Order Godunov method [2] to solve the Black-Oil
flow equations [46]. There is only one set of 2-D Black-Oil results in the literature,
in [2], but the initial conditions are not included therein. Therefore an alternative
method of validating the 2-D code was required and was performed by comparison
of results with those from a commercial reservoir simulation code (VIP) used by
B.P., written by Western Atlas, these results relate to the discussions in Chapter 7
and so are shown there. However we also show some 2-D results in this section to
investigate the accuracy of the transverse flux derivatives (4.3.15), (4.3.14), used
to construct the left and right traced states, see Section 4.2.2. In 1-D three of
the reservoir flow problems from [46] were simulated, these being a saturated flow
problem, an undersaturated flow problem, and a mixed saturated-undersaturated
flow problem. In 2-D a saturated flow Areal problem was simulated which was
based on the 1-D saturated flow problem.

The problems given in [46] were said to have not been typical of Black-Oil
reservoir simulations, but were designed to test the resolution capabilities of the
numerical method for problems involving sharp fronts. The Pressure-Volume-
Temperature properties and the relative permeability data was the same for all
of the problems and can be found in Section 3.9. The physical setting in 1-D was
as follows, a reservoir 1000 feet in length with no dip angle (i.e. horizontal), with

permeability of 100 millidarcy’s was initially filled with a mixture of oil, gas and
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water. The initial fluid distribution was taken to be uniform along the length
of the reservoir, and had an associated pressure. Fluid of given composition
and pressure was injected at + = 0 and the fluid resident in the reservoir was
produced at a specified pressure at * = 1000. We remark that the initial data, of
the problems given in [46], including that at injection and production did contain
a volume error discrepancy, i.e. the volume balance equation (3.4.4) was not
satisfied exactly.

The problems were simulated using the second order scheme with 200 grid
blocks to accurately resolve the fronts, a CFL number of 0.9 was used throughout
the computation. The reservoir data used guarantees that the fluid flow is from
left to right for the entire computation, hence flux computation reduces to upwind
determination as described in Section 5.2.2.

We now give a description of the test problems from [46] which we simulated.
Problem 1 is a saturated flow problem throughout with injection and initial reser-

voir compositions given by

0.0414 0.703
n;,; = 66.23 sy Mpeg = 70.30
0.497 0.0502

The injection, initial reservoir and production pressures are 2000, 1800 and 1600
psi respectively. We refer to this as problem A2 in this thesis. The problem was
simulated for 150 days with the results from the Higher Order Godunov code
shown in Figure 5.5. The corresponding results shown by Trangenstein and Bell
in [46] are shown in Figure 5.6.

In the saturation plots shown in this section, the lower curve is the vapour
saturation and the upper curve the sum of the vapour and liquid saturations.
Hence the distance between these two curves represents the liquid saturation and
the distance between the second curve and the top of the graph represents the
aqueous saturation. For the saturated flow example, in Figure 5.5, both non-
zero wave families are not genuinely non-linear and therefore rarefaction-shock
compound waves are possible and can be observed with the shocks, in these waves,
located at about 150 and 720 feet.

The second simulation problem was problem 3 from [46], which we refer to as
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problem A3, and has injection and initial reservoir compositions given by,

0.404 0.734
N;; = 4.042 sy Ipes = 32.10
0.647 0.1835

This problem is an undersaturated flow example with the vapour phase missing.
The injection, initial reservoir and production pressures are 1400, 1200 and 1000
psi respectively. The simulation time being 300 days with the results from the
Higher Order Godunov code shown in Figure 5.7. The corresponding results
shown by Trangenstein and Bell in [46] are shown in Figure 5.8.

Both wavespeeds in the saturated flow problem 1 are termed Buckley-Leverett
modes, due to their similarity to the 3-phase incompressible wavespeeds. In
undersaturated flow only one of the wavespeeds is of this form, the other being
the linearly degenerate particle velocity. Hence only one of the two wave modes
was expected to yield a compound wave similar to those observed in problem
1. The compound wave in Figure 5.7 can be identified, with the shock located
around 750 feet.

The last 1-D example is problem 5 from [46], which we refer to as problem

A4, and has injection and initial reservoir compositions given by,

0.0179 0.668
N;,; = 178.68 y Npes = 100.19
0.357 0.0668

In this problem a 2-phase mixture with the liquid phase missing is injected into
a 2-phase reservoir with the vapour phase missing. During the course of the
simulation a saturated region also develops in the middle of the reservoir, thus
we have a mixed flow problem. The injection, initial reservoir and production
pressures are 4300, 4200 and 4100 psi respectively. The fluid flow was simulated
for 400 days with the results from the Higher Order Godunov code shown in
Figure 5.9. The corresponding results shown by Trangenstein and Bell in [46] are
shown in Figure 5.10. The results of problem 5 in Figure 5.9 shows two phase
changes located at about 150 and 650 feet.
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Figure 5.5: The numerical results obtained from simulating problem A2 with the

Higher Order Godunov code using 200 grid blocks and a CFL number of 0.9.

Figure 5.6: The corresponding numerical results of simulating problem A2 pre-

sented by Trangenstein and Bell.
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Figure 5.7: The numerical results obtained from simulating problem A3 with the

Higher Order Godunov code using 200 grid blocks and a CFL number of 0.9.

Figure 5.8: The corresponding numerical results of simulating problem A3 pre-

sented by Trangenstein and Bell.
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Figure 5.9: The numerical results obtained from simulating problem A4 with the

Higher Order Godunov code using 200 grid blocks and a CFL number of 0.9.

Figure 5.10: The corresponding numerical results of simulating problem A4 pre-

sented by Trangenstein and Bell.
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The simulations shown in Figures 5.5, 5.7 and 5.9 show good agreement with
the corresponding numerical results in [46], which are shown in Figures 5.6, 5.8
and 5.10, hence validating the 1-D Higher Order Godunov code. Of note in these
results, and those in [46], are the spikes in the wavespeeds at the points of local
linear degeneracy which are commonly observed in simulating such problems.

The 2-D Areal problem was simulated in order to examine the effect on the
numerical results of the accuracy of the transverse flux derivatives in the calcula-
tion of the left and right traced states, described in Section 4.3.2. The Black-Oil
model parameters were the same as in the 1-D problems, with the rock permeabil-
ity of 100 milliDarcy’s in both coordinate directions. The problem takes place in
the « — y (horizontal) plane and is simulated on a region of 100 square feet. The
reservoir has no dip angle in either direction and hence flux computation again
simplifies as in the 1-D problems, i.e. upwind determination in both coordinate
directions. Fluid is injected at the bottom left hand corner, i.e. at (0,0) and fluid
is produced at the top right hand corner, i.e. at (100,100). All boundaries other
than at the injection and production points are of no-flow type. The injection,
initial reservoir and production conditions are the same as in the 1-D saturated
flow problem.

The problem was simulated with 40 grid blocks in both directions using a
CFL number of 0.9 and to a time of 5.0 days. The results shown in Figure 5.11
were simulated with the second order scheme using the most accurate transverse
flux derivatives, calculated using (4.3.15), (see Section 4.3.2).

In the Areal problem the contours start out at an early time as circular in
nature. However the greatest pressure gradient is along the diagonal connecting
the injection and production wells, which forces the contours to square off, as
can clearly be seen. A section of the results along this diagonal was plotted and
found to exhibit the same qualitative structure as the corresponding 1-D problem,
which was to be expected.

The corresponding results with the less accurate transverse flux derivatives

calculated using (4.3.14), are shown in Figure 5.12.
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Figure 5.11: Results of simulating the 2-D Areal problem with the most accurate
and a CFL number of 0.9.
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Figure 5.13 shows the effect of neglecting the transverse flux derivatives com-

pletely.
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Figure 5.13: Results of simulating the 2-D Areal problem with no transverse
terms, using a 40 x 40 grid and a CFL number of 0.9.

In these contour plots, when the contours are closely spaced the prescence
of a shock is indicated, whilst comparatively widely spaced contours indicate
rarefaction regions. Two shocks are clearly visible in the results of this Areal
problem. A close comparison of Figure 5.11, obtained with the most accurate
transverse terms, and Figure 5.12, with the less accurate transverse terms, al-
though still maintaining second order accuracy, was performed. This indicated
that the contours in Figure 5.11 near the injection well are slightly more square
whilst those further into the region are slightly less square, compared to Figure
5.12, but there not being much difference between the two. The result of using no
transverse terms, in Figure 5.13 is that the contours in the middle of the region
are not properly formed. Also unphysical cavities are introduced in the gas and
water component densities near the injection well. Therefore one form of trans-
verse flux calculation is needed in the 2-D Higher Order Godunov algorithm to

simulate the Areal problems. In the 2-D cross-sectional problems the effect of the

94



accuracy of the these terms is expected to be more noticeable since transverse
flow is more prevalent.

Experience of Black-Oil computations have provided a feel for the level of
volume error discrepancy that is acceptable in terms of the accuracy of the nu-
merical results. For instance in 1-D computations without gravity the maximum
volume error discrepancies generated are typically in the range O(107*)—O(107?)
which are deemed acceptable. If discrepancies of O(107?) are generated these are
thought to be unacceptable and may usually be reduced by reducing the time step.
For example when fluid is injected having an associated volume error discrepancy
of O(107?) boundary layers develop in the results at the injection point. This is
due to the mismatch in discrepancy between the injected fluid and the fluid in the
reservoir, and represents unphysical behaviour. In 2-Dimensional simulations the
volume error discrepancies generated are typically an order of magnitude higher

than those in 1-D.

5.4 Construction of Analytic 3-Phase Flow
Riemann Problem Solutions

We now move on to the construction of analytic solutions to the Riemann prob-
lem associated with 3-phase incompressible flow equations in order to test the
accuracy of the Higher Order Godunov method when applied to degenerate sys-
tems of conservation laws. Analytic Riemann problem solutions for 3-phase com-
pressible flow problems do not exist due to the complexity of the mathematical
model. However analytic Riemann problem solutions for 3-phase incompressible
problems without gravitational effects are relatively straightforward to construct.
We construct some 3-phase incompressible analytic solutions and compare these
with the corresponding results from the Higher Order Godunov code. Some ana-
lytic constructions were also performed by Smith in [40], we extend this work to
consider more general solution behaviour. We now outline the derivation of the
mathematical model and then describe the solution construction process.

The mathematical model describing 3-phase incompressible (Buckley-Leverett)

flow of oil, gas, and water in a porous medium is quite straightforward, reduc-
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ing to a 2-system of equations due to the volume balance condition. The mass
conservation equations for the 3 fluid components (or phases) are as follows

0 0
@(nﬂﬁ) + %(Pivi) =0,

where ¢ = o, g, w and refers to the fluid component with component density n;.
¢ is the porosity, p; is the density of the phase and v; is the gravity free Darcy

phase velocity given by
)\ivT

DV W

where A; are the phase mobilities and vy is the total fluid velocity. No mass
transfer effects are modelled and so the phases and components are equivalent.
For example oil exists in the liquid phase only and so the liquid phase could
equally well be referred to as the oil phase, similarly for gas and water. The

following equations describe phase equilibrium
Ny = PS4, @ = 0,4,W,

where s; is the phase saturation which is the volume fraction of the phase. Hence

the saturations sum to one, which gives the volume balance equation
S0+ 84+ 8w = L. (5.4.5)

The conservation of mass equations may be manipulated to give
dJs Ov
ot + i 0,
where s and v are vectors of the component quantities. These 3 equations may
be summed to give the relation
which states that the total fluid velocity is independent of position in the reservoir.
This means that the boundary conditions specify the velocity field throughout

the reservoir. Only 2 of the saturation equations need to be considered, namely

Osw \ Ovw _

ot oz
and

ds, vy

ot o
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since (5.4.5) then implies conservation of the oil saturation s,. Hence we have a
conserved variable U = [s,,, s,]7 of saturations and a flux function vector F =
[0, 0] of phase velocities.

The characteristic structure of the model is as follows, the wavespeeds are

1 dv,  Ov, dv,  dv, Jv, Ov,y,
A = 2 lasw + Js, + \l ((&sw B &sg) +483w &Sg)] ’

and the right eigenvectors by

given by

1 1
P = n-&m |, = | - %w

vaw vaw

Osg Osg

It is known that the wavemodes of this model are not genuinely non-linear. There-
fore shock/rarefaction compound waves which also occur in the 2-phase Buckley-
Leverett model will be expected.

Weak solutions of the flow equations are sought as discontinuous solutions are
expected. The Riemann problem considered is of the form

st if 2=0

SEXTRS

s oif >0
so that s” corresponds to the injected fluid composition and s the initial reservoir
composition. The theory of the Riemann problem solution to a 2-system of strictly
hyperbolic conservation laws can be found in Smoller [41]. Liu [30] describes the
solution of the Riemann problem for systems not satisfying the genuine non-
linearity condition.

The calculated analytic solutions are plotted against the wavespeed /¢ which
leads to a clearer interpretation of the results. Some analytic results will be shown
after a description of the construction process and compared to numerical results
from the Higher Order Godunov code. We use the same relative permeability
functions as were used with the Black-Oil computations, given in Section 3.9,

and the following phase viscosities in Centipoise

to = 1.0, p, =0.05 p, =0.8.
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For the Riemann problems under consideration we take unit porosity (¢ = 1) and
total velocity (vy = 1). The positive total fluid velocity ensures that fluid flow
takes place from left to right and hence that both wavespeeds are non-negative.

The aim in solving the Riemann problem is to connect the left and right states
in the problem with either shocks or rarefactions which are separated by constant
states. The system considered exhibits a lack of genuine non-linearity and so
rarefaction-shock compound waves are also possible. The solution to the Riemann
problem can also be exhibited in phase space, that is in conserved variable (s, s,)
space. In this representation the Riemann problem can be considered as tracking
the various shock, rarefaction, or rarefaction-shock composite wave curves and
finding the points of intersection, and thus determining the path between the left
and right states taken by the solution.

The approach of determining the waves present in the solution is influenced by
physical assumptions, and in particular the behaviour of 2-phase Buckley-Leverett
systems. In the 2-phase Buckley-Leverett system water injection will typically
give a rarefaction-shock compound wave. The rarefaction fan stretches from the
injection composition to an intermediate saturation state which is connected by
a shock to the initial water saturation in the reservoir. Similar behaviour is
expected with the 3-phase system, where the compound wave would be expected
to be a 1-rarefaction-shock, a faster 2-wave will also appear in the solution. This
is because the shock in the first wave will clearly be the slower of the two waves
which constitute the Riemann problem solution, and hence be associated with Ay,
defining a 1-wave, due to the condition Ay < Ay, If the first wavespeed Ay is non-
zero at the injection point (z = 0) then the injection conditions can propagate
into the region and a constant state connecting the injection conditions with the
left state of the rarefaction is expected. If on the other hand A; = 0 then the
rarefaction connects directly to the injection saturations at = = 0.

Firstly the 1-rarefaction in the 1-compound wave is tracked by choosing a
water saturation increment ds,, and calculating the corresponding increment in

the gas saturation from

(A — Z)

— Isw
g Ay dSu”

Jsg

ds

which is derived from the first right eigenvector ry, see Smith [40]. The increment
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ds,, 1s successively applied to the injected water saturation, which defines the left
state of the rarefaction. The wavespeed Ay is calculated and plotted against
z/t since for a l-rarefaction we have \; = z/t. The incrementation procedure
on the water saturation s, which constructs the 1-rarefaction is continued until
the location of the shock which connects the current water saturation on the
rarefaction wave to the initial reservoir water saturation is found. The 1-shock is
located as follows; since the shock is part of a compound wave connected to a 1-
rarefaction then at the connection point the fastest wavespeed in the rarefaction
will be equal to the first characteristic speed to the left of the shock. At the

con

connection point, s°" say, the 1-rarefaction is given by

% — )\I(SCOTL)7

the 1-shock is located at x/t = o, where o is the shock speed and hence the shock
will have speed

o = )\I(SCOTL)7

which satisfies the extended entropy condition for shocks which are not genuinely
non-linear, see Liu [30]. As the l-rarefaction is tracked a shock speed based on

the water component is calculated

k res
o= [Fw] _ vw B vw
= = ,
[Uu]  sf — s
where s* is each incremented state on the rarefaction wave. The square brackets

refer to the jump between the values to the left and right of the shock. This
shock speed can only be calculated for the water component as only the water
saturation to the right of the shock is known in advance, i.e. the initial reservoir
water saturation. Since A; increases from left to right along the rarefaction, at
the left end A\; < ¢ so the shock can be detected when the condition A (sk) >0
arises. When this condition is met the current value of s* connects the rarefaction
to the shock. Figure 5.14 shows an example of a 1-rarefaction wave curve from the
left state in the Riemann problem connecting to a 1-shock wave curve in phase
space. The point where the two composite wave curves coincide is given by s".

Once the shock is detected the gas saturation to the right of the shock may
be calculated. This is done by using the jump condition for the gas phase

vL(SLLuv 55) - 05(857 Sf) = 0-(85 - Sf)v
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| 1-rarefaction

con
S

. 1-shock

Figure 5.14: Example wave curves in phase space emanating from the left state

in the Riemann problem.

where o is the shock speed and the superscripts indicate the left and right states

R

associated with the shock. The only unknown in this non-linear equation is s

since the oil saturation to the right of the shock may be expressed in terms of Sf
and s and may be calculated by using an iterative method such as Newton. Now
the characterisation of the shock can be checked to see if it satisfies the appropriate
entropy condition, namely that it is a 1-shock. Assuming this to be the case, we
can now attempt to connect the local right state associated with the 1-shock to
the right state in the Riemann problem, i.e. the initial reservoir conditions, by a
2-wave. A triple (transitional) wave is not considered a possibility, as these are
not typically seen in gravity free 3-phase flow problems, and would only occur at
an umbilic point, so a constant state connects the local right state to the 2-wave.

The wavespeeds associated with the local right state and the reservoir initial
conditions can then be used to determine whether the 2-wave is a shock only or
a rarefaction/shock compound wave. This is done by calculating a shock speed
based on a shock having a left state of the constant state mentioned in the previous

paragraph, s® say, and a right state of the reservoir initial conditions, i.e.

v; —vges

o= """
SC _87’65
g g

The Lax entropy condition for a 2-shock can then be used to check that a shock
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with this speed is an admissible one, namely
AS >0 > AL

If this is the case then it is assumed this shock from the constant state to the
initial reservoir state completes the solution of the Riemann problem. Figure 5.15
shows how the composite wave curve in Figure 5.14 intersects with a shock wave
curve emanating from the right state in the Riemann problem when the solution

is completed by a 2-shock. The state s refers to the constant state separating

| 1-rarefaction

CW _ 1-shock

2-shock
s shoc S

Figure 5.15: Example wave curves in phase space connecting the left and right

states in the Riemann problem.

the 1-rarefaction-shock compound wave from the 2-shock.
If this 2-shock cannot be found then it is assumed the 2 states are connected
with a 2-rarefaction-shock. The 2-rarefaction is defined by Ay = x/t, therefore

we calculate A\y(s°) to determine the starting point (left state) of the rarefaction

C

on the x/t axis. The gas saturation is then incremented, starting from s,

using
a similar procedure to that previously described, to track the rarefaction wave.
The water saturation is constant across this wave since the initial reservoir water
saturation was reached by the 1-shock in the first wave. Hence the corresponding
increment in the oil saturation is trivial to calculate because the saturations sum

to 1. Once each new saturation state, 3’; say, on the rarefaction wave has been

calculated, the corresponding wavespeed A, is calculated to see if a 2-shock can
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be connected from 3’; to the initial reservoir state. This is done by calculating

the shock speed

vk _ yTes
) g
g = )
Sk — gres
g g

and then using this in the entropy condition
Ao > o>

which is of the required form for determining the admissibility of a shock in
a rarefaction-shock compound wave. If this condition is satisfied then we have
found the 2-shock in the compound wave located at /t = o. This then completes
the solution of the Riemann problem.

Two Riemann problems were considered, the first of which corresponds to
essentially a waterflood into a reservoir containing halt oil and half gas. The

injected and initial reservoir saturations are given by

0.0 0.5
Sin; = 0.06 s Sres = 0.5 5
0.94 0.0

where the vectors are ordered oil, gas, and lastly water. In Figure 5.16 we show the
analytic solution in phase space. In this diagram the triangle defined by the dotted
line indicates all possible fluid saturations. The left and right states defining
the Riemann problem are shown together with the wave curves that connect
them. On these diagrams shocks are indicated by straight lines which connect
the left and right states associated with the shock although the actual shock
curve (Hugoniot) will not necessarily be a straight line. Rarefaction curves are
indicated by smooth curves. For a 2-system of hyperbolic conservation laws the
wave curve out of the left state in the Riemann problem intersects the wave curve
out of the right state at exactly one point in phase space. This point is referred
to as the intermediate state in the Riemann problem. For systems that are not
genuinely non-linear either or both of the wave curves can be composed of both
shock and rarefaction wave curves as in the Riemann problems considered here.
In Figure 5.16 a composite rarefaction-shock wave curve can be seen intersecting

int

the shock curve from the right state at the intermediate state denoted by s'*".
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Figure 5.16: The phase space solution for problem 1 indicating the types of waves

that connect the left and right states in the Riemann problem.

The state s°°"! denotes the connection point of the rarefaction and shock wave
curves associated with the 1-rarefaction-shock compound wave.

The results of the analytic constructions are shown in Figure 5.17. Here
a constant state connecting the injection conditions to the left state on the 1-
rarefaction can be observed, and occurs because A;(s;,;) # 0. A l-rarefaction-
shock compound wave connecting the injected water saturation to the initial
reservoir water saturation is clearly visible, the shock in this wave has a speed
of 0 = 1.220. The calculations then indicate that the constant state to the right
of the 1-shock can be connected to the initial reservoir state with a 2-shock with
speed 0 = 1.994. In comparison the results of simulating this problem with the
Higher Order Godunov code are shown in Figure 5.18. The simulation was run
with 100 grid blocks and a CFL number of 0.9. The numerical results agree well
with the analytic constructions, the shocks are captured in the correct positions
as expected and the rarefaction waves are resolved accurately. Of particular note
is the spike in the wavespeeds of the numerical solution at the location of the
shock in the compound wave which is the characteristic signature of a local linear

degeneracy, i.e. a point where the genuine non-linearity condition fails.
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Figure 5.17: The analytic solution for problem 1 showing a 1-rarefaction-shock

compound wave and a faster 2-shock.
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Figure 5.18: The numerical solution for problem 1 simulated using 100 grid blocks
and a CFL number of 0.9.
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It the analytic and numerical solution results are overlaid the agreement is
such that only the spikes in the wavespeeds show up as a clear difference.
The second Riemann problem considered corresponds to a gas and waterflood

into an oil saturated reservoir. The initial conditions are as follows

0.0 1.0
Sing = 0.5 s Sres = 0.0
0.5 0.0

In Figure 5.19 we show the analytic solution in phase space. This time the solution
consists of two rarefaction-shock compound waves, separated by the intermediate
state in the Riemann problem s, The states s°*! and s°°*? indicate where the

rarefaction and shock portions of the compound waves are connected.
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Figure 5.19: The phase space solution for problem 2 indicating the types of waves

that connect the left and right states in the Riemann problem.

The analytic constructions are shown in Figure 5.20. Here the left state of the
1-rarefaction again connects to the injected saturations via a constant state. The
shock in the 1-rarefaction-shock compound wave has a speed of ¢ = 0.125. In this
case a valid shock which connects the constant state to the right of the 1-shock,
with the initial reservoir saturations cannot be found. Therefore the solution to

the Riemann problem is completed with a 2-rarefaction-shock compound wave.
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Figure 5.20: The analytic solution for problem 2 showing a 1-rarefaction-shock
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The 2-rarefaction is tracked until a valid 2-shock can be found which connects
the rarefaction to the initial reservoir state. A 2-shock with speed o = 2.791
was found to accomplish this. The corresponding numerical results, again run
with 100 grid blocks, are shown in Figure 5.21. The analytic solution contains
some fine detail in the vapour saturation profile, the 1-rarefaction-shock poses
a difficult test for the numerical method. The plots in Figure 5.21 show that
the numerical method resolves this wave pattern fairly well. The spikes in the
wavespeeds at the points of local linear degeneracy are again apparent.

Although the mathematical model describing 3-phase incompressible flow is
a 2-system of equations with a conserved variable of two of the saturations, the
Black-Oil model is a 3-system with a conserved variable of component density.
When the Higher Order Godunov code is used to simulate the incompressible flow
problems, we actually solve the 3-system for component density and compute the
saturations from these results. The numerical results obtained agree well with
the analytic solutions to the Riemann problem. The shocks in the problems are
captured with the correct speed and the rarefaction waves are resolved accurately.
The only deficiency associated with the numerical results are the spikes in the
wavespeeds at the points of local linear degeneracy, however these are commonly

observed in the numerical results of simulating such problems, for example [6]

and [46].

5.5 Incorporation of Source Terms

The investigation of applying source terms in the Black-Oil model was prompted
by the Areal (2-D) simulations, which were described in Chapter 4. In these
problems the positions of the injection and production wells do not coincide with
the nodes of the stencils of either the pressure equation or conservation law dis-
cretisations. Therefore the way of specifying injection and production fluxes was
not clear and hence it was thought that injection and production of fluid would
have to be modelled via point source terms in the relevant grid block centres.
Use of a source term enables the pressure of the injected fluid and its injection

rate to be specified whereas when boundary fluxes are used either one or the
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other may only be specified, similarly with production of fluid. In the petroleum
reservoir simulation community inflow and outflow of fluid are typically modelled
by assigning all boundaries to be of no flow type and using source terms where
appropriate. There is a lack of implementation details in the literature regarding
source terms, especially in relation to the fluid model and numerical method we
use.

The main problem associated with using source terms is one of stability. This
arises through the fact that non-homogeneous conservation laws will have curved
characteristics whereas in the homogeneous case these are straight. Therefore
the CFL condition on stability, which is derived using straight characteristics, no
longer applies and so explicit finite difference schemes must be operated at a lower
CFL number. The required reduction of the CFL number depends on the stiffness
of the source term and can represent a considerable increase in computational
effort. For this reason implicit procedures are usually incorporated to remove
the stability problem. A locally implicit approach is usually adopted and used
only in those cells where variables associated with the well cells are used in the
calculations.

Bell et al. [3] use a locally implicit procedure in their reservoir simulations
modelled by a scalar hyperbolic conservation law, with an alternative Higher
Order Godunov method, but no details are given. Whereas Holing et al. [26]
provide some, but only minor, details of application of sources in their reservoir
simulations using the Higher Order Godunov method applied to 2-D polymer
flooding, which is modelled by a system of 2 conservation laws.

Inclusion of a source term in the mass conservation laws associated with the

Black-Oil model results in the following non-homogeneous system in the 1-D case
0 0 L
a(nqﬁ) + a—x(RB v)=RB'r,

where r is the vector of phase injection rates of fluid measured in day™'. Produc-
tion of fluid at a production well would be accomplished with a negative value
of r. A source term in the conservation laws means that an extra source term
will also appear in the parabolic pressure equation since the conservation laws

are substituted into the pressure equation in the course of its derivation. The
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pressure equation now becomes

ca]; +wl 0 for +g7) =q+w RB™'r.

0 dr
The additional source term here represents no problem in its numerical solution.
However this is not the case when we come to solve the conservation laws as
previously described. If we wish to model injection of fluid into the reservoir,
then the source term will only appear in the equations associated with that grid
block. Hence the implicit procedure to be described need only be used when
variables associated with that grid block are used in the calculations.

The locally implicit procedure for a source in block j as outlined by Holing
et al. [26] is as follows. The cell edge fluxes hj-l—% and hj_% are calculated as the
first order upstream implicit fluxes. Therefore for flux hj-l—% this means that if
the fluid flow is into this cell edge from right to left then the flux calculation is
explicit. If the flow is from left to right then the well cell variables will be needed
to calculate the flux and hence the implicit procedure is needed. For example
the implicit procedure for a constant source in cell j with flow from left to right

would be

At n—I—% n—I—% n—I—;— n—I—% At n
IAL h(nj 7pj+%7(vT)j+%)_h4 1 —I_?Sjv (556)

)

(n6) "% = (no); -

n L . .
where s7 is the source term. The flux h],—l—2 is calculated to second order, explicitly

1
—3
in the usual manner as the well cell is not upstream for this flux calculation.

+3 . . .
2 and so we need to solve it by an iterative

Equation (5.5.6) is implicit in n;
method. Hence the main idea behind the procedure is calculation of an implicit
well cell flux rather than an implicit update of the component density in the
well cell. Once the unknown n?—l—% has been calculated the flux hj:%% may be

+

recalculated explicitly using n; and used in the usual finite difference update

procedure, which will also include the source term, i.e.

()™ = ()} — 50 |

ol LN Y B

s
The modelling of injection and production of fluid in a 1-D reservoir simulation

was tried using point source terms. Firstly injection of fluid will take place via a

source term in the centre of grid block 1 and hence the flux hj_% (with y = 1) in
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(5.5.6) will be zero as that cell boundary corresponds to « = 0 and is assigned to

be of no-flow type. The source term in this case is
s = RB_lrm]‘,

where r;,; is the vector of fluid phase injection rates. The matrix RB~! indicates
the injected fluid composition at reservoir conditions. Equation (5.5.6) was solved

+3 . . . . . .
> using simple iteration, i.e. we iterated on each component

iteratively for n,
equation of (5.5.6) at a time. The first iterate was provided by the component
density in cell 1 at the current time level, i.e. nf. The simulation problem used

to test the implicit technique was as follows. The initial reservoir component

densities were

0.703
nTBS — 70-3 )
0.0502

at a pressure of 1800 psi. The injected fluid had a composition of

0.0414
=1 66.23 |,
0.497

N;p;

at a pressure of 2000 psi and was injected at a total rate of 0.1 day™'. The indi-
vidual phase rates being distributed by their mobility weighting. The production
pressure was held at 1600 psi. This problem corresponds to problem 1 from [46]
except that an injection rate is also specified here. The iteration in grid block
1 to solve for n?—l—% was performed to a tolerance of 1.0 x 107® with about 11
iterations needed at each time step to reach convergence once the simulation had
settled down. The results of the simulation, with the locally implicit method,
using 100 grid blocks and a CFL number of 0.9 are shown at 50 days in Figure
5.22. The corresponding results using a totally explicit algorithm with a CFL
number of 0.9 are shown in Figure 5.23.

The two sets of results compare well, however a small boundary effect occurs
with the explicit treatment of the source. There is an unsmooth transition in the

gas and water component densities over the first few grid blocks when the explicit

formulation is used. The corresponding region when the implicit formulation is
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Figure 5.22: Numerical results of the 1-D source problem at 50 days using the

implicit treatment of the injection source simulated with 100 grid blocks and a

CFL number of 0.9.
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Figure 5.23: Numerical results of the 1-D source problem at 50 days using the

explicit treatment of the injection source simulated with 100 grid blocks and a

CFL number of 0.9.
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used is smooth, an improvement on the results from the explicit case. The results
consist of two rarefaction-shock compound waves connecting to a constant state at
about 400 feet. The region from 400 to 600 feet is an undersaturated region, hence
the discontinuity in the slower wavespeed at these distances. This problem cannot
be simulated using boundary fluxes rather than source terms, for comparison of
results purposes, since both the pressure of the injected fluid and its injection
rate may not simultaneously be specified.

In using the explicit second order flux calculation it should be noted that the
source term in the conservation laws will appear in the characteristic tracing step
of the Higher Order Godunov procedure. This is because the quasi-linear form of
the conservation laws are used in that step of the computation. When we perform
the characteristic tracing step we neglect the source term from that step since
its inclusion causes unphysical solution behaviour. This can be justified since the
presence of the source term causes the characteristics to be modified so instead
of deriving these modified characteristics we simply neglect the source term.

We now discuss the modelling of a production source to model production of
fluid from a production well. The source term will be located in cell Nx where
Nz is the total number of grid blocks used in the simulation. The composition of
the fluid being produced is the composition of the fluid that resides in cell Nz.

The implicit flux calculation is of the form

nti n At ntx ntt At "
(n¢)Nx2 = (n¢)Nx o E thj—;— - thi% + TSprodv

nal
where s, is the source term representing the production fluid. The flux hN—;j_%
L
is zero since the boundary at © = ,,4, 18 of no-flow type. The flux hN-;il may be
2
calculated explicitly to second order accuracy since the production source is not

upstream with respect to the cell interface Nz — % Hence the resulting equation

n+i . .
is not implicit in nj\;;2 and hence need not be solved since the normal explicit

update may be used instead, i.e.

A n
MO = o)k, — 5 [

_ S
Ne o Ag —2]+ ®

prod*

ntl
J

A totally implicit update of n”™", using a first order implicit upstream flux

n 1 . P
h?j_’i, was also tried instead of the implicit flux calculation of h]:f . The implicit
2 2
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update for a source in cell j is then of the form

(nqﬁ)}“’l = (ng¢)? — 2; h(n}“’l, ?j_é, (vT);Lj_é) — hjjé + At s}, (5.5.7)
where the source term is upstream with respect to cell edge 5 + % so that (5.5.7)
is implicit in n;“"l. However this procedure was not effective at modelling source
terms since the iteration, of simple type, used to solve (5.5.7) would not converge.

The implicit flux calculation was also used to model a source term in the
Areal 2-D problem. In this problem injection of fluid takes place in the lower left
hand grid block and production of fluid in the upper right hand grid block. Also
there are no gravitational effects in the problem. The production source may
be incorporated explicitly as the well cell is not upstream for the relevant flux
computations, similarly to the 1-D case. The injection source is located in grid

block 1,1. The implicit flux calculation to model the source is as follows

1 At 1 1 1
n+3 n n+3  nt; n+ 3
(n¢)1,1 == (n¢)1,1 - E |:h(n171 7p%)71 5 (UT)%)71 ):|
AL [t et ] AL
— m |:g(n171 7p17§ ” (UT)L% ):| -I_ 75”1] (558)

The fluxes h%,1 and g1 are both zero as they lie on no-flow boundaries. The
Areal problem usually takes place on a square computational domain and hence
the problem is usually simulated with the same number of grid blocks in both
coordinate directions hence Az = Ay. This also means that the fluxes out of block
1,1 namely h;l and g2 are equal, assuming we have a homogeneous medium,
which simplifies the iterative procedure. In fact the problem is symmetric about
the diagonal connecting the injection and production wells.

The 2-D Areal simulation problem had the same injection, initial reservoir and
production parameters as the 1-D source problem except that the total injection
rate was 4.0 day™'. The problem was simulated with a 40 x 40 grid and a CFL
number of 0.9, the tolerance to which we calculate nﬁ—% being 1.0 x 107*. The
simulation with the explicit treatment of the source generated unacceptably high
discrepancies of O(107!) and therefore these results were considered too unphysi-
cal and so the simulation problem was repeated using a lower CFL. number. Even
at a CFL number of 0.5 the unacceptably high discrepancies were still produced,

with these results being shown in Figure 5.24, the problem having been simulated
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Figure 5.24: Numerical results of the 2-D Areal source problem at 3 days using

the explicit treatment of the injection source simulated with a 40 x 40 grid and

using a CFL number of 0.5.
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Figure 5.25: Numerical results of the 2-D Areal source problem at 3 days using

the implicit treatment of the injection source simulated with a 40 x 40 grid and

using a CFL number of 0.9.



for 3 days. Simulating the problem with the explicit treatment of the source at
a lower CFL number would be prohibitively expensive even if the discrepancies
were decreased. The results with the implicit treatment of the source are shown
in Figure 5.25, with about 11-15 iterations needed to achieve convergence of the
iteration (5.5.8) once the computation had settled down.

The two sets of results show a marked difference, which is due to the unac-
ceptably large volume error discrepancies being generated in the results of the
explicit treatment of the injection source term.

In 1-D the implicit treatment of the source term used to model injection
of fluid into the reservoir has been shown to give improved results compared
to an explicit treatment. No reduction of the CFL number is necessary with
the implicit treatment. In 2-D the improvement when the implicit treatment is
used is more apparent. The explicit treatment of an injection source produces
unphysical results even at reduced CFL numbers. The implicit treatment of
the source enables the simulation to generate reasonable results in terms of the
magnitude of the volume error discrepancies and again can be run with a CFL
number of 0.9.

In the next chapter we investigate the impact of the volume error discrepancy
on the numerical results, which results from the splitting of the flow equations,

and describe potential methods of reducing it.
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Chapter 6

The Impact and Reduction of

the Volume Error Discrepancy

6.1 Introduction

The work in this chapter concerns the volume error discrepancy associated with
the splitting of the flow equations into hyperbolic and parabolic parts, namely
equations (3.5.8) and (3.4.6). The resulting volume error discrepancy essentially
indicates how well the equation of state, or volume balance equation, is satisfied
in terms of pressure but more importantly indicates the error associated with the
splitting methodology. These errors must therefore be kept as low as possible
and controlled where necessary. In this chapter the impact of the volume error
discrepancy is investigated as are two potential methods of reducing it.

The impact of the volume error discrepancy on the numerical results of reser-
voir simulations has not, as far as we know, been investigated. We perform this
investigation for 2-component 2-phase flow since a Black-Oil model without an
inherent volume error discrepancy [3] exists for this situation. This model is the
forerunner to the more general Black-Oil model with which we are working with
elsewhere in this thesis, which does have an inherent volume error discrepancy.
Comparisons of the numerical results from both formulations, with and without
the inherent volume error discrepancy, are made by simulating 2-component 2-
phase problems within the 3-component 3-phase Black-Oil model by setting the

relevant fluid component, water in this case, to zero. These comparisons are made
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and assessed in the next section of this chapter.

The system of conservation laws in the Black-Oil model are discretised to sec-
ond order accuracy in both space and time whereas the pressure equation is only
discretised to first order in time but having the same spatial accuracy. A formally
second order accurate overall algorithm would therefore require a more accurate
prediction of pressure. Achievement of second order time accuracy for pressure is
possible in such a non-linear parabolic equation by using a predictor corrector ap-
proach, otherwise this accuracy could only be obtained using non-linear iteration.
Although the predictor corrector procedure can itself be regarded as a non-linear
iteration only one extra iteration would be needed for an additional corrector step
compared to iterating to a given tolerance on pressure. This predictor corrector
procedure is applied and investigated in terms of the effect on the volume error
discrepancy and the extra computation required.

In the 2-component 2-phase Black-Oil model [5] the pressure field is obtained
by direct solution of the volume balance equation, which is straightforward for
this model. This is in contrast to the 3-component 3-phase Black-Oil model [46]
in which the pressure field is obtained from the parabolic pressure equation which
was derived from the linearisation of the volume balance equation. Experience
of the model in [5] provided the idea of solving the volume balance equation for
pressure in the 3-phase Black-Oil model to reduce the volume error discrepancy.
In this case the volume balance equation is non-linear in pressure and has to
be solved iteratively, which is done at the end of the time step. This procedure
results in a corrected pressure field which has the effect of substantially reducing
the volume error discrepancy.

Another issue regarding the volume error discrepancy arises in reservoir sim-
ulations, using a thermal model developed by Trangenstein [48], which include
highly compressible fluids. These problems have run into difficulties when the
split methodology, i.e. a splitting of the flow equations as mentioned above, has
been used, see [48]. Large volume error discrepancies were blamed for causing
these difficulties and were stated by Trangenstein to be due to the large varia-
tions in compressibilities between the different fluid components. The effect of

increased fluid compressibility in the Black-Oil model was investigated to ascer-
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tain whether the same type of problem occurred and to offer possible remedies if

needed.

6.2 Impact of the Volume Error Discrepancy

The impact of the volume error discrepancy on numerical results of reservoir simu-
lations is assessed for 2-component 2-phase flow. The effect on the positioning and
resolution of the fronts, if any, is of particular interest as is a general comparison
of the results. The sequential (or split) solution methodology was first applied to
2-component 2-phase flow problems by Bell et al. [5], see Section 3.7. This model
considers oil and gas fluid components and has a ‘solution gas ratio’ R; only, i.e.
the only mass transfer effect modelled is gas dissolving in oil. This formulation
has no volume error discrepancy due to the simple nature of the volume balance
equation which is a quadratic in pressure and hence can be solved exactly. The
2-component 2-phase problems with the volume error discrepancy can be simu-
lated within the full 3-phase Black-Oil model [46] which does have an inherent
volume error discrepancy, by setting the appropriate parameters, connected with
the water component in this case, to zero. The corresponding problems without
the volume error discrepancy can also be run within the full 3-phase Black-Oil
model by making appropriate modifications to the algorithm so as to agree with
that in [5].

In [5] Bell et al. calculated time steps for their computations by basing them
on a maximum possible wavespeed. They calculated this maximum possible
wavespeed based on the given relative permeability data and for all pressures
between 500 and 4500 psi and for all possible fluid compositions. Hence it is un-
likely that this wavespeed will appear in the computations and so Bell et al. state
that they were operating at local CFL numbers which were considerably less than
1. We also calculate this maximum possible wavespeed and use it to determine
the time steps to be used for the method. We also use this procedure to calculate
time steps for the simulations with the volume error discrepancy. This was done
so that the time steps used for both methods would be about the same and hence

approximately the same amount of numerical diffusion would be introduced by
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both formulations. If this was not done then different amounts of diffusion would
be introduced by the two methods and comparison of the results would not be so
informative. It was found that the formulation of the model without the volume
error discrepancy can be run with time steps calculated using the CFL criteria
(2.5.3) with a CFL number of 0.9, however we still follow Bell et al. and use their
method.

The first simulation problem from [5] was chosen to compare the formulations
as the results of this problem contain some fine detail as well as two phase changes
and so will be a good test of the numerical methods. We refer to this as problem
number Al in this chapter of the thesis. The Black-Oil model parameters used
were those contained in Section 3.9 except for the following. The porosity ¢ was
set to 1, the rock permeability £ was 1 milliDarcy and square saturation relative
permeabilities were used for both phases. The numerical results shown below
were simulated for 200 days with 100 grid blocks and a CFL number of 0.9 was
used to further reduce the time step, as calculated in the description above. This
ensures that we were using the same time stepping as in [5], where they quoted
the number of time steps used by their method, so we could compare results. The

initial component densities for this problem were

0.0001 0.8
N;,; = sy Nypes =

120.0 60.0

The equation of state was used to determine the injection and initial reservoir

pressures which to 2 decimal places, were
Pi,; =1900.09, P, = 1436.29,

whilst the production pressure used was set at P,,4 = 1000 psi. The results
of simulating this problem with the formulations of the Black-Oil model with
and without the volume error discrepancy are very similar so we overlay the two
sets of results. This is shown in Figure 6.1, where the solid line indicates results
without the volume error discrepancy and the crosses, results with the volume
error discrepancy.

The results show a rarefaction-shock compound wave connecting to a constan-

t state at around 35 feet which is the start of an undersaturated region which
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Figure 6.1: The oil and gas component densities from problem Al simulated
with 100 grid blocks and a CFL number of 0.9, solid line - with no volume error

discrepancy, crosses - with the volume error discrepancy.

continues to about 55 feet. The results from the formulation with the volume
error discrepancy were in good agreement with the very fine grid results from [5].
However small spikes were generated in the pressure fields when the volume bal-
ance equation was solved for pressure, during the course of some time steps, and
were located at the positions of the phase changes in the problem. The pressure
fields are not shown in [5] so we do not know whether Bell et al. encountered the
same effect, which does not cause any difficulties in simulating the problems. The
results from the formulation with the volume error discrepancy, were also in good
agreement but the fronts were not located in the same positions, the same for the
rarefactions, when compared to the results without the volume error discrepancy,
the resolution of the fronts being comparable between the two sets.

As the two sets of results shown look almost identical we also plot the per-
centage differences between them, which are shown in Figure 6.2. It can be seen
the differences between the two sets of results is significant at the front which is
located at about 35 feet. This means that the front is slightly displaced as pre-
viously mentioned. A large difference in the oil component density occurs near

the injection well at x = 0, this is due to the fact that larger discrepancies exist
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Figure 6.2: The percentage differences between the oil and gas component den-
sities obtained from simulating problem A1l with and without the volume error

discrepancy (100 grid blocks).

there, compared to other smooth regions of the flowfield, so the differences in the
pressure fields is greater there, which ultimately effects the mass fluxes in this
region.

It is therefore concluded that the formulation of the Black-Oil model with the
inherent volume error discrepancy provides a good approximation to the more
physically accurate flow behaviour, at least for the 2-component 2-phase prob-
lems, even though discrepancies as large as O(1072) were occasionally generated
at the phase changes in these problems. Therefore use of the formulation without
the inherent volume error discrepancy is not essential for a 2-component 2-phase
simulation of acceptable physical accuracy, simulation of the other 2 problems

from [5] support this.

6.3 Second Order Pressure Correction

The discretisation of the parabolic pressure equation is second order accurate in
space but only first order accurate in time. A truly second order algorithm would
therefore require a more accurate time discretisation of the pressure equation.
The reason for first order time accuracy is that the spatial derivatives of pres-
sure, and the fluid composition dependent coefficients in the discretisation (5.2.1)

are not centred in time. Such a discretisation would result in a pressure equation
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which would need to be solved by a non-linear iteration and thus would add con-
siderable computational complexity since the coefficients in the equation would
have to be updated every iteration. Trangenstein [49] justifies the reduced time
accuracy by the fact that in secondary and tertiary recovery processes, which we
are considering, the pressure field is slowly varying in time and hence the time
truncation errors would not be expected to be too large. However a method does
exist of obtaining second order time accuracy without the need of a non-linear
iteration, namely a Predictor-Corrector approach. This method is described for
general parabolic equations by Douglas and Dupont [15], who use a Galerkin
formulation of the problem. We use a finite difference analogue of the Galerkin
method given in [15] to investigate the second order pressure correction technique.
The effect of this procedure on the volume error discrepancy is of particular inter-
est since Trangenstein claims in [48] that the method should reduce the volume
error discrepancy without claiming to have implemented it.

To aid the description we recall that the parabolic pressure equation is of the

form
0 0
ca—}; + WTa—x(fvT +g7)=4q,
with the total velocity vy being given by
0
vr = [_£ + 7]7—7
T

where the coefficients in these equations are given explicitly in Section 3.4. The
standard first order Backward-Euler time discretisation of the pressure equation

is as follows

Goit = pp) + E(WT)] [fj+§(”T)jE T84Tl — fj—;—(”T)jié — 817
= Atq?, (6.3.1)
with the following discretisation of total velocity
. Rt A BT I
(vr)ji1 = — T | T (6.3.2)

In these equations the coefficients dependent on pressure and component density,
ie. ¢, w, f, g. v, ¢ and 7, must be evaluated at the current time level, since at

this stage of the computation nothing at the next time level is known. If these
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coefficients and the total velocities at the cell edges (UT)J'-I—% were evaluated at
the half time level in both (6.3.1) and (6.3.2), a Crank-Nicholson type of finite
difference approximation would arise, which gives second order accuracy in space
and time. Douglas and Dupont [15] introduced a Predictor-Corrector approach
to obtaining second order accuracy in such parabolic equations. For the parabolic

equation we use, the predictor step is given by

—n n At nlren n+ti n n n
(p]-l—l py)+ E(WT)]‘ [fj-l—%(vT)Hg +gr T —

with the total velocity at the half time level given by

P ) — T )

n'l'* n n
(or), 1 = ~ | T (6.3.4)
where p"*! is the predicted pressure and we define
n—I—l 1 _n
p] PR 5 (p] + p ‘|‘1)
The corrector equation takes the following form
At L 1 1 1 1
n+ n+1 n T\t n+ n+ n+ n+
€ (p] —pj)+ E(W )i [fj+£(vT)j+§—2 8T T
ntl ntl ntl ool nal
f],_; (vT)],_%2 - g],_gT],_;] = Atg; 7, (6.3.5)

with the total velocity at the half time level given by

1 n+1 n 1 n—I—l
nt+l *(p 1 TP 1) - ’( + p¥ ) ntl ntl
(vr) ;i = | =+ W Db | T (6.3.6)

The coefficients in the corrector are now evaluated at the half time level, i.e. with

ntt

p; °. The corrector step should be performed after the update of the conservation
laws which uses the predicted pressure ﬁ?"’l, so that the component densities at
the half time level may be calculated and used to evaluate the coefficients needed
in the corrector step. In the remainder of this section we abbreviate the second
order pressure correction technique by SOPC.

The term on the right hand side of the pressure equation is

(efu—1)

At ¢7

q:
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and needs special consideration. This is because the Taylor series linearisation of
the volume balance equation, used to derive the pressure equation, dictates that
the volume discrepancy term in ¢ should be evaluated at the current time level
n rather than the half time level n + % as in the corrector (6.3.5). Therefore the

Tu — 1 must be treated as a constant and only the porosity

discrepancy term e
term ¢ evaluated at the time level n+ L in the ¢ term in (6.3.5).

Douglas and Dupont point out that the dependent variable p and the coeffi-
cients ¢, w, f etc. in the parabolic equation must satisfy certain continuity and
boundedness properties for the Galerkin formulation of the predictor corrector
approach to achieve second order time accuracy. If the continuity property is not
maintained for the coefficients in the pressure equation then a time accuracy of
one and a half is obtained, i.e. O(At%), after the predictor corrector technique
has been applied. Douglas and Dupont then state that a further pass through
the corrector will achieve the desired second order time accuracy. In the finite
difference case the continuity of the coefficients has a greater consequence on the
accuracy of the scheme. For instance if one or more of the coefficients is dis-
continuous at a given point then the Taylor series expansion of that coefficient
is not valid. Hence the truncation error analysis does not follow through as in
the continuous case and the numerical scheme looses its formal order of accura-
cy at discontinuous points. In the finite difference case a further pass through
the corrector will not increase the formal order of accuracy at the discontinuous
points as the formal order of accuracy is lost in both the predictor and corrector
equations.

Use of the SOPC technique to achieve second order accuracy in time is con-
sistent with the derivation of the pressure equation since the error in the Taylor
series linearisation of the volume balance equation is O(At)%. The error in the
derivation of the pressure equation can be reduced by adding the extra term in the
Taylor series expansion of the volume balance equation. However that introduces
a 2275 term into the pressure equation which means then that the equation has
lost its parabolic character. Hence adding the higher order term in the derivation

of the pressure equation is not a possibility since the pressure field in reservoir

fluid flow is known to have parabolic character.
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The SOPC procedure was applied to both a saturated and undersaturated
fluid flow problem to assess its effect. The problems were simulated with 100
grid blocks and using a CFL number of 0.9. Small oscillations were introduced
by the method into the pressure fields from both problems near the injection and
production wells, i.e. unphysical behaviour was introduced. Figure 6.3 shows the
pressure and gas component density from problem 1 from [46] using the SOPC
technique, we refer to this as problem number A2 which we defined in Chapter
5. The oscillations in the pressure field near the injector (at @ = 0) and the
producer (at @ = 1000) are clearly visible, which also causes oscillation in the gas
component density field. A similar kind of effect occurred with the undersaturated

problem, which was problem 3 from [46], our reference, problem A3.
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Figure 6.3: The pressure and gas component density fields obtained from simu-
lating problem A2 with 100 grid blocks using the SOPC technique with a CFL

number of 0.9.

The oscillation in the pressure field, which can also cause oscillation in the
component density field when the SOPC technique is applied, can be removed by
controlling the growth of time steps early on in the computations. The simulations
were supplied with an initial time step of 0.001 days, which was not allowed to
increase by more than a factor of 1.5. This method of controlling the growth of

time steps early on in the computations was described in Section 5.2.3. Using this
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time step growth factor of 1.5 in conjunction with the SOPC technique enables
the method to be used without generating any oscillation in the results, and
was the largest factor possible such that the oscillations were removed from both
simulations. Actually problem A2 only needed a maximum time step growth
factor of 2.0. Use of these factors does not seriously increase the total number
of time steps used during the simulations, for example problem A2 needed less
than 10 extra time steps to complete the simulation, compared to simulating the
problem without any restriction on the growth of the time step. If these time
step growth factors are not used then it was found that the CFL number had to
be reduced to as low as 0.1 in some cases for the SOPC technique to generate
oscillation free results. The effect of the technique on the inherent volume error
discrepancy may now be investigated.

The volume error discrepancies generated when the SOPC was used were com-
pared to those generated without the SOPC technique, both simulations using
the same maximum time step growth factor. The maximum volume error discrep-
ancies generated at each time step were found to have been increased as much
as an order of magnitude over the course of some time steps. Also the corrector
equation was applied a number of times until a desired tolerance on pressure
was met. A tolerance of 107!% was chosen which usually required less than 10
applications of the corrector equation. Again the results obtained were similar to
before, the discrepancies were not improved. A possible explanation for the lack
of success of the technique could have been due to the averaging of the pressure

1
+2
Y

n 1 n .
and component density fields to give pj+2 and n; which are then used to
calculate the coefficients at the half time level. Large volume error discrepancies

could then possibly be introduced at the half time level resulting in unphysical

n+1

coefficients, but this was not found to be the case. A pairing of both n? and n

with p?—l—% was used to calculate the coefficients needed in the corrector equation
but neither of these modifications improved the results.

In 1-D simulations the solution of the pressure equation uses in the region
of 5-15% of the total computation time. However in 2-D the solution of the

pressure equation can take up to 20% of the total computation time. The larger

computational time associated with higher dimensions is due to the fact that
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in 1-D the pressure equation can be solved by a direct method but in higher
dimensions an iterative method must be used to solve the resulting linear system.
The above percentage time for the 2-D pressure equation is based on using a
typical engineering tolerance of 0.1 psi, and would obviously increase if lower
tolerances were used. Therefore the SOPC technique is less viable in dimensions
higher than 1, even if it had been found to have been successful at reducing the
volume error discrepancy.

Since the SOPC technique was not found to reduce the volume error discrep-
ancy an alternative method was devised, which is similar to the SOPC procedure,
to try to reduce the volume error discrepancy. This simply involved repeating the
pressure equation at the end of the time step, i.e. after the first pass through the
pressure equation and conservation laws, with the coefficients ¢, w, f, g, v, ¢ and
7 evaluated at the advanced time level. A reduction of the volume error discrep-
ancy was expected since pressure at the advanced time level is now recalculated
from the first order accurate in time prediction of pressure and component densi-
ties, both being at the advanced time level, whereas previously the pressure there
was calculated with p and n both from the current time level. On implementation
of this procedure however, the maximum volume error discrepancies generated at
each time step were found to be of the same order of magnitude, namely usually
O(107*) for the problems considered but more often than not were numerically
larger. There is no obvious explanation for this behaviour.

In the next section we discuss a successful method of reducing the volume
error discrepancy that is also less computationally demanding. This method is
based on a local calculation to correct the pressure field rather than the global

calculation associated with the SOPC technique.

6.4 TIterative Solution of the Volume Balance

Equation

Tu =1 is a non-linear equation involving pressure

The volume balance equation e
and component density, however the possibility exists of solving it for pressure

by an iterative method, such as Newton’s method. This procedure would be
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hoped to have the effect of substantially reducing the volume discrepancy errors.
Controlling these errors is thought to be important in problems involving highly
compressible fluids, such as steam in thermal simulations [48]. The volume error
discrepancy also indicates the deviation in some sense of the numerical solution
from the true physical solution behaviour, and so a high volume error discrepancy
means that unacceptable errors have been introduced into the results. The results
of test problems from [46] and those from [5] when run with the volume error
discrepancy formulation, indicate that the highest volume discrepancies occur
around phase changes. The errors are worse for problems involving 1-phase/2-
phase fluid boundaries such as in the simulation problems from [5]. The reservoir
model in [5] is a 2-phase (liquid, vapour), 2-component (o0il, gas) model with
a solution gas ratio (R;) only. In this formulation the volume balance equation
amounts to a quadratic in pressure and hence can be solved exactly so that volume
error discrepancies do not arise.

The pressure computed from the parabolic pressure equation is only approxi-
mate since the equation was obtained from the linearisation of the volume balance
equation. A technique to improve on this was introduced in the following way.
After solving the pressure equation and conservation laws these results were used
to determine the current state of phase equilibrium in each grid block at time
level n 4+ 1. The volume balance equation (3.4.4) is then solved iteratively for
pressure with the component densities as determined from the advancement of
the conservation laws, using the pressure computed from the pressure equation
as the first iterate. The resulting pressure from the local iterative solution of the
volume balance equation is then assigned to be the pressure at time level n 4 1
and is consistent with the component densities there, the discrepancy having been
made negligible.

The Newton iteration for pressure takes the following form

df (n,p)

v+l v
pP=p f(n,p)/iap ,

T

where f(n,p) = e’u—1 = 0, and the component density vector n is held fixed

and the superscript v indicates the v" iterate. For saturated flow we have

f(n,p) = Bi(n,— R,(n,— R.ny,))— B,(Rn,+ Ryny,—ny)+(1— R R,)(Byn, —1),
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whilst for undersaturated flow with the vapour phase missing, f(n,p) becomes

f(nvp) = Bl(pvpb)no + Ba(pvpb)nw - 17

and for undersaturated flow with the liquid phase missing

f(n,p) = By(p, Ry)(nyg — Rany) + Bang — 1,

where, in this case, R, is a function of pressure if water is present and gas is
allowed to dissolve in the water.

The local iterative solution of the volume balance equation technique was first
tried on problems 1 and 3 from [46] which are problems with no phase changes.
Firstly problem 1 (which we have referred to as problem A2 and defined in Chap-
ter 5) was simulated, using 100 grid blocks, with and without the volume error
discrepancy reduction technique, with the maximum discrepancy errors being re-
duced from ~ 107* to ~ 107!° with two iterations in each grid block. The two
sets of results obtained look almost identical, so in Figure 6.4 we show the per-

centage differences between the two sets. Figure 6.4 indicates that the resulting
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Figure 6.4: The percentage differences in the oil component density and pres-
sure fields of problem A2, between the results of applying and not applying the

discrepancy reduction technique.

corrected pressure field has very slightly shifted the second front in the problem.
The technique was then applied to an undersaturated flow problem, namely

problem 3 from [46], (our reference A3 defined in Chapter 5), again with two
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iterations in each grid block, the maximum errors being reduced still further
compared to problem A2. The two sets of results look almost identical so we
again only show the differences. Figure 6.5 shows the percentage differences
between the two sets of results and shows that both fronts in the problem have

been displaced very slightly. The technique was also tried on a saturated flow 2-D
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Figure 6.5: The percentage differences in the oil component density and pres-
sure fields of problem A3, between the results of applying and not applying the

discrepancy reduction technique.

Areal problem with the maximum discrepancy errors being reduced from ~ 1072
to ~ 1077 with 3 iterations in each grid block. These results will be discussed in
the next chapter since they relate to the discussions therein.

The iteration was then tried on a mixed saturated/undersaturated flow prob-
lem 5 from [46], (our reference A4 defined in Chapter 5), again using 2 iterations.
In Figure 6.6 we again shown the oil component density and pressure plots with-
out the iteration, whilst Figures 6.7 show these plots with the iteration.

The resulting corrected pressure profile exhibits ‘blips’ which occur at the
phase changes, these produce local large negative and positive total velocities,
which are responsible for distortions in the wavespeeds at the phase changes.
As well as resulting in unphysical solution behaviour, the technique was not
so effective at reducing the discrepancy errors. This was because the highest

discrepancies occur at the phase changes and hence the pressure needs a greater
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modification there in order to satistfy the volume balance equation, hence the
reason for the large changes needed in pressure at the phase changes. Therefore
the problem of the unsmooth pressure profile with the ‘blips’, which in turn

produces spurious wavespeeds, needs to be remedied.
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Figure 6.6: The oil component density and pressure fields obtained from a s-
tandard simulation of problem A4, using 100 grid blocks and a CFL number of
0.9.

Suppressing the iteration one grid point either side of the phase changes re-
moves the ‘blips’ on the pressure profile. The resulting pressure profile was s-
mooth, but we are left with the original volume discrepancy either side of the
phase changes, the error in the regions of smooth flow having been reduced. As
an alternative, iteratively solving the volume balance equation with respect to the
component density at the phase changes should improve upon this by reducing
the volume error discrepancy at the phase changes. This was implemented in the
same fashion as with the pressure iteration, we iterate with respect to one of the
component densities at a time, holding the others and pressure constant. For

example in the case of iterating with respect to the oil component density n,:

Wt =t o,y 0P

When the flow is undersaturated the function f is also a function of the under-

saturation parameter w (= p, or R,), which itself is a function of component
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density. Introducing iteration on the component densities at phase changes and
iterating on pressure in regions of smooth flow had the desired effect in that the
discrepancies at the phase changes were also reduced.

In this mixed flow problem we had to suppress the iteration for pressure two
grid blocks either side of the phase changes, and iterate on the component densi-
ties instead, to ensure the resulting pressure field was smooth. Figure 6.8 shows
plots of oil component density and pressure, when we suppressed the pressure
iteration at the phase changes and instead iterated with respect to component
density. The resulting discrepancy errors at the phase changes were reduced and
the maximum errors over the course of the simulation were reduced to ~ 1078,
The resulting corrected pressure profile is smooth, a large improvement on that
in Figure 6.7. In this mixed flow example, it can be seen from Figure 6.9, that the
fronts have been displaced to a greater extent than in the previous two simulation
problems. This is due to the fact that higher discrepancies are associated with
phase changes and hence the p and n variables need a greater correction to ensure
satisfaction of the volume balance equation.

The results of applying the iterative solution of the volume balance equation

technique has shown it to be successful for problems without any phase changes.
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The technique is also successful for problems with phase changes when the mod-
ification just described is applied, i.e. solving the volume balance equation with
respect to component density rather than pressure at the phase changes. However
the modification of the component density vector n by iterating on the volume
balance equation has a consequence in that conservation of mass is not maintained
at these points. But the modification of the vector n to reduce the volume error
discrepancy is usually small, namely less than 1.0%. Therefore loss of conserva-
tion of mass at the phase changes does not seem to pose a problem due to this
small correction and since the results obtained in the process are qualitatively as
before, the volume error discrepancy having been reduced substantially.

When the iteration on the volume balance equation is performed it is possible
to reduce the discrepancy errors to below 107°, usually much lower. In such a
case 1t 1s not unreasonable to assume that the volume balance equation is satisfied
in terms of machine accuracy and hence exactly which means that p and n would

not be independent, as mentioned in Section 3.6. Hence the effect of g—ﬁ should be

9p _

included in the characteristic analysis, whereas at present it is assumed Z&

This would mean the characteristic analysis would have to be reformulated which
is not within the scope of this thesis.

The method of reducing the volume error discrepancy described in this section
was tried on the 2-component 2-phase problem from Section 6.2, (problem Al),
which was used to compare the formulations of the method with and without
the volume error discrepancy. This was done to assess the success of the tech-
nique to reduce the volume error discrepancy and hence whether its application
leads to more physically accurate results, like those from the formulation with no
volume error discrepancy. The reservoir problem in question exhibits two phase
changes over the length of the reservoir, an undersaturated region lies between
two saturated fluid regions. Hence the component density vector will be correct-
ed instead of pressure at the phase changes. The results of this simulation are
shown in Figure 6.10, all parameters being the same as in Section 6.2. These
results are in closer agreement to those results from the no volume error discrep-
ancy formulation shown in Figure 6.1 compared to those from the volume error

discrepancy formulation without the discrepancy reduction also shown in Figure
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6.1, we justify this statement below.

Although the three sets of results look very similar, tests on the norms of the
differences between the solution values indicate that the results of applying the
discrepancy reduction techniques gives results closer to those from the no volume
error discrepancy formulation and hence more physically accurate results. We
calculated both the 1 and 2-norms and found these both to have been reduced for
course (50 blocks) and fine (100 blocks) grid simulations when the technique was
used. The improvement being greater as the grid was coarsened. In Figure 6.11
we again show the percentage differences between the results without the volume
error discrepancy (Figure 6.1) and with the discrepancy reduction (Figure 6.10).
This Figure can be compared to Figure 6.2 in Section 6.2, and confirms that
applying the discrepancy reduction techniques to the formulation of the Black-
Oil model with the volume error discrepancy produces more physically accurate
results for this problem. The third test problem from [5] was also simulated which
confirmed the above findings. We also simulated the second problem from [5] but
were unable to obtain as good an agreement with the results therein as with the
first and third problems.

Results of applying the volume error discrepancy reduction techniques indicate
that in terms of the effect on the numerical results, if the techniques are to
be applied, then they are only necessary when problems with phase changes or
maximum discrepancies of O(107?) or more are being simulated. Only when these
types of problem are being considered is the pressure field, and the component
density vector at phase changes, corrected a significant amount such that the
results show a discernible difference to those from not applying the techniques.
For example the fronts may be slightly displaced due to the modified pressure
field as occurs with problem A4 in Figure 6.8.

The simulation problems used to investigate the reduction of the volume error
discrepancy technique have all been performed using 100 grid blocks. The prob-
lems were repeated using a coarser grid of 20 blocks to assess the impact of the
technique on coarser grids. The maximum volume error discrepancies generated
using these coarse grids were usually of the same order of magnitude, although

increased, compared to the 100 grid block simulations. Therefore the pressure,
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and component density fields in the case of mixed flow problems, will need a
greater correction. However the volume error discrepancy reduction technique
does not have a significant impact on coarser grids due to the resulting level of

volume error discrepancy not having been increased to O(107?) or more.

6.5 Effect of Increased Fluid Compressibility

We now look at the effect that a variation of fluid compressibilities has on the
volume error discrepancy. Reservoir simulation with highly compressible fluid
has been reported in the literature to cause some problems, particularly in a 2-
component, 3-phase reservoir simulation model which includes thermal effects.
This model, which was developed by Trangenstein [48], is similar to the Black-
Oil model in that a splitting of the flow equations into a system of hyperbolic
conservation laws and a parabolic pressure equation is performed.

Injection of steam, which is highly compressible, is an important tertiary oil
recovery process, especially in the United States, therefore the simulation of such
oil recovery processes is also important. However the numerical simulation of such
processes has encountered difficulties with the particular formulation introduced
by Trangenstein. The problems are stated in [48] to be due to the volume error
discrepancy since larger volume error discrepancies were said to have been ob-
served in steam flooding than those typically seen in Black-Oil simulations. The
larger volume error discrepancies were stated to have caused unphysical backflow
in the pressure equation which caused the simulation to abort. Trangenstein stat-
ed in [48] that the linearisation of the volume balance probably cannot handle the
large variations in compressibility between the vapour (steam) and other phases.
However these problems were not reported to have occurred with hot water flood-
ing simulations. An investigation of the effects of increased compressibility in the
context of the Black-Oil model was therefore needed to see if the same kinds
of problem occurred. If the same problems are observed then the techniques of
reducing the volume error discrepancy, described in the previous section, could

be used to alleviate the problem.
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The compressibility of each fluid component is given by

__MP__Ba(l)
4= pdp op \B/’

where p is the pressure, p is the density and B is the formation volume factor.
Throughout this section we drop the negative sign associated with compressibility
to simplify the discussion. We now derive expressions for the compressibilities
of gas from the Black-Oil model and steam from the thermal model in order to

compare the two. In the Black-Oil model the vapour formation volume factor is

given by
1
B,(p)= ——7-—, 6.5.7
)= (6 0.06p) (6:5.7)
therefore the vapour compressibility is
(») 0.06
e(p) = ——.
Pr= {6+ 0.06p)

The steam density function is given by different functional forms over the pressure

range, i.e.

(p) 1 190358 —0.04703 if p < 1500 psi
o) pu(p) BT 00887 if p> 1500 psi

where p, is the steam (vapour) density in 1b ft™°, p is the pressure and pj is
the bubble point pressure which is a function of the temperature. This is of the

general form
ps(a — bp)’

where a and b are the constants above depending on which pressure interval p is

pu(p) (6.5.8)

in. The compressibility of steam in the thermal simulations is therefore given by

_ 2a—bp
)= by

The compressibilities of steam from the thermal model and gas from the Black-
Oil model are shown graphically in Figure 6.12, the steam compressibility can
be seen to be an order of magnitude higher than that of the gas over most of
the pressure range. The discontinuity in the steam compressibility is because the

first derivative of p,(p) is discontinuous although p,(p) is continuous to only 3

decimal places.
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In order to examine the effect of increased fluid compressibility within the
Black-Oil model one of the fluid compressibilities must be increased. Gas is the
most compressible fluid component in the Black-Oil model therefore it would be
natural to try to increase the compressibility of the gas to match that of steam.
A gas compressibility to match that of steam cannot be found by altering the
parameters in (6.5.7). Instead a density function similar in form to (6.5.8) was
converted into a formation volume factor for use in the Black-Oil model, the

parameters used to accomplish this were a = 450.0 and b = 0.09. The resulting

137



gas compressibility compared to that of steam is shown in Figure 6.13 and can
be seen to be just greater than that of steam throughout the pressure range.

A problem was devised which has a large variation in compressibility, namely
gas injection into an oil saturated reservoir, therefore we have a 2-component,
2-phase problem. This type of problem gives a compressibility difference of 2
orders of magnitude between the injected and initial reservoir fluid. The mass
transfer ratio R, = 0 since there is no water in the problem, the ratios R; and
R, were also set to zero because no mass transfer effects were modelled in the
thermal model. The absence of mass transfer effects in the Black-Oil model also
ensures that the variation in compressibility occurs over a very narrow region, i.e.
about 3 or 4 grid blocks, as would be expected in the thermal model.

A CFL number of 0.9 was used for this computation, after a few days into the
simulation large volume error discrepancies were generated which caused oscilla-
tion in the pressure and component density fields. The same time as the large
volume error discrepancies were generated the time steps being used were increas-
ing to about 7 days which was much larger than those previously seen in Black-0Oil
computations performed thus far. Therefore this suggests that the wavespeeds in
the problem were not being sampled well by the numerical method and the time
steps calculated using the CFL criteria were unstable. Experience with Black-0Oil
computations has shown that unstable time steps can be responsible for gener-
ating large volume error discrepancies which cause unphysical oscillations in the
results. The simulation was repeated using a CFL number of 0.5 and run to a late
time, i.e. time for the front in the problem to have nearly reached the produc-
er. The results obtained were free of any oscillation, the simulation proceeding
smoothly, no large volume error discrepancies being generated. In particular no
problems such as backflow in the pressure equation were observed. The maxi-
mum volume error discrepancies generated were of the order 1072 to 10™* with
an occasional discrepancy of order 1072,

Further investigation showed that the large discrepancies occurred at the lo-
cation of a shock in a rarefaction-shock compound wave. An entropy violation
also occurred at this point, therefore extra numerical dissipation was needed at

this point which was provided by the CFL number reduction of 0.9 to 0.5. A
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local addition of dissipation to improve entropy satisfaction at this point may
also be provided by decreasing the slope limiting parameter gamma in (4.2.4) to
1.0 when a local linear degeneracy is detected rather than using v = 1.5. The
problem was repeated with the above modification to the algorithm with a CFL
number of 0.9 and also limiting the increase of time steps to a maximum of 20% as
described in Section 5.2.3. The simulation proceeded with no entropy violations
or unacceptably high volume error discrepancies.

It is therefore concluded that subject to the not unreasonable reduction of
the CFL number, or addition of extra dissipation at local linear degeneracies,
simulations of problems with the Black-Oil model involving highly compressible
fluids does not pose a problem to the sequential methodology. This is similar
to the findings of Trangenstein in [48], wherein the hot water flooding problems
simulated needed a large amount of extra dissipation to ensure no entropy vi-
olations occurred in the numerical results near local linear degeneracies. It is
assumed that Trangenstein tried reduced CFL numbers for the simulations in-
volving steam injection in [48]. Therefore we can only conclude that the extra
complications of thermal effects in comparing the Black-Oil model to the thermal

model are in some way responsible for the problems reported by Trangenstein.
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Figure 6.7: The oil component density and corrected pressure field, resulting from

applying the discrepancy reduction technique to problem A4.
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Figure 6.8: The oil component density and corrected pressure field with correction

of component density instead of pressure at phase changes, applied to problem

A4
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Figure 6.9: The percentage differences in the oil component density and pres-
sure fields of problem A4, between the results of applying and not applying the

discrepancy reduction technique.
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Figure 6.10: The oil and gas component densities from problem Al using the
volume error discrepancy formulation with reduction of the volume error discrep-

ancy.
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Chapter 7

A Comparison of TVD
Flux-Limiter and Higher Order
Godunov Schemes for Reservoir

Simulation

7.1 Introduction

In this chapter we compare the numerical performance of the Higher Order Go-
dunov scheme [2] and a TVD flux-limiter scheme, developed at B.P. Sunbury
by Rubin and Edwards [36], when applied to the system of degenerate conserva-
tion laws arising from the Black-Oil flow equations. The Higher Order Godunov
scheme was applied to the sequential (or split) form of the Black-Oil flow equa-
tions given in [46], a Fortran code having been written to perform the simulations,
whereas the TVD flux-limiter scheme [36] was applied to the mass conservation
laws present in the IMPES formulation of the Black-Oil flow equations. The IM-
PES acronym refers to the IMplicit Pressure Explicit Saturation formulation of
the flow equations, see Aziz and Settari [1] for details, and is similar to the se-
quential formulation [46] except that it does not have an associated volume error
discrepancy. Results of reservoir simulations with the flux-limiter scheme applied
to the IMPES equations were gained through use of the commercial reservoir

simulation code VIP (Vectorised Implicit Program), used by B.P.
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Flux-limiter schemes were constructed with non-degenerate systems of conser-
vation laws in mind, see [7, 36, 45] for details, i.e. systems that possess genuinely
non-linear (or linearly degenerate) wave modes and that are strictly hyperbolic in
nature. The Higher Order Godunov methodology was also originally developed
for non-degenerate systems by Collela [10], with Bell et al. [2] presenting exten-
sions of Collela’s work enabling the scheme to be applied to degenerate systems,
specifically those with local linear degeneracies and eigenvector deficiencies. The
flux-limiter scheme in VIP does not rely on any knowledge of the characteristic
structure of the conservation laws, i.e. it does not decompose the system into
its characteristic components, and hence no clear mechanism exists of detection
of the degeneracies and modification of the scheme. This is in contrast to the
Higher Order Godunov methodology since the same characteristic information
used to construct the scheme can also be used to test for the degeneracies. How-
ever since the characteristic information is used to construct the scheme, then
suitable modifications to the scheme at degeneracies are now made a necessity.

Timings of individual subroutine calls in the Higher Order Godunov code indi-
cate that the calculation of the eigenvectors can represent a significant amount of
the total computational time, i.e. over 5%, in both 1 and 2 dimensions. The eigen-
vectors being used in the construction of second order accurate traced left and
right states at cell interfaces, see Section 4.2.2. The eigenvectors are also used in
the phase space construction needed to solve the Riemann problem at cell edges,
see Section 4.2.3, and arises in problems in which counter-current flow occurs, due
to the introduction of gravitational effects. However the relative computational
time, associated with the calculation of the eigenvectors, decreases when gravity
is introduced. This is because, although more eigenvector calculations will be
needed compared to problems without gravity, extra computations are associated
with introducing gravity, especially in solving the Riemann problems to compute
the numerical fluxes. The timings indicate that in terms of calculating the eigen-
vectors, the most efficient problems are the 2-D cross-sectional problems, with
the gravity-free 1-D problems the least efficient.

The Higher Order Godunov scheme has an advantage over the flux-limiter

type schemes since it can usually be used with a CFL number of 0.9, whereas
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flux-limiter schemes have to be used with lower CFL numbers, the greatest being
0.66 but usually 0.5, depending on the limiter used. But we have found that
when problems involving counter-current flow are being simulated with the Higher
Order Godunov code a reduced CFL number in the range 0.5-0.9 is needed for
best performance of the method.

In the next section we describe the IMPES formulation of the Black-Oil model
used in the VIP simulator. We also provide some details of the Riemann solver
used in the Higher Order Godunov code since this step of the computation is
crucial and required some fine tuning. Further details of the timings for the
eigenvector calculations are also provided for various types of simulation problem.
The numerical results of 1-D, 2-D Areal, and of most interest 2-D cross-sectional,
reservoir simulations are presented to compare the two different types of numer-
ical scheme. These comparisons are of interest since they have not previously
appeared in the literature. The relative merits of the flux-limiter and Higher
Order Godunov approaches to reservoir simulation being a current issue in the

reservoir simulation community.

7.2 Description of the VIP Simulator

In this section we outline the IMPES formulation of the Black-Oil model and the
numerical methods used in the commercial reservoir simulator VIP. The simulator
is able to work in one of two modes, these being simultaneous solution (SS) or
IMplicit Pressure Explicit Saturation (IMPES). All the unknown flow variables
are solved for implicitly with the SS formulation and hence the IMPES mode most
closely resembles the sequential formulation of the Black-Oil model [46] that we
use in this thesis. For this reason we simulate problems using the VIP simulator
in IMPES mode. The VIP simulator uses the standard Black-Oil model which
deals with less general mass transfer effects between the phases than the Black-Oil
model [46] that we use, namely a ‘solution gas ratio’ R, only is considered.

The starting point for the derivation of the IMPES method for solution of
the Black-Oil flow equations are the mass conservation laws for each fluid com-

ponent. These equations are written in terms of primary variables, which are
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the fluid pressure p and the vapour and aqueous saturations, s, and s, respec-
tively. The three mass conservation laws are then discretised with a backward in
time discretisation, and then combined in such a way that the time derivatives of
the saturations are eliminated from the resulting equation. This equation then
becomes the parabolic pressure equation and because of the backward time dis-
cretisation, is implicit in pressure. Once this pressure equation has been solved
the saturations may be updated explicitly by using the original three mass con-
servation laws. For a more detailed description of the IMPES method see Aziz
and Setarri [1].

The discretisations of both the pressure equation and the hyperbolic satura-
tion equations, used in the the IMPES formulation ensure conservation of mass.
The discretisation of the pressure equation being similar to that which we use
for our pressure equation, in that second order accuracy in space and first order
accuracy in time is achieved. The IMPES method does not have an inherent
volume error discrepancy since there is no splitting of the flow equations as in
the Black-Oil model [46]. The update of the saturation equations is explicit and
hence the IMPES method has an associated stability criteria, see Aziz and Settari
[1]. In practice commercial reservoir simulation codes ensure numerical stability
by keeping changes in primary variables, over a time step, to within certain pre-
scribed limits. If over the course of a time step these limits are violated the
advancement of the equations would be repeated with a reduced time step.

The Higher Order Godunov algorithm [2] that we use to solve the Black-Oil
flow equations [46], achieves second order accuracy in both space and time, at
least in regions of smooth flow. The VIP simulator was originally written with
a first order one-point upstream weighted algorithm, however a second order
accurate TVD flux-limiter extension was programmed at B.P. Sunbury. This
second order algorithm was a systems of equations extension of the Two Time
Level Flux (TTLF) TVD scheme of Rubin and Edwards [36] described in Section
2.6.2, and used the van Leer limiter [50]. The extension of the scalar scheme to
systems was performed by simply applying the scheme to the system component
by component, which is a common method of solving systems of equations in

oil reservoir simulation codes. This is in contrast to the rigorous approach of
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decomposing the system into its characteristic components and then applying
the scalar scheme to each characteristic family. Hence, although the scheme in
VIP is simple to implement, a reduced resolution is expected from ignoring the
coupling of the equations, but the formal order of accuracy of the scalar scheme
is maintained. We also note that in the reservoir simulation community the
upstream state is determined independently for each phase, and hence component
of the system, by the sign of the Darcy phase velocity.

Hence comparisons of numerical results may be made between the Godunov
and flux-limiter approaches of obtaining second order accuracy whilst maintain-
ing the TVD property. It should be noted that in higher dimensions, although the
schemes will be free of oscillation, in both cases the schemes will not be strictly
TVD, as mentioned in Section 2.5.5. Also in higher dimensions both numeri-
cal schemes are dimensionally unsplit, the VIP code incorporates all coordinate
directions simultaneously, see Section 4.3.2 for a description of how the Higher

Order Godunov code remains unsplit.

7.3 The Higher Order Godunov Code

In this section we describe the introduction of gravitational effects into the Higher
Order Godunov code that were needed in order to simulate the 2-D cross-sectional
problems. We concentrate on the Riemann problem solver needed for counter-
current flow, which requires the full phase space solution of the Riemann problem
and caused some difficulties. Also, at the end of the section, details on the rela-
tive expense of the calculation of the eigenvectors are provided. This information
is used in assessing the efficiencies of the two numerical approaches, under com-
parison, of solving the system of conservation laws arising from the Black-Oil
model.

We first briefly review the phase space construction of the Riemann problem
in order to aid the discussion, but see Section 4.2.3 for more details. The jump
between the left and right traced states, which defines the Riemann problem at

the cell edges, is decomposed into characteristic components corresponding to

146



each wave mode, i.e.
nf—nl =R ar,

where the matrix R is the matrix of eigenvectors evaluated at an expansion state
n, i.e. R = R(n). We have a system of 3 conservation laws and therefore the
jump will be decomposed into 3 components or separate paths. If the eigenvectors
(columns of R) are normalised, the entries of @ represent the lengths of the paths
in phase space. The expansion state @ is calculate as an average of the traced
left and right component densities, which define the Riemann problem at cell

interfaces, i.e.

1
n= §(HL +nfh).

Alternative expansion states are possible but the above form is recommended in
[2] for problems involving flow in porous media.

The inherent volume error discrepancy associated with the flow equations can
be a cause of concern when the expansion state @ is calculated. If we denote the
pressure at the cell interface by p then the volume error discrepancy associated
with the variables I and p can exceed 1072, which is considered as bordering on
the unphysical. It is also possible for the traced states n” and n” to be associated
with high volume error discrepancies, in fact higher than those seen in problems
without gravity where the volume error discrepancies of the traced states do not
usually exceed 5.0 x 1073, Also the intermediate states in the Riemann problem
defined by

n! = ol £ @ R,
and

nzs? — nzsl _I_ azRQ,

can also be associated with high volume error discrepancies. Despite all these
perceived difficulties we find that the numerical results of such problems are
improved if all of these phenomena are ignored, rather than making modifications
to the Riemann problem solver such as lumping the paths in phase space when
high volume error discrepancies are detected.

We now move on to two cases in which it is found necessary for the paths in

phase space to be lumped (that is combined into 1 path) so that the numerical

147



results generated are free of oscillation. Firstly, if one of the intermediate states
n‘! or n*? given above, are unphysical by being negative (hence giving a negative
component density) then the two paths connected with the relevant state should
be lumped, or if both are unphysical then the whole path from n* to n®* should
be lumped into 1 path. When the paths are lumped the modifications to the
flux computation are those given by Bell et al. in [2], described in Chapter 4.
Secondly when eigenvector deficiencies are detected amongst the eigenvectors
Ry, used to expand the jump between the left and right states, modifications
similar to those needed in the problems above, should be incorporated. In this
case the problem manifests itself by a poor representation of the path in phase
space. For instance if the eigenvectors Ry and R, are nearly parallel, indicating
an eigenvector deficiency in wave modes 1 and 2, then the calculated path lengths
can become very large since the matrix R is nearly singular.

A further two circumstances exist for which the whole path in phase space,
connecting n”* with n¥, must be lumped. If we are unable to calculate a set
of eigenvectors then clearly we cannot expand the jump into its characteristic
components and the jump will have to be lumped. The failure of the eigenvector
calculation occurs if the non-trivial wavespeeds are very small (effectively zero)
or if one of the matrices used in the eigenvector calculation becomes singular.
Also, in the case when we have the eigenvectors to expand the jump, it may not
always be possible to solve for the path lengths (vector @) and hence decompose
the jump. This occurs if the matrix R is poorly conditioned, which suggests an
eigenvector deficiency, and we again lump the whole path.

In Section 4.2.3 we follow Bell et al. [2] and describe a procedure for defining
a reference state (n” or nf*), used in the numerical flux calculation to calculate a
reference flux, which depends on the sign of an average wavespeed. We find that
use of an alternative reference state, when a sonic state is detected on traversing

the paths from n” to n”

, improves the numerical results. When one of the
wavespeeds changes sign on one of the paths, near to one of the intermediate
states in the Riemann problem solution, then we use that intermediate state for

calculation of the reference flux, instead of nl or n®, see equation (4.2.9). The

contributions of the integral correction terms in the Engquist-Osher flux formula
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(4.2.9) will then be modified, and are straightforward to deduce.

We now provide more details regarding the timings of the subroutine used to
calculate the eigenvectors in the Higher Order Godunov code, in order to assess
the impact on the total computational time associated with these calculations. We
calculated the percentage of the total run time taken to calculate the eigenvectors
for problems with and without gravity, in 1 and 2 dimensions. Firstly an example
saturated 3-phase 1-D problem without gravity, simulated with 100 grid blocks,
took about 8.9%, and an example undersaturated problem took about 9.3%, of
the total computational time. These percentages change to 9.0% and 9.7% for
the saturated and undersaturated flow problems respectively, when the grid was
refined to 200 grid blocks. We also considered a 1-D problem with gravity, which
now includes the calculation of the eigenvectors needed in the solution of the
Riemann problems. We considered a vertical reservoir as this probably represents
the most demand on the eigenvectors. The reservoir was divided into two halves,
with a different fluid mixture in both halves. The fluids mix due to gravity and
mass transfer effects, usually resulting in a mixed flow problem. The percentage
time needed in the calculation of the eigenvectors was 4.6% for a 100 grid block
simulation, which decreased to 4.4% when 200 blocks were used.

We then simulated the 2-D saturated flow Areal problem (with no gravity),
from Chapter 5, using a 20 x 20 grid and found that 6.4% of the computational
time was spent calculating the eigenvectors. This decreased to 6.0% when a
40 x 40 grid was used. The 2-D cross-sectional problems include gravity in the
z direction with 3.6% of the total time needed to calculate the eigenvectors for
a 20 x 10 grid block simulation. This decreased to 3.1% when the grid was re-
fined to 40 x 20 grid blocks. These percentages are based on solving the pressure
equation to a tolerance of 10™* psi in each grid block, which represents accuracy
to 8 figures. This tolerance is smaller than that which would be used in a com-
mercial reservoir simulation, which would be about 0.1 psi, hence in this case,
the percentage timings of the eigenvectors would be expected to increase. The
2-D simulations were repeated with the increased tolerance on pressure of 0.1 psi,
with the timings of the eigenvectors increasing by at most 2%. Most noticeably,

use of this increased tolerance resulted in the solution of the pressure equation
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taking less than half the percentage time compared to before.

Given the percentage times above, it should be noted that the Higher Order
Godunov code was not written with efficiency in mind, but was coded as efficiently
as possible. In particular, we used a BI-CGSTAB pre-conditioned conjugate gra-
dient solver, described by Van Der Vorst [53], to solve the linear system resulting
from the 2-D parabolic pressure equation, so that this step of the computation
is of high efficiency. We tried using optimisation of the Higher Order Godunov
code, with the effect on the percentage timings mostly being within +2% of those
quoted.

Percentage timings of the calculations of the eigenvectors have been given, but
these do not take into account the extra computation associated with performing
the eigenvector decomposition. For instance we need to solve 3 n x n linear sys-
tems in each grid block to calculate the expansion coefficients (4.2.2), used in the
calculation of the monotonised slopes, see Section 4.2.1, and a n X n linear system
associated with the Riemann problem solution, where n is the number of conser-
vation laws in the system. Taking into account all the computation associated
with a full eigenvector decomposition, used in the Higher Order Godunov scheme,
it is concluded that the time spent in performing these computations is significant
and perhaps should be justified in terms of quality of numerical results compared

to the flux-limiter schemes, which do not require the same computational effort.

7.4 Comparison of Numerical Results

In this section we show the numerical results from the Higher Order Godunov
code and the VIP simulator to compare how well the numerical schemes handle
the Black-0Oil fluid flow equations. We show results of a 1-D and 2-D Areal
problem which do not include gravitational effects, and a 2-D cross-sectional
problem which does include gravity. The 2-D cross-sectional problem introduces
counter-current fluid flow and hence will be a good test of the numerical methods,
particularly the Higher Order Godunov method since all aspects of the scheme
will be utilised. Also in this problem it is likely that points of a loss of strict

hyperbolicity will occur and hence the modifications present in the Godunov
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methodology, which were introduced by Bell et al. [2], will be used at such points.
The flux-limiter scheme makes no such modifications at such points and hence
how the schemes perform at these points is of particular interest.

The VIP simulator models injection of water and gas only since clearly oil
would not be injected in a commercial recovery strategy. We have considered oil
injection components previously in this thesis since a 3-phase injection usually
yields more interesting numerical results. A water and gas injection is referred
to as a ‘WAG flood” in the oil industry, the ratio of the injected water flux
to gas flux being known as the WAG ratio. The VIP code uses an extremely
complicated well model to simulate the injection of fluid, so much so that it is
very difficult to determine the injected fluid saturations. An exact replication of
the simulation problems being solved by the VIP code is not essential for this
work, since the main objective is to compare how well the scheme performs on
degenerate systems of conservation laws compared to the Higher Order Godunov
scheme. We determine the injected saturations by using the numerical results
from the VIP code by assigning them to be the saturations present in the first grid
block. The initial reservoir saturations in the VIP code are specified explicitly,
so these will be identical in the simulations from both codes.

Simulation of the reservoir flow problems used to compare the numerical re-
sults of the two codes are performed at the same CFL number. However the
VIP code does not use the wavespeeds associated with the hyperbolic saturation
equations to calculate a stable time step as with the Higher Order Godunov code.
A stability criteria for the IMPES formulation, based on the transmissibilities is
used, see Aziz and Settari [1] for details. Therefore the time steps used by the
IMPES method are calculated as above, but also having been reduced by a fac-
tor which we also term a CFL number. Hence the number of time steps used
by the VIP and Higher Order Godunov codes will be different because of the
differing stability criteria used. The simulations are also performed without any
artificial viscosity since the VIP code does not use any, and we solve the pressure
equation to the same tolerance in pressure, as in the VIP code, although the 1-D
Higher Order Godunov code solves the system of unknown pressures directly, not

iteratively.
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We now describe the 1-D simulation problem used to compare the two ap-
proaches to solving the Black-Oil flow equations. The reservoir modelled was 500
feet in length and had a rock permeability of 100 milliDarcy’s. The injection fluid

consists of water and gas at a pressure of 2000 psi and had saturations of

0.0
Sing = | 0.2235
0.7765

The fluid initially resident in the reservoir was at a pressure of 1800 psi and had

a composition of

0.7658
Sres = | 0.1406 |,
0.0936

with the production pressure being 1600 psi. All the other reservoir, fluid and
rock parameters are the same as those given in Section 3.9. We reiterate that
the mass transfer ratios R, and R, are both identically equal to zero for all the
reservoir simulations in this chapter. The results of this simulation problem from
the VIP code at 30 days using 100 grid blocks, and with a CFL number of 0.5,
are shown by the solid line in Figure 7.1. The tolerance used to solve the pressure
equation for these results was an absolute value of 0.1 psi, representing 5 figure
accuracy, i.e. pressure in every grid block was calculated to a tolerance of at worst
0.1 psi. The corresponding results from the Higher Order Godunov code, with the
direct solution of the linear system resulting from the discretisation of the pres-
sure equation, are shown by the crosses in Figure 7.1. We note that the IMPES
formulation of the flow equations does not have an inherent volume error discrep-
ancy therefore we could have applied the techniques, described in the previous
chapter, to reduce the volume error discrepancy, to see the effect on the compar-
ison. However at a CFL number of 0.5 the maximum volume error discrepancies
generated are O(107?) therefore applying the techniques, although reducing the
volume error discrepancy, do not noticeably effect the results, therefore we do not
show the results of this computation.

In comparison of the results we see that the rarefaction stretching from about

10 to 110 feet is resolved almost identically by the two codes. However the
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Figure 7.1: Numerical results of the 1-D problem from the VIP and Higher Order
Godunov codes at 30 days using 100 grid blocks and a CFL number of 0.5, solid
line - VIP, crosses - Higher Order Godunov code.

connecting shock, hence indicating the prescence of a local linear degeneracy, is
resolved much more sharply (by about 2 or 3 grid blocks) with the Higher Order
Godunov code, both codes predicting roughly the same shock height. Both codes
then exhibit two linearly varying states, connected by a shock, separating the
first shock (at about 110 feet) with the producer at 500 feet. These linearly
varying states are not rarefaction waves but are due to pressure effects. The
pressure fields can be seen to be almost identical. However, there is a significant
difference in the location predicted of the second shock of about 30 feet (~ 6
grid blocks), the resolution of this shock between the two sets of results being
comparable. Due to the complexity of the well model in VIP we might not be
injecting the same fluid compositions, and numerical results from VIP at earlier

times indicate that the injection saturations vary slightly before settling down.
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Therefore the discrepancy in the location of the second shock is probably due to
the different mass fluxes injected early on in the computation, with conservation
of mass ultimately causing the differences. A similar kind of effect on ‘the faster
shock” was also observed in computations performed by Blunt and Rubin in [7].
The Higher Order Godunov code takes 146 time steps whereas the VIP code takes
2479 time steps to perform the simulation. Hence the Higher Order Godunov code
is far more efficient at performing the simulation.

The 2-D Areal problem was simulated on a 100 feet square region with a rock
permeability of 100 milliDarcy’s in both coordinate directions. The injection, ini-
tial reservoir and production pressures were 2000, 1800 and 1600 psi respectively.

The injection saturation vector was

0.0
Sing = | 0.6957 |,
0.3043

and the initial reservoir saturations were

0.7658
Sres = | 0.1406
0.0936

The problem was simulated with a 60 x60 grid of blocks, a CFL number of 0.3 and
with a tolerance on the solution of the pressure equation of 0.1 psi. The results
of this problem from the VIP code are shown in Figure 7.2. The corresponding
results from the Higher Order Godunov code, using the most accurate transverse
flux calculation, are shown in Figure 7.3.

Comparison of Figures 7.2 and 7.3 indicate that the results from the VIP code
are at a more advanced state than those from the Higher Order Godunov code,
and the computation has nearly ‘broken through’ to the producer in Figure 7.2.
Since these Figures are not easily compared we plot the solution values along
the diagonal connecting the injection and production wells against normalised
distance and overlay the two Figures. This is shown in Figure 7.4, where the
solid line indicates results from VIP and the crosses, results from the Higher

Order Godunov code.
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Figure 7.2: Numerical results of the 2-D Areal problem at 5 days from the VIP

simulator using a 60 x 60 grid and a CFL number of 0.3.
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Figure 7.3: Numerical results of the 2-D Areal problem at 5 days from the Higher
Order Godunov code using a 60 x 60 grid and a CFL number of 0.3.
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The results in Figure 7.4 appear to show the same qualitative behaviour in
the first halt of the Figure, with the first shock, located at about 0.15 on the

x-axis resolved far better by VIP. However the results from the Higher Order Go-
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Figure 7.4: Solution values along the diagonal of the 2-D Areal problem from the
VIP and Higher Order Godunov codes overlaid (VIP-solid line, HOG-crosses).

dunov code suggest that this first wave is actually a rarefaction-shock compound
wave rather than a shock, which the VIP code predicts. Results from a fine grid
simulation of the analogous 1-D problem using the Higher Order Godunov code,
in particular the wavespeeds obtained, confirm that this first wave is in fact a
rarefaction-shock compound wave. The VIP code again predicts a more advanced
position for the second shock, just as in the 1-D comparison, although also in-
dicating it has decayed due to the very high fluid velocity near the production
well (as indicated by the pressure profile). The advanced second shock is again
probably due to the different amount of mass injected early on in the simulation,

as in the 1-D problem. The Higher Order Godunov code shows a pressure field of
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larger magnitude, which is possibly due to the inherent volume error discrepancy.
This will be investigated below by applying the volume error discrepancy reduc-
tion techniques to correct the pressure field. The simulation was also repeated
using the Higher Order Godunov code at an increased CFL number of 0.9 to
check the effect of the CFL number on the resolution of the results, but these
results did not exhibit any noticeable increased (or decreased) resolution.

Since the IMPES equations do not have an associated volume error discrep-
ancy we also simulate the Areal problem with the discrepancy reduction tech-
niques. The maximum discrepancies in this problem were of the order 1072 which
also provides motivation for their reduction. The problem exhibits saturated flow
throughout the computation, and so only the pressure field will be corrected in
order to reduce the volume error discrepancy. The results of this simulation did
not show any significant difference to the previous results. The maximum dis-
crepancies were reduced from ~ O(107?) to ~ O(1077) using 3 iterations in each
grid block, with the resulting maximum change in the pressure field being 0.2%.

We now describe the 2-D cross-sectional problem, which takes place in the
x — z plane with gravity acting in the negative z direction. The cross-section
considered was 400 feet in length and 50 feet in height. Injection of fluid takes
place along the entire left hand face of the reservoir at + = 0 and production of
fluid along the entire right face of the reservoir at x = 400. Specification of the
initial pressure distribution for cross-sectional problems is not straightforward as
in the previous problems considered, since we need the condition of hydrostatic
equilibrium of the fluids at t=0. This means that initially there is no fluid motion
in the z-direction, the bottom of the reservoir being aligned with the horizontal
so there will be no flow in the z-direction at t=0.

Hydrostatic equilibrium is achieved with the forces due to gravity balancing
with the pressure gradient. The required pressure gradient in the injection fluid
and reservoir fluid can be calculated using Darcy’s law (3.3.1) for each phase.

The phase velocity v, will be zero when the pressure gradient balances with the

ap\
@ - ppgv
P

the depth gradient % is equal to 1.0 since the sides of the reservoir are aligned

gravitational potential, i.e.

157



with the vertical. When the fluid only contains 1 phase the required pressure

gradient in the reservoir is the pressure gradient associated with that phase

9p _ (9p
dz \0z p'

However when more than 1 phase exists we use a saturation weighted average of

the individual pressure gradients associated with each phase, i.e.

op _ (9p 9p 9p
9z 5t (82)I+SU (az)f‘s“ (8z)a'

The injected fluid had a composition of the following saturations,

0.0
Sing = | 0.0 |,
1.0

i.e. a waterflood, with a pressure at the top of the injection face of 2000 psi,
the pressures were distributed down the the rest of the face using the pressure
gradient % associated with the injected fluid. The initial reservoir saturations

were

1.0
Sres = | 0.0 |,

0.0
with the pressure along the top of the reservoir being 1800 psi and the pressures
below being distributed with a similar procedure to the injection face. Although
there is no free gas initially in the reservoir, due to the vapour saturation being
zero, there is an amount of gas dissolved in the oil as indicated by the ‘solution
gas ratio’ [f; and hence the initial reservoir fluid is undersaturated. A production
pressure of 1600 psi was assigned along the whole production face. The vector of

phase densities, at standard conditions, used in this problem were

52.789
p = 0.07655
62.382

Numerical flux computation also simplifies to upwind determination in one
of the coordinate directions for cross-sectional problems. The pressure bound-

ary conditions used in the problem guarantee that the total velocities in the
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x-direction are positive for all time. This leads to positive wavespeeds associated
with the x coordinate direction and hence all z-directional flux calculations re-
duce to upwind determination. Counter-current flow only occurs in the vertical
direction due to the effect of gravity on the fluid phases of differing densities, if
the fluid phases had the same densities then no counter-current flow would oc-
cur. Hence the full phase space construction of the Riemann problem, used to
calculate the numerical flux, is only needed for the calculation of the z-directional
fluxes.

The cross-sectional problem was simulated using a 40 x 20 grid of blocks, a
CFL number of 0.5 and with a tolerance on the calculated pressures of 0.1 psi.
The numerical results from the VIP code are shown in Figure 7.5 at 15 days.
The corresponding results from the Higher Order Godunov code, with the most
accurate transverse fluxes, are shown in Figure 7.6.

From Figures 7.5 and 7.6 we see that the injected water, being more dense
than the oil, is forced towards the bottom of the reservoir by the force of gravity.
This results in a thin ‘oil film’ being left along the top of the reservoir by the
injected fluid. The vapour saturation contour lines near the production face are
due to the gas that was initially dissolved in the liquid phase bubbling out of
solution due to the pressure dropping near the production well. The numerical
results from the two codes show very good agreement, in fact closer agreement
than the previous two problems studied, which is probably due to the fact we are
injecting 1-phase (water) in this problem, and therefore the uncertainty associated
with the well model is not so apparent.

We checked the resolution of the two sets of results by plotting the solution
values along the length of the reservoir at y = 25 feet, i.e. along the middle of
the reservoir, and is shown in Figure 7.7. The solid line indicates results from
the VIP code and the crosses, results from the Higher Order Godunov code, and

show very similar resolution.
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Figure 7.5: Numerical results of the 2-D cross-sectional problem from the VIP
simulator at 15 days using a 40 x 20 grid and a CFL number of 0.5.
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Figure 7.6: Numerical results of the 2-D cross-sectional problem from the Higher

Order Godunov code at 15 days using a 40 x 20 grid and a CFL number of 0.5.
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Figure 7.7: Numerical results of the 2-D cross-sectional problem from the VIP
and Higher Order Godunov codes along the middle of the reservoir overlaid, taken
at 15 days using a 40 x 20 grid and a CFL number of 0.5, solid line - VIP, crosses
- Higher Order Godunov code.

Comparison of numerical results from the VIP and Higher Order Godunov
codes in 1 and 2-dimensions has exhibited some notable differences. Firstly the
VIP code predicted a more advanced position of the second shock front in the
1-D and 2-D Areal problems, compared to the Higher Order Godunov code. This
means that ‘breakthrough’ times (the time at which the faster front reaches the
production well) are underestimated compared to the Higher Order Godunov

code. This is probably due to the different amounts of mass injected early on
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in the computations, caused by the uncertainty about the injection well model
used in the VIP code, and would seem to be confirmed by the results from the
cross-sectional problem.

Secondly, the 2-D Areal results from the VIP code indicate that it has failed
to resolve the prescence of a rarefaction wave in a rarefaction-shock compound
wave near the injection well. The Higher Order Godunov code captures this
compound wave, with an analogous 1-D problem confirming its existence. In
general the two codes exhibit similar resolution of rarefaction waves and constant
states, with improved shock resolution from the Higher Order Godunov code.
Unfortunately we were unable to obtain results from VIP of the 2-D Areal problem
at an earlier time to compare the resolution of the second shock front. With regard
to efficiency, the VIP code consistently take significantly far more time steps to
perform the simulations, hence indicating superior efficiency of the Higher Order
Godunov code.

The three reservoir simulation problems all exhibit rarefaction-shock com-
pound waves and hence local linear degeneracies in the characteristic wave fields
of the conservation laws. These degeneracies do not appear to cause any prob-
lems to the TVD scheme in VIP, although VIP has difficulty in resolving the
associated rarefaction-shock compound wave in the 2-D Areal problem. The 2-D
cross-sectional problem also contains points of eigenvector deficiency which again
do not cause any problems to the VIP code, the agreement of the results from
VIP and the Higher Order Godunov code confirming this.

In summary, the comparison of the two codes has provided the following fea-
tures. The main advantage of the VIP code is that the particular form of the
TTLF TVD scheme is very straightforward to implement, component by com-
ponent to the system of conservation laws, whereas the Higher Order Godunov
code uses a full eigenvector decomposition. This implementation of the TVD flux-
limiter scheme has a disadvantage in that, due to the ignoring of the coupling
of the equations, the VIP code looses some resolution, which is shown up in the
comparison of the first shock in the 1-D problem and the first rarefaction-shock
compound wave in the 2-D problem. Another drawback of the VIP code is that a
CFL number of 0.5 is needed due to the TVD scheme (0.66 if the Minmod limiter
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is used), the Higher Order Godunov code has a theoretical stability limit of a
CFL number of 1.0. The number of time steps used to perform the simulations
has confirmed the Higher Order Godunov code is far more efficient in terms of
overall computational time. Hence the superior resolution and overall efficiency
of the Higher Order Godunov code compared to the VIP code, justify use of a

full eigenvector decomposition in the algorithm.
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Chapter 8

Summary and Further Work

In this thesis we have investigated the high resolution simulation of compressible
fluid flow in oil reservoirs. In particular the Higher Order Godunov method has
been applied to a variant of the industry standard Black-Oil model, in 1 and 2
dimensions. Computer codes were constructed to provide numerical results in
order to perform the investigations. The following section contains a summary of
the contents of the thesis and the findings from the work undertaken. Finally in

the last section we outline ideas for further work.

8.1 Summary

In Chapter 2 we gave an overview of some of the theory and nomenclature associ-
ated with hyperbolic conservation laws which we have used throughout this thesis.
Chapter 3 contained a description of a variant of the industry standard Black-Oil
model, which was introduced by Trangenstein and Bell [46], and which we have
used to model compressible reservoir fluid flow. In Chapter 4 we described the
Higher Order Godunov numerical method [2, 10] for systems of conservation laws,
including the modifications necessary for degenerate systems. The system of con-
servation laws in the Black-Oil model possesses these degeneracies and hence the
Higher Order Godunov scheme was used to numerically solve them, a Fortran
code having been written for this purpose.

In Chapter 5 we described how we implemented the Higher Order Godunov

method on the system of conservation laws arising from the Black-Oil model. We
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also discussed the solution of the parabolic pressure equation. We showed results
from our 1-D code and compared them with results in the literature thereby
validating our code. The 2-D code was validated by comparison of results with
those from a commercial reservoir simulator.

Also in Chapter 5 the accuracy of the Higher Order Godunov method was
investigated by applying it to the degenerate system of conservation laws arising
from the 3-phase incompressible Buckley-Leverett model, see [49], for which we
also constructed analytic solutions, and thus were able to compare the analytic
and numerical results. The agreement of the numerical results with the analytic
constructions was found to be very good.

Finally in Chapter 5, source terms were incorporated to model injection and
production of fluid in 1 and 2 dimensions. A locally implicit procedure was used to
remove the numerical stability problem associated with their use. The approaches
described were effective at modelling source terms in 1 and 2 dimensions, and
exhibited improved results over an explicit treatment.

The work in Chapter 6 concerned the inherent volume error discrepancy as-
sociated with the 3-component 3-phase Black-Oil model [46]. A 2-component
2-phase Black-Oil model [5] also exists, being the forerunner to the Black-Oil
model [46], which was developed by Bell et al. and does not have an associated
volume error discrepancy. Therefore 2-component 2-phase reservoir simulations
may be performed with and without the volume error discrepancy and hence the
effect of the discrepancy on the numerical results was investigated. We found
that the results of these reservoir simulations were in close agreement and hence
conclude that the Black-Oil model with the inherent volume error discrepancy
is a good approximation to the more physically accurate Black-Oil model [5], at
least for 2-component 2-phase simulations.

Also in Chapter 6 we investigated the application of a Second Order Pressure
Correction (SOPC) technique which had been suggested by Trangenstein in [48]
as a possible method of reducing the volume error discrepancy. We found that
application of the SOPC method, although raising the temporal accuracy of the
pressure field to second order, introduced unphysical oscillation into the pressure

fields. This oscillation was removed from the results by controlling the growth of
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time steps early on in the computations. However the SOPC technique was not
found to be effective at reducing the volume error discrepancy.

We then described an effective procedure for reducing the volume error dis-
crepancy, which amounted to a local iterative solution of the volume balance
equation. We solved the volume balance equation for pressure in each grid block
at the end of each time step which resulted in a corrected pressure field and
had the effect of substantially reducing the volume error discrepancy. However
unphysical spikes in the pressure fields were introduced when phase changes oc-
curred in the simulations. To circumvent this problem we iteratively solved the
volume balance equation for component density instead of pressure either side
of the phase changes, and solved for pressure in the rest of the flow field. This
had the desired effect in that the unphysical spikes were removed from the pres-
sure fields and the volume error discrepancy was also reduced. We applied this
technique to some 2-component 2-phase problems and found the results were in
closer agreement to the results obtained from simulating these problems with the
no volume error discrepancy formulation of the Black-Oil model [5], compared to
not using the discrepancy reduction techniques. Hence the methods described of
reducing the volume error discrepancy, is effective at improving the physical ac-
curacy of the numerical results of Black-Oil reservoir simulations using the model
in [46].

The effect of the magnitude of fluid compressibility was thought to have an
effect on the level of volume error discrepancy generated, see Trangenstein [48].
Simulations with a sequential thermal model, similar in general structure to the
Black-Oil model, involving injection of highly compressible steam ran into diffi-
culties due to high volume error discrepancies generated, see [48]. We investigated
the effect of gas injections, with gas compressibility comparable to that of steam,
using the Black-Oil model. We found that subject to providing extra dissipation
at the shock connecting the region of high and low fluid compressibilities and
controlling the growth of time steps early on in the simulation, no difficulties
(described in [48]) arose, the computations proceeding smoothly with no unac-
ceptably large discrepancies arising.

In Chapter 7 the numerical results from the TTLF TVD flux-limiter scheme
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present in the commercial reservoir simulation code VIP were compared to those
from the Higher Order Godunov scheme, when applied to the degenerate system
of conservation laws arising from the Black-Oil model. We discussed the rela-
tive efficiencies of the two numerical schemes and compared the quality of the
numerical results.

The VIP code has an advantage over the Higher Order Godunov code since
the TVD scheme is easily implemented component by component to the system
of conservation laws. However this leads to a disadvantage of the scheme in that
the resolution obtained is not as high as that obtainable from the Higher Order
Godunov code, which is due to the ignoring of the coupling of the equations, and
was shown in the comparisons of the numerical results. Another disadvantage of
the VIP code is that it must be used with a CFL number of 0.5, whereas the
Higher Order Godunov scheme can theoretically be used with a CFL number of
1.0. Also in practice the Higher Order Godunov code takes far fewer time steps
to perform the simulations and hence is far more computationally efficient. It is
therefore felt that these points justify use of the full eigenvector decomposition

in the Higher Order Godunov code.

8.2 Further Work

We now discuss some ideas for further work, the most obvious being the use
of adaptive gridding techniques for solution of the partial differential equations.
The main idea here is to concentrate the computational effort where the solu-
tion to the conservation laws is changing most rapidly, with a relatively course
grid where the solution is not changing with time. Hence improved resolution is
obtained at discontinuities and savings in computational effort result. However
adaptive gridding techniques have been applied to 2-D polymer flooding and 2-D
2-phase incompressible flow, using the Higher Order Godunov method, by Ed-
wards [16], but not to 3-phase compressible flow. In particular Edwards presents
a formulation giving high quality results on large aspect ratio grids.

The ultimate goal here is the construction of a 3-D adaptive strategy, and

hence a computer code, to solve the Black-Oil flow equations in the most efficient
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way possible. Grid adaptivity introduces an interesting problem in that the rock
properties need to be held on the finest computational grid, and hence some
sort of averaging procedure of the properties is needed in order to be able to
represent them on the coarser grids. One way of tackling this problem is known
as ‘renormalisation’, see King [27]. Edwards and Christie [17] have shown how
this renormalisation technique can be combined with an adaptive Higher Order
Godunov scheme in 2-D.

Another area of further work involves the discretisation used in the parabolic
pressure equation. The largest volume error discrepancies generated in the numer-
ical results occur at phase changes and discontinuities in the component density
field. The coefficients in the pressure equation at the cell edges are calculated
by averaging the coefficients either side of the cell interface, which could be in
between a phase change or part of a discontinuity. Therefore this averaging out
of the coefficients could have a bearing on the relatively high volume error dis-
crepancies generated at the phase changes and discontinuities. This could be
investigated, as could modifications to the discretisation of the pressure equation
to improve the situation, if it is found to be a cause. Hence this could represent
a correction of the root cause of the high discrepancies at the said points, rather

than the correction of the discrepancies once they have arisen.
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