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Abstract

A simple model of light use in the Photosystem II model of Photosynthesis by leaf under light
changing condition has been studied using a system of three nonlinear ordinary differential equa-
tions (ODEs). As part of our analysis we show that there is a unique stable solution. We identify
a stiffness problem and have solved the system of ODEs using a stiff solver ode23s, and compared
the results with a previous solution using explicit Euler scheme. We also describe an asymptotic
analysis of the system of 3 ODEs and consider sensitivity to particular unknown parameters used
in the ODEs. In the model [1] one of the equations proceeds very rapidly which allows the system
of 3 ODEs to be reduced to a system of 2 ODEs. We compared both systems of ODEs by looking
at the steady-states, stability and stiffness of the systems. We have numerically approximated
the governing differential equations and compared results with each order.
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Chapter 1

Introduction

This dissertation is concerned with the numerical solution of a system of nonlinear ordinary
differential equations (ODEs) which arise in photosynthetic dynamics due to light variation, which
has been investigated experimentally in dark and light [1] [2].
In the next section we summarize the available information on photosynthetic response to light
variation and derive a mathematical model for a dynamic approach for leaf response under high
and low light conditions.

1.1 Background of Study

By capturing the energy of sunlight and converting it into chemical potential energy, photosyn-
thesis powers most life on earth [3]. Light is obviously a key ingredient in photosynthetic energy
capture. Under natural fluctuations in light environments, on most days plants encounter light
intensities that exceed their photosynthetic capacity [5]. Excessive light energy can damage the
photosynthetic membranes and machinery of the plants. Plants have therefore developed mecha-
nisms that can quickly and effectively repair photo damage. To better understand the mechanism
of the excessive capacity of leaves, the model [2] compares a dynamic approach with a steady-state
approach.

Figure 1.1: Comparison of steady-state and dynamic approach taken from [2].

Figure 1.1 presents a comparison between steady-state and a dynamic approaches under light
intensity between high light (1500µmolm−2s−1) and low light (100µmolm−2s−1) [2]. Study of
figure 1.1 shows that in those conditions where the light intensity changes faster than 1s the
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CHAPTER 1. INTRODUCTION 8

steady-state approach significantly underestimates the modified electron transport [2]. The effect
reverses every few seconds, where the steady-state approach overestimates compared with dynamic
approaches. Considering this behaviour, the paper [2] concluded that a steady state approach
might lead to overestimation in leaves at the top and underestimation at the lower part of leaves.

1.1.1 Photosystem II

One of the first states of photosynthesis involves a process called photosystem II [3]. The oxygen
we breathe is a product of photosystem II reactions. Photosystem II is made up of many different
proteins and pigment molecules . The heart of photosystem II is the reaction centre [3], where the
energy of light is converted into the motion of energized electrons. It captures photons with the
help of two types of chlorophyll, chlorophyll a (Chla) or chlorophyll b (Chlb), molecules where
Chlb operates only in light absorption and excitons are always assumed to be located in Chla [2].
The various process that compete for light energy absorbed by a leaf for Photosystem II are [2]

• photochemistry,

• fluorescence,

• non-photochemical quenching,

• heat dissipative process.

The main energy-consuming processes in photosystem II are often classified into photochemical
and non-photochemical processes. Photochemistry is the energy that gives fuel for photosynthesis
[1]. Fluorescence and heat dissipation are used for non-photochemical processes which utilities
the absorbed light energy. Non-photochemical quenching occurs when there is an increase in the
rate at which excitation energy within photosystem II is lost as heat. The background mentions
that high light is a major stress for plants. One of the strategies for survival in high light
is to eliminate the excess absorbed energy as heat thermal dissipation which can be measured
as non-photochemical quenching(NPQ) for chlorophyll fluorescence [4]. NPQ processes can be
thought of as protective mechanisms of the plant to cope with excess heat excitation. Chlorophyll
fluorescence techniques are widely used to study the dynamics of the energy-consuming processes
[2] in photosystem II .
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Figure 1.2: Process of photosystem II taken from [2].

Rectangular boxes represent amounts of a substance in a determined state, and ellipsoids repre-
sent processes where absorbed light can be utilised [2]. Thick arrows represent the flow of energy,
and broken arrows indicate an effect. ChlaON,OFF represents molecules carrying an exciton(ON)
or in the ground state (OFF) [2]. Chla+ bOFF is the sum of chlorophyll a and b molecules in the
system in the ground state [2]. QON/OFF are the number of photochemical quenching in reduced
or oxidised state [2]. SON/OFF are the number of active or inactive non-photochemical quenching
sites. d, f , n and p are the rates of constitutive heat dissipation, fluorescence, non-photochemical
quenching processes and reduction of the quinone-equivalents, respectively [2].

In the study [2] the model is concerned with the steady state for light reaction which may encounter
problem under natural fluctuating light. So, by developing a dynamic model can express the
behaviour of the system over short time periods can be expressed.

1.2 Objectives of the study

We study a system of three ordinary differential equations (ODEs) that arise in the model of
photosynthesis reaction. The system of 3 ODEs is nonlinear and has no analytical solution. We
investigate steady-state solutions and their stability but also the process under which the solu-
tion reaches these steady-states. The main purpose of this study is to develop efficient numerical
methods to get the results.

The objectives of the study are

• to study the steady-states, stability and stiffness of the system,

• to get accurate and stable solutions by solving the system numerically using ode solver
ode23s of MATLAB,

• to study the initial asymptotic behaviour of the system,
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• to discuss the sensitivity of unknown parameters of the system.

In the model [1], based on [2], the systems of 3 ODEs is reduced to a system of 2 ODEs and we
compare the results between the 3 and 2 ODEs systems in terms of steady-states, stability and
stiffness. We also compare the results of the system of three ODEs solved by a stiff solver ode23s
with the previous results of the model [1] solved using the Explicit Euler scheme.

1.3 Structure of Dissertation

Figure 1.3: Dissertation Structure roadmap.

Before beginning to present our methods, in Chapter 1 we discuss the main paper “Dynamic
flow of energy through Photosystem II under light changing conditions” [2] which provides the
background of our study to show how plants react under high or low light in photosystem II
and compare steady-states and dynamic approaches to the system. It describes the process of
Photosystems II and then reviews the objectives of this dissertation.

Chapter 2 includes the model description from the associated note “A simple model of light use
in Photosystem II” [1]. We review this model [1] that has already been carried through on the
nonlinear system of three ODEs which includes a numerical experiment under light changing con-
ditions using the Explicit Euler method. In the section (2.1) of this chapter, we describe a non
dimensionlization of the 3 ODEs to simplify the system and meaning of the parameters used in
the equations.
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Chapter 3 determines the steady-states of the system of 3 ODEs using a Newton-Raphson method
and Descartes rule of signs, to show there is only one positive stable steady-state solutions which
lies between 0 and 1. Then we will analysis the stability of the steady-states of the system.

In Chapter 4 we discuss the stiffness of the 3 ODEs by finding the condition number of the Jaco-
bian at the start of the experiment and then use the ode solver ode23s to solve the system of 3
ODEs. We then move on to the system of 2 ODEs.

Chapter 5 considers the reduced system of 2 ODEs, which does not contains the initial stiff be-
haviour of c. We again find the steady-states, stability and stiffness of the system of 2 ODEs and
compare them with the system of 3 ODEs.

In chapter 6 we turn our attention to an asymptotic analysis of the 3 ODEs close to initial states
and compare the results with the numerical behaviour of system of the 3 ODEs in a very small
time.

In chapter 7 we look at the sensitivity of the system to some unknown parameters and measure the
differences between the results using the perturbed and actual values of these unknown parameters.

In chapter 8 we compare the results from 3 ODEs obtained from the ode solver ode23s against
the results of model [1] obtained by the Euler scheme to check the steady solutions got from both
methods.

The summary and main results of all the work reported in this thesis are contained in chapter
9. Finally we draw the conclusion from the two numerical methods and all the results we have
obtained and propose some questions to be answered in future work.



Chapter 2

Model description

The paper [2] [1] entitled “A simple model of light use in Photosystem II”, by A. Porcar-Castell
studies what happens to light energy after it has been absorbed by a leaf but before it has been
used in photosynthetic reactions. The model comprises a system of three nonlinear ordinary
differential equations. In the model [1] there are 3 main populations of molecule -type entities
which are

1. Chla

2. S

3. Q.

The total amount of each of these entities is conserved. Q and S are biochemical states of the
systems [1]. All these three entities are important during the process of photosystem II after
absorbing the light energy. The flux of energy through the systems is controlled by the system of
differential equation.

2.1 System of 3 differential equations

From the figure 1.2, during the process of photosystem II for the rate of light capture by the
chlorophyll a molecule since chlorophyll b molecule do not locate the exicitons [2]. The energy en-
ters the system of differential equations and is split between the competing downstream processes
as ChlaON + ChlaOFF where ChlaON satisfies

dChlaON

dt
= αIChlaOFF + ChlaON (−kf − kd − knE − kpQ). (2.1)

Non photochemical processes are modelled as

dSON

dt
= λbChla

ONSOFF − λrQS
ON (2.2)

where the total S pool size is SOFF + SON = constant.

Photochemical processes are modelled as

dQON

dt
= kpQChla

ON − γQON (2.3)

12
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where the total Q pool size is QOFF +QON = constant.

The process in equation 2.1 occurs rapidly and therefore we set the derivative to zero and rear-
ranged to yield

ChlaON =
αIChlaOFF

kf + kd + knE + kpQ
.

E is biochemical states of the systems [1].
The variable E refers to the fraction of S in the ON state

E =
SON

SOFF + SON
. (2.4)

The variable Q refers to the fraction of Q in the OFF state

Q =
QOFF

QOFF +QON
. (2.5)

The meaning and values of parameters used in the system of differential equations are presented
in the following tables.

name what? meaning unit

I input incident light µEm−2s−1

α parameter light capture efficiency m2chl−1

kf parameter rate constant fluorescence s−1

kn parameter rate constant non photochemical quenching s−1

kp parameter rate constant photochemical quenching s−1

kd parameter rate constant other heat s−1

γ parameter controls photochemical building n/a
λb parameter controls non photochemical building n/a
λr parameter controls non photochemical relaxation n/a

ChlaON/OFF state number of excitons in state ON/OFF n/a

SON/OFF state number of NPQ entities in state ON/OFF n/a

QON/OFF state number of PQ entities in state ON/OFF n/a

Table 2.1: Parameters and their meanings taken from [1].

Rate constant or parameter Value

kf (s−1) 6.7 × 107

kn(s−1) 6.03 × 108

kp(s
−1) 2.92 × 107

kd(s
−1) 4.94 × 107

γ 2.74
λb 0.0087
λr 835

I (µmolm−2s−1) 1200
α 1.14437 × 10−3

Table 2.2: Values of parameters associated with energy processes in PSII taken from [2].
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2.2 Non dimensionlization

Non-dimensionlizing the system of nonlinear ODEs is important because it simplifies the equa-
tions and allow us to analyze the behavior of the system with the values of variables ∼ 1.

The system of differential equations are

dChlaON

dt
= αIChlaOFF + ChlaON (−kf − kd − knE − kpQ). (2.6)

dSON

dt
= λbChla

ONSOFF − λrQS
ON (2.7)

dQON

dt
= kpQChla

ON − γQON (2.8)

Letting PC be the pool size of Chla, non dimensionalise Chla as

ChlaON

PC
= c,

ChlaOFF

PC
= 1 − c,

S as
SON

PS
= s,

SOFF

PC
= 1 − s (2.9)

Q as
QON

PC
= q,

QOFF

PC
= 1 − q (2.10)

where,
PC = ChlaON + ChlaOFF ,

PS = SON + SOFF ,

PQ = QON +QOFF .

c, s and q are the non-dimensionalised variables which lies between 0 and 1.

Using equation (2.4), we substitute for SON and SOFF from (2.9) into variable E and to give

E =
PS s

PS(1 − s) + PS s

so that
E = s.

Using equation (2.5), we substitute for QON and QOFF from (2.10) into variable Q giving

Q =
PQ(1 − q)

PQ(1 − q) + PQ q

so that
Q = (1 − q).
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The system of equations (2.6), (2.7) and (2.8) then becomes,

PC
dc

dt
= αIPC(1 − c) + PC c(−kf − kd − kns− kp(1 − q)),

PS
ds

dt
= λbPC cPS(1 − s) − λr(1 − q)PS s,

PQ
dq

dt
= kp(1 − q)PC c− γPQ q,

which can be rearranged as

dc

dt
= αI(1 − c) + c(−kf − kd − kns− kp(1 − q)). (2.11)

ds

dt
= λbPC c(1 − s) − λr(1 − q) s. (2.12)

dq

dt
= kp(1 − q)

PC
PQ

c− γ q. (2.13)

We will be using the non-dimensionalized nonlinear equations to seek the results of the systems.

In the model [1], the ratio of pool values are 230 : PC = 22 : PQ.
From figure (2.1), pool value (PC) = 3e11 then value of PQ is given by

Pool Values Meanings Values

PC ChlaON + ChlaOFF 3 × 1011

PQ QON +QOFF Ratio of 230 : PC = 22 : PQ gives 22×3e11
230 = 2.87 × 1010

Table 2.3: Values and meanings of pool values.

In the next section, using the values of parameters and pool values from tables (2.2) and (2.3)
into system of 3 ODEs the experiment was conducted under light changing conditions.

2.3 Experiment and Results from previous work

• Dark reactions

In [1] a simulation was conducted using the Explicit Euler scheme on the 3 ODEs by keeping the
leaf in the dark at least for 2 hours. With knowing some knowledge of pool size through pigment
measurement then estimation can be done for all the relevant initial conditions. Coefficient Q
which refer to photochemical process will rise to 1 where as coefficient E which refer to non-
photochemical process will fall to 0.

• Light reactions

After that shine a constant light on the leaf and watch out what happens to the the dynamics of
energy flow under changing the light conditions as shown in figure 2.1.
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Figure 2.1: Single Model run with initial conditions and constant irradiance taken from [1].

In the figure 2.1 the model of 3 ODEs was run using the Explicit Euler scheme with the help of
initial conditions and constant light shinning on the leaf. It shows how the 3 molecules ChlaON ,
Q and E behave under the changing light conditions. The initial condition of Q starts from 1 and
E starts approximately from 0 because it uses the final value for Q and E in the dark reaction and
it becomes the initial value in the light reaction after the light comes on. The model is initially
derived to account for dark reaction to light reaction and all the parameters used in the equations
of ODEs were tested under chlorophyll fluorescence data [2]. The aim of this study was to develop
a dynamic model of the energy flow in photosystem II under changing light conditions occurring
at a time scale of seconds to minutes [2].



Chapter 3

Three ODEs model: Steady-states

In this chapter, we begin by looking for steady states of the 3 ODEs (2.11), (2.12) and (2.13), i.e.

dc

dt
= αI(1 − c) + c(−kf − kd − kns− kp(1 − q)),

ds

dt
= λbPC c(1 − s) − λr(1 − q) s,

dq

dt
= kp(1 − q)

PC
PQ

c− γ q

where the meaning of parameters and pool values used in the equations are taken from the tables
(2.1) and (2.3).

The steady-states of the systems are given by

dc

dt
= 0,

ds

dt
= 0,

dq

dt
= 0.

Rearranging the system of steady state equations gives

c(αI + kf + kd + kns+ kp(1 − q)) − Iα = 0, (3.1)

s(λbcPC + λr(1 − q)) − λbcPC = 0, (3.2)

q(γ + ckp
PC
PQ

) − ckp(
PC
PQ

) = 0. (3.3)

This is a nonlinear system of equations.

17
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3.1 Descartes rule of signs

Descartes rule of signs is a method of determining the maximum number of positive and negative
real roots of a polynomial [8]. It says that the number of positive real zeroes of a polynomial func-
tion f(x) is the same or less than by an even numbers as the number of changes in the signs of the
coefficients [8]. It also states that number of negative real zeroes of f(x) is the same as the num-
ber of changes in sign of the coefficients of the terms of f(-x) or less than this by an even number [8].

Before we apply the Descartes rule of signs in our nonlinear ODEs, we have to write the equations
as polynomial functions. To do that, we uses the equations (3.1), (3.2) and (3.3)

c(αI + kf + kd + kns+ kp(1 − q)) − Iα = 0, (3.4)

s(λbcPC + λr(1 − q)) − λbcPC = 0, (3.5)

q(γ + ckp
PC
PQ

) − ckp(
PC
PQ

) = 0. (3.6)

Rearranging the equation (3.4) and (3.5) gives

c =
α I

(αI + kf + kd + kns+ kp(1 − q))
(3.7)

and
λbPC c(1 − s) = λr(1 − q) s. (3.8)

From equation (3.6), we again rearrange the equation for c to get

c =
γ q PQ

kp(1 − q) PC
. (3.9)

Now, we substitute c from (3.9) into (3.8) to get expression for s

λb PC γ q PQ
kp(1 − q) PC

(1 − s) = λr(1 − q)s

and rearranging the equation for s gives

s =
λb γ q PQ

λb γ q PQ + kp(1 − q)2λr
. (3.10)

Substituting the expressions s from (3.10) and c from (3.9) into (3.7) we get,

γ q PQ
kp(1 − q) PC

=
α I

(αI + kf + kd + kn
λb γ q PQ

λb γ q PQ+kp(1−q)2λr + kp(1 − q))

Multiply both the numerator and denominator by λb γ q PQ + kp(1 − q)2λr and then doing cross
multiplying gives

[(αI+kf+kd+kp(1−q))(λbγqPQ+kpλr(1−q)2)+knλbγqPQ](γqPQ) = Iα(λbγqPQ+kpλr(1−q)2)(kp(1−q)PC).
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Now, collecting powers of q and combining all parameters into single parameters for each term
gives

(q) = A q4 +B q3 + C q2 +D q + E = 0 (3.11)

where,

A = −k2pPQγλr,

B = −k2pP 2
Qγ

2λb + Ik2pPCαλr + αIkpPQγλr + kdkpPQγλr + kfkpPQγλr + 3k2pPQγλr,

C = IkpPCPQαγλb +αIP 2
Qγ

2λb + kdP
2
Qγ

2λb + kfP
2
Qγ

2λb + knP
2
Qγ

2λb + kpP
2
Qγ

2λb− 3Ik2pPCαλr−
2kdkpPQγλr − 2kfkpPQγλr − 3k2pPQγλr,

D = −IkpPCPQαγλb + 3Ik2pPCαλr + αIkpPQγλr + kdkpPQγλr + kfkpPQγλr + k2pPQγλr,

E = −Ik2pPCαλr.

Assuming all the parameters and pool values are positive and comparing the magnitude of all
parameters and pool values from table (2.2) and (2.3), then that will gives

A is Negative, B is Positive, C is Negative, D is Positive and E is Negative.

Since A, C and E are negatives, the sign of coefficients of equation (3.11) is changes to

(q) = −A q4 +B q3 − C q2 +D q − E (3.12)

Using Descartes rule of signs for positive polynomial function,

f(q) = −A q4 +B q3 − C q2 +D q − E

Total changes of sign = 4. So, it will have 4 positive maximum roots.
Other possible roots: 4 − 2 = 2 and 2 − 2 = 0.
Therefore, there will be 4 or 2 or 0 positive roots.
Similarly for negative (q) we have,

−A q4 −B q3 − C q2 −D q − E

so 0 sign of changes. It means there are no negative roots.

Now, we want to know the positive roots if q < 1. Using equations (2.5) and (2.10) gives Q = 1−q
and we can rearrange to make q = 1 − Q. We substitute q into (3.12) to get in terms of Q and
write as polynomial function

f(Q) = −A Q4−(B−4A) Q3−(6A+C−3)C Q2−(3B+D−4A+2C) Q+(B+D+C−A−E)Q0

Using the Descartes rule of signs, it gives 1 sign change. So, only one positive root of Q.
Now, for negative Q it gives,

f(−Q) = −A Q4+(B−4A) Q3−(6A+C−3)C Q2+(3B+D−4A+2C) Q+(B+D+C−A−E)Q0.
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3 change of signs = 3 maximum negative roots of Q.
Other possible roots: 3 − 2 = 1
Therefore, there will be 3 or 1 negative roots of Q.

We are interested in the number of positive steady-state roots for q in the interval 0 < q < 1. The
polynomial is a quartic which has 4 total roots but we are only interested in positive roots. From
the Descartes rule of signs, q gave 4 maximum positive roots and Q gave only 1 positive root.
Since Q = 1− q and that gives q = 1−Q. We deduce that q has only 1 positive root which is less
than 1.
Therefore, q has only 1 positive steady-state which lies between 0 and 1.

Knowing the condition of steady-state for q, we can use to get s and c. From equation 3.10 we
have

s =
λb γ q PQ

λb γ q PQ + kp(1 − q)2λr
.

In the above equation of s, if we substitute q = 0 then will get s = 0 and if q = 1 then s = 1 .
Assuming all the parameters and pool values are positive, if we substitute q lies between 0 and 1
in the equation (3.10) then s will also lies between 0 and 1.

From equation 3.9 we have

c =
γ q PQ

kp(1 − q) PC
.

If we substitute q = 0 into the above equation of (c), we will get c = 0 and q can not equal to 1.
From the table (2.2) and (2.3) we have,

magnitude of PQ ≈ magnitude of PC

and

magnitude of kp > magnitude of γ.

Depending upon the magnitude of parameters and pool values above, if we substitute q which lies
between 0 and 1 in the equation (3.9) then c will also lies between 0 and 1.

We shall seek the steady state by the Newton-Raphson method.

3.2 Newton-Raphson Method

The Newton-Raphson method is a method of approximating a root x of an equation f(x) = 0.
We take an initial guess for the root we are trying to find, and we call this initial guess x0. [7] To
implement it analytically we need a formula for each approximation in terms of the previous one,
i.e. we need xn+1 in terms of xn where xn+1 denotes the next iteration and xn denotes previous
iteration, i.e.

xn+1 = xn −
f(xn)

f ′(xn)
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Here, we used the multivariate Newton-Raphson method on our steady-state equations (3.1), (3.2)
and (3.3), which involves the Jacobian matrix

J( ~xn) =


df
dc

df
ds

df
dq

dg
dc

dg
ds

dg
dq

dh
dc

dh
ds

dh
dq

 .

Let ~xn=

cn
sn
qn

 and ~Fn=

 f(cn, sn, qn)
g(cn, sn, qn)
h(cn, sn, qn)

.

where
f(cn, sn, qn) = cn(αI + kf + kd + kn × sn + kp × (1 − qn)) − Iα

g(cn, sn, qn) = sn(λbcnPC + λr(1 − qn)) − λbcnPC

h(cn, sn, qn) = qn(γ + cnkp
PC
PQ

) − (cnkp(
PC
PQ

)

We find the partial derivatives in terms of c, s and q and Jacobian matrix is

J( ~xn) =

αI + kf + kd + knsn + kp(1 − pn) kncn −kpcn
λbPC(sn − 1) λbcnPC + λr(1 − qn) −λrsn
(kpPC(qn−1))

PQ
0 γ +

(kpPCcn)
PQ

 .

Let’s search estimates for c, s and q with initial guess

~x0 =

c0s0
q0

 =

 0.5
0.36
0.82

 .
Using the initial guess and values of parameters from tables (2.2) and (2.3) then we have

~F0 =

f(c0, s0, q0)
g(c0, s0, q0)
h(c0, s0, q0)

 =

 1.6 × 109

−8.4 × 109

−4648571426

 .

Applying the Newton-Raphson method

~xn+1 = ~xn − J−1( ~xn) ~Fn

where ~xn+1 denotes values for (c, s, q) at the next iteration and ~xn denotes previous values for
(c, s, q). Both ~xn+1 and ~xn are in vector form of [cn, sn, qn]. J−1( ~xn) is the inverse matrix of the
Jacobian. In the first iteration, we have

~x1 = ~x0 − J−1(~x) ~F0

then the process continue until it converges.

The convergence criterion used to terminate the iteration was as follows∥∥∥ ~xn+1 − ~xn
∥∥∥ ≤ TOL
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iter= 0 c = 0.000000017184656 s = 0.359999980534294 q = 0.820000006099454

iter= 1 c = 0.000000005156733 s = 0.205933723422758 q = 0.871323557731450

iter= 2 c = 0.000000001982175 s = 0.113910677804177 q = 0.911406711094306

iter= 3 c = 0.000000001293512 s = 0.084350855341095 q = 0.943951007104135

iter= 4 c = 0.000000001227552 s = 0.083650493708679 q = 0.957849278503740

iter= 5 c = 0.000000001224451 s = 0.084358982860184 q = 0.958463056124308

iter= 6 c = 0.000000001224423 s = 0.084367992393470 q = 0.958463625458527

iter= 7 c = 0.000000001224423 s = 0.084367992564821 q = 0.958463625475680

Table 3.1: Steady-states of 3 ODEs for c, s and q.

where TOL is a very small positive constant. We chose TOL = 10−9 and Newton Raphson
method was applied until a steady state was achieved. We present numerical results which are
summarised in Table 3.1.
Table 3.1 shows the steady-states of c, s and q using Newton-Raphson method which are pos-
itive and between 0 and 1. Seven iterations were required to converge within the tolerance to
get steady-states for c, s and q up to 7 significant figure. We see that c converges very quickly
compared to s and q, showing that the initial guess is a good one.

Descartes rule of signs shows that the root obtained by Newton-Raphson method is the only one
positive root which lies between 0 and 1. Now, we are interested to know are these steady-states
values stable in the system of 3 ODEs?

In the next section we look at the stability of the steady states of 3 ODEs.

3.3 Stability of steady states

Using the equations (2.11), (2.12) and (2.13), we have system of 3 nonlinear ODEs which are
given by

dc

dt
= αI(1 − c) + c(−kf − kd − kns− kp(1 − q)). (3.13)

ds

dt
= λbPC c(1 − s) − λr(1 − q) s. (3.14)

dq

dt
= kp(1 − q)

PC
PQ

c− γ q. (3.15)

We have already determined the steady state values of c, s, q which we call c, s and q. We now
proceed to explore the stability of this solution by considering the perturbation

c = c+ δ, s = s+ σ, q = q + β (3.16)

where δ, σ and β are small quantities termed perturbations of the steady-states c, s and q respec-
tively.
Now we substitute 3.16) into (3.13), (3.14) and (3.15) to get,

dc

dt
+
dδ

dt
= αI + (c+ δ)(−αI − kf − kd − kn(s+ σ) − kp(1 − (q + β)))
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ds

dt
+
dσ

dt
= λbPC(c+ δ)(1 − (s+ σ)) − λr(1 − (q + β))(s+ σ)

dq

dt
+
dβ

dt
= kp(1 − (q + β))

PC
PQ

(c+ δ) − γ(q + β)

and keeping only first powers of δ, σ and β gives:

dδ

dt
= (−αI − kf − kd − kns− kp(1 − q)) δ − knc σ + kpc β. (3.17)

dσ

dt
= (λbPC − λbPCs) δ + (λr(1 − q) − λbPCc) σ + λrs β. (3.18)

dβ

dt
= (kp

PC
PQ

− kp
PC
PQ

q) δ − PC
PQ

ckp β. (3.19)

Writing the equations (3.17), (3.18) and (3.19) in matrix form we get,

d
dt

δσ
β

 =

-αI − kf − kd − kns− kp(1 − q) -knc kpc

λbPC − λbPCs λr(1 − q − λbPCc λrs

kp
PC
PQ

− kp
PC
PQ
q 0 - ckp

PC
PQ


δσ
β


By substituting the numerical values of the steady-states of c, s and q, we get the eigenvalues of
the matrix

− 1.124 × 109, −48.578 + 23.653i, −48.578 − 23.653i

We are only interested in real parts which are all negative, hence the steady-state is stable.



Chapter 4

ODE solver for 3 ODEs model

Before we use an ODE solver to solve the systems of 3 nonlinear ODEs, we want to know the
stiffness of the system, which is presented in the following section.

4.1 Stiffness of 3 ODEs

We need to find the condition number of Jacobian at the initial time to know the initial stiffness
of the system. The 3 nonlinear ODEs are

dc

dt
= αI(1 − c) + c(−kf − kd − kns− kp(1 − q)).

ds

dt
= λbPC c(1 − s) − λr(1 − q) s.

dq

dt
= kp(1 − q)

PC
PQ

c− γ q.

Setting
dc

dt
= f(c, s, q),

ds

dt
= g(c, s, q),

dg

dt
= h(c, s, q)

we get
f(c, s, q) = αI(1 − c) + c(−kf − kd − kns− kp(1 − q)).

g(c, s, q) = λbPC c(1 − s) − λr(1 − q) s.

h(c, s, q) = kp(1 − q)
PC
PQ

c− γ q.

We now get partial derivatives of f(c, s, q), g(c, sq) and h(c, s, q) in terms of c, s and q and obtain
the Jacobian matrix form :

J =


df
dc

df
ds

df
dq

dg
dc

dg
ds

dg
dq

dh
dc

dh
ds

dh
dq

 .

J =

−αI − kf − kd − kns− kp(1 − q) −knc kpc
λbPC(1 − s) λbPC c− λr(1 − q) λrs

kp(1 − q)PCPQ 0 −kp(1 − q)PCPQ c− γ

 .

24



CHAPTER 4. ODE SOLVER FOR 3 ODES MODEL 25

Substituting the initial conditions of c = 0.0, s = 0.02 and q = 0.0 at time = 0 and the numerical
values of parameters and pool values from table (2.2) and (2.3) into Jacobian matrix (J) we get

cond(J) ≈ 1012

where cond(J) is max|λJ |
min|λJ | .

Hence the system of 3 ODEs is extremely stiff.

In the next section, we used an integration package to get the results for the system of 3 nonlinear
ODEs.

4.2 Results of 3 ODEs solved using ode23s

This section is about a numerical solution of the system of 3 ODEs solved by using the stiff ODE
solver ode23s of MATLAB. Before using the solver, we discuss briefly about ode23s and its useful
features for stiff systems.

The ODE solver ode23s is based on the Runge-Kutta scheme 2nd and 3rd order and the ‘s’ sig-
nifies that it is stiff solver [9] [14]. First order ODEs are solved numerically using many different
integration routines. Among the most popular methods are Runge-Kutta methods. Of course,
very few nonlinear systems can be solved explicitly and basic methods to solve them begin with
the simple Explicit Euler scheme, but Runge-Kutta schemes are more stable and accurate than
the Euler method [6]. Another ODE solver ode45 [11] [14](based on higher order explicit Runge-
Kutta schemes) is also efficient but may become unstable with stiff systems. Therefore, ode23s
is used for our stiff problem which can be made more efficient by using crude tolerance to solve
the stiff systems [10] [14]. The ode23s solver chooses efficient time steps to get better solutions.
Hence, it is well adapted for the stiff problem.

Now, we used ode23s to solve the systems of 3 ODEs to see the behaviour of c by choosing different
tolerance to determine the behaviour of the solution at small time with the initial conditions
c = 0.0, s = 0.02 and q = 0.0 .
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Figure 4.1: System of 3 ODEs for c with a final time =10−8 and tolerance= 10−9.

Figure 4.2: System of 3 ODEs for c with a final time =10−8 and tolerance= 10−10.
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Figure 4.3: System of 3 ODEs for c with a final time =10−8 and tolerance= 10−11.

Figures (4.1), (4.2) and (4.3) represent the initial state behaviour of c up to the very small time
=1 × 10−8 with different tolerances. We have used RelTol =10−11 and AbsTol=10−11. RelTol is
the relative accuracy tolerance, a measure of the error relative to the size of each solution com-
ponent [9]. AbsTol is a scalar or vector of the absolute error tolerances determine the accuracy
when the solution approaches zero [9].

Comparing the three figures (4.1), (4.2) and (4.3), there is some change in behaviour of c and as
tolerance gets to 10−11 it gives a much smoother graph which is the best one. We plot the number
of time steps it uses for the figure (4.3).

Figure 4.4: Number of time step used for initial behaviour of c.

In figure 4.4 we plot the time against the number of time steps, showing that the time intervals
start very small and then increase to a fixed interval.
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We have seen the short term behaviour of c which can be changed by using different tolerances.
The smaller the tolerance the better the plots of c since the 3 ODEs model is a very stiff system.
Now, we want to find the steady solution of 3 ODEs for c, s and q by using the best tolerance
= 10−11 and final time =0.25.

Figure 4.5: System of 3 ODEs for c, s and q with a final time =0.25 and tolerance= 10−11.
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Figures 4.1 − 4.3 shows that around t=1 × 10−8 the graph of c becomes almost constant. Figure
(4.4) shows that c progresses rapidly whereas s and q show only small changes. Around time
=0.2, the graphs of c, s and q starts to becomes steady solutions. Their final steady-states values
of c = 1.22 × 10−9, s = 0.084 and q = 0.96 are same as the steady-states of c, s and q (see table
3.1) which were calculated using the Newton-Raphson method.

Now, since c changes very quickly for very small times the system of 3 ODEs can be reduced to
a system of 2 ODEs, as described in the model [1].

In next chapter, we will find the steady state and stability of the 2 ODEs system and we expect
them to be same as 3 ODEs. And we also look at the stiffness of 2 ODEs system which is expected
to be less stiff than that of the 3 ODEs.



Chapter 5

Two ODEs model

5.1 Steady states and stability

In this chapter, we begin by reducing the systems of 3 ODEs to a systems of 2 ODEs. We have
seen that equation (2.11) presents a very fast process and is therefore can be set to zero after a
short time. Rearranging the equation with dc

dt = 0 for c gives

c =
α I

(αI + kf + kd + kns+ kp(1 − q))
. (5.1)

The two remaining equations of the 3 ODEs system are the same as equations (2.12) and (2.13)
and they are

ds

dt
= λbPC c(1 − s) − λr(1 − q) s (5.2)

dq

dt
= kp(1 − q)

PC
PQ

c− γ q (5.3)

which do not progress so rapidly. We substitute c from (5.1) into above (5.2) and (5.3) to get

ds

dt
=

αIλbPC (1 − s)

(αI + kf + kd + kns+ kp(1 − q))
− λr(1 − q) s (5.4)

dq

dt
=

kp(1 − q)PCαI

PQ(αI + kf + kd + kns+ kp(1 − q))
− γ q. (5.5)

Now, we have system of 2 ODEs in terms of s and q.
The steady-states of the system of 2 ODEs are given by

ds

dt
= 0,

dq

dt
= 0.

Rearranging the states state equations (5.4) and (5.5) gives

αIλbPC (1 − s) − λr(1 − q) s(αI + kf + kd + kns+ kp(1 − q)) = 0 (5.6)

kp(1 − q)PCαI − γ qPQ(αI + kf + kd + kns+ kp(1 − q)) = 0. (5.7)

30
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Similarly, as in the system of 3 ODEs, the Descartes rule of signs tell us there is a unique steady
states of c, s and q which is positive and lies between 0 and 1 for the system of 2 ODEs.

We used the Newton-Raphson method in equations (5.6) and (5.7), which involves the Jacobian
matrix

J( ~xn) =

(
df
ds

df
dq

dg
ds

dg
dq

)
.

Let ~xn=

[
sn
qn

]
and Fn=

(
f(sn, qn)
g(sn, qn)

)
.

where,
f(sn, qn) = αIλbPC (1 − s) − λr(1 − q) s(αI + kf + kd + kns+ kp(1 − q))

g(sn, qn) = kp(1 − q)PCαI − γ qPQ(αI + kf + kd + kns+ kp(1 − q))

We find the partial derivatives in terms of s and q and Jacobian matrix gives

J( ~xn) =
(
−αIλbPC−λr(1−q)(αI+kf+kd+2snkn+kp(1−qn)) λrsn(αI+kf+kd+knsn+2kp)−2qnλrsnkp

−γqnPQkn −kpPCαI−γPQ(αI+kf+kd+knsn+kp(1−2qn))

)
.

Using the initial guess

~x0 =

[
s0
q0

]
=

[
0.36
0.82

]
.

and applying the Newton-Raphson method

xn+1 = xn − J−1( ~xn)Fn

we find the steady state of s and q until it convergence criterion as follows∥∥xn+1 − xn
∥∥ ≤ TOL

where xn+1 denotes values for (s, q) at the next iterations and xn denotes previous values for
(s, q). Both xn+1 and xn are in vector form of [sn, qn]. J−1( ~xn) is the inverse matrix of Jacobian.
We chose TOL = 10−9 and the steady-stated were achieved which is presented in table (5.1)

iter= 0 s = 0.313468877469675 q = 0.927582881509019

iter= 1 s = 0.181643421532470 q = 0.946035293381273

iter= 2 s = 0.110221215678293 q = 0.955124453638258

iter= 3 s = 0.086899725790324 q = 0.958134328718685

iter= 4 s = 0.084395758589826 q = 0.958460005149877

iter= 5 s = 0.084367996112138 q = 0.958463625072840

iter= 6 s = 0.084367992616843 q = 0.958463625413674

iter= 7 s = 0.084367992564843 q = 0.958463625475684

Table 5.1: Steady-states of 2 ODEs for s and q.

Table (5.1) shows the positive steady-state of s and q and we substitute the values of s and q
from the final iteration into equation (5.1)

c =
α I

(αI + kf + kd + kns+ kp(1 − q))
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to get c = 0.000000001224403. We have the same steady-states of c, s and q as in the 3 ODEs
and also Descartes rule of sign already proves that these steady states have only one positive root
which lies between 0 and 1.

Now, we consider the stability of the steady state solutions. We already knew about the equation
(2.15) progressing very rapidly and the system of 3 equations can be reduced into system of 2
equations. From equations (5.4) and (5.5) we have the systems of 2 ODEs

ds

dt
=

αIλbPC (1 − s)

(αI + kf + kd + kns+ kp(1 − q))
− λr(1 − q) s (5.8)

dq

dt
=

kp(1 − q)PCαI

PQ(αI + kf + kd + kns+ kp(1 − q))
− γ q. (5.9)

To find stability we write
s = s+ σ, q = q + β (5.10)

where s and q are the steady states of s and q respectively and then substitute (5.10) into (5.8)
and (5.9) just keeping first powers of σ and β only gives

dσ

dt
= (λr(q − 1) σ + λrs β. (5.11)

dβ

dt
= γβ. (5.12)

Writing equations (5.11) and (5.12) in matrix form[
λr(q − 1) λrs

0 γ

] [
σ
β

]
= 0

(λr(q − 1) − λ)(−γ − λ) = 0

and the eigenvalues are given by λ1 = λr(q − 1) and λ2 = −γ.

Since, steady-state of q is less than 1 which we already verified in the results of Newton Raphson
method and gamma is positive parameter from table (2.2).

So, we get λ1,2 < 0. Therefore, the steady state is stable.

We found out the stability of steady-state is stable for both systems of 2 and 3 nonlinear ODEs.
For system of 2 nonlinear ODEs, stability condition was verified without substituting the numer-
ical values to identify the eigenvalues.

In the next section, we will find about the stiffness of system of 2 ODEs by finding the condition
number of Jacobian at initial time.

5.2 Stiffness of 2 ODEs and use of integration packages

Considering the system of 2 nonlinear ODEs we have

ds

dt
=

αIλbPC(1 − s)

(αI + kf + kd + kns+ kp(1 − q))
− λr(1 − q) s,
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dq

dt
=

kp(1 − q)PCαI

PQ(αI + kf + kd + kns+ kp(1 − q))
− γ q.

Let ds
dt = g(s, q), dgdt = h(s, q) and we write as

g(s, q) =
αIλbPC (1 − s)

(αI + kf + kd + kns+ kp(1 − q))
− λr(1 − q) s,

h(s, q) =
kp(1 − q)PCαI

PQ(αI + kf + kd + kns+ kp(1 − q))
− γ q.

Now writing the partial derivatives in terms of s and q into Jacobian matrix form

J =

(
dg
ds

dg
dq

dh
ds

dh
dq

)
.

J =

 −IλbαPC
(αI+kf+kd+kns+kp(1−q))

− IλbαPC (1−s)kn
(αI+kf+kd+kns+kp(1−q))2

−λr(1−q)
IλbαPC (1−s)kp

(αI+kf+kd+kn s+kp(1−q))2
+λrs

−Ikp(1−q)PCαkn
(PQ(αI+kf+kd+kns+kp(1−q))2

−IkpPCαPQ(αI+kf+kd+kns+kp(1−q))+Ik
2
p(1−q)PCα

P2
Q

(αI+kf+kd+kns+kp(1−q))2
−γ


Substituting the numerical values of parameters and pool values from table (2.2) and (2.3) into
Jacobian matrix (J) with the initial conditions of s = 0.02 and q = 0.0 at time = 0, we get

cond(J) = 54.342

From 3 ODEs we have cond(J) ≈ 1012 and cond(J) ≈ 54 from 2 ODEs. Thus, the system of 3
ODEs is more stiff than the system of 2 ODEs.

After finding the condition number of the Jacobian for the system of 2 ODEs, we still need to use
a stiff solver ode23s to solve the system of 2 ODEs even though it is less stiff compared to 3 ODEs.

Now, we use the ode23s to solve the systems of 2 nonlinear ODEs. For the systems of 2 ODEs,
we should only plot the graphs of s and q but by substituting s and q into

c =
α I

(αI + kf + kd + kns+ kp(1 − q))
.

we plot c to see the behaviour of c and also to find steady state value of c.

We have used the initial conditions s = 0.02 and q = 0.0 and can choose tolerance =10−4 because
it is less stiff than 3 ODEs and get the following graph



CHAPTER 5. TWO ODES MODEL 34

Figure 5.1: System of 2 ODEs for s and q and then plotting c using s and q with using a final
time =0.6 and tolerance= 10−4.

In the figure (5.1) shows that c is not progresses rapidly as in the figure (4.5) of 3 ODEs. Here,
c initially starts from 0.25 × 10−9 as using initial values of s and q. The final steady state values
of c, s and q are all same as in figure (4.1) of 3 ODEs which also matches the steady states of c,
s and q calculated by using the Newton-Raphson method.

Now, unlike system of 3 ODEs c does not change very quickly for small times. Therefore, the
behaviour of c at very small time up to 10−8 will not give any useful information as the plot of c
will give a steady line going diagonally up. So we decided to plot the graphs of s instead using
final time =0.01 with tolerance =10−4 to check their initial behaviour as this could be reason for
2 ODEs being a stiff system.
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Figure (5.2) presents the initial state of figure (5.1) for s which was calculated using a small time
=0.01 and tolerance =10−4. The figure tells us that, it does not look like the behaviour of s is
rapidly changing and we conclude that it is still slowly progressing just like in the system of 3
ODEs.

Figure 5.2: System of 2 ODEs for s with a final time =0.01 and tolerance= 10−4.

In the next section, we compared all the results between systems of 3 and 2 ODEs.

5.3 Comparison of results between 3 ODEs and 2 ODEs

Comparing both systems of ODEs, we have got the same steady state solution for c, s and q which
are positive and lie between 0 and 1. In addition to that, both systems of ODEs suggest that
their steady states are stable. By finding the condition numbers of Jacobian for both systems, 3
ODEs is more stiff than 2 ODEs but 2 ODEs is still stiff. Therefore, we used stiff solver ode23s
to solve both systems of ODEs. After using ode23s for both systems, we got the same steady
solutions for c, s and q using a final time =0.25 and the behaviour of s and q was the same for both.

Now, we are interested in comparing with the figures of 3 and 2 ODEs for c only since s and
q process same behaviour for both systems and also starts with same initial condition where as
c have different initial conditions. We overplot the graphs of 2 and 3 ODEs for c and we got
following graph
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Figure 5.3: Overplots of 3 and 2 ODEs for c using a final time =0.2 but different tolerance 10−11

(3 ODEs) and 10−4 (2 ODEs).

In the above figure (5.3), the system of 3 for c starts initially from 0 whereas 2 ODEs for c starts
from 0.25×10−9. It shows that 3 ODEs for c progresses very rapidly at very small time and starts
to behave the same as 2 ODEs from time = 0.25 × 10−9. Although c for 3 ODEs is a line, it is
really a large number of individuals values. The c for 2 ODEs shows individual values but in the
case of the c for 3 ODEs there are too many values to show individually.

The system of 2 ODEs has a special advantage since it has 2 ODEs which can be solved by using
small tolerance =10−4 rather than a very much smaller tolerance =10−11. Furthermore, asymp-
totic expansion of 2 ODEs is not necessary require to look at behaviour of c at the initial state.

In next chapter, we look at the asymptotic behaviour of 3 ODEs at small times.



Chapter 6

Asymptotic analysis

We have already dealt with the steady-states, stability and stiffness of the systems of 3 and 2
ODEs in chapter 3, chapter 4 and chapter 5 respectively. Now, we carry out an asymptotic
expansion of 3 ODEs and then use ode solver odes23s to compare with the numerical results
from the system of 3 ODEs which was found in chapter 4. We start with a brief introduction to
asymptotic expansions and then approximate the expansions of 3 ODEs close to the initial state.

6.1 Introduction

Many problems do not have exact analytical solutions, often as a result of nonlinearities in the
systems [12]. Numerical solution of the equations is one option to represent approximate solutions.
However if there are large or small parameters present, the use of perturbation or asymptotic
methods can be useful to understand the solution properties [13]. It may be possible to obtain
solutions in analytical form, or to reduce the equations to simpler form which can can be solved
more easily.
The asymptotic expansion technique is a method to get an approximate solution using asymptotic
series. The asymptotic series provides a useful local approximation to the original problem.
Suppose we have a differential equation for u(x; ε) which contain a small parameter ε. We want
to find the solution u(x; ε). In general, we cannot solve the equation exactly. However, supposing
we can solve it in the case ε = 0, a perturbation method may prove useful in obtaining a solution
for small values of ε [12]. Thus, we seek a formal solution in the form of a power series in ε

u(x; ε) = u0(x) + εu1(x) + ε2u2(x) + ......

Here u0(x) is the leading or dominating term, which is the solution of the reduced problem when
ε = 0 [12]. The series is substituted into the differential equation and boundary condition and
the coefficients of like powers of ε are equated [12]. This approach will be valid for all sufficiently
small ε, since powers of ε are linearly independent.

In the next section, we apply the method of asymptotic expansions to the system of 3 non-linear
ODEs.
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6.2 Method of solution and comparison of results with normal 3
ODEs

In this section, we are going to apply the method of asymptotic expansions to the system of 3
non-linear ODEs. The system of 3 nonlinear ODES from equations (3.8), (3.5) and (3.6) is

dc

dt
= αI(1 − c) + c(−kf − kd − kns− kp(1 − q)),

ds

dt
= λbPC c(1 − s) − λr(1 − q) s,

dq

dt
= kp(1 − q)

PC
PQ

c− γ q.

Before applying the asymptotic expansion to the above differential equations, we rescale some
larger parameters of equations by introducing the very small factor ε.
Setting

ε kf = KF

ε kd = KD

ε kn = KN

ε kp = KP

ελb = ΛB

and substituting the rescaled parameters into the differential equations we get

dc

dt
= αI(1 − c) +

c

ε
(−KF −KD −KNs−KP (1 − q)),

ds

dt
=

1

ε
ΛBPC c(1 − s) − λr(1 − q) s,

dq

dt
=

1

ε
KP (1 − q)

PC
PQ

c− γ q.

where all the parameters are of order 1. Also scaling the time t = ετ , we get

1

ε

dc

dτ
= αI(1 − c) +

c

ε
(−KF −KD −KNs−KP (1 − q)),

1

ε

ds

dτ
=

1

ε
ΛBPC c(1 − s) − λr(1 − q) s,

1

ε

dq

dτ
=

1

ε
KP (1 − q)

PC
PQ

c− γ q.

where are the terms are of order of 1. Multiplying both sides by ε, the system of 3 ODEs becomes

dc

dτ
= εαI(1 − c) + c(−KF −KD −KNs−KP (1 − q)),

ds

dτ
= ΛBPC c(1 − s) − ελr(1 − q) s,
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dq

dτ
= KP (1 − q)

PC
PQ

c− εγ q.

Now we have the expansion terms

c = c0 + εc1 + ε2c2 + .........

s = s0 + εs1 + ε2s2 + .........

q = q0 + εq1 + ε2q2 + .........

where c0, s0 and q0 are first terms, c1, s1 and q1 are second terms and so on for the asymptotic
expansion and substitute theses into the systems of 3 ODEs to get

dc0
dτ

+ε
dc1
dτ

+ε2
dc2
dτ

= εαI(1−(c0+εc1+ε2c2))+(c0+εc1+ε2c2)(−KF−KD−KN (s0+εs1+ε2s2)−KP (1−(q0+εq1+ε2q2))),

ds0
dτ

+ε
ds1
dτ

+ε2
ds2
dτ

= ΛBPC(c0+εc1+ε
2c2)(1−(s0+εs1+ε

2s2))−ελr(1−(q0+εq1+ε
2q2))(s0+εs1+ε

2s2),

dq0
dτ

+ ε
dq1
dτ

+ ε2
dq2
dτ

= KP (1 − (q0 + εq1 + ε2q2))
PC
PQ

(c0 + εc1 + ε2c2) − εγ (q0 + εq1 + ε2q2)

Now, compare the coefficients by equating the powers of ε terms.

The ε0 term gives
dc0
dτ

= c0(−KF −KD −KNs0 −KP (1 − q0)), (6.1)

ds0
dτ

= ΛBPC c0(1 − s0), (6.2)

dq0
dτ

=
PC
PQ

KP (1 − q0) c0. (6.3)

The ε1 term gives

dc1
dτ

= αI(1 − c0) + c1(−KF −KD −KNs0 −KP (1 − q0)) + c0(−KNs1 +KP q1),

ds1
dτ

= ΛBPC(c1(1 − s0) − c0s1) − λr(1 − q0)s0,

dq1
dτ

=
PC
PQ

KP ((1 − q0)c1 − c0q1) − γ q0.

The ε2 term gives

dc2
dτ

= −αIc1 + c2(−KF −KD −KNs0 −KP (1 − q0)) −KN (c1s1 + c0s2) +KP (q1c1 + q2c0),

ds2
dτ

= ΛBPC(c2(1 − s0) − (c1s1 + c0s2)) − λr(q1s0 − s1(1 − q0),

dq2
dτ

=
PC
PQ

KP ((1 − q0)c2 − (q1c1 + c0q2)) − γ q1.

With initial conditions
c0(0) = c(0) = 0.0
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s0(0) = s(0) = 0.02

q0(0) = q(0) = 0.0

and all other terms for c, s and q are 0 at t=0 after first terms

ci(0) = 0, i > 0

si(0) = 0, i > 0

qi(0) = 0, i > 0.

Doing the integration of equations (6.1), (6.2) and (6.3) and using the initial conditions it gives
c0 = q0 = 0 and s0 = 0.02 which shows that the first terms of asymptotic expansion.

Now, using the ode solver ode23s with choosing ε = 10−9 in the program and substituting the
values of parameters and pool values from tables (2.2) and (2.3), we generate the results for second
terms (c1, s1, q1) and third terms (c2, s2, q2) of the asymptotic expansions.
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Figure (6.1) shows that the second terms (c1, s1, q1) of asymptotic expansion are non-zero terms
which mean the expansion starts from second terms since they are bigger than the first terms (c0,
s0, q0). We also look at the third terms (c2, s2, q2) of asymptotic expansion to check whether the
second terms of expansion are dominate terms or not.

Figure 6.1: 3 Asymptotic Expansion of ODEs (c1, s1 and q1) using tolerance= 10−11 and final
time =2 × 10−9.
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Figure 6.2: 3 Asymptotic Expansion of ODEs (c2, s2 and q2) using tolerance= 10−11 and final
time =2 × 10−9.

Figure (6.2) shows that the third terms (c2, s2 and q2) of asymptotic expansion are non zero terms
but are smaller than the second terms of the expansion. Hence, second terms (c1, s1 and q1) are
dominant terms in the expansion.

After the asymptotic expansion of third terms, we only keep up to second power of ε and ignoring
after the third terms which mean expansion of c, s and q equals to

expansion of c = c0 + εc1 + ε2c2,

expansion of s = s0 + εs1 + ε2s2,

expansion of q = q0 + εq1 + ε2q2.

Now, we compared the asymptotic expansion of c, s and q with the normal ODEs of c, s and q
by over plotting both of them together at different time which are presented in next page
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Figure (6.3) shows this is good approximation of asymptotic for getting the 3 normal ODEs and
asymptotic expansion of c, s and q same at very small time = 2 × 10−10. Now, we are interested
to find when does theses plots start to separate when time increases?

Figure 6.3: 3 Asymptotic Expansion and 3 normal ODEs of c, s and q using a final time =2×10−10

and tolerance= 10−11.
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Figure (6.4) shows that separation of asymptotic expansion and 3 normal ODEs when time in-
creases at t = 2 × 10−9.

Figure 6.4: 3 Asymptotic Expansion and 3 normal ODEs of c, s and q using a final time =2×10−9

and tol= 10−11.

In the next chapter we discuss the sensitivity of three unknown parameters of 3 nonlinear ODEs.



Chapter 7

Sensitivity to the unknown
parameters for 3 ODEs

In the paper [1], they have no prior knowledge about 3 of the parameters which are γ, λr and λb
which are involved in the system of nonlinear ODEs. We have therefore done a sensitivity analysis
to see any significant difference in the solution of the nonlinear equations of 3 ODEs systems for c,
s and q when the parameters are varied. We have changed the values of the 3 unknown parame-
ters one at a time and plotted the results of the perturbed solutions with actual solutiions together.

Figure 7.1: Change of γ for c, s and q in 3 ODEs.
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Figure (7.1) shows the effect of perturbing initial values of γ by a small amount, as seen in the
graphs, where the middle graph is the solution for the unperturbed values of γ, top and bottom
are perturbed values. The changes for γ make very little significant differences for q and c compare
to s.

Figure 7.2: Change of λb for c, s and q in 3 ODEs.

Figure (7.2) shows the effect of perturbing λb by a small amount as seen in the graphs, where
the middle graph is the solution for the unperturbed values of λb, top and bottom are perturbed
values. The changes in λb give almost no significant differences for q and very little difference for
c compare to s.
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Figure 7.3: Change of λr for c, s and q in 3 ODEs.

Figure (7.3) shows the effect of perturbing λr by a small amount as seen in the graphs where
the middle graph is the solution for the unperturbed values of λr, top and bottom are perturbed
values. The changes i λr give no significant differences for q and less significant differences for c
compared to s.

Now, from figure (7.1) with the change of γ for c, s and q, we compare between the final steady
states values of perturbed and actual values and it suggest that perturbed values for γ seem
to have very small effects on the actual value of γ for c and q with an error of 0.02%. It seems
to have little significant differences of perturbed and actual values for s with an error of around 4%.

From figure (7.2) with the change of λb for c, s and q, we compare the final steady solutions of
perturbed and actual values for λb. The perturbed values of λb does not have any effects on the
actual value of λb for q and therefore no any error for q. It seems to have very little significant
differences for c with an error of 0.05% and for s it has an error of 0.4%.

From figure (7.3) with the change of λr for c, s and q, it suggests that perturbed values for λr do
not have any effects on the actual value of q. And for c it has a tiny effect with an error of 0.01%.
There is little differences between perturbed and actual values for s with an error of around 0.03%.

Overall, there are some small significances difference for c, q and mainly for s by changing the
unknown parameters of γ, λr and λb one at a time but seems to be smaller errors in total between
the actual and perturbed values of the parameters. Evaluating the errors of all these parameters
it suggests that, the actual values used in the paper [2] for the γ = 2.74, λr = 835 and λb = 0.0087
seems reasonale which are not sensitive when calculating the variables.



Chapter 8

Comparison of results between 3
ODEs and experiment from [1]

Figure 8.1: Single Model run for 3 ODEs using Euler Explicit solver with initial conditions and
constant irradiance taken from [1].
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Figure 8.2: System of 3 ODEs for ChlaON , E and Q solved by ode23s.

By comparing the figures (8.1) of 3 ODEs solved by ode23s with the figure (8.2) of previous
result of model [1], we expect Euler Scheme to give same final steady state solutions of chlaON ,
E and Q as it is solved from the ode23s. The values of chlaON , E and Q are still differences
between these two methods although Euler Scheme has not reached the final steady state solutions.

Now, with these comparisons between figures (8.1) and (8.2), we come to the conclusion of our
study where we discuss the problem of solving systems of 3 nonlinear ODEs by using Explicit
Euler scheme and relate it to our solution.



Chapter 9

Conclusion and future work

In the model [1], the system of 3 nonlinear ODEs was solved by the Explicit Euler method. Here,
we address the problem of solving the system numerically by a stiff solver. First we showed that
the system has a unique stable steady state. Then we determined the stiffness and used a stiff
solver ode23s from MATLAB. The system of 3 ODEs can be reduced to system of 2 ODEs. We
also clarified about the unknown parameters that have been used in [1] to solve the system of
3 ODEs by doing sensitivity perturbations and comparing the significance differences between
actual and perturbed values of unknown parameters. We now summarize the results we have
found and discuss some ideas for further work.

9.1 Summary of the results

The results of this research are particularly interesting in the application to this system of or-
dinary differential equations. First we non-dimensionalised the system and worked with the
non-dimensionalised variables c, s and q.

In the third chapter, from the Descartes rule of signs we showed that there is only one positive
steady-states for c, s and q which lies between 0 and 1. We used the Newton-Raphson method to
find the unique steady-state of 3 ODEs system and found the stability of the steady-state which
proved steady state is stable. This shows that the steady state we found using Newton-Raphson
method is ‘correct’.

In chapter 4, by finding the condition number of the Jacobian for the 3 ODEs we found out that
the system of 3 ODEs is an extremely stiff system. So, we used the stiff solver ode23s from MAT-
LAB to solve the system of 3 ODEs and manipulated the tolerance to get good results for the
components c, s and q. Since c was changing very quickly at first, we looked at the behaviour of c
using the final time =10−8 and choosing tolerance =10−11 to get a smooth graph of c which showed
how c was behaving initially. The final steady solutions of 3 ODEs for c, s and q are almost exactly
the same as the steady states of c, s and q which were found by using the Newton-Raphson method.

In chapter 5, we assumed that dc
dt was zero after a small time and reduced the system of 3 ODEs

to 2 ODEs and then applied the same methods to find the steady-state and stability of the system
of 2 ODEs and the steady state results obtained for 2 ODEs were the same as the system of 3
ODEs. However, the system of 2 ODEs is less stiff compared to that of the 3 ODEs. Then, we
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used the program ode23s to solve the system of 2 ODEs and got the same results for s and q. In
the system of 2 ODEs the behaviour of c was progressing less quickly as than in 3 ODEs and the
starting point of initial condition was different. From these results, we can be confident enough
to use the 2 ODEs rather than 3 ODEs to get a good solution of the system after a short time.
The system of 2 ODEs does not require us to deal with the rapidly changing behaviour of c at
the initial time which was causing the system of 3 ODEs to be extra stiff.

Descartes rule of signs shows that the solutions were unique and both methods Newton Raphson
method and ode23s stiff solver gave the same steady-state solution. With these results we have
found that both methods are successful methods to get correct numerical solutions for solving the
nonlinear systems of ODEs after a short time.

We have also done an asymptotic expansion of the 3 ODEs system in chapter 6 to see the detailed
behaviour of the system close to the initial state. We approached the asymptotic expansion by
spotting the dominant terms and scaling the larger parameters to get a good expansion. Then
using the ode solver ode23s by choosing a fine tolerance 10−11, we compared the results of the
asymptotic expansions with system of 3 ODEs. We compared them and they compared well be-
cause we managed to find asymptotic expansion of 3 ODEs and normal 3 ODEs equal at the very
small time = 10−10 and as time increase around t=10−9 we got their separation point which in-
dicates good approximation of asymptotic expansion. This also shows that asymptotic expansion
of 3 ODEs was successfully calculated at the initial state of the system.

In chapter 7, we did sensitivity to unknown parameters of ODEs and compared the perturbed
values and actual values of parameters, it does not have any big significances difference between
perturbed values and actual values of γ, λb and λr for c, s and q. Hence, there is little effect on
the system of 3 ODEs and we assume that the values they have used for the γ, λb and λr in the
model [1] are adequate.

In chapter 8, we compared the results of the system of 3 ODEs with the results of model [1]. From
these comparison, the model [1] and system 3 ODEs solved by ode23s, gave different solutions
and hence we conclude that there are definitely errors in the results of the model [1] which was
solved by using the Explicit Euler scheme, because Euler method gives less accurate solutions,
particularly for stiff systems.

The goals of the dissertation were

• an investigation of steady-state, stability and stiffness of systems of 3 and 2 ODEs,

• to generalize known results of 2 and 3 ODEs and compare between them,

• to study the problem of the asymptotic behaviour of solutions initially,

• to find the sensitivity to unknown parameters of 3 ODEs

• to compare with experiment of the model [1].

In this dissertation, we have looked mainly at a model of photosystem II and tried with an ana-
lytical way like Descartes rule of signs to find the steady state of the system of non-linear ODEs.
We have demonstrated that the MATLAB ode solver ode23s is a very powerful technique to solve
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non-linear system of ODEs numerically and particularly for the stiff problems. Therefore, ode23s
were required for these stiff problems to get efficient solution while Explicit Euler method will
not able to provide accurate solutions. Though the nonlinear differential equations can be solved
initially by using various numerical schemes, asymptotic expansion techniques provide an aware-
ness of the solution before one computes the numerical solution. We also looked at sensitivity to
unknown parameters of 3 ODEs to eliminate an error for the unknown parameters.

Overall, the dissertation has successfully presented numerical results for this system of nonlinear
ODEs. The steady-state results calculated from Newton-Raphson method and results from the
dynamic approached calculated from ode23s gave the same solutions which is satisfactory point
for the dissertation. The stability condition suggests that the system of ODEs is stable which is
also satisfactory for the dissertation.

Comparing the results of model [1] run by a dynamic approach using Explicit Euler scheme and our
dynamic approach run by stiff solver odes23s, all the explicit schemes suffer from a limitation of
the time step for the reasons of instability. Since the previous work was done under light changing
conditions occurring at a time scale of few seconds [1], it is very important to understand the
concepts of short time behavior of system at the initial state, since it is a stiff systems of ODEs. In
addition, from the background of study [2] they have compared the analysis of dynamic approach
against steady state approach and have chosen dynamic approach as better. From our research,
using the dynamic approach we can see the results of initial behaviour of the system before we
get the solutions after a short time.

9.2 Further work

The ideas for extending the work in this project now can be done by using 2 ODEs model to solve
the systems. In chapter 6 asymptotic analysis of 3 ODEs was done. Similarly, an asymptotic
analysis of the system of 2 ODEs would be interesting to see the behaviour of s and q at the
initial states, which could lead to an improvement in the results. Due to time limitation we were
unable to look at matched asymptotic expansions of 3 ODES.
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