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Abstract

This dissertation investigates the numerical solution of similarity solution of

the Porous Medium and the Thin Film equations. Scaling transformations are

introduced to reduce the original equations to ordinary differential equations.

Self-similar solutions are found for all n > 0 in the case of the Porous Medium

equation, but only for n = 1 in the Thin Film equation. The ordinary differential

equations are solved numerically and the numerical results are compared with

the self-similar solutions to verify the accuracy of the numerical schemes used.

The main idea is to find a numerical self-similar solution for n > 1 in the Thin

Film equation.
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Chapter 1

Introduction

1.1 Idea of Similarity

The study of time-dependent partial differential equations (PDEs) has had a

sporadic history up to the present time. Such equations arise in many branches

of applied mathematics. For example, in physical sciences, PDEs are used to

describe phenomena such as the propagation of sound or heat, fluid flow, and

laws such as the conservation of mass, energy and momentum. Their solutions

give an insight into the physical processes they are modelling, with some initial

information provided on a given domain. Although there are methods for solv-

ing the underlying model equations, sometimes the solution (either general or

particular) is difficult, if not impossible, to find.

When dealing with a linear PDE, various techniques including integral trans-

forms and eigenfunction expansions help to reduce the equation into an ordi-

nary differential equation (ODE), which can be easily solved. Such techniques

are much less prevalent when they come to non-linear PDEs. However, there

is an approach which identifies equations for which the solution depends on

appropriate groupings of the independent variables.

One way of grouping these independent variables to obtain analytic solu-

tions is by similarity. This method works under (group) transformations of the

original independent variables into new independent variables, called similarity

variables, leaving the equation in question invariant. This process was systema-

tised in the early 20th century by Lie who observed that groupings of variables

in many partial differential problems made effective transformed variables [5].

The solutions are termed similarity solutions, which often satisfy much simpler
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equations than the original PDE. The importance of similarity solutions lies in

their ease of calculation, the fact that they often act as attractors for the more

general solutions of the PDE.

The examples below show different types of PDEs for which they are invari-

ant under certain groups of transformations [1].

Example 1: Fisher’s equation, given by

ut = uxx + u(1− u), u ∈ C2(∞,−∞)

plays an important role in the study of mathematical biology and in probability.

It is invariant under:

i. translations in time, t→ t+ λ

ii. translations in space, x→ x+ λ

iii. reflexions in x, x→ −x
Example 2: The universal heat equation

ut = uxx, u ∈ C2(∞,−∞)

is invariant under the same transformations as in Example 1, and also the

stretching groups given by

t → λt,

x → λ
1
2x,

where λ > 0 is arbitrary.

Example 3: The blow-up equation, of the form

ut = uxx + u2, u ∈ C2(∞,−∞)

is used in modelling combustion processes in which materials become hot very

quickly. It is invariant under the action of the same groups as in Example 2,

with an additional stretching group given by

u→ u

λ
.
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1.2 Scale Invariance

Scale invariance is a basic idea which originates from the analysis of the conse-

quences of changes of units of measurement on the mathematical form of the laws

of physics. It is viewed as a particular aspect of study of differential equations

under groups of transformations [7].

Basically, this type of transformation maps all the variables in the original

differential equation (DE) to newly transformed variables by different scaling

parameters for each of the original variables. The DE is then said to be scale-

invariant if the system remains unchanged by the transformations.

1.2.1 Scaling Invariance on an ODE

Suppose a ODE is given by
dy

dx
= F (x, y) . (1.1)

Introduce a mapping from the original system (x, y) to a new system (x̄, ȳ)

by the transformations

x̄ = αx

and ȳ = βy (1.2)

where α and β are the scaling parameters.

Substituting (1.2) into equation (1.1), the left-hand side becomes

dy

dx
=

d
(
ȳ
β

)
d
(
x̄
α

)
=

α

β

dȳ

dx̄

and the right-hand side gives

F (x, y) = F

(
x̄

α
,
ȳ

β

)
.

The new system is therefore

dȳ

dx̄
=
β

α
F

(
x̄

α
,
ȳ

β

)
.

3



The definition of invariance is then

β

α
F

(
x̄

α
,
ȳ

β

)
= F (x̄, ȳ) .

1.2.2 Scaling Invariance on a PDE

Consider a PDE of general form

ut = f(x, u, ux, uxx, ...). (1.3)

A scaling transformation is described by a mapping of (u, x, t) to (ū, x̄, t̄)

such that

t = λt̄,

x = λβx̄,

u = λγū, (1.4)

for an arbitrary parameter λ > 0 and scaling powers β, γ.

It is an observed fact that scaling relationships have wide applications in

science and in engineering. Such scalings give evidence of deep properties of the

phenomena they represent. They can be found in fluid mechanics, turbulence,

mathematical biology and structural geology, to name a few. Scaling invariance

is also closely related to the theories of fractals and dimensional analysis [6].

1.3 Self-Similar Solutions

A time-dependent phenomenon is called self-similar if the spatial distributions

at different moments in time can be derived from one another by a similarity

transform [6]. The self-similarity of the solutions of time-dependent PDEs has

allowed their reduction to ODEs, which simplifies matters, and hence they had

attracted attention, due to the simplicity of obtaining and analyzing them.

1.3.1 Self-Similarity for an ODE

Rearranging (1.2) results in

α =
x̄

x
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and

β =
ȳ

y
.

Assuming there exists a functional relationship between α and β such that

β = β(α), self-similar solutions can be found to satisfy the ODE in (1.1), which

is invariant under the transformations in (1.2).

1.3.2 Self-Similarity for a PDE

Making λ the subject from (1.4), we have

λ =
u

1
γ

ū
1
γ

=
t

t̄
=
x

1
β

x̄
1
β

Define similarity variables to be

η =
u

tγ
=
ū

t̄γ
, (1.5)

ξ =
x

tβ
=

x̄

t̄β
, (1.6)

which are independent of λ and hence scale-invariant under (1.4).

A functional relationship between the similarity variables is assumed to take

the form η = η(ξ). We can then find self-similar solutions satisfying the ODE,

that is derived by the transformation of the original PDE into the variables η

and ξ with scaling exponents β and γ.

1.4 Outline of Dissertation

In Chapter Two, we look at non-linear diffusion equation and its applications.

An illustration of the method of similarity under scaling transformation to this

equation is presented. A detailed account of the construction of similarity vari-

ables to obtain self-similar solutions are shown for both the Porous Medium

equation, for all n, and the Thin Film equation, in the case of n = 1, with given

initial conditions. We then go on to consider the applications of both diffusion

equations. Furthermore, we develop another approach to solving both equations

by including the time variable in the relationship between the new transformed

variables. This results in scale-invariant but not self-similarity solutions. It

was hoped that when method is run to convergence, within some tolerance, the
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solutions would converge to give the numerical self-similar solutions for both

equations. In practice, we found another way of achieving our aims so this was

left to further work.

Chapter Three provides various numerical methods in solving the simplified

ODE, in terms of the transformed variables, for the Porous Medium equation.

The numerical results are then verified with the self-similar solutions for all val-

ues of n. We also implement numerical scheme to the second approach using

time-stepping. The program is run to finite time to obtain non-self-smilar so-

lutions. Then we include some tolerence so that the solutions converge to give

self-similar solutions. Graphs are produced to show these different solutions.

In Chapter Four, we apply the same methods to solving the Thin Film equa-

tion. In this case, we introduce a new variable so that the ODE looks similar to

that of transformed Porous Medium equation. We compare the result from the

numerical scheme with that from self-similar, for n = 1. As for the other values

of n, we find the solutions numerically.

Finally, we end with conclusions and possible areas of further work.
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Chapter 2

Non-Linear Diffusion

We focus mainly on non-linear diffusion equations of general form

∂u

∂t
= (−1)m

∂

∂x

(
un
∂2m+1u

∂x2m+1

)
, (2.1)

where un represents the diffusion coefficient and n > 0 is a diffusion growth

exponent. It describes many physical processes such as heat conduction in a

solid body, insect population dispersion, radiation hydrodynamics, and many

others.

Transforming the left-hand side of equation (2.1) under the mapping de-

scribed in (1.4) into the variables (ū, x̄, t̄) gives

∂u

∂t
=
∂ (λγū)

∂ (λt̄)
= λγ−1∂ū

∂t̄
(2.2)

and the right-hand side becomes

(−1)m
∂

∂x

(
un
∂2m+1u

∂x2m+1

)
= (−1)m

∂

∂ (λβx̄)

(
λnγūn

∂2m+1 (λγū)

∂ (λβx̄)2m+1

)
= (−1)m λγ(n+1)−(2m+2)β ∂

∂x

(
ūn
∂2m+1u

∂x2m+1

)
. (2.3)

Hence, the transformed general PDE is

λγ−1∂ū

∂t̄
= (−1)m λγ(n+1)−(2m+2)β ∂

∂x

(
ūn
∂2m+1u

∂x2m+1

)
. (2.4)

For the original equation (2.1) to be invariant under the transformation (1.4),
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we require

γ − 1 = (n+ 1) γ − (2m+ 2) β. (2.5)

To determine γ and β we need another equation. Integrating equation (2.1)

over the domain gives∫ b(t)

a(t)

∂u

∂t
dx =

∫ b(t)

a(t)

(−1)m
∂

∂x

(
un
∂2m+1u

∂x2m+1

)
dx,

which simplifies to

d

dt

∫ b(t)

a(t)

u dx = (−1)m
[
un
∂2m+1u

∂x2m+1

]b(t)
a(t)

.

Taking the boundary conditions at u(a(t)) = u(b(t)) = 0, we have

d

dt

∫ b(t)

a(t)

u dx = 0

and therefore ∫ b(t)

a(t)

u dx = k, (2.6)

where k is a constant. This shows that mass is conserved over the whole domain.

Transforming the integral in (2.6) to the variables (ū, x̄, t̄), by (1.4), we obtain∫ b(t)

a(t)

λγū d
(
λβx̄

)
= k

λγ+β

∫ b(t)

a(t)

ū dx̄ = λ0k.

For (2.6) to be invariant under the transformation (1.4), we require

γ + β = 0. (2.7)

Solving (2.5) and (2.7) simultaneously, we find that

γ =
−1

n+ (2m+ 2)

and β =
1

n+ (2m+ 2)
(2.8)
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By (1.5) and (1.6), the self-similar solutions for non-linear diffusion equations

are of the form

η = η(ξ)

i.e. u(x, t) = tγη
( x
tβ

)
(2.9)

under the scalings γ and β defined in (2.8).

2.1 The Porous Medium Equation

In the case when m = 0, equation (2.1) becomes the Porous Medium equation

(PME), a second-order non-linear diffusion equation. It has the form

∂u

∂t
=

∂

∂x

(
un
∂u

∂x

)
, (2.10)

where n is as described in equation (2.1), with u = un ∂u
∂x

= 0 at the boundaries.

Such problems with zero boundary conditions are degenerate in the sense that

u = 0 is a sufficient boundary condition.

Equation (2.10) has been widely used to model many different applications.

In physical problems, it is used to model the flow in thin saturated region in a

porous medium, the percolation of gas through porous media, the spreading of

thin viscous spreading under gravity over a horizontal plane, and many other

processes [2],[10].

Further applications of the second-order case arise in the modelling of bac-

terial growth on agar plates and in medicine. An example for the latter is the

development of a tumour inside a human body. The tumour gains nutrients and

oxygen for growth by diffusion from already existing vasculature surrounding

them. Thus the size of the tumour is limited by diffusion through a porous

medium [3].
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Figure 2.1: Evolution of PME at Different Times for a fixed n

The above figure represents a self-similar solution at three points in time.

The solution at time t0 is transformed onto the solution at a different time, say

at time t1 by the scaling transformation in equation (1.4).

2.1.1 Self-Similar Solutions

From (2.8), γ and β for the second-order equation (2.10) are

γ =
−1

(n+ 2)
and

β =
1

(n+ 2)
. (2.11)

To construct self-similar solutions in the form given in (2.9), we first derive

the ODE in terms of the similarity variables η = η(ξ) and ξ, which are defined

in (1.5) and (1.6).
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The left-hand side of equation (2.10) gives

∂u

∂t
=

∂ (ηtγ)

∂t

= ηγtγ−1 + tγ
∂η

∂t

= ηγtγ−1 + tγ
(
dη

dξ
× dξ

dt

)
= ηγtγ−1 + tγ

(
dη

dξ
× −βx
tβ+1

)
= ηγtγ−1 + tγ

(
dη

dξ
× −βξ

t

)
= ηγtγ−1 − βtγ−1ξ

dη

dξ
(2.12)

and the right-hand side becomes

∂

∂x

(
un
∂u

∂x

)
=

∂ξ

∂x

d

dξ

(
ηntγn

∂u

∂η

dη

dξ

∂ξ

∂x

)
=

1

tβ
d

dξ

(
ηntγntγ

dη

dξ

1

tβ

)
=

tγn+γ

t2β
d

dξ

(
ηn
dη

dξ

)
= tγn+γ−2β d

dξ

(
ηn
dη

dξ

)
. (2.13)

Substituting (2.12) and (2.13) into equation (2.10), we have

ηγtγ−1 − βtγ−1ξ
dη

dξ
= tγn+γ−2β d

dξ

(
ηn
dη

dξ

)
tγ−1

(
ηγ − βξdη

dξ

)
= tγn+γ−2β d

dξ

(
ηn
dη

dξ

)
ηγ − βξdη

dξ
= tγn+1−2β d

dξ

(
ηn
dη

dξ

)
. (2.14)

From (2.11), we see that β = −γ, therefore the exponent of t can be simpli-

fied,

γn+ 1− 2β = γn+ 1 + 2γ

=

(
−n

(n+ 2)
+ 1

)
− 2

(n+ 2)

= 0 (2.15)
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and hence

−ηβ − βξdη
dξ

=
d

dξ

(
ηn
dη

dξ

)
−β
(
η + ξ

dη

dξ

)
=

d

dξ

(
ηn
dη

dξ

)
−β d

dξ
(ηξ) =

d

dξ

(
ηn
dη

dξ

)
, (2.16)

which is a second-order ODE in the function η(ξ) with boundary conditions

η = 0 at ξ = ±1.

In order to solve the ODE, we integrate (2.16) to get

ηn
dη

dξ
= −β (ηξ) + C,

where C is an integration constant. Since η = 0 at the boundary, C = 0 and

thus

ηn
dη

dξ
= −β (ηξ) .

Dividing through by η knowing that η is non-zero, gives

ηn−1dη

dξ
= −βξ.

Separating the variables,∫
ηn−1 dη = −β

∫
ξ dξ

ηn

n
=
−βξ2

2
+K,

where K is a constant of integration. Applying the zero boundary conditions

again,
ηn

n
=
−βξ2

2
+
β

2
.

Bearing in mind that u = tγη in (1.5), we make η the subject and setting

An = βn
2

,

η(ξ) =

(
An −

βnξ2

2

) 1
n

.

Hence, there exists the following self-similar solution in terms of η and ξ with
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zero boundary conditions,

η(ξ) =


(
An − βnξ2

2

) 1
n βnξ2

2
≤ An,

0 βnξ2

2
> An.

Mapping this back to the original variables u, x and t using the definitions in

(1.5) and (1.6) with β and γ given by (2.11), we obtain

u(x, t) =
1

t
1

(n+2)

(
An −

nx2

2(n+ 2)t
2

(n+2)

) 1
n

+

, (2.17)

where the notation (.)
1
n
+ indicates that we take the positive solution of the argu-

ment. Equation (2.17) is a self-similar solution of the original PME with u = 0

at the boundaries, for all values of n > 0. The original derivation is due to

Barenblatt[6].

Figure 2.2: Self-Similar Solutions of the transformed PME for n = 1, 2, 3 when
t = 1
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Figure 2.3: Self-Similar Solutions of the original PME when n = 1 at different
times

2.1.2 Non-Self-Similar Solutions

More generally, the equation (2.10) can be solved with η as a function of ξ and

the time t, giving scale-invariant solutions but not self-similarity. This results

in an additional term to the tranformed left-hand side expressed in (2.12),

∂u

∂t
=

∂ (ηtγ)

∂t

= ηγtγ−1 + tγ
∂η

∂t

= ηγtγ−1 + tγ
(
∂η

∂ξ
× dξ

dt
+
∂η

∂t

)
= ηγtγ−1 + tγ

(
∂η

∂ξ
× −βx
tβ+1

+
∂η

∂t

)
= ηγtγ−1 + tγ

(
∂η

∂ξ
× −βξ

t
+
∂η

∂t

)
= ηγtγ−1 − βtγ−1ξ

∂η

∂ξ
+ tγ

∂η

∂t
. (2.18)

The right-hand side has the same transformed expression as in (2.13),

∂

∂x

(
un
∂u

∂x

)
= tγn+γ−2β ∂

∂ξ

(
ηn
∂η

∂ξ

)
. (2.19)
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Equating (2.18) and (2.19), we have

ηγtγ−1 − βtγ−1ξ
∂η

∂ξ
+ tγ

∂η

∂t
= tγn+γ−2β ∂

∂ξ

(
ηn
∂η

∂ξ

)
tγ−1

(
ηγ − βξ∂η

∂ξ
+ t

∂η

∂t

)
= tγn+γ−2β ∂

∂ξ

(
ηn
∂η

∂ξ

)
ηγ − βξ∂η

∂ξ
+ t

∂η

∂t
= tγn+1−2β ∂

∂ξ

(
ηn
∂η

∂ξ

)
. (2.20)

Using (2.11) and that β = −γ, and because of (2.15), gives

−ηβ − βξ∂η
∂ξ

+ t
∂η

∂t
=

∂

∂ξ

(
ηn
∂η

∂ξ

)
−β
(
η + ξ

∂η

∂ξ

)
+ t

∂η

∂t
=

∂

∂ξ

(
ηn
∂η

∂ξ

)
−β ∂

∂ξ
(ηξ) + t

∂η

∂t
=

∂

∂ξ

(
ηn
∂η

∂ξ

)
t
∂η

∂t
= β

∂

∂ξ
(ηξ) +

∂

∂ξ

(
ηn
∂η

∂ξ

)
, (2.21)

which is a PDE for the function η(ξ, t), with chosen domain |ξ| ≤ 1 and boundary

conditions η = 0. This PDE can be solved numerically.

2.2 The Thin Film Equation

The Thin Film equation (TFE) is a fourth-order non-linear diffusion equation,

given by
∂u

∂t
= − ∂

∂x

(
un
∂3u

∂x3

)
, (2.22)

where n is as stated in equation (2.1), and with zero boundary conditions. This

is when m = 1 in equation (2.1). When n = 1, the equation is used to describe

flow in a Hele-Shaw cell. The fluid placed between two parallel plates moves

in response to pressure gradients due to surface tension and other externally

imposed forces.

With n = 3, it models the lubrication of a surface tension driven thin viscous

liquid on a horizontal surface with a no-slip condition at the interface. However,

the no-slip condition implies that an infinite force occurs at the interface; but

this can be avoided by having more realistic models allowing slip, which are of

Navier-type slip condition type [8]. Other applications involve the spreading of
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fluid on textiles and the overflow of rainwater over soils.

2.2.1 Self-Similar Solutions

Similarly, we follow the same procedure in finding self-similar solutions for TFE.

γ and β defined in (2.8) become

γ =
−1

(n+ 4)

and β =
1

(n+ 4)
. (2.23)

A similarity solution of the form η = η(ξ) is sought, by obtaining an ODE

for η in terms of ξ. The transformed left-hand side of (2.22) is the same as in

(2.12),
∂u

∂t
= ηγtγ−1 − βtγ−1ξ

dη

dξ
(2.24)

To transform the right-hand side, first consider

∂u

∂x
=

∂u

∂η

dη

dξ

∂ξ

∂x

= tγ
dη

dξ

1

tβ

= tγ−β
dη

dξ

from which,

∂2u

∂x2
= tγ−β

d2η

dξ2

∂ξ

∂x

= tγ−β
d2η

dξ2

1

tβ

= tγ−2β d
2η

dξ2
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and

∂3u

∂x3
= tγ−2β d

3η

dξ3

∂ξ

∂x

= tγ−2β d
3η

dξ3

1

tβ

= tγ−3β d
3η

dξ3
.

Then

− ∂

∂x

(
un
∂3u

∂x3

)
= −∂ξ

∂x

d

dξ

(
ηntγntγ−3β d

3η

dξ3

)
= − 1

tβ
d

dξ

(
ηntγntγ−3β d

3η

dξ3

)
= −tγn+γ−4β d

dξ

(
ηn
d3η

dξ3

)
. (2.25)

Equating (2.24) with (2.25) gives

ηγtγ−1 − βtγ−1ξ
dη

dξ
= −tγn+γ−4β d

dξ

(
ηn
d3η

dξ3

)
tγ−1

(
ηγ − βξdη

dξ

)
= −tγn+γ−4β d

dξ

(
ηn
d3η

dξ3

)
ηγ − βξdη

dξ
= −tγn+1−4β d

dξ

(
ηn
d3η

dξ3

)
. (2.26)

From (2.23), since β = −γ, the power of t in (2.27) becomes

γn+ 1− 4β = γn+ 1 + 4γ

=

(
−n

(n+ 4)
+ 1

)
− 4

(n+ 4)

= 0 (2.27)

and hence

−ηβ − βξdη
dξ

= − d

dξ

(
ηn
d3η

dξ3

)
−β
(
η + ξ

dη

dξ

)
= − d

dξ

(
ηn
d3η

dξ3

)
−β d

dξ
(ηξ) = − d

dξ

(
ηn
d3η

dξ3

)
, (2.28)
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a fourth-order ODE for η in terms of ξ. We impose boundary conditions η = 0

and dη
dξ

= 0 over our chosen domain |ξ| ≤ 1. Integrating (2.28) once, we get

−β (ηξ) = −ηnd
3η

dξ3
+D,

where D is a constant of integration. Substituting the boundary conditions,

D = 0 and thus

−β (ηξ) = −ηnd
3η

dξ3
.

We divide through by η 6= 0, gives

ηn−1d
3η

dξ3
= βξ. (2.29)

It is stated in [9] that TFE admits similarity solution only for n = 1. Sub-

stituting this value of n into (2.23) for the value of β and into (2.29) results in

the following ODE,
d3η

dξ3
=
ξ

5
. (2.30)

We integrate (2.30) thrice,

η =
ξ4

120
+
K1ξ

2

2
+K2ξ +K3,

where K1, K2, and K3 are integration constants. Using the boundary conditions

at η = 0 and dη
dξ

= 0, results in

K2 = 0

and therefore

η(ξ) =
ξ4

120
− ξ2

60
+K3.

Mapping this back to the original variables u, x and t using the definitions

in (1.5) and (1.6) with β and γ given by (2.23), we have

u(x, t) =
1

t
1
5

(
x4

120t
4
5

− x2

60t
2
5

+K3

)
=

1

t
1
5

(
1

120

(
x2

t
2
5

)2

− 1

60

(
x2

t
2
5

)
+K3

)
. (2.31)
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To evaluate K3, we note that

η = 0 at ξ = ±1

⇒ u

t
−1
5

= 0 at
x

t
1
5

= ±1. (2.32)

Substituting (2.32) into (2.31) gives K3 = 1
120

. Hence the self-similar solution

of the original TFE for n = 1 is

u(x, t) =
1

120t
1
5

(
1− x2

t
2
5

)2

. (2.33)

For values of n > 1, we find their approximate solutions from the numerical

schemes presented in the next chapter.

Figure 2.4: Self-Similar Solutions of original TFE when n = 1 at different times

2.2.2 Non-Self-Similar Solutions

We can also find the solutions of equation (2.22) with η as a function of ξ and

t, again giving scale-invariant solutions but not self-similarity. The transformed

expression of the left-hand side in (2.24) now has an extra term,

∂u

∂t
= ηγtγ−1 − βtγ−1ξ

∂η

∂ξ
+ tγ

∂η

∂t
. (2.34)
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The right-hand side is transformed into the same expression as in (2.25),

− ∂

∂x

(
un
∂3u

∂x3

)
= −tγn+γ−4β ∂

∂ξ

(
ηn
∂3η

∂ξ3

)
. (2.35)

Equating (2.34) and (2.35), gives

ηγtγ−1 − βtγ−1ξ
∂η

∂ξ
+ tγ

∂η

∂t
= −tγn+γ−4β ∂

∂ξ

(
ηn
∂3η

∂ξ3

)
tγ−1

(
ηγ − βξ∂η

∂ξ
+ t

∂η

∂t

)
= −tγn+γ−4β ∂

∂ξ

(
ηn
∂3η

∂ξ3

)
ηγ − βξ∂η

∂ξ
+ t

∂η

∂t
= −tγn+1−4β ∂

∂ξ

(
ηn
∂3η

∂ξ3

)
. (2.36)

Deducing from (2.23) that β = −γ, and because of (2.27),

−ηβ − βξ∂η
∂ξ

+ t
∂η

∂t
= − ∂

∂ξ

(
ηn
∂3η

∂ξ3

)
−β
(
η + ξ

∂η

∂ξ

)
+ t

∂η

∂t
= − ∂

∂ξ

(
ηn
∂3η

∂ξ3

)
−β ∂

∂ξ
(ηξ) + t

∂η

∂t
= − ∂

∂ξ

(
ηn
∂3η

∂ξ3

)
−β ∂

∂ξ
(ηξ) +

∂

∂ξ

(
ηn
∂3η

∂ξ3

)
= −t∂η

∂t
, (2.37)

which is a PDE in the function η(ξ, t). We choose the domain to be |ξ| ≤ 1 with

zero boundary conditions. The numerical solutions are presented in chapter

Four.
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Chapter 3

Numerical Results for the

Porous Medium Equation

In this chapter, we compare numerical results obtained for PME with the sim-

ilarity solutions found earlier, in order to check the accuracy of the numerical

methods, in approximating nonlinear diffusion.

3.1 Self-Similar Solutions

Discretising equation (2.16) using a finite difference method, we have

−β
(

(i+ 1)ηi+1 − (i− 1)ηi−1

2h

)
=

(
ηi+1 + ηi

2

)n(
ηi+1 − ηi

h2

)
−
(
ηi + ηi−1

2

)n(
ηi − ηi−1

h2

)

⇒ 0 = β

(
(i+ 1)ηi+1 − (i− 1)ηi−1

2h

)
+(

ηi+1 + ηi
2

)n(
ηi+1 − ηi

h2

)
−(

ηi + ηi−1

2

)n(
ηi − ηi−1

h2

)
where h is the distance between adjacent points in ξ space.

The system can be represented in a matrix form

A(η)η = 0, (3.1)
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where η = [η1, η2, ..., ηN−1]T with known boundary conditions η0 = 0 and ηN = 0,

and N represents the number of uniformly spaced intervals between −1 < ξ < 1.

From the matrix system in (3.1), η is non-unique and one of the solutions

for η is zero. To remedy this, we use symmetry and solve on 0 < ξ < 1 instead

with boundary conditions η = 0 at ξ = 1 and ηξ = 0 at ξ = 0. Using the fact

that η−1 = η1 (by symmetry) and η0 6= 0, we obtain a non-singular system of

non-linear equations for all the ηi in terms of η0. Knowing that η = 0 at the last

point i = N , we then have an equation for η0, which is non-linear. A good way

to go is by the method of bisection.

The matrix yields an infinite number of solutions owing to its singularity. The

problem can be solved by removing any one row in the matrix and replacing it

by
1

2
η0 + η2 + ...+

1

2
ηN = 1, (3.2)

which is equivalent to stating that the total mass =
∫
η dξ = 1, using the

Trapezoidal rule. This is similar to what we obtained in (2.6) in terms of the

original variables.

We now consider another way of solving equation (2.16) numerically, by first

integrating it once to give

ηn
dη

dξ
= −β(ηξ)

dη

dξ
=
−βξ
ηn−1

and applying the 2nd-order Runga-Kutta method, also known as the Improved

Euler method. The explicit form is

ηi+1 = ηi +
h

2
(k1 + k2)

where

k1 =
−βξ
ηn−1

and

k2 =
−β (ξ + h)

(η + hk1)n−1

in which k1 and k2 are evaluated at the previous ξi.

By symmetry, we solve on 0 < ξ < 1 starting from ξ = 0 and the bisection

method is employed to get the zero value of η at ξ = 0. This method starts by
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choosing two initial values at ξ = 0 such that the solutions of η at the boundary

ξ = 1 will result in a positive η and a negative η at the last point.

For n = 1, the value of η at ξ = 0 is the same regardless of the number of

intervals between ξ = 1 and ξ = 0 for a fixed value of tolerance. This is because

the solution is a quadratic. The numerical method used, Runga-Kutta of order

2, is exact for approximating a quadratic curve.

Figure 3.1: Numerical Solution of PME for n = 1 at different tolerances

Comparing two different tolerance values of 0.01 and 0.001, we see that

η = 0.1580 and η = 0.1664 respectively.

Figure 3.2: Numerical Solution of PME for n = 1 for different number of intervals

Comparing two different numbers of intervals, 100 and 200, the values of η

is the same.
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For n = 2, the values of η at ξ = 0 are similar for different tolerances but

fixed number of intervals. As the number of intervals increases, η converges to

a value of 0.50. Comparing two different tolerance values of 0.01 and 0.001,

Figure 3.3: Numerical Solution of PME for n = 2 at different tolerances

η = 0.4881916 and η = 0.4881922 respectively.

Figure 3.4: Numerical Solution of PME for n = 2 for different number of intervals

Comparing two different numbers of intervals of 100 and 200, the values of

η are converging.
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Similarly, for n = 3, the values of η at ξ = 0 are almost the same for different

tolerances but fixed number of intervals. η converges to a value of 0.67 as we

increase the number of intervals. Comparing two different tolerance values of

Figure 3.5: Numerical Solution of PME for n = 3 at different tolerances

0.01 and 0.001, η = 0.66814 and η = 0.66811 respectively.

Figure 3.6: Numerical Solution of PME for n = 3 for different number of intervals

Comparing two different numbers of intervals of 100 and 200, the values of

η are converging.
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Another approach of obtaining the solution is by solving (2.21) and run it to

convergence, which we look at next.

3.2 Another Approach via Non-Self-Similar Equation

We discretise the equation (2.21) to give

ηk+1 = ηk +
∆t

t

[
β

(
(i+ 1)ηi+1 − (i− 1)ηi−1

2h

)]

+
∆t

t

[(
ηi+1 + ηi

2

)n(
ηi+1 − ηi

h2

)
−
(
ηi + ηi−1

2

)n(
ηi − ηi−1

h2

)]k
, (3.3)

where k represents the time level and ∆t is the local distance between time steps.

We regard (3.3) as an interation and perform two iterative methods, Jacobi and

Gauss-Seidel. We run the program for a few time steps for each of n = 1, 2, 3.

The evolutions are shown below:

Figure 3.7: Evolution of Self-Similar Solution of PME for n = 1

If we run this program to convergence, that is when ηk+1 = ηk, within some

tolerance, we can then find solutions for equation (2.16). The Gauss-Seidel
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Figure 3.8: Evolution of Self-Similar Solution of PME for n = 2

method converges about twice as fast as Jacobi does because we use updated

values of ηi and ηi−1.
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Figure 3.9: Evolution of Self-Similar Solution of PME for n = 3

We check the results against the exact solutions and they both have the give

same graphs.
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Figure 3.10: Exact and Approximate Solutions for PME for n = 1

3.3 Accuracy

We then investigated the accuracy of the method used in finding self-similar

solutions by evaluating the sum of the global errors taken at all points for differ-

ent number of intervals with value of n fixed. The global error is the difference

between the exact and the approximate (self-similar) solutions at ξi. Table 1

below shows the total error at intervals of 200, 400, and 800. The error can be

No. of Intervals Total Exact Total Approx Total Global Errors

200 112.5393 112.0696 0.4725
400 225.2001 224.7100 0.4913
800 0.0000 0.0000 0.0000

represented graphically as given below:
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Figure 3.11: Exact and Approximate Solutions for PME for n = 2

Figure 3.12: Exact and Approximate Solutions for PME for n = 3
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Figure 3.13: Error Analysis for PME for n = 3
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Chapter 4

Numerical Results for the Thin

Film Equation

Here, we present numerical results for the TFE and check against the solution

for n = 1 in chapter Two. This is to see whether the numerical schemes are

accurate enough to produce the same solutions.

4.1 Self-Similar Solutions

The method to find the numerical solutions to equation (2.28) works in a similar

way as that for solving equation (2.16). This time we introduce a new variable,

χ = −d
2η

dξ2
, (4.1)

and hence the new expression is

−β d
dξ

(ηξ) =
d

dξ

(
ηn
dχ

dξ

)
. (4.2)

Disretising (4.1) and (4.2) gives

χi =
(ηi+1 − 2ηi + ηi−1)

h2

and (
ηi+1 + ηi

2

)n(
χi+1 − χi

h2

)
−
(
ηi + ηi−1

2

)n(
χi − χi−1

h2

)
+
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β

(
(i+ 1)ηi+1 − (i− 1)ηi−1

2h

)
= 0.

From equation (4.2), integrating it once gives

−βηξ = −ηndχ
dξ
.

Subtituting (4.1), we have

βηξ = ηn
d3η

dξ3

βξ

ηn−1
=

d3η

dξ3
.

We introduce
dη

dξ
= µ (4.3)

and
dµ

dξ
= ν. (4.4)

Therefore,
dν

dξ
=

βξ

ηn−1
. (4.5)

Applying the 2nd-order Runga-Kutta method to each of (4.3), (4.4), and

(4.5) with the explicit form

νi+1 = νi +
h

2
(k1 + k2)

where

k1 =
βξ

νn−1

and

k2 =
β (ξ + h)

(ν + hk1)n−1

in which k1 and k2 are evaluated at the previous ξi.

By symmetry, we solve on −1 < ξ < 0 starting from ξ = −1 and the

bisection method is employed to get the value of η at ξ = 0. This method starts

by choosing two initial values at ξ = −1 such that the solutions of µ at the

boundary ξ = 0 will result in a positive µ and a negative µ at the last point

(remembering that we need µ = 0).

We can also find the solution by iterating equation (2.37) numerically and
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running it to convergence.

34



Figure 4.1: Numerical Solution of TFE at for n = 1
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Figure 4.2: Numerical Solution of TFE at for n = 2

4.2 Another Approach via Non-Self-Similar Equa-

tion

Substituting (4.1) into equation (2.37), we have

−β ∂
∂ξ

(ηξ) +
∂

∂ξ

(
ηn
∂χ

∂ξ

)
= −t∂η

∂t
. (4.6)

Then we discretise (4.6) and this gives a similar expression with that for equation

(2.21) but with χ. Before running the program, the boundary values of χ are

determined by linear extrapolation, that is

χ0 = 2χ1 − χ2,

2χn−1 = χn−2.

We run the program for a few time steps for each n = 1, 2, 3 using self-similar

solution as initial conditions. The evolutions are shown below:
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Figure 4.3: Numerical Solution of TFE for n = 3

However, when running this program to convergence, that is when ηk+1 = ηk,

within some tolerance, we find that the numerical solutions were unstable. If we

had more time, we could refine the method by using smaller ∆t.
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Figure 4.4: Evolution of Self-Similar Solution of TFE at n = 1

Figure 4.5: Evolution of Self-Similar Solution of TFE at n = 2
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Figure 4.6: Evolution of Self-Similar Solution of TFE at n = 3
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Chapter 5

Conclusions and Further Work

5.1 Summary

This chapter summarises the work carried out in this dissertation. We then

discuss some of the results and suggest possible improvements to this work.

In this dissertation, we implemented similarity method under the action of

scaling transformations to non-linear diffusion equations, paying particular at-

tention to PME and TFE. These equations were reduced to ODEs, which are

then used to find self-similar solutions.

In Chapter Two, some applications of both diffusion equations were consid-

ered. The derivation of self-similarity variables which led to the transformed

ODEs were shown. The ODEs were solved analytically to give self-similar so-

lutions for all n > 0 for PME and n = 1 for TFE. In principle, the diffusion

equations could be solved by iterating a time-stepping scheme. In this scheme,

we had time as an extra variable apart from the two similarity variables.

In Chapter Three, a different numerical method for solving the transformed

ODE for PME was presented. The ODE was then solved numerically and the

results were checked with the self-similar solutions. As for the time-stepping

method, the evolutions of the solutions at different times were shown on graphs.

By running this method to convergence, we obtained the same self-similar solu-

tions for all n.

In Chapter Four, the same numerical schemes were applied to the ODE for

TFE to get self-similar solution for n = 1. In addition, in order to obtain the

numerical self-similar solutions for n > 1, the time-stepping scheme was also

run to finite time to see the evolutions of the solutions and then to convergence.
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Unfortunately, the solutions blew up.

5.2 Further Work

We could implement the Crank-Nicolson method to solve equations (2.37) and

(3.3) by passing to a limit as t→∞ to obtain self-similar solutions. This could

produce results in a shorter time as when compared to the iterative methods

used. Another area of improvement includes solving the matrix system (3.1) by

Crank-Nicolson to be solved for η.

One other approach is by attempting a sequence of increasingly accurate

guesses to solving the transformed ODE in (2.16) of PME, known as the shooting

method. This method could be applied to the transformed ODE of TFE, which

is given in (2.28), by solving a system of three equations.

The total global errors can be used to find the ratio of ei+1

ei
for the different

values of space step h in order to check the order of convergence of the errors.

We use the formula

error ∝ hp

where p, the order of convergence, is to be found.
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