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Abstract 
 

 
In this dissertation we explore the Boundary Element Method for heat transfer 
in a buried pipe. We are interested in modelling the steady-state heat transfer 
from buried pipes. We are studying the temperature through Laplace’s 
equation. First, we consider the interior and the exterior problem and then we 
move on to the full pipe problem.  
In the interior problem we solve the problem inside a circle. In the exterior 
problem we solve the problem outside the bounded domain and because the 
domain is a circle therefore we solve the problem outside the circle. For the 
full pipe problem we solve the problem outside the circle in a half plane. 
The boundary integral method tells us the value of the temperature on the 
pipe and on the ground surface. From there we can deduce the temperature 
anywhere below the ground surface. 
The theoretical results are supported by our numerical results. 
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Chapter 1 

 
 

Introduction 
 
 

This dissertation explores the Boundary Element Method for the Heat Transfer 
in a buried pipe. Heat transfer occurs due to temperature difference between 
the pipeline fluid and the ambient fluid which is air or water, overcoming thermal 
resistances offered by the pipe, coatings and ground. 
The state of the fluid (oil, liquid or gas) i.e. the density and the viscosity of the 
fluid, is defined by the temperature. 

 
  

 
   Figure1: Buried pipe (source: Partially Buried Pipe Heat Transfer (Powerpoint), Chuk  
                                                    Ovuworie from Schlumberger Company) 
               

 
 
 
 
 
 
 
 
 
 

 
 

pir =radius of the pipe inside 

por =radius of the pipe outside 

cor  = radius of the coating outside 

aT =temperature of the ambient fluid 

fT =temperature of the pipeline fluid 

pR =resistance of the pipe 

cR =resistance of the coatings 

gR =resistance of the ground 

z=distance from the centre of the pipe to the ground surface 
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We can express, at steady state, the rate of heat flow between the pipeline and 
the ambient fluid as: 

 

)(2 afpopo TTUrQ −−= π  

 
 

where    

 

  poU  = overall heat transfer coefficient  

               porπ2 = pipe outside surface area 

                            af TT −  = temperature difference between the pipeline fluid and                                                   

                                          the ambient fluid 
 

At steady state the rate of heat flow (Q ) is the same through each of the 

thermal layers. 
 

We can also write Q  across each thermal layer as: 

 

Q =
R

T∆
 

where    
                       

                        T∆ =temperature difference across the layer 
                        R= thermal resistance offered by the layer 
 

 
 

The temperature difference between the pipeline fluid and inside wall is: 
 

                                    

pipi

pif
hr

Q
TT

π2
−=−                                                (1.1) 

 
 where  

                      pih  = the pipe inside film coefficient  

                              pirπ2 = pipe inside surface area  

                              fT =temperature of the pipeline fluid 

                              piT =temperature of the pipe inside 
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The temperature difference between the pipe inside and outside walls is given by 
the following equation: 
 
                           

                                   

p

pipo

popi
k

rr
TT

π2

)ln(
=−  

where  

                     =pir radius of the pipe inside 

                  =por radius of the pipe outside 

                            pk  =the pipe thermal conductivity 

                    piT = the temperature of the pipe inside 

                   =poT the temperature of the pipe outside 

 
The easiest way to approach this problem is to assume radial symmetry. 
 
In this case, simplifying the problem within the pipe to one-dimension,    
dependent only on r  we can easily solve the boundary value problem using 
traditional techniques. Below are the assumptions made in this analysis: 
 
Assumptions: 
 
 

• Heat flow, denoted by Q (radial heat flow per length of pipe), is 
radially symmetric within the pipe and the coatings such that T=T(r). 

 

• Heat flow is in a steady state (dQ/dt = 0) 
 

• Conservation of heat energy reduces down to Laplace’s equation 
 

   0
1

2

2
2 =

∂
∂

+
∂
∂

=∇
r

T

rr

T
T               It is Laplace’s equation, but now 

                                                              the 
θ∂

∂T
term has disappeared. 

  
 
 

(where r, θ are polar coordinates on the centre of the pipe). 
 
 
 
 
 
 



 7

Solving Laplace’s equation without the 
θ∂

∂T
   term, we obtain the general 

solution for temperature: 
                                          

                                               BrArT += ln)(                                          (1.2)  

                                                                            
 
   where A ,B are constants. 
 

 

We do not need to worry that temperature relies on rln  since we know the 

temperature in the centre of the pipe already ( fT ) and thus we will never have 

to compute the temperature at r equal to zero, where the solution breaks 
down. 
 

 
For the pipe layer, the boundary conditions are: 
 

• 
( )

p

pifpi

rr k

TTh

r

T

pi

−
−=

∂
∂

=

 

• popo TrT =)(  

 
 

We know that  BrArT += ln)(  .Then by using the boundary    

condition
popo TrT =)(  we have : 

 
      

                                                    popopo TBrArT =+= ln)(                             (1.3) 

    
 

 Now we want to find the constants A and B, using the boundary conditions.                                                    
 
                       

                        
r

A

r

T
BrArT =

∂
∂

⇒+= ln)(    

                                                            

                                                    
pirr r

A

r

T

pi

=
∂
∂

⇒
=

 

 
 

and by using the 1st boundary condition     

( )
p

pifpi

rr k

TTh

r

T

pi

−
−=

∂
∂

=
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 we have:  

                                      

p

pifpi

pi k

TTh

r

A )( −
−=                               

                                   

                                   

p

pifpipi

k

TThr
A

)( −
−=⇒                                                 (1.4) 

 
 
 From (1.1) we have:     

                                

                                              
π2

)(
Q

hrTT pipipif =−−                                         (1.5) 

 
 Substitute (1.5) into (1.4)   we have: 

 

                                              

pk

Q
A

π2
=  

 

From (1.3)   po

p

popopo r
k

Q
TrATB ln

2
ln

π
−=−=  

 
Finally, substitute A and B in (1.2) ,we have the following solution for the pipe 
layer: 

    

                                             po

pop

T
r

r

k

Q
rT +










= ln

2
)(

π
   

 
The advantage of this method is that it relies on simple and easy to solve 
Ordinary Differential Equations. The problem with it, is that it over simplifies 
the situation, and does not take into account what is happening exterior to the 
pipe coating. 
 
In particular if we consider the fact that the pipe is buried at a finite depth, or 
even only partially buried, then the solution will certainly not be radially 
symmetric. In this dissertation we consider this more complicated case. 
 
The temperature of the ground with increasing depth (discounting the 
presence of the pipe) is given by:  
 

( ) gTgyyT += .This is an asymptotic condition as y ±∞→∞→ x, .        (1.6) 
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In this dissertation we begin by introducing the Boundary Element Method and 
we separate our problem in three stages: 
 
        (1) Interior problem (bounded problem) 
 

                (2) Exterior problem (unbounded problem) 
 
                (3) Full problem. 

 
 
 
In the interior problem we will solve the problem inside a circle. In the exterior 
problem we will solve the problem outside a circle. For the full pipe problem 
we will solve the problem outside the circle in a half plane. 
In this dissertation, we will approach analytical and numerical solutions for 
each problem. 
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Chapter 2 
 
 
Boundary Element Method  

 
 
 

The Boundary Element Method (BEM) has been applied to a variety of heat 
transfer problems in the last thirty years. Initial applications of the method 
were for steady heat conduction problems described by Laplace’s equation 
[9]. 
The BEM is a method for solving Partial Differential Equations by reformulating 
as boundary integral equations and then solving them. Moreover, the boundary 
element method is derived through the discretisation of an integral equation 
that is mathematically equivalent to the original partial differential equation. The 
essential re-formulation of the PDE that underlies the BEM consists of an 
integral equation that is defined on the boundary of the domain and an integral 
that relates the boundary solution to the solution at points in the domain. 
The Boundary Element Method is often referred to as the Boundary Integral 
Method (BIM) or Boundary Integral Equation Method. 

 
The advantages in the BEM arise from the fact that only the boundary (or 
boundaries) of the domain of the PDE requires sub-division. Thus, the dimension 
of the problem is effectively reduced by one, for example an equation governing 
a three-dimensional region is transformed into one over its surface.  
In cases where the domain is exterior to the boundary the extent of the domain is 
infinite and hence the advantages of the BEM are even more remarkable; the 
equation governing the infinite domain is reduced to an equation over the finite 
boundary. 

 

 
2.1    Reformulation of a Partial Differential Equation as a Boundary                 
  Integral Equation  

 
   

The main properties of potential functions ( 02 =∇ φ ) can be derived from 

Gauss’ Theorem (divergence theorem) and its corollaries (Green’s identities). 
 

(The partial differential operator, 
2∇ or ∆ is called the Laplace operator, or just the 

Laplacian). 
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Gauss Theorem [9]: 

 
Let V be a region in space bounded by a closed surface S and F be a vector 
field acting on this region. 
The divergence theorem establishes that the total flux of the vector field F 
across the closed surface S must be equal to the volume integral of the 
divergence of this vector: 

 
 

                                            dV
x

F
dSnF

V i

i

S

ii ∫∫ ∂
∂

=  

 

where in =components of the unit vector normal to the surface S  

 
Green’s first identity: 

 

By substituting  

i

i
x

F
∂
∂

=
ψ

φ  into Gauss’ Theorem, we have: 

 
      

                                  dV
xx

dSn
x iV iS

i

i









∂
∂

∂
∂

=
∂
∂

∫∫
ψ

φ
ψ

φ                                          (2.1) 

 
 

Then we use the chain rule which give us: 
 

                                      ψφ
ψφψ

φ 2∇+
∂
∂

∂
∂

=








∂
∂

∂
∂

iiii xxxx
                                     (2.2) 

 
 

Substitute (2.2) into the right hand side of (2.1) we get: 
 
   

                                   ∫∫∫ ∇+
∂
∂

∂
∂

=
∂
∂

VV iiS

dVdV
xx

dS
n

ψφ
ψφψ

φ 2
                            (2.3) 

 
 

This is called the Green’s first identity. 
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Green’s second identity: 
 

The Green’s first identity is also valid when interchanging φ and ψ : 

 

                                 ∫∫∫ ∇+
∂
∂

∂
∂

=
∂
∂

VV iiS

dVdV
xx

dS
n

φψ
φψφ

ψ 2
                              (2.4) 

 
Subtracting equation (2.4) from (2.3) gives Green’s second identity: 

 
                              

                          ∫∫ ∇−∇=
∂
∂

−
∂
∂

VS

dVdS
nn

)()( 22 φψψφ
φ

ψ
ψ

φ  

 

n the expressions of Green’s identities, the functions φ  and ψ must be 

differentiable at least to the orders that appear in the integrands. 
 
 

 
2.1.1 Bounded Problem 

 
 
 
Before we consider the pipe flow problem, we consider a  simpler problem in 
a bounded domain in order to understand the main ideas. 
 
 

We consider 02 =∇ T  in D and  
n

T

∂
∂

 is known on C.  

 
where D is a bounded (interior) domain with boundary C. 

 

 
 
To begin with we have the following Green second identity: 

 
 

                         dc
nn

dy
CD

∫∫ ∂
∂

−
∂
∂

=∇−∇ )()( 22 φ
ψ

ψ
φφψψφ  

 
 
The Green’s function is designated as the fundamental solution.   

                                                                

 G (
||

1
ln

2

1
),

−−
−− −

=
yx

yx
π

     where   ),( 21 xxx =
−

                                 

                                                         ),( 21 yyy =
−
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 then )(2

−−
−=∇ yxGx δ  for any fixed 

−
y    or )(2

−−
−=∇ yxGy δ  for any fixed 

−
x , 

where δ  is the Dirac Delta function. 

Strictly speaking it is defined through the integral δ(x − y) f (x)dx = f (y)∫  

   
 

We let    T≡φ   and   G≡ψ     

           
Where   T=temperature,   G=Green’s function. 
 
  
Thus we have:    
                      

                             dc
n

T
G

n

G
TdxdxTGGT

D
C

xx )()( 21

22

∂
∂

−
∂
∂

=∇−∇∫∫ ∫ . 

 

But 02 =∇ T   so we have   :    
 

                          dc
n

T
G

n

G
TdxdxyxT

D
C

)()( 21 ∂
∂

−
∂
∂

=−∫∫ ∫
−−

δ         

 

                        ∫ ∂
∂

−
∂
∂

=⇒
C

dc
n

T
G

n

G
TyyT )(),( 21                                      (2.5)                   

 
 

in the case that  ( Dyy ∈), 21    

 
                     

                                 or :       ∫ ∂
∂

−
∂
∂

=
C

dc
n

T
G

n

G
T )(0      if    ( Dyy ∉), 21                                                           
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D 

D∂  

εΩ∂  

y 
ε 

Suppose ∆G=0 inside a domain D  
 

Suppose Dy∈  

 
 
 
 
 
 

 
 
 

 
  
 

 

 We choose G to be the solution of 0=∆G  in D/ εΩ
,
 hence we have: 

 
 

0)( =
∂
∂

−
∂
∂

−
∂
∫ xd

n

T
G

n

G
T

Dε

 
−

Ω∂
−

∂ ∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

⇒ ∫∫ xd
n

T
G

n

G
Txd

n

T
G

n

G
T

D

)()(
ε

=0   (2.6)        

 
(from previous section) 
 

We know G (
||

1
ln

2

1
),

−−
−− −

=
yx

yx
π

    so |||| Ryx =−
−−

    

 
 
Therefore,   

              

                           G (
R

yx
1

ln
2

1
),

π
=

−− πεπ 2

1

2

1
−=−=

∂
∂

=
∂
∂

⇒
RR

G

n

G
 

 
 
 
 
 
 

ε=radius of the circle  
y=centre of the circle 

εΩ∂ =boundary of  

            the circle 
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Let   0→ε    
 

Then the 2nd part of (2.6) which is  
−

Ω∂ ∂
∂

−
∂
∂

∫ xd
n

T
G

n

G
T )(

ε

 can be separated in 

two parts: 
 
 

(i)  ∫∫
Ω∂

−−
Ω∂

−=
∂
∂

εε
πε

xdxTxdx
n

G
xT )(

2

1
)()(   

 

                                  = ∫
Ω∂

−
+′+−

ε

εε
πε

xdOyTyT ))()()((
2

1 2  

  
                                   

                                  = ∫
Ω∂

−



 +

′
−−

ε

ε
ππε

xdO
yT

yT )(
2

)(
)(

2

1
 

 
                                   

                                  = πεε
ππε

2)(
2

)(
)(

2

1




 +

′
−− O

yT
yT  

                                     

                                  = )()()( 2εε OyTyT +′−−    )(yT−  as 0→ε  

                                    
                                   
 
 

(ii)    
−

Ω∂
−

Ω∂ ∂
∂

=
∂
∂

∫∫ xd
n

T
xd

n

T
G

επ
εε

1
ln

2

1
 

  

                           = πεεε
π

2)()(ln
2

1




 +
∂
∂

− Oy
n

T
 

 

                           = 0)()(ln →



 +
∂
∂

− εεε Oy
n

T
 as  0→ε  
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Hence, 
 
 
 

(2.6)    )()]([)()( yTyTxd
n

T
G

n

G
Txd

n

T
G

n

G
T

D

=−−=
∂
∂

−
∂
∂

−=
∂
∂

−
∂
∂

−
Ω∂

−
∂

∫∫
ε

    

 

Dy∈  as 0→ε  . 

 
which is the same result as  (2.5) but is defined in a slightly more rigorous   
answer. 

Suppose now, Dy ∂∈  (y is on the boundary).In this case, the same 

procedure as before can be applied with the difference that now we have a 
semicircle instead of a circle. Therefore the length of the boundary is π  

instead of 2π  in the derivations above. 

 

 
 
 
 
Hence, 
    

     )(
2

1
)()( yTxd

n

T
G

n

G
Txd

n

T
G

n

G
T

D

=
∂
∂

−
∂
∂

−=
∂
∂

−
∂
∂

−
Ω∂

−
∂

∫∫
ε

    Dy ∂∈              (2.7) 

 
 
 

 
 
 
 
 

 

D ε=radius of the circle  
y=centre of the circle 

 

y 
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2.1.2 Unbounded Problem 
 
 
Suppose ∆T=0 and ∆G=0 are outside the domain D  (exterior problem) 
 

Suppose Dy∉  

 
 
 

 The following equation is equal to zero because y  is outside the domain as we 

have mentioned in equation (2.5) when ( Dyy ∉), 2.1 . 

 

0)()()()()()( =
∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

∫∫ ∫
Ω∂∂ Ω∂

xds
n

T
G

n

G
Txds

n

T
G

n

G
Txds

n

T
G

n

G
T

RD ε

       

(2.8)   
                 
 

0)()()()()()( =
∂
∂

−
∂
∂

−
∂
∂

−
∂
∂

−=
∂
∂

−
∂
∂

⇒ ∫∫ ∫
Ω∂∂ Ω∂

xds
n

T
G

n

G
Txds

n

T
G

n

G
Txds

n

T
G

n

G
T

RD ε

       
       
 
 
                                                    Same as before 
                                                              = - T(y)                                             
 
 
 

 
 

 

D 

R 

RΩ∂
 

εΩ∂  

ε=radius of the small 

    circle 
y=centre of the small  

    circle 

εΩ∂ =boundary of the  

             small circle           

RΩ∂ =boundary of the      

          big circle 

R=radius of the big  

      circle                          

(2.9) 
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Now, we are going to find (2.9) in the limit as R ∞→  

 
         
                

)(ln
2

1
)(

2

1
)()()( xds

n

T
Rxds

R
xTxds

n

T
G

n

G
T

RRR

∫∫∫
Ω∂Ω∂Ω∂ ∂

∂
−−=

∂
∂

−
∂
∂

ππ
 

                                                                                                  =0 (If ∆T=0)  
                                                                           (Corollary of Green’s 2)              
 
 

                                    ∫
Ω∂

−−=
R

xdsxT
R

0)()(
2

1

π
   

 
 
 
So overall,  (2.8) 
 
 
                   

                      )()(
2

1
)()()( xdsxT

R
yTxds

n

T
G

n

G
T

D R

∫ ∫
∂ Ω∂

−=
∂
∂

−
∂
∂

π
                (2.8)  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 19

2.1.3 Full pipe Problem 
 
  
 In the following plot the pipe is buried in the ground. 

   
 
 
 
 
 
 
 
 

  where    
1Γ= ground surface 

        

            2Γ  =pipe 

      

            D=exterior environment (below 
1Γ  and outside 2Γ ) 

            
We have the following assumptions: 
 
    ∆T=0 in D 
 

  
n

T

∂
∂

=known on 1Γ =C1 (a constant) 

 

  
n

T

∂
∂

=known on 2Γ =C2 (a constant) 

 
Τhe asymptotic condition  as ±∞→∞→ xy ,    

T gTgy +→    

  
                   
 
Now, to solve the full pipe problem we will make a rectangular domain as 
shown below: 
 
 

 D 

2Γ  

1Γ  

x 

y 
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2.1.4  Neumann Green’s function for a half plane Problem 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
                                                                

 

where  2Γ =pipe 

            εΓ =small circle 

             ε=radius of small circle 

             RΩ =domain 

  
              
 

We want to find the integral equation of the domain RΩ . 

 
 
 
In the  Domain : 
 
 
 Known: 
 
 

0),(

0

2

2

=∇

=∇

−−
yxG

T

x

     

    . 

  

Γε 

Γ2 

 R 

RΩ
 

(0 ,0 ) 

         y =  R                                                             

 y                                                                       

x 

x=R x= - R 
Γ1 Ground 
surface 
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We choose Ĝ such that 0
ˆ
=

∂
∂
n

G
 on Γ1.  (*) 

 
 

−−−−
−− ′−

+
−

=
||

1
ln

2

1

||

1
ln

2

1
),(ˆ

yxyx
yxG

ππ
 

 

where y′  is the reflection of y  in  the line y = - z  and where   ),( 21 xxx =
−

                                 

                                                                                                  ),( 21 yyy =
−

     

 

),(ˆ
−−
yxG  satisfies   )()(ˆ2 ′−+−=∇

−−−−
yxyxGx δδ . 

 
To find the integral equation of the domain we add the integral equations of 

the pipe, the circle, the ground surface and the lines  RyRxRx =−== ,, . 

 

∫∫∫∫∫∫ ∫
Γ=−==−∩ΓΩ∂ Γ

+++++=
∂
∂

−
∂
∂

εRyRxRxRRR

ds
n

T
G

n

G
T

],[12

)ˆ
ˆ

( =0             (2.10) 

 
The equation (2.10) is equal to zero from the earlier Green’s function. 
 
 
Consider the  lim   (as R ∞→ ) 

 
 

       The 1st integral   is  :   ∫∫
ΓΓ

−
∂
∂

=
∂
∂

−
∂
∂

22

)()ˆ
ˆ

()()ˆ
ˆ

( 2 xdsCG
n

G
Txds

n

T
G

n

G
T  

 
 

The 2nd integral is :  ∫∫
∞=

−∞=−∩Γ

−
∂
∂

=
∂
∂

−
∂
∂ x

xRR

xdsCG
n

G
Txds

n

T
G

n

G
T )()ˆ

ˆ
()()ˆ

ˆ
( 1

],[1

   

 
                                                                                     =0   from (*) 
 
The 3rd and 4th integrals are: 
 
 
 

)()ˆ
ˆ

()()ˆ
ˆ

(
],0[,],0[,

xds
n

T
G

n

G
Txds

n

T
G

n

G
T

RyRxRyRx ∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

∫∫
∈−=∈=
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We consider the asymptotic condition as ∞±∞→ xy ,  

 

gTgyT +→  .                                                                                           (2.11)                      

 
Therefore,  
  

                         0=
∂
∂
x

T
  and g

y

T
=

∂
∂

 

 
 

We solve for    gTgyTu −−=  as ∞±∞→ xy , .                                    (2.12) 

 
Hence if we substitute (2.11) into (2.12) we have : 
 
 

 0=−−+=−−= ggg TgyTgyTgyTu   .Thus 0→u as ∞±∞→ xy ,  

                                                                            0, →
∂
∂

∂
∂

y

u

x

u
 

 
 

Thus the 3rd and 4th integrals are: 
 
 

)()ˆ
ˆ

()()ˆ
ˆ

(
],0[,],0[,

xds
n

T
G

n

G
Txds

n

T
G

n

G
T

RyRxRyRx ∂
∂

−
∂
∂

+
∂
∂

−
∂
∂

∫∫
∈−=∈=

=0 

                          =0            =0                               =0          =0  
 
 

Therefore, the result of the addition of the 3rd and 4th integral is zero as 
R ∞→ . 

 
 
 
In the 5th integral we consider: 
                           

                             

−−−−
−− ′−

+
−

=
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1
ln

2

1
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1
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2

1
),(ˆ

yxyx
yxG

ππ
 

 

where 

−−
−− −

=Φ
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1
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1
),(
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π
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=′Φ
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1
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1
),(
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)
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



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                and in the same way  
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2
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yxyx
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Therefore, if we add ),,(
−−∂

Φ∂
yx

n
),(

−−
′

∂
Φ∂

yx
n

 and 02 =y  then the result is zero: 

            

                       0),(),(
02

=




 ′
∂

Φ∂
+

∂

Φ∂
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For that reason ,  the 5th integral is zero. 
 
 
So from (2.10)  
                
  
                                           -

+−+−
∂
∂

= ∫∫
ΓΓ

)()ˆ()()ˆ
ˆ
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12 xdsCGxdsCG
n

G
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G
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−
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),()()ˆ()()ˆ
ˆ

(0 2112
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n

G
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∂
∂

= ∫∫
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Therefore,      
 

                 =− ),( 21 yyT   )()ˆ()()ˆ
ˆ

(
12

12 xdsCGxdsCG
n

G
T ∫∫

ΓΓ

−+−
∂
∂
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∫∫∫
ΓΓΓ

−+−=
∂
∂

−−
122

)()ˆ()()ˆ()()(
ˆ

),( 1221 xdsCGxdsCGxdsxT
n

G
yyT  

 
We set           
                   

                                 ∫∫
ΓΓ

−+−
12

)()ˆ()()ˆ( 12 xdsCGxdsCG = )(yF  

 
Hence, 
 

                          )()()(
ˆ

),(
2

21 yFxdsxT
n

G
yyT =

∂
∂

−− ∫
Γ

             

 
 
We are going to solve this integral equation numerically. The general integral 
equation is of the following form: 

 
 
 

                                      ∫
Γ

=Κ+ )()(),()( xfdyyuyxxu  
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Chapter 3 
 

 

Methods for solving a single integral equation   
 
 
We study certain Fredholm integral equations of the 2nd kind, 
 
                                     

                               ∫
Γ

=Κ+ )()(),()( xfdyyuyxxu                                    (3.1) 

 
Where : 
     

Kernel= ),( yxΚ  is known 

 

Γ  is some closed boundary  ,    Γ= ))(),(( 21 ςγςγ         where    [ ]πς 2,0∈  

                                                    and 21,( γγ ) are periodic functions 

)(xf  is known 

 
 u   is not known          u  is what we have to find 

 
We can solve equation (3.1) by three methods:    (i) Galerkin method 
                       
                                                                              (ii) Collocation method 
                             
                                                                              (iii)  Nyström method 
     
 
The Galerkin method used for analysis, but the other two methods are easier 
for programming. 

 
In this project we will use the Nyström and the Collocation method. 

 
 

3.1 Nyström Method 
 
 

To solve              

                                 ∫ =+
π2

0

)()(),()( xfdyyuyxKxu       

 
We replace the integral by a quadrature rule. The easiest way is to use the 
trapezium rule. 
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   )]2())1((2......)2(2)(2)0([
2

)(
2

0

π
π

ghnghghgg
h

dyyg +−++++≈∫   

                                      = )])1((......)()0([ hnghggh −+++       [2π periodic function  

                                                                                                         )2()0( πgg =⇒ ]. 

Where    
n

h
π2

=    (n =quadrature parameter) 

 

In our case we replace u    by
nu .  

 
Therefore, we have: 

 
  

)()])1(())1((,(....)(),()0()0,([)( xfhnuhnxKhuhxKuxKhxu nnnn =−−++++  

 

  x∀    
 

We take  hnhhhx )1(,.....,3,2,,0 −=  

 
 

1st equation when 0=x : 
 
 

         )0()])1(())1((,0(....)(),0()0()0,0([)0( fhnuhnKhuhKuKhu nnnn =−−++++  

 
 
 

2nd equation when hx = : 
 
 

        )()])1(())1((,(....)(),()0()0,([)( hfhnuhnhKhuhhKuhKhhu nnnn =−−++++  

 
 

 

3rd equation when hx 2= : 
 
 

)2()])1(())1((,2(....)(),2()0()0,2([)2( hfhnuhnhKhuhhKuhKhhu nnnn =−−++++
 

 
 

Last equation when hnx )1( −= : 

 
 

))1(()])1(())1((,)1((

....)(),)1(()0()0,)1(([))1((

hnfhnuhnhnK

huhhnKuhnKhhnu

n

nnn

−=−−−+

++−+−+−
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We have n equations with n  unknowns: 

 
                                 

                                       ))1((),......,3(),2(),(),0( hnuhuhuhuu nnnnn −  

 
 

We write it as a matrix    bAx =  
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
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• The conventional Nyström method is a simple and efficient mechanism 
for discretizing integral equations with non-singular kernels (K(x,y)). 

 

• With a high-order quadrature rule, the solution one obtains by this 
method is a high-order approximation to the exact solution. 

 
 

In the Nyström method we could use midpoint rule, Gaussian 
quadrature,Simpson’s rule and trapezoidal rule. 
 
Question: 
 
For a general integral equation in [a,b]  of a general function which is the best 
quadrature? 
 
Answer: 
 

If you have [0,2π] and a periodic function and if the function is 
∞C ,then the 

trapezoidal rule is exponentially accurate and also equivalent to replacing u  

by its trigonometric interpolating polynomial and collocating at mesh points. 
 
 

 
 
 

3.1.1 Example of a single periodic integral equation 
 

 
In order to test our method we derive analytical solution: 
 

 
Analytical solution: 

 
 
Our example is of the form: 

 
                                      

                                     ∫
Γ

=Κ+ )()(),()( xfdyyuyxxu  

 

Where the Kernel=K(x, y) = )2sin(
2

1
yx +

π
 

                   

               Γ is a closed boundary from 0 to π2  
              

              u(x)=cos( )x ,                  u(y)=cos( y) 
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Thus, 
 

            ∫ =++
π

π

2

0

)()cos()2sin(
2

1
)cos( xfdyyyxx  

 

    )()cos(])2cos()sin()cos()2[(sin(
2

1
)cos(

2

0

xfdyyxyyxx =++⇒ ∫
π

π
 

 
    

  )())cos()2cos()sin()(cos)2(sin(
2

1
)cos(

2

0

2
xfdyyxyyxx =++⇒ ∫

π

π
 

 
 

  )()
2

)2sin(
)2cos(

2

1)2cos(
)2(sin(

2

1
)cos(

2

0

xfdy
y

x
y

xx =+
+

+⇒ ∫
π

π
 

 
 

)(
4

)2sin()2cos(
)2sin(

24

)2sin(
)2sin(

2

1
)cos(

2

0

xf
yx

x
yy

xx =



 −++⇒

π

π
 

 

)())2sin(0(
2

1
)cos( xfxx =++⇒ π

π
 

 
 
 
Hence, 
 

                                       )2sin(
2

1
)cos()( xxxf +=  

 
 
                 
We program this example of a single periodic integral equation in Matlab and 

we have the following results for the 2Luexactu −    

 

where exactu =cos(x) and  u is computed with the Nyström Method. 

 

(Note:   where   
2Lexactuu −

2

1
2

0

2)( 







−= ∫

π

exactuu ) 
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                                            TABLE 1 
  

  
                                                       

                           n                            
2Lexactuu −                  

                             
                         2                            3.9356e-016       

 
                         4                            2.8353e-016       

  
                         8                           3.6854e-016       

                              
                        16                           5.2234e-016       

  
                         32                           7.5510e-016      

                                             
         
 

 We just use mesh points to evaluate the 
2Lexactuu −  . We  always get zero 

to machine precision. 
 

We have used        
2Lexactuu −

2

1
2

0

2)( 







−= ∫

π

exactuu )                                 (3.2)              

 

                                                       =
2

1

1

1

^
2

^^

)]()([ 







−∑

−

=

n

j
exact hjuhjuh     

with hh =
^

 and then we had zero. However this is not an accurate 
approximation to the error. 

 
 

Instead, we need to work out integral (3.2) in a better way. We can work out 

exactu  everywhere because we have exact formula to work out an 

approximation to u which valid anywhere. So we can use the following formula 

where )(xuPn is called the trigonometric interpolating polynomial [10]. 

 
 

           ∑ ∑
−

=

−

=












 −+−+=

12

0

1

1

))(cos())(cos(21
2

1
)()(

m

j

m

k
n jhxmjhxk

m
jhuxuP  

 

Where 
2

n
m =  
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3.1.2 Example of a single non-periodic integral equation 
 
 

Analytical solution: 
 
 

                               ∫
Γ

=Κ+ )()(),()( xfdyyuyxxu  

 
Where 

                   the Kernel=K(x, y) =
22 yx  

                   
                 Γ is a closed boundary from 0 to 1 
       

                  u(x)=
12

5
1

2x
+ ,      u(y)= 

12

5
1

2y
+  

                
 

So, 
 

              ∫ =++



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


+

1

0

22
22

)()
12

5
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
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x

=
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xfyyx
x

=
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
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
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12

5
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
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

 +++⇒  
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Hence, 

                                                   
2

6

5
1)( xxf +=                                     

 
We program this example of a single periodic integral equation in Matlab and 

we have the following results for the 2Luexactu −  .  

We have used        
2Lexactuu −

2

1
2

0

2)( 







−= ∫

π

exactuu )                              (3.2)                   

 

                                                       =
2

1

1

1

^
2

^^

)]()([ 







−∑

−

=

n

j
exact hjuhjuh     

 
 

                                               
TABLE 2 

  
  

                                                       

                           n                            
2Lexactuu −                  

                             
                         2                              0.5000 
 
                         4                               0.1221 
 
                         8                               0.0443 
 
                         16                             0.0191 
 
                         32                             0.0089 
         
 
 

We computed the error at the mesh points. 
The error appears to half as we double the value of n . 

 
 

If we compare our two examples, the periodic function with the non-periodic 
function, we can see that the periodic function is faster. 
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3.2 Collocation Method  
 
 

The idea is to choose a finite-dimensional space of candidate solutions and a 

number of points in the domain (called collocation points), and to select that 

solution which satisfies the given equation at the collocation points. 

 

To solve 

 

                            ∫ =+
π2

0

)()(),()( xfdyyuyxKxu                                      (3.3) 

 
 

  

We seek an approximation nu  of the form: 

 

                                           ∑
−

=

=
1

0

)()(
n

j

jjn xuxu φ             where =jφ basis functions  

 
 
Substitute u into (3.3) 

 
                      

                   
∑ ∫ ∑
−

=

−

=

=+
1

0

2

0

1

0

)()()(),()()(
n

j

n

j
jjjj xfdyxuyyxKxux

π

φφ
 

            ∑ ∫
−

=

=+⇒
1

0

2

0

)()(])(),()([
n

j
jjj xfxudyyyxKx

π

φφ                                     (3.4) 

               

 

 So we have one equation with n unknowns →   the values of   )( jxu  . 

To get n equations we fix (3.4) to hold at n points i.e. take 
^^

1,....., nxxx = and 

then we will have n equations with n unknowns. 

 If we choose 
^^

1,....., nxx  to be the same points as jx  

             

                             ∑ ∫
−

=

=+⇒
1

0

2

0

)()(])(),()([
n

j
mjjmmj xfxudyyyxKx

π

φφ  
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We replace the integral by a quadrature rule as in Nyström Method. The 
easiest way is to use the trapezium rule. 

 
 

            )]2())1((2......)2(2)(2)0([
2

)(
2

0

π
π

ghnghghgg
h

dyyg +−++++≈∫  

 

                             = )])1((......)()0([ hnghggh −+++          (periodic function) 

 
 

Where    
n

h
π2

=    (n =quadrature parameter) 

 

In our case we replace φ    by
nφ .  

 
 
Therefore, we have: 

 
       

)()()])1(())1((,(....)(),()0()0,([)( xfxuhnhnxKhhxKxKhx jnnnn =⋅−−++++ φφφφ
    

x∀  
 
 

We take hnhhhx )1(,.....,3,2,,0 −=  

We define nj uxu =)(  

 
We have n equations with n  unknowns: 

 

                                ))1((),......,3(),2(),(),0( hnuhuhuhuu nnnnn −  

 
 
 
We use the trapezoidal rule in this method and we have exactly the same 
matrix as for the Nyström Method.  
 
 
Hence the  Nyström Method is exact at mesh points. 
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Chapter 4 
 

 
Interior Problem for Laplace’s equation  

 
 
 

Consider        0=∆u  , 
 

                       Ω is a circle with radius R 
  

                      g
n

u
=

∂
∂

 

                          

 

We already know that the Fundamental solution G(
||

1
ln

2

1
),

−−
−− −

=
yx

yx
π

 and 

that the form of the general integral equation is: 
 
                                      

                          ∫
Γ

=Κ+ )()(),()( xfdyyuyxxu . 

 
 
Thus, we set up the interior problem as an integral equation of the above form 
and we will solve it using a code in Matlab. 
 
 
 
 

R 

g
n

u
=

∂
∂

 

Ω 
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From (2.7) of the bounded problem we have: 
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)( yTxd
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T
G
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−
∂
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−
∂
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  Where in this case K(x,y)=
n

G

∂
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                           ∫∫
∂

−
∂

−
=

∂
∂

=
DD

xdGgxd
n

T
Gxf )()()(  

 
So we have to solve : 
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∂
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Firstly, we have to find 
n

G

∂
∂

 with respect to x. 

 

We know  G(
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1
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1
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−− −

=
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π

  where   ),( 21 xxx =
−

 

                                                                              ),( 21 yyy =
−

 

 

We substitute 
−
x  and 

−
y  in G and then we have the following expression for G: 
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We set ςςςς sin,cos))sin(),(cos( 21 ==⇒= nnx  

                                         

                   ))sin(),(cos( tty =  

 
 

After that we replace 
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We also replace   )cos(1 ς=x               )cos(1 ty =  
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Now we are going to simplify the numerator of this fraction. 
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Hence our integral equation is: 
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                                              because is periodic 
 
 

To find )(yf  which is equal to 
−

∂
∫ xdGg
D

 we have to apply some quadrature 

rule. The composite midpoint rule is appropriate for this equation, since the  
 
integrand is singular at x=0. 

 
 

Composite midpoint rule: 
 

For any function F and for any N 1≥  we have: 
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2

)12( h
x

j += . 

 
 
Finally, we know the kernel (K(x,y))and the right hand side of the integral 
equation f(y). Thus we will solve it numerically in Matlab to find T(y). 
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Below are the graphs of the numerical solution of the integral equation:   
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Figure 4.1:  Numerical solution of the interior problem for Laplace’s equation  
                    for n=4,8,16. 
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Figure 4.2:  Numerical solution of the interior problem for Laplace’s equation  
                    for n=32,64,128. 
 
 
In the above diagrams the solution looks like converging. 
By increasing the value of n the solution becomes more accurate. 
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4.1 Separation of variables in polar coordinates 
 
 
We will use polar coordinates and separation of variables to solve analytically 
the interior problem: 
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We seek a solution of the form: 
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Multiplying by r
2
/RΘ   gives us: 
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Let us now separate the variables: i.e. let us collect all of the r -dependent 
terms on one side of the equation, and all of the θ-dependent terms on the 
other side. Thus,  
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The above  equation has the form: 

 
f(r)=f(θ) 

 

 
 

where f(r) is a function of r and f(θ) is a function of θ. The only way in which 
the above equation can be satisfied, for general r and θ, is if both sides are 
equal to the same constant. Thus,  
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The ordinary differential equations we get are then: 
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θ
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cc BeAe −−− +=Θ⇒ θθ
 

 
 
 

We know that Θ(θ ) must be 2π periodic because is around a periodic 
boundary. 
   
         
        If c<0 then is not periodic 
           
         If c=0 then is not periodic 
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Thus  when c>0  
cici BeAe θθ −+=Θ⇒  
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This is an Euler differential equation. The general solution to this simple case 
of Euler’s ordinary differential equation is given as: 
 
 

                                    
νν −+= rCrCrR 21)(                                                         (4.5) 

 

 

 
Combining   equations (4.4) and (4.5) we have: 
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As r→0 the term involving 
ν−r  is unbounded. The only way to fix this is to 

take 02 =C . 

 
 
Therefore, 
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νr  ))sin()cos(( νθνθ BA +      for any ν . 
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We use the boundary conditions Θ (0) =Θ (2π )    (i.e. periodic) 

 
 
              Θ (0) =A 
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Therefore the general solution of the problem is: 
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The interior Neumann problem is solvable if and only if: 
 
                                                  

                                           ∫ =
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0)( dg  

 
but there is no existence of a unique solution. 
           
(Theorem  6.26,  Kress ‘Linear Integral Equations’) .                     
  
 

The coefficients A m  and B m  may be determined by a Fourier expansion on 

πθ 20 ≤≤  .  
 
 
 The important observation is that sine and cosine functions of different 
frequency are orthogonal. This means that, when multiplied and integrated, 
give zero result: 
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(Fourier Series and Applications, Beatrice Pelloni,2006) 



 48

Fix an integer value 0≠n  and multiply (4.8) by cos( )θn  and sin( )θn , respectively. 

Then perform the integration term by term: 
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  The solution of the interior problem is not unique because  
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Chapter 5 
 

 
Exterior Problem for Laplace’s equation  
 
 
 
For the exterior problem (unbounded problem) as we have seen in chapter 2 
(2.8)  the general integral is: 
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What happens as ∞→R ? 
  

 
 

For the half plane problem we have the asymptotic condition as y→∞, x →±∞  
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The above equation (5.2) is the same equation as (2.6) . 
Thus, we are going to solve it numerically with the same way as the interior 
problem. 
 
 
 For the exterior problem the analytical solution is the same as (4.6) : 
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except        
 
 
                   
as r ∞→  the solution tends to zero. Thus, we take C1=0 and C2≠0 . 

 
 
 

                   =),( θru ν−r .  ))sin()cos(( νθνθ BA +           

 
 
The exterior  Neumann problem is uniquely solvable if and only if: 
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          (Theorem  6.28,  Kress ‘Linear Integral Equations’) .                     
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Below are the graphs of the numerical solution integral equation:   
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Figure 5.1: The numerical solution of the exterior problem for Laplace’s 
equation for n=4,8,16. 
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Figure 5.2: The numerical solution of the exterior problem for Laplace’s 
equation for n=32,64,128. 
 
 
 
 
Again we can see a convergence in both diagrams and as the value of n 
increases the solution becomes more accurate. 
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Chapter 6 

 
 

Full pipe flow Problem  
 
 
To find the general integral equation for the full pipe flow problem we assume 
the following plot. 
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The following is an integral equation approach: 
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This integral equation is the same as the integral equation of interior and 
exterior problem except that here the Green’s function is:  
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Thus, now we want to find   
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Now we are going to simplify the numerator of this fraction. 
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Finally,       
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Therefore, the integral equation of the full pipe flow problem is solved with the 
same way as the exterior and interior problem. The only difference is the 
Kernel. 
 
 
 
 
Below are the graphs of the numerical solution of the integral equation:   
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Figure 6.1: The numerical solution of the full pipe flow problem for n=4,8,16. 
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Figure 6.2: The numerical solution of the full pipe flow problem for n=32,64. 
 
 
 
As we can see from the diagrams the solution converges and by increasing 
the value of n , the solution becomes more accurate. 
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Chapter 7 
 
 
Summary and Conclusions 
 
 
This dissertation has used the Boundary Element Method to approximate the 
heat transfer in a buried pipe. In chapter 1 we started by becoming familiar 
with the pipe flow problem. We explained what the heat transfer is and 
simplified our problem within the pipe to one-dimension and made some 
assumptions for the problem. 
In chapter 2 we introduce the Boundary Element Method. The Boundary 
Element Method is a numerical method for solving Partial Differential 
Equations which have been formulated as integral equations. The advantages 
in the BEM arise from the fact that only the boundary of the domain of the 
PDE requires sub-division. So, the dimension of the problem is effectively 
reduced by one. We also reformulate the PDE as a Boundary Integral 
Equation. We looked at the bounded problem when y is on the domain and y 
is on the boundary. We also looked at the unbounded problem where y is not 
on the domain. Moreover, we looked at the full pipe problem.  
In chapter 3 we talked about the methods that we have used to solve a 
Fredholm integral equation of the 2nd kind. We had two examples of a single 
integral equation. One example of a periodic function and one of the non-
periodic function. We end up that the periodic function is faster than the non-
periodic function. 
In chapter 4 we saw the numerical solution of the interior boundary integral 
equation arising from the Laplace’s equation. We also looked at the analytical 
solution of the problem using polar coordinates and separation of variables. 
We came to the conclusion that the numerical solution of the interior problem 
of Laplace’s equation is converging and that by increasing the value of n the 
solution becomes more accurate. Furthermore, the solution of the interior 
problem is not unique. 
In chapter 5 we saw the numerical solution of the exterior boundary integral 
equation arising from the Laplace’s equation. We end up that the numerical 
solution of the exterior problem of Laplace’s equation is converging. 
Moreover, the solution of the exterior problem is unique. 
Finally, in chapter 6 we have approached an integral equation for the full pipe 
flow problem and we saw that the numerical solution of the full pipe flow 
problem is converging. 
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