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Abstract

In this dissertation we explore the Boundary Element Method for heat transfer
in a buried pipe. We are interested in modelling the steady-state heat transfer
from buried pipes. We are studying the temperature through Laplace’s
equation. First, we consider the interior and the exterior problem and then we
move on to the full pipe problem.

In the interior problem we solve the problem inside a circle. In the exterior
problem we solve the problem outside the bounded domain and because the
domain is a circle therefore we solve the problem outside the circle. For the
full pipe problem we solve the problem outside the circle in a half plane.

The boundary integral method tells us the value of the temperature on the
pipe and on the ground surface. From there we can deduce the temperature
anywhere below the ground surface.

The theoretical results are supported by our numerical results.
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Chapter 1

Introduction

This dissertation explores the Boundary Element Method for the Heat Transfer
in a buried pipe. Heat transfer occurs due to temperature difference between
the pipeline fluid and the ambient fluid which is air or water, overcoming thermal
resistances offered by the pipe, coatings and ground.

The state of the fluid (oil, liquid or gas) i.e. the density and the viscosity of the
fluid, is defined by the temperature.

Ambient fluid

ground =]
surface

ground

=)
g

Figure1: Buried pipe (source: Partially Buried Pipe Heat Transfer (Powerpoint), Chuk
Ovuworie from Schlumberger Company)

v, =radius of the pipe inside

Voo =radius of the pipe outside

r._ =radius of the coating outside

co

T’ =temperature of the ambient fluid

T

Rp =resistance of the pipe

.=temperature of the pipeline fluid

R_=resistance of the coatings
R , —Tesistance of the ground

z=distance from the centre of the pipe to the ground surface




We can express, at steady state, the rate of heat flow between the pipeline and
the ambient fluid as:

Q==2m,U, (T, —T,)

where

U ,, = overall heat transfer coefficient

27z7fpo= pipe outside surface area

Tf — T, = temperature difference between the pipeline fluid and
the ambient fluid

At steady state the rate of heat flow (Q ) is the same through each of the
thermal layers.

We can also write O across each thermal layer as:

where

AT =temperature difference across the layer
R= thermal resistance offered by the layer

The temperature difference between the pipeline fluid and inside wall is:

Tf—Tpl.:—L (1.1)
2m,h,

where
h,. = the pipe inside film coefficient

27zrpl. = pipe inside surface area
T, =temperature of the pipeline fluid

Tp,- =temperature of the pipe inside



The temperature difference between the pipe inside and outside walls is given by
the following equation:

- In(r,, / r,)
pi po 2 ﬂkp
where

r,; =radius of the pipe inside

Voo = radius of the pipe outside

k, =the pipe thermal conductivity

Tpl.= the temperature of the pipe inside

Tpo =the temperature of the pipe outside

The easiest way to approach this problem is to assume radial symmetry.
In this case, simplifying the problem within the pipe to one-dimension,
dependent only on » we can easily solve the boundary value problem using
traditional techniques. Below are the assumptions made in this analysis:
Assumptions:

e Heat flow, denoted by Q (radial heat flow per length of pipe), is

radially symmetric within the pipe and the coatings such that T=T(r).

e Heat flow is in a steady state (dQ/dt = 0)

e Conservation of heat energy reduces down to Laplace’s equation
0T 10T _

VT =—+-—
or- r or

0 > It is Laplace’s equation, but now

oT :
the %term has disappeared.

(where r, 8 are polar coordinates on the centre of the pipe).



oT
Solving Laplace’s equation without the % term, we obtain the general

solution for temperature:

T(ry=Alnr+ B (1.2)
where A ,B are constants.

We do not need to worry that temperature relies on Inr» since we know the
temperature in the centre of the pipe already (7, ) and thus we will never have

to compute the temperature at » equal to zero, where the solution breaks
down.

For the pipe layer, the boundary conditions are:

or|  _ h1,-T,)

57‘ I=Tp; k
° T(I’po)ZTpo

P

We know that 7'(r) = Alnr + B .Then by using the boundary
condition7(r,,)=T,, we have :

I(r,,)=Alnr,, +B=T, (1.3)

Now we want to find the constants A and B, using the boundary conditions.

T(r)=Alnr+B:>a—T:é
or r
oT A
=>— =—
8}" r=r, rpi
oT hpi(Tf_Tpi)
and by using the 1% boundary conditon < =
or rer, k,



we have:

rpi kp
r-h (T,—-T
= A= = (k*’ ) (1.4)

From (1.1) we have:

-, =T, )r,h, :% (1.5)

Substitute (1.5) into (1.4) we have:

__ 90
27k,

From (1.3) B=T, —Alnrpo =T, — 2ﬂQk

Inr,
P

Finally, substitute A and B in (1.2) ,we have the following solution for the pipe
layer:

T(r)= 22{ h{rLj +T,

P po

The advantage of this method is that it relies on simple and easy to solve
Ordinary Differential Equations. The problem with it, is that it over simplifies
the situation, and does not take into account what is happening exterior to the
pipe coating.

In particular if we consider the fact that the pipe is buried at a finite depth, or
even only partially buried, then the solution will certainly not be radially
symmetric. In this dissertation we consider this more complicated case.

The temperature of the ground with increasing depth (discounting the
presence of the pipe) is given by:

T(y) =gy + Tg .This is an asymptotic condition as y — 00, x — %00, (1.6)



In this dissertation we begin by introducing the Boundary Element Method and
we separate our problem in three stages:

(1) Interior problem (bounded problem)
(2) Exterior problem (unbounded problem)

(3) Full problem.

In the interior problem we will solve the problem inside a circle. In the exterior
problem we will solve the problem outside a circle. For the full pipe problem
we will solve the problem outside the circle in a half plane.

In this dissertation, we will approach analytical and numerical solutions for

each problem.



Chapter 2

Boundary Element Method

The Boundary Element Method (BEM) has been applied to a variety of heat
transfer problems in the last thirty years. Initial applications of the method

were for steady heat conduction problems described by Laplace’s equation

[9].

The BEM is a method for solving Partial Differential Equations by reformulating
as boundary integral equations and then solving them. Moreover, the boundary
element method is derived through the discretisation of an integral equation
that is mathematically equivalent to the original partial differential equation. The
essential re-formulation of the PDE that underlies the BEM consists of an
integral equation that is defined on the boundary of the domain and an integral
that relates the boundary solution to the solution at points in the domain.

The Boundary Element Method is often referred to as the Boundary Integral
Method (BIM) or Boundary Integral Equation Method.

The advantages in the BEM arise from the fact that only the boundary (or
boundaries) of the domain of the PDE requires sub-division. Thus, the dimension
of the problem is effectively reduced by one, for example an equation governing
a three-dimensional region is transformed into one over its surface.

In cases where the domain is exterior to the boundary the extent of the domain is
infinite and hence the advantages of the BEM are even more remarkable; the
equation governing the infinite domain is reduced to an equation over the finite
boundary.

2.1 Reformulation of a Partial Differential Equation as a Boundary
Integral Equation

The main properties of potential functions (V2¢ =0) can be derived from
Gauss’ Theorem (divergence theorem) and its corollaries (Green’s identities).

(The partial differential operator, VZor A s called the Laplace operator, or just the

Laplacian).

10



Gauss Theorem [9]:

Let V be a region in space bounded by a closed surface S and F be a vector
field acting on this region.

The divergence theorem establishes that the total flux of the vector field F
across the closed surface S must be equal to the volume integral of the
divergence of this vector:

[Fnds=| gy
N 14 ax,’

where  n,=components of the unit vector normal to the surface S

Green’s first identity:

By substituting F, = ¢Z—W into Gauss’ Theorem, we have:
xi
o[ Oy
— |dV 2.1
j ¢ S=[——- o (¢ ax,) (2.1)

Then we use the chain rule which give us:

a[¢an 0N | sy (2.2)

ox;\ Ox, ) Ox; Ox,

Substitute (2.2) into the right hand side of (2.1) we get:

oy 0P Oy
“2dS = 2 AV + [V wdV 2.3
£¢ P Iax Py +I¢ 7 (2.3)

i

This is called the Green’s first identity.

11



Green’s second identity:

The Green’s first identity is also valid when interchanging ¢gand y :

j Zfds jﬁwg¢dV+j WV 2dV (2.4)

i

Subtracting equation (2.4) from (2.3) gives Green’s second identity:

Oy 0P o tian
£< o V5,4 !(W!// YV P)dv

n the expressions of Green’s identities, the functions ¢ and y must be
differentiable at least to the orders that appear in the integrands.

2.1.1 Bounded Problem

Before we consider the pipe flow problem, we consider a simpler problem in
a bounded domain in order to understand the main ideas.

We consider V2T =0 in D and Z—T is known on C.
n

where D is a bounded (interior) domain with boundary C.

To begin with we have the following Green second identity:

v Py

2. 2 _ 5_W_
[y iy =] v

The Green’s function is designated as the fundamental solution.

G (x,y) :Lln
- 2z | x—y|

where x=(x,x,)

y=0,»,)

12



then V.G =S(x— y) forany fixed y or V?,G =&(x— y) for any fixed x,
where ¢ is the Dirac Delta function.

Strictly speaking it is defined through the integral J5(x - f(x)dx=f(y)
Welet ¢=T and =G
Where T=temperature, G=Green’s function.

Thus we have:

[[,(TV*:G = GV*:T)dx,dx, = | (Ta—f - G—)d
c

But V2T =0 sowe have :
[[,T6(x- Y)dx,dx, = j (T——G—)d
oG
=T(y,»,)=[(T—~- G—)dc (2.5)
v On

in the case that (y,,y,)eD

or: 0= J'(T——G—)dc it (y,v,)eD

13



Suppose AG=0 inside a domain D

Suppose ye D

oD

€=radius of the circle
y=centre of the circle
0Q , =boundary of

the circle

We choose G to be the solution of AG =0 in D/Q, hence we have:

I(T——G—)d I(T——G—)d I(T——G—)dx =0 (2.6)

(from previous section)

1 1
We know G (X, ) = In so [x— y = R|
-2 2 | x—y| - -

Therefore,

1 1:>(3G_8G_ 1 1
-2 27 R on OR 2R 27re

14



Let £¢—>0

oG oT

Then the 2™ part of (2.6) which is _[ (T——-G—)d x can be separated in
oQ, B

on on
two parts:

. oG 1
(i) agJ;ST(x)E(x)d)_c— zﬂgaigT(x)d)_c

= [ T+ T () + 06 x

N T'(y)
_[ ZﬂgT(y) . +0(5)L{gd)_c

o T'O)
_[ 27T8T(y) 5 +0(8)j|27l'8

=-T(y)-el'())+O(e*) —> ~T(y) as &0

(ii) jGﬁ—de= 1 LTy,
o, On - o 2r &on -

__ Ly or
=5 In g[ o (y)+ 0(5)}27%‘

=— glng[Z—T(y) + 0(8)} —>0as €0
n

15



Hence,

2o [ (T——G—)d = I (T——G—)d [-T()N=T(y)

yveD as¢ —>0.

which is the same result as (2.5) but is defined in a slightly more rigorous
answer.
Suppose now, y € 0D (y is on the boundary).In this case, the same

procedure as before can be applied with the difference that now we have a
semicircle instead of a circle. Therefore the length of the boundary is 7
instead of 27 in the derivations above.

I.r"f e ‘& D €=radius of the circle
g e y=centre of the circle
Il_l'.ll-.._m "'-\‘
y | « :
St ~— i B o
Hence,
I(T——G—)d =—j (T——G—)dx——T(y) y e oD 2.7)
oD

16



2.1.2 Unbounded Problem

Suppose AT=0 and AG=0 are outside the domain D (exterior problem)

Suppose y¢ D

€=radius of the small
circle

y=centre of the small
circle

0Q - —boundary of the

small circle
0Q , =boundary of the
big circle
R=radius of the big
circle

The following equation is equal to zero because y is outside the domain as we
have mentioned in equation (2.5) when (y,,y,) & D.

j (T%—G - G—)ds(x) + j (T%—G —~ G—)ds(x) + | (Ta—G - G—)ds(x) 0
n n 0Q,
(2.8)

j (T— — G—)ds(x) =— j (T— — G—)ds(x) — j (T— - G—)ds(x) 0

|

(2.9)
Same as before

=-T(y)

17



Now, we are going to find (2.9) in the limit as R— o

1 1 or
j (T—n - G—)ds(x) = i R T(x)ﬁds(x) - i RZInRa—ds(x)
T~ =0 (If AT=0)

(Corollary of Green’s 2)

1
aEry (j} RT(x)ds(x) -0

So overall, (2.8)

j (T—— G—)ds(x) T(y) _ﬁ [T(x)ds(x) (2.8)

0Q,

18



2.1.3 Full pipe Problem

In the following plot the pipe is buried in the ground.

!

.

where I =ground surface
I', =pipe
D=exterior environment (below I, and outside I,)

We have the following assumptions:

AT=0inD

T
8_=known on I',=C4 (a constant)
n

T
8—=known on I',=C, (a constant)
n

The asymptotic condition as y — 00, x — 00
Togy+7T,

Now, to solve the full pipe problem we will make a rectangular domain as
shown below:



2.1.4 Neumann Green'’s function for a half plane Problem

x=R

(0.,0) Iy Ground
x=-R surface
R @
Ie
QR

—

where I',=pipe
I', =small circle

e=radius of small circle
Q) , =domain

We want to find the integral equation of the domainQ,, .

In the Domain :

Known:

VT =0
V.G(x,y)=0

20




~

A oG
We choose G such that 6_ =0onrlq (%)
n

G(xy)—1 ! +11n !
- 2z |)_c—y| 2 [x= )

where )" is the reflection of y in the line y=-z and where x=(x,Xx,)

y=1,)
G(x, y) satisfies V.G = S(x—y) +6(x— y’) :

To find the integral equation of the domain we add the integral equations of
the pipe, the circle, the ground surface and the lines x=R,x=—R,y=R.

j(T——G—)ds_j + [ o+ [+ +] +] =0 (2.10)

r, LN[-R,R]  x=R

The equation (2.10) is equal to zero from the earlier Green’s function.

Consider the lim (as R— o0)

The 1% integral is : j(T——G—)d (x) = j(TG——GC Yds(x)

The 2" integral is : I (Ta—G—GZ—T)ds(x) - J‘ (Tj/ GC,)ds(x)
n

necRR) O Xm0
=0 from (*)
The 3™ and 4™ integrals are:
[ (Ta—G - G—)ds(x) + (Ta—G —~ G—)ds(x)
x=R,y€[0,R] n x=—R,y€[0,R] an

21



We consider the asymptotic condition as y — 00, x £ o0
T—>gy+T, .

Therefore,

a—T:0 and a—T:g
ox oy

We solve for u=T—-gy—T, asy —>o0,x .

Hence if we substitute (2.11) into (2.12) we have :

u=T-gy-T,=gv+T7T,-gy—T,=0 .Thus u >0as y >0, xt 0

8_14 a—u—>0

ox’ Oy

Thus the 3 and 4" integrals are:

. o0& -
—G—\)ds(x)+ (T ﬁ\— G—)ds(x)=0
0 x——R,L[o,R] on 0
0 =0 =0

x=R,ye[0,R]

Therefore, the result of the addition of the 3™ and 4™ integral is zero as
R— 0.

In the 5™ integral we consider:

é(x,y)zlln ! +11n !
-S 27 |x-y| 27 |x—)|

where O(x,y) = Lln
- 2 [x-y

, O(x,y )= ! In !
-t 2 [x=)

(2.11)

(2.12)

22



oD oD o 1 1

—,y)=——=——"(—n

on(y) -~

od
on(y) -
_ 1 (xz_yz)

W 27 (= 3) + (%, = 3,)

3

0 (xy)= —im o —y»z(— %j[(xl PP+~ y)] 22 - 3,)

and in the same way

27 (%, — )+ (x, = ,)]

oD () = — 1 (x, +3,)
on(y) - 27 [(x, = »)” + (x, +3,)°]
Therefore, if we add aq) (x y) (x y) and y, =0 then the result is zero:

oD oD,
[E(x,yha(x,y)} =0

2=0
For that reason , the 5t integral is zero.

So from (2.10)

0= j (T——GC Yds(x) + j (-GC))ds(x) + | (T@——G—)ds(x)

0= j (T— —GC,)ds(x)+ j (-GC)ds(x)+T(y,,y,)

l

Therefore,

~T(y,3,)= | (Ta_n‘ GC,)ds(x) + J (-GC,)ds(x)

l

23



~ 00 =[S0 () = [ (=GC)ds () + [ (=G, as(x)

We set

[(=GC,)ds(x) + [(~GC,)ds(x)=F (y)

Hence,

STy - | g—fr(x)dsm —F(y)

I,

We are going to solve this integral equation numerically. The general integral
equation is of the following form:

u(x) + [K(x, p)u(y)dy = f(x)

24



Chapter 3

Methods for solving a single integral equation

We study certain Fredholm integral equations of the 2" kind,

u(x) + [K(x, p)u(y)dy = f(x) (3.1)

Where :

Kernel=K (x, ) is known

I' is some closed boundary , I'=(y,(5),7,(5)) where ¢ e [O,27z]
and (y,,y,) are periodic functions
f(x) is known

u is not known — u is what we have to find
We can solve equation (3.1) by three methods: (i) Galerkin method
(i) Collocation method
(iii) Nystrom method
The Galerkin method used for analysis, but the other two methods are easier
for programming.

In this project we will use the Nystrom and the Collocation method.
3.1 Nystrom Method

To solve

u(x)+ [ Ko yu(dy = £(x)

We replace the integral by a quadrature rule. The easiest way is to use the
trapezium rule.

25



=h[g(0)+ g(h) +...... +g((n—1)h)]  [2m periodic function
= g(0)=g(2n)].

2
Where h=— (n=quadrature parameter)
n

In our case we replace u byu,,.

Therefore, we have:

u,(x)+hK(x,0)u, (0)+K(,hu, (h)+...+ K(x,(n=Dh)u,(n—1h)]= f(x)
Vx

We take x=0,h,2h,3h,......(n —1)h

1% equation whenx =0:

u,(0)+A[K(0,0)u,(0)+K(0,h)u,(h)+...+ K(©O,(n—Dh)u,(n-1)h)]= £(0)

2" equation whenx =/ :

u,(h)+h[Kh,0u,0)+K(hh)u,(h)+...+ K(h,(n=1)h)u,((n—-1)h)] = f(h)

3" equation whenx =2h:

u (2h)+ H[K(2h,0)u (0)+ K(2h,hyu, (h) + ...t K(2h,((n = DhYu, (n—Dh)] = f(2h)

Last equation whenx = (n —1)A:

u ((n=Dh)+hK(n-Dh0)u, (0)+K((n—Dh,hu, (h)+....+
+K((n=Dh,(n=Dh)u,((n-1h)] = f(n—1)h)

26



We have n equations with n unknowns:

We write it as a matrix

1+ hK(0,0)
hK (h,0)
hK (2h,0)

u, (0)
u, (h)
u, (2h)
u, (3h)

u,((n—=1h)

AQ)
f ()
J(2h)
J(3h)

f((n=Dh)

u, (0),u, (h),u,(2h),u, (3h),

hK (0, 1)
1+ hK (h,h)
hk(2h,h)

Ax=b

hK (0,2h)
hK (h,2h)
1+ hK (2h,2h)

...... u ((n—1)h)

hK (0, (n — 1)h)
hK (h,(n—1)h)
hK (2h,(n—)h)

1+ B[K (n — 1), (n — )h]

27




e The conventional Nystrdém method is a simple and efficient mechanism
for discretizing integral equations with non-singular kernels (K(x,y)).

e With a high-order quadrature rule, the solution one obtains by this
method is a high-order approximation to the exact solution.
In the Nystrom method we could use midpoint rule, Gaussian
quadrature,Simpson’s rule and trapezoidal rule.

Question:

For a general integral equation in [a,b] of a general function which is the best
quadrature?

Answer:

If you have [0,217] and a periodic function and if the function is C” ,then the
trapezoidal rule is exponentially accurate and also equivalent to replacing u
by its trigonometric interpolating polynomial and collocating at mesh points.

3.1.1 Example of a single periodic integral equation

In order to test our method we derive analytical solution:

Analvtical solution:

Our example is of the form:
u(x)+ [K(x, )u(y)dy = f(x)
r

1 .
Where the Kernel=K(x, y) =2—sm(2x +)
/4

I is a closed boundary from 0 to 27

u(x)=cos(x), u(y)=cos(y)

28



Thus,

cos(x) + ZLT sin(2x + y)cos(y)dy = f(x)
7T o

= cos(x) + %T[(sin(Zx) cos(y) + sin(y)cos(2x)]cos(y)dy = f(x)
Ty
= cos(x) + %T (sin(2x)cos” () + sin(y)cos(2x)cos(y))dy = f(x)
T o

g = 1)

2
1 cos(2 2y) +1 + cos(2x)

= cos(x) + o ! (sin(2x)

cos(2x)sin(2 y)T” )

1. sin(2y) y .
= cos(x) + —| sin(2x)———= + =sin(2x) —
(x) 27[[ (2x) 4 5 (2x) 1

0

= cos(x) + L(O + 7sin(2x)) = f(x)
2r

Hence,

f(x)=cos(x)+ %sin(2x)

We program this example of a single periodic integral equation in Matlab and
we have the following results for the Hu - uexactHL2

where u, _ =cos(x) and uis computed with the Nystrom Method.

exact

L2 :|:Jir(u _uexact)2j|2)

0

(Note: where Hu—u

exact

29



TABLE 1

n Hu T Ueractl
2 3.9356e-016
4 2.8353e-016
8 3.6854e-016
16 5.2234e-016
32 7.5510e-016

We just use mesh points to evaluate the Hu —Uu o We always get zero

exact

to machine precision.
1

2r B
L2 :|:J.(1/l _uexac[)2:| ) (32)
0

We have used Hu —u

exact

{h j[u(j?z)—umxjh)]z}z

with 2 =/ and then we had zero. However this is not an accurate
approximation to the error.

Instead, we need to work out integral (3.2) in a better way. We can work out
u, . everywhere because we have exact formula to work out an

approximation to u which valid anywhere. So we can use the following formula
where P u(x)is called the trigonometric interpolating polynomial [10].

Pu(x)= 221u(jh)[i(l + 2§cos(k(x — jh)) + cos(m(x — jh))ﬂ

Where m = n
2

30



3.1.2 Example of a single non-periodic integral equation

Analvytical solution:

u(x) + [K(x, p)u(y)dy = f(x)

Where
the Kernel=K(x, y) =x2y2

[" is a closed boundary from 0 to 1

2 2

Sx Sy
ux)=1+—, u(y)=1+
(x) 1 (y)

12

So,
5x? ! 2 ) o
[ > j I(l+ 2)xya’y=f(X)
2y4 _
(1+—J I( D ——)dy = f(x)

1 1 1
=>1+— +—X =f(x
[3 x’y’ 7 yl S (x)

12

5x° o1 1)
:>(1+ 12j+x (§+Ej—f(x)

o 5 1)
=>1+x (E+—+E)—f(x)

=1+ — By +L } = f(x)
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Hence,

f(x)=1+ %xz

We program this example of a single periodic integral equation in Matlab and
we have the following results for the Hu —uexactHL2 :
1

2z 2
We have used Hu et > = { I(u - uexm)z} ) (3.2)
0
1
A p—1 . A . A 5 2
=| Y [u(jh) =t ()]
J=1
TABLE 2
n Hu - uexact L2
2 0.5000
4 0.1221
8 0.0443
16 0.0191
32 0.0089

We computed the error at the mesh points.
The error appears to half as we double the value of n.

If we compare our two examples, the periodic function with the non-periodic
function, we can see that the periodic function is faster.
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3.2 Collocation Method

The idea is to choose a finite-dimensional space of candidate solutions and a
number of points in the domain (called collocation points), and to select that
solution which satisfies the given equation at the collocation points.

To solve

u(x) + [ Ko yu(dy = £(x) (3.3)

We seek an approximation u, of the form:

u, = y ¢, (x)u(x;) where ¢, =basis functions

1
Jj=0

~

Substitute u into (3.3)

’2@ (u(x,)+ | K(x,y)’i;czﬁ,- uCx,dy = £ (x)

n—1

= 516, + [K(xp)d,(0)dylux,) = £ (x) (3.4)

J=0

So we have one equation with n unknowns — the values of u(x,) .

A A

To get n equations we fix (3.4) to hold at n points i.e. take x = x,,.....,x, and
then we will have n equations with n unknowns.

If we choose x,,.....,x, to be the same points as X,

n—1

= S06,(x,) + [K(ryo)d, (0)dvlu(x) = f(x,)

Jj=0
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We replace the integral by a quadrature rule as in Nystrom Method. The
easiest way is to use the trapezium rule.

27
Where h=— (n=quadrature parameter)
n

In our case we replace ¢ byg .

Therefore, we have:

¢,(x) + i K(x,0)¢,(0) + K(x, ), (h) +....+ K(x,((n = D), (n =DA)] - u(x,) = f(x)

Vx

We take x =0,4,2h,3h,.....,(n —1)h
We define u(x;) =u,

We have n equations with n unknowns:

u, (0),u,(h),u, (2h),u,(3h),......,u, (n—1)h)

We use the trapezoidal rule in this method and we have exactly the same
matrix as for the Nystrom Method.

Hence the Nystrom Method is exact at mesh points.
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Chapter 4

Interior Problem for Laplace’s equation

Consider Au=0,

Q is a circle with radius R

| 1
We already know that the Fundamental solution G(x, y) =—In and

2 |x=yl

that the form of the general integral equation is:

u(x) + [K(x, y)u(y)dy = f(x).

Thus, we set up the interior problem as an integral equation of the above form
and we will solve it using a code in Matlab.
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From (2.7) of the bounded problem we have:

[0 -6 Dax=21() yeoD
i on 2
__T( )+jT —jG—dx yedD
Where in this case K(x,y)=a—G
on

oT
f(x)= I(Ga—)dx = [(Gg)d x
oD no - & -
So we have to solve :

—T(y)+2jTaG dx= 2jG—dx

on

oG
Firstly, we have to find 6_ with respect to x.
n

1
We know G(x,y)=—7In

where x=(x,x,)
2z |x=yl -

y=))
We substitute x and y in G and then we have the following expression for G:

1
\/(xl _)’1)2 +(x, _y2)2

Glxy) = In

oG
oG _ () | x| oG oG
ﬁn—(x) _’:l()_c)-va _[nz (x)j 8_G = n ()C) axl +n, (X) 5)62
ox,

4.1)
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oG 1

ox, 2r&

\/(xl _y1)2 + (xz _y2)2 (_%j[(xl _yl)2 + (xz _yz)Z]_Ez(xl _yl)

1

a_G__L[(xl _y1)2 +(x2 _y2)2]§ .

= ' 3 (‘xl_yl)
[(x, _yl)2 +(x, _y2)2]2

ox,

oG = 1 (= 3) and in the same way

ax 27[(n - 1)+ (% — 32)’]

a_G:_L (xz_yz)
axz 27[[(x1_y1)2+(x2_y2)2]

We set x = (cos(¢),sin(¢)) = n, =cosg,n, =sing

v =(cos(t),sin(?))

After that we replace oG , oG ,h, and n, into equation (4.1)
ox, Ox,
And finally we have:
oG 1 - - .
_ (¥ =) (X, = »,) sin(c)

1
— - cos(g) —

on 27 —y) (5 - 0.)°] 27 [(x, = 1) + (%, = y,)*]

oG 1 .
P ——on _yz)z][cos(g)(xl =) +sin(e)(x, — )]
We also replace x, =cos(s) ¥, =cos(?)
X, =sin(g) Y, =sin(r)
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N oG _ [cos G(cosg —cost)+sing(sing —sin t)]
on  2x[(cos(c)—cos(t))? + (sin(c) —sin(¢))’ ]

(Note: [(cos¢ —cost)” +(sing —sint)*]=2—2(cos¢ cost +singsint)

=2-2cos(¢c—1)

=2—2[1—25in2(g—j]

=§—\g+ 4sin2(g7_tj

=4sin2(g7_tj ).

=2—2c052(g—_t)

2
—t
2

_0G _ —c0s” ¢ +cos¢cost —sin’ ¢ +sin¢gsint

on 27 -4sin’ (g2—t)

N 0G _ —(cos’¢+sin’ ¢)+cosgcost +singsins

on 87zsin2(g2_t)

N 0G _ —(cos’ ¢ +sin’¢)+cosgcost +singsint

. -t
on 87zsin?(°_ )
2
(Note: Trigonometric identity: cos’ ¢+ sin’ c=1)

N 0G —1+cosgcost+singsint

on 8 sinz(gz_t)
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0G _ 1 (1-(cosgcost+singsint))

on 8 Slnz(gz_t)

Now we are going to simplify the numerator of this fraction.

1—(cosgcost+singsint)=1—-cos(g—1¢)
:1—(1—2sin2(g7_t))

—1
=2sin’ et
( 5 )

(Note: Trigonometric identities: cos(¢ —¢) = cos¢g cost +singsint
cos2¢ =cos’ ¢ —sin’¢
= cos2¢ =1-sin’¢ —sin’¢
= cos2¢=1-2sin’¢).

. —t

8z —~t

2

Finally,

oG __ 1 (4.2)
on 47

Hence our integral equation is:

1
—T(y)-2|T—dx=2|Ggdx
ajz; ar - ajz; -

f)

therefore

We know G(x, y) = Lln
20 x|
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f(y)= jzcgdx “2@ j An —g(x)dx = I In——g(x)dx
e
Lets substitute x=x—y=>x=X+y
dx = dx
g(x)=g(Xx+y)
1 27—y 1 ) R 2r 1
fO)=— | Inzg(Xx+y)dx= Iln—g(x + y)dx
oA o

because is periodic

To find () which is equal to ngdx we have to apply some quadrature
oD B
rule. The composite midpoint rule is appropriate for this equation, since the

integrand is singular at x=0.

Composite midpoint rule:

For any function F and for any N>1 we have:
-+ 1A
j F(x)dx = hz f[( ) ] where =%”

Therefore, our f(y) is:

L o 2 @, +1)h
ror=Tnggo e s g L (B0
2. +1h
where x=—,1—"—.
2

Finally, we know the kernel (K(x,y))and the right hand side of the integral
equation f(y). Thus we will solve it numerically in Matlab to find T(y).
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Below are the graphs of the numerical solution of the integral equation:

-T(y)+2 jTﬁ—de =2 ngdx for different values of n.
o on - ip -
Where
oG 1
on A

27
f(y)=2 j2ngx = jlnig(x + y)dx
oD T ‘x‘

2(0) = cos(108) +sin(126)

0.6

04 n=8 |

‘ / )
\ / / \ /
/
0.2} | \ / :
\ / \
\ / / \ /
\ / / \ /
/

o
(o]
T
1

Figure 4.1: Numerical solution of the interior problem for Laplace’s equation
for n=4,8,16.



n=32
n=64 ||
n=128

Figure 4.2: Numerical solution of the interior problem for Laplace’s equation
for n=32,64,128.

In the above diagrams the solution looks like converging.
By increasing the value of n the solution becomes more accurate.
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4.1 Separation of variables in polar coordinates

We will use polar coordinates and separation of variables to solve analytically

the interior problem:

2
Vzu:lg(ra—uj+%a Z =0
ror\ or r- o6

82 1ou 1 0°u
———+—
8r ror r’o6?

We seek a solution of the form:
u=R(r). ©(0)
Therefore,

182

L2 —(R()0@)=0

——(f”—(R( )9(0)J

0

OR 1 0’0
@9—— — |+ R(r)— =0
© r(rﬁrj (r)r2 00’

Multiplying by r’/RO gives us:

r 8( 8R) 10’0
=>——|r
Ror\ or) ©06°

(4.3)

Let us now separate the variables: i.e. let us collect all of the r -dependent
terms on one side of the equation, and all of the 8-dependent terms on the

other side. Thus,

r 8( 8Rj 10’0
= — -
Ror\ or) ©06°
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The above equation has the form:
f(r)=f(8)
where f(r) is a function of r and f(8) is a function of 8. The only way in which

the above equation can be satisfied, for general r and 6, is if both sides are
equal to the same constant. Thus,

r 0( OR 1 0’0
= ———| r— |=——<—= =c(constant)
Ror\ or ® 06

The ordinary differential equations we get are then:

(a) ri(ra—Rj—cR:o
or\ or

0’0
06’

(b) +c®=0

2

®+c®:0

02

We take (b)

Try ©=¢”so 1e+ce” =022 +c=0=>A=%J-¢

= 0= Ae‘g*ﬁc + Be_g@

We know that ©(#) must be 21 periodic because is around a periodic
boundary.

If c<0 then is not periodic

If c=0 then is not periodic
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Thus when c>0 = @ = 4e'% + Be '%¥*

= A cos(~/c 8)+ Bsin(+/c 0)

So write c=v* = |0 = Acos(v8) + Bsin(v0) (4.4)
We take (a) rg(ra—Rj —v’R=0 (where c=v*)
or\ or

2
:r[ra R+8—R]—V2R:O

ort  or

2
29 §+ra—R—v2R:0
or or

=r

This is an Euler differential equation. The general solution to this simple case
of Euler’s ordinary differential equation is given as:

R(ry=Cir" +C,r™” (4.5)

Combining equations (4.4) and (4.5) we have:

u(r,0) = R(r)0(0)

= u(r,0)=(Cir" + C,r'"). (Acos(v0) + Bsin(vf)) (4.6)
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As r— 0 the term involving 7~ is unbounded. The only way to fix this is to
takeC, =0.

Therefore,
u(r,@)= r" (Acos(v@) + Bsin(v@)) forany v.

2

06’

We know that equation (b) +c® =0 which its general solution is :

® = Acos(v0) + Bsin(vO)

We use the boundary conditions © (0) =@ (27 ) (i.e. periodic)

© (0)=A
<0 (0)=02x)
© (27 )=Acos(2 V)

Thus,

cos 2nv))=1=v=0,£1,£2,....

Therefore the general solution of the problem is:

u(r,0)= 31" (4, cos(v0) + B, sin(ve)) “7)

v=0

ou , ou Ou
In our problem — = g for a circle then — =—=g onr=a
on or On

Z—” = imam-1 (4, cos(m®) + B, sin(m8))=g(6) (4.8)
v =

m=0
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The interior Neumann problem is solvable if and only if:

Zf 2(0)do =0

but there is no existence of a unique solution.

(Theorem 6.26, Kress ‘Linear Integral Equations’) .

The coefficients A, and B, may be determined by a Fourier expansion on
0<6<2r.

The important observation is that sine and cosine functions of different
frequency are orthogonal. This means that, when multiplied and integrated,
give zero result:

7 if m=n#0
2r
[cos(m6)cos(n0)d6 = 27 if m=n=0
0

0 if m#n

2r
[sin(m 6)sin(n@)d 6 = 0 if m=n=0
0

2z
fcos(mH)sin(nH)dH =0 , all m,n
0

(Fourier Series and Applications, Beatrice Pelloni,2006)
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Fix an integer value n # 0 and multiply (4.8) by cos(n &) and sin(n68), respectively.
Then perform the integration term by term:

2r © 2 2r
[g(@)cos(n0)dd = [ma"" A, [cos(mb)cos(n6)dd + B, [cos(nQ)sin(mB)d ]
0 m=0 0 0

=na""'7A, =0
Hence,
1 2r
A, =——— [g(0)cos(n6)do n#0
ma
While

o0

T g(0)sin(n0)d0 =ma"" >[4, Zf cos(nkksjn(n 0)d0+ B, T sin(n8)sin(m 0)d0)]

m=0
=0
=na""' 7B,
Hence,
1 2
B, =—— [g(0)sin(n6)do n#0
ma’

The solution of the interior problem is not unique because

If Au=0 Alu+c)=0

ou o(u+c)
on on

=0 for all constants c.
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Chapter 5
Exterior Problem for Laplace’s equation

For the exterior problem (unbounded problem) as we have seen in chapter 2
(2.8) the general integral is:

g@§4%ﬂmmzwrz§WUMU) (5.1)

What happens as R — ©?

For the half plane problem we have the asymptotic condition as y—«, x —+«

r->T,(»=gv+T, so 9T _

oy

We solve for u=T-T7,, and we consider u=T-gy—T,

As R—> o thenu—0.
But because we have exterior problem and as R — o we need T(R)=0(1)

iie. T(R)—>0

1
Therefore, the part R IT(x)dS(x) of equation (5.1) disappears and then
8,
we only have :

IG——G—MM)Hw (5.2
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The above equation (5.2) is the same equation as (2.6) .
Thus, we are going to solve it numerically with the same way as the interior
problem.

For the exterior problem the analytical solution is the same as (4.6) :

u(r,@)=(Cr" +C,r"). (Acos(v@) + Bsin(v0))

except

as r—> o the solution tends to zero. Thus, we take C41=0 and C,#0 .

u(r,@)=r". (Acos(vd)+ Bsin(v0))

The exterior Neumann problem is uniquely solvable if and only if:
2
[g(@)do=0
0

(Theorem 6.28, Kress ‘Linear Integral Equations’) .

Below are the graphs of the numerical solution integral equation:
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-T(y)+ 2JT6—de:2ngdx for different values of n.
o on - p -

Where
1
8_G = —— which is the same with the 8_G of the interior problem
on 4r on
but with different sign.
2 1
f(y)=2 j2ngx = jln—g(x + y)dx
oD T0 ‘x‘
g(@)=cosd
3
n=4
n=8
n=16 -
_3 1 | 1 | 1
0 1 2 3 4 5 6

Figure 5.1: The numerical solution of the exterior problem for Laplace’s
equation for n=4,8,16.
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n=32
n=64
n=128 H

Figure 5.2: The numerical solution of the exterior problem for Laplace’s
equation for n=32,64,128.

Again we can see a convergence in both diagrams and as the value of n
increases the solution becomes more accurate.
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Chapter 6

Full pipe flow Problem

To find the general integral equation for the full pipe flow problem we assume
the following plot.

n
Y-z ! or __or _
oy on
AT=0
T T
or__or_.
X or on
y
where

C,, C, are constants.

We consider the asymptotic condition as y — 00, x + o0

T—>gy+T, . where T, is a constant.

We solve for u=T—gy—Tg asy —>oo,x oo and we end up
u—0as y >ow,xto0

ou oT

=5 —8=C-g

oy oy

S Mg ¢ =,
on oy
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The following is an integral equation approach:

| (u— - G—)ds(x) + j (—GC,)ds(x) + %u(x) =0 ifxis on the

boundary of the pipe.

We assume that C3 is zero .Therefore, we have the following integral
equation:

—u(x) j (G— — u—)ds(X) +0
= %u(x) + l[(u 2—5)0'“?6) = l[(G%)dS(x)

This integral equation is the same as the integral equation of interior and
exterior problem except that here the Green’s function is:

G(xy)—1 ! +11n ! (6.1)
- 2z |)_c—y| 2 [x= )"

~

We want to find 8_ )
dn

We separate G(x, y)into two parts.

and the

1
The 1% partis G(x,y)=—1In
- 27 |x-y

1

1
2" part we call it P(x,)")=—1In ,
T2 x|

oG _ 1

We already know from (4.2)
on 4
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Thus, now we want to find Z—P )
n

We know P(x,y") = ! In ! — where x=(x,x,)
BEENE ‘

y =(y,2z-y,)

!

We substitute x and y in P and then we have the following expression for P:

P(x y,)— ! In !
- - 2 \/(xl_y1)2+(x2+22+y2)2

oP
oP n(x)) | ox oP oP
I V P= . I 1= — 4+ —_— 6.2
o n(x).V, (nz (x)j op|T (x) ox n,(x) o, (6.2)
ox,
oP 1 3

Fea 27[\/(x1 —y) +(x, +2z+y,) (_%j[(xl —p )+ + 224 )22 2(x, - p))

1

G_P__L[(xl _y1)2 +(x2 ""2Z+yz)2]E (

x J—
o, =)

2 =
[(xl _y1)2 +(x2 +2Z+y2)2]2

oP _ 1 (X, —») and in the same way

a_xl _E[(“xl _y1)2 +(x2 +2Z+y2)2]

oP_ 1 (x, +2z+y,)
axz 27[[(x1—y1)2+(x2+2z+y2)2]

We set x = (cos(¢),sin(g)) = n, =cosg,n, =sing

y = (cos(t),sin(?))
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P P
After that we replace 6_ , 8— ,h, and n, into equation (6.2)
ox, Ox,

And finally we have:

6_P:_ 1 2(xl_yl) : COS(g)—L (.X22+2Z+y2) 5 Sln(g)
on 27 [(x, =) +(x, +2z+ y,)7] 27 [(x, =) +(x, +2z+ y,)7]
oP 1 .
=>—=- cos —¥,)+sin +2z+
e T I S yz)zl[ ()X, =) +sin(e)(x, +22 + y,)]
We also replace x, =cos(s) v, =cos(?)
x, =sin(c) ¥, =sin(1)

oP _ [cos ¢(cosg —cost)+sing(sing + 2z +sin t)]

on 27r[(cos(c) — cos(t))2 +(sin(g)+2z + sin(t))2 ]

(Note: [(cosg —cost)’ +(sing +2z+sint)’]=2—2(cos¢ccost —singsint)
+4z% +4zsing +4zsint

=2-2cos(¢+1)+4z°
+4zsing +4zsint

=2— ZCOSZKGTH)+ 4z*

+4zsing +4zsint

_ 2—2[1—23in2(g7+tj]

+4z% +4zsing +4zsint
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= 4sinz(—g;t}r4z2 +

4zsing +4zsint

:>6_P_ —c0s’ ¢ +cos¢gcost —sin’ ¢ —singsint —2zsing
on

27 -[4sin’ (g2+t) +4z° +4zsin¢ +4zsint]

:>8_P_ —1+cosgcost—singsint —2zsing
on

2 -[4sin2(g2+t) +4z% +4zsin¢ +4zsint]

oP _ 1 (1-(cosgcost—singsint)+2zsing

on 27

. +1 . .
4sin’ (g2) +4z° +4zsing +4zsint
(Note: Trigonometric identity: cos’ ¢+ sin’ c=1)

Now we are going to simplify the numerator of this fraction.

1—(cosgcost—singsint) =1-cos(g +1¢)
:1—(1—2sin2(—g2”))

+1
= 2sin’ (=2
)

(Note: Trigonometric identities: cos(¢ +1¢) = cosgcost —singsint
cos2¢ =cos’ ¢ —sin’¢
= cos2¢=1-sin’¢ —sin’ ¢
= cos2¢=1-2sin’¢).

op i 2sin2(g2+tj +2zsing
9 _

on _27r

4sin2(g2+t) +4z° +4zsing + 4zsint
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Finally,

+t
. 2sin? &0 |+ 2zsi
8_G_8_G+8_P_ . +_L sm( 5 ) zsing

dn oOn On 47 2

7 4sin2(g2+t)+4z2 +4zsing +4zsint

Therefore, the integral equation of the full pipe flow problem is solved with the
same way as the exterior and interior problem. The only difference is the
Kernel.

Below are the graphs of the numerical solution of the integral equation:

—-T(y)+2 ITa—de =2 Ingx for different values of n.
ip on - p -
Where

+t
2Sin2(gj +2zsing
oG L+ | 2

on 47 _E

4sin’ (g2+t) +4z° +4zsing +4zsint
2 1

f(»)=2[2Ggd x= [In—g(x+ y)dx

oD T ‘x‘

2(6) = cos(106)
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n=4
n=8 ||
n=16

Figure 6.1: The numerical solution of the full pipe flow problem for n=4,8,16.
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n=32
n=64

Figure 6.2: The numerical solution of the full pipe flow problem for n=32,64.

As we can see from the diagrams the solution converges and by increasing
the value of n, the solution becomes more accurate.
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Chapter 7

Summary and Conclusions

This dissertation has used the Boundary Element Method to approximate the
heat transfer in a buried pipe. In chapter 1 we started by becoming familiar
with the pipe flow problem. We explained what the heat transfer is and
simplified our problem within the pipe to one-dimension and made some
assumptions for the problem.

In chapter 2 we introduce the Boundary Element Method. The Boundary
Element Method is a numerical method for solving Partial Differential
Equations which have been formulated as integral equations. The advantages
in the BEM arise from the fact that only the boundary of the domain of the
PDE requires sub-division. So, the dimension of the problem is effectively
reduced by one. We also reformulate the PDE as a Boundary Integral
Equation. We looked at the bounded problem when y is on the domain and y
is on the boundary. We also looked at the unbounded problem where y is not
on the domain. Moreover, we looked at the full pipe problem.

In chapter 3 we talked about the methods that we have used to solve a
Fredholm integral equation of the 2" kind. We had two examples of a single
integral equation. One example of a periodic function and one of the non-
periodic function. We end up that the periodic function is faster than the non-
periodic function.

In chapter 4 we saw the numerical solution of the interior boundary integral
equation arising from the Laplace’s equation. We also looked at the analytical
solution of the problem using polar coordinates and separation of variables.
We came to the conclusion that the numerical solution of the interior problem
of Laplace’s equation is converging and that by increasing the value of n the
solution becomes more accurate. Furthermore, the solution of the interior
problem is not unique.

In chapter 5 we saw the numerical solution of the exterior boundary integral
equation arising from the Laplace’s equation. We end up that the numerical
solution of the exterior problem of Laplace’s equation is converging.
Moreover, the solution of the exterior problem is unique.

Finally, in chapter 6 we have approached an integral equation for the full pipe
flow problem and we saw that the numerical solution of the full pipe flow
problem is converging.
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