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1 Abstract

Richards’ equation describing soil water flow is a highly nonlinear PDE and

as such can only be solved numerically except for a small number of special

conditions. Two schemes were considered here; the Crank Nicolson scheme

with a nonlinear solver and a conservation-based moving mesh scheme. Four

realistic scenarios were chosen to test the the schemes; i) a shallow moving

water table, (ii) unsaturated infiltration on dry soil, (iii) ponded infiltration

on dry soil, and (iv) infiltration into layered soil. The schemes were found to

work well, with the ponded infiltration being the most challenging in terms

of size of timestep required. Unstable flows were briefly considered where

infiltrating water is held up momentarily. A mechanism for explaining this

waiting time is described.
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2 Introduction

The aim of this project was to implement a robust fixed mesh scheme and a

conservative-based moving mesh (MM) scheme for solving Richards’equation

(RE) for four realistic and challenging boundary conditions: (i) a shallow,

moving water table, (ii) unsaturated infiltration, (iii) ponded infiltration,

and (iv) infiltration into layered soil. Two soils were simulated which were

chosen to be near the two ends of the textural spectrum; sandy and clayey

soils. The fixed mesh scheme is the nonlinear Crank Nicolson (CNi) scheme

which is a semi-implicit method requiring an iterative preocedure. Fixed

mesh implicit schemes have been used extensively in the literature [4] for

solving RE and more recently have incorporated time adaption schemes

[5]. The performance of the CNi scheme and the requirement of adaptive

timestepping is investigated here. The MM scheme investigated here is not

a common form of the adaptive mesh schemes used for solving RE. Most

adaptive mesh schemes are concerned with reducing truncation errors and

increasing model effciency [6]. The advantage of the MM scheme is the in-

herent mass-conserving properties which is ideal for use in situations with

moving boundaries such as moving water tables and infiltration.

In Chapter 2, the soil physics behind the RE is introduced and impor-

tant variables such as soil water content (θ), soil water potential (ψ ), and

hydraulic conductivity (K) are defined and various relations involving these

variables are described. The RE is derived and its various forms; ψ-based,
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6 CHAPTER 2. INTRODUCTION

θ-based, and mixed, are given.

In Chapter 3, the schemes are described. The derivation of the CNi

scheme starts with the explicit scheme and progresses to the linear Crank-

Nicolson scheme (with K evaluated at the current time level) and finally on

to the nonlinear Crank-Nicolson scheme (with K evaluated at the forward

time level) with two methods of iteration described; Newton-Raphson and

Picard. The explicit and linear Crank-Nicolson schemes are seen as natural

building blocks for implementing the more complex nonlinear schemes. The

discretisation at the boundaries for the four scenarios mentioned above is

shown for the explicit method but related closely to that of the subsequent

schemes. The MM scheme is derived along with the various boundary

conditions mentioned above.

In Chapter 5 shows results of the simulations mainly in graphical form

using the four scenarios above. The performance of the CNi scheme and

the suitability of the MM scheme for solving RE is investigated. The size of

the timestep used for the CNi scheme is analysed and comparisons between

the two schemes shown. In Chapter 6, the concept of waiting times is

investigated with reference to unstable flows. The MM scheme is used

to numerically show the existence of a waiting time. Finally the project

finishes with a Conclusions and Further Work chapter.



3 Background theory - soil
physics

3.1 Soil Structure

Soil is a solid lattice made up of mineral and organic fractions. The mineral

fraction generally makes up the majority by volume and consists of particles

of diameters varying from clay (> 2 µm) to coarse sand (up to 2 mm). The

relative proportion of these particle sizes and organic matter (which acts as

a glue to bond particles togther to form aggregates) largely determines the

range of pore sizes present in the soil. It is this distribution of pore sizes

that greatly influences water storage and movement.

Water can be present in soils in its three phases, but most often in the

liquid and gaseous phases only. Water movement in soil is mainly due to

vapour and liquid flows. Vapour flow dominates in dry conditions where

soil pores are largely empty of liquid and vapour flows under gradients of

water vapour and temperature. Under wet conditions liquid water in pores

creates a pathway for flow between adjacent pores with flows driven by

moisture gradients and gravity. Only liquid water flows are considered in

this report.
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8 CHAPTER 3. BACKGROUND THEORY - SOIL PHYSICS

3.2 Soil water - definitions

There are two main concepts related to describing the amount or state of

water in soils; (i) volumetric water content, θ (m3m−3), and (ii) water pote-

nial, ψ (Pa or m). The amount of water in soil is almost always presented

on a volume basis as shown in the equation below:

θ =
Volume of water

total volume of soil
(3.1)

Water potential relates to the energy state of the water in the soil pores. A

formal definition found in most soil physics text books for water potential is

[12]: ’The work required to move water from a free state such as a lake into

the soil at current moisture levels’. There are two main components of ψ;

matric potential (ψm) and gravitational potential (ψg), where ψ = ψm+ψg.

The ψm component dominates during unsaturated conditions and relates to

the capilliary forces or attraction of water molecules to solid surfaces. It is

often referred to as a ’suction’ and has a negative value except if free water is

present on the soil surface. The magnitude of ψm increases as the soil dries.

The ψg component dominates under saturated conditions where θ is at or

near maximum (water occupying all pore spaces). Here water moves down

the soil profile under the force of gravity. The magnitude of ψg is relative to

some reference point (usually the soil surface). For future reference, ψ will

be used to refer to matric potential, since matric and gravitational potential

are always treated separately.

3.3 Soil moisture characteristics

There is a continuum of soil types from heavy clay to very sandy soils and

with every soil there is a unique relationship between ψ and θ. The figure

below shows typical curves describing the ψ(θ) relationship or soil moisture
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characteristics (SMC) spanning from sandy to clay soils. In figure (3.1),

Figure 3.1: Typical SMCs for a range of soil types [1].

there are three shaded horizontal regions; (i)the blue region is the free-

water zone where a portion of water drains from the soils under the force

of gravity, (ii) the green region where water is now held in the soil against

the force of gravity and some is available for plant uptake, and (iii) the red

region which represents the residual water held very tightly in the pores. So

for the two extreme soils, sand has most of its pore water loosely held and

hence is drained away leaving > 10% left in the pores, and clay has about

50% still left in the red zone. The boundary between the blue and green

regions is termed the ’field capacity’, which represents the amount of water

a soil can hold. The SMCs can be determined from in situ or laboratory

measurements for each individual soil.

3.4 Empirical relations describing the SMC

The simplest empirical relation describing the SMCs in figure 3.1 above is

the Brookes-Corey relation [2]:

ψ

ψe
=

(
θ

θs

)
(3.2)
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where θs is the saturated value for θ (equivalent to the pore fraction in soil),

ψe is termed the air-entry potential where θ = θs for ψ ≥ ψe, and b is the

slope of equation 3.2 when loge is applied to both sides. The parameter

values for ψe and b are obtained either (i) from curve-fitting procedures if

tabulated data for the SMC is available (most accurate), (ii) from other

easily measured soil properties via various pedo-transfer functions, or (iii)

from listed values in the literature for each soil type. The advantage of this

relation is its simplicity and the easily understood correlations between b

and ψe values with soil type. The main disadvantage is the poor way in

which the SMCs are described near to saturation (see later in Figure 3.2).

Another relation, devised by van Genuchten [3], improves the description

of the SMC near to saturation as shown in Figure (3.2) and is given by:

Se =
θ − θr
θs − θr

=
1

(1 + |αψ|w)f
(3.3)

where Se is the normalised water content, θr is the residual water content

after air-drying, and α, w, and f = 1− 1/w are fitting parameters.

Figure 3.2: Comparison between van Genuchten (vG) and Brookes-Corey
(B-C) formulations
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3.5 Water flow in soils - Darcy’s Law

The movement of water occurs in soil when gradients of ψ develop from

inputs/removal of water from precipitation/evaporation at the soil surface

or root uptake in the soil profile. Water flows from regions of high to low

values of ψ and is described by Darcy’s Law:

q = −K
(
∂ψ

∂z
+ 1

)
(3.4)

where q is the flow rate (ms−1), K is the hydraulic conductivity (ms−1),

and z is usually the depth below the soil surface (m). The hydraulic conduc-

tivity is a highly non-linear function of θ (or ψ) and is difficult to measure

particularly at lower θ. However, K is found to be strongly connected to

the SMC. Because of this, the expression for K is derived directly from

expressions for the SMC, e.g. from equation (3.2):

K = Ks

(
θ

θs

)n1
or K = Ks

(
ψe
ψ

)n2
(3.5)

where n1 = 2b+ 3 and n2 = 2 + 3/b, and b is from equation (3.2).

3.6 Derivation of Richards’ equation

The mass continuity equation

∂q

∂z
=
∂θ

∂t
(3.6)

is combined with Darcy’s Law (equation 3.4) to obtain Richards’ equation

(RE)
∂θ

∂t
= − ∂

∂z

[
K

(
∂ψ

∂z
− 1

)]
. (3.7)

Root uptake is not considered here. Equation 3.7 is shown in ’mixed’ form

and is considered to be the natural form of RE where the quantity being
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conserved is the physical quantity θ, the gradient being expressed in terms

of ψ, and K is a function of θ. Other forms of RE are the θ-based and

ψ-based versions shown below:

∂θ

∂t
= − ∂

∂z

[
K

(
D
∂θ

∂z
− 1

)]
C
∂ψ

∂t
= − ∂

∂z

[
K

(
∂ψ

∂z
− 1

)]
(3.8)

where D = ∂ψ/∂θ and C = ∂θ/∂ψ from applying the product rule. The

above forms of RE have been used extensively in the literature. The mixed

and θ-based forms are best for conservation of mass, parrticularly when

sharp moisture gradients are present, and the mixed and ψ-based forms are

necessary for saturated conditions and layered soil [4]. During saturated

conditions when water is ponding on the soil surface, the value of ψ at the

surface equals the depth of free water on the surface. This positive potential

cannot be portrayed using θ as the driving variable (equation 3.8a). For

layered soil, ψ and not θ is the continuous variable down the soil profile.

3.7 Boundary conditions

For one dimensional vertical flow, only top and bottom boundary conditions

exist as depicted in the schematic below (Figure 3.3). The top boundary

or soil surface is exposed to the highly variable atmospheric conditions so

can change rapidly. For the most part, the top boundary has a flux of

water passing through it either downward from infiltration as liquid water

or upward from evaporation in the vapour phase. If ponding does occur,

when the precipitation rate is greater than the maximum infiltration rate

(see later in next chapter), ψ = h where h is the depth of water on the soil

surface. When considering solving RE, the top boundary is predominantly
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a Neumann or flux bounday condition, but for some soil types and environ-

mental conditions, a Dirichlet boundary condition can occur. The bottom

boundary is often deep enough such that the ψ gradient is considered to be

zero, or for a shallow water table, the value of θ or ψ being equal to that

at saturation.

Figure 3.3: Schematic showing the vertical nature of water flows [1]





4 Numerical schemes for
solving Richards’ equation

Since the 1970’s, inceasingly complex numerical schemes have been devel-

oped to solve RE. The highly non-linear nature of RE requires that numer-

ical rather than exact solutions be sought. Due to the complex nature of

real soils and environmental conditons, improvements to numerical schemes

to increase the efficiency, stability and accuracy is ongoing. The schemes

can be broadly grouped into schemes with fixed meshes (FM) and those

with adaptive meshes (AM). The former are generally simpler to design

and implement with the latter a relatively new concept. Only finite dif-

ference methods are investigated here since only one dimensional flows are

considered. Techniques such as finite elements do not have appreciable

advantages over finite differences in one dimension. This brief review on

numerical schemes follows that of [5] who produced quite an extensive re-

view on numerical solutions to RE. The fixed mesh methods used are a

Crank-Nicolson linear scheme and a fully implicit nonlinear scheme using

iterative methods such as Picard or Newton-Raphson [4]. These two meth-

ods are explored in more detail in the next section. A later improvement to

these schemes was to add in an adaptive time-step procedure. Two main

methods exist for varying the time step, h [6]; (i) empirical - based on the

number of iterations per time step, and (ii) error-based where estimates of

15
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the truncation error are obtained and the time step adjusted accordingly.

In addition, the order of the time stepping scheme can be varied. The AM

techniques can be grouped into three types; (i) moving mesh points, (ii)

adding/subtracting mesh points, and (iii) increasing the order. Often a

combination of the above techniques is used. As with the fixed mesh meth-

ods, adaptive time stepping can be included, producing some complex but

robust schemes [5]. The main advantage of AM over FM schemes is the

combination of increased accuracy and stability as well as efficiency. The

FM schemes can be made more accurate by decreasing the distance between

mesh points (∆z) and the time step, but this decreases the efficiency. With

AM, h (and ∆z) can be decreased only when required, which can be for

relatively small periods of time. Larger h (and ∆z) can be used for periods

where little change is occuring to the soil water content (θ) or water po-

tential (ψ). The disadvantage of most AM methods is their complexity so

that they are harder than FM to implement. The added effort to develop

such models may not be justified since the FM methods can suffice in many

situations. The emphasis in this report is not to investigate the complex

techniques developed but to implement a few of the popular FM schemes

(see later in this chapter) and and analyse their performances under various

situations (Results Chapter). For situations in soil where there is a moving

shallow water table, as in river flood plains, or high rainfall areas where

ponding causes a saturated zone to move downwards from the soil surface,

a moving mesh technique can be used to track these moving boundaries.

A velocity based moving mesh technique can be reasonably straightforward

to implement and ideal for situations with moving boundaries [7]. Such a

technique is investigated further in a later section.



4.1. FIXED MESH METHODS 17

4.1 Fixed mesh methods

Often at field-scale or larger, variation in the variables ψ and θ occurs mainly

in the vertical dimension since horizontally the surface appears uniform.

For larger scales, the region can be divided up into smaller areas of similar

surface type, each with a one-dimensional flow scheme.

A mesh is first inserted on the vertical soil profile (z direction) usually

with z = 0 at the soil surface (see figure 4.1 below). The spacings (∆z)

often increase in the positive z direction with ∆z ≈ 1 cm at z = 0 and

∆z ≈ 1 m at the base of the profile. These spacings reflect the relative

temporal and spatial variation of ψ and θ down the profile. The ψ-based

RE (see previous chapter) is discretised in the following sections since it is

used later in the Results chapter, but the analysis will be very similar for the

other versions of RE. The rest of the chapter is devoted to the description

of various simple numerical schemes for RE which can be represented here

as Cψt = (K(ψz − 1))z. The first and simplest is the explicit scheme

where the first derivative in time (ψt) is approximated by the first order

forward difference and the second order derivative in space approximated

by a second order forward difference. The subsequent schemes investigated;

various forms of the Crank-Nicolson scheme and fully implicit schemes, are

based on this explicit discetisation.

Explicit scheme

The basic explicit discretisation of the ψ-based RE is

C
ψn+1
i − ψni

∆t
=

[
Kn
i+ 1

2

(
ψni+1 − ψni

∆zi
− 1

)
−Kn

i− 1
2

(
ψni − ψni−1

∆zi
− 1

)]
1

∆zi
(4.1)
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Figure 4.1: Soil profile divided into layers with ψ and θ centred on the mesh
points.

where i and n are the space and time indices respectively, ∆zi = zi − zi−1,

and ∆zi = 1/2(∆zi + ∆zi−1) (see Figure f41). This scheme is first order in

time and second order in space and according to the stability criterion, the

maximum timestep ∆tmax = 1/2∆z2/Kmax. Equation (4.1) can be easily

rearranged to have all the known terms (at nth timestep) on the RHS and

ψn+1 on the LHS. Values for ψ are obtained by advancing through time.

Implementing this in code requires a space loop nested in a time loop.

The boundary conditions must be included. These are discussed below

for the explicit method but equally apply to the subsequent schemes and

can be readily implemented. Both the top and bottom boundaries for the
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most part have Neumann conditions except for two special cases where; (i)

at the top boundary, where ponding occurs at the soil surface, in which case

ψ0 = h, where h is the ponding depth, and (ii) where the bottom boundary

coincides with a shallow water table, then ψI = 0. For the soil surface, the

Neumann condition is:

C
ψn+1
0 − ψn0

∆t
=

[
Kn

1
2

(
ψn1 − ψn0

∆z0
− 1

)
− q0

]
∆z0 (4.2)

where q0 is equal to the evaporation (e) or precipitation (p) rate (provided

that p < Inmax, where Inmax is the maximum infiltration rate). Where p >

Inmax, ponding occurs and a Dirichlet boundary condition is implemented:

C1
ψn+1
1 − ψn1

∆t
=

[
Kn

3
2

(
ψn2 − ψn1

∆z0
− 1

)
−Kn

1
2

(
ψn1 − h
L

− 1

)]
∆z0 (4.3)

where h is substituted in for ψ0, L is the depth to the wetting front (see

figure 4.2) and L = ∆z0 initially. As the ponding condition continues, L

increases as subsequent θi values become equal to the saturated value. At

the bottom boundary, the Neumann condition is:

CI
ψn+1
I − ψnI

∆t
=

[
Kn
I −Kn

I− 1
2

(
ψnI − ψnI−1

∆zI
− 1

)]
1

∆zI
(4.4)

where I is the number of mesh points. When both boundary conditions are

Neumann, there are I+1 equations and I+1 unknowns, whereas a Dirichlet

boundary condition reduces the number of equations and unknowns by one.

Crank-Nicolson - linear scheme

The Crank-Nicolson discretisation of equation (4.5) is

Cn
i

ψn+1
i − ψni

∆t
=

Θ

∆zi

[
Kn
i+ 1

2

(
ψni+1 − ψni

∆zi
− 1

)
−Kn

i− 1
2

(
ψni − ψni−1

∆zi
− 1

)]

+
1−Θ

∆zi

[
Kn
i+ 1

2

(
ψn+1
i+1 − ψn+1

i

∆zi
− 1

)
−Kn

i− 1
2

(
ψn+1
i − ψn+1

i−1

∆zi
− 1

)]
(4.5)
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Figure 4.2: Schematic showing ponded infiltration into soil.

where Θ = 1/2. This scheme is 2nd order in time and space. Note that for

Θ = 0, equation (4.5) reverts back to the explicit scheme of equation (4.1).

The K terms are evaluated at timestep n so equation (4.5) is still a set of

linear algebraic equations as with the explicit scheme above. However, the

RHS contains n+ 1 terms so some rearranging of equation (4.5) is required

to separate the n (on RHS) and the n+ 1 (on LHS) terms:

ani ψ
n+1
i−1 + bni ψ

n+1
i + cni ψ

n+1
i+1 = rni (4.6)
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where

ani = −
∆tKn

i− 1
2

Cn
i ∆zi−1∆zi

(1−Θ)

bni = 1 + (1−Θ)
∆tKn

i− 1
2

Cn
i ∆zi−1∆zi

− (1−Θ)
∆tKn

i+ 1
2

Cn
i ∆zi∆zi

cni = −
∆tKn

i+ 1
2

Cn
i ∆zi∆zi

(1−Θ)

rni = ψni
Θ

Cn
i ∆zi

[
Kn
i+ 1

2

(
ψni+1 − ψni

∆zi
− 1

)
−Kn

i− 1
2

(
ψni − ψni−1

∆zi
− 1

)]

−
∆tKn

i+ 1
2

Cn
i ∆zi

+
∆tKn

i− 1
2

Cn
i ∆zi

This can all be written in matrix form:

Aψ = r

where

A =


b0 c0 0 . . . 0

a1 b1 c1
...

0
. . . . . . . . . 0

... aI−1 bI−1 cI−1

0 . . . 0 aI bI


In (A) above, ai,bi, and ci terms make up the lower, middle and upper

diagonals of A respectively. The vector ψ holds the ψn+1
i variables and r

holds the known variables (at time level n) plus boundary conditions. Since

A is tridiagonal (see above) and |bi| > |ai|+ |ci|, A is diagonally dominant

and hence it is non-singular, and efficient algorithms such as the Thomas

Algorithm can be used to solve for ψ. As with the explicit scheme, the

boundary conditions (along with the number of mesh points, I) determine

the rank of A, or the number of equations and unknowns. With both the
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top and bottom boundary Neumann conditions, the rank of A is I + 1 as

shown. Implementation involves constructing A and r and solving for ψ at

each timestep.

Crank-Nicholson - nonlinear scheme

A more implicit Crank-Nicolson scheme calculates the K and C terms in

equation (4.5) at the n+ 1/2 time level:

K
n+ 1

2

i+ 1
2

= ΘKn
i+ 1

2
+ (1−Θ)Kn+1

i+ 1
2

and C
n+ 1

2
i = ΘCn

i + (1−Θ)Cn+1
i (4.7)

The full discretisation is otherwise the same as equation (4.5). Two of the

more popular iterative procedures for solving the resulting set of nonlinear

equations are Picard and Newton-Raphson methods. With the iteration

index as p, the Picard method has the ψ terms at the p + 1 level and K

and C at level p as shown below in equation (4.8):

C
n+ 1

2
,p

i

ψn+1,p+1
i − ψni

∆t
=

Θ

∆zi

[
K
n+ 1

2
,p

i+ 1
2

(
ψni+1 − ψni

∆zi
− 1

)
−Kn+ 1

2
,p

i− 1
2

(
ψni − ψni−1

∆zi
− 1

)]

+
1−Θ

∆zi

[
K
n+ 1

2
,p

i+ 1
2

(
ψn+1,p+1
i+1 − ψn+1,p+1

i

∆zi
− 1

)
−Kn+ 1

2
,p

i− 1
2

(
ψn+1,p+1
i − ψn+1,p+1

i−1

∆zi
− 1

)]
(4.8)

This essentially linearises the scheme so that the procedure shown in the

previous section for the non-iterative Crank-Nicolson method can be used

here except A and r are updated at each iteration level. Note that for

Θ = 0, this gives the fully implicit scheme, and Θ = 1 gives the explicit

scheme. The Newton method is based on the following algorithm:

J
[
ψn+1,p+1 − ψn+1,p

]
= −F (4.9)

where J is the Jacobian matrix which is shown below with Neumann bound-

ary conditions (rank = I + 1) and F is a vector with all the terms calcu-
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lated at the previous iteration step. As the iteration proceeds, F → 0 as

ψn+1,p+1 → ψn+1,p. The elements of J are calculated at the p iteration level.

J =



∂F0

∂ψ0

∂F0

∂ψ1
0 . . . 0

∂F1

∂ψ0

∂F1

∂ψ1

∂F1

∂ψ2

...

0
. . . . . . . . . 0

... ∂FI−1

∂ψI−2

∂FI−1

∂ψI−1

∂FI−1

∂ψI

0 . . . 0 ∂FI

∂ψI−1

∂FI

∂ψI


The elements of F are calculated at the n and n+ 1/2, p levels.

Fi = ψn+1,p
i −ψni +

∆tΘ

C
n+ 1

2
,p

i ∆zi

[
K
n+ 1

2
,p

i+ 1
2

(
ψni+1 − ψni

∆zi
− 1

)
−Kn+ 1

2
,p

i− 1
2

(
ψni − ψni−1

∆zi
− 1

)]

+
(1−Θ)∆t

C
n+ 1

2
,p

i ∆zi

[
K
n+ 1

2
,p

i+ 1
2

(
ψn+1,p
i+1 − ψn+1,p

i

∆zi
− 1

)
−Kn+ 1

2
,p

i− 1
2

(
ψn+1,p
i − ψn+1,p

i−1

∆zi
− 1

)]
(4.10)

The matrix J is diagonally dominant and hence non-singular, so can be

inverted to solve equation 4.9.

4.2 Moving mesh - velocity based

A moving mesh scheme using a velocity-based approach is also applied to the

vertical soil profile. This type of scheme is particularly useful where there

are moving boundaries in the physical system. For the soil environment,

two such cases exist: (i) a moving water table at the bottom boundary, and

(ii) ponded infiltration at the top boundary. The former can occur in areas

such as flood plains or water meadows where the water table (depth below

soil surface) is largely driven by the river levels nearby. The water table

can therefore fluctuate relatively quickly. Ponded infiltration occurs when

the rate of rainfall is greater than the maximum rate of infiltration for the
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soil considered. Water ponds on the soil surface while below the surface

the water infiltrates with a sharp wetting front. This wetting front moves

down the soil profile all the while that ponding exists at the surface. It

must be noted here that this moving mesh method would not be viable for

a layered soil where there would be stationary boundaries in the soil profile.

Therefore the analysis is restricted to a homogenous soil.

Consider a uniform soil profile (see Figure 4.3) with a uniform mesh

inserted between the soil surface (top boundary, a) and the top of the water

table (bottom boundary, b). Neumann conditions exist at both boundaries

where evaporation and infiltration occurs at the top, while drainage or influx

from water table occurs at the bottom. A conservation-based moving mesh

scheme is derived below following [7] and [8]. The main strategy behind

the moving mesh concept is to keep the fractional amount of water between

adjacent mesh points constant, i.e., (zi − zi−1)θi is constant. This is the

same as writing: ∫ zi(t)
a

θdz∫ b
a
θdz

= γi (4.11)

where αi is constant in time. Differentiating equation (4.11) and substitut-

ing in γi:

0 =
− ∂
∂z

∫ b
a
θdz[∫ b

a
θdz
]2 ∫ zi(t)

a

θdz +
∂

∂z
∫ zi(t)
a

θdz

∫ b

a

θdz (4.12)

=
−∂
∂z

∫ zi(t)

a

θdzγi +

∫ zi(t)

a

θdz. (4.13)

Using Leibniz rule:

d

dt

∫ zi(t)

a

θdz =

∫ [
∂θ

∂t
+

∂

∂z

(
θ
dz

dt

)]
dz

and substituting into equation (4.13) the following is obtained:

γi

∫ b

a

[
∂θ

∂t
+

∂

∂z

(
θ
dzi
dt

)]
dz =

∫ zi(t)

a

[
∂θ

∂t
+

∂

∂z

(
θ
dzi
dt

)]
dz. (4.14)
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RE, e.g., the mixed version [9], can now be substituted into equation (4.14)

to get:

γi

∫ b

a

{
∂

∂z

[
K
∂ψ

∂z
− 1

]
+

∂

∂z

(
θ
dzi
dt

)}
dz

=

∫ zi(t)

a

{
∂

∂z

[
K
∂ψ

∂z
− 1

]
+

∂

∂z

(
θ
dzi
dt

)}
dz. (4.15)

Expanding the integrals in equation (4.15)[
K
∂ψ

∂z
− 1

]b
a

γi +

[
θ
dzi
dt

]b
a

γi =

[
K
∂ψ

∂z
− 1

]zi(t)
a

+

[
θ
dzi
dt

]zi(t)
a

(4.16)

and rearranging equation (4.16), an expression for dz/dt is found:

dz

dt
=

1

θ

{
γi

([
K
∂ψ

∂z
− 1

]b
a

+

[
θ
dzi
dt

]b
a

)
−
[
K
∂ψ

∂z
− 1

]zi(t)
a

+

[
θ
dzi
dt

]
a

}
(4.17)

Boundary conditions need to be applied to equation (4.17). Three possible

scenarios are considered here which apply to the moving mesh method:

(i) fixed Neumann boundary condition at a, and a free Neumann boundary

at b

(ii) fixed Neumann boundary condition at a, and a Neumann boundary at

b which coincides with the top of the water table

(iii) Neumann boundary condition at a coinciding with the base of the

wetting front from surface ponding, and a free Neuamnn boundary at

b

Figure 4.3 below shows a mesh inserted on the soil profile and the scenarios

illustrated. Inserting the boundary conditions for scenario (i), equation
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Figure 4.3: Moving mesh scheme illustrated for the three scenarios described
in the text.
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(4.17) becomes:

dzi
dt

=
1

θ

{
γ

([
K
∂ψ

∂z
− 1

]b
− e

)
−
[
K
∂ψ

∂z
− 1

]zi
+ e

}
(4.18)

where da/dt = 0 and db/dt = 0 since there is no imposed boundary veloc-

ities and e is the prescribed boundary condition at a which is set by the

external atmospheric conditions. For scenario (ii), equation (4.17) becomes:

dzi
dt

=
1

θ

{
γi

([
K
∂ψ

∂z
− 1

]b
− e+ θb

∂b

∂t

)
−
[
K
∂ψ

∂z
− 1

]zi(t)
+ e

}
(4.19)

where ∂b/∂t is the velocity of the top of the moving water table and θb is

the value of θ at b. Finally for scenario (iii),

dzi
dt

=
1

θ

{
γi

([
K
∂ψ

∂z
− 1

]b
− e− θa

∂a

∂t

)
−
[
K
∂ψ

∂z
− 1

]zi(t)
+ e+ θa

∂a

∂t

}
(4.20)

The equations (4.18)-(4.20) show how the mesh points move under the

scenarios (i)-(iii). Discretisation of equation (4.18) (equations (4.19) and

(4.20) are similarly discretised but not shown here) is given by:

zn+1
i − zni

∆zni
=

1

θi

{
γi

(
Kn
I+ 1

2

[
ψnI+1 − ψnI

∆znI
− 1

]
− en

)
−Kn

i+ 1
2

[
ψni+1 − ψni

∆zni
− 1

]}
(4.21)

where ∆zi = zi−1 − zi and ∆zi = 1/2(∆zi + ∆zi+1). The Kn
i+ 1

2

is given by:

Kn
i+ 1

2
=
αKn

i + βKn
i+1

α + β
(4.22)

where α = 1/2∆zni and β = 1/2∆zni+1. The change in the amount of water

in the soil profile (dW/dt) after each timestep is given by

dW

dt
= Kn

I+ 1
2

[
ψnI+1 − ψnI

δznI
− 1

]
− en. (4.23)

To implement this scheme, an initial profile of θi is given. In a time loop,

the values ψni and K
n

i are calculated followed by ∂zni /∂t for the current
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timestep. New values for zi and W at the next timestep are found by the

fourth order Runga-Kutta time stepping scheme to improve the accuracy

(and stability to a small degree) from Euler’s first order explicit method.

Values for θn+1
i are calculated using equation (4.11) in the discretised form

θn+1
i = (γi − γi−1)

W

∆zi
.



5 Solutions to Richards’
equation

This chapter mainly focusses on the performances of the nonlinear itera-

tive Crank Nicolson (CNi) and moving mesh (MM) schemes under various

realistic situations:

(i) moving water table near the soil surface

(ii) infiltration into dry soil; unsaturated and ponded infiltration

(iii) infiltration into layered soil

The above cases represent some of the more challenging areas in soil water

flow with respect to model stability and accuracy. The output from the

other schemes described in the previous chapter give similar results to the

CNi scheme provided suitable timesteps are applied. The Newton Raphson

iteration method is mainly considered here with the Picard method giving

virtually identical results but with more iterations required [10]. The sizes

of timestep chosen here is a compromise between accurate solutions and

efficient use of computer resource. An hourly timestep is chosen whenever

possible as this gives good diurnal resolution and will generally give good

results in most situations [11]. The size of the timestep used in the following

analysis depends on the level of accuracy calculated.

29
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5.1 Moving water table

Situations occur such as on a floodplain when there exists a shallow water

table which varies according to the height and flow of the nearby river. Here

the depth of the water table is modelled by a sinusoidal function imitating

increasing and retreating river levels as a result of a large rainfall event

inside the catchment. Figures 5.1 and 5.2 below illustrate the movement

of the water table with time in relation to the soil profile. Here at the

Figure 5.1: Sinusoidally varying water table with the fixed mesh scheme.

stationary top boundary, evaporation is allowed to occur at a rate given by:

e =
−4

8.64× 107

θ0
θs

(5.1)

where the maximum rate is set at 4 mm day−1 and regulated by the amount

of water in the top layer. For the fixed mesh schemes, the location of the

water table is achieved using interpolation. The moving mesh scheme has

a mesh point located on the water table and this tracks its movement.

Figures 5.3 and 5.4 shows results from the CNi scheme for two contrasting
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Figure 5.2: Sinusoidally varying water table with the moving mesh scheme.

soil types; a sandy and clayey soil. Table 5.1 below shows values for typical

soil hydraulic parameters. The timesteps chosen were 600s for the sandy

Table 5.1: Parameter values.

Sandy soil Clayey soil units
Ks 50 2 mmhr−1

θs 0.43 0.5 m3m−3

b 3.0 8.0 −
ψe −0.1 −0.5 m

soil and 3600s for the clayey soil simulations. A measure of the accuracy of

the simulations are shown in Table 5.2 which were calculated by comparing

to a simulation with small ∆t and ∆z values. Figures 5.5 and 5.6 show the

results from the MM scheme with the bottom mesh point coinciding with

the water table. The moving mesh tracks the varying water table as shown

in figure 5.7 but the results differ slightly from the fixed mesh scheme near

the top boundary. The reason for this is uncertain, however a water balance
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Figure 5.3: Results from fixed mesh schemes with varying water table for
sandy soils.

Figure 5.4: Results from fixed mesh schemes with varying water table for
clayey soils.
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Figure 5.5: Results from moving mesh scheme with varying water table for
sandy soil.

Figure 5.6: Results from moving mesh scheme with varying water table for
clayey soil.
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Table 5.2: % error values in profile water between the schemes.

time(hr) zw (m) % error sand % error clay
10 1.71 1.70 1.50
20 1.07 1.60 1.57
30 0.53 1.40 1.60
40 0.47 1.22 1.49
50 0.94 1.18 1.40
100 0.61 1.50 1.74

Figure 5.7: Results from moving mesh scheme showing mesh points moving
with time.

was calculated for the fixed mesh scheme using the following equation:

water balance = (change in profile water +
da

dt
θI + q0 + qI)∆t = 0 (5.2)

where qI and q0 are the fluxes at the boundaries, and da/dt is the velocity of

the water table. It was found that the LHS of equation (5.2) was of the same

magnitude as the individual terms on the RHS. The fixed scheme in this

case did not seem to conserve θ whereas this is inherent in the derivation of

the moving mesh scheme. For the fixed mesh schemes, the treatment of the
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lower boundary could be improved. Currently the last mesh point (I) moves

with the water table depth a, so that the spacing between mesh points I

and I + 1 can have values between 0 and ∆z where ∆z is the original mesh

spacing (and equal to the spacings between the other mesh points).

5.2 Infiltration into dry soil

Rain falling onto dry soil will produce large gradients of water below the

soil surface. Depending on the intensity of the rain and the type of soil,

either unsaturated or saturated (ponded) flow into the soil will result. A

fine-textured soil (clays) will have more chance of ponded infiltration since

this soil typically has a much lower saturated hydraulic conductivity than

coarser sandy soils. If the rainfall rate is greater than the maximum infil-

tration rate for a particular soil, then saturated or ponded infiltration will

occur. From a modelling perspective, the top boundary condition will be

a flux or Neumann condition for unsaturated infiltration and a Dirichlet

condition for ponded flow.

Unsaturated infiltration

The top boundary condition simulated a constant rain event at a rate of

20 mm day−1. The initial soil conditions were dry with soil potential equal

to −100m. Results for the CNi method are shown below in Figures 5.8

and 5.9. Values for ∆t for the sandy and clayey soils were both at 3600s.

These values are commonly used in the literature as a compromise between

accuracy and efficience [11]. It is also useful to relate ∆t to some simple

fraction of an hour. From Table 5.1, it is expected that a larger ∆t can be

used for lower saturated hydraulic conductivity values. The results from

the CNi scheme is given by Figures 5.8 and 5.9 for sandy and clayey soils
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Figure 5.8: Fixed mesh solutions for infiltration onto sandy soil.

Figure 5.9: Fixed mesh solutions for infiltration onto clayey soil.
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respectively with ∆t given as 3600s for each. Figures 5.8 and 5.9 agree well,

with the moving mesh producing slightly faster rate of water infiltration.

The number of iterations per timestep as well as the mass balance error is

shown in Figures 5.10 and 5.11. In both figures, the initial values for these

is high coinciding with initially high moisture gradients. The initially high

values quickly decay to low levels as time progresses so an hourly timestep

could be suitable here, especially for the finer textured soils. Higher rainfall

rates could pose more of a problem which is shown in the next section for

ponded infiltration. The results for the MM scheme is given in Figures

Figure 5.10: Iterations per timestep and % error for the fixed mesh scheme
(CNi) for sandy soil.

5.12 and 5.13. These show good similarity with the CNi scheme results with

after 100 hours the difference in profile water is 1.4%. The timestep used

was 30s which is considerably smaller than the CNi scheme since the MM is

an explicit scheme. Although not shown here, the time taken per timestep

for the MM scheme is likely to be alot less than for the CNi scheme. For
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Figure 5.11: Iterations per timestep and % error for the fixed mesh scheme
(CNi) for clayey soil.

the latter, the computations include finding the inverse of a I × I matrix

P times, where P is the number of iterations per timestep. Hence the total

amount of time for each of the simulations using MM and CNi will be closer

than the difference in timesteps suggest.

Ponded infiltration

Initially dry soil (ψ = −100 m) is subjected to ponding with constant depth

of 5 mm. The head pressure at the soil surface (ψ0) is therefore equal to

0.005 m. This situation creates very large initial gradients near the soil

surface as water begins to infiltrate. This will have a big influence on the

size of ∆t for the schemes to produce stable and accurate solutions. Figures

5.15 and 5.16 shows the output of the CNi scheme for the sandy and clayey

soils respectively. Figures 5.17 and 5.18 giving the iterations per timestep.

The ∆t used for the CNi scheme is 0.25 s and 1 s for sandy and clayey
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Figure 5.12: Moving mesh solutions for infiltration onto sandy soil.

Figure 5.13: Moving mesh solutions for infiltration onto clayey soil.
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Figure 5.14: Results from moving mesh scheme showing mesh points moving
with time (sandy soil).

soils respectively because the scheme would not run at timesteps much

larger than these. The very small values of ∆t used reflects on the size

of the initial gradients resulting from a positive head pressure boundary

condition. For ponded infiltration in particular, a small ∆t is required

initially and then can be increased as the water infiltrates and gradients

lessen. This situation would be ideally suited to have an adaptive timestep

method included in the scheme. The results for the moving mesh scheme

is shown in Figures 5.19 and 5.20. The ponded infiltration into both soils

shows reasonably good agreement between the schemes with the amount of

water infiltrated (or depth to the wetting front) slightly less for the moving

mesh. Table 5.3 summarises the % difference between the schemes. The

moisture gradient at the wetting front with the MM scheme is considerably

sharper than that from the CNi method. Sharp wetting fronts are well

documented under ponded conditions ([12] and [13]). The MM scheme is
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Table 5.3: % error values in profile water between schemes.

time(hr) % error sand % error clay
1 27.5 6.9
2 19, 4 7.2
3 14.9 6.9
4 11.0 6.1
5 8.1 5.3

better here at capturing the piston-like effect of ponded infiltration.

One of the reasons for differences between the schemes is the SMC rela-

tion used. It was preferred here to use the Brookes-Corey relation as shown

in Chapter 2. The procedure for simulating the infiltration of water in the

fixed mesh scheme was to set ψ(0) = 0.005 and the scheme run with Darcy’s

Law determining the water infiltrated through the soil surface:

q0 = −K1/2
ψ1 − h− L

L
(5.3)

where L = ∆z1 initially, and ∆z1 is the spacing between z0 and z1. Each

time a mesh point i immediately below the wetting front became greater

than ψe, we set ψi = ψe and L = L + ∆zi, and the scheme was advanced.

So the value of ψe will have some influence on the speed of the infiltrating

front. This is probably a weakness in using this particular SMC relation

and a better relation which deals with the SMC near saturation [3].

5.3 Infiltration into layered soil

Almost all soil profiles consist of layers of different soil types, which often

can be very distinctive layers with large differences in soil properties. To

simulate vertical water movement in layered soil, ψ-based RE must be used

since the value of ψ remains continuous down the profile. In contrast, θ will
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Figure 5.15: Fixed mesh solutions for ponded infiltration onto sandy soil.

Figure 5.16: Fixed mesh solutions for ponded infiltration onto clayey soil.
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Figure 5.17: Iterations per timestep for the CNi scheme for the sandy soil

Figure 5.18: Iterations per timestep for the CNi scheme for the clayey soil
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Figure 5.19: Moving mesh solution for ponded infiltration onto sandy soil.

Figure 5.20: Moving mesh solution for ponded infiltration onto clayey soil.
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Figure 5.21: Moving mesh solution for sandy soil showing position of mesh
points with time.

generally have large discontinuities in value down a layered profile. Here a

soil with two contrasting soil layers; clay over sand, initially dry, is subjected

to continuous infiltration at 20 mm hr−1. The clay over sand soil profile

was chosen as this situation can cause the wetting front (under moderate

infiltration rates) to be held up [14]. This causes the moisture gradient at

the clay/sand boundary to become steeper. Unstable flows can result which

culminate in ’fingered flows’ through the sand. This greatly enhances the

rate of flow of water further down the profile which has implications for

leaching of contaminants into the groundwater [15].

The MM scheme for the whole profile would not be useful with a sta-

tionary boundary in the middle of the profile. So two types of methods were

investigated here, (i) a fixed mesh is inserted on the whole soil profile, and

(ii) a moving mesh was placed on the top soil and a fixed mesh on the bot-

tom soil layer. Figure 5.22 shows the results from the fixed mesh method.
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The mass balance error is calculated by comparing the input of water to the

simulated change in profile water content (Table 5.4) which shows after an

initial value of 8.9% decreases quickly. This value remained under 1% for

the remainder of the simulation even when the wetting front passed through

the soil profile discontinuity. Figure 5.23 shows results from the second

Table 5.4: % Mass balance error for CNi scheme.

time(hr) % error
1 8.9
2 3.0
3 1.1
4 1.1
5 0.9

Figure 5.22: Fixed mesh solution for infiltration into layered soil; clayey
over sandy soil. Time in hours listed on right

method which is similar to the CNi only method. A considerably smaller

timestep was required for the second method (30 s compared to 3600 s)
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Figure 5.23: Moving mesh solutions for infiltration into layered soil; clayey
over sandy soil. Time in hours listed on right

since the MM scheme is explicit. The potential for the MM scheme to be

used at the boundary to improve the treatment of the gradients is inves-

tigated further in the next chapter. As water builds up at the boundary

and the moisute gradient increases, the spacing between the mesh points

contract so enhancing the resolution. The potential for the MM scheme

to be used at the boundary to improve the treatment of the gradients is

investigated further in the next chapter.





6 Investigation into waiting
times

Vertical flow only is considered in the following analysis. It has been found

in practice that water infiltrating into soil at a ’medium’ rate (a rate suffi-

ciently below the maximum rate so gravity forces are not dominating, and

high enough so matric forces are not dominating) can cause unstable flows

at the wetting front. This is common in layered soils where a fine-textured

soil overlies a coarse-textured one. In this case, the advance of water is

held up at the boundary of these two soil types and after some time breaks

through the boundary in ’fingers’ of flow. This has also been observed

within coarse-textured soils which are initially dry and then subjected to

water infiltration. In both cases there is a period of time where the wetting

front is stationary followed by water flow through this point, resulting in

’fingered’ flow. Water flow in soil is governed by Darcy’s Law:

q = −K
(
∂ψ

∂z
+ 1

)
(6.1)

where the hydraulic conductivity (K) is given here as:

K = Ks

(
θ

θs

)n
(6.2)

The relationship between water potential (ψ) and water content (θ) is given

here as: (
ψ

ψe

)
=

(
θ

θs

)−b

(6.3)
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where ψe, θs, b, and n are constants and n = 2 + 3b. If we now consider

equation (6.1) with θ only as the independant variable, using the chain rule

and differentiating equation (6.3) with respect to θ, equation (6.1) becomes:

q = −(Aθn−b−1θz +Bθn) (6.4)

where A = −bKsψeθ
b−n
s and B = Ksθ

−n. Hence the Darcy velocity (v) is

given by:

v = −(A(θn−b−1)z +Bθn−1) (6.5)

For the purposes of investigating this ’waiting’ behaviour of the wetting

front discussed above, the constants in equation (6.5) are set to unity with

b = 2 giving:

v = −(θ5)z − θ7 (6.6)

and the initial conditions are given by

θ =

{
(1− z)α if z ≤ 1,

0 if z > 1

with α = 1, consistent with the boundary condition. The Darcy velocity

v > 0 for z < 1 and v = 0 at z = 1. From equation (6.6) ,for v to

become greater than zero at z = 1, θz must become infinite at that point.

Figure 6.1 shows the initial conditions with the equivalent of normalised θ

and then at some time T where the gradient has increased by decreasing

α. The behaviour of the v when θz → ∞ is now investigated further by

substituting the initial conditions into equation (6.6) giving:

v = 5α(1− z)5α−1 − (1− z)7α. (6.7)

As time advances, the value of α will decrease and at z = 1, there are three

possible outcomes for v depending on the value of α:

1. for 5α < 1, v →∞
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Figure 6.1: Gradient at the point x = 1 at t=0 and increasing at time t=T
in response to α decreasing from 1 to 0.3.

2. for 5α > 1, v → 0

3. for 5α = 1, v is finite

Hence, when the shape of the wetting front changes, α decreases until case

(3) above is reached when v at z = 1 becomes finite and moves in the

direction of increasing z.

When solving the problem above numerically using a velocity-based

moving mesh technique, the mesh points are required to move according

to the discrete form of equation (6.8):

∂z

∂t

∣∣∣∣
i

≈ zn+1
i − zni

∆t
=
θ5
i+ 1

2

− θ5
i− 1

2

zi+ 1
2
− zi− 1

2

− θ7i (6.8)

The value of θ at mesh point z = 1 (i = I) is not zero but a small value

termed the residual or minimum value, here its 0.01m3m−3. The mesh

point I will therefore initially have a very small velocity. Eventually the

velocity will become noticeably greater once the moisture gradient at point
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I increases and this is shown in Figure 6.2. The mesh points near point I

decrease with time as shown in Figure 6.3 and this is useful in simulating

the large (infinite in theory) gradient necessary at point I for velocity to

increase appreciably above zero. The numerical solution does therefore

appear to mimic the analytical analysis above.

Figure 6.2: Moving mesh scheme mimicing the waiting time as predicted
from theory.
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Figure 6.3: Mesh points position with time. The spacings decrease dramat-
ically near point I as the velocity at I noticeably increases.





7 Conclusions and Future work

7.1 Conclusions

In this report two different schemes were formulated to numerically solve

the Richards’ equation for vertical soil water flow; a fixed mesh scheme and

a moving mesh scheme. The fixed mesh scheme used here was the nonlinear

Crank-Nicolson scheme (with a Newton iteration), CNi, where the diffusion

parameters were evaluated at the n + 1 level. The moving mesh scheme

MM, was based on a conservation principle where the fractional amount

of moisture between adjacent mesh points remained constant for all time.

This allowed the mechanism for moving the mesh points to be determined.

The two schemes were applied to four scenarios:

(i) shallow moving water table

(ii) unsaturated infiltration onto dry soil

(iii) ponded infiltration onto dry soil

(iv) unsaturated infiltration onto layered soil

The CNi scheme has been a proven performer for many years with solv-

ing for soil water flows but recently more sophisticated schemes have been

developed. The question here is: is the CNi scheme robust enough to

deal with the scenarios above? The accuracy required and computational
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resource available will determine the answer. Except for the ponding infil-

tration problem, the CNi scheme performed well with an hourly timestep

with some minimal loss in accuracy. Shorter timesteps could be used for the

initial gradients from infiltration and longer thereafter. The ponded case

required the timestep to be dramatically reduced in order for the scheme to

run at all. So for this extreme case, an adaptive timestep procedure is nec-

essary, so once the initial stages of the ponding infiltration has taken place

(first few minutes), the timestep can be increased so as not to overly tax the

computation resources especially when simulating large time periods (e.g.

several years in duration).

The MM scheme proved useful in the first three scenarios, especially

where there are free or moving boundaries. It compared well with the CNi

scheme, but although requiring a much smaller timestep, the simplicity of

the MM scheme will mean less compuation time per timestep. The MM

scheme is inherently conservative, so overall could have some benefit in

cetain situations to solving for soil water flows.

Finally the onset of unstable flows were investigated and a possible

mathemtical mechanism developed to explain the observed waiting times

found in other studies. The MM scheme was implemented and found to

mimic the waiting time predicted in theory by simulating the very steep

gradient close to the zero velocity point.

7.2 Future work

Several interesting avenues of work could be followed on the back of this

report:

(i) Improve the robustness of the CNi model implemented in this report by

incorporating a adaptive timestepping scheme. This could be achieved
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by either an empirical approach based on the number of iterations

per timestep or using a mechanistic approach which is based on an

estimate of the truncation error at each timestep [17]. This adap-

tive scheme could be simply added with little internal change to CNi

scheme.

(ii) An existing study on the Oxfordshire floodplains (joint project by the

University of Reading and CEH Wallingford) has as one of its ob-

jectives to develop a combined soil water and heat flow model which

is to interface with an existing above-ground water and energy bal-

ance model. The work done here to implement a robust implicit finite

difference scheme for solving Richards’ equation could be further ad-

vanced to incorporate a coupled heat and vapour flow model. The

full system of equations is [16]:

C
∂ψ

∂t
=

∂

∂z

[
(K +Dv)

∂ψ

∂z
+DT

∂T

∂z
+K

]
− S (7.1)

CH
∂T

∂z
=

∂

∂z

[
λ
∂T

∂z
+ ρwLDv

∂ψ

∂z

]
− cwθ

∂T

∂z
(7.2)

where Dv is the isothermal vapour conductivity (ms−1), DT is the

thermal vapour diffusivity (m2s−1K−1), S is the extraction of wa-

ter from the roots, CH is the volumetric heat capacity of the soil

(Wm−3K−1), λ is the thermal conductivity of the soil (Wm−1K−1),

ρw is the density of water (kgm−3), L is the latent heat of vapourisa-

tion (Jkg−1), and cw is the thermal conductivity of water (Wm−1K−1).

One way to implement equation 7.2 is to follow the procedure of [11]

and have separate procedures for each of water, vapour, and heat

flows inside an iterative procedure.

(iii) Other interesting possibility would be implement an implicit version
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of the moving mesh scheme to allow larger timesteps to be taken.

(iv) It would be a very useful exercise to improve the programs so as to

make them more modular in design. This then will make them more

transferable in their application to other problems such as that in (ii)

above.
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