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Abstract

This dissertation aims at enhancing the understanding of glacier flow dynamics.

We are primarily concerned with the behaviour of the interface between grounded

and floating ice commonly referred to as the grounding line. Accurate modelling of

the grounding line is integral to forcasting the fate of the cryosphere and the Earth’s

climate system.

In this dissertation we discuss the use of a particular moving mesh numerical

scheme in modelling the flow dynamics of the grounding line. This scheme incorpo-

rates conserved mass fractions in order to move the grid nodes. The approach allows

the model to maintain physical properties such as local mass balance.

We assess the ability of the method at accurately modelling the grounding line

and compare the results with available literature. We also discuss future possible

developments to the model.
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1 Introduction

Understanding the dynamics of marine ice sheets has been a subject of increasing

interest over recent years. The evolution of such marine ice sheets can have the

utmost effect on the natural environment and human civilisation. Antarctica and

Greenland hold enough ice to raise global sea levels by 70m [6]. Due to recent

advances in the technology of satellite measurements extensive advancements have

been seen in the ability to observe the Earths polar regions. There have been some

alarming trends uncovered by the observations made with these recent advancements.

The West Anatarctic Ice Sheet (WAIS) lost between 47 and 59 Gt (gigatonnes) of

ice per year in the 1990s [2]. The WAIS alone is an ice sheet large enough that if it

were to collapse entirely there could be a rise in sea level of more than 5m. It has

been observed that in areas of fast flowing ice in the WAIS the reduction in ice is

much greater than any change in the rate of melting or the decrease in the amount

of snow can account for. This would indicate that the mass loss is a result of the

glacier dynamics [6].

1.1 The Grounding Line

The grounding line of a glacier can be described as the point where the glacier shifts

from being grounded to being afloat. The grounded part of the glacier is referred to

as the ice sheet and the floating part of the glacier is referred to as the ice shelf. (See

figure 1).

Figure 1: Illustration of Glacier
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The glacier begins to float when there is enough water to support the weight of

the ice. This is known as the condition for flotation and can be described by the

equation

ρih = ρw(l − b),

where ρi is the density of the ice, ρw is the density of sea water, h is the ice thickness,

l is the sea level and b is the elevation of the ice base [11].

The position of the grounding line is dictated by its surrounding conditions and

thus as the conditions change so too does the position of the grounding line.

The complexity of glacier dynamics is such that a purely analytical approach to

modelling the grounding line is impossible. This gives rise to a distinct need for

the use of numerical approximations to simulate the behaviour of the glacier. The

use of computers and programming software is integral to this. The dynamics of

grounding lines in glaciers has been closely examined in a variety of computational

models where results are often inconsistent [2], with occasionally spurious projections

as to the time frame for which ice sheets will melt. It is clear that more work in

finding a suitable method of simulating the glacier dynamics is essential in order to

obtain consistent results.

This dissertation aims at simulating the migration of the grounding line in glaciol-

ogy using a local conservation based moving mesh technique applied to a simple

model of a glacier using the shallow ice approximation.

1.2 Previous Work

It is of interest to model the progress of the grounding line because if the grounding

line advances or recedes this can cause significant rises in sea levels. As ice shelves

are perfectly buoyed up by the ocean according to Archimedean Principle, any con-

tribution to sea level change is entirely due to changes in the mass of the grounded ice

sheet [2]. It is important to understand what affects the behaviour of the grounding

line and to establish an effective model to simulate the grounding line migration in

order to predict future sea level changes. Although ice sheet models are well estab-

lished there have been relatively few attempts at accurately modelling the grounding

line migration and even fewer attempts at modelling the grounding line using the

full Stokes’ approximations: many models use a shallow ice apprximation [5]. The

shallow ice approximation uses a simplified version of the full Stokes’ approxima-

tions where values have been vertically averaged. There was only one attempt in the

MISMIP survey paper [5] that used full Stokes equation.

The majority of the attempts at modelling the grounding line have so far been

inconsistent. A cause of these inconsistencies could be attributed to the differing
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methods of treating the coupling between the sheet and shelf and what continuity

conditions are applied at the grounding line. Many models only examine the ice

dynamics of the grounded ice sheet without the coupling of the floating ice shelf [11].

Hindmarsh, 1996 [3] suggests that it is possible to model the grounding line dynamics

without any coupling between the sheet and the associated shelf. However, there are

other models that examine the grounded ice sheet with the inclusion of coupling

between the sheet and the ice shelf. The coupling can either involve full mechanical

coupling betwen sheet and shelf using an ice stream model or a semi-coupling where

only the ice flux through the grounding line is considered. This dissertation aims

at examining the ice sheet with the inclusion of semi-coupling between the ice sheet

and ice shelf.

Another contribution to the inconsistencies of the various models is their sensi-

tivity to the resolution and the robustness of the numerical implementation. There

are a number of methods that use fixed grid techniques. These have a rigid unmov-

ing structure and are by far the simplist to implement and best understood. These

methods often stongly depend on the grid size, as features may exhibit sharp changes

that can only be truly represented with a grid fine enough to capture them. The

grounding line in particular is a feature that requires a fine resolution for reliable

results. This, however, is computationally costly. An alternative method to gain

higher resolution without the extensive computational cost is to consider adaptive

mesh techniques. These techniques apply a finer mesh around the grounding line

and allow a coarser resolution elsewhere, thus saving computational time. A third

approach uses a moving mesh technique which allows the grid points (including the

position of the grounding line) to be moved. Moving mesh techniques are considered

more robust and reliable, as the grounding line is part of the solution and no inter-

polations are required [5]. The survey paper of Vieli and Payne [11] goes into detail

of how the results differ between various numerical models with different numerical

properties and we will make frequent references to this paper to compare our results.

1.3 The Governing Equations

Ice can be treated as an extremely viscous fluid, which generally deforms under its

own weight over a period of time, subject to mass gain and loss at the surface of

the glacier due to snowfall or melting [7]. Generally the amount of accumulation (or

snow) at the upper part of the glacier is greater than the amount of ablation (loss of

mass through melting), and so the mass of this region is expected to increase over

time. Further down the glacier near the shelf, the rate of accumulation is less than

the rate of ablation and so the mass is expected to decrease in this region. If it is
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assumed that the ice spreads unidirectionally then ice will spread over the glacier as

ice is pushed from the sheet towards the shelf. The total flux of ice between the sheet

and the shelf is what we want to model in order to gain an idea about the behaviour

of the grounding line.

It is convenient to make several assumptions in order to simplify the physical

model. The key assumptions are as follows:

• The model uses the Shallow Ice Approximation, as defined below

• The bed is flat with no isostasy, (i.e. the ice sheet is not elevated or lowered in

order to meet equilibrium with the Earths crust after change in mass.)

• Temperature and density are constant

• There is no basal sliding

The mass balance equation in the shallow ice approximation is taken to be [11]:

ht + (hu)x = m. (1)

in the time dependent region 0 ≤ x ≤ b(t), where x = 0 is the fixed boundary at

the ice divide (the top of the glacier), b(t) is the moving boundary at the shelf front,

h(x, t) is the height of the ice sheet, u(x, t) is the diffusive velocity, and m(x) is the

accumulation rate. The accumulation term represents the combination of mass gain

from snow and mass loss from ablation.

The boundary conditions for this problem are that there is no flux at the fixed

boundary x = 0 and so u = 0 at this point and also there is zero total flux at the

moving boundary b(t). At the moving boundary x = b(t) using Glen’s flow law and

the assumption of unidirectional flow the diffusive velocity u satisfies [11]

∂u

∂x

∣∣∣∣
b(t)

= A

[
1

4
ρig

(
1− ρi

ρw

)n]
hn (2)

where h = h(b(t)) and A is a constant known as the rate factor and is taken from

Glen’s flow law. Although the rate factor is dependent on the temperature of the ice

(and in practice has a large impact in the speed of the ice flow), for the simplified

model used in this dissertation we have taken it to be constant, its value being chosen

as the value used in the EISMINT suite of test problems [11].

As the diffusive velocity u(x, t) behaves very differently in the sheet and the shelf

we split the problem into two sub-problems. Let a(t) be the time dependent position

of the grounding line, where 0 ≤ a(t) ≤ b(t). Then x ∈ [0, a(t)] is the ice sheet region

and x ∈ [a(t), b(t)] is the ice shelf region.
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1.3.1 The Ice Sheet

Using the physics of ice in the ice sheet region 0 ≤ x ≤ a(t) the vertically averaged

diffusive velocity u is given in [11] as

u = −C
(
∂s

∂x

)n
hn+1 (3)

where n is the flow law exponent in Glen’s flow law (generally accepted to be n = 3),

and s is the surface elevation which is the sum of the ice thickness and any elevation

of the bed rock. As we are assuming that the bed is flat we can allow s to be equal

to the ice thickness h. In equation (3) C is a constant given by

C =
2A(ρig)3

5

Note that we can rewrite the diffusive velocity (3) in the ice sheet as

u = −C
(
∂h

∂x

)3

h4. (4)

for use in the mass balance equation (1).

1.3.2 The Ice Shelf

In the ice shelf region a(t) ≤ x ≤ b(t) the diffusive velocity is defined differently by

the elliptic equation [11]

2
∂

∂x

[
νh
∂u

∂x

]
= ρgh

∂s

∂x
(5)

where ν is the viscosity. It is necessary to solve the differential equation (5) for u for

use in the mass balance equation (1).

To find the surface elevation of the ice shelf we must again make use of the flotation

criterion. Let (l−b) be the difference between the sea level and the ice base elevation.

Computing this value for the ice shelf will give us the depth of the bottom ice surface

below sea level, which we call h′. We can then compute the surface elevation using

s = l + (h− h′).

In figure 2 these features have been added to figure 1 for clarity. To recover the depth

of the ice shelf base we must again make use of the flotation criterion. As l − b is

the difference between sea level and the elevation of the ice base, this will give us the

thickness of the ice under the sea level. Therefore l − ρi
ρw
h will give the elevation of

the ice base.

We can also use the the flotation criterion to find the sea level. We expect the
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Figure 2: Illustration of Glacier

thickness of the ice below sea level to be equal to the sea level at the grounding line

and so

l − ρi
ρw
ha = 0

where ha is the the ice thickness at the grounding line. We can then calculate sea

level by

l =
ρi
ρw
ha.

In this work we shall assume that the sea level is constant over time and space. Note

that in both the sheet and the shelf u depends on h and hx so that equation (1) is a

nonlinear diffusion equation with a moving boundary.

1.3.3 Interface Condition

The interface conditions at the grounding line a(t) are that h and hx are continuous

(which implies that the flux is continuous). There is also a migration rate at the

grounding line. In order to find the migration rate a new equation is introduced.

The flotation condition stated earlier is

ρih = ρw(l − b).

From a total differentiation of the flotation condition, the grounding line migration

rate is given in [11] by

da

dt
=

ρw
ρi

∂f
∂t

+ ∂(hu)
∂x
−m

∂h
∂x
− ρw

ρi

∂f
∂x

(6)

where f = (l − h) is defined as the water depth at the grounding line and m is the

accumulation rate.

The position of the grounding line is dependent on the local conditions and will
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advance or recede depending on the changes of mass in the ice sheet and shelf. As

we are assuming that sea level remains constant, then the position of the grounding

line depends only on the thickness of the ice sheet at the grounding line. If the

rate of accumulation in the sheet is greater than the combination of ablation and

ice diffusing into the shelf then we would expect the mass to increase and the ice to

thicken. If the ice thickens we would need more water to support the weight of the

ice and as we are assuming that the sea level remains constant then the position of

the grounding line will advance. In contrast, if there is a higher rate of ablation and

diffusion from the sheet than accumulation to the sheet we expect to see the mass

decrease and so the ice thickness will decrease and the grounding line will recede.

1.3.4 Total Mass Balance

We define the total mass of the ice in the sheet and shelf together as:

θ =

∫ b(t)

0

h(x, t)dx.

Since it has been assumed that there is no flux out of the system at x = 0 and so

hu = 0, we can show using Leibnitz integral rule that

θ̇ =
d

dt

∫ b(t)

0

hdx =

∫ b(t)

0

htdx+ h
db

dt

∣∣∣∣
x=b(t)

=

∫ b(t)

0

−(hu)xdx+

∫ b(t)

0

mdx+ h
db

dt

∣∣∣∣
x=b(t)

=

∫ b(t)

0

mdx+

(
−hu+ h

db

dt

)∣∣∣∣
x=b(t)

=

∫ b(t)

0

mdx (7)

since u = db
dt

at x = b(t). This implies that the change in mass is entirely dependent

on the accumulation term m. The rate of change is equal to the total amount of

accumulation or ablation over the whole glacier.

1.4 Outline of the Dissertation

The main aims of this dissertation are to

1. Investigate the efficiency of a moving mesh scheme based upon conserving mass

fractions in modelling the migration of the grounding line.

2. Investigate the behaviour of the approximate glacier dynamics of this scheme
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In section 2 we investigate the behaviour of the diffusive velocity u in the sheet

and shelf separately without the accumulation term m. We go on to discuss the

numerical approximations used for both the sheet and shelf in section 2.3.

We then combine in section 3 the sheet and shelf calculations and the coupling be-

tween them. At this point an approach using conservation of mass fractions (CMF)

is introduced. The mass fractions induce a deformation velocity v, which is generated

by the diffusive velocity u and the coupling between the sheet and the shelf. This

deformation velocity is then used to move the mesh. We are then able to recover the

ice thickness algebraically using the local conservation principle. As this approach

cannot be carried through analytically we need to find feasible ways to do it numeri-

cally. The numerical approximations for the deformation velocities and the recovery

of the ice height using finite differences are also given in section 3. In section 4 we

add the source term and outline the effect this has on the basic theory including the

numerical algorithm.

In section 5 we discuss the non-dimensionalisation of the equations. In section 6

we use a test problem to investigate the significance of the viscosity of the ice and

discuss a steady state solution. We go on to demonstrate the convergence of the

moving mesh method used in this dissertation. We then go on to talk about the

sensitivity of the model to various rates of accumulation in section 7.

In section 8 we introduce an elevation to the glacier bed. We discuss how this

affects the model and also how the stability of the method is affected with varying

gradients in the elevation. In section 9 we discuss the influence that changes in sea

level has on the grounding line and finally in section 10 we investigate the influence

that the rate factor A has on the evolution of the glacier.

Throughout sections 7 to 10 we compare results where appropriate, with the

EISMINT test cases and the results in the Vieli and Payne survey paper [11].

To conclude we give a brief summary of our findings and discuss further work on

improvements and generalisations.

8



2 Ice Diffusion Only

In this section we consider the problem with the accumulation term m set to zero.

Equation (1) then becomes the simpler equation:

ht = −(hu)x. (8)

Previously from equation (7) we showed that the change in mass is equal to the

net accumulation. As we are now disregarding the accumulation term we can now

say that

θ̇ =
d

dt

∫ b(t)

0

hdx = 0

and so ∫ b(t)

0

hdx = Constant.

2.1 Ice Sheet

The ice sheet covers the region 0 ≤ x ≤ a(t). The boundary conditions for the ice

sheet alone are that ∂h
∂x

= 0 and there is zero flux at the fixed boundary x = 0 and

that there is no flux oat the moving boundary a(t) where ∂h
∂x

and u(a(t) is given. The

diffusive velocity is given in equation (4) and remains the same for a system without

accumulation.

If we substitute u from equation (4) into equation (8) we obtain the following

nonlinear diffusion equation for h:

ht = C

(
h5

(
∂h

∂x

)3
)
x

(9)

We can also make use of the fact that h3
xh

4 = (3
7
)3(h7/3)3

x to rewrite the formula

for u as

u = −c
[
(h7/3)x

]3
(10)

where

c = C

(
3

7

)3
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leading to the alternative form of the nonlinear equation (9)

ht = c

(
h

(
∂h7/3

∂x

)3
)
x

(11)

for the change in thickness h in the ice sheet. It is equation (11) we have to solve for

h in (0, a(t)) subject to the given boundary conditions.

2.2 Ice Shelf

The ice shelf covers the region a(t) ≤ x ≤ b(t); the absence of accumulation does

not affect the equation for u given in equation (5), so u must satisfy the differential

equation

2
∂

∂x

[
νh
∂u

∂x

]
= ρgh

∂s

∂x
(12)

We consider two scenarios for the shelf velocity, one where the viscosity ν is

constant, and a more realistic model for a variable viscosity defined by [11]

ν = A−1/3

(
∂u

∂x

)−2/3

. (13)

In the constant viscosity case u is given by equation (12) which is a linear ellip-

tic equation. Incorporating the variable viscosity in equation (13) into the elliptic

equation (12), the ice shelf diffusive velocity u must now satisfy

2
∂

∂x

[
hA−1/3

(
∂u

∂x

)−2/3
∂u

∂x

]
= ρgh

∂s

∂x

=⇒ 2
∂

∂x

[
h

(
∂u

∂x

) 1
3

]
= A1/3ρgh

∂s

∂x
. (14)

This is a non-linear elliptic equation.

The boundary conditions at b(t) have been stated earlier in equation (2). In this

separate model we also assume that when the shelf is modelled by itself we are given

the diffusive velocity u at x = a(t).

2.3 Numerical Approximations

In order to solve the differential equations for this problem we turn to numerical

methods to approximate the solution. As mentioned in the introduction we use

10



a moving mesh model. One of the ideas behind a moving mesh grid is to allow

the grounding line to be followed continuously [11]. This approach is considered

advantageous from a numerical point of view since the grounding line is part of the

solution and no interpolation is needed [5]. Fixed grid models generally employ some

interpolation, as the grounding line could be situated between two fixed grid points.

In the survey paper of Vieli and Payne [11] it was found that fixed grid models are

more dependent on numerical details such as grid size and so are not as robust as

moving grid models [11]. The numerical scheme used in this dissertation adopts one

particular moving mesh approach, which incorporates conserved mass fractions to

move the mesh.

The domain [0, b(t)] is divided into N intervals such that the initial spacing is

constant, i.e. ∆x = b(0)/N . As we are dealing with two separate domains we will

use a subscripts 1 to denote the sheet and 2 for the shelf (e.g. N1 for the sheet

and N2 for the shelf, where N1 + N2 = N). We will initially take equal intervals

∆x1 = a(0)/N1 for the ice sheet and ∆x2 = (b(0) − a(0))/N2 for the ice shelf,

such that x(j) = j∆x1 for j = (0, ..., N1) is the distance along the ice sheet and

x(j) = j∆x2 for j = (N1, ..., N2) is the distance along the ice shelf. Subsequentially

the intervals ∆x1 and ∆x2 will vary with time.

The diffusive velocity is approximated using finite difference schemes.

2.3.1 Ice Sheet

For the ice sheet a centred finite difference scheme is used at the interior points,

uj = c

(
(hj+1)7/3 − (hj−1)7/3

xj+1 − xj−1

)3

. (15)

for j = 1, ..., N1 − 1. At j = 0 we use the fact that dh
dx

= 0 and so h1 = h−1 which

implies that u0 = 0. At the boundary x = a(t) a downwind scheme is used..

2.3.2 Ice Shelf

For the ice shelf we have two different approximations, firstly the approximation for

a constant ν which gives us the linear elliptic equation given in (12) to solve, and

secondly the approximation for a varying viscosity which gives the non-linear elliptic

equation given in equation (14).

We approximate equation (12) using centred differences as follows:

2hj+1/2

(
uj+1−uj
xj+1−xj

)
− 2hj−1/2

(
uj−uj−1

xj−xj−1

)
xj+1/2 − xj−1/2

= ν−1ρg hj
sj+1/2 − sj−1/2

xj+1/2 − xj−1/2

(16)
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j = N1 + 1, ...N2 − 1. We use the midpoint average for half values h and s to get

(hj+1 + hj)

(
uj+1 − uj
xj+1 − xj

)
− (hj + hj−1)

(
uj − uj−1

xj − xj−1

)
= ν−1ρg hj

sj+1 − sj−1

2
(17)

and so

hj + hj−1

xj − xj−1

uj−1−
(
hj+1 + hj
xj+1 − xj

+
hj + hj−1

xj − xj−1

)
uj+

hj+1 + hj
xj+1 − xj

uj+1 = ν−1ρg hj
sj+1 − sj−1

2
(18)

This can be written as a system of linear equations.

At the boundary j = N1, u0 is given. For the boundary at x = b instead of a

centred difference approximation we use a backward difference approximation

2hj

(
∂u

∂x

)
N

− 2(hN + hN−1)

(
uN − uN−1

xN − xN−1

)
= ν−1ρghN

sN − sN−1

2
(19)

and use the boundary condition given in equation (2).

Thus the system of equation is given as



(
h2+h1
x2−x1 + h1+h0

x1−x0

)
h2+h1
x2−x1 · · · 0

h2+h1
x2−x1 −

(
h3+h2
x3−x2 + h2+h1

x2−x1

)
h3+h2
x3−x2 0

...
. . . . . .

...
...

. . . . . .
...

...
. . . . . .

...
...

. . . . . .
...

... hN−1+hN−2

xN−1−xN−2
−
(
hN+hN−1

xN−xN−1
+ hN−1+hN−2

xN−1−xN−2

)
hN+hN−1

xN−xN−1

0 0 hN+hN−1

xN−xN−1

hN+hN−1

xN−xN−1





u1

u2

...

...

...

...

...

...

uN



=



ν−1ρgh1
s2−s0

2
− h1+h0

x1−x0u0

ν−1ρgh2
s3−s1

2
...
...
...
...
...

ν−1ρghN
sN−sN−1

2
− 2A

(
1
4
ρig
(

1− ρi
ρw

))3

h4
N


(20)

This is a tridiagonal system which we can solve for the diffusive shelf velocities u

using Gaussian elimination.
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For the non-linear elliptic equation with varying viscosity we employ a different

method to approximate the diffusive velocity u. For this we will use Picard iteration.

This is a simple first order iteration method. Given the equation

2
∂

∂x

[
h

(
∂u

∂x

)1/3
]

= A1/3ρg h
∂s

∂x

from section 2.2, a finite difference scheme will give us the following approximation

2hj+1/2

(
uj+1−uj
xj+1−xj

)1/3

− 2hj−1/2

(
uj−uj−1

xj−xj−1

)1/3

xj+1/2 − xj−1/2

= A1/3ρg hj
sj+1/2 − sj−1/2

xj+1/2 − xj−1/2

(21)

We are able to use the midpoint average for half values h and s to get

(hj+1 + hj)

(
uj+1 − uj
xj+1 − xj

)1/3

− (hj + hj−1)

(
uj − uj−1

xj − xj−1

)1/3

= A1/3ρg hj
sj+1 − sj−1

2
(22)

So uj satisfies the nonlinear system

(hj+1 +hj)

(
uj+1 − uj
xj+1 − xj

)1/3

− (hj +hj−1)

(
uj − uj−1

xj − xj−1

)1/3

−A1/3ρg hj
sj+1 − sj−1

2
= 0

(23)

for j = N1 + 1, ..., N2 − 1.

For the boundary at j = N2 instead of a centred difference approximation we will

use a backwards difference approximation

hj

(
∂u

∂x

)1/3

b

− (hj + hj−1)

(
uj − uj−1

xj − xj−1

)1/3

− A1/3ρg hj
sj+1 − sj−1

2
= 0 (24)

and apply the boundary condition described in equation (2). At x = a(t) we will also

use the given diffusive velocity u. We now have the following system of non linear

equations

F(u) =



(h2 + h1)
(
u2−u1
x2−x1

)1/3
− (h2 + ha)

(
u1−ua
x1−xa

)1/3
−A1/3ρg h1

s2−sa
2

(h3 + h2)
(
u3−u2
x3−x2

)1/3
− (h2 + h1)

(
u2−u1
x2−x1

)1/3
−A1/3ρg h2

s3−s1
2

...

...

...

...

...

...
h2
jA

1/3ρg
(
1− ρi

ρw

)
4

− (hN + hN−1)
(
uN−uN−1

xN−xN−1

)1/3
−A1/3ρg hN

sN−sN−1

2



= 0 (25)

Taking an initial guess for the diffusive velocity and using the Picard iterative
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method,

unew = uold − F(uold)

we can find the diffusive velocity of the ice shelf provided that the iterations converge.

This will only happen if the iteration is a contraction and in order to achieve this we

will use a relaxation coefficient φ = 0.01 such that

unew = uold − φF(uold).

2.3.3 Advancement of x and Recovery of h

Once we have calculated the approximate velocities for each point in the sheet and

shelf we can move each grid point with the calculated velocity using the explicit Euler

method

xn+1
j = xnj + ∆t unj (26)

where ∆t is a chosen time step and the superfix denotes the time level.

It is now possible to recover the new values of h using Leibnitz Rule and equation

(8)
d

dt

∫
h dx =

∫ [
∂h

∂t
+ (hu)x

]
dx = 0

for arbitary limits, we have ∫ xj+1

xj−1

hdx = cj (27)

where ci is a mass constant. The integral is approximated by a midpoint rule, leading

to

hj(xj+1 − xj−1) = cj (28)

These mass constants can be calculated for each subinterval using the initial condi-

tions. i.e.

cj = h0
j(x

0
j+1 − x0

j−1) (29)

where the superfix 0 represents the values at the initial time. As the mass constants

stay constant over time the ice thickness can be recovered using the approximation

of the conservation principle (28) after the gridpoints have been moved. We do this

using the following midpoint approximation and rearrangement of equation (28),

hj =
cj

xj+1 − xj−1

. (30)

A key factor in the moving mesh method we apply in this dissertation is that we

allow local mass fractions to be preserved in the moving mesh. The significance of this

is that the method is locally mass conserving when m = 0. This is in contrast to other

14



moving mesh methods where a purely geometrical criterion is often employed. In such

methods the moving domain x ∈ [0, b(t)] is mapped to a fixed domain ξ ∈ [0, 1] by

the transformation ξ = x
b(t)
, τ = t. Using the chain rule to differentiate h(ξ, τ) with

respect to τ and ξ transforms (1) into

∂h

∂t
− ξ

b(τ)

∂b(τ)

∂τ
+
∂(hu)

∂ξ
= m (31)

Note that this approach adds another term to the left hand side that is not a total

derivative with respect to ξ and therefore the equation is no longer in divergent form.

This feature can lead to unphysical effects in the method, such as not being mass

conserving when m = 0.

15



3 Combining the Ice Sheet and Ice Shelf

To combine the ice sheet and ice shelf we must replace the boundary conditions at

a(t) by the interface condition introduced in section 1.3.3. As we are disregarding the

accumulation term in this section we put m = 0 and so the total mass of the system

is constant. This simplification allows us to rewrite the grounding line migration rate

given in equation (6), which we will now refer to as va, as:

va =
da

dt
=

ρw
ρi

∂f
∂t

+ ∂(hu)
∂x

∂h
∂x
− ρw

ρi

∂f
∂x

(32)

If we were to combine the ice sheet and ice shelf so that we were simply calculating

the values for the ice sheet and the ice shelf separately in the same time step we would

not admit coupling between the two. This is not the case as there is an interchange

of flux between the ice sheet and ice shelf. The result is that although the total

mass in the system will remain constant, the masses in each section will not, so the

constants cj in section 2.3.3 will need adjusting.

3.1 Mass Fractions

We now define the ice masses in the sheet and shelf as

θ1 =

∫ a(t)

0

h1dx, θ2 =

∫ b(t)

a(t)

h2dx,

where h1 and h2 are the heights for the sheet and shelf respectively. As before the

total mass is

θ = θ1 + θ2 =

∫ b(t)

0

hdx

which is constant and where θ1, θ2 6= 0 and so differentiating with respect to time

gives
dθ

dt
= θ̇ = θ̇1 + θ̇2 = 0. (33)

We now introduce mass fractions c1 and c2, defined as:

1

θ1

∫ x(t)

0

h1dx = c1(0, x),
1

θ2

∫ b(t)

x(t)

h2dx = c2(x, b). (34)

Therefore both sheet and shelf are non-mass conserving problems although the entire
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system is one. Observe that c1(0, a) = 1 and c2(a, b) = 1. When held constant these

mass ratios can be used to induce modified velocities.

3.2 Deformation Velocities

We shall move the points x(t) such that the mass fractions in equation (34) will

remain constant over time, which we can do even with a non-zero flux between the

ice sheet and shelf.

Whereas in equation (27) we could have written
∫ x(t)

0
h1(x, t)dx = c(0, x), we now

have, from equation (34), that
∫ x(t)

0
h1dx = θ1c(0, x) and so

d

dt

∫ x(t)

0

h1dx = θ̇1c1(0, x) (35)

and similarly
d

dt

∫ b(t)

x(t)

h2dx = θ̇2c2(x, b). (36)

Using Leibnitz Rule, we find that

d

dt

∫ x(t)

0

h1dx =

∫ x(t)

0

∂h1

∂t
dx+ [hv]

x(t)
0 (37)

where v = dx
dt

is the modified velocity which is induced by the mass fractions. We

can substitute for ∂h1
∂t

from the mass balance equation (8) to get

d

dt

∫ x(t)

0

h1dx =

∫ x(t)

0

(−(h1u1)x + (h1v1)x) dx

= [h1(−u1 + v1)]
x(t)
0

= h1(x)(−u1(x) + v1(x)) (38)

since v1(0) = u1(0) = 0. Hence

h1(x)(−u1(x) + v1(x)) = θ̇1c1(0, x)

giving

v1(x) = u1(x) +
θ̇1c1(0, x)

h1(x)
(39)

by equation (35).

Similarly
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d

dt

∫ b(t)

x(t)

h2dx =

∫ b(t)

x(t)

(−(h2u2)x + (h2v2)x) dx

= [h2(−u2 + v2)]
b(t)
x(t)

d

dt

∫ b(t)

x(t)

h2dx = h2(b)(−u2(b) + v2(b))− h2(x)(−u2(x) + v2(x)). (40)

Hence

h2(b)(−u2(b) + v2(b))− h2(x)(−u2(x) + v2(x)) = θ̇2c2(x, b)

by equation (36). As we have zero flux at the boundary x = b, then h2(b)(−u2(b) +

v2(b)) = 0, ∀h2(b) and so v2(b) = u2(b). Therefore

v2(x) = u2(x)− θ̇2c2(x, b)

h2(x)
. (41)

Putting x = a into equations (39) and (41) gives us that θ̇1 = ha(−ua+va) = −θ̇2

as we expected from equation (33). Substituting this into equations (39) and (41)

we get the deformation velocites

v1(x) = u1(x) +
ha

h1(x)
c1(0, x)(−ua + va) (42)

v2(x) = u2(x) +
ha

h2(x)
c2(x, b)(−ua + va) (43)

Note that

c(b, b) =
1

θ2

∫ b(0)

b(0)

h2dx = 0

and so the addition to the diffusive velocity incurred by the deformation caused by

the mass fractions is zero at the shelf front.

3.3 Numerical Approximations

First we approimate the grounding line migration rate va in equation (32) using a

centred difference. Let j = a be the position of a(t) at a given time, then

va =

ρw
ρi

fnew−fold
∆t

+ (hu)a+1−(hu)a−1

xa+1−xa−1

ha+1−aa−1

xa+1−xa−1
− ρw

ρi

fa+1−fa−1

xa+1−xa−1

.

18



3.3.1 Time Stepping

Once we have the approximation va substituted into equations (42) and (43) we

get the velocities of the moving points. We now move each grid point with its

corresponding velocity, doing this in the same way as in section 3.3 equation (26).

However instead of uj, we now use vj. Since θ1 and θ2 vary over time we must also

find their new values after each time step. As in equation (26) these are calculated

using the explict Euler scheme as follows:

θn+1
1 = θn1 + ∆t θ̇1, θn+1

2 = θn2 + ∆tθ̇2 (44)

3.3.2 Recovering h

All that is left is to calculate the new ice heights. From equation (34) we can deduce

that:

1

θ1

∫ xj+1

xj−1

h1dx = c1,j+1 − c1,j−1 and
1

θ2

∫ xj+1

xj−1

h2dx = c2,j−1 − c2,j+1

Note that for the ice shelf cj gets smaller as we progress along the shelf and so we

subtract cj+1 from cj−1 to achieve the same effect as for the ice sheet. Using the new

values of θ1 and θ2 found in section 3.3.1 we find the new mass of ice between xj−1

and xj+1 by∫ xj+1

xj−1

h1dx = θ1[c1,j+1 − c1,j−1] and

∫ xj+1

xj−1

h2dx = θ2[c2,j−1 − c2,j+1] (45)

Approximating the integrals by the midpoint rule again we can retrieve the new

values for the ice heights as follows:

hj =
θ1(c1,j+1 − c1,j−1)

xj+1 − xj−1

, hj =
θ2(c2,j−1 − c2,j+1)

xj+1 − xj−1

(46)

A key benefit of our method having mass conserving local mass fractions is that

we are able to recover the ice height using the local mass. This avoids using another

equation to recover the ice height and therefore any additional error to build up.

3.3.3 Algorithm

For convenience, the algorithm has been summarised here:

1. Compute θ1 and θ2 in the initial profile by integrating h with respect to x

between (0, a(t)) and (a(t), b(t)) respectively.
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2. Calculate the mass fractions c1(0, xj) for j ∈ [0, .., N1] and c2(xj, b) for j ∈
[N1, .., N2] by integrating h with respect to x between (0, xj) for j ∈ [0, .., N1]

and (xj, b(t)) j ∈ [N1, .., N2] respectively.

Then at each time step

3. Calculate the deformation velocities using equations (42) and (43).

4. Move the grid nodes with the calculated velocities using the explicit Euler

method.

5. Find the new values for θ1 and θ2 using the explicit Euler method.

6. Use the new values of θ1 and θ2 to find the new values of the mass fractions

using equation (45).

7. Retrieve the new values of the ice height hj from equation (46) using the mid-

point rule and the new values of the mass fractions.

20



4 Adding the Source Term

Up until now we have only considered the problem where the accumulation is zero.

This is unrealistic as we would usually expect either snow or melting to change

the total mass. To incorporate this we will now reintroduce the accumulation term

m(x) back into the equations and investigate how this will affect the algorithm. The

function m is independent of time and will initially be taken as a constant to simulate

the conditions used in the Vielli and Payne survey paper [11].

The governing equation is now equation (1). Mass is no longer conserved but we

may ’simply’ generalise section 3. Substituting (1) into equation (37) gives

d

dt

∫ x(t)

0

h1dx =

∫ x(t)

0

−(hu)x +m dx+ [hv]x(t)
0 (47)

which as in section 3 implies that

θ̇1c1(0, x) = h1(x)(−u1(x) + v1(x)) +

∫ x(t)

0

mdx. (48)

Similarly,

θ̇2c2(0, x) = −h2(x)(−u2(x) + v2(x)) +

∫ b(t)

x(t)

mdx (49)

In the same way as in section 3, we substitute x = a(t) to find θ̇1 and θ̇2, giving

θ̇1 = ha(−ua + va) +

∫ a

0

mdx (50)

θ̇2 = −ha(−ua + va) +

∫ b

a

mdx (51)

Then, substituting equations (50) and (51) into equations (48) and (49),

(ha(−ua + va) +

∫ a(t)

0

mdx)c1(0, x) = h1(x)(−u1(x) + v1(x)) +

∫ x(t)

0

mdx (52)

(−ha(−ua + va) +

∫ b(t)

a(t)

mdx)c2(0, x) = −h2(x)(−u2(x) + v2(x)) +

∫ b(t)

x(t)

mdx (53)

so that rearranging gives
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v1(x) = u1(x) +
(ha(−ua + va) +

∫ a(t)

0
mdx)c1(0, x)−

∫ x(t)

0
mdx

h1(x)
(54)

v2(x) = u2(x) +
(ha(−ua + va)−

∫ b(t)
a(t)

mdx)c2(0, x) +
∫ b(t)
x(t)

mdx

h2(x)
(55)

The grounding line migration rate is now the same as in equation 6 reproduced

here for convenience,

va =

ρw
ρi

∂f
∂t

+ ∂(hu)
∂x
−m(x)

∂h
∂x
− ρw

ρi

∂f
∂x

.

Letting a denote the grid point for the grounding line we can approximate the mi-

gration rate by

va =

ρw
ρi

fn−fn−1

∆t
+ (hu)a+1−(hu)a−1

xa+1−xa−1
−ma

ha+1−aa−1

xa+1−xa−1
− ρw

ρi

fa+1−fa−1

xa+1−xa−1

.

where the superfixes n and n− 1 represent the time levels.

Note that we update the grid points positions, θ1 and θ2 in the same way as in

section 3 using the explicit Euler method in equations (26) and (44). All that is left

is to recover the new ice heights from the mass constants as in equation (46). For

convenience we will summarise the algorithm for the added accumulation term:

1. Compute θ1 and θ2 in the inital profile by integrating h with respect to x between

(0, a(t)) and (a(t), b(t)) respectively.

2. Calculate the mass fractions c1(0, xj) for j ∈ [0, .., N1] and c2(xj, b) for j ∈
[N1, .., N2] by integrating h with respect to x between (0, xj) for j ∈ [0, .., N1]

and (xj2 , b(t)) for j ∈ [N1, .., N2] respectively.

For each time step:

3. Calculate the deformation velocities using equations (54) and (55).

4. Move the grid nodes with the calculated velocities using the explicit Euler

method.

5. Find the new values for θ1 and θ2 using the expicit Euler method.

6. Use the new values of θ1 and θ2 to find the new values for the mass fractions

using equation (45).

7. Retrieve the new values of the ice height hj from equation (46) using the mid-

point rule and the new mass fractions.
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5 Non-Dimensionalisation

In order to compare with real data we proceed to make this model non-dimensional.

Non-diminsionalisation is accomplished by dividing each variable by a constant scal-

ing parameter. Suppose we scale h, u, x, t, and m so that

h∗ =
h

[h]
, x∗ =

x

[x]
, t∗ =

t

[t]
, u∗ =

u

[u]
, m∗ =

m

[m]

where the square brackets indicate the corresponding scaling parameter and the

superfix ∗ represents the scaled variable.

From equation (1) we find that the scaled shallow ice equation becomes

[h]

[t]
hxx∗ +

[h]

[x]
[u](h∗u∗)x∗ = [m]m∗.

For balance to be maintained within equation (1) we must have

[h]

[t]
=

[h]

[x]
[u] = [m], so [t] =

[x]

[u]
, and [m] =

[h]

[x]
[u]

5.1 Sheet

Using the diffusive velocity equation for the sheet given in section 2.1 as

u = c

(
∂h7/3

∂x

)3

we obtain the scaled ice diffusion velocity u∗

[u]u∗ = −[c]
[h]7

[x]3
c∗
[
∂(h∗)7/3

∂x∗

]3

where

c∗ =
c

[c]

Again we must ensure that both sides are balanced and so

[u] = [c]
[h]7

[x]3
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5.2 Shelf

In the shelf we have a differential equation for ice diffusion velocity repeated here for

convenience,

−2(νhux)x = ρghsx.

In the case where ν is variable, given as ν = A−1/3(ux)
−2/3, the diffusive velocity in

the ice shelf satisfies

−2(h(ux)
1/3)x = A1/3ρg h(sx). (56)

The constant c used in the sheet calculations is given by

c =

(
3

7

)3
2Aρ3g3

5

Using this in equation (56) gives

−2(h(ux)
1/3)x =

((
7

3

)3
5c

2

)1/3

h sx.

Therefore the scaled expression for the shelf velocity is given by

−2
[h]

[x]

(
[u]

[x]

)1/3
h∗(u∗x∗)1/3

∂x∗
= [c]1/3[h]

[s]

[x]

((
7

3

)3
5C∗

2

)1/3

h∗
(
∂s∗

∂x∗

)
.

For balance we need
[h]

[x]

(
[u]

[x]

)1/3

= [c]1/3
[h]2

[x]

and so [u] = [c][x][h]3.

It is sufficient to choose two of the scaling parameters [x] and [t] say, and we will

then be able to get the scaling parameters for the rest of the variables. The scaling

parameters are kept separate for the ice sheet and shelf.
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6 A 1D Test Case

Following the EISMINT test case [11] we consider a glacier where both the ice sheet

and ice shelf have an initial length of 50km. We also need an initial profile for the

ice thickness; this has been chosen to be

h = (1− 0.75x2)3/7, x ∈ (0, 1) (57)

which is similar to the initial profile chosen in [4]. Table 1 shows a summary of the

parameters used in the model.

Value Physical Parameter

n = 3 Flow Law Exponent
A = 10−18(Pa)−3a−1(*) Flow Law Parameter

g = 9.81ms−1 Acceleration of Gravity
ρi = 920kgm−3 Ice Density
ρw = 1028kgm−3 Sea Water Density

(*) a stands for annum, which is equal to 1 year

Table 1: Table of Parameters

6.1 Steady State

There is some debate about the possibility of glaciers achieving a steady state. It is

the opinion of Weertman (1974) and Thomas and Bentley (1978) that only downward

sloping beds can achieve stability with small perturbations. By contrast Hindmarsh

(1996) suggests that ’neutral equilibrium’ can be achieved on all basal slopes, that

is the glacier can reach a new steady state close to the original after a perturbation

of the grounding line.

First we must investigate if a steady state geometry is achievable for this model.

The MISMIP survey paper [5] defines an achieved steady state to be one at which the

rate of change of the grounding line is 0.1ma−1, while the rate of change of thickness is

1ma−1. This would suggest that the defined steady state of the MISMIP experiments

is not an actual steady state where ht = 0 but where ht is sufficiently small.

For the Vieli and Payne paper [11] it was found that a steady state could occur for

a moving mesh model with a constant non zero accumulation rate. For the method

of this dissertation a steady state only occurs for a constant accumulation when m

is sufficiently close to zero. This would indicate that the only steady state solution

for this method is the arbitary steady state when (hu)x ≈ 0.
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Running the model with zero accumulation exhibits negligible change to the ini-

tial conditions, with the change to the grounding line position becoming less than

0.1ma−1 within 2 years. We might ask why the larger mass of the ice at the ice

divide does not distribute itself along the domain over time. A glacier flows in the

direction of decreasing surface elevation. As the shelf is buoyed by the ocean the

surface elevation changes only marginally and so the flow is relatively small.

The inability of this model to reach a non-arbitary steady state is worrying as this

is significantly different to the results found in previous studies. The potential cause

of this inability to reach steady state is choosing a constant accumulation across the

glacier. Since the method conserves mass, a constant source term will not allow a

steady state solution as there is no flux of mass out of the system. This implies that

instead of the constant accumulation term given in the Vieli and Payne [11] paper it

is better to represent the accumulation with a linear equation. We will let

γ(1− βx)

represent the accumulation profile, where γ is a parameter used to control the scale of

the accumulation and β determines where the source term changes from accumulation

to ablation. If we choose γ and β such that∫ b(t)

0

mdx = 0.3ma−1

then we find the initial ice profile meets the requirements of a steady state described

in the MISMIP [5] papers with negligible change to the initial conditions (i.e. the

change in grounding line position is less than 0.1ma−1 and the change in ice thickness

is less than 1ma−1).

6.2 Viscosity

We are interested in the effect of simplifying the model, so viscosity is left as a

constant. We ran the model with
∫ b(t)

0
m(x)dx = 0.5ma−1 for varying N for 5000

years. Note that for a net accumulation of 0.5ma−1 we have chosen γ = 0.0002

and β = 3
2
. The approximations set out in the equations (20) and (25) have been

used, one in the case of constant viscosity and the other using varying viscosity.

The results are displayed in table 2 and table 3, with the relative differences shown

in table 4. The difference in grounding line position (GLP) between the the two

methods is very small, although it becomes slightly larger with increased resolution.

Also the change in shelf front position differs between the two methods, the shelf

front receding with the varying viscosity and advancing with the constant viscosity,
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although the difference decreases with an increased resolution.

N ∆t GLP Shelf Front h at GLP
11 0.01 50.249357 100.0000008 914.502872
21 0.25 50.400903 100.0000007 915.532212
41 0.0625 50.429636 100.0000008 915.721627
81 0.015625 50.432728 100.0000008 915.740688

Table 2: Table of Values for Constant Viscosity

N ∆t GLP (km) Shelf Front (km) h at GLP (m)
11 0.01 50.252652 99.998139 914.511045
21 0.25 50.404234 99.998295 915.539494
41 0.0625 50.433251 99.998381 915.728938
81 0.015625 50.436981 99.998427 915.748842

Table 3: Table of Values for Varying Viscosity

N ∆t GLP Shelf Front h at GLP
11 0.01 0.0065575% 0.0018616% 0.0008936%
21 0.0025 0.0066089% 0.0017057% 0.0007952%
41 0.000625 0.0071676% 0.0016193% 0.0007983%
81 0.00015625 0.0084320% 0.0015739% 0.0008904%

Table 4: Table of Relative Differences between Varying and Constant Viscosity

Although the differences are very small, constant viscosity is regarded as too

crude an assumption to make and, as incorporating the varying viscosity is relatively

simple, all future experiments viscosity will be taken as the variable case,

ν = A−1/3

(
∂u

∂x

)−2/3

.

6.3 Convergence

To decide if this numerical scheme is a useful tool in predicting the evolution of

grounding lines we must show that the method is convergent. The position of the

grounding line for a series of increasing values of N and a decreasing series of values

of ∆t has been recorded in table 5. To maintain stability ∆t has been chosen such

that ∆t ∝ N−2. Variable viscosity has been included and the accumulation rate has

been taken to be
∫ b(t)

0
m(x)dx = 0.5ma−1. The final time has been set relatively low

at 2500 years. This has been chosen because running the model for long time periods

with a very fine resolution is computationally costly.

We now need to calculate the errors. As we do not have an exact solution or

any comparable raw data the value for the grounding line position with the finest
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N ∆t Position of Grounding Line Ice Height

11 0.01 50.014602 913.835880
21 0.25 50.178554 914.982169
41 0.0625 50.215269 915.234004
81 0.015625 50.222920 915.285344
161 0.00390625 50.224352 915.293350
321 0.0009765625 50.224840 915.293729

Table 5: Table of Values

numerical mesh is used to act as an exact solution. The resulting relative errors are

recorded in table 6.

Relative Error
N ∆t GL Ice Height

11 0.01 0.4186% 0.1593%
21 0.0025 0.0922% 0.0340%
41 0.000625 0.0191% 0.0065%
81 0.00015625 0.0038% 0.0009%
161 0.00390625 0.0010% 0.00004%

Table 6: Table of Errors

The relative errors decrease as the resolution increases and so the scheme appears

to converge to the ”exact” solution with increasing number of meshpoints. Therefore

we can conclude that the method is likely to be convergent.

It can be said that if the error ‖re‖N−1 ≤ C(N−1)p where C is some constant and

p is the order of the scheme. Then due to the doubling of the number of nodes

‖re‖N
‖re‖2N

≤ C(N−1)p

C(N−1)p
= 2p

If C is independent of N then the constants will cancel and as log22 = 1, taking

log2
‖re‖N
‖re‖2N

will give us the order p. The table of results for log2
‖re‖N
‖re‖2N

for varying

values of h can be seen in table 7.

Order

log2

(
‖re‖N
‖re‖2N

)
GLP h

log2

(
‖re‖11
‖re‖21

)
2.1834 2.2263

log2

(
‖re‖21
‖re‖41

)
2.2739 2.3831

log2

(
‖re‖41
‖re‖81

)
2.3179 2.8324

log2

(
‖re‖81
‖re‖161

)
1.9787 4.4919

Table 7: Table of Log Ratios

These results show that the method is approximately second order. This is much

higher than expected as we use several first order numerical approximations. It is

most likely the result of using the results with a fine mesh as the ’exact’ solution.

The last value in the table is particularly high as the the mesh resolutions for this
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value are fine enough to closely resemble to the ’exact’ solution, this would imply

that this value is misleading.

6.4 Velocity

The velocity of each grid point for two accumulation profiles has been plotted in figure

3. The solid lines show the velocity for a positive net accumulation of
∫ b(t)

0
m(x)dx =

0.5ma−1 and the dashed lines show the velocity for a negative net accumulation

of
∫ b(t)

0
m(x)dx = −0.5ma−1. The velocities have been extracted after running the

model for 15000 years with ∆t = 0.0025, and N = 21.

Figure 3: Velocity of Points of the Domain. The solid lines are for a positive net accumulation of∫ b(t)

0
m(x)dx = 0.5ma−1 and the dashed lines denote at negative net accumulation of

∫ b(t)

0
m(x)dx =

−0.5ma−1. The red crosses denote the grounding line position

For both accumulation rates the magnitudes of the velocities are much larger at

the grounding line. This agrees with the results of Schoof [7].

6.5 Dependency on the Number of Nodes

From the Vieli and Payne paper [11], for the fixed grid models a step change in

accumulation gives no change in grounding line position for a coarse grid. Increasing

the resolution of the grid causes the grounding line to advance considerably if there

is an increase in accumulation, however there is still no change to the grounding line

position for a decrease in accumulation. This exhibits a strong dependency on grid
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size and also a strong tendency for the grounding line to advance. In contrast to this

there is no bias for the grounding line to advance or retreat for the moving mesh

techniques of the Vieli and Payne paper. In addition, the difference in grounding

line position between different numbers of grid nodes is much smaller for the moving

mesh methods.

For our model there is some dependency of grounding line position on the number

of grid points, however this is smaller than the initial ∆x. Table 6 shows us that there

is less than half a percent difference in grounding line position between a coarser grid

and a finer grid, which amounts to approximately 200m. This is less than the initial

grid spacing and therefore in the resolution of the model. This shows us that the

dependency on the number of grid points is small.

Table 5 shows that the change in grounding line position increases with increased

N . This is contrary to the results of the Vieli and Payne survey paper [11]. Another

difference between the moving mesh method of this dissertation and the ones used in

the Vieli and Payne paper is that the tendency of the grounding line is dictated by

the sign of the accumulation. For a positive net accumulation the grounding line will

advance and for a negative accumulation the grounding line will recede. Whereas

the grounding line in the Vieli and Payne paper models will recede for small positive

values of accumulation.

To conclude, the moving mesh model used in this dissertation is less dependent on

the number of nodes than the fixed grid models used in the Vieli and Payne paper and

exhibits a similar dependency on the number of nodes to the moving mesh models

of the Vieli and Payne paper.

6.6 Running Time of Model

The running time of the program to a final time of 10000 years has been given in

table 8 to give an idea of how long the program takes to run.

N ∆t Running Time (s)
11 0.01 0.173143
21 0.0025 0.73899
41 0.000625 3.626864
81 0.00015625 20.593795
161 0.0000390625 133.800593
321 0.000009765625 996.373773

Table 8: Table of Running Times

The computational cost of the program is relatively cheap with a running time of

several minutes for a fine gird and a matter of seconds for a coarse grid.
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7 Changes to the Accumulation Rate

For a positive net accumulation we expect the grounding line to advance and for a

negative net accumulation we expect the grounding line to recede. For an increased

magnitude in accumulation we would expect to see an increase in the change of

grounding line position. The ice thickness profiles for different accumulation rates

are shown in figure 4. Note that γ = 0.0002 and β is given various values with β = 3
2

corresponding to a net accumulation of 0.5ma−1, β = 19
10

corresponding to a net

accumulation of 0.1ma−1, β = 21
10

corresponding to a net accumulation of −0.1ma−1

and β = 5
2

corresponding to a net accumulation of −0.5ma−1. The final time is

15ka. There are 21 horizontal grid points for these plots and ∆t has been taken to

be 0.0025.

Figure 4: Ice thickness profile after 15000 years for different values of β. The crosses mark the
grounding line position.

The expectations of the changes to the grounding line position with different

accumulation rates have been met here. There is one key difference between the

moving mesh method of this dissertation and those discribed in the Vieli and Payne

survey paper. There are some cases in the Vieli and Payne paper that for even a

positive accumulation there is still a retreat in the grounding line position. This is

counter intuitive as a positive accumulation would indicate that there is mass gain.

If the mass increases around the grounding line then it would require more water to

bouy the mass of the ice. If the sea level remains constant then there will not be

enough water to bouy the ice just ahead of the grounding line and so the flotation

criterion will no longer be met. Thus the grounding line will advance. The fact that
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this does not occur in the methods described in the Vieli and Payne survey paper

[11] could be a symptom of mass not being relatively conserved.

We must now ask ourselves if the changes to grounding line position are reversible.

This time we run the model with β changing during the model run. It starts with

β = 3
2
, progresses to β = 19

10
at 3750a, β = 21

10
at 7500a, and finally β = 5

2
at 11250a.

The grounding line position has been plotted against time with these changes to β

in figure 5.

Figure 5: Change in grounding line position over 15000 years with β changing in time

Changes to the grounding line are clearly reversible, with the inital profile being

achieved if the change of mass over a period of time equals the negative change of

mass of the following period of time. From figure 5 we can also see that the grounding

line position does not change more than 50m over 3750a when the net accumulation

term is 0.1ma−1. The change is ice thickness is also less than 1ma−1. This would

imply that under these conditions we are at an approximate steady state where ht

is sufficiently small. This would indicate that we have a ’neutral equilibrium’, (i.e.

there is a new steady state position close to the original).

The Vieli and Payne paper [11] saw that any change in the grounding line position

can be reversed by resetting the accumulation term. The moving mesh method

used here does not do this. This is because the accumulation term includes the

net accumulation (i.e accumulation + ablation) and as our method is locally mass

conserving any change in mass is equal to the sum of accumulation over the glacier.

Resetting the accumulation rate to what it was will only cause the grounding line to

return to the original position if the original accumlation rate has the opposite sign

to the new accumulation rate.
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8 Introducing a Tilt

Up until now we have only discussed a glacier with a flat bed but in reality this

is not the case. In order to make the model more realistic we now incorporate an

elevation to the ice bed. This will change the way in which we treat the diffusive

velocity set out earlier in equation (3). We previously stated that, in the sheet s = h

in the absence of bed elevation and so equation (3) could be adjusted to equation

(10). As this is no longer the case we are left with equation (3) without any further

simplification.

The bed elevation will also change the way we calculate sea level as we have a

new component. As before we expect the sea level to be equal to the ice thickness

below sea level at the grounding line. Hence

l =
ρi
ρw
ha + b

where b is the elevation of the ice sheet base. At the grounding line this is equal to

the elevation of the bed.

We choose three different profiles for the ice bed. An inclined plane with a slope

of −0.005◦ with an elevation of 250m at the ice divide, an upward plane with a slope

of 0.005◦ with an elevation of 250m at the shelf front and the previous bed rock

profile of a flat bed. These have been chosen to replicate the EISMINT conditions

[11]. The initial profiles of these glaciers are given in figure 6. All profiles have the

same ice thickness profile, given in equation (57).

There is much debate as to whether it is possible for an upward sloping bed

to be stable. Influential articles such as Weertman [12], and Thomas and Bentley

[8], have led us to believe that stable marine ice sheets cannot be located on upward

sloping beds. This instability can be explained by the ice sheet instability hypothesis,

which states that if the grounding line recedes on an upward sloping bed then the

thickness at the grounding line should increase. Ice flux in a one-dimensional model

can be described by the equation q = hu, and so an increase in ice thickness leads

to an increase in flux. As the flux increases as the grounding line recedes, then

the grounding line will continue to recede indefinitely. This has been somewhat

controversial, however. Hindmarsh [3] has argued that the large scale flow of the ice

sheet is mostly unaffected by the changes to the grounding line position and that

the ice sheet will therefore be stable on an upsloping bed [2]. Shoof [7] provides a

combination of numerical and analytical results to confirm the work of Weertman

[12] and Thomas and Bentley [8]. The survey paper of Vieli and Payne, [11] asserts
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that the grounding line positions in moving mesh models are independent of basal

slope. With such a varying field of conclusions and results it is still uncertain how

the basal slope should affect the grounding line position.

We are interested in observing the impact of bed elevation on the migration of the

grounding line for this moving mesh model. The model has been run for each glacier

profile from figure 6 for a final time of 15000 years with
∫ b(t)

0
m(x)dx = 0.5ma−1.

and with
∫ b(t)

0
m(x)dx = −0.5ma−1. There are 21 grid points, and dt = 0.0025.

There is less than a 200m difference in grounding line position between the basal

slopes for either an advance or a retreat. For the upsloping bed the grounding line

will advance more compared to the flat and downsloping bed and retreat the least.

The downsloping bed will retreat by the largest amount but advance by the smallest

amount compared to the flat and upsloping bed.

There doesn’t appear to be any change in tendency of grid point evolution with

the varying beds and the difference in grounding line position for different basal

slopes is smaller than the initial grid size and so within the accuracy of the model,

indicating that the model is independent of basal topography. This agrees with the

results found in the Vieli and Payne survey paper [11] and the results of Hindmarsh

[3].

Looking more closely at the upsloping bed we find that in contrast to the ice

sheet instability hypothesis the ice thickness at the grounding line does not increase

as the grounding line recedes but decreases. The moving mesh models in the Vieli

and Payne paper also exhibit this behaviour.

The tendency for the ice thickness to decrease as the grounding line recedes is

worrying as it is counter intuitive. As sea level remains constant in this model,

when the grounding line recedes along an upsloping bed then the water depth would

increase. If the ice height at the grounding line decreases then it would imply that

the flotation criterion is no longer met. This could either indicate that there is a

problem with the method or perhaps a problem with the modelling of the grounding

line migration rate.

As mentioned before, the accumulation term in this dissertation includes the com-

bination of the accumulation and ablation. In the methods discussed in the Vieli and

Payne survey paper [11], even for a positive accumulation the grounding line can re-

cede and the total mass can decrease. This would indicate that the mass is lost in

another part of the method. If we make the assumption that the m in the grounding

line migration equation is strictly the amount of accumulation with no contribution

of ablation and allow m(a(t)) at the grounding line to be 0.1ma−1 as in the Vieli and

Payne survey paper we still find that the ice height at the grounding line decreases

as the grounding line recedes.

Further investigation into the grounding line migration rate exposes a key differ-
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ence between the migration rate specified in the Vieli and Payne paper [11] and the

Hindmarsh paper [3] that the migration rate was originally taken from. We have so

far taken f = l− h as in the Vieli and Payne paper, however in the Hindmarsh 1996

paper f = l − b. Differentiating the flotation criterion

ρih = ρw(l − b)

gives

d

dt
[ρih] =

d

dt
[ρw(l − b)]

∂ρih

∂t
+
∂x

∂t

∂ρih

∂x
=

∂ρw(l − b)
∂t

+
∂x

∂t

∂ρw(l − b)
∂x

(58)

Letting f = l − b, v = ∂x
∂t

and dividing both sides by ρi we have

∂h

∂t
+ v

∂h

∂x
=

ρw
ρi

∂f

∂t
+ v

ρw
ρi

∂f

∂x

v

[
∂h

∂x
− ρw
ρi

∂f

∂x

]
=

ρw
ρi

∂f

∂t
− ∂h

∂t

v =

ρw
ρi

∂f
∂t
− ∂h

∂t

∂h
∂x
− ρw

ρi

∂f
∂x

(59)

Implementing this change exhibits some differences in the results. Firstly for an

upsloping bed we find that as the grounding line recedes the ice at the grounding

line thickens, confirming the results of Weertman [12] and Thomas and Bentley [8].

The flux for a final time of 15000 years, 21 grid points and dt = 0.0025, for all three

basal slopes has been plotted in figure 7. We see a large variation in the flux in the

first few time steps. This is due to the absence of initial conditions for the flux and

so it takes a small amount of time for the flux values to settle down to their ’true’

value. We allowed the model to run until the flux variations settled before we started

plotting the flux.

The flux for the upsloping bed is much larger than for the downward sloping and

flat beds. Even though the flux is much larger for an upsloping bed the grounding

line migration remains stable. This can be seen in figure 9(b) where we can see that

the grounding line recedes stably as the change in grounding line position decreses

over time, with the change in grounding line position becoming less than 0.1ma−1

after 7500 years. This is because the flux does not increase with time but decreases.

This would indicate that the flux is dominated by the velocity at the grounding

line. The flux for a glacier in advance has been plotted for all three basal slopes in
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figure 8. When the grounding line advances the ice thickness decreases, however for

an upsloping bed we still see that the flux has the largest magnitude. Again, this

indicates that the flux is dominated by the large velocity at the grounding line.

The reason for the larger fluxes for the upsloping bed is due to the large grounding

line velocities. The fx term now incorporates bx in the new formula (59) for ground-

ing line migration (59). For an upsloping bed this has the opposite sign to the

downward sloping bed, the result of which is that the denominator of the grounding

line migration equation is now much smaller and hence the grounding line migration

is much larger.

The grounding line position has been plotted in figure 9 for all three basal slopes

using the new grounding line migration rate. The final time is 15000 years, there are

21 grid points, and ∆t = 0.0025. Figure 9(a) has the accumulation set to
∫ b(t)

0
mdx =

0.5ma−1. and figure 9(b) has the accumulation set to
∫ b(t)

0
mdx = −0.5ma−1.

These figures show us that the change in grounding line position for different basal

slopes is now much larger for the the new grounding line migration equation. This is

in contrast to the Vieli and Payne paper where the grounding line migration should

be independent of basal slope [11]. In addition the migration of the grounding line

is now largest for an upsloping bed for both a receding and advancing glacier and

smallest for a downsloping bed for both a receding and advancing glacier.

Another key feature of the new grounding line migration equation (59) is that for

the downward sloping bed the grid points advance or recede by a smaller amount,

while for an upsloping bed the grid points advance or recede by a much larger amount

and for a flat bed the grid points also advance or recede by a larger amount. The

grounding line migration has been plotted to illustrate this in figure 10. Also notice

that for the old grounding line migration rate there was a tendency for the grounding

line to initially recede for all basal slopes. This is further evidence that the old

equation for the grounding line migration rate is not a good representation of the

grounding line migration.

We tested the convergence of the model with the new equation for grounding

line migration in the same way as in section 6.3 and found that the method was of

approximately order 2.

To conclude this discussion, the moving mesh method is stable for a glacier on all

basal slopes, which agrees with the results found in the Vieli and Payne 2005 survey

paper, and contradicts the theoretical arguments of Weertman (1974) and Thomas

and Bentley (1978). However we find that grounding line migration does depend on

the basal topography, which is in contrast to the results of Vieli and Payne [11].
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(a) Downward Slope

(b) Flat Bed

(c) Upward Slope

Figure 6: Different Ice Bed Profiles
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Figure 7: Flux at the Grounding Line for each basal slope with
∫ b(t)

0
mdx = −0.5ma−1

Figure 8: Flux at the Grounding Line for each basal slope with
∫ b(t)

0
mdx = 0.5ma−1
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(a) Advancing Glacier

(b) Receding Glacier

Figure 9: The grounding line position over 15000 years for different basal slopes
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(a) Downward Slope

(b) Flat Bed

(c) Upward Slope

Figure 10: Comparison of the change in grounding line postion between the new and old equation
for grounding line migration for different basal slopes.
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9 Changes to Sea Level

We allow the sea level to change by 5% over 1000 years, which amounts to a change

of approxiately 60m. For this experiment there are 21 grid nodes and ∆t is set to

0.000625, the net accumulation is set to
∫ b(t)

0
m(x)dx = 0.3ma−1, which allows the

initial profile to remain in approximate steady state. For a sea level rise of 5% the

grounding line recedes by approximately 8.5km. For a 5% decrease in sea level the

grounding line advances by appoximately 7.5km. This is a much larger change than

that described by the moving mesh models in the Vieli and Payne survey paper, where

the grounding line position recedes by approximately 2km for a of sea level rise of

125m and advances by 1.5km for a decrease of sea level of 125m. The grounding line

migration of this method is also larger than the migration of the fixed grid methods of

the Vieli and Payne paper. These differences could be attributed to the difference in

the initial profile. For this dissertation we chose the sea level such that the flotation

criterion was met at the mid point of the glacier. This is counter-intuitive as sea level

determines the position of the grouning line and not vice versa. We chose this way

as we wanted to replicate the conditions in the EISMINT experiments. Instead, if

we allow the sea level to be 500m and obtain the expected position of the grounding

line using the flotation criterion, we find that the resulting values for the migration

of the grounding line are very different. Allowing the same changes to sea level as

before gives an advance of less than 1km and a retreat of approximately 3.5km.

Allowing the sea level to return to the original position over 1000 years exhibits

a return to the original grounding line position indicating that changes to sea level

are reversible.

10 Changes to Rate Factor

The rate factor A is strongly dependent on the temperature of the ice. The fixed

grid models of the Vieli and Payne paper were strongly dependent on the rate factor

and thus the modelled temperature of the ice. For the previous experiments of this

dissertation the rate factor has been taken to be A = 10−18, which corresponds to

an ice temperature of −34◦c. This is rather too low to be realistic [11]. Increasing

the rate factor corresponds to a decrease in the modelled ice temperature. It was

found that an increase in ice temperature caused the fixed grid models to have a

higher tendency to recede. For the moving mesh models in [11] the change in rate
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factor had very little effect on the grounding line dynamics although the absolute

values in grounding line change were larger [11]. For the moving mesh method of

this dissertation a higher rate factor makes very little change to the grounding line.

In an advancing glacier the difference in grounding line position is marginally larger

for a higher rate factor. For a receding glacier the change in grounding line position

is marginally smaller for the higher rate factor.

This indicates that this model is not very sensitive to the ice rheology; similar to

the Vieli and Payne paper. This indicates that errors in the modelled ice temperature

will not strongly affect the results.
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11 Conclusion and Discussion

Accurate and efficient modelling of the grounding line in glaciology is crucial in order

to make reliable forcasts of the fate of the Cryosphere. Changes to grounded ice in

the Cryosphere will greatly impact upon the Earth’s climate system. Recent rates

of receding ice sheets has prompted an increase in the desire to properly understand

the dynamics of these glaciers. The modelling of glacier dynamics has experienced

considerable development in recent years. However the results thus far have been

inconsistent.

One common feature in many recent studies, such as the MISMIP [5] and Vieli

and Payne [11] survey papers is that moving mesh models are often more reliable

and robust as they avoid interpolation at the grounding line and are therefore less

dependent on the grid resolution.

This project has been concerned with assessing the practicality of the Conserved

Mass Fractions (CMF) moving mesh method of Baines, Hubbard and Jimack [1].

This method forces local mass fractions to be preserved when moving the mesh. A

benefit of this model is that local mass balance is respected, which is a key physical

feature of glaciers.

In the introduction we set out to introduce the basic theory of glaciology and

the motivation in modelling the migration of the grounding line. Throughout this

dissertation we have covered several topics. These have been summarised here.

• In section 2 we defined the diffusive velocities for the sheet and shelf separately

without coupling and without the accumulation term.

• In section 2.3 we discussed the numerical techniques used to approximate the

diffusive velocities and how to advance the mesh using these velocites.

• Section 3 introduced the method of conservation of mass fractions in order to

allow for variable mass in the sheet and shelf and in order to later incorporate

the coupling between sheet and shelf.

• We defined the deformation velocity in section 3.2 and showed how these ve-

locities are affected by the diffusive velocity and the velocity induced by the

conserved mass fractions.

• In section 3.3 we discussed the modification to the numerical method for in-

corporating the mass fractions, and also the time stepping method we used to

move the mesh with the approximated deformation velocity.
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• Section 3.3.3 outlined an algorithm for the method so far.

• We then went on to discuss how we recover the new ice heights using mid-point

approximations, made possible by the conserved mass fractions method.

• We reintroduced the accumulation term in section 4 and discussed how this

affected the algorithm in section 3.3.3.

• In section 5 we discussed the necessity of non-dimensionalisation for application

to real data and how we facilitated this necessity in the method.

• Section 6.1 investigated the steady state solution and found that our model

achieves a near steady state, where ht is sufficiently small, when the accumula-

tion term is sufficiently small.

• Section 6.2 investigated how the viscosity ν affected the model and found that

the difference between varying and constant viscosity is relatively small, however

it does alter the tendency of the shelf front to advance or recede. Despite the

very small difference in varying viscosity and constant viscosity, incorporating

the varying viscosity is relatively easy and so it is preferable to include it, as

constant viscosity is too crude an assumption to make.

• We tested for convergence in section 6.3 and showed that our method is conver-

gent and approximately second order.

• We examined the dependency of the model on the number of nodes in section

6.5. We found that the method is reliable with a coarse resolution, as the method

is not stongly reliant on the number of nodes. This demonstrated a robustness

typical of moving mesh models.

• Section 7 investigated how changes to the accumulation affected the evolution of

the glacier. We found that changes to the accumulation rate caused the glacier

to evolve in a way that we would expect. For example, a positive accumulation

caused the grounding line to advance and a negative accumulation caused the

grounding line to recede. For a net accumulation of zero the grounding line

position hardly changed. We also found that changes to the glacier incurred

by changes in the accumulation were reversable. We found that the model is

strongly dependent on the chosen accumulation rate, which is problematic as

modelling the accumulation and ablation measurements can be inaccurate and

so the inaccuracies in these measurements will present inaccuracies in the model.

• In section 8 we introduced an elevation to the ice bed. We discussed how this

affected the design of the model, the effect the basal slope has on the glacier

dynamics, and the stability of the model on different basal slopes. We found

44



that the CMF moving mesh method is stable for all basal slopes. However the

the grounding line migration is dependent on basal topography.

• Section 9 investigated how the model reacts to changes to in sea level and found

that changes in sea level affected the grounding line position in a way we would

expect. For example a rise in sea level caused the grounding line to recede and a

decrease in sea level caused the grounding line to advance. We also found that

changes to the grounding line position incurred by changes in sea level were

reversable.

• Finally, section 10 investigated how changes to Rate Factor A affected the model

and the sensitivity of the model to ice temperature. We found that the model

was not highly dependent on the rate factor and therefore insensitive to the

modelled ice temperature.

The main aims of this dissertation have been to investigate the efficiency of the

CMF moving mesh approach at modelling the migration of the grounding line and

investigate how the behaviour of this model correlates with other schemes. We found

that the model is convergent and we have been able to make favourable comparisons

to the moving mesh models discussed in the Vieli and Payne survey paper [11],

however our model does exhibit several distinct differences.

Firstly we see the grounding line recede for a small positive accumulation in the

moving mesh methods described in the Vieli and Payne survey paper [11]. This

is counter-intuitive as an increase in mass at the grounding line will give a larger

mass to the ice and so would require more water to keep the ice bouyant. As sea

level remains constant in these experiments we would expect more ice to become

grounded. As this is not the case it demonstrates that the models in the Vieli and

Payne paper do not fully respect true mass balance while the model used in this

paper does. Mass conservation or mass balance is a key feature of glaciers.

Secondly we found that the model is stable for all basal slopes, which contradicts

the results of Weertman [12] and Thomas and Bentley [8], as although the ice thickens

as the grounding line recedes on an upsloping bed, the flux appears to be dominated

by the grounding line velocity. A stable model for all basal slopes confirms the results

of Hindmarsh [3] and the Vieli and Payne [11] survey paper. Although the grounding

line is more dependent on the topography of the ice bed than stated in the Vieli and

Payne paper, [11].

A caveat to this is that the CMF moving mesh model used in this paper is only

one-dimensional. We also disregard full mechanical coupling with the ice stream and

instead use only semi-coupling between the sheet and the shelf. There are also a

number of other assumptions we have made in this model that may have large effects

on the stability, such as assuming that there is no basal sliding. Extending the model
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to include these factors may change the results.

To conclude, this dissertation is unique in the sense that we have used a moving

mesh method based on conserved mass fractions with the addition of semi-coupling

between the sheet and shelf. Dale Partridge [4] used the same moving mesh method

for a grounded ice sheet without the addition of the semi-coupling between the sheet

and the shelf. To have an increasing ice height for a receding glacier on an upward

slope, an amendment to the flotation criterion described in the Vieli and Payne paper

[11] needed to be made. This amendment allowed the ice height to increase as the

glacier receded along an upward slope. This is required so that the flotation criterion

is continued to be met, however the experiments in the Vieli and Payne paper did

not exhibit this behaviour. Despite this change in the behaviour of the ice height

we still found that the retreat of the grounding line was stable for an upsloping

bed, contradicting the results of Hindmarsh [3] and [7]. However the grounding line

dynamics are more dependent on the basal topography than suggested in the Vieli

and Payne paper [11].

In addition we have found that the tendency of the grounding line to advance or

recede is dictated by the sign of the net accumulation. This is in contrast to the

Vieli and Payne paper [11] where a small positive accumulation led to a receding

grounding line. This is potentially caused by the moving mesh models in the Vieli

and Payne paper not being locally mass conserving.

11.1 Further Work

11.1.1 Full Stokes Equations

Many numerical models make use of the shallow ice approximations. These approxi-

mations use vertical averaging to simplify the full Stokes’ equations. There have been

relatively few attempts to model the ice dynamics with the full Stokes’ equations,

but one example of a model using the full Stokes’ equations occurs in the MISMIP

paper. It was found there that the results of the full Stokes’ equations yielded much

larger changes to the grounding line position. This model is however computation-

ally costly and modelling the grounding line with the use of full Stokes’ equations

includes the question of available computer resources.

11.1.2 Higher-Dimensions

Extending the model to a 2D model generalises the shallow ice mass balance equation

(1) to

ht +∇.(hu) = m
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For the 1D model we have used a finite difference scheme described in sections 2.3

and 3.3. This has been feasible for the 1D model, but it would not be appropriate

to extend this to a 2D model as finite difference methods are inflexible. In order to

adapt the model to 2D model we could employ a finite element scheme as in [1].

An example of the CMF moving mesh scheme being used in a 2D case with a finite

element approximation can be found in [4]. The method was used to investigate the

behaviour of the ice sheet only, with no coupling to the attached shelf. It was found

that the glacier was able to advance and retreat sucessfully with no node tangling

and that the results with this scheme had an increased accuracy compared to the

moving mesh models used in the EISMINT scenario. However, the computational

cost of running the model was greatly increased.

Incorporating finite elements has the added benefit that we can incorporate an

unstructured triangular mesh. This would allow us to fit the numerical grid to an

non-uniform domain. As glaciers aren’t so considerate that they fit themselves neatly

into square grids; a finite element method will allow us to model the glacier with more

accuracy, as we can adjust the mesh to fit the domain.

Further work could be to investigate how the semi-coupled model behaves when

incorporating the finite element method in 2D.

11.1.3 Ice Calving at the Shelf Front

Glaciers experience a sudden amount of mass loss at the shelf front due to ice calving.

This is where large chunks of ice break from the shelf at the shelf front and float

unattached to the glacier. This is a very efficient ablation mechanism. It has been

found that the amount of melting at the grounding line is small compared to the

mass loss by calving [10]. This clearly makes it a very important process, but it is

still poorly understood.

Incorporating ice calving into the model could be problematic as it requires know-

ing at which point the ice will break off and when. It has also been suggested that

finding a rate for calving for a floating ice shelf ”may be illusory” [9]. As ice calving

has such a large effect on the ice shelf and in turn the ice shelf can affect the ground-

ing line, a better understanding of ice calving on floating ice shelves will lead to a

better understanding of the migration of the grounding line.

Other extensions include incorporating basal sliding, investigating a time depen-

dent accumulation rate and also to investigate full mechanical coupling between the

ice sheet and ice shelf via the inclusion of an ice stream.
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