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Abstract

A new transform method recently developed by Fokas, is used for the study of two-

point boundary value problems of the form qt(x, t) + Tq(x, t) = 0 for linear evolution

partial differential equations of arbitrary order, posed on the finite space domain [0, L].

Here T is an appropriately defined x-differential operator and suitable initial and bound-

ary data is assumed.

The solution representation is expressible as an integral in the complex plane. For

problems of odd order such representations are new, while for even orders it is shown

that they are equivalent to classical series representations.

Spectral codes are developed for the numerical solution of a variety of illustrative

examples, with many different types of boundary conditions. Finally, these codes are

generalised and developed for linear third order problems for the solution of two-point

boundary value problems for the important nonlinear equation, the Korteweg-deVries

equation.
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Chapter 1

Introduction

In this work we consider the analytical and numerical solution of boundary value prob-

lems for evolution PDEs with constant coefficients, posed on a finite space domain. The

equations that we consider are of the form

qt(x, t) + Tq(x, t) = 0 , t > 0 , x ∈ [0, L] , (1.1a)

q(x, 0) = q0(x), x ∈ [0, L] , (1.1b)

where T is an x-differential operator, and q0(x) is a given smooth function. T will mostly

be linear, but we will also consider the nonlinear KdV equation, given by

qt(x, t) + qx(x, t) + q(x, t) qx(x, t) + qxxx(x, t) = 0 . (1.2)

These equations are equipped with the appropriate number and type of boundary con-

ditions.

This work is divided into two main parts. In the first, we derive appropriate repre-

sentations of the solution of various boundary value problems posed for such PDEs, and

develop a general theory for linear evolution PDEs of arbitrary order. These are classi-

cal problems and many second order examples are extensively treated in the literature.

However, the classical methods are not naturally or easily generalisable to higher order,

and in particular to odd order problems. Here, we were able to give a systematic and

unified treatment by using a new transform method, introduced by Fokas [12], which is

based on the fact that linear and integrable nonlinear equations can be written as the

compatibility condition of two linear ODEs. This is called a Lax pair formulation [32].

This method yields a complex integral representation of the solution, using classical
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tools of complex analysis such as the Cauchy integral formula and the Riemann-Hilbert

problem. It also yields a relation between the initial and all the boundary values of the

solution, which is known as the global relation and plays a crucial role in the methodol-

ogy of Fokas.

The integral representation has explicit x and t exponential dependence (we say that

it is spectrally decomposed) and, after exploiting appropriately the global relation, it can

be given in terms of only the prescribed initial and boundary data of the problem.

The integral representation can be deformed to the classical series representation,

without any appeal to classical theory. The series representation can also be derived

directly from the global relation, but in this case the classical theory regarding the

eigenvalues and eigenfunctions of an associated linear differential operator must be called

into play. The method of Fokas for solving linear evolution two-point boundary value

problems, and his relation to classical methods, is the general theme of Chapter 2.

In the second part, we study a variety of linear and nonlinear boundary value problems

numerically. The final aim and motivation is the study of the nonlinear KdV equation,

given by (1.2), posed on a bounded domain. All our numerical schemes use a spectral

method for the discretisation of the space variable x. We develop such schemes for the

imposition of a variety of boundary conditions for linear problems of third and fourth

order, before turning to the nonlinear case.

We begin by a brief review of the work that has led to the development of the Fokas

transform method, and the motivation for studying two-point boundary value problems

for evolution PDEs, both analytically and numerically. We then give a brief account of

the history of the KdV equation and the discovery of the famous soliton solution, and

a review of spectral methods. Finally, we list some results in complex analysis and the

theory of linear differential operators with constant coefficients, that will be referred to

in the sequel. We conclude with a brief overview of the work presented in this thesis.

1.1 Background and Motivation

The initial value (Cauchy) problem for linear evolution equations in one space dimension,

posed on the real line, is solved by the Fourier transform [26]. The analogous problem

for integrable nonlinear evolution equations is solved by the inverse scattering transform
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method, which is conceptually similar to the classical Fourier transform approach and

amounts in essence to a nonlinear version of it [27]. The inversion formula for this

nonlinear version of the Fourier transform is obtained through the solution of a Riemann-

Hilbert problem posed on the real line [1].

Here, we consider initial and boundary value problems. In this case, it is well known

that the classical Fourier, sine and cosine transforms can be used to solve certain linear

initial boundary value problems of even order. The choice of which transform to use,

is governed by the PDE and the imposed boundary conditions, and for some boundary

value problems, there exists a procedure, based on the so-called Green’s function, for de-

riving the appropriate transform [44]. However, these methods to solve linear boundary

value problems have some disadvantages. To illustrate this point, consider as a simple

example the linear initial value problem

iqt(x, t) + qxx(x, t) = 0 , t > 0 , x ∈ (−∞,∞) ,

q(x, 0) = q0(x) , x ∈ (−∞,∞) ,

and the corresponding boundary value problem posed on [0,∞) with qx(0, t) = f1(t),

where q0(x) and f1(t) are given functions satisfying q0(0) = f1(0).

The solution of the initial value problem is given by

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ik2tq̂(0, k) dk . (1.3)

The traditional approach that is used to solve the initial boundary value problem is the

cosine transform in x, given by the pair of equations

q̂(t, k) =

∫ ∞

0

cos(kx) q(x, t) dx , q(x, t) =
2

π

∫ ∞

0

cos(kx) q̂(t, k) dk .

The solution of the boundary value problem is given by

q(x, t) =
2

π

∫ ∞

0

cos(kx)

(
e−ik2tq̂(0, k)− i

∫ t

0

e−ik2(t−t′)f1(t
′) dt′

)
dk , (1.4)

where q̂(0, k) is the Fourier transform of the initial data.

We now compare these two representations. The solution given by (1.3) is spectrally

decomposed , i.e., x and t appear explicitly and the spectral data q̂(0, k) depends only

on k. For this reason, it is easy to study the long time behaviour of the solution. In

contrast, the expression (1.4) is not separable, hence not spectrally decomposed, and it
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is not straightforward to determine the long time behaviour of the solution of the initial

boundary value problem. In addition, expression (1.4) is not uniformly convergent at

x = 0.

In spite of these disadvantages, for a variety of linear boundary value problems,

the transform methods are successful. However, the appropriate transform does not

always exist. For example, if the boundary conditions are sufficiently complicated, or if

the associated x-differential operator is not symmetric, then the method above cannot

be employed and one needs to resort to the Laplace transform in t, which is more

complicated and involves further restrictions on the data.

Recently, Fokas has proposed a method for solving boundary value problems for

linear PDEs in two variables by giving an algorithmic way to construct a transform

in both x and t [12]. This transform yields an integral representation of the solution

which depends only on the given data of the problem. This method has proved very

important for linear problems, and in addition, it can be generalised to the solution

of boundary value problems for integrable nonlinear evolution PDEs. We remark that

the latter problem was open for almost forty years after the discovery of the inverse

scattering transform, as it is not possible to follow the same procedure to derive a

nonlinear analogue of these ‘boundary-value’ transforms, and of course there was no

starting point when such a boundary linear transform does not exist in the first place.

The crucial idea of Fokas was that of constructing a transform simultaneously in x and

t.

This new approach has proved very successful, and it has been used to study initial

boundary value problems for linear dispersive evolution equations [23, 17, 15, 19], several

integrable nonlinear evolution equations [16, 14, 49], and two-point boundary value

problems for linear evolution partial differential equations [22, 38, 39, 21]. The KdV

equation is an important example of an integrable nonlinear evolution equation for which

boundary value problems have been studied by this method, and we focus here on this

particular example [19]. In the next section we give a brief account of the history of this

equation.
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1.1.1 The Korteweg-deVries Equation

In August 1834, John Scott-Russell (1808-1882) witnessed a phenomenon on the Edin-

burgh-Glasgow canal that was the first ever recorded observation of what is now termed

a solitary wave. What he observed was a large mass of water, some thirty feet in length

and a foot and a half in height, which was rounded, smooth, well-defined and in the form

of a large solitary elevation. The wave travelled down the channel without changing in

form or decreasing in speed, for several miles before the wave was finally lost. Russell

observed that the volume of the water in the wave was exactly equal to the volume of

the water that was displaced. He concluded that the wave speed was proportional to

the amplitude, demonstrating that the larger the amplitude and narrower the wave, the

faster it travels.

In the 1870’s Boussinesq (1871, 1872, 1877) and Rayleigh (1876) considered the two

dimensional Euler equation and independently derived expressions for the shape and

speed of the type of wave that Russell had observed.

In 1895 Korteweg and deVries, both of whom were seemingly unaware of the earlier

work of Boussinesq, obtained a partial differential equation, which is now commonly

referred to as the Korteweg-deVries, or KdV equation [31]. The equation is nonlinear

and based on the assumption that the depth of the water is small compared to the width

of the wave, and relates the amplitude of the wave and its changes in space, with the

change of the amplitude in time.

Korteweg and deVries demonstrated that the equation possesses a particular solution

with the type of behaviour witnessed by Russell. This solution, called a soliton, takes

the form

q(x, t) = 3A2sech2 1

2

(
Ax− A3t

)
,

where the parameter A determines both the amplitude and speed. The term soliton was

introduced by Kruskal and Zabusky in 1965 to emphasise the analogy with particles

[52].

We define the soliton as a particular solution of a nonlinear equation, which is localised

in space and retains its shape upon interaction with any other localised disturbance. The

dispersive effects cause the wave to spread and decrease in amplitude, and the nonlinear

effects cause the wave to steepen and become narrower. Under certain circumstances
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these opposing effects complement each other and the balance between them is such

that the soliton propagates without changing in form.

Moreover, solitons are important because they characterise the long time behaviour

of evolution equations in one space dimension. The pure initial value problem for the

KdV equation posed on the real line, and the periodic initial value problem posed on

a bounded domain, are the focus of [3], and existence, uniqueness, regularity and con-

tinuous dependence results have been established. For a general description, regarding

the derivation of such model equations for long waves in nonlinear dispersive systems,

together with references to their derivation in specific physical situations, see [2]. More

recently, the analysis of the KdV equation posed on a bounded domain has received

much attention. The exact boundary controllability of linear and nonlinear equations

with various boundary conditions has been studied by Rosier [41], and initial boundary

value problems for the KdV equation are the focus of the works by Colin et al. [8] and

Bona et al. [4].

The problem of finding a solution describing the interaction of two solitons, was not

addressed by Korteweg and deVries, but instead, in 1967, by Gardner et al., who derived

an explicit solution describing the interaction of an arbitrary number of solitons [26]. If

we consider a two soliton initial solution, then the soliton with the larger amplitude will

travel faster than the other soliton and will overtake it. The effect of the interaction

will simply be a phase shift, i.e., the two solitons will have reached the positions they

would have otherwise reached had they not have interacted.

Numerically, the solution of nonlinear dispersive wave equations has been of interest

since the 1960s. Explicit methods, used to approximate the KdV equation, include

schemes by Zabusky and Kruskal [52] and Vliegenhart [50]. Implicit methods include

a hopscotch method [29] and a scheme due to Goda [28]. Finite Fourier transform or

pseudospectral methods include the split-step Fourier method introduced by Tappert

[46] and the pseudospectral method introduced by Fornberg and Whitham [25], both of

which will be the focus of the numerical schemes of Chapter 6. All of the schemes are

reviewed in detail, and their efficiency compared, in the paper of Taha and Ablowitz

[45]. Fourier spectral methods have also been applied to the KdV equation by Schamel

and Elsasser [43] and Chan and Kerkhoven [6], and more recently a comparison of the

Fourier pseudospectral methods for the solution of the KdV equation, has appeared in
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the literature [37].

Such methods are also of great interest in the solution of higher order problems [34],

and indeed will be the focus of Section 5.2 for our numerical approximations. In the

next section we give a brief review of spectral methods.

1.2 An Overview of Spectral Methods

Before the introduction of spectral methods in the 1970s, finite difference methods

(1950s) and finite element methods (1960s) were the main two classes of methods that

were used for the numerical solution of partial differential equations. Afterwards, theo-

retical and numerical studies have shown that when the functions involved are smooth,

such methods converge must faster than finite difference or finite element methods [5],

and nonlinearities do not pose any special difficulties. By now there is a very large

literature on spectral methods. In this thesis, we are interested in particular in the use

of such methods for solving third order differential equations [30].

Both finite difference and finite element methods are based on approximations that

are local in nature. In contrast, spectral methods use the information given over the

whole domain to approximate the solution at a certain point. In this sense, the nature

of the approximation is global. Spectral methods are usually described as expansions

based on infinitely differentiable global functions:

u(x) u
N∑

k=0

ak φk(x) ,

where the functions φk(x) are for example Chebyshev polynomials, or trigonometric

functions, and the coefficients ak are called the expansion coefficients. These functions

are then differentiated exactly. To define a spectral numerical scheme to solve a spe-

cific PDE problem, one needs to choose the trial functions φk(x) and to determine the

expansion coefficients ak, k = 0, 1, . . . , N .

In the next section, we give a detailed review of the spectral differentiation process

for the cases for which the prescribed function is both periodic and nonperiodic. In the

former case we consider the approximation of the derivative of a given function using the

discrete Fourier transform (DFT), which we then contrast with the Toeplitz differenti-

ation matrix approach. This is to be compared to the latter case of approximating the
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derivative of a function when the domain is bounded but not periodic using Chebyshev

polynomial interpolants.

The introductory material given below, follows closely the exposition in Trefethen

[48]. For a more historical background on these methods, see [5].

1.2.1 Periodic Problems

Suppose we are given a set of N grid points {x1, ..., xN} and corresponding function

values {u1, ..., uN} and we wish to approximate the derivative of u(x) spectrally. The

first approach that we consider is the approximation of the derivative of a given function

using the discrete Fourier transform (DFT), which we then contrast with the Toeplitz

differentiation matrix approach.

Discrete Fourier Transforms

Let us begin by considering the continuous case. The Fourier transform pair is given by

û(k) = Fu(x) =

∫ ∞

−∞
e−ikxu(x) dx , x , k ∈ R , (1.5a)

u(x) = F−1û(k) =
1

2π

∫ ∞

−∞
eikxû(k) dk , (1.5b)

where u(x) is a sufficiently smooth function and û(k) is its Fourier transform.

The Fourier transform converts differentiation into multiplication by ik: û′(k) =

ikû(k). This is probably its most important property, as it means that PDEs in physical

space can be transformed to ODEs in Fourier space.

Consider now the discrete spatial domain with grid points xj = jh for j ∈ Z. Because

of the phenomenon known as ‘aliasing’, the wavenumbers k will no longer range over R,

but will instead range over a bounded domain of length 2π
h

. Indeed, if one considers the

points xj = jh for j ∈ Z, then eik1xj = eik2xj for each j, provided k1 − k2 is an integer

multiple of 2π
h

.

We now consider spectral differentiation on a bounded periodic grid. Our basic

periodic grid is [0, 2π] discretised by N equispaced points. Because the spacing h = 2π
N

of the grid points implies that wavenumbers differing by an integer multiple of 2π
h

are

indistinguishable on the grid, the spectral variable is k ∈ [−π
h
, π

h

]
.
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The formula for the discrete Fourier transform (DFT) which transforms our function

u(x) to the discrete Fourier space is given by

Fuj = ûk = h

N∑
j=1

e−ikxjuj , k = −N/2 + 1, . . . , N/2 , (1.6)

and the inversion formula is

F−1ûk = uj =
1

2π

N/2∑

k=−N/2+1

eikxj ûk , j = 1, . . . , N . (1.7)

Via the formula for differentiation of the continuous function u(x), we differentiate

our discrete function analogously and approximate the first derivative of u(x) as u′j u

F−1(ikFuj), and similarly approximate the third derivative as u′′′j u −F−1(ik3Fuj),

where Fuj and F−1ûk are given by (1.6) and (1.7) respectively.

Matlab has built in functions X = fft(x) and x = ifft(X) that implement the Fourier

transform and its inverse. For a vector of length N the pair are given explicitly by

X(k) =
N∑

j=1

x(j) e−
2πi
N

(j−1)(k−1),

x(j) =
1

N

N∑

k=1

X(k) e
2πi
N

(j−1)(k−1). (1.8)

Matlab stores the wavenumbers in the order 0, 1, . . . , N
2
,−N

2
+ 1,−N

2
+ 2, . . . ,−1.

For convenience, these equations are often written as matrix × vector products. For

example expression (1.8) for the inverse discrete Fourier transform, can be written as




x(1)

x(2)

x(3)
...

x(N)




=
1

N




1 1 1 . . . 1

1 ω ω2 . . . ωN−1

1 ω2 ω3 . . . ω2N−2

...
...

...
. . .

...

1 ωN−1 ω2N−2 . . . ω(N−1)2







X(1)

X(2)

X(3)
...

X(N)




, (1.9)

where ω = e
2πi
N . The discrete Fourier transform (DFT) on the N -point grid can be com-

puted via the fast Fourier transform (FFT), discovered by J.W.Cooley and J.W.Tukey

in 1965, and used to approximate the derivative of u(x). The execution time for the

discrete Fourier transform depends on the length N of the transform, and the matrix-

vector multiplication, given by (1.9), appears to require O(N2) operations. This is
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because the process requires N2 complex multiplications (along with a small number

of operations to generate the required powers of ω). However, if N is chosen to be the

product of small prime factors, then the discrete Fourier transform can be computed

using the fast Fourier transform (FFT) in O(N log N) operations. The FFT algorithm

writes the DFT matrix as the product of sparse matrices, and this factorisation becomes

particularly efficient when N is chosen to be a power of 2. For this reason, all of the

numerical schemes that are presented in Chapter 6 will choose N to be a power of 2.

For a detailed explanation of the algorithm, see [40].

As a simple example to demonstrate the ease with which the FFT and IFFT can be

implemented, we consider the following where we approximate the derivative of a given

function u(x), defined on the N point equispaced periodic grid [0, 2π]. The numerical

derivative w(x) is computed as follows:

• Begin by computing ûk.

• Define ŵk = ikûk.

• Compute w(x) from ŵk.

To approximate the nth order derivative, we simply multiply by the nth power of ik.

However, for odd order derivatives, we must set the term ŵN
2

= 0, due to a loss of

symmetry (which will be explained in detail in the next section when we discuss Toeplitz

differentiation matrices). Hence the numerical nth derivative is computed as follows:

• Begin by computing ûk.

• Define ŵk = (ik)nûk and if n is odd set ŵN
2

= 0.

• Compute w(x) from ŵk.

Toeplitz Differentiation Matrices

Toeplitz differentiation matrices provide an alternative method for approximating the

derivatives of a given function, provided the grid upon which the function is defined is

uniform and the problem is periodic i.e., u0 = uN and u1 = uN+1. Therefore, under

the assumption of periodicity, we can use trigonometric interpolants and represent the

discrete differentiation process as a matrix × vector multiplication. Our basic periodic

grid will be [0, 2π] with spacing h = 2π/N :

10



• Let p(x) be a single function such that p(xj) = uj for all j.

• Set wj = p
′
(xj).

For spectral differentiation, we use the inverse Fourier transform, given by (1.7), to

derive an interpolant. We begin by determining ûk and then define the interpolant p(x)

according to the formula given by (1.7), evaluated for x ∈ [0, 2π]. This yields

p(x) =
1

2π

N
2∑

k=−N
2

+1

eikxûk , x ∈ [0, 2π] .

Evaluating this expression achieves a term of the form eiNx/2 with derivative (iN/2)eiNx/2.

At the points xj = jh, j = 1, . . . , N , the function eiNx/2 represents a real, sawtooth

wave, and therefore the derivative should vanish and not be equal to a complex ex-

ponential. The reason for this problem is that (1.7) treats the highest wavenumber

asymmetrically, but this problem can be fixed by defining the band-limited interpolant

as follows

p(x) =
1

2π

N/2∑

k=−N/2

′
eikxûk , x ∈ [0, 2π] , (1.10)

where the prime indicates that the terms k = ±N/2 are multiplied by 1
2
.

Now, the periodic Delta function is given by

δj =





1 , j ≡ 0 (mod N) ,

0 , j 6≡ 0 (mod N) ,

and the Fourier transform of δj is a constant, δ̂k = h for each k. Therefore, via (1.10),

we have

p(x) =
h

2π

N/2∑

k=−N/2

′
eikx =

h

2π


1

2

N/2−1∑

k=−N/2

eikx +
1

2

N/2∑

k=−N/2+1

eikx




=
h

2π
cos

(x

2

) N/2−1/2∑

k=−N/2+1/2

eikx

=
h

2π
cos

(x

2

) (
e−i(N/2)x − ei(N/2)x

e−ix/2 − eix/2

)

11



=
h

2π

(
cos

(
x
2

)
sin

(
Nx
2

)

sin
(

x
2

)
)

=
sin

(
πx
h

)
(

2π
h

)
tan

(
x
2

) .

Hence for a periodic domain, p(x) is a trigonometric polynomial on the equispaced grid

and is constructed using the periodic sinc function SN(x), given by

SN(x) =
sin

(
πx
h

)
(

2π
h

)
tan

(
x
2

) .

To approximate the first derivative of u(x), we evaluate the derivative of SN(x):

S ′N(xj) =





0 , j ≡ 0 (modN) ,

1
2
(−1)j cot

(
jh
2

)
, j 6≡ 0 (modN) ,

arrange the entries in the N th column of the following N ×N matrix, and perform the

following matrix × vector multiplication:



w1

w2

...

...

...

wN




=




0 −1
2
cot 1h

2

−1
2
cot 1h

2

. . . . . . 1
2
cot 2h

2

1
2
cot 2h

2

. . . −1
2
cot 3h

2

−1
2
cot 3h

2

. . .
...

...
. . . . . . 1

2
cot 1h

2

1
2
cot 1h

2
0







u1

u2

...

...

...

uN




, (1.11)

which we write as

w = DN u .

The matrix DN is Toeplitz, meaning that the entries along the diagonals are constant (aij

depends only on i− j), and circulant, meaning that aij depends only on (i− j)(modN).

DN will be the differentiation matrix that we will use in Chapter 6 to approximate the

derivative of a periodic function defined on [0, 2π].

To calculate higher spectral derivatives we differentiate SN(x) more times. i.e., we

construct the matrix for differentiation of any order by differentiation of SN(x). For a

detailed explanation, see [48].

We conclude this section with a simple example illustrating the use of the Toeplitz

matrix DN for differentiating the smooth function u(x) = ecos(x). The program is then

12



repeated using the FFT instead of matrices and the results are given in Figure 1.1. The

program discretises the interval [0, 2π] using 24 grid points.

To calculate the errors, the infinity norms for the two functions given by the difference

between the spectral derivatives and the exact derivatives were numerically calculated.

The maximum error for the derivative calculated using the Toeplitz matrix is 9.6811×
10−13, compared to 9.5468× 10−13 from the FFT approach.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
Function

0 2 4 6
−2

−1

0

1

2
Spectral derivative (Toeplitz)

0 2 4 6
−2

−1

0

1

2
Spectral derivative (FFT)

Figure 1.1: Spectral differentiation of the function u(x) = ecos(x).

1.2.2 Non-Periodic Problems

We now construct interpolants that can be used for approximating the derivative of a

given function when the domain is bounded but not periodic.

Polynomial Interpolation

Consider a non-periodic smooth function defined on [−1, 1]. We wish to choose {φk} so

that for smooth functions the series approximation, given by
∑N

k=0 ak φk(x), converges

rapidly. In general, a smooth function becomes non-smooth when periodically extended,
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and if we simply pretend the function is periodic and use trigonometric (Fourier) in-

terpolation in equispaced points, then the required condition will not be satisfied. As

a result, the spectral accuracy will be lost, and the coefficients ak will decrease like

O(1/N) as N →∞.

This is called Gibb’s phenomenon, and it was first observed by Wilbraham (1848)

and Gibbs (1899). It basically describes how the Fourier series of a piecewise continu-

ously differentiable function behaves at a jump discontinuity. It reflects the difficulties

encountered by approximating a discontinuous function by a series of continuous func-

tions, and is the most significant example of how an irregularity of a piecewise smooth

function can effect the convergence of interpolants and truncated series expansions.

To overcome this we must replace trigonometric polynomials by algebraic polyno-

mials, p(x) = a0 + a1(x) + · · · + aN(x), and use polynomial interpolation on unevenly

spaced points. The set of points we shall use are the Chebyshev points:

xj = cos

(
jπ

N

)
, j = 0, 1, . . . , N , (1.12)

which are the projections onto the interval [−1, 1], of equispaced points along the unit

circle in the complex plane.

We now give an example to demonstrate the accuracy that is lost from interpolating

a non-periodic function using equispaced points. Figure 1.2 shows the results from

interpolating the function u(x) = 2
3+40x2 on a 17 point grid.

−1 −0.5 0 0.5 1
−0.5

0

0.5

1
Equispaced points

x

u

−1 −0.5 0 0.5 1
−0.5

0

0.5

1
Chebyshev points

x

u

Figure 1.2: Interpolation of u(x) = 2
3+40x2 for equispaced points and Chebyshev points.

As the number of grid points is increased, the errors from equispaced grid point in-

terpolation increase exponentially, whereas if Chebyshev interpolation is used the errors

14



decrease exponentially.

Chebyshev Differentiation Matrices

Given a grid function uj defined on the Chebyshev points xj, j = 0, 1, . . . , N , we obtain

a discrete derivative wj in two steps:

• Let p(x) be the unique polynomial of degree 6 N with p(xj) = uj, 0 6 j 6 N .

• Set wj = p′(xj).

This operation is linear, because the interpolating polynomial through the grid points

is linear, and is represented by multiplication by an (N + 1) × (N + 1) matrix, which

we shall denote DN :

w = DN u .

The differentiation matrix DN is constructed according to Theorem 1.2.1:

Theorem 1.2.1. For each N > 1 , the first-order spectral differentiation matrix DN

has entries

(DN)00 =
2N2 + 1

6
, (DN)NN = −2N2 + 1

6
,

(DN)jj =
−xj

2
(
1− x2

j

) , 1 6 j 6 N − 1 ,

(DN)ij =
ci (−1)i+j

cj (xi − xj)
, i 6= j, i, j = 0, . . . , N ,

where the rows and columns of the (N + 1)× (N + 1) matrix are indexed from 0 to N ,

and

ci =





2 , i = 0 or N ,

1 , otherwise .

The Chebyshev differentiation matrix DN can be computed via an eight-line Matlab

program called cheb [48], which returns a vector x and a matrix DN , and we will use

this program for all non-periodic numerical schemes in Chapter 5 and Chapter 6. To

obtain higher order differentiation matrices, we will compute the relevant powers of DN .

i.e., Dj
Nu approximates the jth derivative of u(x).
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Remark 1.2.2. The distinction between the use of DN to represent both Toeplitz and

Chebyshev differentiation matrices, will be made explicitly clear in Chapter 5 and Chap-

ter 6.

Remark 1.2.3. All of the numerical schemes presented in Chapter 5 and Chapter 6 are

performed using Matlab, and our goal is on achieving simplistic codes using as many

built-in functions as possible, rather than achieving high performance abstract codes.

1.3 Preliminary Results

We begin this section by summarising some basic results on the theory of functions of

one complex variable, which will be used throughout this work. The presentation follows

the exposition given in the book by Ablowitz and Fokas [1].

We also use some of these complex techniques to give an alternative derivation of the

Fourier transform inversion formula for smooth decaying functions. This derivation is a

model for many of the results that follow.

We then include some general results in the theory of linear differential operators

with constant coefficients, which follows closely the book of Naimark [35], and conclude

the section with a theorem, due to Levin, about the distribution of the zeros of a certain

class of entire functions [33].

1.3.1 Cauchy’s Theorem

In this section we give the statement of Cauchy’s Theorem, one of the most significant

results in complex analysis, and list some of its consequences.

Theorem 1.3.1. (Cauchy) If a function f(k) is analytic and bounded in a simply

connected domain D, then along any simple closed contour C in D

∮

C

f(k) dk = 0 .

The proof of Cauchy’s Theorem, which is omitted, uses a well-known result from

vector analysis, known as Green’s Theorem in the plane.

Theorem 1.3.2. (Green) Let the functions P (x, t) and Q(x, t), along with their partial

derivatives ∂P
∂x

, ∂P
∂t

, ∂Q
∂x

and ∂Q
∂t

be continuous throughout a simply connected region D
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consisting of points interior to and on a simple closed contour ∂D in the x-t plane. Let

∂D be described in the positive (counter-clockwise) direction, then
∮

∂D

(Q dt + P dx) =

∫∫

D

(
∂P

∂t
− ∂Q

∂x

)
dt dx .

The following lemma is of importance for evaluating exponential integrals on open

unbounded domains, such as the real line.

Lemma 1.3.3. (Jordan) Let C be the circular arc given in Figure 1.3, obtained by

considering the intersection of the circle of radius R with the upper half complex plane

C+. Suppose that on C we have f(k) → 0 uniformly as R →∞. Then

lim
R→∞

∫

C

eiλkf(k) dk = 0 , (λ > 0) .

−R R

C

Figure 1.3: The contour C corresponding to Jordan’s Lemma (Lemma 1.3.3).

We conclude this section with the most important consequence of Cauchy’s Theorem

(Theorem 1.3.1). This formula can be used to determine the values of an analytic

function f(k) on the interior of a closed contour C using the known values of the function

on the boundary of C.

Theorem 1.3.4. (Cauchy’s Integral Formula) Let f(k) be analytic interior to and

on a simple closed contour C. Then at any interior point k

f(k) =
1

2πi

∮

C

f(k′)
k′ − k

dk′ . (1.13)

Equation (1.13) is referred to as Cauchy’s integral formula.

1.3.2 Residue Calculus

If the function f(k) is analytic everywhere on and inside a simple closed contour C,

then it follows by Cauchy’s Theorem (Theorem 1.3.1) that
∮

C

f(k) dk = 0 .
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It may be however that f(k) has a singularity at a point k = kn, and this leads us to

the following definition:

Definition 1.3.5. A singularity of f(k) at k = kn is called a simple pole if f(k) has the

following representation:

f(k) =
p(k)

k − kn

,

where p(k) is analytic in a neighbourhood of kn and p(kn) 6= 0. The coefficient p(k) is

called the residue of f(k) at k = kn.

The following definition allows us to compute residues, and is of significant importance

in the evaluation of complex integrals.

Definition 1.3.6. The residue at a simple pole is calculated using the formula

f(k) =
p(k)

q(k)
,

where p(kn) 6= 0 and q(k) has a simple zero at kn (implying that f(k) has s simple pole

at kn by Definition 1.3.5). The formula for the residue at a simple pole is then given by

Res
k=kn

f(k) = Res
k=kn

p(k)

q(k)
=

p(kn)

q′(kn)
.

Note that if k = kn is a simple zero of q(k), then q′(kn) cannot vanish. Now that we

can compute residues, we turn our attention to residue integration and begin with the

example of an analytic function f(k) with several singularities inside a simple closed

contour C.

Theorem 1.3.7. (Residue) Let f(k) be analytic inside and on a simple closed contour

C, except for finitely many singular points k1, k2, . . . kn inside C. Then the integral of

f(k), taken counter-clockwise around C, equals 2πi times the sum of the residues of f(k)

at k1, k2, . . . kn:

∮

C

f(k) dk = 2πi

n∑
j=1

Res
k=kj

f(k) .

If the function f(k) is such that there is just one simple pole on the boundary of the

contour C, then the integral of f(k) is equal to exactly πi times the sum of the residue

at the pole.
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C
k2

k1

kn

Figure 1.4: The graphical representation of the Residue Theorem (Theorem 1.3.7).

Theorem 1.3.8. (Simple Poles on the Real Axis) Let f(k) be analytic inside and

on a simple closed contour C, except for a simple pole at k = kn on the real axis. Then

lim
r→0

∮

C

f(k) dk = πi Res
k=kn

f(k) .

kn kn + r
x

C

kn − r

Figure 1.5: The graphical representation of Theorem 1.3.8.

Remark 1.3.9. The integral around the semicircle is exactly one-half the value obtained

by integration over the full circle. A general theorem regarding this result is given as

follows: Let f(k) be analytic at k = k′. Consider the integral

Fθ =

∫ k2

k1

f(k)

k − k′
dk ,

taken from k1 = k′ + reiθ1 to k2 = k′ + reiθ2 along the circle |k − k′| = r, (Figure 1.6).

Then

lim
r→0

Fθ = θif(k′) ,

where θ = θ2 − θ1 + 2nπ and n is chosen such that |θ| 6 2π.
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k1

k′

k2

θ

Figure 1.6: The graphical representation of Remark 1.3.9.

1.3.3 Cauchy Type Integrals

Consider the integral

µ(k) =
1

2πi

∫

C

f(k′)
k′ − k

dk′ , (1.14)

where C is a smooth contour and f(k′) is a function satisfying the Hölder condition on

C. i.e., for any two points k′1 and k′2 on C, ∃α > 0 and 0 6 λ 6 1 such that

| f(k′1)− f(k′2)| 6 α| k′1 − k′2|λ .

If λ = 1 then the Hölder condition is the so-called Lipschitz condition. Provided that

k is not on C then the integral, given by (1.14), is well defined and µ(k) is analytic. If

k is on C then it is necessary to know how k approaches C, so as to give the integral

meaning.

C

Figure 1.7: The regions + and − on either side of the contour C.

The two regions to the left and right of the positive direction of C, are denoted by

+ and − respectively, and are given in Figure 1.7. When k approaches C along a curve

that is entirely in the + region, the function µ(k) has a limit µ+(τ), where τ on C.

Similarly, µ(k) has a limit µ−(τ) when k approaches C along a curve entirely in the

− region. These limits are given by the so-called Plemelj Formulae and are called the

boundary values of the function µ(k).
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Lemma 1.3.10. (Plemelj Formulae) Let C be a smooth contour (open or closed)

and let f(k′) satisfy a Hölder condition on C. Then the Cauchy type integral µ(k),

defined by (1.14), has the limiting values µ+(τ) and µ−(τ) as k approaches C from the

left and the right, respectively, and τ is not an endpoint of C. These limits are given by

µ±(τ) = ± 1

2
f(τ) +

1

2πi

∮

C

f(k′)
k′ − τ

dk′ .

In these equations,
∮

denotes the principal value integral defined by

∮

C

f(k′)
k′ − τ

dk′ = lim
ε→0

∫

C−Cε

f(k′)
k′ − τ

dk′ ,

where Cε is the part of C that has length 2ε and is centred around τ , (Figure 1.8).

C

Cε

τ + ετ − ε τ

Figure 1.8: The graphical representation of Cε.

1.3.4 Scalar Riemann-Hilbert Problems

The formulae introduced above, indicates the behaviour of a Cauchy integral as k ap-

proaches any point on the contour C, and can be used to solve scalar Riemann-Hilbert

problems. We now introduce some definitions.

Definition 1.3.11. Let C be a simple, smooth, closed contour dividing the complex k-

plane into two regions D±, where the orientation of C is such that D+ is always on the

left of the positive direction.

D−

D+

C

Figure 1.9: The simple closed contour C and the regions D+ and D− of Definition 1.3.11.
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A scalar function µ(k) defined in the entire plane, except for points on C, is called

sectionally analytic if

i.) the function µ(k) is analytic in each of the regions D± except perhaps at k = ∞,

and

ii.) the function µ(k) is sectionally continuous with respect to C. i.e., as k approaches

any point τ on C along any path which lies completely in either D+ or D−, the

function µ(k) approaches a definite limiting value µ+(τ) or µ−(τ) respectively.

It follows that µ(k) is continuous in the closed region D+ ∪C if it is assigned the value

µ+(τ) on C, and is continuous in the closed region D− ∪ C if it is assigned the value

µ−(τ) on C. The values µ±(τ) are called the boundary values of µ(k).

A simple example of a scalar Riemann-Hilbert problem, involves finding a sectionally

analytic function µ(k), with µ(k) = O (1/k) as k → ∞, such that the two limiting

functions µ+(τ) and µ−(τ), defined inside and outside the closed contour C given by

Figure 1.9, of the complex k-plane, satisfy

µ+(τ)− µ−(τ) = f(τ) , τ on C ,

for a given sufficiently smooth function f(τ). This problem is closely related to the

Cauchy type integral, given by (1.14), and the unique solution satisfying the boundary

condition at k →∞, is given by

µ(k) =
1

2πi

∫

C

f(k′)
k′ − k

dk′ . (1.15)

Remark 1.3.12. Consider the integral
∫ ∞

−∞
f(k) dk = lim

R→∞

∫ R

−R

f(k) dk ,

where f(k) is analytic and bounded in C+. This complex integral over the open real

axis, may be regarded as closed at infinity. i.e., it can be treated as a portion of the

complex integral
∮

C
f(k) dk, evaluated over the closed contour C (Figure 1.10):

∮

C

f(k) dk =

∫ R

−R

f(k) dk +

∫

CR

f(k) dk .

This important observation allows for the application, to open contours, of Cauchy’s

Theorem (Theorem 1.3.1), Jordan’s Lemma (Lemma 1.3.3) and the results of Residue

Calculus. An analogous observation, allows for the application of these results to func-

tions that are analytic and bounded in C−.
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−R R

CR

Figure 1.10: The graphical representation of Remark 1.3.12.

1.3.5 The Spectral Analysis of ODEs and the Fourier

Transform

In this section, we present a simple application of the Riemann-Hilbert machinery, which

yields an alternative, new derivation of the Fourier transform inversion formulae for

smooth decaying functions, given by

q̂(k) =

∫ ∞

−∞
e−ikxq(x) dx , q(x) =

1

2π

∫ ∞

−∞
eikxq̂(k) dk , k ∈ R .

This is obtained by performing the relevant spectral analysis of a particular ODE. (The

Fourier transform formulae were given by (1.5), but with q(x) replaced by u(x)).

We consider the first order eigenvalue ODE

µx(x, k)− ikµ(x, k) = q(x) , k ∈ C , (1.16)

with q(x) a smooth, decaying function, given above. Our goal is to find a solution µ(x, k)

bounded in k for all k ∈ C, and sectionally analytic. This process is called the spectral

analysis of the ODE.

Proposition 1.3.13. The function

µ(x, k) =
1

2πi

∫ ∞

−∞

eik′xq̂(k′)
k′ − k

dk′ , k ∈ C ,

is a solution of the ODE (1.16), such that µ(x, k) is analytic in C+ and C− separately,

and µ(x, k) = O (1/k) as k →∞.

Proof. We define a solution µ(x, k), bounded for all k ∈ C, by

µ(x, k) =





µ+(x, k) , Im k > 0 ,

µ−(x, k) , Im k 6 0 ,
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where µ±(x, k) are the two particular solutions of (1.16) given by

µ+(x, k) =

∫ x

−∞
q(ξ)eik(x−ξ) dξ , (1.17)

µ−(x, k) = −
∫ ∞

x

q(ξ)eik(x−ξ) dξ . (1.18)

Since x−ξ > 0, the solution µ+(x, k) is analytic in the upper half plane, and the solution

µ−(x, k) is analytic in the lower half plane. Subtracting the two equations we find

µ+(x, k)− µ−(x, k) = eikxq̂(k) , k ∈ R , (1.19)

where q̂(k) is defined by

q̂(k) =

∫ ∞

−∞
e−ikξq(ξ) dξ , k ∈ R . (1.20)

Using integration by parts, equations (1.17) and (1.18) imply that

µ(x, k) = O

(
1

k

)
, k →∞ . (1.21)

Equations (1.19) and (1.21) define an elementary Riemann-Hilbert problem whose unique

solution, according to (1.15), is given by

µ(x, k) =
1

2πi

∫ ∞

−∞

eik′xq̂(k′)
k′ − k

dk′ , k ∈ C . (1.22)

Corollary 1.3.14. (The Fourier Transform Pair) The function q(x) can be rep-

resented as

q(x) =
1

2π

∫ ∞

−∞
eikxq̂(k) dk ,

where q̂(k) is given by (1.20).

Proof. Differentiating (1.22) with respect to x yields

µx(x, k) =
1

2πi

∫ ∞

−∞
ik′

(
eik′xq̂(k′)
k′ − k

)
dk′ .

Hence,

q(x) = µx(x, k)− ikµ(x, k)

=
1

2πi

∫ ∞

−∞
i(k′ − k)

(
eik′xq̂(k′)
k′ − k

)
dk′

=
1

2π

∫ ∞

−∞
eik′xq̂(k′) dk′ . (1.23)

Equations (1.20) and (1.23) define the classical Fourier transform pair, and the proof is

complete.
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1.3.6 Linear Differential Operators with Constant Coefficients

In this section we include some general results in the theory of linear differential opera-

tors, acting on the interval [0, L], [35].

Definition 1.3.15. A linear constant coefficients differential operator of order n, is an

operator L whose action on a function q(x) ∈ Cn ([0, L]) is given by an expression of

the form

Lq(x) = anq
(n)(x) + an−1q

(n−1)(x) + · · ·+ a0q(x) , (1.24)

where the coefficients an, an−1, . . . , a0 are given complex constants.

Since the operator acts on functions defined on [0, L], it is natural to consider the

case when boundary conditions are considered. This restricts the domain of definition

of the operator to differentiable functions which satisfy the given conditions.

We will only consider the case when exactly n boundary conditions are prescribed.

Hence the domain of the operator is of the form

D(L) = {q(x) ∈ Cn ([0, L]) : Uj(q(x)) = 0 , j = 1, . . . , n} ,

where Uj(q(x)) = 0, j = 1, . . . , n are the given (homogeneous) boundary conditions, in

general of the form

Uj(q(x)) = αjq(0) + βjq(L) = 0 .

When the operator is self-adjoint, there exists a comprehensive theory describing its

spectral structure. To define this notion, we need to consider all function spaces as

contained in the Hilbert space L2 ([0, L]), with the inner product structure inherited

from it. Namely, we define the inner product of two functions q(x) and r(x) in L2 ([0, L])

by

〈q(x), r(x)〉 =

∫ L

0

q(x) r(x) dx . (1.25)

Using this inner product, we can define the adjoint operator:

Definition 1.3.16. The linear differential operator L∗ with constant coefficients, of

order n, acting on the function r(x) ∈ Cn ([0, L]) and given by

L∗r(x) = (−1)n (anr(x))(n) + (−1)n−1 (an−1r(x))(n−1) + · · ·+ a0r(x) ,

is called the adjoint operator of L.
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Definition 1.3.17. If D(L∗) is contained in D(L) and L∗ = L, then L is a self-adjoint

operator.

Self-adjoint operators are important because it is possible to characterise their spec-

tra, and there exists a spectral theorem generalising the finite dimensional situation,

and guaranteeing that all information about the operator is contained in the spectrum.

Definition 1.3.18. The point spectrum of a linear differential operator L is defined as

the set of eigenvalues λ for which the homogeneous boundary value problem

Lq(x) = λq(x), Uj(q(x)) = 0, j = 1, . . . , n ,

has non-trivial solutions. Each of these non-trivial solutions is an eigenfunction belong-

ing to λ.

In broad generalisation, the classical theory yields that if an operator has only point

spectrum, and the spectral theorem holds for it in some form, then one can reconstruct

the space from the corresponding eigenvalues, which then form a Riesz basis. Namely,

we have the following result [35].

Theorem 1.3.19. Any function which is continuous and has continuous derivatives

up to the nth order, and satisfies the boundary conditions associated with a self-adjoint

differential operator of order n, can be expanded in terms of the eigenfunctions of this

operator, in a uniformly convergent, generalised Fourier series.

The circumstances under which a reasonably arbitrary function can be expanded as

a series of eigenfunctions of a given boundary value operator is a central issue. The

most difficult property to prove is the completeness of the family of eigenfunctions. The

classical spectral theory of these operators yields completeness for even order cases, as-

suming that the given boundary conditions are ‘reasonable’ (a notion of regular boundary

conditions , can be defined, but we will not go into that, see [9]). When the operator

is even order but not self-adjoint, it is still possible to obtain an expansion theorem by

considering the operator and its adjoint. This is the essence of the theorem we state

below. All relevant definitions, can be found in [35].

Theorem 1.3.20. Let L be an even order operator acting on the function q(x), gener-

ated by regular boundary conditions and of the form (1.24), and for which the adjoint
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differential operator L∗ exists, and assume that all eigenvalues of L are simple. Then

any continuous function q(x) which has continuous derivatives up to the nth order, and

satisfies the boundary conditions, can be expanded in a uniformly convergent series of

the eigenfunctions:

q(x) =
∞∑

j=1

αj qj(x), αj =

∫ L

0

q(ξ) rj(ξ) dξ ,

where qj(x) and rj(x) are the eigenfunctions corresponding to the eigenvalues λj and λj

of the operators L and L∗ respectively.

A similar theorem applies to some special cases of odd order boundary operators. This

is for example the case when boundary conditions are periodic (and this is trivial) or

more generally they couple the endpoints 0 and L, [11]. In the general case of differential

operators on [0, L], although there is always a point spectrum, the corresponding set of

eigenfunctions is not always guaranteed to be complete. For non self-adjoint examples,

this is the hardest part of the construction of a series representation in the classical

theory.

Remark 1.3.21. The method we present allows one to bypass the problem of proving

completeness, and provides a constructive way to present the solution of a given bound-

ary value problem.

1.3.7 The Distribution of the Zeros of Exponential Sums

The material summarised in this section is taken from [33]. We state a theorem which

uses an explicit geometric construction to characterise the distribution of the zeros of

exponential sums, of the form

∆(z) =
N−1∑
j=0

αj eβjz , αj , βj ∈ C . (1.26)

For the proof, see [33].

Theorem 1.3.22. (Levin) Let ∆(z) be a function of the form (1.26). If P is the

convex hull in the complex z-plane of the polygon whose N vertices are the βj
′s, then all

of the roots of ∆(z), except possibly for a set of zero density, lie inside arbitrarily small

angles containing the normals to the sides of the polygon P .
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It follows from this result, that the argument of the zeros of the function ∆(z) depends

on the exponents of the exponential terms, while the precise location of the zeros depends

on the coefficients. In summary, the N points βj, j = 0, 1, . . . , N − 1 are located in the

complex z-plane and joined to form the convex hull P . The zeros then cluster along the

rays, emanating from the origin with direction orthogonal to the sides of the polygon.

As a simple demonstration, Figure 1.11 shows a typical example for which N = 3 and

βj = e
2πij

3 , j = 0, 1, 2.

β2

β1

β0

Figure 1.11: The graphical representation of Levin’s Theorem (Theorem 1.3.22), for a typical example

for which N = 3.

Remark 1.3.23. The density of the set of roots inside each of the angles can be calculated

and is equal to lj/2π, where lj is the length of the corresponding side of the polygon P .

Furthermore, the roots lie in the half-planes

| Im(ze−iθj)| < γ , Re(ze−iθj) > 0 ,

where θj defines the direction of the normal to the side of the polygon P , and γ is some

positive number. However, for the application of Theorem 1.3.22 in the work that is to

follow, the primary interest will be on the rays upon which the zeros lie, and not on

their density. Therefore, no further comment regarding the density of the set of roots

will be made.

Remark 1.3.24. Although it not always straightforward to find the exact location of the

zeros, their asymptotic position in the complex plane is sufficient for our purposes.
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1.4 Thesis Overview

In Chapter 2 we review the classical approaches for solving second and third order linear

evolution PDEs and introduce the elements of the Fokas transform method for linear

evolution PDEs, first for problems on the domain [0,∞), then on [0, L]. For comparison

with the new method, the solution of several PDEs are derived by using the classical

approach based on separation of variables.

The main difficulty posed by studying initial boundary value problems of the form

(1.1), is the determination of the unknown boundary values in the representation of the

solution. The transform method is used to derive the solution, in general, in the form of

an integral representation in the complex plane. This representation which always exists,

involves only the given initial and boundary data of the problem, and we describe the

general algorithm to derive it. The method is illustrated by solving specific PDEs posed

on the half-line, and the original derivation of Fokas, which is based on the formulation

of a Riemann-Hilbert problem, is discussed along with the explicit derivation of the

integral representation of the solution.

In Chapter 3 we focus on the spectral representation of two-point boundary value

problems for second and third order linear evolution PDEs. In particular, we show that,

in agreement with classical theory, the Fokas transform method can be successfully

used for the derivation of the solution as an infinite discrete series, for all well-posed

second order boundary value problems, and third order problems such that the boundary

conditions couple the two end points of the interval. For both cases, the results are

illustrated by examples. We also show that, in agreement with classical theory, for the

third order problem with uncoupled boundary conditions, the integral representation of

the solution cannot be expressed entirely as an infinite discrete series.

In Chapter 4 we consider the problem of solving higher order boundary value problems

by the Fokas transform method. Initially we focus our analysis on fourth order linear

evolution PDEs, then further develop the new method to be able to analyse even/odd

higher order generalisations, and show that the derivation of the series representation

in the non self-adjoint case can be obtained directly from the integral representation.

Detailed examples illustrating the derivation of the solution for both self-adjoint and

non self-adjoint problems are included.
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Chapter 5 and Chapter 6 include the numerical results for linear and nonlinear dif-

ferential equations, respectively. The focus of Chapter 5 is on the imposition of bound-

ary conditions for linear differential equations, and we solve numerically a variety of

boundary value problems. We also introduce the idea of the implicit imposition of the

boundary conditions, using numerical transforms, and as illustrative examples, the cases

of the discrete sine/cosine transform for the implicit imposition of boundary conditions

of Dirichlet/Neumann type are included.

Spectral methods for PDEs in unbounded domains have received much attention,

for example the third order problem on the real/half line. The interest of Chapter

6 is on the numerical study of the nonlinear KdV equation on a finite interval. It

is well known that the nonlinear KdV equation with periodic boundary conditions,

approximating the solution on R, supports soliton solutions, and the numerical schemes

of both Fornberg and Whitham [25], and Tappert [45] will be used in Chapter 6 to

model this behaviour. Boundary value problems for the KdV equation have not been

studied until very recently. In Chapter 6 we present several numerical schemes, based

on spectral methods, for solving the nonlinear KdV equation posed on the bounded

domain with periodic and nonperiodic boundary conditions.
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Chapter 2

The Fokas Spectral Transform

Method and Boundary Value

Problems for Linear Evolution

PDEs

In this chapter we introduce a new approach for studying boundary value problems for

linear PDEs with constant coefficients and integrable nonlinear evolution PDEs in one

space dimension. The method we describe is based on the fact that such equations are

expressible as the compatibility condition of two linear ordinary differential equations

(one in the spatial variable x and the other in the temporal variable t). In the integrable

case, this pair of ODEs is called a Lax pair and its existence is a characterising property

of the integrability.

Integrable nonlinear equations in one space dimension came to prominence when this

general method, and the existence of Lax pairs, were discovered. The inverse scattering,

or inverse spectral, transform method, first proposed in [26] for the KdV equation, was

used for solving the pure initial value (Cauchy) problem with decaying initial data. The

importance of this method was understood when the method was generalised from the

KdV equation to any equation that could be written as the compatibility of a Lax pair

(named after Peter Lax, who was the first to interpret the inverse scattering technique

in this light) and can be considered as a nonlinearisation of the Fourier transform. The

inverse scattering transform method consists of two steps: the spectral analysis of the
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x-part of the Lax pair which yields a nonlinear Fourier transform, and the spectral

analysis of the t-part which then determines the evolution of the associated nonlinear

Fourier data, called the inverse scattering data or spectral data. The nonlinear Fourier

transform cannot in general be expressed in closed form and is given through the solution

of a matrix Riemann-Hilbert problem.

This approach can be used generally for integrable PDEs in two variables. However,

here we focus on the case of linear PDEs with constant coefficients. Fokas [13] considered

the problem of generalising the inverse scattering transform to a method for the solution

of initial boundary value problems. For linear PDEs, Fokas and Gelfand [18] made the

crucial observation that these PDEs can be regarded as a special case of integrable

equations. In particular, linear PDEs possess a Lax pair formulation [32]. This suggests

that one can use a linear inverse scattering transform; for the Cauchy problem this is

just a Fourier transform method. The idea that was finally to yield positive results for

the solution of boundary value problems was to treat the two ODEs in the Lax pair

simultaneously. This is the basis of Fokas’ general approach to solving boundary value

problems for linear and integrable nonlinear PDEs [12].

To perform the simultaneous spectral analysis of the two equations of the Lax pair

means to construct the solution of both ODEs in the pair, which is bounded in the aux-

iliary parameter k, for all k in C. This leads to the formulation, in the complex k-plane,

of a Riemann-Hilbert problem whose unique solution yields a spectral representation of

the solution of the original problem.

In this chapter we describe the elements of the Fokas transform method for linear

evolution PDEs on the domains [0,∞) and [0, L]. After a discussion of the steps involved

in this transform method, we illustrate it concretely by solving a specific PDE posed

on the half-line and constructing the integral representation of the solution, in terms of

the given initial and boundary data. We present the original derivation based on the

formulation of a Riemann-Hilbert problem in the complex k-plane as well as a simpler

way that can be used (for linear PDEs) to derive the explicit integral representation

of the solution. The main difficulty in solving boundary value problems is the charac-

terisation of the boundary values that are not prescribed as boundary conditions. The

derivation of an integral representation of the solution involving only the given data of

the problem, always involves complex contours of integration, and relies on the analysis
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of the so-called global relation, which is an algebraic relation, defined in the complex

k-plane, combining all the boundary values of the solution. This relation is at the heart

of the method proposed, and it is presented in its general form. The analysis of the

invariance properties of the global relation yields a certain system of equations whose

solution characterises the unknown boundary values. We shall be particularly interested

in two-point boundary value problems. In this case, one needs to characterise the PDE

discrete spectrum of the boundary value problem, which we define as the set of zeros of

the determinant of this system, and coincides with the discrete spectrum of an associated

ordinary differential operator. In general this is a set of complex numbers, and we show

that the location in the complex plane of the element of the PDE spectrum indicates

whether or not an infinite discrete series representation of the solution can be derived

from the integral representation. When a series solution exists, it can be realised by a

new approach (different from the classical one based on separating variables), which we

illustrate by several examples.

2.1 The Elements of the Fokas Transform Method

for Linear Evolution PDEs

We introduce the new method of Fokas by describing how to solve a two-point boundary

value problem for the nth order linear evolution PDE of the form

qt(x, t) + a(−i∂x)
nq(x, t) = 0 , t > 0 , x ∈ [0, L] , (2.1a)

q(x, 0) = q0(x) , x ∈ [0, L] , (2.1b)

where L is a finite positive constant, n is an integer defining the order of the problem

and a ∈ {±1,±i} is chosen such that the Cauchy problem is well-posed. By this we

mean that the solution of the Cauchy problem with initial data q(x, 0) = q0(x), which

can be found by the Fourier transform, and is given by

q(x, t) =
1

2π

∫ ∞

−∞
eikx−akntq̂0(k) dk ,

does not grow as t → ∞. i.e., Re(−akn) 6 0. Furthermore, it is required that the

solution q(x, t) → 0 as |x| → ∞. Such examples include the following:
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• qt(x, t)− qxx(x, t) , (n = 2 , a = 1),

• iqt(x, t) + qxx(x, t) = 0 , (n = 2 , a = i),

• qt(x, t) + qxxx(x, t) = 0 , (n = 3 , a = −i).

Furthermore, n boundary conditions must be prescribed, and it is assumed that these,

along with the the initial condition, are compatible at x = 0 and x = L and are

sufficiently smooth.

The first problem is to determine how many boundary values must be prescribed as

boundary conditions, and we use the following result established by Fokas and Sung

[23].

Theorem 2.1.1. A boundary value problem posed on [0, L] for a PDE of the form (2.1a)

is well-posed, hence it admits a unique solution, if in addition to the initial condition

q(x, 0) = q0(x), n boundary conditions are prescribed. N of these boundary conditions

should be prescribed at x = 0 and n−N at x = L where N is determined as follows:

N =





n
2
, n even ,

n±1
2

, n odd .

(2.2)

The sign in the latter equality is determined by the sign of the x-derivative. For

example, if qt(x, t) + qxxx(x, t) = 0 then N = 1, whereas if qt(x, t)− qxxx(x, t) = 0 then

N = 2.

The proof of this theorem is given in [22] by using the construction given by the

method of Fokas. Hence this method also provides a rigorous characterisation of the

boundary value problems that are well-posed. For such problems, we show how to

construct an explicit integral representation of the solution q(x, t), expressed as an

integral in the complex k-plane involving the Fourier transform q̂0(k) of the initial data

q0(x) and some specific t-transforms of the given boundary data. Such problems, at

least in some cases, can be solved also by the Fourier transform (with respect to x)

or the Laplace transform (with respect to t) and we start with reviewing this classical

solution approach.

Remark 2.1.2. There is no loss of generality in considering only equations of the form

(2.1a). Indeed, consider the more general equation

qt(x, t) + bn∂
n
xq(x, t) + bn−1∂

n−1
x q(x, t) + · · ·+ b0q(x, t) = 0 .
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It turns out that the analysis of this more general equation depends on the highest

order term, as it is this term that determines the asymptotic properties of the associated

spectral problem [23].

The Classical Approaches

We now demonstrate how some problems can be solved by the classical Fourier/separation

of variables method. We present the method for the third order problem on the half-line

and a simple second order two-point boundary value problem, which will be revisited in

Section 2.2 and Section 3.1 respectively, and solved using the new transform method.

The Half-Line Problem

We begin by considering the heat equation, posed on the half-line:

qt(x, t)− qxx(x, t) = 0 , t > 0 , 0 < x < ∞ , (2.3a)

q(x, 0) = q0(x) , q(0, t) = f0(t) , (2.3b)

where q0(x) and f0(t) are some given functions. The appropriate x-transform for this

initial boundary value problem is the sine transform pair given by

q̂(t, k) =

∫ ∞

0

sin(kx) q(x, t) dx , k ∈ R ,

q(x, t) =
2

π

∫ ∞

0

sin(kx) q̂(t, k) dk .

Equation (2.3) and integration by parts yields

q̂t(t, k) + k2q̂(t, k) = kf0(t) ,

and therefore the solution is given by

q(x, t) =
2

π

∫ ∞

0

e−k2t

(
q̂
(sin)
0 (k) +

∫ t

0

ek2skf0(s) ds

)
sin(kx) dk , (2.4)

where

q̂
(sin)
0 (k) =

∫ ∞

0

sin(kx) q0(x) dx . (2.5)
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For third order differential operators the same approach fails. For example it is not

possible to solve the problem

qt(x, t) + qxxx(x, t) = 0 , t > 0 , 0 < x < ∞ ,

q(x, 0) = q0(x) , q(0, t) = f0(t) ,

for some given functions q0(x) and f0(t), using the sine, cosine or Fourier transform.

Indeed, it has been shown that there does not exist a transform in x that can yield a

solution of this problem by separation of variables [20].

Remark 2.1.3. Expression (2.4) is not uniformly convergent as x → 0, and therefore,

one cannot compute q(0, t) by simply setting x = 0 inside the integral.

The Two-Point Boundary Value Problem

It is well known that it is possible to expand any continuous function on [0, L] in terms

of the eigenfunctions of the operator ∂2
x, with one boundary condition prescribed at

each end of the interval. This is due to the fact that the operator is symmetric, and its

eigenfunctions then form a Riesz basis for L2 ([0, L]).

The eigenfunction expansion can be used in the method of separation of variables to

find the solution of a two-point boundary value problem for second order problems of

the form (2.1a). The solution of the equation q(x, t) is expressed in the form

q(x, t) = X(x) T (t) ,

and is separated into the product of a function purely of x and a function purely of t.

This is substituted into the PDE to achieve two ODEs for the single functions X(x)

and T (t). The set of solutions that are obtained are then summed to give the general

solution, and the boundary conditions applied to resolve the unknown coefficients of the

series. It is trivial to use separation of variables to solve for example the heat equation

with Dirichlet or Neumann boundary conditions in terms of a sine or a cosine series

respectively. To demonstrate this we solve the heat equation

qt(x, t)− qxx(x, t) = 0 , t > 0 , x ∈ [0, L] ,

q(x, 0) = q0(x) , x ∈ [0, L] ,
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with non-homogeneous Dirichlet boundary conditions

q(0, t) = f0(t) , q(L, t) = g0(t) ,

where q0(x), f0(t) and g0(t) are given smooth functions. This problem is slightly more

difficult than the analogous problem with f0(t) = 0 and g0(t) = 0 because of the non-

homogeneous boundary conditions, and is solved by reducing it to a problem having

homogeneous boundary conditions.

To obtain the solution, we begin by writing q(x, t) = v(x, t) + w(x, t) where v(x, t) is

chosen as

v(x, t) = f0(t) +
x

L
(g0(t)− f0(t)) ,

so that v(x, t) satisfies the boundary conditions

v(0, t) = f0(t) , v(L, t) = g0(t) .

Substituting into the PDE gives

vxx(x, t) + wxx(x, t) = vt(x, t) + wt(x, t) .

Since, vxx(x, t) = 0 and vt(x, t) = f ′0(t) + x
L

(g′0(t)− f ′0(t)) we find

wt(x, t)− wxx(x, t) = −F (x, t) , F (x, t) = f ′0(t) +
x

L
(g′0(t)− f ′0(t)) .

The function w(x, t) is subject to the initial condition

w(x, 0) = q0(x)−
(
f0(0) +

x

L
(g0(0)− f0(0))

)
,

which we shall refer to as w0(x), and the boundary conditions

w(0, t) = 0 , w(L, t) = 0 .

The solution of the homogeneous equation wt(x, t)−wxx(x, t) = 0 is found by separating

the variables and expressing the solution in the form

w(x, t) = X(x) T (t) ,

and can be expressed as

w(x, t) =
∞∑

n=1

wn(t) sin (knx) , kn =
nπ

L
. (2.6)
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This expression ensures that the homogeneous boundary conditions for w(x, t) are sat-

isfied. The method relies on the assumption that w(x, t) can be expressed in the form

given by (2.6), and also that F (x, t) can be expanded in the same way:

F (x, t) =
∞∑

n=1

fn(t) sin (knx) , (2.7)

where

fn(t) =
2

L

∫ L

0

F (x, t) sin (knx) dx

=
2

L

∫ L

0

(
f ′0(t) +

x

L
(g′0(t)− f ′0(t))

)
sin (knx) dx

=
2

L

1

kn

(f ′0(t)− (−1)ng′0(t)) . (2.8)

Substituting the series expansions for w(x, t) and F (x, t) into the PDE leads to the first

order ODE given by

d

dt
wn(t) + k2

nwn(t) = − 2

L

1

kn

(f ′0(t)− (−1)ng′0(t)) .

The initial condition to be imposed is determined by putting t = 0 into the expression

w(x, t) =
∑∞

n=1 wn(t) sin (knx) and equating to w(x, 0) = w0(x) expanded as a Fourier

series. Hence

wn(0) =
2

L

∫ L

0

w0(x) sin (knx) dx

=
2

L

∫ L

0

(
q0(x)−

(
f0(0) +

x

L
(g0(0)− f0(0))

))
sin (knx) dx

=
2

L

{ ∫ L

0

sin (knx) q0(x) dx− 1

kn

(f0(0)− (−1)ng0(0))

}
,

and therefore

wn(t) = − 2

L

1

kn

e−k2
nt

∫ t

0

ek2
ns (f ′0(s)− (−1)ng′0(s)) ds + wn(0)e−k2

nt .
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Finally, the solution for wn(t), given by

wn(t) = − 2

L

1

kn

{
(f0(t)− (−1)ng0(t))− e−k2

nt (f0(0)− (−1)ng0(0))

−
∫ t

0

e−k2
n(t−s)k2

nf0(s) ds + (−1)n

∫ t

0

e−k2
n(t−s)k2

ng0(s) ds

}

+ wn(0)e−k2
nt

= − 2

L

1

kn

{
(f0(t)− (−1)ng0(t))−

∫ t

0

e−k2
n(t−s)k2

nf0(s) ds

+ (−1)n

∫ t

0

e−k2
n(t−s)k2

ng0(s) ds

}
+

2

L
e−k2

nt

∫ L

0

sin(knx) q0(x)dx ,

(2.9)

is inserted into

w(x, t) =
∞∑

n=1

wn(t) sin (knx) ,

and the series solution for q(x, t) is obtained:

q(x, t) = f0(t) +
x

L
(g0(t)− f0(t)) +

∞∑
n=1

wn(t) sin (knx) . (2.10)

We note that this method requires that the functions involved can be represented as

Fourier series, at least in some sense. e.g., L2 convergence. Also, in order to derive solu-

tion (2.10), one has to assume a sine series expansion. Assuming a cosine or exponential

expansion would not lead to a closed formula. In contrast, the Fokas method constructs

the basis requiring no arbitrary assumptions.

For third order differential operators, this same approach is not always possible,

and abstract results guarantee that there exists a complete basis of eigenfunctions only

for particular types of boundary conditions. It will be shown in Section 3.2 that, in

agreement with classical results, it is not possible to expand a function in terms of a

complete basis of eigenfunctions, using the Fokas transform method, when uncoupled

boundary conditions are imposed. The separation of variables approach fails unless

one can prove that the set of eigenfunctions forms a Riesz basis for L2 ([0, L]), and

this cannot be deduced for all boundary conditions from general results in the classical

literature.
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The Laplace transform in t

A particular solution of equation (2.1) is given by the function E(x, t, k) = eikx−ω(k)t

where ω(k) = akn is the dispersion relation, which can be rewritten in the form

E(x, t, s) = eik(s)x+st where s + ω(k) = 0. This change of variable allows PDEs of

the form (2.1a) to be solved by a Laplace transform (or t-transform). However, the

construction of the solution is simpler using the associated x-transform.

For equations of order equal or greater to three the Laplace transform is problematic.

The approach fails to indicate how many boundary conditions must be prescribed at

either end of the interval to guarantee well-posedness. If we assume however that this

information is given, then provided the boundary conditions do not grow with t faster

than linearly exponentially, the Laplace transform is applicable, but its application is not

straightforward and the computations involved are cumbersome [22]. If the boundary

conditions do have sufficiently rapid growth then the method fails.

2.1.1 The Steps of the Fokas Method

The transform method of Fokas for solving boundary value problems for linear evolution

PDEs yields an explicit integral representation of the solution in the general form

q(x, t) =

∫

Γ

eikx−ω(k)tR(k) dk ,

where Γ is a contour in the complex k-plane and the function R(k), called the spectral

function, is explicitly determined in terms of the given initial and boundary conditions.

This representation of the solution is called the spectral representation of the solution

because of the explicit x and t-exponential dependence and offers a number of advan-

tages. For example, this representation is suitable for studying large t asymptotics by

the steepest descent method or Watson’s Lemma and related methods [1].

The existence of the integral representation of the solution (at least under certain

conditions) can be inferred, in some cases, from the so-called Ehrenpreis fundamental

principle. An implication of this result, is that for equation (2.1) there exists a measure

dµ(k) and a contour Γ such that

q(x, t) =

∫

Γ

eikx−ω(k)t dµ(k) .

This result is not constructive, in particular the measure dµ(k) and the contour Γ are
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not given explicitly. The new method provides a constructive approach for finding the

appropriate measure dµ(k) and complex contour Γ.

In quick summary, the method for representing the solution q(x, t) of the given bound-

ary value problem, comprises the following steps:

i.) Given a PDE, construct a Lax pair

The first step consists of writing the PDE in an alternative form. Namely, it is

possible to realise the PDE as the compatibility condition of two linear ODEs, one

in x and one in t. This is called a Lax pair and the two equations that form the

Lax pair can be constructed algorithmically and are referred to as the x-part and

the t-part of the Lax pair.

ii.) Simultaneous spectral analysis of the Lax pair and the global relation

Given the domain where the PDE is defined, the second step consists of performing

the simultaneous spectral analysis of the two ODEs in the Lax pair for (x, t) in

the domain. This analysis is on the domain on which the PDE is considered.

We note that the spectral analysis of the x-part of the Lax pair corresponds to

constructing an x-transform and the spectral analysis of the t-part corresponds

to constructing a t-transform. The advantage of the Lax pair formulation is that

it allows us to consider both equations in the Lax pair simultaneously, hence in

a sense, the new method provides the synthesis of separation of variables. The

spectral analysis of the Lax pair yields formally an integral representation of the

solution of the problem in terms of all its boundary values, much in the spirit of

the Fourier transform. However, this spectral analysis also yields one additional

relation, called the global relation. This is a fundamental algebraic expression

combining all the initial and boundary data of the solution of the problem, and it

is the crucial novel relation introduced by this method.

iii.) Given appropriate boundary conditions, analyse the global relation and

its invariance properties

This step is the most difficult one of the procedure, and it is here that the boundary

conditions come into play. To obtain the solution, in terms only of the given data of

the problem, one needs to determine the unknown boundary values of the solution,
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and this can be achieved by analysing the global relation. For evolution equations

with simple boundary conditions, this involves the analysis of a system of algebraic

equations obtained from the study of the global relation.

We now consider the above steps in some more detail.

Step i.) We begin with giving the definition and algorithmic derivation of the Lax pair

we associate with a given linear PDE of the form (2.1).

Definition 2.1.4. A Lax pair, associated with a linear evolution PDE qt(x, t) +

D
(n)
x q(x, t) = 0, where D

(n)
x is an nth order x-differential operator, is a pair of

linear ODE’s

D1
x µ(x, t, k) = f1(k, q) , D2

t µ(x, t, k) = f2(k, q) , k ∈ C ,

where D1
x and D2

t are x and t linear differential operators respectively, and f1(k, q)

and f2(k, q) are linear functions of k and ∂j
xq(x, t), j = 0, 1, ..., n − 1 such that

D2
t D1

x µ(x, t, k) = D1
x D2

t µ(x, t, k) if and only if q(x, t) solves the PDE.

Proposition 2.1.5. A Lax pair for the equation qt(x, t) + D
(n)
x q(x, t) = 0,where

D
(n)
x is an nth order x-differential operator, is given by

µx − ikµ = q(x, t) , (2.11a)

µt + D(n)
x µ = 0 , (2.11b)

where µ = µ(x, t, k) is a scalar function and k ∈ C is a parameter referred to as

the spectral parameter.

Proof. Equations (2.11) are compatible provided that q(x, t) satisfies qt(x, t) +

D
(n)
x q(x, t) = 0:

qt(x, t) + D(n)
x q(x, t) =

(
∂t + D(n)

x

)
q(x, t)

=
(
∂t + D(n)

x

)
(µx(x, t, k)− ikµ(x, t, k))

= (∂x − ik)
(
∂t + D(n)

x

)
µ(x, t, k)

= (∂x − ik)
(
µt(x, t, k) + D(n)

x µ(x, t, k)
)

= 0 .
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We note that linear equations possess several Lax pair formulations and amongst

these there exist two that correspond to the traditional x and t-transforms. In

Proposition 2.1.5 the first equation in the Lax pair is selected because the spectral

analysis yields the classical Fourier transform pair (the proof of this was given in

Section 1.3.5). In general it is most convenient to use the Lax pair involving only

first order derivatives of µ(x, t, k) and this can be done by substituting for the

x-derivatives in the t-part using µx(x, t, k) = ikµ(x, t, k) + q(x, t). Thus the Lax

pair (2.11) for equation (2.1) takes the form

µx − ikµ = q(x, t) , (2.12a)

µt + ω(k)µ = X(x, t, k) , (2.12b)

where µ = µ(x, t, k), k ∈ C is a complex parameter called the spectral parameter,

ω(k) = akn (2.13)

and X(x, t, k) is a function involving q(x, t) and its derivatives up to order n− 1:

X(x, t, k) = iakn−1q + akn−2qx + · · · − (−i)naq(n−1)
x

=
n−1∑
j=0

cj(k) ∂j
xq(x, t) , (2.14)

where the coefficients cj(k) are known polynomials in k:

cj(k) = −akn(ik)−(j+1) . (2.15)

Example: As an example, we construct the Lax pair of the third order PDE

qt(x, t) + qxxx(x, t) = 0. According to (2.11), this Lax pair is given by

µx − ikµ = q ,

µt + µxxx = 0 ,

where µ = µ(x, t, k). The first of these equations yields µx = ikµ + q, hence it

can be used to express µxxx in terms of µ and q and its derivatives. This yields

µxxx = −ik3µ − k2q + ikqx + qxx and therefore the first order Lax pair we use is

the one given by

µx − ikµ = q ,

µt − ik3µ = k2q − ikqx − qxx .
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In this case,

ω(k) = −ik3 , (2.16)

X(x, t, k) = k2q − ikqx − qxx . (2.17)

Equations (2.12) can be rewritten as

(
µ(x, t, k)e−ikx+ω(k)t

)
x

= e−ikx+ω(k)tq(x, t) , (2.18a)

(
µ(x, t, k)e−ikx+ω(k)t

)
t

= e−ikx+ω(k)tX(x, t, k) , (2.18b)

where ω(k) and X(x, t, k) are given by (2.13) and (2.14) respectively. We shall see

how in order to derive the integral representation of the solution, it is convenient

to rewrite (2.18) as a differential form:

(
e−ikx+ω(k)tq(x, t)

)
t
− (

e−ikx+ω(k)tX(x, t, k)
)

x
= 0 . (2.19)

Step ii.) The second step of the method is the spectral analysis of equation (2.19).

This means finding a solution µ(x, t, k) of equation (2.18), bounded in k ∈ C for

all (x, t) ∈ DR = {[0, L]× [0, t]}, and in fact sectionally analytic. This yields

an integral representation of the solution in terms of the initial data and all the

boundary values of q(x, t). Actually, the solution representation depends on some

appropriate t-transforms of these boundary values, which we denote by f̃j(t, k)

and g̃j(t, k) respectively. These are defined as follows:

fj(t) = ∂j
xq(0, t) , gj(t) = ∂j

xq(L, t) , j = 0, 1, . . . , n− 1 , t > 0 ,

and

f̃j(t, k) =

∫ t

0

eω(k)sfj(s) ds , k ∈ C , t > 0 , (2.20)

g̃j(t, k) =

∫ t

0

eω(k)sgj(s) ds , k ∈ C , t > 0 . (2.21)

It turns out that in order to achieve an effective integral representation of the so-

lution, it is necessary to express the integral in terms of specific deformed contours

of integration. We shall motivate this step later, but for now we define the domain

D by

D = {k ∈ C : Re ω(k) 6 0} , D± = D ∩ C± , (2.22)
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where ω(k) is given by (2.13) and D has boundaries given by ∂D±, where the

orientation is such that the interior of the domain is always to the left.

We define

f̃(t, k) =

∫ t

0

eω(k)sX(0, s, k) ds

= iakn−1f̃0(t, k) + akn−2f̃1(t, k) + · · · − (−i)naf̃n−1(t, k) , (2.23)

g̃(t, k) =

∫ t

0

eω(k)sX(L, s, k) ds

= iakn−1g̃0(t, k) + akn−2g̃1(t, k) + · · · − (−i)nag̃n−1(t, k) . (2.24)

For the half-line problem on [0,∞), the integral representation is given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx−ω(k)tq̂0(k) dk −

∫

∂D+

eikx−ω(k)tf̃(t, k) dk

}
,

where

q̂0(k) =

∫ ∞

0

e−ikxq0(x) dx

denotes the Fourier transform of the given initial condition q0(x), and for the

problem on the bounded domain [0, L], the integral representation is given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx−ω(k)tq̂0(k) dk −

∫

∂D+

eikx−ω(k)tf̃(t, k) dk

−
∫

∂D−
eik(x−L)−ω(k)tg̃(t, k) dk

}
, (2.25)

where

q̂0(k) =

∫ L

0

e−ikxq0(x) dx . (2.26)

We now derive the global relation, which is an algebraic expression relating the

initial and boundary data, by applying Green’s Theorem (Theorem 1.3.2) to the

domain DR = {[0, L]× [0, t]}, and derive explicitly the integral representation of

the solution, given by (2.25). We begin by rewriting (2.19) in the form

∂P (x, t)

∂t
− ∂Q(x, t)

∂x
= 0 ,
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where P (x, t) = e−ikx+ω(k)tq(x, t) and Q(x, t) = e−ikx+ω(k)tX(x, t, k). Therefore,

applying Green’s Theorem to the domain DR = {[0, L]× [0, t]}, consisting of

points interior to and on the simple closed contour ∂DR in the x-t plane, gives
∫

∂DR

(Q(x, t) dt + P (x, t) dx) = 0 .

Substituting for P (x, t) and Q(x, t) implies

eω(k)tq̂(t, k) =

∫ t

0

e−ikL+ω(k)sX(L, s, k) dx−
∫ t

0

eω(k)sX(0, s, k) ds + q̂0(k) ,

(2.27)

where q̂0(k) is given by (2.26) and

q̂(t, k) =

∫ L

0

e−ikxq(x, t) dx

denotes the Fourier transform of q(x, t). Expression (2.27) can be rewritten ex-

plicitly in the form

n−1∑
j=0

cj(k)
(
f̃j(t, k)− e−ikLg̃j(t, k)

)
= q̂0(k)− eω(k)tq̂(t, k) , k ∈ C , (2.28)

where cj(k), f̃j(t, k) and g̃j(t, k) are defined by (2.15), (2.20) and (2.21) respec-

tively. The algebraic relation, given by (2.28), is called the global relation and

relates all the boundary values of the solution. The global relation can be written

concisely as

f̃(t, k)− e−ikLg̃(t, k) = q̂0(k)− eω(k)tq̂(t, k), k ∈ C , (2.29)

where f̃(t, k) and g̃(t, k) are given by (2.23) and (2.24) respectively. Taking the

inverse Fourier transform of (2.29), with respect to x, yields

q(x, t) =
1

2π

∫ ∞

−∞
eikxq̂(t, k) dk

=
1

2π

{ ∫ ∞

−∞
eikx−ω(k)tq̂0(k) dk −

∫ ∞

−∞
eikx−ω(k)tf̃(t, k) dk

+

∫ ∞

−∞
eik(x−L)−ω(k)tg̃(t, k) dk

}
.

We observe that the function eikx−ω(k)tf̃(t, k) is analytic and bounded for k ∈ D+
c ,

whilst the function eik(x−L)−ω(k)tg̃(t, k) is analytic and bounded for k ∈ D−
c , where

D±
c = C±\D± .
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Therefore, an application of Jordan’s Lemma (Lemma 1.3.3) implies that

∫ ∞

−∞
eikx−ω(k)tf̃(t, k) dk =

∫

∂D+

eikx−ω(k)tf̃(t, k) dk

and

∫ ∞

−∞
eik(x−L)−ω(k)tg̃(t, k) dk = −

∫

∂D−
eik(x−L)−ω(k)tg̃(t, k) dk .

Hence the solution can alternatively be written, in terms of the complex contours

∂D±, and given by (2.25).

Step iii.) This step is the most difficult one of the analysis. For the linear evolution

PDEs we are considering, it can be carried out explicitly using only algebraic

methods, however in general (e.g. for elliptic PDEs) this step requires analytical

tools and does not always yield an explicit expression for the unknown boundary

data.

The idea of this step is to exploit the properties of invariance of the global relation.

The functions f̃j(t, k) and g̃j(t, k), j = 0, 1, . . . , n − 1 are functions of k only

through ω(k), hence the transformations λ(k) that leave ω(k) invariant, where

ω(k) is given by (2.13), determined by the equation

λ(k) : C→ C such that ω(k) = ω(λ) ,

also leave f̃j(t, k) and g̃j(t, k) invariant:

ω(k) = ω(λ(k)) ⇒ f̃j(k) = f̃j(λ(k)) , g̃j(k) = g̃j(λ(k)) .

The equation ω(k)− ω(λ) = 0 is a polynomial equation in λ(k). The roots of this

polynomial kn = λn are distinct and given by

λ0(k) = k , λ1(k) = ζk , λ2(k) = ζ2k , . . . , λn−1(k) = ζn−1k ,

where ζ = e
2πi
n . Evaluating the global relation at the n roots λl(k), l = 0, 1, . . . , n−

1, yields a system of n equations involving the 2n spectral functions f̃j(t, k) and
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g̃j(t, k), j = 0, 1, . . . , n− 1:

n−1∑
j=0

cj(λ0(k))
(
f̃j(t, k)− e−iλ0(k)Lg̃j(t, k)

)
= q̂0(λ0(k))− eω(k)tq̂(t, λ0(k)) ,

n−1∑
j=0

cj(λ1(k))
(
f̃j(t, k)− e−iλ1(k)Lg̃j(t, k)

)
= q̂0(λ1(k))− eω(k)tq̂(t, λ1(k)) ,

...
...

...

n−1∑
j=0

cj(λn−1(k))
(
f̃j(t, k)− e−iλn−1(k)Lg̃j(t, k)

)
= q̂0(λn−1(k))− eω(k)tq̂(t, λn−1(k)) .

(2.30)

If n boundary conditions are prescribed, hence n of these 2n functions are known,

then the remaining n unknown functions can be obtained by solving the system of

n equations. However, this is not possible if any n boundary conditions are pre-

scribed and this is the origin of Theorem 2.1.1. Recall that, in order to determine

a well-posed problem, N of the boundary conditions must be prescribed at x = 0

and n−N at x = L where N is determined by (2.2).

This simple observation is the basis of the analysis. Rather than doing this in

general, we now look at several examples - to illustrate all steps we start from the

example of qt(x, t) + qxxx(x, t) = 0 on [0,∞). In this case, one boundary value at

x = 0 is required, hence one of the fj(t)’s is imposed - we derive these results in

the next section.

2.2 The Spectral Representation of a Third Order

Linear Evolution Equation on the Half-Line

In this section, we consider as an illustrative example, a boundary value problem posed

on the half-line [0,∞). Namely, we analyse the third order linear evolution initial

boundary value problem

qt(x, t) + qxxx(x, t) = 0 , 0 < t < T , 0 < x < ∞ . (2.31)

with initial condition q(x, 0) = q0(x), which decays as x → ∞ (for simplicity we take

q0(x) ∈ S(0,∞)). In order to have a well-posed initial boundary value problem we must
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prescribe one boundary condition at x = 0 1, and the boundary condition that we shall

impose is q(0, t) = f0(t) for some smooth function f0(t).

As we mentioned already, this example is interesting because odd order linear evo-

lution PDEs on the half line cannot be solved by an x-transform and separation of

variables.

We now follow, for this example, the steps outlined in Section 2.1.

Step i.) The Lax pair for equation (2.31) is given by

µx − ikµ = q ,

µt − ik3µ = k2q − ikqx − qxx .

where µ = µ(x, t, k), q = q(x, t), and ω(k) and X(x, t, k) are given by (2.16) and

(2.17) respectively. We set

f̃(t, k) =

∫ t

0

e−ik3sX(0, s, k) ds = k2f̃0(t, k)− ikf̃1(t, k)− f̃2(t, k) , (2.32)

where

f̃0(t, k) =

∫ t

0

e−ik3sq(0, s) ds , (2.33)

f̃1(t, k) =

∫ t

0

e−ik3sqx(0, s) ds , (2.34)

f̃2(t, k) =

∫ t

0

e−ik3sqxx(0, s) ds . (2.35)

Step ii.) This involves solving the Lax pair for µ(x, t, k) and then solving the global

relation via a certain Riemann-Hilbert problem. We shall do this in the next

chapter but here we use a simple constructive algorithm to arrive at the same

result. This simpler approach, based on contour deformation, was derived after

the Riemann-Hilbert approach indicated what the integral representation should

look like.

We consider the x-Fourier transform of q(x, t), for x ∈ [0,∞), which we denote by

q̂(t, k):

q̂(t, k) =

∫ ∞

0

e−ikxq(x, t) dx , Im k 6 0 .

1We remark that for the PDE qt(x, t) − qxxx(x, t) = 0, two boundary conditions are required at

x = 0 for well-posedness.
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This is used to compute the time evolution of q̂(t, k):

(
e−ik3tq̂(t, k)

)
t

=

(∫ ∞

0

e−ikx−ik3tq(x, t) dx

)

t

=

∫ ∞

0

(
e−ikx−ik3tX(x, t, k)

)
x

dx

= −e−ik3tX(0, t, k) .

Therefore the global relation is given by

e−ik3tq̂(t, k) = q̂0(k)− f̃(t, k) , Im k 6 0 . (2.36)

We note that whilst f̃(t, k) is defined ∀k, q̂(t, k) and q̂0(k) are defined only for

Im k 6 0 and hence expression (2.36) is defined only for Im k 6 0. Substituting

for f̃(t, k) into (2.36) yields the expression

k2f̃0(t, k)− ikf̃1(t, k)− f̃2(t, k) = q̂0(k)− e−ik3tq̂(t, k) , (2.37)

whereby it is evident that the global relation relates all the boundary values of the

solution. We now take the inverse Fourier transform. This yields

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫ ∞

−∞
eikx+ik3tf̃(t, k) dk

}
. (2.38)

So far we have only used Fourier transforms, hence (2.38) contains the functions

f̃1(t, k) and f̃2(t, k) which are unknown. In order to achieve an integral represen-

tation of the solution, in terms only of the known initial and boundary data, it is

necessary to deform the contour of the second integral to the boundary ∂D+ of

the region D+ within which the function f̃(t, k) is analytic and bounded ∀k.

According to (2.22), since the dispersion relation is defined by ω(k) = −ik3, the

region D = D+ ∪D−
1 ∪D−

2 is comprised of the three regions,

D+ =
{
k ∈ C : π

3
6 arg(k) 6 2π

3

}

D−
1 =

{
k ∈ C : π 6 arg(k) 6 4π

3

}

D−
2 =

{
k ∈ C : 5π

3
6 arg(k) 6 2π

}





D− = D−
1 ∪D−

2 ,

given in Figure 2.1.
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D−
1

D−
2

D+

Figure 2.1: The regions D+ =
{
k ∈ C : π

3 6 arg(k) 6 2π
3

}
, D−

1 =
{
k ∈ C : π 6 arg(k) 6 4π

3

}

and D−
2 =

{
k ∈ C : 5π

3 6 arg(k) 6 2π
}

for the third order problem qt(x, t) + qxxx(x, t) = 0.

In order to use the invariance properties of the global relation to characterise the

unknown boundary values, we need to deform the contours of integration. This

can be done by using Cauchy’s Theorem (Theorem 1.3.1) and yields
∫ ∞

−∞
eikx+ik3tf̃(t, k) dk =

∫

∂D+

eikx+ik3tf̃(t, k) dk .

Therefore, substituting expression (2.32) for f̃(t, k), we obtain

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk

−
∫

∂D+

eikx+ik3t
(
k2f̃0(t, k)− ikf̃1(t, k)− f̃2(t, k)

)
dk

}
,

which is the general form of the integral representation of the solution.

Step iii.) The final step is the determination of the unknown boundary values in terms

of the given initial and boundary data, and is the first time where we use the

prescribed boundary condition. Since q(0, t) = f0(t), the integral representation

of the solution is given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫

∂D+

eikx+ik3tk2f̃0(t, k) dk

+

∫

∂D+

eikx+ik3t
(
ikf̃1(t, k) + f̃2(t, k)

)
dk

}
, (2.39)

where f̃j(t, k), j = 0, 1, 2 are given by (2.33), (2.34) and (2.35) respectively. The

second of the integrals around ∂D+ is unknown, and it indicates that f̃(t, k) must

be computed for k ∈ ∂D+.

51



A crucial aspect of the new approach, is the determination of the unknown bound-

ary values. Hence we need to evaluate f̃1(t, k) and f̃2(t, k) for k ∈ ∂D+. To do this

we now exploit the invariance properties of these functions. The functions f̃j(t, k)

are entire functions of k for j = 0, 1, 2 and depend on k only through ω(k). Hence

these functions are invariant under any transformation of the complex k-plane

that leaves ω(k) invariant. These transformations are determined by the equation

λ(k) : C→ C such that ω(k) = ω(λ) .

The three distinct roots are denoted by

λ0(k) = k , λ1(k) = ζk , λ2(k) = ζ2k ,

where ζ = e
2πi
3 . The function f̃(t, k) is analytic and bounded in D+ and the global

relation is valid for Im k 6 0. Therefore, to use this relation to compute f̃(t, k) in

D+, we must transform the global relation from the lower half complex k-plane

to the domain D+ = {k ∈ C+ : Re ω(k) 6 0}. To do this we evaluate (2.37) at ζk

and ζ2k to obtain the following expressions which are valid for k ∈ D+:

−iζkf̃1(t, k)− f̃2(t, k) = N(t, ζk)− e−ik3tq̂(t, ζk) ,

−iζ2kf̃1(t, k)− f̃2(t, k) = N(t, ζ2k)− e−ik3tq̂(t, ζ2k) ,

where

N(t, k) = q̂0(k)− k2f̃0(t, k) ,

and these two equations can be written in matrix form as

 ζ 1

ζ2 1





 −ikf̃1(t, k)

−f̃2(t, k)


 =


 N(t, ζk)

N(t, ζ2k)


−


 e−ik3tq̂(t, ζk)

e−ik3tq̂(t, ζ2k)


 .

We solve for the two unknowns using Cramer’s Rule, to give

−ikf̃1(t, k) =
1

∆(k)

(
N(t, ζk)−N(t, ζ2k)− e−ik3t

(
q̂(t, ζk)− q̂(t, ζ2k)

))
,

−f̃2(t, k) =
1

∆(k)

(
−ζ2N(t, ζk) + ζN(t, ζ2k) + e−ik3t

(
ζ2q̂(t, ζk)− ζq̂(t, ζ2k)

))
,

where ∆(k) = ζ − ζ2 is the determinant of the system. Hence

ikf̃1(t, k) + f̃2(t, k) = ζN(t, ζk) + ζ2N(t, ζ2k) + unknown terms . (2.40)
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Proposition 2.2.1. The unknown functions q̂(t, ζk) and q̂(t, ζ2k), in expression

(2.40), when multiplied by the factor eikx+ik3t, are analytic and bounded as k →∞
in D+ and do not contribute to the integral representation of the solution, given

by (2.39).

Proof. Let k ∈ D+. Then

• eikL, e−iζkL and e−iζ2kL are bounded,

• e−ikL, eiζkL and eiζ2kL are unbounded.

The contribution from the unknown terms, to the integral representation of the

solution, is given by

∫

∂D+

eikx
(
ζq̂(t, ζk) + ζ2q̂(t, ζ2k)

)
dk =

∫

∂D+

eikx

(∫ L

0

ζe−iζkxq(x, t) dx

)
dk

+

∫

∂D+

eikx

(∫ L

0

ζ2e−iζ2kxq(x, t) dx

)
dk .

All of the terms in this expression are bounded for k ∈ D+, and it follows, by

Jordan’s Lemma (Lemma 1.3.3) that this contribution vanishes.

Therefore the integral representation of the solution is given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫

∂D+

eikx+ik3tk2f̃0(t, k) dk

+

∫

∂D+

eikx+ik3t
(
ζN(t, ζk) + ζ2N(t, ζ2k)

)
dk

}
,

which is given explicitly in terms of the initial and boundary data as

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫

∂D+

eikx+ik3t3k2f̃0(t, k) dk

+

∫

∂D+

eikx+ik3t
(
ζq̂0(ζk) + ζ2q̂0(ζ

2k)
)

dk

}
. (2.41)

Remark 2.2.2. The domain D has always as many connected components in C− as

unknown boundary values, and this is the essence of the theorem by Fokas and Sung

[23].
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Remark 2.2.3. In even order cases, an integral representation on the real line can be

derived by a transform in x. To stress the difference between this and the complex in-

tegral representation derived here, we consider the example of the heat equation posed

on the half-line (2.3), for which the use of the sine transform yields the solution repre-

sentation given by (2.4). The steps outlined above, can be used to derive the integral

representation of the solution, and it is straightforward to derive the solution, given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx−k2tq̂0(k) dk −

∫

∂D+

eikx−k2t
(
q̂0(−k) + 2ikf̃0(t, k)

)
dk

}
,

where the domain D+ =
{
k ∈ C : π

4
6 arg(k) 6 3π

4

}
. To show that this is equivalent to

the classical solution, given by (2.4), the contours of integration must be deformed to

the real line.

Via Cauchy’s Theorem (Theorem 1.3.1)

∫

∂D+

eikx−k2t
(
q̂0(−k) + 2ikf̃0(t, k)

)
dk =

∫ ∞

−∞
eikx−k2t

(
q̂0(−k) + 2ikf̃0(t, k)

)
dk ,

and therefore

q(x, t) =
1

2π

∫ ∞

−∞
eikx−k2t

(
q̂0(k)− q̂0(−k)− 2ikf̃0(t, k)

)
dk

=
1

π

∫ ∞

−∞
eikx−k2t

(
−iq̂

(sin)
0 (k)− ikf̃0(t, k)

)
dk ,

where q̂
(sin)
0 (k) is given by (2.5). This can be written as

q(x, t) =
2

π

∫ ∞

0

e−k2t
(
q̂
(sin)
0 (k) + kf̃0(t, k)

)
sin(kx) dk

=
2

π

∫ ∞

0

e−k2t

(
q̂
(sin)
0 (k) +

∫ t

0

ek2skf0(s) ds

)
sin(kx) dk ,

which concurs with (2.4), and the proof is complete.

This representation is uniformly convergent as x → 0, so that to prove that it satisfies

the given boundary condition at x = 0 is sufficient to evaluate it at the boundary point.

This is to be contrasted with the sine representation which is not uniformly convergent,

so that the proof that this representation satisfies the given boundary condition cannot

be obtained by simply setting x = 0 inside the integral.

Remark 2.2.4. In the special case that q0(x) = 0, the integral representation of the

solution can be realised on the real line. Indeed, the imposition of the smooth initial
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condition q(x, 0) = 0, simplifies the integral representation of the solution given by

(2.41) to the following:

q(x, t) = − 1

2π

∫

∂D+

eikx+ik3t3k2f̃0(t, k) dk

= − 1

2π

∫

∂D+

eikx+ik3t3k2

(∫ t

0

e−ik3sq(0, s) ds

)
dk .

Since eikx is analytic and bounded in the upper half complex k-plane, and eik3(t−s) is

bounded and analytic in Dc, the contour of integration can be deformed to any contour

within Dc. In particular, one can write the representation as a real integral of the form

q(x, t) = − 1

2π

∫ ∞

−∞
eikx+ik3t3k2f̃0(t, k) dk .

It is not clear how this real representation can be obtained by using the usual real

Fourier transform.

This fact has also important consequences for the numerical evaluation of the solution

q(x, t), using the integral formula. Indeed, since the contour of integration can be

chosen anywhere inside Dc, it can in particular be selected in such a way that the t-

exponential is decreasing as k → ∞, rather than oscillatory as on ∂D. This implies

that the numerical evaluation of this integral by a straightforward quadrature method

is both fast and accurate. Preliminary results of Fornberg and Flyer [24] confirm that

this method of numerical evaluation of the solution is faster and more accurate than a

numerical computation of the solution by time stepping.

2.3 The Riemann-Hilbert Problem

In this section, we present the original derivation of the complex integral representation

of the solution, by associating to the PDE a Riemann-Hilbert problem. This is the

approach used to derive the inverse spectral transform method and is the methodology

that generalises to the integrable nonlinear case. We also stress that the deformation

technique of the previous section was only described after the Riemann-Hilbert formula-

tion indicated that the complex representation derived by it, can be realised effectively

in terms only of the given data of the problem.

To illustrate this methodology, we now consider equation (2.1), and show that the

formulation of a Riemann-Hilbert problem in the complex k-plane yields the complex
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integral representation of the solution q(x, t) in terms of the spectral functions f̃(t, k)

and g̃(t, k) given by (2.23) and (2.24) respectively.

Example 1: We demonstrate the derivation of the integral representation of the solu-

tion by example, and begin by considering the second order linear evolution PDE, for

q = q(x, t), given by

iqt(x, t) + qxx(x, t) = 0 , 0 < t < T , x ∈ [0, L] ,

q(x, 0) = q0(x) , x ∈ [0, L] .

The Lax pair is given by

µx − ikµ = q(x, t) ,

µt + ik2µ = −kq(x, t) + iqx(x, t) ,

where µ = µ(x, t, k), hence

ω(k) = ik2 ,

X(x, t, k) = −kq(x, t) + iqx(x, t) .

We define the domains D± and D±
c by

D = {k ∈ C : Re ω(k) 6 0} , D± = D ∩ C± ,

Dc = {k ∈ C : Re ω(k) > 0} , D±
c = Dc ∩ C± .

Thus

D+ =
{
k ∈ C+ : 0 6 arg(k) 6 π

2

}
, D+

c = C+\D+ ,

D− =
{
k ∈ C− : π 6 arg(k) 6 3π

2

}
, D−

c = C−\D− .

We show that a solution of (2.18), bounded in k ∈ C has the form

µ(x, t, k) =





µ1(x, t, k), k ∈ D+
c ,

µ2(x, t, k), k ∈ D−
c ,

µ3(x, t, k), k ∈ D− ,

µ4(x, t, k), k ∈ D+ ,

(2.42)

56



D+D+
c

D− D−
c

Figure 2.2: The regions D± and D±
c in the complex k-plane for the second order linear evolution PDE

given by iqt(x, t) + qxx(x, t) = 0.

where µj(x, t, k) are defined below.

Let z = (x, t). The domain 0 6 x 6 L, 0 6 t 6 T , represented by Figure 2.3, is a

polygon in the z-plane with corners z1 = (0, 0), z2 = (L, 0), z3 = (L, T ) and z4 = (0, T ).

Lx

T

0

t

z2

z3z4

z1

Figure 2.3: The domain 0 6 x 6 L, 0 6 t 6 T with corners z1 = (0, 0), z2 = (L, 0), z3 = (L, T ) and

z4 = (0, T ).

Let z† be an arbitrary point in the polygon and let
∫ z

z†
denote the line integral from

z† to z = (x, t). The function

µ†(x, t, k) =

∫ z

z†
eik(x−x′)−ik2(t−t′)

{
q(x′, t′) dx′ + X(x′, t′, k) dt′

}
(2.43)

is a particular solution of (2.18). Furthermore, the definition of µ†(x, t, k) is independent

of the path from z† to z.

We now choose the point z† in such a way that this function is holomorphic in k.

It is shown in [15] that the z†’s must be chosen to be the corners of the polygon. We
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therefore define µj(x, t, k) by (2.43) where z† = zj. Hence

µ1(x, t, k) =

∫ x

0

eik(x−x′)q(x′, t) dx′ + eikx

∫ t

0

e−ik2(t−t′)X(0, t′, k) dt′ , k ∈ D+
c ,

µ2(x, t, k) =

∫ x

L

eik(x−x′)q(x′, t) dx′ + eik(x−L)

∫ t

0

e−ik2(t−t′)X(L, t′, k) dt′ , k ∈ D−
c ,

µ3(x, t, k) =

∫ x

L

eik(x−x′)q(x′, t) dx′ + eik(x−L)

∫ t

T

e−ik2(t−t′)X(L, t′, k) dt′ , k ∈ D− ,

µ4(x, t, k) =

∫ x

0

eik(x−x′)q(x′, t) dx′ + eikx

∫ t

T

e−ik2(t−t′)X(0, t′, k) dt′ , k ∈ D+ ,

(2.44)

where for example
∫ z

z1
is split into two integrals (one along the t-axis and one parallel to

the x-axis) to give the functions µj(x, t, k) which are entire functions of k. The general

theory implies that the functions are bounded as k → ∞ provided that as k → ∞,

µj(x, t, k) are defined according to (2.42). The contours associated with µj(x, t, k) are

given in Figure 2.4. Hence the functions µ1(x, t, k), µ2(x, t, k), µ3(x, t, k) and µ4(x, t, k)

are bounded and analytic in the domains D+
c , D−

c , D− and D+ respectively.

µ1 µ2

µ3 µ4

t′

x′

t′

x′

t′

x′

t′

x′

(x, t) (x, t)

(x, t) (x, t)

Figure 2.4: The contours associated with µ1, µ2, µ3 and µ4.

Using the representation (2.18), the jump of µ(x, t, k) can be computed in terms of line

integrals along the boundary of the polygon, for example µ4(x, t, k)− µ1(x, t, k) =
∫ z1

z4
.
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Equation (2.43) implies that

µi(x, t, k)− µj(x, t, k) = eikx−ik2tρij(k) , i 6= j ,

ρij(k) =

∫ zj

zi

e−ikx+ik2t (q(x, t) dx + X(x, t, k) dt) .

The integrals, computed along paths parallel to the x and t axes, yield the following:

µ1(x, t, k)− µ3(x, t, k) = eikx−ik2t
(
q̂0(k) + e−ikLg̃(T, k)

)
, k ∈ D+

c ∩D− ,

µ1(x, t, k)− µ4(x, t, k) = eikx−ik2tf̃(T, k) , k ∈ D+
c ∩D+ ,

µ2(x, t, k)− µ3(x, t, k) = eikx−ik2te−ikLg̃(T, k) , k ∈ D−
c ∩D− ,

µ2(x, t, k)− µ4(x, t, k) = eikx−ik2t
(
−q̂0(k) + f̃(T, k)

)
, k ∈ D−

c ∩D+ ,

(2.45)

where q̂0(k), f̃(t, k) and g̃(t, k) are given by (2.26), (2.23) and (2.24) respectively. Via

expressions (2.42) and (2.44) and integration by parts, the expression for µ(x, t, k) yields

the estimate

µ(x, t, k) = O

(
1

k

)
, k →∞ . (2.46)

Also, since each of the µj(x, t, k) is holomorphic, µ(x, t, k) is a sectionally holomorphic

function of k. Equations (2.45) represent the jumps of µ(x, t, k) along the curve sepa-

rating the domains of analyticity of the known µj(x, t, k). Therefore equations (2.45)

along with the estimate (2.46) determine a well defined Riemann-Hilbert problem for

µ(x, t, k) whose unique solution is given by

µ(x, t, k) =
1

2πi

∑

a,b

∫

Ca,b

(µa − µb) (k′)
k′ − k

dk′ ,

where Ca,b is the straight line contour at the intersection of the two regions within which

the solutions µa(x, t, k) and µb(x, t, k) lie, given in Figure 2.5.

Substitution and simplification yields the following unique solution

µ(x, t, k) =
1

2πi

{ ∫ ∞

−∞
eik′x−ik′2t

(
q̂0(k

′)
k′ − k

)
dk′ −

∫

∂D+

eik′x−ik′2t

(
f̃(T, k′)
k′ − k

)
dk′

−
∫

∂D−
eik′(x−L)−ik′2t

(
g̃(T, k′)
k′ − k

)
dk′

}
.
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C3,2

C3,1

C4,1

C4,2

µ = µ1(x, t, k)

µ = µ3(x, t, k)

µ = µ4(x, t, k)

µ = µ2(x, t, k)

Figure 2.5: The straight line contours Ca,b at the intersection of the regions within which the solutions

µa(x, t, k) and µb(x, t, k) lie.

The general solution q(x, t) is then found from substituting µ(x, t, k) into the equation

µx(x, t, k)− ikµ(x, t, k) = q(x, t) to give

q(x, t) =
1

2π

{ ∫ ∞

−∞
eik′x−ik′2tq̂0(k

′) dk′ −
∫

∂D+

eik′x−ik′2tf̃(T, k′) dk′

−
∫

∂D−
eik′(x−L)−ik′2tg̃(T, k′) dk′

}
,

where the functions f̃(T, k′) and g̃(T, k′) are expressions involving the transforms of all

the boundary values.

Example 2: As another example we consider the third order problem

qt(x, t) + qxxx(x, t) = 0 , 0 < t < T , x ∈ [0, L] , (2.47a)

q(x, 0) = q0(x) , x ∈ [0, L] . (2.47b)

The Lax pair for the third order problem (2.47) is given by

µx − ikµ = q ,

µt − ik3µ = k2q − ikqx − qxx ,
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where q = q(x, t), µ = µ(x, t, k) and

ω(k) = −ik3 ,

X(x, t, k) = k2q − ikqx − qxx .

The domains D+ and D−
1,2 in the complex k-plane are given by

D+ =
{
k ∈ C+ : π

3
6 arg(k) 6 2π

3

}
, D+

c,1 ∩D+
c,2 = C+\D+ ,

D−
1 =

{
k ∈ C− : π 6 arg(k) 6 4π

3

}

D−
2 =

{
k ∈ C− : 5π

3
6 arg(k) 6 2π

}





D−
c = C−\ (

D−
1 ∩D−

2

)
,

and are given in Figure 2.6.

D+

D−
1 D−

2

D+
c,1D+

c,2

D−
c

Figure 2.6: The regions D+, D−
1,2, D

−
c , D+

c,1 and D+
c,2 in the complex k-plane for the third order linear

evolution PDE given by qt(x, t) + qxxx(x, t) = 0.

The solution, bounded for all k ∈ C has the form

µ(x, t, k) =





µ1(x, t, k) , k ∈ D+
c,1 ∪D+

c,2 ,

µ2(x, t, k) , k ∈ D−
c ,

µ3(x, t, k) , k ∈ D−
1 ∪D−

2 ,

µ4(x, t, k) , k ∈ D+ .

The formulation of the polygon with corners z1, z2, z3 and z4, and the function (2.43)

that was constructed for the second order problem, is independent of the order of the

problem. The difference that arises, due to the order of the problem under consideration,

is given by the number of domains D± in the complex k-plane. For the problem given

61



by (2.47) the functions µj(x, t, k) are therefore given by

µ1(x, t, k) =

∫ x

0

eik(x−x′)q(x′, t) dx′ + eikx

∫ t

0

eik3(t−t′)X(0, t′, k) dt′ , k ∈ D+
c ,

µ2(x, t, k) =

∫ x

L

eik(x−x′)q(x′, t) dx′ + eik(x−L)

∫ t

0

eik3(t−t′)X(L, t′, k) dt′ , k ∈ D−
c ,

µ3(x, t, k) =

∫ x

L

eik(x−x′)q(x′, t) dx′ + eik(x−L)

∫ t

T

eik3(t−t′)X(L, t′, k) dt′ , k ∈ D− ,

µ4(x, t, k) =

∫ x

0

eik(x−x′)q(x′, t) dx′ + eikx

∫ t

T

eik3(t−t′)X(0, t′, k) dt′ , k ∈ D+ ,

where D+
c = D+

c,1 ∪ D+
c,2 and D− = D−

1 ∪ D−
2 . The integrals, computed along paths

parallel to the x and t axes are therefore given by (2.45), and the remainder of the

formulation of the integral representation of the solution follows identically as for the

second order problem. Hence

µ(x, t, k) =
1

2πi

∑

a,b

∫

Ca,b

(µa − µb)(k
′)

k′ − k
dk′ ,

which is given explicitly as

µ(x, t, k) =
1

2πi

{ ∫ ∞

−∞
eik′x+ik′3t

(
q̂0(k

′)
k′ − k

)
dk′ −

∫

∂D+

eik′x+ik′3t

(
f̃(T, k′)
k′ − k

)
dk′

−
∫

∂D−
eik′(x−L)+ik′3t

(
g̃(T, k′)
k′ − k

)
dk′

}
.

We conclude that for the linear evolution PDE given by equation (2.1), the explicit

integral representation of the solution q(x, t) is based on the formulation of a Riemann-

Hilbert problem, and is given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫

∂D+

eikx+ik3tf̃(T, k) dk

−
∫

∂D−
eik(x−L)+ik3tg̃(T, k) dk

}
. (2.48)

2.4 The Global Relation and its Analysis

We now return to the final stage of the method and derive the global relations for the

third order two-point boundary value problem given by

qt(x, t) + qxxx(x, t) = 0 , t > 0 , x ∈ [0, L] ,

q(x, 0) = q0(x) , x ∈ [0, L] ,
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with the boundary conditions

q(0, t) = 0 , q(L, t) = 0 , qx(L, t) = 0 ,

chosen according to (2.2) to guarantee well-posedness. We remark that we shall consider

more general boundary conditions in the next chapter.

The functions c0(k) = k2, c1(k) = −ik and c2 = −1, and the boundary conditions

imply that f̃0(t, k) = 0, g̃0(t, k) = 0 and g̃1(t, k) = 0. Hence the functions f̃(t, k) and

g̃(t, k) are given by

f̃(t, k) = −ikf̃1(t, k)− f̃2(t, k) ,

g̃(t, k) = −g̃2(t, k) ,

and the global relation is therefore an algebraic expression relating the three unknown

spectral functions f̃1(t, k), f̃2(t, k) and g̃2(t, k):

−ikf̃1(t, k)−
(
f̃2(t, k)− e−ikLg̃2(t, k)

)
= q̂0(k)− e−ik3tq̂(t, k) . (2.49)

We need to express f̃(t, k) and g̃(t, k) in terms only of the known functions q̂0(λl(k)),

l = 0, 1, 2. The transformations that leave ω(k) invariant are determined by the roots

of the equation ω(k) = ω(λ). Hence

λ0(k) = k , λ1(k) = ζk , λ2(k) = ζ2k , ζ = e
2πi
3 .

If we evaluate the global relation (2.49) at λ1(k) and λ2(k) we obtain two additional

equations

−iζkf̃1(t, k)−
(
f̃2(t, k)− e−iζkLg̃2(t, k)

)
= q̂0(ζk)− e−ik3tq̂(t, ζk) , (2.50)

−iζ2kf̃1(t, k)−
(
f̃2(t, k)− e−iζ2kLg̃2(t, k)

)
= q̂0(ζ

2k)− e−ik3tq̂(t, ζ2k) . (2.51)

Hence equations (2.49), (2.50) and (2.51) form a system of three equations in terms of

the three unknown functions.

We observe that the system involves the unknown functions q̂(t, λl(k)). However, it is

shown in general in [23, 38] that provided the boundary conditions are chosen according

to (2.2), the resulting system is a set of n functions with the correct boundedness and

analyticity properties for which the contribution of these unknown functions can be
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determined. If N is chosen according to (2.2), such that when solving for the unknown

functions in the set {f̃j(t, λl(k))}, the expression involving q̂(t, λl(k)) is bounded as k →
∞ when k ∈ D+, and when solving for the unknown functions in the set {g̃j(t, λl(k))},
the expression is bounded as k → ∞ when k ∈ D−, then the contribution of the

additional unknown functions q̂(t, λl(k)) vanishes. Hence the system does not depend

on q̂(t, λl(k)). This significant result implies that the integral representation of the

solution is effective, expressed only in terms of the given initial and boundary data, and

is discussed in further detail in the next section.

2.4.1 The PDE Discrete Spectrum of a Boundary Value

Problem

We begin with the following definition:

Definition 2.4.1. The set of zeros of the determinant function ∆(k) of the system (2.30)

obtained from the global relation is called the PDE discrete spectrum of the boundary

value problem.

Remark 2.4.2. In the cases for which the solution can be represented in the form of an

infinite discrete series, we refer to the set of zeros as the effective discrete spectrum.

The PDE discrete spectrum of the boundary value problem is uniquely determined by

the PDE and by the boundary conditions. We shall show in Chapter 4 that this spectrum

corresponds to the discrete spectrum of the differential operator D = ∂n
x . This spectrum

is always of the form of a finite sum of exponentials, whose zeros cluster asymptotically in

a neighbourhood of specific rays in the complex k-plane, passing through the origin, and

whose direction is uniquely determined by the PDE and the given boundary conditions.

We now indicate how the contribution of the unknown functions q̂(t, λl(k)), appearing

in (2.49), (2.50) and (2.51), can be determined.

Consider the solution
{

f̃1(t, k), f̃2(t, k), g̃2(t, k)
}

of the system given by (2.49), (2.50)

and (2.51). Each of these functions is easily seen to be of the general form

1

∆(k)

{
H

(
q̂0(k), q̂0(ζk), . . . , q̂0(ζ

n−1k)
)− eω(k)tH

(
q̂(t, k), q̂(t, ζk), . . . , q̂(t, ζn−1k)

)}
,

(2.52)
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where H is a linear combination with coefficients λl(k) and e−iλl(k)L, l = 0, 1, . . . , n− 1,

(see Section 2.5). In the sequel we shall use the following:

Proposition 2.4.3. The integral of the function H (q̂(t, k), q̂(t, ζk), . . . , q̂(t, ζn−1k)) has

the following property:

i.) If ∆(k) 6= 0 for all k ∈ D then

∫

∂D

(terms involving q̂(t, λl(k))) dk

=

∫

∂D+

eikx

∆(k)
H(q̂(t, k), q̂(t, ζk), . . . , q̂(t, ζn−1k)) dk

+

∫

∂D−

eik(x−L)

∆(k)
H(q̂(t, k), q̂(t, ζk), . . . , q̂(t, ζn−1k)) dk

= 0 .

ii.) If ∆(k) = 0 for k ∈ D then

∫

∂D

(terms involving q̂(t, λl(k))) dk

=

∫

∂D+

eikx

∆(k)
H(q̂(t, k), q̂(t, ζk), . . . , q̂(t, ζn−1k)) dk

+

∫

∂D−

eik(x−L)

∆(k)
H(q̂(t, k), q̂(t, ζk), . . . , q̂(t, ζn−1k)) dk

=
∑

kn∈D:

∆(kn)=0

eiknx−ω(kn)t

{
H (q̂0(kn), q̂0(ζkn), . . . , q̂0(ζ

n−1kn))

∆′(kn)

}
.

Proof. The proof is included for some specific examples that are to follow (see for ex-

ample Section 3.2.3). For the general proof, see [21].

In Section 2.5 we formulate the effective integral representation of the solution, but

first we derive the integral representation of the solution using the classical approach

and contour deformation.
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2.4.2 The Classical Approach and Contour Deformation

We consider now the integral representation of the solution for the third order problem

qt(x, t) + qxxx(x, t) = 0 , t > 0 , x ∈ [0, L] ,

q(x, 0) = q0(x) , x ∈ [0, L] ,

achieved from classical Fourier analysis, in terms of all boundary values, and show that

the solution that results is equivalent to equation (2.48).

The equation is solved by the transformation into Fourier space and the repeated

application of integration by parts. This results in the expression

q̂t(t, k)− ik3q̂(t, k) = − (
k2f0(t)− ikf1(t)− f2(t)

)
+ e−ikL

(
k2g0(t)− ikg1(t)− g2(t)

)
,

where fj(t) = ∂j
xq(0, t) and gj(t) = ∂j

xq(L, t) for j = 0, 1, 2. Solving with respect to

q̂(t, k) and imposing the initial condition q(x, 0) = q0(x), gives the solution

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫ ∞

−∞
eikx+ik3t

(
k2f̃0 − ikf̃1 − f̃2

)
(t, k) dk

+

∫ ∞

−∞
eik(x−L)+ik3t

(
k2g̃0 − ikg̃1 − g̃2

)
(t, k) dk

}
,

where {f̃j(t, k)}2
0 and {g̃j(t, k)}2

0 denote certain t-transforms of fj(t) and gj(t), given

explicitly by (2.20) and (2.21) respectively. The solution can therefore be written in the

form

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫ ∞

−∞
eikx+ik3tf̃(t, k) dk

+

∫ ∞

−∞
eik(x−L)+ik3tg̃(t, k) dk

}
. (2.53)

We now prove that this representation is equivalent to expression (2.48). We begin by

deforming the contours of integration using Cauchy’s Theorem (Theorem 1.3.1). Recall

the definition of the domain D given by

D = {k ∈ C : Re ω(k) 6 0} , D± = D ∩ C± . (2.54)

The function eikx+ik3tf̃(t, k) is analytic and bounded for k ∈ D+
c and the function

eik(x−L)+ik3tg̃(t, k) is analytic and bounded for k ∈ D−
c . Therefore an application of
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Cauchy’s Theorem (Theorem 1.3.1) implies that

∫

∂D+
c

eikx+ik3tf̃(t, k) dk = 0 ,

∫

∂D−c
eik(x−L)+ik3tg̃(t, k) dk = 0 ,

where ∂D+
c and ∂D−

c are the boundaries of D+
c and D−

c respectively, oriented such that

the interior of the regions is always on the right. Hence the solution can alternatively

be written, in terms of the complex contours of integration ∂D±, as

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫

∂D+

eikx+ik3tf̃(t, k) dk

−
∫

∂D−
eik(x−L)+ik3tg̃(t, k) dk

}
. (2.55)

Consider now the integral of the function eikx+ik3tf̃(T, k) around ∂D+. By definition

(2.23) we have that

f̃(T, k) = f̃(t, k) +

∫ T

t

e−ik3sX(0, s, k) ds , 0 < t < T ,

and when substituted into expression (2.55), we see that the second of the terms here

vanishes since the integrand that results is analytic and bounded in D+. Hence

∫

∂D+

eikx+ik3tf̃(t, k) dk ≡
∫

∂D+

eikx+ik3tf̃(T, k) dk .

A similar argument applies to the integrand around ∂D−. This concludes the proof that

the integral representation of the solution, given by (2.53), is equivalent to (2.48).

2.5 The Effective Integral Representation of the

Solution

In this section we show how the integral representation of the solution, given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫

∂D+

eikx+ik3tf̃(t, k) dk

−
∫

∂D−
eik(x−L)+ik3tg̃(t, k) dk

}
, (2.56)

which depends on all the boundary values, can be written in terms only of the given

initial and boundary data of the problem. This can be achieved by characterising the

functions f̃(t, k) and g̃(t, k), in terms only of the given data.
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To do this we use the global relation, the analyticity properties of the functions

f̃j(t, k) and g̃j(t, k) and Cauchy’s Theorem (Theorem 1.3.1).

The system of global relations given by (2.49), (2.50) and (2.51) can be written in

matrix form as



1 1 e−ikL

ζ 1 e−iζkL

ζ2 1 e−iζ2kL







−ikf̃1(t, k)

−f̃2(t, k)

g̃2(t, k)


 =




q̂0(k)

q̂0(ζk)

q̂0(ζ
2k)


−




e−ik3tq̂(t, k)

e−ik3tq̂(t, ζk)

e−ik3tq̂(t, ζ2k)


 . (2.57)

Solving this system, we obtain expressions for the three unknown functions f̃1(t, k),

f̃2(t, k) and g̃2(t, k), and correspondingly the functions f̃(t, k) and g̃(t, k), given by

f̃(t, k) = −ikf̃1(t, k)− f̃2(t, k)

=
1

∆̃(k)

{
q̂0(k)(ζ2e−iζ2kL + ζe−iζkL)− q̂0(ζk)ζe−ikL − q̂0(ζ

2k)ζ2e−ikL

− e−ik3t
(
q̂(t, k)(ζ2e−iζ2kL + ζe−iζkL)− q̂(t, ζk)ζe−ikL

− q̂(t, ζ2k)ζ2e−ikL
)}

,

g̃(t, k) = −g̃2(t, k)

=
1

∆̃(k)

{
− (

q̂0(k) + ζq̂0(ζk) + ζ2q̂0(ζ
2k)

)

+ e−ik3t
(
q̂(t, k) + ζq̂(t, ζk) + ζ2q̂(t, ζ2k)

) }
,

where the determinant function ∆(k) is given by

∆(k) = (ζ − ζ2)∆̃(k) , ∆̃(k) = e−ikL + ζe−iζkL + ζ2e−iζ2kL . (2.58)

The important observation to be made now, is that if ∆(k) has zeros, then f̃(t, k) and

g̃(t, k) are meromorphic. Hence a central issue in the construction of the solution is the

location in the complex k-plane of the zeros of the determinant function ∆(k).

A general result in the theory of such finite exponential sums [33] implies that the

argument of the zeros of the determinant function ∆(k) depends on the exponents, while

their location depends on the coefficients of the exponentials. In general, this result,

known as Levin’s Theorem (Theorem 1.3.22), given in Section 1.3.7, does not always

determine the exact location of the zeros, however the knowledge of their asymptotic

position in the complex k-plane is sufficient.
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To demonstrate the ease with which Levin’s Theorem can be applied, we substitute

z = −ikL into the determinant function ∆(k), given by (2.58), and locate the points 1

ζ and ζ2 in the complex z-plane. These are then joined to form a triangle, and the zeros

found to lie along the three rays, that emanate from the origin and are orthogonal to

the sides of the triangle, (Figure 2.7(a)). In the complex k-plane these rays correspond

to L1, L2 and L3, given by

L1 =
{

k : arg(k) =
π

6

}
, L2 =

{
k : arg(k) =

5π

6

}
, L3 =

{
k : arg(k) =

3π

2

}
.

It can be seen in Figure 2.7(b) that the zeros cluster along the three bisecting rays of

the complement regions Dc of D = D+ ∪D−.

(a) z-plane (z = −ikL).

D−
2

D−
1

D+

L3

L2 L1

(b) k-plane.

Figure 2.7: The regions D± for the third order problem qt(x, t) + qxxx(x, t) = 0 with the boundary

conditions q(0, t) = 0, q(L, t) = 0 and qx(L, t) = 0 and the location of the zeros of the determinant

function ∆(k) = (ζ− ζ2)(e−ikL + ζe−iζkL + ζ2e−iζ2kL) found using Levin’s Theorem (Theorem 1.3.22).

Remark 2.5.1. For this example the rays upon which the zeros lie can be found explicitly

and the detailed computation is given in [39].

For this example the zeros are located outside of the domain D and therefore ∆(k) 6= 0

for k ∈ D. After multiplication by the factors eikx+ik3t (or eik(x−L)+ik3t) the terms

involving q̂(t, λl(k)), l = 0, 1, 2 are bounded as k → ∞ in D+ (or D−). An application

of Jordan’s Lemma (Lemma 1.3.3) implies that their integral vanishes and hence these

terms give a zero contribution.

Therefore the effective integral representation of the solution is given in terms of the
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given initial data by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk

−
∫

∂D+

eikx+ik3t

(
q̂0(k)(ζ2e−iζ2kL+ζe−iζkL)−q̂0(ζk)ζe−ikL−q̂0(ζ2k)ζ2e−ikL

e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
dk

+

∫

∂D−
eik(x−L)+ik3t

(
q̂0(k) + ζq̂0(ζk) + ζ2q̂0(ζ

2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
dk

}
.
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Chapter 3

Two-Point Boundary Value

Problems

In this chapter we analyse in detail two-point boundary value problems for second and

third order PDES of the form (2.1a). For concreteness, we consider two illustrative

examples, the heat equation

qt(x, t)− qxx(x, t) = 0 , t > 0 , x ∈ [0, L] , (3.1a)

q(x, 0) = q0(x) , x ∈ [0, L] , (3.1b)

and the linear KdV equation

qt(x, t) + qxxx(x, t) = 0 , t > 0 , x ∈ [0, L] ,

q(x, 0) = q0(x) , x ∈ [0, L] ,

with a variety of boundary conditions.

We start by considering the second order example (3.1) posed on the domain [0, L]

and show that the nature of the effective discrete spectrum indicates the existence of

the series solution. We construct the integral representation of the solution, in terms

of the given initial and boundary data and then derive the equivalent infinite series

representation of the solution as the explicit residue contribution at the poles which

coincide with the zeros of the determinant function ∆(k). This series solution is then

shown to coincide with the classical result of Section 2.1.

We then present the transform method for third order linear evolution boundary

value problems. We show that the integral representation is not always equivalent to
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a series representation, and that the property that characterises when this is the case

is the asymptotic location of the zeros of the determinant function, inside or outside

D. We illustrate the method for a variety of boundary conditions and show that a

series representation of the solution only exists if the boundary conditions couple the

two endpoints of the interval.

3.1 The Spectral Representation of Two-Point

Boundary Value Problems for Second Order

Linear Evolution PDEs

For second order linear evolution PDEs, it is well known that separation of variables can

be used to solve boundary value problems on the finite interval using Fourier series, and

an example of this was given in Section 2.1. This is based on the fact that the associated

x-differential operator is symmetric (or symmetrisable) hence it has a discrete spectrum,

and the corresponding eigenfunctions form a complete orthogonal basis of L2. Therefore

it is always possible to expand a function in terms of the complete set of the associated

eigenfunctions provided that one boundary condition is prescribed at each end of the

interval [47].

In this chapter we discuss the relation of this classical theory with the integral Fokas

representation. Indeed, the Fokas transform method presents an alternative derivation of

the classical series representation of the solution through the algorithmic construction

of the eigenfunctions of the associated linear ordinary differential x-operator, as well

as providing an alternative equivalent integral representation of the solution, generally

involving complex contours. Unlike the classical representation of the solution, this

complex integral representation of the solution is always uniformly convergent at the

boundary points.

One advantage of the method we use, is that it does not rely on separation of variables

or the knowledge of eigenfunctions and eigenvalues of the x-operator, therefore it can

be used to obtain an integral representation of the solution for PDEs for which the

spectral theory of the associated linear differential operator fails. Also, the integral

representation does not depend on the explicit knowledge of the eigenvalues, which
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cannot always be computed exactly. The benefits of the method manifest themselves

mainly for PDEs of order greater than two, however even for the second order case, this

method has certain advantages over the classical approaches, particularly concerning

the imposition of more complicated boundary conditions, for example Robin conditions.

Another advantage of the Fokas method over the classical approaches, is that the

method works in the same way for homogeneous boundary conditions, as it does for non-

homogeneous boundary conditions. This is to be contrasted with the classical method.

For example, the formula (2.10) given in Section 2.1, shows the complications that arise

from using the approach of separation of variables for the imposition of non-homogeneous

boundary conditions.

The remainder of the chapter contains the analysis of second and third order prob-

lems in this spirit. In this first part we present the rigorous derivation, using the

new approach, of the series representation of the solution of the two-point boundary

value problem for the heat equation with the boundary conditions q(0, t) = f0(t) and

q(L, t) = g0(t), for some given functions f0(t) and g0(t), along with the Fokas transform

method for deriving the effective integral representation of the solution. The detailed

proof that the series representation of the solution can be reproduced by the explicit

computation at the zeros of the determinant function ∆(k) of the principal value con-

tributions in the integral representation is also presented. To conclude the section, we

generalise the results for general second order two-point linear evolution PDEs.

The Transform Method

For simplicity, we illustrate the method for the heat equation

qt(x, t)− qxx(x, t) = 0 , t > 0 , x ∈ [0, L] ,

q(x, 0) = q0(x) , x ∈ [0, L] ,

with the non-homogeneous Dirichlet boundary conditions

q(0, t) = f0(t), q(L, t) = g0(t) ,
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for some given functions q0(x), f0(t) and g0(t). The Lax pair is given by

µx − ikµ = q(x, t) ,

µt + ω(k)µ = X(x, t, k) ,

where µ = µ(x, t, k) and

ω(k) = k2 ,

X(x, t, k) = ikq(x, t) + qx(x, t) .

Hence c0(k) = ik and c1(k) = 1. The boundary conditions imply that

f̃(t, k) = ikf̃0(t, k) + f̃1(t, k) , g̃(t, k) = ikg̃0(t, k) + g̃1(t, k) ,

where f̃j(t, k) and g̃j(t, k), j = 0, 1 are given by (2.20) and (2.21) respectively. Therefore

the global relation, according to (2.29), is given by

f̃1(t, k)− e−ikLg̃1(t, k) = N(t, k)− ek2tq̂(t, k) , (3.2)

where

N(t, k) = q̂0(k)− ikf̃0(t, k) + ike−ikLg̃0(t, k) . (3.3)

By the invariance properties of the functions f̃(t, k) and g̃(t, k), the equation ω(k) =

ω(λ) implies

k2 − λ2 = (k − λ)(k + λ) = 0 ,

hence λ1(k) = −k. The global relation, given by (3.2), is therefore supplemented with

the additional equation

f̃1(t, k)− eikLg̃1(t, k) = N(t,−k)− ek2tq̂(t,−k) . (3.4)

Expressions (3.2) and (3.4) form a system of two equations in terms of the two unknowns

f̃1(t, k) and g̃1(t, k) that can be written in matrix form as follows:

 1 e−ikL

1 eikL





 f̃1(t, k)

−g̃1(t, k)


 =


 N(t, k)

N(t,−k)


−


 ek2tq̂(t, k)

ek2tq̂(t,−k)


 . (3.5)

This system can be solved to give expressions for f̃1(t, k) and g̃1(t, k) and used to achieve

both the effective integral representation of the solution and the equivalent discrete series

representation of the solution.
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3.1.1 The Integral Representation

The integral representation of the solution is given by equation (2.56) where the domains

D± in the complex k-plane are defined by (2.54). Hence,

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx−k2tq̂0(k) dk −

∫

∂D+

eikx−k2t
(
ikf̃0(t, k) + f̃1(t, k)

)
dk

−
∫

∂D−
eik(x−L)−k2t (ikg̃0(t, k) + g̃1(t, k)) dk

}
,

where

D+ =

{
k ∈ C :

π

4
6 arg(k) 6 3π

4

}
, D− =

{
k ∈ C :

5π

4
6 arg(k) 6 7π

4

}
,

and the oriented boundaries of D± are such that the interior of the domain D is always

on the left of the positive direction.

To achieve explicit expressions for f̃1(t, k) and g̃1(t, k) we solve system (3.5) for the

two unknown boundary terms using Cramer’s rule:

f̃1(t, k) =
1

∆(k)

{
eikL

(
N(t, k)− ek2tq̂(t, k)

)
− e−ikL

(
N(t,−k)− ek2tq̂(t,−k)

)}
,

g̃1(t, k) =
1

∆(k)

{(
N(t, k)− ek2tq̂(t, k)

)
−

(
N(t,−k)− ek2tq̂(t,−k)

)}
,

where ∆(k) = eikL − e−ikL is the determinant function of system (3.5) with zeros

k = kn =
nπ

L
, n ∈ Z .

Hence, the explicit integral representation of the solution is given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx−k2tq̂0(k) dk −

∫

∂D+

eikx−k2tikf̃0(t, k) dk

−
∫

∂D−
eik(x−L)−k2tikg̃0(t, k) dk

−
∫

∂D+

eikx−k2t

(
eikL

�
N(t,k)−ek2tq̂(t,k)

�
−e−ikL

�
N(t,−k)−ek2tq̂(t,−k)

�
eikL − e−ikL

)
dk

−
∫

∂D−
eik(x−L)−k2t

(�
N(t,k)−ek2tq̂(t,k)

�
−
�
N(t,−k)−ek2tq̂(t,−k)

�
eikL − e−ikL

)
dk

}
. (3.6)

The zeros of the function ∆(k) = eikL−e−ikL are situated on the real axis, which bisects

the complement region Dc. The domains D± and the location of the zeros kn are given

in Figure 3.1.
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D−

D+

Figure 3.1: The regions D+ =
{

k ∈ C : π
4 6 arg(k) 6 3π

4

}
and D− =

{
k ∈ C : 5π

4 6 arg(k) 6 7π
4

}

for the second order heat equation qt(x, t)− qxx(x, t) = 0 with the boundary conditions q(0, t) = f0(t)

and q(L, t) = g0(t) and the location of the zeros kn of the determinant function ∆(k) = eikL − e−ikL.

Proposition 3.1.1. The unknown terms q̂(t, k) and q̂(t,−k), in the integral repre-

sentation of the solution, given by (3.6), when multiplied by the factors eikx−k2t (or

eik(x−L)−k2t), are analytic and bounded as k →∞ in D+ (or D−) and do not contribute

to the integral representation of the solution.

Proof. We prove the case rigorously for the integral of the unknown terms around ∂D+

given by

∫

∂D+

eikx

(−eikLq̂(t, k) + e−ikLq̂(t,−k)

eikL − e−ikL

)
dk .

If k ∈ D+ then π
4

6 arg(k) 6 3π
4

and hence eikL is bounded and e−ikL is unbounded. To

establish the asymptotic behaviour of the denominator we look at the real part of each

of the exponents.

Re(−ikL) = kIL , Re(ikL) = −kIL ,

where k = kR + ikI , and conclude that asymptotically the denominator behaves like

e−ikL. Therefore, the asymptotic behaviour of the integrand is given by

eikx
(−e2ikLq̂(t, k) + q̂(t,−k)

)
= −eikxeikL

∫ L

0

eik(L−x′)q(x′, t) dx′

+ eikx

∫ L

0

eikx′q(x′, t) dx′ .

We conclude that the terms involving the unknown functions q̂(t, k) and q̂(t,−k) are

analytic and bounded in D+ and therefore by Jordan’s Lemma (Lemma 1.3.3) do not

contribute to the integral representation of the solution around ∂D+.
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Remark 3.1.2. An analogous calculation proves that the integral around ∂D− of the

terms involving q̂(t, k) and q̂(t,−k) also vanishes.

Remark 3.1.3. To explain the use of Jordan’s Lemma in the proof of Proposition 3.1.1,

it is necessary only to observe the following:
∫

∂D+

eikxf(k) dk = lim
R→∞

∫

∨
f(k) dk = − lim

R→∞

∫

_

f(k) dk = 0

where f(k) is a suitably bounded function for k ∈ D+, R represents the radius length of

the wedge ∨, and the orientation of the closed contour ∨_ is such that interior is always

to the left.

We conclude that the effective integral representation of the solution is given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx−k2tq̂0(k) dk

−
∫

∂D+

eikx−k2t

(
eikLN(t, k)− e−ikLN(t,−k)

eikL − e−ikL
+ ikf̃0(t, k)

)
dk

−
∫

∂D−
eik(x−L)−k2t

(
N(t, k)−N(t,−k)

eikL − e−ikL
+ ikg̃0(t, k)

)
dk

}
. (3.7)

3.1.2 A Derivation of the Series Representation using the

Global Relation

It is well known that it is always possible to expand a function in terms of the complete

basis of eigenfunctions for second order PDEs of the form (2.1) and thus obtain the

solution as an infinite discrete series. Indeed, this classical approach of obtaining the

infinite discrete series solution, was demonstrated in Section 2.1, where we solved the

second order heat equation with the boundary conditions q(0, t) = f0(t) and q(L, t) =

g0(t).

We now show how the series representation of the solution can be obtained from the

analysis of the pair of global relations given by

f̃1(t, k)− e−ikLg̃1(t, k) = N(t, k)− ek2tq̂(t, k) ,

f̃1(t, k)− eikLg̃1(t, k) = N(t,−k)− ek2tq̂(t,−k) ,

where N(t, k) is given by (3.3). Subtracting the two equations and evaluating the

resulting expression at an arbitrary positive real zero k = kn = nπ
L

of the determinant
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function ∆(k) yields

e−k2
nt (N(t, kn)−N(t,−kn)) = q̂(t, kn)− q̂(t,−kn) .

Hence

∫ L

0

(
e−iknx − eiknx

)
q(x, t) dx = e−k2

nt(N(t, kn)−N(t,−kn)) ,

which implies that the eigenfunctions are given by

en(x) = eiknx − e−iknx .

Indeed, the functions en(x) are eigenfunctions of the linear differential operator D = ∂2

∂x2

and satisfy the homogeneous boundary conditions en(0) = 0 and en(L) = 0, and the

orthogonality condition

∫ L

0

en(x) em(x) dx =





0 , n 6= m,

−2L , n = m.

To achieve the series representation of the solution, we suppose q(x, t) takes the form of

an infinite discrete series:

q(x, t) =
∞∑

n=1

cn(t) en(x)

where the coefficients cn(t) are determined as follows:

∫ L

0

em(x) q(x, t) dx =

∫ L

0

( ∞∑
n=1

cn(t) en(x)

)
em(x) dx = −2Lcm(t) .

Hence

cn(t) = − 1

2L

∫ L

0

(
eiknx − e−iknx

)
q(x, t) dx =

1

2L
e−k2

nt(N(t, kn)−N(t,−kn)) .

Therefore the series representation of the solution is given by

q(x, t) =
1

2L

∞∑
n=1

e−k2
nt (N(t, kn)−N(t,−kn))

(
eiknx − e−iknx

)
, (3.8)

and this is equivalent to the series solution given by (2.10), obtained using the classical

approach.
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Proof. To prove the equivalence of expressions (2.10) and (3.8), we rewrite (3.8) in the

form

q(x, t) =
1

L

∞∑
n=1

e−k2
nt

(
q̂0(kn)− q̂0(−kn)− 2iknf̃0(t, kn) + 2(−1)nikng̃0(t, kn)

)
i sin(knx)

=
2

L

∞∑
n=1

e−k2
nt

(
q̂
(sin)
0 (kn) + knf̃0(t, kn)− (−1)nkng̃0(t, kn)

)
sin(knx) ,

where

q̂
(sin)
0 (kn) =

∫ L

0

sin(knx) q0(x) dx . (3.9)

The expression for wn(t), given by (2.9), can be written in terms of the functions

q̂
(sin)
0 (kn), f̃0(t, kn) and g̃0(t, kn), according to (3.9), (2.20) and (2.21) respectively, to

give

wn(t) =
2

L

{
− 1

kn

(f0(t)− (−1)ng0(t))

+ e−k2
nt

(
q̂
(sin)
0 (kn) + knf̃0(t, kn)− (−1)nkng̃0(t, kn)

)}
.

Therefore, the series representation of the solution, obtained from the classical approach,

given by (2.10), is explicitly given by

q(x, t) = f0(t) +
x

L
(g0(t)− f0(t))− 2

L

∞∑
n=1

1

kn

(f0(t)− (−1)ng0(t)) sin(knx)

+
2

L

∞∑
n=1

e−k2
nt

(
q̂
(sin)
0 (kn) + knf̃0(t, kn)− (−1)nkng̃0(t, kn)

)
sin(knx) ,

and by (2.7) and (2.8) it follows that

f0(t) +
x

L
(g0(t)− f0(t)) =

2

L

∞∑
n=1

1

kn

(f0(t)− (−1)ng0(t)) sin(knx) .

This concludes the proof that (2.10) is equivalent to (3.8).

Remark 3.1.4. The classical approach relies on the assumption that the functions w(x, t)

and F (x, t), given by (2.6) and (2.7) respectively, can be expanded in terms of the associ-

ated eigenfunctions, whereas no such assumptions are required for the Fokas derivation.
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3.1.3 Equivalence of the Series and Integral Representations

We now prove that the series representation of the solution, given by (3.8) is equivalent

to the effective integral representation of the solution given by (3.7) by showing that the

series representation can be reproduced by the explicit computation, at the zeros kn of

∆(k), of the principal value contributions in the integral representation.

The zeros of ∆(k) lie on the real axis which perpendicularly bisects the domain Dc,

hence ∆(k) 6= 0 for k ∈ D and therefore the contours of integration must be deformed

from ∂D to the real axis.

Proposition 3.1.5. The integrands of the integrals around ∂D+ (and ∂D−), in the

integral representation of the solution, given by (3.7), are bounded as k → ∞ in D+
c

(and D−
c ).

Proof. We prove the case only for the integral around ∂D+, (the proof for the integral

around ∂D− follows analogously), and recall the integral around ∂D+ given explicitly

by

∫

∂D+

eikx−k2t

(
eikLN(t, k)− e−ikLN(t,−k)

eikL − e−ikL
+ ikf̃0(t, k)

)
dk .

We show that the integrand is bounded for k such that 0 < arg(k) < π
4

and conclude

that the contour of integration can be deformed from where arg(k) = π
4

to the positive

real axis so that the principal value contributions at the zeros k = kn = nπ
L

, n > 0 can

be computed.

Consider the wedge such that 0 < arg(k) < π
4
. For k in this wedge, −k will be such

that π < arg(−k) < 5π
4

. Hence k will lie in the upper half of the complex plane and −k

will lie in the lower half of the complex plane (Figure 3.2).

Hence, for k in this wedge

• eikx−k2t is bounded,

• eikL is bounded,

• e−ikL is unbounded.

Therefore, asymptotically the denominator behaves like e−ikL and hence the asymptotic
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D−

D+

k

−k

Figure 3.2: The wedge such that 0 < arg(k) < π
4 in the complex k-plane.

behaviour of the integrand is given by

eikx−k2t
(
e2ikLN(t, k)−N(t,−k) + (e2ikL − 1)ikf̃0(t, k)

)

= eikx−k2t
(
e2ikLq̂0(k)− q̂0(−k)− 2ikf̃0(t, k) + 2ikeikLg̃0(t, k)

)

= eikx−k2t

(
eikL

∫ L

0

eik(L−x′)q0(x
′) dx′ −

∫ L

0

eikx′q0(x
′) dx′

)

− 2ikeikx

(∫ t

0

ek2(s−t)f0(s) ds− eikL

∫ t

0

ek2(s−t)g0(s) ds

)
.

All of the terms in this expression are bounded as k →∞ and the proof is complete.

Remark 3.1.6. We remark that a similar argument can be used for the proof that the

contour of integration can be deformed from where arg(k) = 3π
4

to the negative real

axis.

An application of Cauchy’s Theorem (Theorem 1.3.1) is now used to deform the

contours of integration and the explicit computation at the zeros of the determinant

function ∆(k) of the principal value contributions in the integral representation is shown

to be equivalent to the discrete series representation of the solution.

Recall the integral representation of the solution given by (3.7). The contours are

deformed to the real axis and the residue contributions from all of the poles kn, such

that ∆(kn) = 0, are computed using Theorem 1.3.8 as follows:

∫

∂D+

p+(k)

r(k)
dk =

∫ ∞

−∞

p+(k)

r(k)
dk + πi

∑

kn:

∆(kn)=0

p+(kn)

r′(kn)
,
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∫

∂D−

p−(k)

r(k)
dk = −

∫ ∞

−∞

p−(k)

r(k)
dk + πi

∑

kn:

∆(kn)=0

p−(kn)

r′(kn)
,

where

p+(k) = eikx−k2t
(
eikLN(t, k)− e−ikLN(t,−k)

)
,

p−(k) = eik(x−L)−k2t (N(t, k)−N(t,−k)) ,

r(k) = ∆(k) = eikL − e−ikL .

Hence,
∫

∂D+

p+(k)

r(k)
dk =

∫ ∞

−∞

p+(k)

r(k)
dk + πi

∑

kn:

∆(kn)=0

eiknx−k2
nt

(
eiknLN(t, kn)− e−iknLN(t,−kn)

∆′(kn)

)
,

∫

∂D−

p−(k)

r(k)
dk = −

∫ ∞

−∞

p−(k)

r(k)
dk + πi

∑

kn:

∆(kn)=0

eikn(x−L)−k2
nt

(
N(t, kn)−N(t,−kn)

∆′(kn)

)
.

Therefore the integral representation of the solution, given by (3.7) can be written in

the form

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx−k2tq̂0(k) dk

−
∫ ∞

−∞
eikx−k2t

(
eikLN(t, k)− e−ikLN(t,−k)

eikL − e−ikL
+ ikf̃0(t, k)

)
dk

+

∫ ∞

−∞
eik(x−L)−k2t

(
N(t, k)−N(t,−k)

eikL − e−ikL
+ ikg̃0(t, k)

)
dk

}

+
1

2L

{ ∑

kn:

∆(kn)=0

eiknx−k2
nt

(
eiknLN(t, kn)− e−iknLN(t,−kn)

eiknL + e−iknL

)

+
∑

kn:

∆(kn)=0

eikn(x−L)−k2
nt

(
N(t, kn)−N(t,−kn)

eiknL + e−iknL

) }
.

The integrals sum to zero and all that remains are the summation terms which are

simplified to yield

q(x, t) =
1

2L

∑

kn:

∆(kn)=0

eiknx−k2
nt (N(t, kn)−N(t,−kn)) .
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This can trivially be rewritten in the form

q(x, t) =
1

2L

∞∑
n=1

e−k2
nt (N(t, kn)−N(t,−kn))

(
eiknx − e−iknx

)
,

where the index now indicates that the series is summed over the zeros that lie on the

positive real axis, and concurs with the series representation of the solution given by

(3.8).

In summary, the complex contours of integration ∂D± can be deformed to the real

axis to achieve the integral representation entirely on R and in doing so the residue con-

tribution from each of the zeros lying on the real axis is acquired. A simple manipulation

of the resulting expression for the solution q(x, t) shows that the integral terms cancel

and all that remains is the infinite sum which is equivalent to the series representation

of the solution, achieved using the classical Fourier approach.

For second order problems the complex contours of integration in the integral rep-

resentation of the solution, can always be deformed to the real line at the price of

computing the residues/principal value contributions at the zeros of the determinant

function ∆(k).

Remark 3.1.7. In the case that the contours of the integral representation can be realised

on the real line, it is possible to show formally that all integral terms must cancel. To

show this, we begin with the formal integral representation of the solution, given by

(2.25), and assume that the contours of integration can be deformed to the real line.

We rearrange the global relation, and write

f̃(t, k) = e−ikLg̃(t, k) + q̂0(k)− eω(k)tq̂(t, k) ,

and substitute into (2.25) to yield

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx−ω(k)tq̂0(k) dk −

∫ ∞

−∞
eik(x−L)−ω(k)tg̃(t, k) dk

−
∫ ∞

−∞
eikx−ω(k)tq̂0(k) dk +

∫ ∞

−∞
eikxq̂(t, k) dk

+

∫ ∞

−∞
eik(x−L)−ω(k)tg̃(t, k) dk

}
.

Of course we have not given the effective expression for the spectral functions f̃(t, k)

and g̃(t, k). However this identity shows formally that, in this case, the integral terms

must cancel.
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3.1.4 General Boundary Conditions

We now prove that for the second order problem of the form (2.1), the zeros of the

determinant function ∆(k) always lie on the real axis [22]. For the proof, we consider

(3.1) with general uncoupled boundary conditions

q(0, t) + αqx(0, t) = f0(t) , q(L, t) + βqx(L, t) = g0(t) ,

for constants α and β and given functions f0(t) and g0(t). Applying the boundary

conditions, the global relation, according to (2.28) is given by

(1− ikα)f̃1(t, k)− e−ikL(1− ikβ)g̃1(t, k) = N(t, k)− ek2tq̂(t, k) ,

where

N(t, k) = q̂0(k)− ik(f̃0(t, k)− e−ikLg̃0(t, k)) ,

and this is complemented by the equation

(1 + ikα)f̃1(t, k)− eikL(1 + ikβ)g̃1(t, k)−N(t,−k)− ek2tq̂(t,−k) .

Therefore, the determinant function is given by

∆(k) = (1− ikα)(1 + ikβ)eikL − (1 + ikα)(1− ikβ)e−ikL ,

and the zeros of this function lie on the real axis, and their exact location depends on

the values of α and β.

Therefore, for the heat equation, Figure 3.3 shows that ∆(k) 6= 0 for k ∈ D and that

the zeros lie outside of D and cluster along the real axis which perpendicularly bisects

the region Dc. The integrand containing the unknown terms is analytic and bounded as

k →∞ in Dc and therefore, according to Proposition 2.4.3, there is a zero contribution

from the unknown terms. The contours of integration can be deformed from ∂D to the

real axis and in doing so we realise the contribution of the residues at the zeros of the

determinant function ∆(k). All of the integral terms sum to zero and all that remains

is the discrete series representation of the solution.

Remark 3.1.8. We remark that the zeros of the determinant functions of the two other

well-posed second order PDEs qt(x, t)∓ iqxx(x, t) = 0 also cluster asymptotically along

the real axis. The domains are given by D+ =
{
k ∈ C : 0 6 arg(k) 6 π

2

}
and D− =
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D−

D+

Figure 3.3: The regions D+ =
{

k ∈ C : π
4 6 arg(k) 6 3π

4

}
and D− =

{
k ∈ C : 5π

4 6 arg(k) 6
7π
4

}
for the heat equation qt(x, t) − qxx(x, t) = 0 with the general uncoupled boundary conditions

q(0, t)+αqx(0, t) = f0(t) and q(L, t)+βqx(L, t) = g0(t) and the location of the zeros of the determinant

function ∆(k) = (1− ikα)(1 + ikβ)eikL − (1 + ikα)(1− ikβ)e−ikL.

{
k ∈ C : π 6 arg(k) 6 3π

2

}
for the second order PDE qt(x, t)− iqxx(x, t) = 0, and D+ =

{
k ∈ C : π

2
6 arg(k) 6 π

}
and D− =

{
k ∈ C : 3π

2
6 arg(k) 6 2π

}
for the second order

PDE qt(x, t)+iqxx(x, t) = 0, and are given in Figure 3.4(a) and Figure 3.4(b) respectively.

Therefore, the zeros of ∆(k) lie on the boundary rays ∂D of D.

D+

D−

(a) The regions D± for the PDE

qt(x, t)− iqxx(x, t) = 0.

D−

D+

(b) The regions D± for the PDE

qt(x, t) + iqxx(x, t) = 0.

Figure 3.4: The regions D± for the second order PDEs qt(x, t) ∓ iqxx(x, t) = 0 with the general

uncoupled boundary conditions q(0, t) + αqx(0, t) = f0(t) and q(L, t) + βqx(L, t) = g0(t) and the

location of the zeros of the determinant function ∆(k).

To prove the equivalence of the series and integral representations of the solution, one

must indent the contours so that they pass above the zeros in R+ (in ∂D+) and below

the zeros in R− (in ∂D−), inside any complex disc of radius R. The limit as R → ∞
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defines the principal value integral at infinity. Inside the contour, the unknown terms

q̂(t, k) and q̂(t,−k) are analytic and bounded and hence the integrals of these terms give

a zero contribution.

Therefore, as for the heat equation, the only nonzero contribution to the solution

representation is due to the residue contribution at the zeros, and this is equivalent to

an infinite discrete series.

Remark 3.1.9. The index, in expression (3.8), indicates that the summation is taken over

all of the positive zeros kn. The Fokas transform method offers an algorithmic derivation

of the series representation of the solution which, as opposed to the classical derivation,

is not complicated by the imposition of non-homogeneous boundary conditions.

3.2 The Spectral Representation of Two-Point

Boundary Value Problems for Third Order

Linear Evolution PDEs

In this section we present the transform method for third order linear evolution boundary

value problems of the form (2.1) and we show that the integral representation of the

solution is not always equivalent to a discrete series representation.

We illustrate the case for the third order problem

qt(x, t) + qxxx(x, t) = 0 , t > 0 , x ∈ [0, L] , (3.10a)

q(x, 0) = q0(x) , x ∈ [0, L] , (3.10b)

for some given function q0(x), for a variety of boundary conditions and show that a

series representation is not obtainable when all of the singularities of the determinant

function ∆(k) are outside of the domain D, which is identified only by the equation.

It is well known that for third order linear evolution PDEs, if the boundary conditions

yield a non self-adjoint operator, then separation of variables cannot be used to solve

the boundary value problem. The failure of the classical approach is due to the lack

of a general proof of the completeness of the set of eigenfunctions for non self-adjoint

operators. However, it can be shown by classical methods that when the boundary
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conditions couple the boundary points, the set of eigenfunctions of the problem form a

Riesz basis.

It appears that one can make a general distinction between coupled and uncoupled

boundary conditions. We shall refer to coupled boundary conditions of the form

q
(j)
x (0, t) = fj(t) , q

(j)
x (L, t) = gj(t) ,

q
(k)
x (L, t) = αq

(k)
x (0, t) , α ∈ R ,

j, k ∈ {0, 1, 2} , j 6= k , (3.11)

for some given functions fj(t) and gj(t), whereas uncoupled boundary conditions lack

any form of symmetry and take the form

q(j)
x (0, t) = fj(t) , q(k)

x (L, t) = gk(t) , q(l)
x (L, t) = gl(t) , j, k, l ∈ {0, 1, 2} , k 6= l ,

(3.12)

for some given functions fj(t), gk(t) and gl(t). The superscripts in expressions (3.11)

and (3.12) denote the order of the derivative imposed.

When coupled boundary conditions are prescribed, classical theory guarantees the

existence of a complete basis of eigenfunctions corresponding to a discrete spectrum,

and the transform approach, in agreement with classical theory, yields a representation

that can be explicitly computed in the form of an infinite discrete series. It is shown

that the zeros of the determinant function ∆(k) lie on the six boundary rays of D in the

complex k-plane implying ∆(k) = 0 for k ∈ D. The contours of integration, ∂D±, can

be indented to avoid these zeros and the solution given by the explicit computation of

the principal value contributions. In fact, the only case for which the solution admits an

entirely discrete series representation is when the prescribed boundary conditions are of

the form (3.11). A special case of such conditions are when the boundary conditions are

periodic, and in this case it is well known that the series representation of the solution

is obtainable using Fourier transforms.

In comparison, when the boundary conditions are uncoupled, and of the form (3.12),

the series representation of the solution cannot be obtained by the same route, and we

are not able to obtain any such representation. We stress that no results in classical

theory imply that such a representation should exist. We show that ∆(k) 6= 0 for k ∈ D

and the zeros of the determinant function ∆(k) lie on three rays emanating from the

origin. However, the contours of integration cannot be deformed throughout Dc, and
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there always appear integral terms in the representation of the solution and hence the

solution cannot be expressed entirely as an infinite discrete series.

For the case of coupled conditions, we present the example of periodic boundary

conditions in the context of the Fokas method, along with the case where the boundary

conditions are coupled and of the form

q(0, t) = 0 , q(L, t) = 0 , qx(L, t) = αqx(0, t) , α ∈ R .

We also consider the imposition of the quasi-periodic boundary conditions of the form

q(L, t) = αq(0, t) , qx(L, t) = αqx(0, t) , qxx(L, t) = αqxx(0, t) , α > 0 ,

and show that in this special example, unlike the cases of periodic and coupled boundary

conditions where the zeros are found to lie on the six boundary rays of ∂D, the zeros of

the determinant function ∆(k) lie on three rays. However, unlike the case of uncoupled

boundary conditions, these rays do not emanate from the origin, but instead lie parallel

to the boundary rays of ∂D. There are two cases that arise, depending on the value

of α. In one case, it is shown that infinitely many zeros lie outside of the domain D,

and in the other, it is shown that only finitely many lie outside of D. However, in both

cases, it is possible to obtain a discrete series representation of the solution.

3.2.1 The Formulation of the Problem

The first step of the transform approach is the algorithmic derivation of the Lax pair

for the third order PDE given by (3.10). Recall that (3.10a) is equivalent to the pair of

equations

(
µ(x, t, k)e−ikx−ik3t

)
x

= e−ikx−ik3tq(x, t) ,

(
µ(x, t, k)e−ikx−ik3t

)
t

= e−ikx−ik3t
(
k2q(x, t)− ikqx(x, t)− qxx(x, t)

)
.

The functions f̃(t, k) and g̃(t, k) are given by

f̃(t, k) = k2f̃0(t, k)− ikf̃1(t, k)− f̃2(t, k) , (3.13)

g̃(t, k) = k2g̃0(t, k)− ikg̃1(t, k)− g̃2(t, k) . (3.14)

Hence c0(k) = k2, c1(k) = −ik and c2(k) = −1. The global relation, given in the general

form by equation (2.28), is therefore the following algebraic expression relating the six
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spectral functions f̃j(t, k) and g̃j(t, k), j = 0, 1, 2:

(
k2f̃0(t, k)− ikf̃1(t, k)− f̃2(t, k)

)
− e−ikL

(
k2g̃0(t, k)− ikg̃1(t, k)− g̃2(t, k)

)

= q̂0(k)− e−ik3tq̂(t, k) . (3.15)

The transformations that leave ω(k) invariant are determined by the roots of the equa-

tion ω(k) = ω(λ) and are given explicitly by λl(k) for l = 0, 1, 2. Hence λ0(k) = k,

λ1(k) = ζk and λ2(k) = ζ2k where ζ = e
2πi
3 . The global relation, given by (3.15), is

therefore supplemented by the two additional equations

(
ζ2k2f̃0(t, k)− iζkf̃1(t, k)− f̃2(t, k)

)
− e−iζkL

(
ζ2k2g̃0(t, k)− iζkg̃1(t, k)− g̃2(t, k)

)

= q̂0(ζk)− e−ik3tq̂(t, ζk) , (3.16)

(
ζk2f̃0(t, k)− iζ2kf̃1(t, k)− f̃2(t, k)

)
− e−iζ2kL

(
ζk2g̃0(t, k)− iζ2kg̃1(t, k)− g̃2(t, k)

)

= q̂0(ζ
2k)− e−ik3tq̂(t, ζ2k) . (3.17)

Expressions (3.15), (3.16) and (3.17) form a system of three equations involving the six

boundary functions f̃j(t, k) and g̃j(t, k), j = 0, 1, 2, which can be written as follows:

2∑
j=0

cj(k)
(
f̃j(t, k)− e−ikLg̃j(t, k)

)
= q̂0(k)− e−ik3tq̂(t, k) , (3.18a)

2∑
j=0

cj(ζk)
(
f̃j(t, k)− e−iζkLg̃j(t, k)

)
= q̂0(ζk)− e−ik3tq̂(t, ζk) , (3.18b)

2∑
j=0

cj(ζ
2k)

(
f̃j(t, k)− e−iζ2kLg̃j(t, k)

)
= q̂0(ζ

2k)− e−ik3tq̂(t, ζ2k) . (3.18c)

The knowledge of three of these values will yield a system of three equations, solvable

for the three remaining unknown boundary functions. However, as we discussed briefly,

and is shown in [22], not any three boundary conditions can be prescribed.

3.2.2 Periodic Boundary Conditions

It is well known that if the boundary conditions are periodic then the Fourier transform

yields the solution as an infinite discrete series over the eigenvalues of the differential

operator. In this section we outline the classical derivation and verify that this is the

same as the series representation obtained via the Fokas transform method.
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We consider the third order linear evolution PDE

qt(x, t) + qxxx(x, t) = 0 , t > 0 , x ∈ [0, L] , (3.19a)

q(x, 0) = q0(x) , x ∈ [0, L] , (3.19b)

with the periodic boundary conditions q
(j)
x (0, t) = q

(j)
x (L, t) for j = 0, 1, 2.

Solution by Separation of Variables

The solution q(x, t) of the PDE is found straightforwardly using separation of variables.

We begin by assuming that the solution can be expressed in the form q(x, t) = X(x) T (t),

where X(x) is a function purely of x and T (t) is a function purely of t. Substitution

into the PDE yields the two ODEs given by

d3X(x)

dx3
+ λX(x) = 0 ,

dT (t)

dt
− λT (t) = 0 . (3.20)

for some constant λ. Substituting λ = −p3, and solving for X(x) we find

X(x) = Aepx + Beζpx + Ceζ2px , ζ = e
2πi
3 ,

for some constants A, B and C to be determined from the imposition of the periodic

boundary conditions X
(j)
x (0) = X

(j)
x (L), j = 0, 1, 2. The system of equations that results

is solvable for A, B and C and given by

A
(
1− epL

)
+ B

(
1− eζpL

)
+ C

(
1− eζ2pL

)
= 0 , (3.21)

A
(
1− epL

)
+ ζB

(
1− eζpL

)
+ ζ2C

(
1− eζ2pL

)
= 0 , (3.22)

A
(
1− epL

)
+ ζ2B

(
1− eζpL

)
+ ζC

(
1− eζ2pL

)
= 0 ,

and adding all three equations yields the expression

3A
(
1− epL

)
= 0 .

Hence either A = 0 or 1 − epL = 0. Let us assume that A 6= 0. Then p = ikn where

kn = 2nπ
L

, n ∈ Z which implies that λ = ik3
n. It follows, from (3.21) and (3.22) that

B = 0 and C = 0 and therefore the solution Xn(x) is given by

Xn(x) = Ane
iknx , kn =

2nπ

L
,
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for arbitrary An. Finally, the value λ = ik3
n is substituted into the ODE for T (t), given

by (3.20), and solved to give

Tn(t) = Dneik3
nt , n ∈ Z ,

for some arbitrary Dn. The solution for q(x, t) is therefore given by the infinite discrete

series

q(x, t) =
∞∑

n=1

ane
iknx+ik3

nt ,

where an = AnDn. Since the functions eiknx form a complete set of orthogonal functions

on [0, L] we conclude that

an =
1

L

∫ L

0

e−iknxq0(x) dx =
1

L
q̂0(kn) .

Therefore the solution q(x, t) is given by

q(x, t) =
1

L

∞∑
n=1

eiknx+ik3
ntq̂0(kn) . (3.23)

The Transform Approach

We now use the transform approach to derive the solution (3.23) of the PDE given by

(3.19). The periodic boundary conditions imply that f̃j(t, k) = g̃j(t, k), j = 0, 1, 2, and

therefore the system of global relations is given by

(
1− e−ikL

) (
k2f̃0(t, k)− ikf̃1(t, k)− f̃2(t, k)

)
= q̂0(k)− e−ik3tq̂(t, k) , (3.24)

(
1− e−iζkL

) (
ζ2k2f̃0(t, k)− iζkf̃1(t, k)− f̃2(t, k)

)
= q̂0(ζk)− e−ik3tq̂(t, ζk) , (3.25)

(
1− e−iζ2kL

)(
ζk2f̃0(t, k)− iζ2kf̃1(t, k)− f̃2(t, k)

)
= q̂0(ζ

2k)− e−ik3tq̂(t, ζ2k) , (3.26)

which is a system of three equations in terms of the three unknowns f̃0(t, k), f̃1(t, k)

and f̃2(t, k). The determinant function ∆(k) is given by

∆(k) = 3
(
ζ − ζ2

) (
1− e−ikL

) (
1− e−iζkL

) (
1− e−iζ2kL

)
, (3.27)

and has zeros at the points kn, ζkn and ζ2kn where kn = 2nπ
L

, n ∈ Z. The domain D

is defined by the dispersion relation ω(k) = −ik3, which is governed only by the PDE.
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Hence the domain D is comprised of the three connected components given by

D+ =
{
k ∈ C : π

3
6 arg(k) 6 2π

3

}

D−
1 =

{
k ∈ C : π 6 arg(k) 6 4π

3

}

D−
2 =

{
k ∈ C : 5π

3
6 arg(k) 6 2π

}





D− = D−
1 ∪D−

2 .

(3.28)

It follows immediately that the zeros of the determinant function lie on the six boundary

rays of ∂D.

We remark that for this example, the location of the zeros follows immediately from

the factorisation of the determinant function, which yields a sum of six exponential

terms in k (with no constant term). However, if the terms are expanded, the general

theory given in [33] can be used to establish the location of the zeros. This is illustrated

in Figure 3.5 where it is shown that the six exponential terms, of the expanded determi-

nant function ∆(k), imply a hexagonal convex hull in the complex z-plane (where the

substitution z = −ikL is applied to ∆(k)). The zeros lie on the six rays that emanate

from the origin and perpendicularly bisect the six sides of the hexagon, (Figure 3.5(a)).

This in turn implies that the zeros cluster asymptotically along the six boundary rays

of D in the complex k-plane, (Figure 3.5(b)).

(a) z-plane (z = −ikL). (b) k-plane.

Figure 3.5: The regions D± for the third order problem qt(x, t) + qxxx(x, t) = 0 with the periodic

boundary conditions q
(j)
x (0, t) = q

(j)
x (L, t) for j = 0, 1, 2, and the location of the zeros of the determinant

function ∆(k) = 3
(
ζ − ζ2

) (
1− e−ikL

) (
1− e−iζkL

) (
1− e−iζ2kL

)
.
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The Series Representation of the Solution

To obtain the discrete series representation of the solution, we observe that solving

equation (3.24) at k = kn, equation (3.25) at k = ζ2kn or equation (3.26) at k = ζkn,

for which the left hand side vanishes, we obtain

q̂(t, kn) = eik3
ntq̂0(kn) . (3.29)

To obtain the infinite series representation of the solution, we suppose that q(x, t) can

be expanded in terms of the eigenfunctions eiknx and written in the form

q(x, t) =
∞∑

n=1

cn(t) eiknx . (3.30)

Since the set of functions eiknx form a complete set of orthogonal functions on [0, L] and

satisfy the relationship

∫ L

0

eiknxe−ikmx dx =





0 , n 6= m,

L , n = m,

we conclude that

cn(t) =
1

L

∫ L

0

e−iknxq(x, t) dx

=
1

L
eik3

ntq̂0(kn) . (3.31)

Therefore, the contribution of the integrals involving the unknown functions takes the

form of the infinite discrete series

q(x, t) =
1

L

∞∑
n=1

eiknx+ik3
ntq̂0(kn) , (3.32)

which is consistent with the solution, given by (3.23), obtained from the classical Fourier

series analysis.

The Integral Representation of the Solution

The integral representation of the solution is given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk

−
∫

∂D+

eikx+ik3t
(
k2f̃0(t, k)− ikf̃1(t, k)− f̃2(t, k)

)
dk

−
∫

∂D−
eik(x−L)+ik3t

(
k2f̃0(t, k)− ikf̃1(t, k)− f̃2(t, k)

)
dk

}
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and expression (3.24) yields the following:

k2f̃0(t, k)− ikf̃1(t, k)− f̃2(t, k) =
q̂0(k)

1− e−ikL
− e−ik3t q̂(t, k)

1− e−ikL
.

Hence the integral representation of the solution is given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫

∂D+

eikx+ik3t

(
q̂0(k)

1− e−ikL
− e−ik3t q̂(t, k)

1− e−ikL

)
dk

−
∫

∂D−
eik(x−L)+ik3t

(
q̂0(k)

1− e−ikL
− e−ik3t q̂(t, k)

1− e−ikL

)
dk

}
.

We note that the unknown terms involving the function q̂(t, k) are bounded in D and

define meromorphic functions with poles at the zeros of the determinant function ∆(k)

that belong to D. Hence the contributions of these terms is only given by the residues

of the function at these points.

Equivalence of the Series and Integral Representations

The integrands of the integrals around ∂D+ and ∂D− are analytic and bounded in the

domains D+
c and D−

c respectively, implying that the contours of integration around ∂D+

and ∂D− can be deformed to the real line. This yields the following expression

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫ ∞

−∞
eikx+ik3t

(
q̂0(k)

1− e−ikL

)
dk

+

∫ ∞

−∞
eik(x−L)+ik3t

(
q̂0(k)

1− e−ikL

)
dk

}

+
∑

kn:

∆(kn)=0

residue contributions .

The integral terms trivially sum to zero. Therefore, the only contribution to the solution

is from the series term, that results from the explicit computation of the principal value

contributions at the zeros kn of the determinant function ∆(k). We let

p+(k) = eikx+ik3tq̂0(k) ,

p−(k) = eik(x−L)+ik3tq̂0(k) ,

r(k) = 1− e−ikL .
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Therefore the series solution is given by

q(x, t) =
1

2π

{
πi

∞∑
n=1

p+(kn)

r′(kn)
+ πi

∞∑
n=1

p−(kn)

r′(kn)

}

=
1

2π

{
πi

∞∑
n=1

eiknx+ik3
nt(1 + e−iknL)q̂0(kn)

iLe−iknL

}

=
1

L

∞∑
n=1

eiknx+ik3
ntq̂0(kn) , (3.33)

which concurs with (3.32).

Remark 3.2.1. The index used in the summation of (3.33), indicates that the residue

contributions arise from all of the zeros kn of the determinant function ∆(k).

3.2.3 Quasi-Periodic Boundary Conditions

We consider now the third order linear evolution PDE, given by (3.19), with the quasi-

periodic boundary conditions given by

q(L, t) = αq(0, t) , qx(L, t) = αqx(0, t) , qxx(L, t) = αqxx(0, t) ,

for some real α > 0.

The boundary conditions imply that g̃0(t, k) = αf̃0(t, k), g̃1(t, k) = αf̃1(t, k) and

g̃2(t, k) = αf̃2(t, k) and therefore the global relation can be written entirely in terms of

the functions f̃j(t, k), j = 0, 1, 2, in the form

(
k2f̃0(t, k)− ikf̃1(t, k)− f̃2(t, k)

) (
1− e−ikLα

)
= q̂0(k)− e−ik3tq̂(t, k) . (3.34)

This is supplemented by the two additional equations

(
ζ2k2f̃0(t, k)− iζkf̃1(t, k)− f̃2(t, k)

) (
1− e−iζkLα

)
= q̂0(ζk)− e−ik3tq̂(t, ζk) , (3.35)

(
ζk2f̃0(t, k)− iζ2kf̃1(t, k)− f̃2(t, k)

)(
1− e−iζ2kLα

)
= q̂0(ζ

2k)− e−ik3tq̂(t, ζ2k) ,(3.36)
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where ζ = e
2πi
3 and form the matrix system given by




1− e−ikLα 1− e−ikLα 1− e−ikLα

ζ2(1− e−iζkLα) ζ(1− e−iζkLα) 1− e−iζkLα

ζ(1− e−iζ2kLα) ζ2(1− e−iζ2kLα) 1− e−iζ2kLα







k2f̃0(t, k)

−ikf̃1(t, k)

−f̃2(t, k)




=




q̂0(k)

q̂0(ζk)

q̂0(ζ
2k)


−




e−ik3tq̂(t, k)

e−ik3tq̂(t, ζk)

e−ik3tq̂(t, ζ2k)


 .

The determinant function ∆(k) is given by

∆(k) = 3
(
ζ − ζ2

) (
1− e−ikLα

) (
1− e−iζkLα

) (
1− e−iζ2kLα

)

= 3
(
ζ − ζ2

) {
1− α3 − α

(
e−ikL + e−iζkL + e−iζ2kL

)

+ α2
(
eikL + eiζkL + eiζ2kL

)}
,

and has zeros at the points kn, ζkn and ζ2kn where

kn = −i lnα± 2nπ

L
, n ∈ Z .

Remark 3.2.2. We observe that the presence of the constant term 1−α3, in the expres-

sion for the determinant function ∆(k), prevents the use of Levin’s Theorem (Theorem

1.3.22) for locating the zeros in the complex k-plane. Indeed, 1 = e0×k, but α3 cannot

be written as an exponential of k.

The zeros kn depend upon the value of α that is prescribed and in general, there are

three cases to consider:

• If 0 < α < 1 then the zeros lie on the three straight-line rays that run parallel to

the boundary rays ∂D, such that infinitely many zeros lie outside of the domain

D (Figure 3.6).

• If α = 1 then the boundary conditions are periodic and the zeros lie on the

boundary rays of D (Section 3.2.2, Figure 3.5(b)).

• If α > 1 then the zeros lie on the three straight-line rays that run parallel to

the boundary rays ∂D, such that infinitely many zeros lie inside of the domain D

(Figure 3.7).

96



Figure 3.6: The regions D± for the third order problem qt(x, t) + qxxx(x, t) = 0 with quasi-periodic

boundary conditions qj
x(L, t) = αqj

x(0, t) for j = 0, 1, 2 and 0 < α < 1, and the location of the zeros of

the determinant function ∆(k) = 3
(
ζ − ζ2

) (
1− e−ikLα

) (
1− e−iζkLα

) (
1− e−iζ2kLα

)
.

Figure 3.7: The regions D± for the third order problem qt(x, t) + qxxx(x, t) = 0 with quasi-periodic

boundary conditions qj
x(L, t) = αqj

x(0, t) for j = 0, 1, 2 and α > 1, and the location of the zeros of the

determinant function ∆(k) = 3
(
ζ − ζ2

) (
1− e−ikLα

) (
1− e−iζkLα

) (
1− e−iζ2kLα

)
.

The Series Representation of the Solution

The series representation of the solution q(x, t) can be obtained directly from any of the

three global relations. Solving equation (3.34) at k = kn, or equation (3.35) at k = ζ2kn,

or equation (3.36) at k = ζkn, for which the left-hand side vanishes, we obtain

q̂(t, kn) = eik3
ntq̂0(kn) . (3.37)

This is the same as expression (3.29), except here kn = − ilnα±2nπ
L

, n ∈ Z. Therefore,

following the periodic example on Page 93, we suppose that q(x, t) can be expanded in

terms of the eigenfunctions eiknx, and by (3.30) and (3.31), conclude that the solution
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takes the form of an infinite discrete series, written in terms of all of the zeros kn, in

the form

q(x, t) =
1

L

∞∑
n=1

eiknx+ik3
ntq̂0(kn) , (3.38)

for all α > 0.

In what follows, we derive the integral representations of the solution, for the cases

0 < α < 1 and α > 1 separately, and prove their equivalence to (3.38), and show that in

both cases, the contours of integration of the integral representation of the solution can

be deformed, and the solution expressed entirely in terms of the residue contributions

at the zeros kn of the determinant function ∆(k).

The Integral Representation of the Solution

The integral representation of the solution is given by (2.56) where the domains D± in

the complex k-plane are defined by (3.28). Hence

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk

−
∫

∂D+

eikx+ik3t
(
k2f̃0(t, k)− ikf̃1(t, k)− f̃2(t, k)

)
dk

−
∫

∂D−
eik(x−L)+ik3tα

(
k2f̃0(t, k)− ikf̃1(t, k)− f̃2(t, k)

)
dk

}
,

and expression (3.34), yields the following:

k2f̃0(t, k)− ikf̃1(t, k)− f̃2(t, k) =
q̂0(k)

1− e−ikLα
− e−ik3t q̂(t, k)

1− e−ikLα
.

Hence the integral representation of the solution is given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk

−
∫

∂D+

eikx+ik3t

(
q̂0(k)

1− e−ikLα
− e−ik3t q̂(t, k)

1− e−ikLα

)
dk

−
∫

∂D−
eik(x−L)+ik3tα

(
q̂0(k)

1− e−ikLα
− e−ik3t q̂(t, k)

1− e−ikLα

)
dk

}
. (3.39)
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Case 1: 0 < α < 1

Proposition 3.2.3. The terms involving the unknown function q̂(t, k) do not contribute

to the integral representation of the solution, given by (3.39).

Proof. Consider the integral around ∂D+ of the term involving the unknown function

q̂(t, k), given explicitly by
∫

∂D+

eikx

(
q̂(t, k)

1− e−ikLα

)
dk ,

and let k ∈ D+. It follows that eikL is bounded and e−ikL is unbounded. Therefore, the

asymptotic behaviour of the integrand is given by

eikxeikLq̂(t, k) = eikx

∫ L

0

eik(L−x′)q(x′, t) dx′ .

All of the exponential terms in this expression are bounded as k →∞ and the proof is

complete.

Remark 3.2.4. A similar argument can be used for the proof around ∂D−.

Therefore, the integral representation of the solution is given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫

∂D+

eikx+ik3t

(
q̂0(k)

1− e−ikLα

)
dk

−
∫

∂D−
eik(x−L)+ik3tα

(
q̂0(k)

1− e−ikLα

)
dk

}
. (3.40)

Equivalence of the Series and Integral Representations

The proof that the integral representation of the solution, given by (3.40), and the series

solution, given by (3.38), are equivalent, is straightforward, and offers an alternative

derivation of the series solution.

Proposition 3.2.5. The integrands of the integrals around ∂D+ and ∂D−, in expression

(3.40) are analytic and bounded in the domains D+
c and D−

c respectively, implying that

the contours of integration around ∂D+ and ∂D− can be deformed to the real line.

Proof. i.) Consider the integral around ∂D+, given by
∫

∂D+

eikx+ik3t

(
q̂0(k)

1− e−ikLα

)
dk ,

and let k be such that 0 < arg(k) < π
3
. Then for k in this wedge, ζk will be such

that 2π
3

< arg(ζk) < π and ζ2k will be such that 4π
3

< arg(ζ2k) < 5π
3

. Hence
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• eikx+ik3t is bounded,

• eikL, eiζkL and e−iζ2kL are bounded,

• e−ikL, e−iζkL and eiζ2kL are unbounded.

Since e−ikL is unbounded, the asymptotic behaviour of the integrand is given by

eikx+ik3teikLq̂0(k) = eikx+ik3t

∫ L

0

eik(L−x′)q0(x
′) dx′ .

All of the exponential terms in this expression are bounded as k → ∞, implying

that the contour of integration around ∂D+ can be deformed to the real line.

Remark 3.2.6. We remark that a similar argument can be used for the proof that

the integrand is analytic and bounded for k such that 2π
3

< arg(k) < π.

ii.) Consider the integral around ∂D−, given by
∫

∂D−
eik(x−L)+ik3tα

(
q̂0(k)

1− e−ikLα

)
dk ,

and let k ∈ D−
c . Then ζk is such that 0 < arg(ζk) < π

3
and ζ2k is such that

2π
3

< arg(ζ2k) < π. Hence

• eik(x−L)+ik3t is bounded,

• e−ikL, eiζkL and eiζ2kL are bounded,

• eikL, e−iζkL and e−iζ2kL are unbounded.

Since e−ikL is bounded, the asymptotic behaviour of the integrand is given by

eik(x−L)+ik3tq̂0(k) = eik(x−L)+ik3t

∫ L

0

e−ikx′q0(x
′) dx′ .

All of the exponential terms in this expression are bounded as k → ∞ and the

proof is complete.

Deforming the contours of integration in (3.40) to the real line gives the expression

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫ ∞

−∞
eikx+ik3t

(
q̂0(k)

1− e−ikLα

)
dk

+

∫ ∞

−∞
eik(x−L)+ik3tα

(
q̂0(k)

1− e−ikLα

)
dk

}

+
∑

kn:

∆(kn)=0

residue contributions .
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The integral terms trivially sum to zero, proving that the only contribution to the solu-

tion is the series term due to the explicit computation of the principal value contributions

at the zeros kn of the determinant function ∆(k). We let

p+(k) = eikx+ik3tq̂0(k) ,

p−(k) = eik(x−L)+ik3tαq̂0(k) ,

r(k) = 1− e−ikLα .

Therefore the series solution, computed over all of the zeros kn, is given by

q(x, t) =
1

2π

{
πi

∞∑
n=1

p+(kn)

r′(kn)
+ πi

∞∑
n=1

p−(kn)

r′(kn)

}

=
1

2π

{
πi

∞∑
n=1

eiknx+ik3
nt

(
1 + e−iknLα

)
q̂0(kn)

iLαe−iknL

}

=
1

L

∞∑
n=1

eiknx+ik3
ntq̂0(kn) ,

which coincides with (3.38) and the proof is complete.

Case 2: α > 1

The Integral Representation of the Solution

It follows from Proposition 3.2.5 that the contours of integration around ∂D±, whose

integrands involve the term q̂0(k), can be deformed to the real line, and because in the

case α > 1, infinitely many zeros lie inside of the domain D, it follows that no residue

contributions arise from this deformation. Hence, the integral representation of the

solution is given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫ ∞

−∞
eikx+ik3t

(
q̂0(k)

1− e−ikLα

)
dk

+

∫ ∞

−∞
eik(x−L)+ik3tα

(
q̂0(k)

1− e−ikLα

)
dk +

∫

∂D+

eikx

(
q̂(t, k)

1− e−ikLα

)
dk

+

∫

∂D−
eik(x−L)α

(
q̂(t, k)

1− e−ikLα

)
dk

}
.
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The integrals along R sum to zero, and hence

q(x, t) =
1

2π

{ ∫

∂D+

eikx

(
q̂(t, k)

1− e−ikLα

)
dk +

∫

∂D−
eik(x−L)α

(
q̂(t, k)

1− e−ikLα

)
dk

}
.

(3.41)

This representation of the solution involves q(x, t) on the RHS, however, we now show

how to overcome this, and obtain the solution as an infinite discrete series.

The integrands of the integrals around ∂D+ and ∂D−, in the integral representation

of the solution given by (3.41), are analytic and bounded in D+ and D− respectively.

The denominators however, have zeros in D+ and D− respectively and it is these that

give rise to a residue contribution, which yields the series representation, given by (3.38).

Let

p+(k) = eikxq̂(t, k) ,

p−(k) = eik(x−L)αq̂(t, k) ,

r(k) = 1− e−ikLα .

Therefore, the series solution, computed over all of the zeros kn, is given by

q(x, t) =
1

2π

{
πi

∞∑
n=1

p+(kn)

r′(kn)
+ πi

∞∑
n=1

p−(kn)

r′(kn)

}

=
1

2π

{
πi

∞∑
n=1

eiknx(1 + αe−iknL)q̂(t, kn)

iLαe−iknL

}

=
1

L

∞∑
n=1

eiknxq̂(t, kn) . (3.42)

Via expression (3.37), we substitute q̂(t, kn) = eik3
ntq̂0(kn), and conclude that (3.42) is

equivalent to (3.38).

3.2.4 An Example of More General Coupled Boundary

Conditions

We consider now the third order linear evolution PDE given by (3.10) with the coupled

boundary conditions

q(0, t) = 0 , q(L, t) = 0 , qx(L, t) = αqx(0, t) , (3.43)
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for some real α 6= 0. These boundary conditions were considered in [53], and it was

shown that for |α| < 1, one obtains a well-posed problem. Indeed, in this case the

x-differential operator is dissipative in nature, hence the energy (i.e., the L2 norm of the

solution) decreases with time. To show this we multiply (3.10a) throughout by q(x, t)

and integrate with respect to x over the domain, to obtain

∫ L

0

(q(x, t)qt(x, t) + q(x, t)qxxx(x, t)) dx = 0 .

Integration by parts, along with the imposition of the boundary conditions, yields

d

dt
||q(x, t)||22 = q2

x(L, t)− q2
x(0, t) =

(
α2 − 1

)
q2
x(0, t) . (3.44)

Hence provided |α| < 1 and qx(0, t) does not vanish, the energy will decrease.

This problem has been studied in detail by Zhang and Russell, [53, 42], and we include

the following proposition which proves that the solution is expressible in terms of the

appropriate eigenfunctions basis. The proof is given in [53].

Proposition 3.2.7. Assume that α 6= 0. Then the operator L = − ∂3

∂x3 is a discrete

spectral operator. The operator L and its adjoint L∗ = ∂3

∂x3 , on the bounded domain

[0, L] have complete sets of eigenvectors, given by

{φk(x) : −∞ < k < ∞} , {ψk(x) : −∞ < k < ∞} ,

respectively, which normalised to satisfy the bi-orthogonality condition

〈φk(x), ψj(x)〉L2([0,L]) =

∫ L

0

ψ∗j (x) φk(x) dx = δk,j ,

where δk,j is the Kronecker delta, form the Riesz bases {φk(x)} and {ψj(x)} for L2 ([0, L]).

The corresponding eigenvalues of L have the asymptotic form

λk =
(
8π3k3 + O(k2)

)
i− 12π2k2r + O(k), k →∞ ,

where

r = −log

∣∣∣∣
1 + 2α

2 + α

∣∣∣∣ > 0 .

We remark that the crucial property is the completeness of the families of eigenfunc-

tions. In this case, this follows from rather complex general results in functional analysis

[9, 10, 11].
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It follows from Proposition 3.2.7, that the system given by (3.10) and (3.43) has

a unique solution which can be represented as an infinite discrete series in terms of

the eigenfunction basis, and in what follows, we derive the series representation of the

solution using the transform method. For the analysis that is to follow we do not need

to assume that |α| < 1.

We use the Fokas transform method and derive an integral representation of the solu-

tion involving complex contours. We then show that this alternative form is equivalent

to a discrete series representation. Moreover we show that when coupled boundary con-

ditions are prescribed, the zeros of the determinant function ∆(k) always lie on the six

boundary rays of D, and this implies the existence of a series term in the representation

of the solution.

Recall the system of global relations given by (3.18). The imposition of the boundary

conditions implies that f̃0(t, k) = 0, g̃0(t, k) = 0 and g̃1(t, k) = αf̃1(t, k). Hence the

global relations form the following system, solvable for the three unknowns f̃1(t, k),

f̃2(t, k) and g̃2(t, k):




1− e−ikLα 1 e−ikL

ζ
(
1− e−iζkLα

)
1 e−iζkL

ζ2
(
1− e−iζ2kLα

)
1 e−iζ2kL







−ikf̃1(t, k)

−f̃2(t, k)

g̃2(t, k)


 =




q̂0(k)

q̂0(ζk)

q̂0(ζ
2k)


−




e−ik3tq̂(t, k)

e−ik3tq̂(t, ζk)

e−ik3tq̂(t, ζ2k)


 .

(3.45)

The determinant function ∆(k) is given by

∆(k) =
(
ζ − ζ2

) {
e−ikL + ζe−iζkL + ζ2e−iζ2kL + α

(
eikL + ζeiζkL + ζ2eiζ2kL

)}
,

which is a sum of the same six exponential terms as that of the determinant function,

given by (3.27), for the periodic case. Therefore, the zeros k = kn, such that ∆(kn) =

0, are located according to Levin’s Theorem (Theorem 1.3.22) and found to cluster

asymptotically along the boundary rays of D such that arg(k) = nπ
3

, n = 0, 1, ..., 5. The

location of the zeros is given in Figure 3.5(b).
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The Integral Representation of the Solution

The integral representation of the solution is given by (2.56) where the domains D± in

the complex k-plane are defined by (3.28). Hence

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫

∂D+

eikx+ik3t
(
−ikf̃1(t, k)− f̃2(t, k)

)
dk

−
∫

∂D−
eik(x−L)+ik3t

(
−ikαf̃1(t, k)− g̃2(t, k)

)
dk

}
. (3.46)

The system of global relations, given by (3.45), is solved for the three unknown boundary

values. This yields the following expressions in terms of the known functions q̂0(k),

q̂0(ζk) and q̂0(ζ
2k):

−ikf̃1(t, k)− f̃2(t, k) =
(1− ζ)

∆(k)

{
q̂0(k)

(
ζαeikL + ζ2e−iζkL + e−iζ2kL

)

− ζ2q̂0(ζk)
(
e−ikL − αeiζkL

)

− q̂0(ζ
2k)

(
e−ikL − αeiζ2kL

) }
(3.47)

and

−ikαf̃1(t, k)− g̃2(t, k) =
(1− ζ)

∆(k)

{
q̂0(k)

(
−ζ − αe−iζkL − ζ2αe−iζ2kL

)

− ζ2q̂0(ζk)
(
1− αe−iζ2kL

)

− q̂0(ζ
2k)

(
1− αe−iζkL

)
}

. (3.48)

Substituting these expressions into (3.46) achieves the explicit integral representation

of the solution:

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk

−
∫

∂D+

eikx+ik3t (1− ζ)

∆(k)

{
q̂0(k)

(
ζαeikL + ζ2e−iζkL + e−iζ2kL

)

− ζ2q̂0(ζk)
(
e−ikL − αeiζkL

)
− q̂0(ζ

2k)
(
e−ikL − αeiζ2kL

)}
dk

−
∫

∂D−
eik(x−L)+ik3t (1− ζ)

∆(k)

{
q̂0(k)

(
− ζ − αe−iζkL − ζ2αe−iζ2kL

)

− ζ2q̂0(ζk)
(
1− αe−iζ2kL

)
− q̂0(ζ

2k)
(
1− αe−iζkL

)}
dk

}
. (3.49)
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We observe that, according to Proposition 2.4.3(ii), the unknown terms do not con-

tribute to the integral representation of the solution.

Equivalence of the Series and Integral Representations

In this section we show that we can deform the contour ∂D to the real axis and realise

the integral representation, given by (3.49), entirely on R. In the process we achieve a

series term due to the explicit computation of the principal value contributions at the

zeros of the determinant function ∆(k).

Proposition 3.2.8. The integrands, of the integrals around ∂D+ and ∂D−, are analytic

and bounded, as k →∞, for k ∈ D+
c and k ∈ D−

c respectively.

Proof. We prove the case only for the integral around ∂D+, (the proof for the integral

around ∂D− follows analogously), and consider the integrand given by

eikx+ik3t (1− ζ)

∆(k)

{
q̂0(k)

(
ζαeikL + ζ2e−iζkL + e−iζ2kL

)
− ζ2q̂0(ζk)

(
e−ikL − αeiζkL

)

− q̂0(ζ
2k)

(
e−ikL − αeiζ2kL

)}
,

where ∆(k) = (ζ − ζ2)
{

e−ikL + ζe−iζkL + ζ2e−iζ2kL + α
(
eikL + ζeiζkL + ζ2eiζ2kL

)}
.

We divide the proof into two parts. In the first we prove that the integrand around

∂D+, in (3.49), is analytic and bounded as k → ∞, for k such that π
6

< arg(k) < π
3
,

and in the second part we prove that the integrand is analytic and bounded as k →∞,

for k such that 0 < arg(k) < π
6
. (A similar argument can be used for the proof that the

integrand is analytic and bounded as k →∞ for k such that 2π
3

< arg(k) < π).

i.) Consider the wedge such that π
6

< arg(k) < π
3
. Then for k in this wedge

• eikx+ik3t is bounded,

• eikL, eiζkL and e−iζ2kL are bounded,

• e−ikL, e−iζkL and eiζ2kL are unbounded.

Therefore asymptotically, the denominator behaves like (ζ − ζ2)
(
e−ikL+ζe−iζkL+

αζ2eiζ2kL
)
. To establish which of these terms is dominant we substitute k =

kR + ikI . This implies that

|e−ikL| = ekIL , |e−iζkL| = e
1
2(
√

3kR−kI)L , |eiζ2kL| = e
1
2(
√

3kR+kI)L . (3.50)
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ζk

ζ2k

k

Figure 3.8: The deformation of the contour ∂D+ for k such that π
6 < arg(k) < π

3 .

Now, π
6

< arg(k) < π
3

implies that kR <
√

3kI < 3kR. Therefore

1

2

(√
3kR − kI

)
< kI <

1

2

(√
3kR + kI

)
,

and we conclude that the dominant term in the denominator is given by

(ζ − ζ2) αζ2eiζ2kL. Therefore, the asymptotic behaviour of the integrand is given

by

eikx+ik3t

α
e−iζ2kL

{
q̂0(k)

(
ζαeikL + ζ2e−iζkL + e−iζ2kL

)
− ζ2q̂0(ζk)

(
e−ikL − αeiζkL

)

− q̂0(ζ
2k)

(
e−ikL − αeiζ2kL

)}
.

By definition (2.22) for D, it follows immediately that eik3t is bounded in Dc. The

behaviour of the x-exponential terms are given as follows:

(a) eikxe−iζ2kLe−ikxeikL + eikxe−iζ2kLe−ikxe−iζkL + eikxe−iζ2kLe−ikxe−iζ2kL

= e−iζ2kLeikL + eikL + e−iζ2kLe−iζ2kL,

(b) eikxe−iζ2kLe−iζkxe−ikL + eikxe−iζ2kLe−iζkxeiζkL

= eikxeiζk(L−x) + eikxe−iζ2kLeiζk(L−x),

(c) eikxe−iζ2kLe−iζ2kxe−ikL + eikxe−iζ2kLeiζ2kLe−iζ2kx

= eikxe−iζ2kxeiζkL + eikxe−iζ2kx.

All of the terms in these expressions are analytic and bounded as k → ∞, for k

such that π
6

< arg(k) < π
3

and the proof is complete.

ii.) Consider the wedge such that 0 < arg(k) < π
6
. Then for k in this wedge

• eikx+ik3t is bounded,
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• eikL, eiζkL and e−iζ2kL are bounded,

• e−ikL, e−iζkL and eiζ2kL are unbounded.

ζk

ζ2k

k

Figure 3.9: The deformation of the contour ∂D+ for k such that 0 < arg(k) < π
6 .

Therefore, as in case (i), the denominator behaves like (ζ − ζ2)
(
e−ikL + ζe−iζkL +

αζ2eiζ2kL
)

and expressions (3.50) apply. Now, 0 < arg(k) < π
6

implies that 0 <
√

3kI < kR. Therefore kI <
√

3kR − kI <
√

3kR + kI , and it follows that the

dominant term in the denominator is given by (ζ − ζ2) αζ2eiζ2kL.

Since the dominant term in the denominator is the same as for case (i), the re-

mainder of the proof follows identically.

Corollary 3.2.9. The contours of integration, ∂D+ and ∂D−, in expression (3.49) can

be deformed to the real axis. Hence representation (3.49) can be rewritten as

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫ ∞

−∞
eikx+ik3t

(
−ikf̃1(t, k)− f̃2(t, k)

)
dk

+

∫ ∞

−∞
eik(x−L)+ik3t

(
−ikαf̃1(t, k)− g̃2(t, k)

)
dk

}

+
∑

kn:

∆(kn)=0

residue contributions . (3.51)

Proof. The expressions for −ikf̃1(t, k) − f̃2(t, k) and −ikαf̃1(t, k) − g̃2(t, k) are given

by (3.47) and (3.48) respectively. A simple computation shows that the all the integral

terms sum to zero, proving that the only contribution left in the solution is due to the
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series term. The integrand in (3.51) is given explicitly as

eikx+ik3t

{
q̂0(k)− (1− ζ)

∆(k)

[
q̂0(k)

(
ζαeikL + ζ2e−iζkL + e−iζ2kL

)

− ζ2q̂0(ζk)
(
e−ikL − αeiζkL

)− q̂0(ζ
2k)

(
e−ikL − αeiζ2kL

) ]

+ e−ikL (1− ζ)

∆(k)

[
q̂0(k)

(
−ζ − αe−iζkL − ζ2αe−iζ2kL

)

− ζ2q̂0(ζk)
(
1− αe−iζ2kL

)
− q̂0(ζ

2k)
(
1− αe−iζkL

) ]}
,

and the terms can be grouped together to give

eikx+ik3t

∆(k)

{
q̂0(k)

(
∆(k)− (ζ − ζ2)

{
e−ikL + ζe−iζkL + ζ2e−iζ2kL

+ α
(
eikL + ζeiζkL + ζ2eiζ2kL

)})

+ q̂0(ζk)(ζ2 − 1)
(
e−ikL − αeiζkL − e−ikL + αeiζkL

)

+ q̂0(ζ
2k)(1− ζ)

(
e−ikL − αeiζ2kL − e−ikL + αeiζ2kL

) }
.

These trivially sum to zero, and the proof is complete. We remark that the proof that the

integral terms sum to zero is sufficient for the proof that the solution can be expressed

entirely as an infinite discrete series.

We now derive the series solution as the explicit computation of the residue contri-

butions at the zeros kn of the determinant function ∆(k).

∫

∂D+

p+(k)

r(k)
dk =

∫ ∞

−∞

p+(k)

r(k)
dk + πi

∑

kn:

∆(kn)=0

p+(kn)

r′(kn)
,

∫

∂D−

p−(k)

r(k)
dk = −

∫ ∞

−∞

p−(k)

r(k)
dk + πi

∑

kn:

∆(kn)=0

p−(kn)

r′(kn)
,

where

p+(k) = eikx+ik3t(1− ζ)
{

q̂0(k)
(
ζαeikL + ζ2e−iζkL + e−iζ2kL

)

− ζ2q̂0(ζk)
(
e−ikL − αeiζkL

)− q̂0(ζ
2k)

(
e−ikL − αeiζ2kL

)}
,

(3.52)
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p−(k) = eik(x−L)+ik3t(1− ζ)
{

q̂0(k)
(
−ζ − αe−iζkL − ζ2αe−iζ2kL

)

− ζ2q̂0(ζk)
(
1− αe−iζ2kL

)
− q̂0(ζ

2k)
(
1− αe−iζkL

) }
,

(3.53)

r(k) = ∆(k) =
(
ζ − ζ2

){
e−ikL + ζe−iζkL + ζ2e−iζ2kL + α

(
eikL + ζeiζkL + ζ2eiζ2kL

)}
.

It has already been proved that all of the integral terms sum to zero, and therefore all

that remains are the summation terms which yield the series solution of the form

q(x, t) =
i

2

∑

kn:

∆(kn)=0

p+(kn) + p−(kn)

r′(kn)
.

We observe that, (3.52) and (3.53) imply that

p+(k)− p−(k) = eikx+ik3t(ζ − ζ2)q̂0(k)∆(k) ,

and therefore p+(kn) = p−(kn). It follows that the infinite series representation of the

solution, computed over all the zeros kn, is given by

q(x, t) =
1

L

∑

kn:

∆(kn)=0

eiknx+ik3
nt




q̂0(kn)
�

αeiknL+ζe−iζknL+ζ2e−iζ2knL
�

−ζq̂0(ζkn)(e−iknL−αeiζknL)−ζ2q̂0(ζ
2kn)

�
e−iknL−αeiζ2knL

�
−e−iknL−ζ2e−iζknL−ζe−iζ2knL+ α

�
eiknL+ζ2eiζknL+ζeiζ2knL

�

 .

Remark 3.2.10. We remark that the procedure for deriving the explicit series represen-

tation of the solution is constructive, and the existence of the solution, in this form, is

known to exist by general theorems [35, 36].

Remark 3.2.11. In order to derive the series representation of the solution directly from

the system of global relations, for the problem with coupled boundary conditions and

α 6= 1, it is necessary to analyse the adjoint problem. We stress that this analysis

was not required for the derivation of the series solution via the contour deformation

approach.

3.2.5 Uncoupled Boundary Conditions

In this section we consider the imposition of uncoupled boundary conditions and illus-

trate the method for the boundary conditions of the form

q(0, t) = f0(t) , q(L, t) = g0(t) , qx(L, t) = g1(t) ,
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where f0(t), g0(t) and g1(t) are given functions. It is shown that the solution cannot

be represented by a discrete series but the integral representation of the solution, which

always exists, can be written alternatively as the sum of an infinite series and an integral

term involving complex contours of integration.

The boundary conditions imply that the functions f̃0(t, k), g̃0(t, k) and g̃1(t, k) are

known, and therefore the three global relations given by (3.15), (3.16) and (3.17) reduce

to the system given by



1 1 e−ikL

ζ 1 e−iζkL

ζ2 1 e−iζ2kL







−ikf̃1(t, k)

−f̃2(t, k)

g̃2(t, k)


 =




N(t, k)

N(t, ζk)

N(t, ζ2k)


−




e−ik3tq̂(t, k)

e−ik3tq̂(t, ζk)

e−ik3tq̂(t, ζ2k)


 , (3.54)

where

N(t, k) = q̂0(k)− k2
(
f̃0(t, k)− e−ikLg̃0(t, k)

)
− ike−ikLg̃1(t, k) ,

and the determinant function ∆(k) of the system is given by

∆(k) = (ζ − ζ2)
(
e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
.

This problem was introduced in Section 2.5 where the homogeneous uncoupled boundary

conditions of the form q(0, t) = 0, q(L, t) = 0 and qx(L, t) = 0 were considered. The

system that was obtained, and given by (2.57), is of the same form as (3.54) but with

N(t, k) = q̂0(k).

We conclude immediately, from the analysis of Section 2.5, along with the result of

Levin given in Section 1.3.7, that there are infinitely many zeros of the determinant

function ∆(k) in the complex k-plane. These zeros accumulate only at infinity and are

clustered exactly along the lines

L1 =
{

k : arg(k) =
π

6

}
, L2 =

{
k : arg(k) =

5π

6

}
, L3 =

{
k : arg(k) =

3π

2

}
.

The domain D = {k ∈ C : Re ω(k) 6 0} has three connected components given by

D+ =
{
k ∈ C : π

3
6 arg(k) 6 2π

3

}

D−
1 =

{
k ∈ C : π 6 arg(k) 6 4π

3

}

D−
2 =

{
k ∈ C : 5π

3
6 arg(k) 6 2π

}





D− = D−
1 ∪D−

2 ,

(3.55)

and it can be seen in Figure 3.10 that the zeros cluster along the three bisecting rays of

the complement regions Dc of D = D+ ∪D−.
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(a) z-plane (z = −ikL).

D−
2

D−
1

D+

L3

L2 L1

(b) k-plane.

Figure 3.10: The regions D± for the third order problem qt(x, t) + qxxx(x, t) = 0 with the boundary

conditions q(0, t) = f0(t), q(L, t) = g0(t) and qx(L, t) = g1(t) and the location of the zeros of the

determinant function ∆(k) =
(
ζ − ζ2

) (
e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
found using Levin’s Theorem,

(Theorem 1.3.22).

Remark 3.2.12. Having established where the zeros of ∆(k) lie in the complex plane we

might try to establish a series representation of the solution, according to the global

relations, as we did for the second order problem. Solving for example with respect to

g̃2(t, k) yields the following

∆̃(k)g̃2(t, k) = N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

− e−ik3t
(
q̂(t, k) + ζq̂(t, ζk) + ζ2q̂(t, ζ2k)

)
,

where

∆̃(k) = e−ikL + ζe−iζkL + ζ2e−iζ2kL .

Evaluating this expression at the zeros of ∆(k) appears to yield an expression for the

unknown functions in terms of the known functions N(t, k), N(t, ζk) and N(t, ζ2k).

However, if we consider for example the zeros kn such that arg(kn) = 3π
2

then we see that

whilst the functions q̂(t, k) and N(t, k) are bounded as k → ∞, the functions q̂(t, ζk),

q̂(t, ζ2k), N(t, ζk) and N(t, ζ2k) are not. Furthermore, no multiple of the identity

N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k) = e−ik3t
(
q̂(t, k) + ζq̂(t, ζk) + ζ2q̂(t, ζ2k)

)

makes all of the terms bounded. Therefore, these expressions have no meaning as

k →∞, and cannot be used to derive directly a series representation.

112



The Integral Representation

The integral representation of the solution is given by (2.56) where the domains D± in

the complex k-plane are defined by (3.55), and f̃(t, k) and g̃(t, k) are given by (3.13)

and (3.14) respectively. Hence,

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫

∂D+

eikx+ik3tk2f̃0(t, k) dk

−
∫

∂D+

eikx+ik3t
(
−ikf̃1(t, k)− f̃2(t, k)

)
dk

−
∫

∂D−
eik(x−L)+ik3t

(
k2g̃0(t, k)− ikg̃1(t, k)

)
dk

+

∫

∂D−
eik(x−L)+ik3tg̃2(t, k) dk

}
. (3.56)

The three global relations given by system (3.54) are solved using Cramer’s rule to

achieve expressions for the three unknown boundary values f̃1(t, k), f̃2(t, k) and g̃2(t, k):

−ikf̃1(t, k) =
1

∆(k)

{
N(t, k)

(
e−iζ2kL − e−iζkL

)
+ N(t, ζk)

(
e−ikL − e−iζ2kL

)

+ N(t, ζ2k)
(
e−iζkL − e−ikL

) }
,

−f̃2(t, k) =
1

∆(k)

{
N(t, k)

(
ζ2e−iζkL − ζe−iζ2kL

)
+ N(t, ζk)

(
e−iζ2kL − ζ2e−ikL

)

+ N(t, ζ2k)
(
ζe−ikL − e−iζkL

) }
,

g̃2(t, k) =
1

∆(k)

{
N(t, k)

(
ζ − ζ2

)
+ N(t, ζk)

(
ζ2 − 1

)
+ N(t, ζ2k) (1− ζ)

}
.

Using the identity ∆(k) = (ζ− ζ2)∆̃(k) where ∆̃(k) = e−ikL + ζe−iζkL + ζ2e−iζ2kL, along

with the equality

N(t, k)
(
ζe−iζkL + ζ2e−iζ2kL

)
−N(t, ζk)ζe−ikL −N(t, ζ2k)ζ2e−ikL

∆̃(k)

= −
(

N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

∆̃(k)

)
e−ikL + N(t, k) ,

the expressions for the unknown functions are given by

−ikf̃1(t, k)− f̃2(t, k) = −
(

N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

∆̃(k)

)
e−ikL + N(t, k) ,

g̃2(t, k) =
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

∆̃(k)
.
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Proposition 3.2.13. The unknown terms involving q̂(t, k), q̂(t, ζk) and q̂(t, ζ2k) do not

contribute to the integral representation of the solution, given by (3.56).

Proof. The proof follows directly from Proposition 2.4.3(i), however, we give the rigorous

proof for the integral around ∂D− of the unknown functions q̂(t, λl(k)), l = 0, 1, 2, given

explicitly by
∫

∂D−
eik(x−L)

(
q̂(t, k) + ζq̂(t, ζk) + ζ2q̂(t, ζ2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
dk .

We show that the integrand is bounded as k → ∞ in D− and therefore by Jordan’s

Lemma (Lemma 1.3.3) does not contribute to the integral representation.

Let k ∈ D−
1 . (The proof for k ∈ D−

2 follows analogously). Then

• e−ikL, e−iζkL and eiζ2kL are bounded,

• eikL, eiζkL and e−iζ2kL are unbounded.

Therefore, asymptotically the denominator behaves like e−iζ2kL and the exponential

terms of the integrand are given by

• eik(x−L)eiζ2kLe−ikx = e−ikLeiζ2kL,

• eik(x−L)eiζ2kLe−iζkx,

• eik(x−L)eiζ2kLe−iζ2kx = eik(x−L)eiζ2k(L−x).

All of these terms are bounded and analytic in D− and the proof is complete.

Remark 3.2.14. An analogous proof can be used to show that the unknown terms in-

volving q̂(t, k), q̂(t, ζk) and q̂(t, ζ2k) do not contribute to the integral representation of

the solution around ∂D+.

Therefore the integral representation of the solution is given by

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3tq̂0(k) dk −

∫

∂D+

eikx+ik3tk2f̃0(t, k) dk

−
∫

∂D−
eik(x−L)+ik3t

(
k2g̃0(t, k)− ikg̃1(t, k)

)
dk

+

∫

∂D+

eikx+ik3t

(
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL
e−ikL −N(t, k)

)
dk

+

∫

∂D−
eik(x−L)+ik3t

(
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
dk

}
. (3.57)
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Contour Deformation and Alternative Representations

In this section, we show that the contour of integration in expression (3.57) cannot be

deformed. As a consequence, we show that the integral representation is not equivalent

to a series representation obtained by a residue computation, as in previous sections.

The deformation of the integral around ∂D+ to L1

Proposition 3.2.15. The contour of integration cannot be deformed from ∂D+, where

arg(k) = π
3
, to the ray L1 =

{
k : arg(k) = π

6

}
.

Proof. For the proof, we show that the integrand is not bounded in the closed region

π
6

< arg(k) < π
3
. Hence we show that the integrand contains either an x-exponential

term and/or a t-exponential term which is unbounded in the closed region π
6

< arg(k) <

π
3
.

It will suffice to consider the integral around ∂D+ in (3.57), of only the term involving

f̃1(t, k) given explicitly by

∫

∂D+

eikx+ik3t

(
N(t,k)

�
e−iζ2kL−e−iζkL

�
+N(t,ζk)

�
e−ikL−e−iζ2kL

�
+N(t,ζ2k)(e−iζkL−e−ikL)

e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
dk.

Consider the wedge such that π
6

< arg(k) < π
3
. Then for k in this wedge, ζk will be

such that 5π
6

< arg(ζk) < π and ζ2k will be such that 3π
2

< arg(ζ2k) < 5π
3

. Hence k and

ζk will lie in the upper half of the complex k-plane and ζ2k will lie in the lower half of

the complex k-plane (Figure 3.11). Hence, for k in this wedge

• eikx+ik3t is bounded,

• eikL, eiζkL and e−iζ2kL are bounded,

• e−ikL, e−iζkL and eiζ2kL are not bounded.

To determine the asymptotic behaviour of the denominator, we substitute ζ = −1
2
+ i

√
3

2

into the expressions for e−iζkL and e−iζ2kL which gives

e−iζkL = e

�√
3

2
+ i

2

�
kL

, e−iζ2kL = e

�
−
√

3
2

+ i
2

�
kL

,

and conclude that asymptotically the denominator behaves like e−ikL + ζe−iζkL. To

establish which of these terms is dominant we set k = kR + ikI . This implies that

Im(k) = kI , Im(ζk) =
1

2

(√
3kR − kI

)
.
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ζk

ζ2k

k

L3

L1
L2

Figure 3.11: The deformation of the contour ∂D+ for k such that π
6 < arg(k) < π

3 .

Since Im(k) > Im(ζk), we conclude that the dominant term in the denominator is e−ikL.

Therefore, the asymptotic behaviour of the integrand is given by

eikx+ik3t
{

N(t, k)
(
e(1−ζ2)ikL − e(1−ζ)ikL

)
+ N(t, ζk)

(
1− e(1−ζ2)ikL

)

+ N(t, ζ2k)
(
e(1−ζ)ikL − 1

) }
.

Consider the integral around ∂D+ of the second of the terms involving N(t, ζk), and

more specifically the term involving q̂0(ζk):

∫

∂D+

eikx+ik3tq̂0(ζk) dk =

∫

∂D+

eikx+ik3t

(∫ L

0

e−iζkx′q0(x
′) dx′

)
dk .

Integration by parts implies that

eikx

∫ L

0

e−iζkx′q0(x
′) dx′ = eikx

{ [
1

−iζk
e−iζkx′q0(x

′)
]L

0

+

∫ L

0

e−iζkx′

iζk
q′0(x

′) dx′
}

=
iζ2

k
eikx−iζkLq0(L)− iζ2

k
eikx

∫ L

0

e−iζkx′q′0(x
′) dx′ .

To analyse the term eikx−iζkL for any x ∈ [0, L], we substitute k = R(cos θ + i sin θ)

where π
6

6 θ 6 π
3

and R > 0. Therefore ζk = R
(
cos(θ + 2π

3
) + i sin(θ + 2π

3
)
)

and hence

Re
(
eikx−iζkL

)
= e−R sin θxeR sin(θ+ 2π

3 )L .

If θ = π
6

then sin θ = sin
(
θ + 2π

3

)
= 1

2
and hence Re

(
eikx−iζkL

)
= e−

Rx
2 e

RL
2 = e

R
2

(L−x).

Since L− x > 0 this expression is unbounded as R →∞.

This concludes the proof that the contour of integration cannot be deformed through

the region π
6

< arg(k) < π
3

to the ray L1 =
{
k : arg(k) = π

6

}
.
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Remark 3.2.16. We remark that a similar argument can be used for the proof that the

contour of integration cannot be deformed from ∂D+, where arg(k) = 2π
3

, to the ray

L2 =
{
k : arg(k) = 5π

6

}
.

The deformation of the integral around ∂D− to L1

Proposition 3.2.17. The contour of integration cannot be deformed from the positive

real axis to the ray L1 =
{
k : arg(k) = π

6

}
.

Proof. For the proof, we show that integrand is unbounded in the closed region 0 <

arg(k) < π
6
.

It will suffice to consider the integral around ∂D−, in expression (3.57), of only the

term involving q̂0(k) given explicitly by

∫

∂D−
eik(x−L)+ik3t

(
q̂0(k)

e−ikL + ζeiζkL + ζ2eiζ2kL

)
dk .

Consider the wedge such that 0 < arg(k) < π
6
. Then for k in this wedge, ζk will be such

that 2π
3

< arg(ζk) < 5π
6

and ζ2k will be such that 4π
3

< arg(ζ2k) < 3π
2

. Hence k and ζk

will lie in the upper half of the complex k-plane and ζ2k will lie in the lower half of the

complex k-plane (Figure 3.12). Hence for k in this wedge,

• eikx+ik3t is bounded,

• eikL, eiζkL and e−iζ2kL are bounded,

• e−ikL, e−iζkL and eiζ2kL are unbounded.

L2

ζ2k

k

ζk

L3

L1

Figure 3.12: The deformation of the contour ∂D− for k such that 0 < arg(k) < π
6 .
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To establish the asymptotic behaviour of the denominator, we substitute k = kR + ikI

into each of the exponents in the denominator:

Re (e−ikL) = ekIL , Re (e−iζkL) = e
1
2(
√

3kR−kI)L , Re (e−iζ2kL) = e−
1
2(
√

3kR+kI)L ,

and conclude immediately that since kI > 0, e−ikL grows as k → ∞. Similarly, 0 <

arg(k) < π
6

implies 0 <
√

3kR−kI and therefore e−iζ2kL also grows as k →∞. In contrast

the term e−iζ2kL decays as k → ∞ since
√

3kR + kI > 0. Therefore asymptotically the

denominator behaves like e−ikL + ζe−iζkL. The dominant term is established using the

fact that Im(k) < Im(ζk). Hence

e−ikL + ζe−iζkL = e−iRe(k)LeIm(k)L + ζe−iRe(ζk)LeIm(ζk)L ,

and the dominant contribution as k →∞ is therefore given by e−iζkL. The asymptotic

behaviour of the integrand is therefore given by

eik(x−L)+ik3teiζkLq̂0(k) .

Explicitly the x-exponential terms are given by

eik(x−L)eiζkLq̂0(k) = eik(x−L)eiζkL

∫ L

0

e−ikx′q0(x
′) dx′

= eik(x−L)eiζkL

{ [
1

−ik
e−ikx′q0(x

′)
]L

0

+

∫ L

0

1

ik
e−ikx′q′0(x

′) dx′
}

.

To analyse the term eik(x−L)eiζkLe−ikL, we substitute k = R(cos θ + i sin θ) where 0 <

arg(k) < π
6

and R > 0. Therefore ζk = R
(
cos(θ + 2π

3
) + i sin(θ + 2π

3
)
)

and hence

Re
(
eik(x−L)eiζkLe−ikL

)
= e−R sin θ(x−L)e−R sin(θ+ 2π

3 )LeR sin θL .

If θ = π
6

then Re
(
eik(x−L)eiζkLe−ikL

)
= e−

R
2

(x−L) which is unbounded as R → ∞ since

x−L < 0. This concludes the proof that the contour of integration cannot be deformed

through the region 0 < arg(k) < π
6

to the ray L1 =
{
k : arg(k) = π

6

}
.

Remark 3.2.18. We remark that a similar argument can be used for the proof that

the contour of integration cannot be deformed from the negative real axis to the ray

L2 =
{
k : arg(k) = 5π

6

}
.
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The deformation of the integral around ∂D− to L3

Proposition 3.2.19. The integrand of the integral around ∂D− is analytic and bounded

in the region such that 4π
3

< arg(k) < 3π
2
, implying that the contour of integration can

be deformed through this region to the ray L3 =
{
k : arg(k) = 3π

2

}
.

Proof. We remark that the analyticity of the integrand around ∂D− involving the known

boundary values k2g̃0(t, k) − ikg̃1(t, k), follows immediately from the definition of D

(since the only exponential appearing in the integrand is eik(x−L)+ik3t which is necessarily

analytic and bounded for k ∈ D−
c ).

Therefore we consider only the integral around ∂D− in (3.57), of the terms involving

N(t, k), N(t, ζk) and N(t, ζ2k) given explicitly by

∫

∂D−
eik(x−L)+ik3t

(
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
dk.

Consider the wedge such that 4π
3

< arg(k) < 3π
2

. Then for k in this wedge, ζk will be

such that 0 < arg(ζk) < π
6

and ζ2k will be such that 2π
3

< arg(ζ2k) < 5π
6

. Hence ζk and

ζ2k will lie in the upper half of the complex k-plane and k will lie in the lower half of

the complex k-plane (Figure 3.13). Hence

• eik(x−L)+ik3t is bounded,

• e−ikL, eiζkL and eiζ2kL are bounded,

• eikL, e−iζkL and e−iζ2kL are unbounded.

ζ2k

ζk

k

L1L2

L3

Figure 3.13: The deformation of the contour ∂D− for k such that 4π
3 < arg(k) < 3π

2 .
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We must now establish the asymptotic behaviour of the denominator. Substituting

k = kR + ikI into each of the exponents in the denominator gives

Re (e−ikL) = ekIL , Re (e−iζkL) = e
1
2(
√

3kR−kI)L , Re (e−iζ2kL) = e−
1
2(
√

3kR+kI)L .

Since kI < 0, the term e−ikL will decay as k → ∞, and since
√

3kR − kI > 0, the term

e−iζkL will grow as k →∞. To determine the nature of e−iζ2kL we need to compare the

imaginary part of the term to the imaginary part of e−iζkL and see which is dominant.

Im (ζk) =
1

2

(√
3kR − kI

)
, Im

(
ζ2k

)
=

1

2

(
−
√

3kR − kI

)
,

therefore Im (ζk) = Im (ζ2k) +
√

3kR and since kR < 0 this implies that Im (ζ2k) >

Im (ζk). Hence the dominant contribution in the dominator is given by e−iζ2kL as k →
∞, and the asymptotic behaviour of the integrand is given by

eik(x−L)+ik3teiζ2kL
(
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

)
.

The dominant behaviour of the x-exponential terms in the integrand is given as follows:

i.) eik(x−L)eiζ2kLe−ikx′ − eik(x−L)eiζ2kLe−ikL,

ii.) eik(x−L)eiζ2kLe−iζkx′ − eik(x−L)eiζ2kLe−iζkL,

iii.) eik(x−L)eiζ2kLe−iζ2kx′ − eik(x−L)eiζ2kLe−iζ2kL,

for any 0 < x, x′ < L. Now, the term eik(x−L) = e−kI(x−L)eikR(x−L) for k = kR + ikI , and

since kI < 0 and x − L < 0 we conclude that eik(x−L) is bounded. We now analyse the

remaining terms by considering each of the expressions above, separately.

i.) Each of the exponentials eik(x−L), eiζ2kL, e−ikx′ and e−ikL are bounded and hence the

expression eik(x−L)eiζ2kLe−ikx′ − eik(x−L)eiζ2kLe−ikL is a bounded analytic function.

ii.) In this region Im (ζ2k) > Im (ζk) and hence e−iζ2kx′ dominates over e−iζkx′ . There-

fore

eik(x−L)eiζ2kLe−iζkx′ < eik(x−L)eiζ2kLe−iζ2kx′ = eik(x−L)eiζ2k(L−x′) ,

and since L − x′ > 0 we conclude that eik(x−L)eiζ2kLe−iζkx′ is a bounded analytic

function. Similarly, e−iζ2kL dominates over e−iζkL, therefore

eik(x−L)eiζ2kLe−iζkL < eik(x−L)eiζ2kLe−iζ2kL = eik(x−L) ,

which is a bounded analytic function.
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iii.) To show that the final two terms are bounded we group the terms as follows:

eik(x−L)eiζ2kLe−iζ2kx′ − eik(x−L)eiζ2kLe−iζ2kL = eik(x−L)eiζ2k(L−x′) − eik(x−L) ,

and then conclude immediately that the expression is a bounded analytic function.

This concludes the proof that the contour of integration can be deformed through the

region 4π
3

< arg(k) < 3π
2

to the ray L3 =
{
k : arg(k) = 3π

2

}
.

Remark 3.2.20. We remark that a similar argument can be used for the proof that

the contour of integration can be deformed from where arg(k) < 5π
3

to the ray L3 =
{
k : arg(k) = 3π

2

}
.

The integral along the wedge ∂D−
c =

{
k ∈ C : arg(k) = 4π

3

}∪{
k ∈ C : arg(k) = 5π

3

}
,

orientated such that the interior of the domain is always to the right, can be computed by

Cauchy’s Theorem (Theorem 1.3.1), and is equal to the sum of the residues at the poles

of the determinant function ∆̃(k) = e−ikL + ζe−iζkL + ζ2e−iζ2kL inside the integration

contour. However, we now show that this function does not have any poles in this region,

and therefore the integral along the wedge ∂D−
c vanishes. Recall that

∫

∂D−
= −

∫ ∞

−∞
+

∫

∂D−c
,

and therefore the integral representation of the solution, given by (3.57), can be written

in the form

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx+ik3t

(
q̂0(k) + e−ikL(k2g̃0(t, k)− ikg̃1(t, k))

)
dk

−
∫ ∞

−∞
eik(x−L)+ik3t

(
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
dk

−
∫

∂D+

eikx+ik3tk2f̃0(t, k) dk

+

∫

∂D+

eikx+ik3t

(
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL
e−ikL −N(t, k)

)
dk

−
∫

∂D−c
eik(x−L)+ik3t

(
k2g̃0(t, k)− ikg̃1(t, k)

)
dk

+

∫

∂D−c
eik(x−L)+ik3t

(
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
dk

}
.
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Writing the third integral around ∂D+ as an integral along R, and combining with the

terms of the first integral, the integral representation can be written as

q(x, t) =
1

2π

{ ∫

−R∪∂D+

eikx+ik3t

(
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL
e−ikL −N(t, k)

)
dk

+

∫

∂D−c
eik(x−L)+ik3t

(
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
dk

−
∫

∂D−c
eik(x−L)+ik3t

(
k2g̃0(t, k)− ikg̃1(t, k)

)
dk

}
.

The remainder of the example will be on the integrals around ∂D−
c and the zeros of the

denominator ∆̃(k) = e−ikL +ζe−iζkL +ζ2e−iζ2kL which lie on the negative imaginary axis

in the complex k-plane.

Consider the integrand around ∂D−
c , involving the boundary data, given by

eik(x−L)+ik3t
(
k2g̃0(t, k)− ikg̃1(t, k)

)
.

This expression is analytic and bounded for k such that 4π
3

< arg(k) < 5π
3

, and there-

fore, via Cauchy’s Theorem (Theorem 1.3.1), the integral around ∂D−
c of the integrand

involving the boundary data vanishes. The integral representation of the solution, is

therefore given by

q(x, t) =
1

2π

{ ∫

−R∪∂D+

eikx+ik3t

(
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL
e−ikL −N(t, k)

)
dk

+

∫

∂D−c
eik(x−L)+ik3t

(
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
dk

}
.(3.58)

Proposition 3.2.19, and a similar argument for the region such that 4π
3

< arg(k) <

3π
2

, proves the analyticity and boundedness of the integrand, of the integral around

∂D−
c , in the region D−

c . Therefore, the integral around ∂D−
c , in expression (3.58), can

alternatively be written as an infinite series in terms of the explicit computation, at the

zeros of the determinant function ∆(k) situated on the negative imaginary axis, of the

principal value contributions. Therefore

∫

∂D−c

p(k)

r(k)
dk = 2πi

∑

kI :

∆(kI)=0

p(kI)

r′(kI)
,
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where {kI} represents the set of zeros of ∆(k), situated on the ray L3 =
{
k : arg(k) = 3π

2

}
,

and

p(k) = eik(x−L)+ik3t
(
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

)
,

r(k) = ∆̃(k) = e−ikL + ζe−iζkL + ζ2e−iζ2kL .

Hence expression (3.58) can alternatively be written in the form

q(x, t) =
1

2π

∫

−R∪∂D+

eikx+ik3t

(
N(t, k) + ζN(t, ζk) + ζ2N(t, ζ2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL
e−ikL −N(t, k)

)
dk

− 1

L

∑

kI :

∆(kI)=0

eikI(x−L)+ik3
I t

(
N(t, kI) + ζN(t, ζkI) + ζ2N(t, ζ2kI)

e−ikIL + ζ2e−iζkIL + ζe−iζ2kIL

)
.

Homogeneous Boundary Conditions

For the remainder of the example, we consider the case where f̃0(t, k) = 0, g̃0(t, k) = 0

and g̃1(t, k) = 0.

Proposition 3.2.21. Consider the homogeneous boundary conditions q(0, t) = 0, q(L, t)

= 0 and qx(L, t) = 0 such that N(t, k) = q0(k). The integrand, of the integral around

∂D−
c , in the representation of the solution given by (3.58), is analytic for k such that

{
4π
3

< arg(k) < 5π
3

}
.

Proof. The integral around ∂D−
c , in (3.58) is given explicitly in terms of the given initial

data as

∫

∂D−c
eik(x−L)+ik3t

(
q̂0(k) + ζq̂0(ζk) + ζ2q̂0(ζ

2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
dk . (3.59)

Using the formula for the Fourier transform (2.26) and integration by parts, the numer-

ator of the integrand involving the initial data, can be expressed as follows:

q̂0(k) + ζq̂0(ζk) + ζ2q̂0(ζ
2k) =

∫ L

0

(
e−ikx + ζe−iζkx + ζ2e−iζ2kx

)
q0(x) dx
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=
(
e−ikL + e−iζkL + e−iζ2kL

) (
− 1

k4
q′′′0 (L)

)
+

3

k4
q′′′0 (0)

+
(
e−ikL + ζ2e−iζkL + ζe−iζ2kL

) (
i

k5
q
(iv)
0 (L)

)

+
(
e−ikL + ζe−iζkL + ζ2e−iζ2kL

) (
− i

k3
q′′0(L) +

1

k6
q
(v)
0 (L)

)

− 1

k6

∫ L

0

(
e−ikx + ζe−iζkx + ζ2e−iζ2kx

)
q
(vi)
0 (x) dx .

Therefore

q̂0(k) + ζq̂0(ζk) + ζ2q̂0(ζ
2k) =

1

k4L2
∆̃′′(k)q′′′0 (L) +

3

k4
q′′′0 (0)− 1

k5L
∆̃′(k)q

(iv)
0 (L)

+ ∆̃(k)

(
− i

k3
q′′0(L) +

1

k6
q
(v)
0 (L)

)

− 1

k6

∫ L

0

(
e−ikx + ζe−iζkx + ζ2e−iζ2kx

)
q
(vi)
0 (x) dx .

This expression can be further simplified using the relations

q′′′0 (0) = − ∂

∂t
q0(0) = 0 , q′′′0 (L) = − ∂

∂t
q0(L) = 0 , q

(iv)
0 (L) = − ∂

∂t
q′0(L) = 0 ,

implied by the PDE itself, when the boundary conditions are homogeneous. Hence

q̂0(k) + ζq̂0(ζk) + ζ2q̂0(ζ
2k) = ∆̃(k)

(
− i

k3
q′′0(L) +

1

k6
q
(v)
0 (L)

)

− 1

k6

∫ L

0

(
e−ikx + ζe−iζkx + ζ2e−iζ2kx

)
q
(vi)
0 (x) dx .

Further integration by parts achieves terms of the form ∆̃(k)q
(p)
0 (L) where p is an arbi-

trary positive integer congruent to 2 modulo 3. Hence,

q̂0(k) + ζq̂0(ζk) + ζ2q̂0(ζ
2k) = ∆̃(k)

(
− i

k3
q′′0(L) +

1

k6
q
(v)
0 (L) + · · ·

)
.

Therefore the integral around ∂D−
c =

{
k : arg(k) = 4π

3

} ∪ {
k : arg(k) = 5π

3

}
involving

the initial data, given by (3.59), can be written as

∫

∂D−c
eik(x−L)+ik3t

(
− i

k3
q′′0(L) +

1

k6
q
(v)
0 (L) + · · ·

)
dk .

The integrand is an analytic function, and it follows via Cauchy’s Theorem (Theorem

1.3.1) that the integral vanishes.
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Therefore, when the boundary conditions are homogeneous, N(t, k) = q̂0(k) and the

integral representation of the solution is given by

q(x, t) =
1

2π

∫

−R∪∂D+

eikx+ik3t

(
q̂0(k) + ζq̂0(ζk) + ζ2q̂0(ζ

2k)

e−ikL + ζe−iζkL + ζ2e−iζ2kL
e−ikL − q̂0(k)

)
dk .

3.2.6 General Uncoupled Boundary Conditions

We have analysed in detail the case when the given boundary conditions are q(0, t) =

f0(t), q(L, t) = g0(t) and qx(L, t) = g1(t) and have shown that the corresponding deter-

minant function of the algebraic system of global relations, is given by

∆(k) ∼
(
e−ikL + ζe−iζ2kL + ζ2e−iζ2kL

)
,

with zeros that cluster asymptotically along the three semilines L1, L2 and L3 given by

L1 =
{

k : arg(k) =
π

6

}
, L2 =

{
k : arg(k) =

5π

6

}
, L3 =

{
k : arg(k) =

2π

3

}
.

(3.60)

In general, the following lemma is valid and the proof is a simple computation.

Lemma 3.2.22. The determinant function ∆(k) of the system of global relations, ob-

tained from the imposition of one of the functions f̃j(t, k) and two of the functions

g̃j(t, k), j = 0, 1, 2, has (up to linear terms in ζ and ζ2) one of the following three

forms:

i.) ∆(k) ∼ eikL
(
e−ikL + ζe−iζkL + ζ2e−iζ2kL

)
,

ii.) ∆(k) ∼ eikL
(
e−ikL + e−iζkL + e−iζ2kL

)
,

iii.) ∆(k) ∼ eikL
(
e−ikL + ζ2e−iζkL + ζe−iζ2kL

)
.

Hence, if the boundary conditions are uncoupled, an application of the general result

given in [33], summarised by Levin’s Theorem (Theorem 1.3.22), implies that the argu-

ment of the zeros depends only on the exponents in the exponential terms, which in all

three cases is the same. Therefore, for all cases of uncoupled boundary conditions, the

determinant function ∆(k) always has infinitely many zeros accumulating at infinity and

clustering asymptotically along the lines L1, L2 and L3, given by (3.60). These zeros are

given pictorially in Figure 3.14 for the third order problem qt(x, t) + qxxx(x, t) = 0. It
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L2

L3

D−
1

D+

D−
2

L1

Figure 3.14: The regions D± for the third order problem qt(x, t) + qxxx(x, t) = 0 with uncoupled

boundary conditions, and the location of the zeros of the determinant function ∆(k) of the form given

in Lemma 3.2.22.

follows that in all cases the zeros of the determinant function lie outside of the domain

D. Hence ∆(k) 6= 0 for k ∈ D and it is therefore necessary to deform the contours of

integration to the rays upon which the zeros lie to explicitly compute the principal value

contributions at the zeros and realise the series representation of the solution. However,

analyticity arguments prove that this deformation is not possible throughout Dc, and

it is therefore never possible to write the integral representation of the solution as an

equivalent discrete series representation.

It has been shown however that the deformation of the contours is possible in the

domain D−
c , and the terms integrated around this domain give rise to a series contribu-

tion. It is therefore possible to express the solution as the sum of an integral around a

complex contour and an infinite discrete series.
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Chapter 4

Higher Order Problems

In this chapter, we consider some extensions and generalisations to higher order of the

results discussed in the previous sections for the second and third order problems. In

the first part, we use the Fokas transform method to solve some illustrative examples

of fourth order on the bounded domain [0, L], and in the second part we study the

eigenvalues of two-point boundary value problems and prove, for problems of order

n 6 4, that what we defined as the spectrum of the boundary value problem, coincides

with the classical discrete spectrum of the associated differential operator in x. We also

prove a general result regarding the location in the complex k-plane of the zeros of the

determinant function ∆n(k), for the general nth order problem of the form (2.1).

It is well known that the fourth order linear differential operator D4 = ∂4

∂x4 is formally

self-adjoint [7], and that on [0, L] the adjointness properties of this operator depend

on the particular boundary conditions imposed at the endpoints of the interval. The

solution of such a boundary value problem admits always a series representation, but to

find it one must in general consider not only the given problem but also its adjoint.

We begin by recalling the characterisation of the boundary conditions for which the

operator is self-adjoint, and in general, given such a problem, which corresponding

problem is its adjoint. We also recall how one can find the series representation of the

solution using the separation of variables approach. We then apply the method to solve

a self-adjoint example, and two examples of problems that are not self-adjoint but are

adjoint of each other. In both cases, our transform method can be used to derive the

series representation of the solution without making any assumption on the existence

of a bi-orthogonal basis, or any knowledge of the eigenvalues and eigenfunctions of the
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associated differential operator.

4.1 Fourth Order Problems

4.1.1 The Characterisation of Boundary Conditions

In this section, we study uncoupled boundary conditions for a fourth order two-point

boundary value problem. We only look at conditions of the form (4.2) below. It is not

difficult to generalise our results to any form of uncoupled boundary conditions.

We analyse those among such conditions that yield a self-adjoint operator, and discuss

the boundary conditions for which the operator fails to satisfy the requirements for self-

adjointness, and for these cases indicate what the adjoint problem is.

For the remainder of this chapter, we shall consider a specific fourth order PDE, given

by

qt(x, t) + qxxxx(x, t) = 0 , t > 0 , x ∈ [0, L] , (4.1a)

q(x, 0) = q0(x) , x ∈ [0, L] , (4.1b)

where q0(x) is a given function. For the problem to be well-posed, two boundary condi-

tions must be prescribed at x = 0 and two boundary conditions must be prescribed at

x = L, according to Theorem 2.1.1, and we shall consider the imposition of uncoupled

boundary conditions of the form

q(i)
x (0, t) = fi(t) , q(j)

x (L, t) = gj(t) , i, j ∈ {0, 1, 2, 3} , (4.2)

for some given functions fi(t) and gj(t). It follows, from (1.25), that for the fourth order

problem to be self-adjoint, the boundary conditions that are imposed must be such that

the boundary terms that arise during the integration by parts process are eliminated.

For any functions q(x), r(x) ∈ L2 ([0, L]), integration by parts yields

〈D4q(x), r(x)〉 =

∫ L

0

D4q(x) r(x) dx

=
[
D3q(x) r(x)−D2q(x) Dr(x) + Dq(x) D2r(x)

− q(x) D3r(x)
]L

0
+ 〈q(x), D4r(x)〉 . (4.3)
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If the boundary conditions are such that not all of the boundary terms in the brackets

in (4.3) can be eliminated, then the resulting operator is not self-adjoint. There are four

cases for which the fourth order operator D4 = ∂4

∂x4 is not self-adjoint:

i.) q(0, t) = f0(t), qxxx(0, t) = f3(t), q(L, t) = g0(t) and qxxx(L, t) = g3(t),

ii.) q(0, t) = f0(t), qxxx(0, t) = f3(t), qx(L, t) = g1(t) and qxx(L, t) = g2(t),

iii.) qx(0, t) = f1(t), qxx(0, t) = f2(t), q(L, t) = g0(t) and qxxx(L, t) = g3(t),

iv.) qx(0, t) = f1(t), qxx(0, t) = f2(t), qx(L, t) = g1(t) and qxx(L, t) = g2(t).

The boundary conditions posed by (i) and (iv) are adjoint to each other, and similarly

the boundary conditions posed by (ii) and (iii) are adjoint to each other. This implies

that the imposition of the boundary conditions given by (i) yield eigenfunctions en(x)

satisfying the boundary conditions en(0) = 0, e′′n(0) = 0 and en(L) = 0, e′′n(L) = 0,

defining problem (iv). Similarly, the imposition of the boundary conditions given by

(ii), yield eigenfunctions en(x) satisfying the boundary conditions e′n(0) = 0, e′′n(0) = 0

and en(L) = 0, e′′′n (L) = 0, defining problem (iii). Analogously, the imposition of the

boundary conditions given by (iii) and (iv) yield eigenfunctions satisfying the boundary

conditions defining problems (ii) and (i) respectively.

When the boundary conditions yield a self-adjoint operator, the method of separation

of variables can be used to obtain the discrete series representation of the solution.

However, for the fourth order problem, this approach becomes cumbersome when the

boundary conditions are non-homogeneous. When the operator is not self-adjoint, the

method of separation of variables can be used to derive the series representation, but

to find it one must also consider the adjoint problem. In both cases, the results rely on

the specific knowledge of the relevant eigenvalues.

In the next section, we consider the spectral representation of the solution of two-point

boundary value problems for fourth order linear evolution PDEs. We shall begin with an

example for which the boundary conditions yield a self-adjoint operator. Thereafter we

consider boundary value problems such that the operator fails to satisfy the conditions

for self-adjointness. In all cases the Fokas transform method yields an integral repre-

sentation of the solution, which is shown to be equivalent to the series representation of

the solution.
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4.1.2 The Solution Representation

In this section we consider the fourth order PDE, given by (4.1), with the imposition of

the boundary conditions of the form (4.2).

For every case of boundary conditions we derive the integral representation. We aim

then to show that the integral representation of the solution can always be written as

an infinite discrete series. To do this, we apply the Fokas transform method to (4.1) for

a variety of boundary conditions and show that, although the zeros of the determinant

function ∆(k) are always such that ∆(k) 6= 0 for k ∈ D, the integration contours

appearing in the representation can be deformed to include them. More specifically, we

prove that, as in the case of the heat equation, the zeros always lie on the rays that

bisect the domain Dc.

In Section 4.1.4 we consider the imposition of the boundary conditions q(0, t) = f0(t),

q(L, t) = g0(t), qxx(0, t) = f2(t) and qxx(L, t) = g2(t) for some given smooth functions

f0(t), f2(t), g0(t) and g2(t), and show that in this case the operator is self-adjoint

and the appropriate basis of eigenfunctions is algorithmically constructed. Hence the

solution is easily expressible as an infinite discrete series. In Section 4.1.5 we consider the

imposition of the boundary conditions q(0, t) = f0(t), q(L, t) = g0(t), qxxx(0, t) = f3(t)

and qxxx(L, t) = g3(t), for some given smooth functions f0(t), g0(t), f3(t) and g3(t), and

show that the method does not directly yield the appropriate basis of eigenfunctions,

but rather the adjoint basis.

The Main Elements of the Solution Method

Following the steps of the method outlined in Section 2.1.1, we derive the Lax pair,

given by (2.11), where

ω(k) = k4 ,

X(x, t, k) = ik3q(x, t) + k2qx(x, t)− ikqxx(x, t)− qxxx(x, t) .

The dispersion relation implies that the domain D comprises the four connected com-

ponents given by

D+
1 =

{
k ∈ C : π

8
6 arg(k) 6 3π

8

}

D+
2 =

{
k ∈ C : 5π

8
6 arg(k) 6 7π

8

}





D+ = D+
1 ∪D+

2 , (4.4)
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D−
1 =

{
k ∈ C : 9π

8
6 arg(k) 6 11π

8

}

D−
2 =

{
k ∈ C : 13π

8
6 arg(k) 6 15π

8

}





D− = D−
1 ∪D−

2 , (4.5)

given in Figure 4.1.

D+
1

D+
2

D−
1 D−

2

Figure 4.1: The regions D+
1 =

{
k ∈ C : π

8 6 arg(k) 6 3π
8

}
, D+

2 =
{
k ∈ C : 5π

8 6 arg(k) 6 7π
8

}
, D−

1 =
{
k ∈ C : 9π

8 6 arg(k) 6 11π
8

}
and D−

2 =
{
k ∈ C : 13π

8 6 arg(k) 6 15π
8

}
for the fourth order problem

qt(x, t) + qxxxx(x, t) = 0.

The functions c0 = ik3, c1 = k2, c2 = −ik and c3 = −1 imply that the functions

f̃(t, k) and g̃(t, k), according to (2.23) and (2.24) respectively, are given by

f̃(t, k) = ik3f̃0(t, k) + k2f̃1(t, k)− ikf̃2(t, k)− f̃3(t, k) ,

g̃(t, k) = ik3g̃0(t, k) + k2g̃1(t, k)− ikg̃2(t, k)− g̃3(t, k) ,

where f̃j(t, k) and g̃j(t, k), j = 0, 1, 2, 3, represent the t-transforms of the boundary

functions. The integral representation of the solution is given by (2.56) where the

domains D+ and D− in the complex k-plane are defined by (4.4) and (4.5) respectively.

Hence

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx−k4tq̂0(k) dk

−
∫

∂D+

eikx−k4t
(
ik3f̃0(t, k) + k2f̃1(t, k)− ikf̃2(t, k)− f̃3(t, k)

)
dk

−
∫

∂D−
eik(x−L)−k4t

(
ik3g̃0(t, k) + k2g̃1(t, k)− ikg̃2(t, k)− g̃3(t, k)

)
dk

}
.

(4.6)
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In order to rewrite the unknown boundary functions in terms of the known functions,

it is necessary to exploit the invariance properties of the functions f̃j(t, k) and g̃j(t, k),

j = 0, 1, 2, 3. The transformations that leave ω(k) invariant are determined by the roots

of the equation ω(k) = ω(λ) and are given explicitly by

λ0(k) = k , λ1(k) = ik , λ2(k) = −k , λ3(k) = −ik . (4.7)

Therefore, the system of global relations, given by (2.30), relating the eight unknown

boundary functions f̃j(t, k) and g̃j(t, k), j = 0, 1, 2, 3, is given by

ik3
(
f̃0(t, k)− e−ikLg̃0(t, k)

)
+ k2

(
f̃1(t, k)− e−ikLg̃1(t, k)

)

−ik
(
f̃2(t, k)− e−ikLg̃2(t, k)

)
−

(
f̃3(t, k)− e−ikLg̃3(t, k)

)
= q̂0(k)− ek4tq̂(t, k) ,

k3
(
f̃0(t, k)− ekLg̃0(t, k)

)
− k2

(
f̃1(t, k)− ekLg̃1(t, k)

)

+k
(
f̃2(t, k)− ekLg̃2(t, k)

)
−

(
f̃3(t, k)− ekLg̃3(t, k)

)
= q̂0(ik)− ek4tq̂(t, ik) ,

−ik3
(
f̃0(t, k)− eikLg̃0(t, k)

)
+ k2

(
f̃1(t, k)− eikLg̃1(t, k)

)

+ik
(
f̃2(t, k)− eikLg̃2(t, k)

)
−

(
f̃3(t, k)− eikLg̃3(t, k)

)
= q̂0(−k)− ek4tq̂(t,−k) ,

−k3
(
f̃0(t, k)− e−kLg̃0(t, k)

)
− k2

(
f̃1(t, k)− e−kLg̃1(t, k)

)

−k
(
f̃2(t, k)− e−kLg̃2(t, k)

)
−

(
f̃3(t, k)− e−kLg̃3(t, k)

)
= q̂0(−ik)− ek4tq̂(t,−ik) .

(4.8)

After the imposition of four well-posed boundary conditions, the four global relations

that result, form a system that is solvable for the remaining four unknown boundary

functions.

4.1.3 The Determinant Function

In this section we study the determinant function that arises from the system of global

relations, given by (4.8), after the imposition of four well-posed boundary conditions.

In general the following proposition is valid:

Proposition 4.1.1. The determinant function ∆(k) of the system of global relations,

given by (4.8), obtained from the imposition of two of the f̃j(t, k) and two of the g̃j(t, k),
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j = 0, 1, 2, 3, is always of the form

∆(k) ∼ α1 + α2e
(1+i)kL + α3e

(−1+i)kL + α4e
(1−i)kL + α5e

(−1−i)kL ,

where αi 6= 0, i = 0, 1, . . . 5, are constant coefficients and the zeros kn, such that ∆(kn) =

0, lie on the real and imaginary axes in the complex k-plane.

Proof. The matrix corresponding to the system of global relations, written in terms of

the eight unknown boundary functions f̃j(t, k) and g̃j(t, k), j = 0, 1, 2, 3, is of the form

(
A1 A2

)
=




i 1 −i 1 −ie−ikL −e−ikL ie−ikL e−ikL

1 −1 1 1 −ekL ekL −ekL ekL

−i 1 i 1 ieikL −eikL −ieikL eikL

−1 −1 −1 1 e−kL e−kL e−kL e−kL




.

The imposition of four boundary conditions (two at x = 0 and two at x = L) corresponds

to selecting two columns from each of the matrices A1 and A2.

The determinant function ∆(k) of the resulting 4 × 4 matrix, will comprise a linear

combination of exponential terms whose exponents correspond to summing two of the

λj’s, j = 0, 1, 2, 3, defined by (4.7). These terms are given explicitly as

e(λ0+λ1)L , e(λ0+λ2)L , e(λ0+λ3)L , e(λ1+λ2)L , e(λ1+λ3)L , e(λ2+λ3)L .

Taking into account expression (4.7) for the λj’s and that λ0 + λ2 = λ1 + λ3 = 0, it

follows that the determinant function is of the form

∆(k) ∼ α1 + α2e
(1+i)kL + α3e

(−1+i)kL + α4e
(1−i)kL + α5e

(−1−i)kL , (4.9)

for arbitrary constants α1, . . . , α5, and the first part of the proof is complete.

The proof that the zeros lie on the real and imaginary axes in the complex k-plane,

follows immediately from an application of Levin’s Theorem (Theorem 1.3.22). The

transformation z = −ikL is applied to the determinant function, and the five exponents

0 , (−1 + i)z , (−1− i)z , (1 + i)z , (1− i)z ,

indicate the four rays emanating from the origin, passing through the points 1+i, −1+i,

−1 − i and 1 − i in the complex z-plane, (Figure 4.2(a)). These points are joined to

form a convex hull (remarking that the point at the origin is contained within this hull).
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(a) z-plane (z = −ikL). (b) k-plane.

Figure 4.2: The regions D± for the fourth order problem qt(x, t) + qxxxx(x, t) = 0 with the boundary

conditions q(0, t) = f0(t), q(L, t) = g0(t), qx(0, t) = f1(t) and qx(L, t) = g1(t) and the location of the

zeros of the determinant function ∆(k) = −8i + 2i
(
e(1+i)kL + e(−1+i)kL + e(1−i)kL + e(−1−i)kL

)
.

The zeros cluster along the rays that perpendicularly bisect the sides of the polygon

that is formed. In the complex k-plane, these zeros accumulate only at infinity and are

clustered exactly along the real and imaginary axes, which bisect the domain Dc (Figure

4.2(b)).

The location of the zeros in the complex k-plane, of the determinant function ∆(k),

can be found graphically and the following proposition (Proposition 4.1.2) gives the

alternative forms, in terms of trigonometric functions, that the determinant function

can take. The proof is less concise than the the proof of Proposition 4.1.1, but makes

no reference to general results.

Proposition 4.1.2. The deteminant function ∆(k) of the system of global relations,

given by (4.8), obtained from the imposition of two of the f̃j(t, k) and two of the g̃j(t, k),

j = 0, 1, 2, 3, always has one of the following forms:

i.) ∆(k) ∼ cos(kL) cosh(kL)± 1,

ii.) ∆(k) ∼ sin(kL) sinh(kL),

iii.) ∆(k) ∼ cos(kL) cosh(kL),

iv.) ∆(k) ∼ cosh(kL) sin(kL)± cos(kL) sinh(kL) ,

and the zeros of the determinant function always lie on the real and imaginary axes in

the complex k-plane.
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Proof. A simple computation proves that (4.9) can be written in one of the forms above.

All of the proofs for locating the zeros of the determinant function, use geometric con-

structions and trigonometric identities:

i.) The zeros of cos(kL) cosh(kL)± 1 = 0 are found to be the intercept points of the

functions cosh(kL) and± sec(kL) in the complex k-plane. We give the proof for the

case cos(kL) cosh(kL)− 1 = 0 and remark that the proof for cos(kL) cosh(kL) +

1 = 0 follows analogously.

Plotting cosh(kL) against sec(kL) in the complex k-plane, implies two sets, {rn}
and {sn}, of real zeros (Figure 4.3). Since |cos(kL)| 6 1 ∀k, it follows that

π 2π 3π 4π

sec(kL)

cosh(kL)

s2

s3

r2

r1

Figure 4.3: The real roots {rn} and {sn} of the equation cos(kL) cosh(kL) = 1 associated

with the determinant function ∆(k) = 8i (−1 + cos(kL) cosh(kL)) of the fourth order problem

qt(x, t) + qxxxx(x, t) = 0 with the boundary conditions q(0, t) = f0(t), q(L, t) = g0(t), qx(0, t) =

f1(t) and qx(L, t) = g1(t).

|sec(kL)| > 1 ∀k. In the interval [0, π
2
] the graphs of cosh(kL) and sec(kL) intersect

at k = 0. Since cosh(kL) is an increasing function there must be a point of

intersection in every interval of the form [ (4n−1)π
2

, (4n+1)π
2

] for n = 0, 1, 2, . . . , and

given there are an infinite number of intervals there must be an infinite number of

intersection points. Therefore, there are an infinite number of real roots. These

take the form

rn ≈ (4n− 1)π

2
, sn ≈ (4n− 3)π

2
, n = 1, 2, . . . ,

and an application of Newton’s method achieves the improved approximations

rn ≈ (4n− 1)π

2
+ sech

(4n− 1)π

2
, sn ≈ (4n− 3)π

2
− sech

(4n− 3)π

2
.
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The existence of infinitely many purely imaginary roots in the complex k-plane is

an immediate consequence of the identities

cos(ikL) = cosh(kL) , cosh(ikL) = cos(kL) . (4.10)

It follows that if ∆(kn) = 0 then ∆(ikn) = 0, and the proof is complete.

ii.) The zeros kn of sin(kL) sinh(kL) = 0 are found trivially. The zeros of sin(kL) are

given by kn = nπ
L

, n ∈ Z and imply an infinite number of zeros lying on the real

axis. Using the identities

sin(iknL) = i sinh(knL) , i sin(knL) = sinh(iknL) ,

it follows that if ∆(kn) = 0 then ∆(ikn) = 0.

iii.) The zeros kn of cos(kL) cosh(kL) = 0 are found analogously to (ii). The zeros

of cos(kL) are given by kn = (2n+1)π
2L

, n ∈ Z and imply an infinite number of

zeros lying on the real axis. Using the identities, given by (4.10), it follows that if

∆(kn) = 0 then ∆(ikn) = 0.

iv.) We give the proof for the function ∆(k) ∼ cosh(kL) sin(kL) − cos(kL) sinh(kL)

and remark that the proof for the other case follows analogously. The positive real

roots of cosh(kL) sin(kL)−cos(kL) sinh(kL) = 0 are given by the intercept points

of the functions tan(kL) and tanh(kL), (Figure 4.4). In the interval
[−π

2
, π

2

]
, the

−5π
2 −2π −3π

2
−π −π

2
π
2 π 3π

2
2π 5π

2

1 tanh(kL)

tan(kL)

−1

Figure 4.4: The real roots of the equation cosh(kL) sin(kL)− cos(kL) sinh(kL) = 0 associated

with the determinant function ∆(k) of the fourth order problem qt(x, t) + qxxxx(x, t) = 0.

graphs intersect at k = 0. Since tanh(kL) increases asymptotically to 1, and
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tan(kL) has period π, there must be a point of intersection in every interval of the

form

[
(2n + 1)π

2
,

(2n + 3)π

2

]
, n = 0, 1, 2, . . . .

Therefore, since there are an infinite number of intervals, there must be an infinite

number of intersection points and hence an infinite number of real roots of the

equation cosh(kL) sin(kL)− cos(kL) sinh(kL) = 0. A similar argument holds for

the proof that there are an infinite number of negative real roots of the equation

cosh(kL) sin(kL)− cos(kL) sinh(kL) = 0.

The existence of infinitely many purely imaginary roots is proven as follows. Sup-

pose that ikL is an imaginary root. Then

cosh(ikL) sin(ikL)− cos(ikL) sinh(ikL) = 0

⇒ cos(kL) sinh(kL)− cosh(kL) sin(kL) = 0 ,

which is true, and the proof is complete.

Remark 4.1.3. We give a simple argument ruling out the existence of any other complex

roots. Consider the function

∆(z) = cosh(z) sin(z)− cos(z) sinh(z) , z ∈ C .

Writing z = x + iy, x, y,∈ R, we obtain

∆(x + iy) = −1

4

{ (
eix−y + e−ix+y

) (
ex+iy − e−x−iy

)

− i
(
ex+iy + e−x−iy

) (
eix−y − e−ix+y

) }
.

Assume, without loss of generality, that x, y > 0. Then

lim
x→∞

e−x−iy = 0 , lim
y→∞

eix−y = 0 ,
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and therefore

lim
x,y,→∞
x,y,>0

|∆(z)|2 =
1

16
lim

x,y,→∞
x,y,>0

∣∣(1− i)ex+yei(y−x)
∣∣2

=
1

8
lim

x,y,→∞
x,y,>0

∣∣ex+yei(y−x)
∣∣2

=
1

8
lim

x,y,→∞
x,y,>0

∣∣ex+y
∣∣2 6= 0 .

4.1.4 The Case of a Self-Adjoint Operator

In this section we consider the imposition of boundary conditions of the form (4.2), for

which the operator is self-adjoint. As an illustrative example, we consider the imposition

of the boundary conditions

q(0, t) = f0(t) , q(L, t) = g0(t) , qxx(0, t) = f2(t) , qxx(L, t) = g2(t) ,

for some given smooth functions f0(t), g0(t), f2(t) and g2(t). The system of global

relations, given by (4.8), simplifies to yield

k2
(
f̃1(t, k)− e−ikLg̃1(t, k)

)
−

(
f̃3(t, k)− e−ikLg̃3(t, k)

)
= N(t, k)− ek4tq̂(t, k) ,

−k2
(
f̃1(t, k)− ekLg̃1(t, k)

)
−

(
f̃3(t, k)− ekLg̃3(t, k)

)
= N(t, ik)− ek4tq̂(t, ik) ,

k2
(
f̃1(t, k)− eikLg̃1(t, k)

)
−

(
f̃3(t, k)− eikLg̃3(t, k)

)
= N(t,−k)− ek4tq̂(t,−k) ,

−k2
(
f̃1(t, k)− e−kLg̃1(t, k)

)
−

(
f̃3(t, k)− e−kLg̃3(t, k)

)
= N(t,−ik)− ek4tq̂(t,−ik) ,

(4.11)

where

N(t, k) = q̂0(k)− ik3
(
f̃0(t, k)− e−ikLg̃0(t, k)

)
+ ik

(
f̃2(t, k)− e−ikLg̃2(t, k)

)
,

is a known function in terms of the t-transforms of the given initial and boundary data.

In matrix form we write the system as



1 1 −e−ikL e−ikL

−1 1 ekL ekL

1 1 −eikL eikL

−1 1 e−kL e−kL







k2f̃1(t, k)

−f̃3(t, k)

k2g̃1(t, k)

g̃3(t, k)




=




N(t, k)

N(t, ik)

N(t,−k)

N(t,−ik)



−




ek4tq̂(t, k)

ek4tq̂(t, ik)

ek4tq̂(t,−k)

ek4tq̂(t,−ik)




,
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where the determinant function ∆(k) of the system is given by

∆(k) = 16i sin(kL) sinh(kL) .

The Integral Representation

We now start from the integral representation of the solution, given by (4.6). The

functions f̃1(t, k), f̃3(t, k), g̃1(t, k) and g̃3(t, k) are determined from solving the system

of global relations, given by (4.11). This yields the following expressions, in terms of

the known functions N(t, λl(k)), l = 0, 1, 2, 3:

k2f̃1(t, k)− f̃3(t, k) =
4

∆(k)

(
e(1+i)kL − e(−1+i)kL

) (
N(t, k)− e−2ikLN(t,−k)

)
,(4.12)

k2g̃1(t, k)− g̃3(t, k) =
4

∆(k)

(
ekL − e−kL

)
(N(t, k)−N(t,−k)) . (4.13)

An application of Proposition 2.4.3(i) proves that the unknown terms do not contribute

to the integral representation of the solution. Expressions (4.12) and (4.13) are sub-

stituted into the integral representation of the solution, given by (4.6), to achieve the

following solution:

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx−k4tq̂0(k) dk −

∫

∂D+

eikx−k4t
(
ik3f̃0(t, k)− ikf̃2(t, k)

)
dk

−
∫

∂D+

4eikx−k4t

∆(k)

(
e(1+i)kL − e(−1+i)kL

) (
N(t, k)− e−2ikLN(t,−k)

)
dk

−
∫

∂D−
eik(x−L)−k4t

(
ik3g̃0(t, k)− ikg̃2(t, k)

)
dk

−
∫

∂D−

4eik(x−L)−k4t

∆(k)

(
ekL − e−kL

)
(N(t, k)−N(t,−k)) dk

}
.

(4.14)

The Direct Derivation of the Series Representation of the Solution

The series representation of the solution can easily be obtained from the system of global

relations. Subtracting the third global relation from the first yields the following:

(
k2g̃1(t, k)− g̃3(t, k)

) (
eikL − e−ikL

)
= N(t, k)−N(t,−k)− ek4t (q̂(t, k)− q̂(t,−k)) .
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Evaluating this expression at an arbitrary positive real zero k = kn = nπ
L

, n ∈ Z we

obtain

e−k4
nt (N(t, kn)−N(t,−kn)) = q̂(t, kn)− q̂(t,−kn) .

Therefore

∫ L

0

(
e−iknx − eiknx

)
q(x, t) dx = e−k4

nt (N(t, kn)−N(t,−kn)) .

Since the family en(x) = eiknx − e−iknx = 2i sin (knx) is a complete orthogonal basis in

L2 ([0, L]), it follows that there exists functions cn(t) such that

q(x, t) =
∞∑

n=1

cn(t) en(x) .

The coefficients cn(t) can be found using the orthogonality of the basis functions, and

are given by

cn(t) =
1

2L
e−k4

nt (N(t, kn)−N(t,−kn)) .

Therefore, the infinite discrete series representation of the solution is given by the sine

series

q(x, t) =
1

2L

∞∑
n=1

e−k4
nt (N(t, kn)−N(t,−kn))

(
eiknx − e−iknx

)

=
i

L

∞∑
n=1

e−k4
nt (N(t, kn)−N(t,−kn)) sin (knx) , (4.15)

where the index indicates that only the positive real zeros contribute to the series rep-

resentation.

An Alternative Derivation of the Series Representation of the Solution

In this section we present an alternative derivation for the series representation of the

solution, given by (4.15). For this approach we begin by proving that the contours of

integration in (4.14) can be deformed throughout Dc. We then show that the only con-

tribution to the solution is from the explicit computation at the zeros of the determinant

function ∆(k), of the principal value contributions in the integral representation of the

solution.
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The derivation of the series representation of the solution via the global relation,

relies on the assumption that q(x, t) can be expressed as a generalised Fourier series, in

terms of the eigenfunctions en(x). We remark that no such assumptions, regarding any

knowledge of bases, orthogonality or eigenfunctions etc., are required for the derivation

based on the explicit computation of the residues.

Proposition 4.1.4. The integrands of the integrals around ∂D+ and ∂D−, in (4.14),

are analytic and bounded for k ∈ D+
c and k ∈ D−

c respectively.

Proof. We prove the case only for the integrand, of the integral around ∂D+, for k such

that 0 < arg(k) < π
8
, and remark that a similar argument can be used for the other

regions in Dc.

The integrand, of the integral around ∂D+, in (4.14), is given explicitly by

eikx−k4t

{ (
ik3f̃0(t, k)− ikf̃2(t, k)

)

+
4

∆(k)

(
e(1+i)kL − e(−1+i)kL

) (
N(t, k)− e−2ikLN(t,−k)

)
}

.

Consider the wedge such that 0 < arg(k) < π
8
. Then for k in this wedge ik will be such

that π
2

< arg(ik) < 5π
8

, −k will be such that π < arg(−k) < 9π
8

and −ik will be such

that 3π
2

< arg(−ik) < 13π
8

(Figure 4.5). Hence in this wedge

• eikx−k4t is bounded,

• eikL and e−kL are bounded,

• e−ikL and ekL are unbounded.

Now, the denominator, ∆(k) ∼ e(1+i)kL−e(−1+i)kL−e(1−i)kL +e(−1−i)kL, behaves asymp-

totically like e(1+i)kL + e(1−i)kL, and the terms that matter for the asymptotic behaviour

are given by the real part of the exponents. Therefore, if we set k = kR + ikI then

Re
(
e(1+i)kL

)
= e(kR−kI)L , Re

(
e(1−i)kL

)
= e(kR+kI)L .

For k such that 0 < arg(k) < π
8
, if θ = arg(k) then 0 < kI < kR tan

(
π
8

)
< kR. Therefore

e(kR−kI)L + e(kR+kI)L = ekRL(e−kIL + ekIL) < ekRL(1 + ekIL) < ekRL(1 + ekRL) ,
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k

−k

−ik

ik

Figure 4.5: The location of k, ik, −k and −ik such that 0 < arg(k) < π
8 .

and we conclude that the dominant term in the denominator is given by e2kL. Therefore,

the asymptotic behaviour of the integrand is given by

eikx−k4t
{(

ik3f̃0(t, k)− ikf̃2(t, k)
)

+ 4
(
e(−1+i)kL − e(−3+i)kL

) (
N(t, k)− e−2ikLN(t,−k)

) }
,

where N(t, k) is given explicitly by

N(t, k) =

∫ L

0

e−ikx′q0(x
′) dx′ − ik3

(
f̃0(t, k)− e−ikLg̃0(t, k)

)

+ ik
(
f̃2(t, k)− e−ikLg̃2(t, k)

)
.

Therefore, in terms of x-exponentials, the integrand is given in terms of the following

i.) eikxe−ikx′e−kLeikL = eikxeik(L−x′)e−kL,

eikxe−ikx′e−3kLeikL = eikxeik(L−x′)e−3kL,

eikxe−ikLe−kLeikL = eikxe−kL,

eikxe−ikLe−3kLeikL = eikxe−3kL,

ii.) eikxeikx′e−kLeikLe−2ikL = eikxeikx′e(−1−i)kL,

eikxeikx′e−3kLeikLe−2ikL = eikxeikx′e−2kLe(−1−i)kL,

eikxeikLe−kLeikLe−2ikL = eikxe−kL,

eikxeikLe−3kLeikLe−2ikL = eikxe−3kL.

Since Re
(
e(−1−i)kL

)
= e(kI−kR)L and kI − kR < 0 for k such that 0 < arg(k) < π

8
, it

follows that the exponential e(−1−i)kL is bounded as k → ∞. Hence all of the terms

in the integrand of the integral around ∂D+are bounded as k → ∞ and the proof is

complete.
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Corollary 4.1.5. The contours of integration, ∂D+ and ∂D−, in (4.14), can be de-

formed to any contour inside D+ and D− respectively. Hence (4.14) can be written in

the form

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx−k4tq̂0(k) dk −

∫ ∞

−∞
eikx−k4t

(
ik3f̃0(t, k)− ikf̃2(t, k)

)
dk

−
∫ ∞

−∞

4eikx−k4t

∆(k)

(
e(1+i)kL − e(−1+i)kL

) (
N(t, k)− e−2ikLN(t,−k)

)
dk

+

∫ ∞

−∞
eik(x−L)−k4t

(
ik3g̃0(t, k)− ikg̃2(t, k)

)
dk

+

∫ ∞

−∞

4eik(x−L)−k4t

∆(k)

(
eikL − e−ikL

)
(N(t, ik)−N(t,−ik)) dk

+ πi
∑

kn:

∆(kn)=0

p+(kn) + p−(kn)

r′(kn)

}
, (4.16)

where

p+(k) = 4eikx−k4t
(
e(1+i)kL − e(−1+i)kL

) (
N(t, k)− e−2ikLN(t,−k)

)
,

p−(k) = 4eik(x−L)−k4t
(
ekL − e−kL

)
(N(t, k)−N(t,−k)) ,

r(k) = ∆(k) = 4
(
e(1+i)kL − e(−1+i)kL − e(1−i)kL + e(−1−i)kL

)
.

By Corollary 4.1.5, it follows that the contours can be deformed through the region

Dc, to the zeros that lie on the real and imaginary axes in the complex k-plane. The

residue contributions from all of the poles kn are computed using the formulas

∫

∂D+

p+(k)

r(k)
dk =

∫ ∞

−∞

p+(k)

r(k)
dk + πi

∑

kn:

∆(kn)=0

p+(kn)

r′(kn)
, (4.17)

∫

∂D−

p−(k)

r(k)
dk = −

∫ ∞

−∞

p−(k)

r(k)
dk + πi

∑

kn:

∆(kn)=0

p−(kn)

r′(kn)
. (4.18)

Substituting these expressions into the integral representation of the solution, given

by (4.14), yields the representation in terms of an integral along the real line and a

series contribution due to the residues, given by (4.16). All of the integral terms sum

to zero and the solution is given only in terms of an infinite series, due to the explicit

computation of the residues.
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Consider first, the case where kn represents the real zeros, i.e., kn = nπ
L

, n ∈ Z. Then

it follows that

p+(kn) = 4(−1)neiknx−k4
nt

(
eknL − e−knL

)
(N(t, kn)−N(t,−kn)) ,

p−(kn) = 4(−1)neiknx−k4
nt

(
eknL − e−knL

)
(N(t, kn)−N(t,−kn)) ,

r′(kn) = 4L(−1)n
{

(1− i)
(
e−knL − eknL

)
+ (1 + i)

(
eknL − e−knL

) }

= 8iL(−1)n
(
eknL − e−knL

)
.

Hence

i

2

∑

knreal

p+(kn) + p−(kn)

r′(kn)
=

1

2L

∑

knreal

eiknx−k4
nt (N(t, kn)−N(t,−kn)) .

Now let kn = inπ
L

, n ∈ Z. It follows that p+(kn) = 0 and p−(kn) = 0 and therefore, the

series solution is calculated from the residue contributions that arise from the real zeros

only, and is given by

q(x, t) =
1

2L

∑

knreal

eiknx−k4
nt (N(t, kn)−N(t,−kn)) .

To prove that this is the same as (4.15), we sum over the positive zeros only:

q(x, t) =
1

2L

∑

knreal
n<0

eiknx−k4
nt (N(t, kn)−N(t,−kn))

+
1

2L

∑

knreal
n>0

eiknx−k4
nt (N(t, kn)−N(t,−kn))

=
1

2L

∑

knreal
n>0

e−k4
nt (N(t, kn)−N(t,−kn))

(
eiknx − e−iknx

)
. (4.19)

The index of the summation can now trivially by written in terms of n, i.e., from n = 1

to ∞, and the proof that (4.19) is identical to (4.15) is complete.

4.1.5 The Case of a Non Self-Adjoint Operator

In this section we consider the imposition of the boundary conditions for which the

operator is not self-adjoint. This implies that the eigenfunctions that are found from

the transform approach satisfy the homogeneous conditions characterising the adjoint
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problem, rather than the given conditions of the problem. Therefore, as it is natural

to expect, it is not possible to obtain directly from the global relation the appropriate

basis of eigenfunctions for a given problem if the operator is non self-adjoint, and one is

forced to consider the adjoint problem at the same time as the given one. In contrast, it

is possible to obtain the series representation of the solution considering only the given

boundary conditions, by deforming the contours of integration and realising the solution

entirely as the residue contribution from the poles.

Example 1

We consider the imposition of the boundary conditions

q(0, t) = f0(t) , q(L, t) = g0(t) , qxxx(0, t) = f3(t) , qxxx(L, t) = g3(t) , (4.20)

for some given smooth functions f0(t), g0(t), f3(t) and g3(t). The system of global

relations is given in matrix form by




1 −i −e−ikL ie−ikL

−1 1 ekL −ekL

1 i −eikL −ieikL

−1 −1 e−kL e−kL







k2f̃1(t, k)

kf̃2(t, k)

k2g̃1(t, k)

kg̃2(t, k)




=




N(t, k)

N(t, ik)

N(t,−k)

N(t,−ik)



−




ek4tq̂(t, k)

ek4tq̂(t, ik)

ek4tq̂(t,−k)

ek4tq̂(t,−ik)




,

(4.21)

where

N(t, k) = q̂0(k)− ik3
(
f̃0(t, k)− e−ikLg̃0(t, k)

)
+

(
f̃3(t, k)− e−ikLg̃3(t, k)

)
,

and the determinant function ∆(k) is given by

∆(k) = −8i + 2i
(
e(1+i)kL + e(−1+i)kL + e(1−i)kL + e(−1−i)kL

)

= −8i + 2i(eikL + e−ikL)(ekL + e−kL)

= 8i (−1 + cos(kL) cosh(kL)) .

The Integral Representation of the Solution

The integral representation of the solution, for the general fourth order linear evolution

PDE of the form (4.1), is given by (4.6). The functions f̃1(t, k), f̃2(t, k), g̃1(t, k) and
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g̃2(t, k) are determined from solving the system of global relations, given by (4.21), to

yield the following expressions, in terms of the known functions N(t, λl(k)), l = 0, 1, 2, 3:

k2f̃1(t, k)− ikf̃2(t, k) =
1

∆(k)

{
N(t, k)2i

(−2 + e(1+i)kL + e(−1+i)kL
)

−N(t, ik)(2− 2i)
(
1− e(−1−i)kL

)

+ N(t,−k)2
(
e(−1−i)kL − e(1−i)kL

)

+ N(t,−ik)(2 + 2i)
(
1− e(1−i)kL

) }
, (4.22)

k2g̃1(t, k)− ikg̃2(t, k) =
1

∆(k)

{
N(t, k)2

(−ie−kL + 2ieikL − iekL
)

+ N(t, ik)(2− 2i)
(
e−kL − eikL

)

+ N(t,−k)2
(
e−kL − ekL

)

+ N(t,−ik)(2 + 2i)
(
eikL − ekL

) }
. (4.23)

An application of Proposition 2.4.3(i) proves that the unknown terms involving q̂(t, λl(k)),

l = 0, 1, 2, 3 do not contribute to the integral representation of the solution. Expressions

(4.22) and (4.23) are substituted into the integral representation of the solution, given

by (4.6) to yield the following:

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx−k4tq̂0(k) dk −

∫

∂D+

eikx−k4t
(
ik3f̃0(t, k)− f̃3(t, k)

)
dk

−
∫

∂D+

eikx−k4t

∆(k)

{
N(t, k)2i(−2 + e(1+i)kL + e(−1+i)kL)−N(t, ik)(2− 2i)(1− e(−1−i)kL)

+ N(t,−k)2(e(−1−i)kL − e(1−i)kL) + N(t,−ik)(2 + 2i)(1− e(1−i)kL)
}

dk

−
∫

∂D−
eik(x−L)−k4t

(
ik3g̃0(t, k)− g̃3(t, k)

)
dk

−
∫

∂D−

eik(x−L)−k4t

∆(k)

{
N(t, k)2(−ie−kL + 2ieikL − iekL) + N(t, ik)(2− 2i)(e−kL − eikL)

+ N(t,−k)2(e−kL − ekL) + N(t,−ik)(2 + 2i)(eikL − ekL)
}

dk

}
.

(4.24)
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The Series Representation of the Solution

The series representation of the solution can be obtained by deforming the contours of

integration, and realising the solution entirely as the explicit computation of the residue

contributions due to the poles.

Proposition 4.1.6. The integrands of the integrals around ∂D+ and ∂D−, in (4.24),

are analytic and bounded for k ∈ D+
c and k ∈ D−

c respectively.

Proof. We prove the case only for the integrand, of the integral around ∂D+, for k such

that 0 < arg(k) < π
8
, and remark that a similar argument can be used for the other

regions in Dc.

The integrand, of the integral around ∂D+, in (4.24), is given explicitly by

eikx−k4t

{ (
ik3f̃0(t, k)− f̃3(t, k)

)
+

1

∆(k)

{
N(t, k)2i(−2 + e(1+i)kL + e(−1+i)kL)

−N(t, ik)(2− 2i)(1− e(−1−i)kL) + N(t,−k)2(e(−1−i)kL − e(1−i)kL)

+ N(t,−ik)(2 + 2i)(1− e(1−i)kL)
}}

.

Consider the wedge, such that 0 < arg(k) < π
8
. Then for k in this wedge, ζk will be

such that π
2

< arg(ζk) < 5π
8

, ζ2k will be such that π < arg(ζ2k) < 9π
8

and ζ3k will be

such that 3π
2

< arg(ζ3k) < 13π
8

(Figure 4.5). Hence

• eikx−k4t is bounded,

• eikL and e−kL are bounded,

• e−ikL and ekL are unbounded.

Now, the denominator, ∆(k) ∼ 1 + e(1+i)kL + e(−1+i)kL + e(−1−i)kL + e(1−i)kL, behaves

asymptotically like e(1+i)kL + e(1−i)kL, and the terms that matter for the asymptotic

behaviour are given by the real part of the exponents. Therefore, if we set k = kR + ikI

then

Re
(
e(1+i)kL

)
= e(kR−kI)L , Re

(
e(1−i)kL

)
= e(kR+kI)L .

For k such that 0 < arg(k) < π
8
, if θ = arg(k) then 0 < kI < kR tan

(
π
8

)
< kR. Therefore

e(kR−kI)L + e(kR+kI)L = ekRL(e−kIL + ekIL) < ekRL(1 + ekIL) < ekRL(1 + ekRL) ,
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and we conclude that the dominant term in the denominator is given by e2kL. Therefore,

the asymptotic behaviour of the integrand is given by

eikx−k4t

{ (
ik3f̃0(t, k)− f̃3(t, k)

)
+

{
N(t, k)2i(−2e−2kL + e(−1+i)kL + e(−3+i)kL)

−N(t, ik)(2− 2i)(e−2kL − e(−3−i)kL) + N(t,−k)2(e(−3−i)kL − e(−1−i)kL)

+ N(t,−ik)(2 + 2i)(e−2kL − e(−1−i)kL)
}}

,

where N(t, k) is given explicitly by

N(t, k) =

∫ L

0

e−ikx′q0(x
′) dx′ − ik3

(
f̃0(t, k)− e−ikLg̃0(t, k)

)

+
(
f̃3(t, k)− e−ikLg̃3(t, k)

)
.

Therefore, in terms of x-exponentials, the integrand is given in terms of the following

i.) eikxe−ikx′e−2kL = eikxeik(L−x′)e(−1−i)kLe−kL,

eikxe−ikx′e−kLeikL = eikxeik(L−x′)e−kL,

eikxe−ikx′e−3kLeikL = eikxeik(L−x′)e−3kL,

eikxe−ikLe−2kL = eikxe(−1−i)kLe−kL,

eikxe−ikLe−kLeikL = eikxe−kL,

eikxe−ikLe−3kLeikL = eikxe−3kL,

ii.) eikxekx′e−2kL = eikxek(x′−L)e−kL,

eikxekx′e−3kLe−ikL = eikxek(x′−L)e(−1−i)kLe−kL,

eikxekLe−2kL = eikxe−kL,

eikxekLe−3kLe−ikL = eikxe−kLe(−1−i)kL,

iii.) eikxeikx′e−3kLe−ikL = eikxeikx′e−2kLe(−1−i)kL,

eikxeikx′e−kLe−ikL = eikxeikx′e(−1−i)kL,

eikxeikLe−3kLe−ikL = eikxe−3kL,

eikxeikLe−kLe−ikL = eikxe−kL,

iv.) eikxe−kx′e−2kL,

eikxe−kx′e−kLe−ikL = eikxe−kx′e(−1−i)kL,

eikxe−kLe−2kL,

eikxe−kLe−kLe−ikL = eikLe−kLe(−1−i)kL.
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Since Re
(
e(−1−i)kL

)
= e(kI−kR)L and kI − kR < 0, for k such that 0 < arg(k) < π

8
, it

follows that the exponential e(−1−i)kL is bounded as k → ∞. Hence all of the terms

in the integrand of the integral around ∂D+are bounded as k → ∞ and the proof is

complete.

Corollary 4.1.7. The contours of integration, ∂D+ and ∂D−, in (4.24), can be de-

formed to any contour inside D+ and D− respectively. Hence (4.24) can be written in

the form

q(x, t) =
1

2π

{ ∫ ∞

−∞
eikx−k4tq̂0(k) dk −

∫ ∞

−∞
eikx−k4t

(
ik3f̃0(t, k)− f̃3(t, k)

)
dk

−
∫ ∞

−∞

eikx−k4t

∆(k)

{
N(t, k)2i(−2 + e(1+i)kL + e(−1+i)kL)−N(t, ik)(2− 2i)(1− e(−1−i)kL)

+ N(t,−k)2(e(−1−i)kL − e(1−i)kL) + N(t,−ik)(2 + 2i)(1− e(1−i)kL)
}

dk

+

∫ ∞

−∞
eik(x−L)−k4t

(
ik3g̃0(t, k)− g̃3(t, k)

)
dk

+

∫ ∞

−∞

eik(x−L)−k4t

∆(k)

{
N(t, k)2(−ie−kL + 2ieikL − iekL) + N(t, ik)(2− 2i)(e−kL − eikL)

+ N(t,−k)2(e−kL − ekL) + N(t,−ik)(2 + 2i)(eikL − ekL)
}

dk

+ πi
∑

kn:

∆(kn)=0

p+(kn) + p−(kn)

r′(kn)

}
. (4.25)

where

p+(k) = eikx−k4t
{

N(t, k)2i(−2 + e(1+i)kL + e(−1+i)kL)−N(t, ik)(2− 2i)(1− e(−1−i)kL)

+ N(t,−k)2(e(−1−i)kL − e(1−i)kL) + N(t,−ik)(2 + 2i)(1− e(1−i)kL)
}

,

p−(k) = eik(x−L)−k4t
{

N(t, k)2(−ie−kL + 2ieikL − iekL) + N(t, ik)(2− 2i)(e−kL − eikL)

+ N(t,−k)2(e−kL − ekL) + N(t,−ik)(2 + 2i)(eikL − ekL)
}

,

r(k) = ∆(k) = −8i + 2i
(
e(1+i)kL + e(−1+i)kL + e(1−i)kL + e(−1−i)kL

)
.

By Corollary 4.1.7, it follows that the contours can be deformed through the region

Dc, to the zeros that lie on the real and imaginary axes in the complex k-plane. The
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residue contributions from the poles are computed using the formulas given by (4.17)

and (4.18), and substituting these expressions into (4.24) yields the representation, given

by (4.25).

A simple cancellation of terms shows that all of the integral terms sum to zero, proving

that the solution is expressible entirely as an infinite discrete series. Substitution and

simplification yields the series solution given by

q(x, t) =
1

2L

∑

kn:

∆(kn)=0

eiknx−k4
ntp(kn)

(1 + i) (e(1+i)knL − e(−1−i)knL) + (1− i) (e(1−i)knL − e(−1+i)knL)

=
1

8L

∑

kn:

∆(kn)=0

eiknx−k4
ntp(kn)

tanh(knL)− tan(knL)
, (4.26)

where

p(kn) = N(t, kn)2i
(
2− e(1−i)knL − e(−1−i)knL

)−N(t, ikn)(2− 2i)
(
1− e(−1−i)knL

)

+ N(t,−kn)2
(
e(−1−i)knL − e(1−i)knL

)
+ N(t,−ikn)(2 + 2i)

(
1− e(1−i)knL

)
.

We observe that since the denominator is invariant under k → ζk, with ζ the fourth

root of 1, the series can be written in terms of the positive real zeros only:

q(x, t) =
1

8L

∞∑
n=1

e−k4
nt

(
eiknxp(kn)− e−iknxp(−kn) + ie−knxp(ikn)− ieknxp(−ikn)

tanh(knL)− tan(knL)

)
.

(4.27)

The Direct Derivation of the Series Representation of the Solution using the

Adjoint Problem

In this section we show that the eigenfunctions that are found from the analysis of the

global relations, satisfy the homogeneous boundary conditions of the adjoint problem,

and therefore, the analysis of the adjoint problem is necessary for the derivation of the

series solution. This derivation can be compared to the classical separation of variables

approach, in that it relies on the assumptions of orthogonality of eigenfunctions and

convergence properties etc.

In this first part, we use the system of global relations, given by (4.21) to derive the

appropriate basis of eigenfunctions en(x) satisfying the homogeneous boundary condi-

tions of the adjoint problem. Therefore, an analogous repeat of this procedure is required
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in the second part, where the adjoint problem is analysed and the appropriate basis of

eigenfunctions fm(x) is derived, satisfying the homogeneous boundary conditions of this

problem. The functions en(x) and fm(x) are shown to satisfy a bi-orthogonality condi-

tion, and the series representation of the solution for example 1, is given in terms of the

eigenfunctions fm(x) of the adjoint problem.

The system of global relations, given by (4.21), can be solved for the unknown bound-

ary functions using Cramer’s rule. The expression that results for k2f̃1(t, k) is given by

k2f̃1(t, k) =
1

∆(k)
(1 + i)e(−1−i)kL

{(
N(t, k)− ek4tq̂(t, k)

) (
ie2ikL − (1 + i)e(1+i)kL + e(2+2i)kL

)

+
(
N(t, ik)− ek4tq̂(t, ik)

) (−e2ikL − i + (1 + i)e(1+i)kL
)

+
(
N(t,−k)− ek4tq̂(t,−k)

) (−(1 + i)e(1+i)kL + 1 + ie2kL
)

+
(
N(t,−ik)− ek4tq̂(t,−ik)

) (−ie(2+2i)kL + (1 + i)e(1+i)kL − e2kL
) }

.

Evaluating this expression at an arbitrary, positive real zero kn of the determinant

function ∆(k), yields an expression for the unknown functions q̂(t, λl(k)) in terms of the

known functions N(t, λl(k)), l = 0, 1, 2, 3. This is given explicitly by

N(t, kn)
(
ie2iknL − (1 + i)e(1+i)knL + e(2+2i)knL

)

+ N(t, ikn)
(−e2iknL − i + (1 + i)e(1+i)knL

)

+ N(t,−kn)
(−(1 + i)e(1+i)knL + 1 + ie2knL

)

+ N(t,−ikn)
(−ie(2+2i)knL + (1 + i)e(1+i)knL − e2knL

)

= ek4
nt

{
q̂(t, kn)

(
ie2iknL − (1 + i)e(1+i)knL + e(2+2i)knL

)

+ q̂(t, ikn)
(−e2iknL − i + (1 + i)e(1+i)knL

)

+ q̂(t,−kn)
(−(1 + i)e(1+i)knL + 1 + ie2knL

)

+ q̂(t,−ikn)
(−ie(2+2i)knL + (1 + i)e(1+i)knL − e2knL

) }
.

Multiplying throughout by e−2knL yields the following expression which is bounded, for
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all positive real kn, as kn →∞:

q̂(t, kn) A1 + q̂(t, ikn) A2 + q̂(t,−kn) A3 + q̂(t,−ikn) A4

= e−k4
nt

{
N(t, kn) A1 + N(t, ikn) A2 + N(t,−kn) A3 + N(t,−ikn) A4

}
,

where

A1 = ie(−2+2i)knL − (1 + i)e(−1+i)knL + e2iknL, (4.28a)

A2 = −e(−2+2i)knL − ie−2knL + (1 + i)e(−1+i)knL, (4.28b)

A3 = −(1 + i)e(−1+i)knL + e−2knL + i, (4.28c)

A4 = −ie2iknL + (1 + i)e(−1+i)knL − 1. (4.28d)

Assuming that the RHS can be written as the L2 inner product 〈q0(x), en(x)〉 for some

basis functions en(x), we find
∫ L

0

(
A1 e−iknx + A2 eknx + A3 eiknx + A4 e−knx

)
q(x, t) dx = e−k4

ntA5 ,

where

A5 = N(t, kn) A1 + N(t, ikn) A2 + N(t,−kn) A3 + N(t,−ikn) A4 , (4.29)

is a known function in terms of the t-transforms of the given initial and boundary data.

Proposition 4.1.8. The functions en(x), given by

en(x) = A1 eiknx + A2 eknx + A3 e−iknx + A4 e−knx ,

satisfy the homogeneous boundary conditions

e′n(0) = e′n(L) = 0 , e′′n(0) = e′′n(L) = 0 . (4.30)

Proof. All of the conditions follow by a direct cancellation of terms, except for the

condition e′′n(0) = 0 that requires the identity ∆(kn) = 0:

e′′n(0) = k2
n

(−A1 + A2− A3 + A4
)

= k2
n

(
ie(−2−2i)knL + (1− i)e(−1−i)knL − e−2iknL − e(−2−2i)knL + ie−2knL

+ (1− i)e(−1−i)knL + (1− i)e(−1−i)knL − e−2knL + i + ie−2iknL

+ (1− i)e(−1−i)knL − 1
)
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= − (1− i)k2
ne(−1−i)knL

(−4 + e(1+i)knL + e(−1+i)knL + e(1−i)knL + e(−1−i)knL
)

=

(
1 + i

2

)
k2

ne
(−1−i)knL∆(kn)

= 0 .

The conditions, given by (4.30), do not correspond to the boundary conditions, given

by (4.20), imposed on the PDE, proving that the analysis of the system of global rela-

tions, given by (4.21), is not sufficient for the derivation of the series solution. It follows

that to find the appropriate eigenfunctions fm(x), satisfying the boundary conditions

fm(0) = fm(L) = 0 and f ′′′m(0) = f ′′′m(L) = 0, the transform method must applied to the

adjoint problem, posed by (4.1) with the boundary conditions

qx(0, t) = f1(t) , qx(L, t) = g1(t) , qxx(0, t) = f2(t) , qxx(L, t) = g2(t) ,

for some given functions f1(t), g1(t), f2(t) and g2(t), and this is what we do next.

Example 2

In a way analogous to that of the previous example, we find the system for the unknown

boundary conditions. The determinant of this system has the same zeros as the deter-

minant of its adjoint. The system of global relations can be solved to yield expressions

for the unknown terms. The expression for k3f̃0(t, k) is given by

k3f̃0(t, k) =
1

∆(k)
(1 + i)e(−1−i)kL

{(
N(t, k)− ek4tq̂(t, k)

) (
ie2ikL + (1− i)e(1+i)kL − e(2+2i)kL

)

+
(
N(t, ik)− ek4tq̂(t, ik)

) (−1− ie2ikL + (1 + i)e(1+i)kL
)

+
(
N(t,−k)− ek4tq̂(t,−k)

) (
1− (1− i)e(1+i)kL − ie2kL

)

+
(
N(t,−ik)− ek4tq̂(t,−ik)

) (
(−1− i)e(1+i)kL + ie2kL + e(2+2i)kL

) }
.

Evaluating this expression at a positive real zero km of the determinant function ∆(k),

and multiplying throughout by e−2kmL yields the following expression, which is bounded,
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for all positive real zeros km, as km →∞:

q̂(t, km) B1 + q̂(t, ikm) B2 + q̂(t,−km) B3 + q̂(t,−ikm) B4

= e−k4
mt

{
N(t, km) B1 + N(t, ikm) B2 + N(t,−km) B3 + N(t,−ikm) B4

}
,

where

B1 = ie(−2+2i)kmL + (1− i)e(−1+i)kmL − e2ikmL , (4.31a)

B2 = −e−2kmL − ie(−2+2i)kmL + (1 + i)e(−1+i)kmL , (4.31b)

B3 = e−2kmL − (1− i)e(−1+i)kmL − i , (4.31c)

B4 = (−1− i)e(−1+i)kmL + i + e2ikmL . (4.31d)

Assuming that the RHS can be written as the L2 inner product 〈q0(x), fm(x)〉 for some

basis functions fm(x), we find
∫ L

0

(
B1 e−ikmx + B2 ekmx + B3 eikmx + B4 e−kmx

)
q(x, t) dx = e−k4

mtB5 ,

where

B5 = N(t, km) B1 + N(t, ikm) B2 + N(t,−km) B3 + N(t,−ikm) B4 .

Proposition 4.1.9. The functions fm(x), given by

fm(x) = B1 eikmx + B2 ekmx + B3 e−ikmx + B4 e−kmx ,

satisfy the homogeneous boundary conditions

fm(0) = fm(L) = 0 , f ′′′m(0) = f ′′′m(L) = 0 .

Proof. The proof that fm(0) = 0, fm(L) = 0 and f ′′′m(L) = 0 follow by a direct cancella-

tion of terms. The proof that f ′′′m(0) = 0 however, requires the identity ∆(km) = 0:

f ′′′m(0) = k3
m

(−i B1 + B2 + i B3−B4
)

= k3
m

(
− e(−2−2i)kmL + (1− i)e(−1−i)kmL + ie−2ikmL − e−2kmL + ie(−2−2i)kmL

+ (1− i)e(−1−i)kmL + ie−2kmL + (1− i)e(−1−i)kmL − 1

+ (1 + i)e(−1+i)kmL − i− e2ikmL
)
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= −k3
m(1− i)e(−1−i)kmL

(−4 + e(1+i)kmL + e(−1+i)kmL + e(1−i)kmL + e(−1−i)kmL
)

=

(
1 + i

2

)
k3

me(−1−i)kmL∆(km)

= 0 .

The Series Representation of the Solution for Example 1

In this section, we show how to derive the series representation of the solution, from

the analysis of the global relation of the adjoint problem, in the example for which the

operator is non self-adjoint.

The eigenfunctions en(x) that result from the problem posed by (4.1), with the im-

position of the boundary conditions

q(0, t) = f0(t) , q(L, t) = g0(t) , qxxx(0, t) = f3(t) , qxxx(L, t) = g3(t) ,

for some given functions f0(t) , g0(t), f3(t) and g3(t), are given by

en(x) = A1 eiknx + A2 eknx + A3 e−iknx + A4 e−knx ,

where A1, A2, A3 and A4 are given by (4.28), and satisfy the boundary conditions

e′n(0) = 0 , e′n(L) = 0 , e′′n(0) = 0 , e′′n(L) = 0 .

Similarly, the eigenfunctions fm(x), that result from the imposition of the boundary

conditions

qx(0, t) = f1(t) , qx(L, t) = g1(t) , qxx(0, t) = f2(t) , qxx(L, t) = g2(t) ,

for some given functions f1(t), g1(t), f2(t) and g2(t), are given by

fm(x) = B1 eikmx + B2 ekmx + B3 e−ikmx + B4 e−kmx ,

where B1, B2, B3 and B4 are given by (4.31), and satisfy the boundary conditions

fm(0) = 0 , fm(L) = 0 , f ′′′m(0) = 0 , f ′′′m(L) = 0 .
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Proposition 4.1.10. The functions en(x) and fm(x) satisfy the bi-orthogonality condi-

tion

∫ L

0

fm(x) en(x) dx =





0 , n 6= m,

c(kn, L) , n = m,

for some function c(kn, L).

Proof. Integration by parts yields the following:

〈D4fm(x), en(x)〉 =
[
D3fm(x) en(x)−D2fm(x) Den(x) + Dfm(x) D2en(x)

− fm(x) D3en(x)
]L

0
+ 〈fm(x), D4en(x)〉

= 〈fm(x), D4en(x)〉 .

Hence

〈D4fm(x), en(x)〉 − 〈fm(x), D4en(x)〉 =
(
k4

m − k4
n

) 〈fm(x), en(x)〉 = 0 ,

and the proof is complete.

To obtain the series representation of the solution for example 1, we assume that the

solution q(x, t) can be expressed in terms of the eigenfunctions fm(x) and written in the

form

q(x, t) =
∞∑

m=1

am(t) fm(x) ,

for some functions am(t) to be found, and where the series converges in the L2 norm.

The index, from m = 1 to ∞ indicates that only the positive real zeros contribute to

the series representation.

The coefficients are found by multiplying both sides by en(x) and integrating from 0

to L:

∫ L

0

en(x) q(x, t) dx =
∞∑

m=1

(∫ L

0

fm(x) en(x) dx

)
am(t) = c(kn, L) an(t) .

Therefore

am(t) =
1

c(km, L)

∫ L

0

em(x) q(x, t) dx =
1

c(km, L)
e−k4

mtA5 ,
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where A5 is given by (4.29) in terms of km, and

c(km, L) = 8L tan(kmL) sin(kmL)
{

sin(kmL)− sinh(kmL)
}

e−2kmL .

Therefore, the series representation of the solution, for example 1, computed in terms

of all of the positive real zeros km such that ∆(km) = 0, is given by

q(x, t) =
∞∑

m=1

1

c(km, L)
e−k4

mtA5
(
B1 eikmx + B2 ekmx + B3 e−ikmx + B4 e−kmx

)
. (4.32)

The expression (4.32) is identical to the expression one obtains by separating variables

and using the classical approach and bi-orthogonal basis. By algebraic manipulations

(which are long and tedious, and are therefore omitted) this expression can be put in

the more concise form (4.26), via (4.27). We remark that the latter form is arrived at

directly when using the integral representation and contour deformation.

Remark 4.1.11. Suppose that instead of (4.1a) we consider the PDE qt(x, t)+iqxxxx(x, t) =

0. The dispersion relation of this PDE is ω(k) = ik4 and D is given by

D+
1 =

{
k ∈ C : 0 6 arg(k) 6 π

4

}

D+
2 =

{
k ∈ C : π

2
6 arg(k) 6 3π

4

}





D+ = D+
1 ∪D+

2 ,

D−
1 =

{
k ∈ C : π 6 arg(k) 6 5π

4

}

D−
2 =

{
k ∈ C : 3π

2
6 arg(k) 6 7π

4

}





D− = D−
1 ∪D−

2 .

By following the same steps as for the analysis of (4.1a), we find that the zeros of

the determinant of any boundary value problem for uncoupled conditions of the same

form as in the previous section has zeros lying on the real and purely imaginary axes.

Hence these zeros are on the boundary of D, and the general theory implies that the

residue contribution, hence a series term, always exists. Indeed, one can show that the

representation can be reduced to a series.

Since the x-differential operator associated to (4.1a) and to this PDE is the same,

it follows from this observation, without any reference to classical results, that it is

possible to deform the contour and realise the corresponding representation as a series

also in the case of equation (4.1a), for which the zeros are outside D.
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D−
2

D+
2

D−
1

D+
1

Figure 4.6: The regions D+
1 =

{
k ∈ C : 0 6 arg(k) 6 π

4

}
, D+

2 =
{
k ∈ C : π

2 6 arg(k) 6 3π
4

}
, D−

1 =
{
k ∈ C : π 6 arg(k) 6 5π

4

}
and D−

2 =
{
k ∈ C : 3π

2 6 arg(k) 6 7π
4

}
for the fourth order problem

qt(x, t) + iqxxxx(x, t) = 0.

4.2 The Eigenvalues of Linear Evolution PDEs

In this section, we return to the notion of spectrum of the boundary value problem. In

all examples we have considered, this set indeed coincides with the discrete spectrum

of the linear differential operator in x defining the PDE, considered with the given

boundary conditions at x = 0 and x = L. We give here a proof of the fact that this

is indeed the general case, and that the notion of effective spectrum of the PDE and

discrete spectrum of the differential operator yields the same set, modulo the operation

of taking nth roots. Namely, the effective spectrum of the boundary value problem is

precisely the set of the nth roots of the discrete spectrum of the differential operator.

We prove this result for the case of second, third and fourth order problems that we

have considered in this work.

Notation: In the remaining part of this section we will denote by S1 and S2 the sys-

tems characterising the two different notion of spectra. More precisely, we let Dn denote

the nth order linear differential operator ∂n

∂xn . We then consider:

Problem 1: The PDE qt(x, t) + αDnq(x, t) = 0, for some α, with given initial condi-

tion q0(x) and an appropriate number of prescribed boundary conditions. We denote

by fi(t) the given boundary conditions at x = 0, and by gj(t) the prescribed boundary
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conditions at x = L, where i, j,∈ {0, 1, . . . , n− 1}.

Problem 2: The eigenvalue problem for the operator Dn, is subject to homogeneous

boundary conditions corresponding to fi(t) and gj(t). This is the problem of determining

all values of λ ∈ C for which the ODE Dnv(x) = λv(x), admits a solution v(x) 6= 0,

which also satisfies the given homogeneous boundary conditions. The general solution

of this ODE is given by

v(x) = a0e
λ

1
n x + a1e

αλ
1
n x + · · ·+ an−1e

αn−1λ
1
n x , (4.33)

where αi, i = 1, 2, . . . n − 1 is a primitive nth root of unity, chosen as the appropriate

nth root of λ. Imposing the boundary conditions at x = 0 and x = L, which are a total

of n homogeneous conditions, then yields a system of n equations for the coefficients

a0, a1, . . . , an−1.

The System S1 : We associate with Problem 1 the system S1 , obtained from the

global relation and characterising the unknown boundary conditions.

The System S2 : We associate with Problem 2 the system S2 , obtained from the

imposition of the homogeneous boundary conditions to determine the solution of the

ODE. Because of the presence of nth roots in (4.33), it is convenient to write the ODE

in the form Dnv(x) = (ik)nv(x), and write the system S2 in terms of k rather than the

roots of λ.

Remark 4.2.1. The form Dnv(x) = (ik)nv(x) is chosen purely for convenience of nota-

tion. For example, for the second order problem, it is necessary to choose λ = −k2 to

be able to satisfy the boundary conditions.

In Proposition 4.2.2, we show that the two determinants arising from systems S1 and

S2 have the same set of zeros. It will be shown that the reason that these sets are

identical is that there is an interplay between the derivatives in the two systems S1 and

S2 . In one case, the rows that are retained correspond to the boundary conditions that

are imposed, and in the other the complementary rows are selected. However, in one

case, multiplication by k corresponds to the order of the derivative that is imposed,
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and in the other it corresponds to ((n− 1)-order) of the derivative that is imposed. In

the proof that follows, we show that there is a direct balance between the interplay of

derivatives and the k multipliers.

Proposition 4.2.2. The set of zeros of the determinant of the system S1, arising from

the analysis of Problem 1, coincides with the set of zeros of the determinant of the system

S2, arising from the analysis of Problem 2.

Proof. To prove this we show that the two determinants involved in the two definitions

always have the same set of zeros. We give a proof for each value of n:

i.) n = 2

S1 : Consider the PDE

qt(x, t)− qxx(x, t) = 0 , t > 0 , x ∈ [0, L] ,

q(x, 0) = q0(x) , x ∈ [0, L] .

The analysis of the global relation, using the Fokas transform method, leads

to the following pair of equations

ik
(
f̃0(t, k)− e−ikLg̃0(t, k)

)
+

(
f̃1(t, k)− e−ikLg̃1(t, k)

)

= q̂0(k)− ek2tq̂(t, k) ,

iζk
(
f̃0(t, k)− e−iζkLg̃0(t, k)

)
+

(
f̃1(t, k)− e−iζkLg̃1(t, k)

)

= q̂0(ζk)− ek2tq̂(t, ζk) .

Since one of the f̃ ’s and one of the g̃’s are known, the matrix of the system

for the unknown boundary values has the form


 1 ζk1

eikL ζk2eiζkL




T

, k1,2 ∈ {0, 1} , (4.34)

where all the information is in the second column and the factor of ik has been

incorporated into the unknown terms. The values of k1 and k2 correspond to

the boundary functions that are unknown at x = L and x = 0 respectively.

Hence, the value of kl, l = 1, 2, indicates the order of the derivative of the

function sought:
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• kl = 1− (the order of the derivative that is sought) .

For example, if the boundary conditions at q(0) and qx(L) are prescribed,

then k1 = 1 and k2 = 0.

S2 : Consider the second order eigenvalue problem

vxx(x) + k2v(x) = 0 , x ∈ [0, L] ,

chosen according to Remark 4.2.1. The general solution is given by

v(x) = a0e
ikx + a1e

iζkx , ζ = eπi = −1 ,

for constants a0 and a1. The imposition of two boundary conditions, one at

either end of the interval [0, L], corresponds to choosing two appropriate rows

from the following system:




v(0)

vx(0)

v(L)

vx(L)




=




1 1

ik iζk

eikL eiζkL

ikeikL iζkeiζkL





 a0

a1


 .

The coefficient functions of k, in the matrix that results from the imposition

of the boundary conditions, appear as a multiplicative constant in the deter-

minant function, and therefore for the purposes of analysing the zeros of the

determinant function can be ignored.

Therefore, by eliminating the factors of ik, the boundary condition at x = 0

takes the form a0 +ζj1a1 and the boundary condition at x = L takes the form

a0e
ikL + ζj2a1e

iζkL where the value of jl, l = 1, 2, indicates the order of the

derivative imposed, at x = 0 for j1 and at x = L for j2. Hence the matrix for

the system can always be put in the form

 1 ζj1

eikL ζj2eiζkL


 , j1,2 ∈ {0, 1} , (4.35)

where all the information about the problem is in the second column of the

matrix.

For example, if the boundary conditions at v(0) and vx(L) are prescribed,

then j1 = 0 and j2 = 1.
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The structure of the vectors is always

(
ζj1 , ζj2

)T
,

(
ζk1 , ζk2

)
,

and it is trivial to prove that these vectors are identical, since the knowledge of j1

and/or j2 determines k1 and/or k2 respectively:

• j1 = 0, 1 ⇒ k2 = 0, 1,

• j2 = 0, 1 ⇒ k1 = 0, 1.

Therefore the determinants of the matrices, given by (4.34) and (4.35), up to a

variant of sign, are identical, and the proof is complete.

ii.) n = 3

S1 : Consider now the third order PDE

qt(x, t) + qxxx(x, t) = 0 , t > 0 , x ∈ [0, L] ,

q(x, 0) = q0(x) , x ∈ [0, L] .

The global relation is given by

k2
(
f̃0(t, k)− e−ikLg̃0(t, k)

)
− ik

(
f̃1(t, k)− e−ikLg̃1(t, k)

)

−
(
f̃2(t, k)− e−ikLg̃2(t, k)

)
= q̂0(k)− e−ik3tq̂(t, k) ,

and the matrix is formed by evaluating this expression at ζk and ζ2k and

selecting one of the g̃i’s and two of the f̃i’s corresponding to the boundary

values that are sought. The coefficient functions of k are eliminated and the

resulting matrix is always of the form




1 ζk1 ζ3−k1

eikL ζk2eiζkL ζ3−k2eiζ2kL

eikL ζk3eiζkL ζ3−k3eiζ2kL




T

, k1,2,3 ∈ {0, 1, 2} , (4.36)

where the first row corresponds to the unknown g̃ which is sought, the second

and third rows to the two unknowns f̃i and f̃j where i < j respectively and all

the information is contained in the second column. The value of kl, l = 1, 2, 3,

indicates which boundary functions are known. It follows that
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• kl = 2− (the order of the derivative that is sought),

• k2 > k3.

For example, if the boundary conditions q(0), q(L) and qx(L) are prescribed,

then k1 = 0, k2 = 1 and k3 = 0.

S2 : Consider the third order eigenvalue problem

vxxx(x) + ik3v(x) = 0 , x ∈ [0, L] .

The general solution is given by

v(x) = a0e
ikx + a1e

iζkx + a2e
iζ2kx , ζ = e

2πi
3 , (4.37)

for constants a0, a1 and a2.

Remark 4.2.3. We remark that the general solution, given by (4.37), has no

hope of being bounded for any choice of complex set of k’s, and this is the

reason that this problem cannot be solved to yield a series solution.

For the problem to be well-posed, one boundary condition must be prescribed

at x = 0 and two boundary conditions must be prescribed at x = L, corre-

sponding to selecting three appropriate rows from the following system:



v(0)

vx(0)

vxx(0)

v(L)

vx(L)

vxx(L)




=




1 1 1

ik iζk iζ2k

−k2 −ζ2k2 −ζk2

eikL eiζkL eiζ2kL

ikeikL iζkeiζkL iζ2keiζ2kL

−k2eikL −ζ2k2eiζkL −ζk2eiζ2kL







a0

a1

a2


 .

The boundary condition at x = 0 takes the form a0 + ζj1a1 + ζ3−j1a2 and

the two boundary conditions at x = L take the form a0e
ikL + ζjla1e

iζkL +

ζ3−jla2e
iζ2kL for l = 2, 3. The matrix that results is therefore given by




1 ζj1 ζ3−j1

eikL ζj2eiζkL ζ3−j2eiζ2kL

eikL ζj3eiζkL ζ3−j3eiζ2kL


 , j1,2,3 ∈ {0, 1, 2} , (4.38)

where all the information is in the second column. The values of j1, j2 and

j3 represent the order of the derivatives imposed. Hence
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• If ∂i
xv(0) is given then j1 = i for i = 0, 1, 2.

• If ∂l
xv(L) is given then j2, j3 = l for l = 0, 1, 2.

• j2 < j3.

For example if the boundary conditions at v(0), v(L) and vx(L) are pre-

scribed, then j1 = 0, j2 = 0 and j3 = 1.

The knowledge of the two boundary conditions at x = L determines k1 and the

boundary condition at x = 0 determines the values of k2 and k3. Since k1 indicates

the order of the unknown function at x = L and the values of j2 and j3 are the

orders of the derivatives which are known, it follows that (2−k1)+j2+j3 = 0+1+2.

Hence

k1 = j2 + j3 − 1 .

Similarly, since k2 and k3 are the orders of the derivatives at x = 0 that are

unknown, and j1 is the order of the derivative at x = 0 which is known, it follows

that (2− k2) + (2− k3) + j1 = 0 + 1 + 2. Hence

k2 + k3 = j1 + 1 . (4.39)

Now, if j1 = 0 or 1 then either q(0) or qx(0) is the prescribed boundary condition

at x = 0. In either case it follows that k3 = 0. If however j1 = 2 then it follows

that k3 = 1. Therefore, it is simply an interpolation problem to express k3 in

terms of j1 and then find k2 from substitution into (4.39). This yields

k3 =
1

2
j1(j1 − 1) , k2 = 1 +

3

2
j1 − 1

2
j2
1 . (4.40)

Definition 4.2.4. Two triples of the form
(
ζa, ζb, ζc

)
and

(
ζd, ζe, ζf

)
are equiva-

lent if one of the following conditions is satisfied:

(a) ζ
(
ζa, ζb, ζc

)
=

(
ζd, ζe, ζf

)
,

(b) ζ2
(
ζa, ζb, ζc

)
=

(
ζd, ζe, ζf

)
,

(c) a = d and b, c = e, f in any order.

Remark 4.2.5. The matrices corresponding to the triples
(
ζa, ζb, ζc

)
and

(
ζd, ζe, ζf

)
,

either vary by a constant multiplier in the second column or by the order of the

rows. In both cases, the zeros of the determinant functions are unaltered.
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Proposition 4.2.6. The structure of the dominant vectors is always

(
ζj1 , ζj2 , ζj3

)T
,

(
ζk1 , ζk2 , ζk3

)
,

and exactly one of the following conditions is satisfied:

(a) If j1, j2, j3 are distinct, then k1, k2, k3 are distinct. The resulting vectors are

identical and given by the triple

• (1, ζ, ζ2).

or one of its equivalents.

(b) If j1 = j2 then either k1 = k2 or k1 = k3. These correspond to the two cases

below and necessarily give equivalent triples:

• (1, 1, ζ),

• (1, 1, ζ2).

Proof. It follows immediately from the central columns of the matrices (4.38) and

(4.36), that the structure of the dominant vectors is always of the form

(
ζj1 , ζj2 , ζj3

)T
,

(
ζk1 , ζk2 , ζk3

)
=

(
ζj2+j3−1, ζ1+ 3

2
j1− 1

2
j2
1 , ζ

1
2
j1(j1−1)

)
,

once the common exponential terms to each vector have been omitted.

(a) Suppose j1, j2, j3 are distinct. Then, according to (4.40),

• If j1 = 0 then the vectors are (1, ζj2 , ζj3) and (ζj2+j3−1, ζ, 1) where j2, j3 =

1, 2.

• If j1 = 1 then the vectors are (ζ, ζj2 , ζj3) and (ζj2+j3−1, ζ2, 1) where

j2, j3 = 0, 2.

• If j1 = 2 then the vectors are (ζ2, ζj2 , ζj3) and (ζj2+j3−1, ζ2, ζ) where

j2, j3 = 0, 1.

In all cases, both vectors are equivalent to (1, ζ, ζ2). Hence k1 6= k2 6= k3 and

the proof is complete.

(b) If j1 = j2 then there is a pair of known boundary conditions of the same order

corresponding to a pair of ζ’s of equal power. The two remaining boundary

values at x = 0 are unknown, and of the two remaining boundary values at
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x = L, one is known (with a different power of ζ to the pair) and one is

sought. Necessarily, one of the unknown boundary values at x = 0 must be

of the same order as the unknown boundary value at x = L, and the proof is

complete. In all cases the triples that result take the form (1, 1, ζ) or (1, 1, ζ2)

or one of the equivalents, where the pair of known boundary values of the

same order, correspond to the first two equal terms of the triple.

iii.) n = 4

S1 : Consider now the fourth order PDE

qt(x, t) + qxxxx(x, t) = 0 , t > 0 , x ∈ [0, L] ,

q(x, 0) = q0(x) , x ∈ [0, L] .

The global relation is given by

ik3
(
f̃0(t, k)− e−ikLg̃0(t, k)

)
+ k2

(
f̃1(t, k)− e−ikLg̃1(t, k)

)

−ik
(
f̃2(t, k)− e−ikLg̃2(t, k)

)
−

(
f̃3(t, k)− e−ikLg̃3(t, k)

)

= q0(k)− ek4tq̂(t, k) ,

and the matrix is formed by evaluating this expression at ζk, ζ2k and ζ3k

and selecting two of the f̃ ’s and two of the g̃’s corresponding to the unknown

boundary values. The k’s are extracted and the matrix that results is always

of the form



1 ζk1 ζ4−2k1 ζ4−k1

1 ζk2 ζ4−2k2 ζ4−k2

eikL ζk3eiζkL ζ4−2k3eiζ2kL ζ4−k3eiζ3kL

eikL ζk4eiζkL ζ4−2k4eiζ2kL ζ4−k4eiζ3kL




T

, (4.41)

where k1,2,3,4 ∈ {0, 1, 2, 3}, and all the information about the problem is in

the second column. The first two rows correspond to the two unknowns g̃i

and g̃j, where i < j, and the last two rows correspond to the two unknowns

f̃k and f̃l, where k < l. The value of kl, l = 1, 2, 3, 4, indicates the order of

the derivative that is sought:
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• k = 3− (the order of the derivative that is sought),

• k1 > k2 and k3 > k4.

For example, if the boundary conditions at q(0), qx(0), qxx(L) and qxxx(L)

are prescribed, then k1 = 3, k2 = 2, k3 = 1 and k4 = 0.

S2 : Consider the fourth order eigenvalue problem

vxxxx(x)− k4v(x) = 0 , x ∈ [0, L] .

The general solution is given by

v(x) = a0e
ikx + a1e

iζkx + a2e
iζ2kx + a3e

iζ3kx , ζ = e
πi
2 = i ,

for constants a0, a1, a2 and a3. For the problem to be well-posed, two bound-

ary conditions must be prescribed at either end of the interval. Incorporating

the coefficient functions of k into the unknown terms, implies that the two

boundary conditions at x = 0 take the form

a0 + ζj1a1 + ζ4−2j1a2 + ζ4−j1a3 ,

a0 + ζj2a1 + ζ4−2j2a2 + ζ4−j2a3 ,

and the two boundary conditions at x = L take the form

a0e
ikL + ζj3a1e

iζkL + ζ4−2j3a2e
iζ2kL + ζ4−j3a3e

iζ3kL ,

a0e
ikL + ζj4a1e

iζkL + ζ4−2j4a2e
iζ2kL + ζ4−j4a3e

iζ3kL .

The matrix formed from the system is therefore always of the form




1 ζj1 ζ4−2j1 ζ4−j1

1 ζj2 ζ4−2j2 ζ4−j2

eikL ζj3eiζkL ζ4−2j3eiζ2kL ζ4−j3eiζ3kL

eikL ζj4eiζkL ζ4−2j4eiζ2kL ζ4−j4eiζ3kL




, (4.42)

where j1,2,3,4 ∈ {0, 1, 2, 3}, and all the information is in the second column.

The value of jl represents the order of the derivative imposed:

• If ∂l
xv(0) is given then j1, j2 = l for l = 0, 1, 2, 3.

• If ∂j
xv(L) is given then j3, j4 = j for j = 0, 1, 2, 3.
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• j1 < j2 and j3 < j4.

For example, if the prescribed boundary conditions are at v(0), vx(0), vxx(L)

and vxxx(L) then j1 = 0, j2 = 1, j3 = 2 and j4 = 3.

Moreover, the values of k1 and k2 determine the order of the derivatives at x = L

which are known, hence the values of j3 and j4. It follows that (3 − k1) + (3 −
k2) + j3 + j4 = 0 + 1 + 2 + 3. Hence

k1 + k2 = j3 + j4 . (4.43)

Similarly the values of k3 and k4 determine the order of the derivatives known at

x = 0, and hence the values of j1 and j2. It follows that (3−k3)+(3−k4)+j1+j2 =

0 + 1 + 2 + 3, and therefore

k3 + k4 = j1 + j2 . (4.44)

Proposition 4.2.7. The structure of the dominant vectors is always

(
ζj1 , ζj2 , ζj3 , ζj4

)T
,

(
ζk1 , ζk2 , ζk3 , ζk4

)
,

and exactly one of the following cases is satisfied:

(a) If j1, j2, j3, j4 are distinct then k1, k2, k3, k4 are distinct. The resulting vectors

are identical and given by the quadruple

• (1, ζ, ζ2, ζ3),

or one of its equivalents.

(b) If j1 = j3 and j2 = j4 then k1 = k3 and k2 = k4 corresponding to the quadruple

• (1, ζ, 1, ζ),

or one of its equivalents.

(c) The other cases correspond to those for which two of the j’s are equal. Either

j1 = j3, j1 = j4, j2 = j3 or j2 = j4 and there is always a pair of equal powers

of ζ among the k’s. These correspond to the cases below and necessarily give

equivalent quadruples:

• (1, ζ, 1, ζ2),

• (1, ζ, 1, ζ3).
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Proof. It follows immediately from the second columns of the matrices (4.41) and

(4.42), that the structure of the dominant vectors are always of the form

(
ζj1 , ζj2 , ζj3 , ζj4

)T
,

(
ζk1 , ζk2 , ζk3 , ζk4

)
,

once the common exponential terms have been omitted.

(a) The proof is an immediate consequence of equalities (4.43) and (4.44).

(b) Suppose j1 = j3 and j2 = j4. It follows from equations (4.43) and (4.44) that

k3 + k4 = k1 + k2 and the quadruples are of the specified form. Similarly, by

construction, it follows trivially that k1 = k3 and k2 = k4.

(c) Suppose j1 = j3. Then there remains three derivatives of q(x) at both x = 0

and x = L, from which all of the k’s have to be selected. Necessarily, either

k1 or k2 has to be equal to either k3 or k4 and the proof is complete. It

follows trivially that if only one pair of the j’s are equal then the quadruple

is necessarily of the required form (or one of the equivalents). The proof

follows identically for the other cases.

Theorem 4.2.8. The effective discrete spectrum of a PDE boundary value problem,

coincides with the classical discrete spectrum of the differential operator D associated

with the PDE, equipped with the same boundary conditions.

Proof. The proof follows immediately, from Proposition 4.2.2.

4.3 The Location of the Zeros of the Determinant

Function

The location of the zeros of the determinant function, for the second, third and fourth

order linear evolution PDEs, has been discussed in the previous chapters for a variety

of boundary conditions. In this section, we give a general result regarding the location

of the zeros of all nth order linear evolution PDEs of the form (2.1), with the boundary

conditions chosen according to Theorem 2.1.1.
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Theorem 4.3.1. The zeros of the determinant function ∆n(k), of the general nth order

linear evolution PDE, of the form (2.1), with the boundary conditions chosen according

to Theorem 2.1.1, satisfy one of the following properties:

i.) Even: If n is even, then the zeros kn cluster, in the complex k-plane, along the n

rays, given by

Lj =

{
kn : arg(kn) =

2(j − 1)π

n

}
, j = 1, 2, . . . , n . (4.45)

ii.) Odd: If n is odd, then the location of the zeros kn, in the complex k-plane, depends

on the boundary conditions that are imposed, and satisfy one of the following

properties:

(a) Coupled (periodic): If the boundary conditions are periodic, then the zeros

cluster along the 2n rays, given by

Lj =

{
kn : arg(kn) =

(j − 1)π

n

}
, j = 1, 2, . . . , 2n , (4.46)

possibly shifted along any fixed axis in the complex k-plane.

(b) Uncoupled: If the boundary conditions are uncoupled, then the zeros cluster

along the n rays, given by

Lj =

{
kn : arg(kn) =

(3n− 4 + 4j)π

2n

}
, j = 1, 2, . . . , n , (4.47)

or along the reflection of these rays about the real axis, in the complex k-plane.

Proof. For the proof, we shall use the results given in the proof of Proposition 4.2.2,

and analyse the set of zeros of the determinant of the system S1. We remark that the

results are analogous for all well-posed PDEs of the form (2.1).

i.) Even: We begin with the proof for the second and fourth order PDEs. It follows

from the matrices given by (4.34) and (4.41), corresponding to the systems for

the unknown boundary values, for the second and fourth order linear evolution

PDEs respectively, that the determinant functions ∆2(k) and ∆4(k), can always

be written in the form

∆2(k) = F2

(
e−ikL, eikL

)
,

∆4(k) = F4

(
e0, e(1+i)kL, e(−1+i)kL, e(−1−i)kL, e(1−i)kL

)
,

where F2 and F4 are linear functions of the indicated exponential terms.
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Remark 4.3.2. The coefficients of the exponential terms in the determinant func-

tions are given in terms of powers of ζ. For example, ∆2(k) is given explicitly as

∆2(k) = ζk2e−ikL − ζk1eikL, where k1,2 ∈ {0, 1}. However, in order to locate the

rays in the complex k-plane upon which the zeros lie, it is sufficient to consider

only the exponential terms.

The zeros are located using Levin’s Theorem (Theorem 1.3.22). Substituting z =

−ikL, the determinant functions can be written in the form

∆2(z) = F2

(
ez, eζz

)
,

∆4(z) = F4

(
e0, e(−1+i)z, e(−1−i)z, e(1−i)z, e(1+i)z

)
.

In each case, the points, indicated by the exponents, are joined to form a convex

hull in the complex z-plane, and the zeros found to cluster asymptotically along

the rays that perpendicularly bisect the sides of the polygon that is formed. In

the complex k-plane, these rays correspond to the n rays given by (4.45), (Figure

4.7), and the proof for n = 2 and n = 4 is complete.

(a) n = 2. (b) n = 4.

Figure 4.7: The location of the zeros, in the complex k-plane, of the determinant functions

∆2(k) and ∆4(k), of the general second and fourth order linear evolution PDEs, with the bound-

ary conditions chosen according to Theorem 2.1.1.

To prove the case for the general nth order problem, we follow the approach used

for the proof of Proposition 4.2.2. It follows that n
2

boundary conditions must be

prescribed at either end of the interval, and hence the n×n matrix corresponding
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to the system S1, comprises exactly n
2

rows of complex exponential terms:

n
2





n
2








• • . . . . . . •
...

...
. . .

...

• • . . . . . . •
eikL eiζkL . . . . . . eiζn−1kL

eikL eiζkL . . . . . . eiζn−1kL

...
...

. . .
...

eikL eiζkL . . . . . . eiζn−1kL




T

,

where ζ = e
2πi
n , and for the purposes of analysing the exponential terms of the

determinant function ∆n(k), the coefficients of all of the entries have been omitted.

It follows that the determinant function ∆n(k), will be a linear function of expo-

nential terms, whose exponents result from summing any n
2

of the λl(k) terms,

k = 0, 1, . . . n − 1. For example, for the sixth order problem, the determinant

function ∆6(k) will always take the form

∆6(k) = F6

(
e(1+ζ+ζ2)ikL, e(1+ζ+ζ3)ikL, . . . , e(ζ3+ζ4+ζ5)ikL

)
,

and for the general nth order case, ∆n(k) can always be written in the form

∆n(k) = Fn

(
e(1+···+ζ

n
2−1)ikL, . . . , e(ζ

n
2 +1+···+ζn−1)ikL

)
. (4.48)

To locate the zeros in the complex k-plane, we use Levin’s Theorem (Theorem

1.3.22), which means constructing a convex hull in the complex plane, of the

points indicated by the exponents.

For the sixth order problem, Figure 4.8(a) indicates the 6 exponential terms that

form the convex hull. It follows trivially for this case that the rays upon which

the zeros lie, satisfy expression (4.45), (Figure 4.8(b)). For the nth order problem,

when the exponents in expression (4.48) are analysed, one finds that the exponents

that contribute to the convex hull are precisely those whose distinct ζ terms lie on

adjacent rays in the complex z-plane. So for example, for the sixth order problem,

we see that the exponent given by (1 + ζ + ζ2)ikL contributes to the convex hull

(Figure 4.8(a)), whereas the exponent given by (1 + ζ + ζ3)ikL does not, because

ζ does not lie on an adjacent ray to ζ3 in the complex z-plane, and as a result

−(1 + ζ + ζ3) lies within the convex hull.
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− (
1 + ζ4 + ζ5

)

− (
1 + ζ + ζ2

)

− (
1 + ζ + ζ5

) − (
ζ2 + ζ3 + ζ4

)

− (
ζ + ζ2 + ζ3

)

− (
ζ3 + ζ4 + ζ5

)

(a) z-plane (z = −ikL). (b) k-plane.

Figure 4.8: The location of the zeros of the determinant function ∆6(k) of the sixth order linear

evolution PDE, of the form (2.1) with the boundary conditions chosen according to Theorem

2.1.1.

It follows that for the nth order problem, there are precisely n exponential terms

that contribute to the convex hull, and hence there are n rays in the complex

k-plane upon which the zeros of the determinant function ∆n(k) lie. The proof

that these rays are given by (4.45), follows trivially from the observation that

the exponential term, whose exponent comprises the n
2

terms, 1, ζ, ζ2, . . . , ζ
n
2
−1,

contributes to the convex hull.

ii.) Odd:

(a) Coupled (periodic): The proof follows trivially from the system of global

relations, given by (2.30). The imposition of periodic boundary conditions,

yields the system of equations, given by

(
1− eiλl(k)L

) {
c0(λl(k))f̃0(t, k) + c1(λl(k))f̃1(t, k) + · · ·

· · ·+ cn−1(λl(k))f̃n−1(t, k)
}

= q̂0(λl(k))− eω(k)tq̂(t, λl(k)) ,

for l = 0, 1, . . . n − 1. It follows that the determinant function is always of

the form

∆n(k) ∼ (
1− e−ikL

) (
1− e−iζkL

) (
1− e−iζ2kL

)
. . .

(
1− e−iζn−1kL

)
,

where ζ = e
2πi
n . Hence the zeros cluster asymptotically along the rays given

by (4.46), and the proof is complete. Figure 4.9(a) and Figure 4.9(b) show
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the location of the zeros in the complex k-plane, for the cases where n = 3

and n = 5 respectively.

(a) n = 3. (b) n = 5.

Figure 4.9: The location of the zeros in the complex k-plane of the determinant functions

∆3(k) and ∆5(k) of the third and fifth order linear evolution PDEs respectively, with

periodic boundary conditions.

Remark 4.3.3. The imposition of coupled boundary conditions, either does

not effect the location of the zeros in the complex k-plane, or there is a shift

of the axes upon which the zeros lie.

For example, it was shown in Section 3.2.4, that the imposition of coupled

boundary conditions yields a determinant function whose zeros lie on the

same rays in the complex k-plane as the corresponding problem with peri-

odic boundary conditions, whereas in Section 3.2.3, it was shown that the

imposition of quasi-periodic boundary conditions corresponds directly to a

shift in the complex k-plane of the rays upon which the zeros lie.

(b) Uncoupled: For the proofs that are to follow, we consider the PDEs of

the form qt(x, t) + q
(n)
x (x, t) = 0 and prove that the zeros of the determinant

function ∆n(k) lie on the n rays in the complex k-plane, given by (4.47).

We begin with the proof for the third order problem, and recall the general

matrix, given by (4.36), that results from the imposition of one boundary

condition at x = 0 and two boundary conditions at x = L. It follows that

the determinant function ∆3(k), can always be written in the form

∆3(k) = F3

(
e−ikL, e−iζkL, e−iζkL

)
, ζ = e

2πi
3 ,
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where F3 is a linear function of the indicated exponential terms. Substituting

z = −ikL, implies that the determinant function can always be written in

the form

∆3(z) = F3

(
ez, eζz, eζ2z

)
.

The proof now follows immediately, from Section 2.5.

Let us now consider the following fifth order PDE:

qt(x, t) + qxxxxx(x, t) = 0 , t > 0 , x ∈ [0, L] ,

q(x, 0) = q0(x) , x ∈ [0, L] .

The global relation is given by

−k4(f̃0(t, k)− e−ikLg̃0(t, k)) + ik3(f̃1(t, k)− e−ikLg̃1(t, k))

+ k2(f̃2(t, k)− e−ikLg̃2(t, k))− ik(f̃3(t, k)− e−ikLg̃3(t, k))

− (f̃4(t, k)− e−ikLg̃4(t, k)) = q̂0(k)− eik5tq̂(t, k) ,

which is supplemented by the four additional expressions, evaluated at ζk,

ζ2k, ζ3k and ζ4k, where ζ = e
2πi
5 . For the problem to be well-posed, three

boundary conditions must be prescribed at x = 0 and two boundary condi-

tions must be prescribed at x = L, corresponding to selecting two of the f ’s

and three of the g’s. The resulting matrix is therefore always of the form




1 ζk1 ζ5−3k1 ζ5−2k1 ζ5−k1

1 ζk2 ζ5−3k2 ζ5−2k2 ζ5−k2

1 ζk3 ζ5−3k3 ζ5−2k3 ζ5−k3

eikL ζk4eiζkL ζ5−3k4eiζ2kL ζ5−2k4eiζ3kL ζ5−k4eiζ4kL

eikL ζk5eiζkL ζ5−3k5eiζ2kL ζ5−2k5eiζ3kL ζ5−k5eiζ4kL




T

.

It follows that the determinant function ∆5(k) is comprised of a linear com-

bination of the exponential terms, whose exponents result from summing any

two of the λl(k), l = 0, 1, . . . , 4:

∆5(k) = F5

(
e(1+ζ)ikL , e(1+ζ2)ikL , e(1+ζ3)ikL , e(1+ζ4)ikL , e(ζ+ζ2)ikL ,

e(ζ+ζ3)ikL , e(ζ+ζ4)ikL , e(ζ2+ζ3)ikL , e(ζ2+ζ4)ikL , e(ζ3+ζ4)ikL
)

.
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In the complex z-plane, the points, indicated by the exponents, are joined to

form a convex hull (Figure 6.22(a)), and the resulting pentagon indicates that

the zeros cluster asymptotically along the five rays in the complex k-plane

that satisfy expression (4.47), (Figure 6.22(b)). This completes the proof for

− (
1 + ζ4

)

− (
ζ + ζ2

)

− (
ζ3 + ζ4

)

− (
ζ2 + ζ3

)

− (1 + ζ)

(a) z-plane (z = −ikL). (b) k-plane.

Figure 4.10: The location of the zeros of the determinant function ∆5(k) of the fifth

order PDE qt(x, t) + qxxxxx(x, t) = 0 with uncoupled boundary conditions.

the fifth order case.

This approach of constructing the determinant function, can be generalised

for the nth order problem. If the boundary conditions are uncoupled, then N

boundary conditions must be prescribed at x = 0 and n−N at x = L, where

N is determined according to Theorem 2.1.1. It follows that the n×n matrix

corresponding to the system S1, comprises exactly n − N rows of complex

exponential terms:

N





n−N








• • . . . . . . •
...

...
. . .

...

• • . . . . . . •
eikL eiζkL . . . . . . eiζn−1kL

eikL eiζkL . . . . . . eiζn−1kL

...
...

. . .
...

eikL eiζkL . . . . . . eiζn−1kL




T

,

where ζ = e
2πi
n , and for the purposes of analysing the exponential terms of

the determinant function ∆n(k), the coefficients of all of the entries have been
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omitted.

Therefore, the determinant function ∆n(k) is given by the linear combination

of exponential terms, whose exponents result from summing any n−N of the

λl(k) terms, k = 0, 1, . . . , n− 1. It follows that ∆n(k) will comprise exactly

nCn−N terms:

∆n(k) = Fn

(
e(1+···+ζn−N−1)ikL, . . . , e(ζn−N+1+···+ζn−1)ikL

)
.

The proof that the zeros cluster, in the complex k-plane, along the n rays

given by (4.47), follows from the observation that the n exponential terms

that contribute to the convex hull are the ones whose exponents comprise

powers of ζ that lie on adjacent rays in the complex z-plane. The remainder

of the argument follows analogously to the argument used for the general

even order problem, and the proof is complete.

Remark 4.3.4. If the boundary conditions are uncoupled and n is odd, then

the zeros of the determinant function ∆n(k), of the nth order linear evolution

PDE of the form qt(x, t) − q
(n)
x (x, t) = 0, cluster along the n rays in the

complex k-plane, given by

Lj =

{
kn : arg(kn) =

(5n− 4 + 4j) π

2n

}
, j = 1, 2, . . . , n ,

which are precisely the n rays given by (4.47), reflected about the real axis.

Therefore the proof follows analogously to the above and is omitted from the

work.
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Chapter 5

Linear Numerical Results

In this chapter we consider the numerical solution of third and fourth order linear

differential equations, of the general form

u(n)
x (x) + Tu(x) = f(x) , x ∈ [−1, 1] , (5.1)

where T is a linear x-differential operator, f(x) is a given smooth function, the integer

n defines the order of the problem and it is assumed that n boundary conditions are

chosen according to Theorem 2.1.1.

In the first section we solve a wide variety of third order problems. The difficulties

posed by the third order differential operator are due to the lack of symmetry, char-

acteristic of any odd order problem, and the subsequent non-symmetric nature of the

boundary conditions. All of the schemes use Chebyshev interpolation and employ the

program cheb, which was introduced in Section 1.2.2, to compute the Chebyshev differ-

entiation matrix DN , defined by Theorem 1.2.1. Of particular interest is the solution of

the third order problem with coupled boundary conditions, which is illustrated in detail

in the next section.

Our aim is devising numerical schemes for the solution of the boundary value problems

under consideration that are simple and user-friendly, and that capture accurately the

qualitative behaviour of the solution. Our schemes are based on Matlab standard built-in

functions and routines, and their novelty is in the ability to model a variety of different

boundary conditions. However, they would not be adequate for a detailed study of small

scale phenomena in the solution.

Remark 5.0.5. We do not discuss here the direct numerical evaluation of the integral

representation formula for the solution of a linear boundary value problem, given by
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the transform method of Fokas. This approach has recently been considered [24] and

appears to yield a very competitive numerical solution technique in a large number of

cases. This is due to the property the integral representation sometime possesses, namely

that the contour for the computation can be deformed, using analyticity properties, in

such a way that all integrands are exponentially decreasing. This is a promising further

application to numerical computations of the method of Fokas, and a topic for further

investigation.

5.1 Third Order Numerical Results

In this section we solve numerically a variety of third order linear boundary value prob-

lems. We begin with a simple second order ODE boundary value problem as an illus-

trative example before developing the method for a variety of examples that do not

currently appear in the litearture, for the numerical imposition of boundary conditions

for the case of an odd order differential operator. We conclude this section with a simple

example of a third order PDE with non-homogeneous uncoupled boundary conditions

to illustrate the technique.

5.1.1 The Imposition of Boundary Conditions

All of the examples included within this section use a matrix-stripping technique of the

appropriate rows and columns of the Chebyshev matrix DN for the explicit imposition

of the boundary conditions.

Example 1: Let us begin with one of the simplest possible examples that demonstrates

the use of the program cheb. Consider the following second order linear ODE boundary

value problem, with Dirichlet boundary conditions:

uxx(x) = f(x) , x ∈ [−1, 1] ,

u(−1) = 0 , u(1) = 0 ,

where f(x) is a prescribed smooth function. To achieve a numerical approximation to

the exact solution u(x), we begin by computing the Chebyshev differentiation matrix

D2
N , which is precisely the square of DN . The imposition of the boundary conditions
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is straightforward. We begin by taking the interior Chebyshev points x1, . . . , xN−1 as

our computational grid, along with the vector u = (u1, . . . , uN−1)
T as the corresponding

vector of unknowns:

• Let p(x) be the unique polynomial such that deg(p(x)) 6 N with p(±1) = 0 and

p(xj) = uj, 1 6 j 6 N − 1.

• Set fj = p′′(xj), 1 6 j 6 N − 1.

So, D2
N is an (N +1)× (N +1) matrix, that maps the vector of unknowns (u0, . . . , uN)T

to the vector (f0, . . . , fN)T . Since u0 and uN are known to take the values of zero, we

can ignore f0 and fN , implying that the outer rows and columns of D2
N have no effect.

This means that all we have to do is invert the reduced (N −1)× (N −1) matrix, which

we shall call D̃2
N , and multiply by the vector (f1, . . . , fN−1)

T to achieve an approxima-

tion to the interior points (u1, . . . , uN−1)
T .

Example 2: We now examine the following third order linear ODE boundary value

problem with homogeneous uncoupled boundary conditions:

uxxx(x) = f(x) , x ∈ [−1, 1] , (5.2a)

u(−1) = 0 , u(1) = 0 , ux(1) = 0 , (5.2b)

where f(x) is a prescribed smooth function. The imposition of the boundary conditions

is not as straightforward as with the second order problem, because we now have both

Dirichlet and Neumann boundary conditions at x = 1. However, to solve the problem

numerically, we employ a simple trick involving polynomials related as follows:

u(x) = (1− x)q(x) ,

for some polynomial q(x). After three differentiations we obtain

uxxx(x) = (1− x)qxxx(x)− 3qxx(x) .

A polynomial q(x) such that deg(q(x)) 6 N , with q(±1) = 0, corresponds to a polyno-

mial u(x) such that deg(u(x)) 6 N + 1, with u(±1) = ux(1) = 0. Hence deg(u(x)) =

deg(q(x))+1. We take the interior Chebyshev points x1, . . . , xN−1 as our computational

grid with u = (u1, . . . , uN−1)
T as the corresponding vector of unknowns:
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• Let q(x) be the unique polynomial such that deg(q(x)) 6 N with q(±1) = 0 and

q(xj) =
uj

1−xj
, j = 1, . . . , N − 1.

• Set fj = (1− xj)qxxx(xj)− 3qxx(xj), j = 1, . . . , N − 1.

Hence

(
(1− xj)D

3
N − 3D2

N

)
q(xj) = f(xj) , j = 0, . . . , N ,

where q(±1) = 0. Therefore the matrix [diag(1− x)D3
N − 3D2

N ] × diag
(

1
1−x

)
maps a

vector (u0, . . . , uN)T to a vector (f0, . . . , fN)T . The problem has therefore been con-

verted from one in terms of u(x) with three boundary conditions, to one in terms of q(x)

with simple Dirichlet boundary conditions, which we know how to solve from the sec-

ond order problem seen previously. Hence to solve our problem, we define our spectral

discrete operator as follows:

L =
[
diag(1− xj)D̃

3
N − 3D̃2

N

]
× diag

(
1

1− xj

)
, j = 1, . . . , N − 1 ,

where D̃3
N and D̃2

N are the matrices obtained by taking the indicated powers of DN and

stripping away the first and last rows and columns. So, solving our original problem

spectrally is now equivalent to solving the linear system of equations for u(x):

Lu = f , f = (f1, . . . , fN−1)
T .

There is an alternative approach to imposing the boundary conditions, which can be

adapted to accommodate more complicated boundary conditions, and will prove to be

useful later. We begin by writing the problem as follows:

D3
Nuj = fj , 0 6 j 6 N ,

where uj = (u(x0), u(x1), . . . , u(xN))T and fj = (f(x0), f(x1), . . . , f(xN))T . To impose

the two Dirichlet boundary conditions, we begin by stripping D3
N of its outer rows and

columns to produce D̃3
N :

D̃3
Nuj = fj , 1 6 j 6 N − 1 . (5.3)

To impose the Neumann boundary condition at x = 1 we replace the first row of D̃3
N

with the first row of DN and replace f1 in (5.3) by 0, since ux(1) = 0. The system can
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be viewed as follows:



DN(0, 1) DN(0, 2) . . . DN(0, N − 1)

D̃3
N(2, 1) D̃3

N(2, 2) . . . D̃3
N(2, N − 1)

...
...

. . .
...

D̃3
N(N − 1, 1) D̃3

N(N − 1, 2) . . . D̃3
N(N − 1, N − 1)







u1

u2

...

uN−1




=




0

f2

...

fN−1




.

Example 3: The technique of transforming the problem for u(xj) into one in terms of

q(xj), where just two boundary conditions are imposed on q(x), can be extended to the

case where u(x) has non-homogeneous uncoupled boundary conditions. We consider the

example

uxxx(x) + Auxx(x) + Bux(x) + Cu(x) = f(x) , x ∈ [−1, 1] , (5.4a)

u(−1) = a , u(1) = b , ux(1) = c , (5.4b)

where A,B, C, a, b and c are constants and f(x) is a prescribed smooth function. So in

this case our operator L is given by

L =
d

dx3
+ A

d

dx2
+ B

d

dx
+ C .

To impose the boundary conditions, we suppose that u(x) takes the form

u(x) = g(x) q(x) + h(x) , (5.5)

for some smooth functions g(x) and h(x) and polynomial q(x) such that q(±1) = 0. By

inspection we find that

g(x) = x− 1 , h(x) =

(
a + 2c− b

4

)
x2 +

(
b− a

2

)
x +

(
3b + a− 2c

4

)
.

The original problem can therefore be expressed in terms of q(x) as follows:

(x− 1)qxxx(x) + (3 + A(x− 1)) qxx(x) + (2A + B(x− 1)) qx(x) + (B + C(x− 1)) q(x)

= f(x)− Ahxx(x)−Bhx(x)− Ch(x) ,

where q(±1) = 0. Hence our spectral discrete operator for the problem is given by

L = diag(xj − 1)D̃3
N + 3D̃2

N + A diag(xj − 1)D̃2
N + 2AD̃N

+ B diag(xj − 1)D̃N + BD̃0
N + C diag(xj − 1)D̃0

N ,
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for j = 1, . . . , N −1. Thus we solve the linear system for q(x) and compute the solution

u(x) via equation (5.5).

Example 4: Consider now the third order linear ODE boundary value problem, with

coupled boundary conditions:

uxxx(x) = f(x) , x ∈ [−1, 1] ,

u(−1) = 0 , u(1) = 0 , ux(1) = αux(−1) ,

where f(x) is a prescribed smooth function and α is a given constant. We begin by

discretising the problem as follows:

D3
Nuj = fj , 0 6 j 6 N , (5.6)

where uj = (u(x0), u(x1), . . . , u(xN))T and fj = (f(x0), f(x1), . . . , f(xN))T . The two

Dirichlet boundary conditions are imposed by stripping D3
N of its outer rows and columns

to produce D̃3
N :

D̃3
Nuj = fj, 1 6 j 6 N − 1.

The coupled boundary condition is imposed by replacing the final row of D̃3
N by a

combination of the first and last rows of DN . The system of equations that result, can

be viewed as follows:




D̃3
N(1, 1) D̃3

N(1, 2) . . . D̃3
N(1, N − 1)

D̃3
N(2, 1) D̃3

N(2, 2) . . . D̃3
N(2, N − 1)

...
...

. . .
...

D̃3
N(N − 2, 1) D̃3

N(N − 2, 2) . . . D̃3
N(N − 2, N − 1)

d3
N(N − 1, 1) d3

N(N − 1, 2) . . . d3
N(N − 1, N − 1)







u1

u2

...

uN−2

uN−1




=




f1

f2

...

fN−2

0




,

where

d3
N(N − 1, i) = DN(0, i)− αDN(N, i) , i = 1, 2, . . . N − 1 .

The solution on the interior grid points is now easily obtainable by inverting the matrix.

183



5.1.2 The Time Dependent Boundary Value Problem with

Non-Homogeneous Uncoupled Boundary Conditions

We now solve the following time dependent problem

ut(x, t) + A1uxxx(x, t) + A2uxx(x, t) + A3ux(x, t) + A4u(x, t) + A5 = 0 ,

u(x, 0) = u0(x) , t > 0 , x ∈ [−1, 1] ,

u(−1, t) = a , u(1, t) = b , ux(1, t) = c ,

for constants A1( 6= 0), A2, A3, A4, A5, a, b and c.

For the time derivative we use a Backward Euler formula, and we approximate the

spatial derivatives via the Chebyshev differentiation matrix DN . The approximation is

given by

u(xj, t + ∆t)− u(xj, t)

∆t
= −A1D3

Nu(xj, t + ∆t)− A2D2
Nu(xj, t + ∆t)

−A3DNu(xj, t + ∆t)− A4u(xj, t + ∆t)− A5 ,

which we rearrange to give

D3
Nu(xj, t + ∆t) +

A2

A1
D2

Nu(xj, t + ∆t) +
A3

A1
DNu(xj, t + ∆t)

+
1

A1

(
A4 +

1

∆t

)
u(xj, t + ∆t) =

1

A1

1

∆t
u(xj, t)− A5

A1
.

At each time level, the problem takes the form of (5.4) where

A =
A2

A1
, B =

A3

A1
, C =

1

A1

(
A4 +

1

∆t

)
, f(xj) =

1

A1

1

∆t
u(xj, t)− A5

A1
,

which we know how to solve, via Example 3.

5.2 Fourth Order Numerical Results

We now develop the numerical schemes of Section 5.1 for the solution of fourth order

linear boundary value problems.

In the next section we present a numerical scheme involving a simple polynomial trick

for imposing clamped boundary conditions, which follows closely the analogous third

order problem, given by Example 2 of Section 5.1.1. This approach is then contrasted
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to a new, more adaptable scheme for the explicit imposition of the boundary conditions,

involving the manipulation of the rows and columns of the Chebyshev differentiation

matrices. This approach, based on the Matlab Differentiation Matrix Suite of Weide-

man [51], has the advantage of being easily adaptable for more complicated boundary

conditions, and essentially follows the general approach that was used in Section 5.1.

We conclude the chapter by introducing the concept of implicit transform methods

for the imposition of boundary conditions. This is well known for second order prob-

lems, where it essentially reduces to the use of the sine and cosine transform. We

illustrate here, the use of these transforms to solve a fourth order example, with a view

to extending this idea to more general transforms tailored to the specific problem to be

solved, and modelled on the solution representation given by the Fokas transform. This

approach is not pushed further here, but will be the focus of further work.

5.2.1 Clamped Boundary Conditions

In this section we present an approach, involving a simple polynomial trick, for the

imposition of clamped boundary conditions. We consider the fourth order linear ODE

boundary value problem, given by

uxxxx(x) = f(x) , x ∈ [−1, 1] , (5.7a)

u(±1) = 0 , ux(±1) = 0 , (5.7b)

where f(x) is a prescribed smooth function. The spatial domain [−1, 1] is discretised

by N + 1 unevenly spaced Chebyshev points, defined by (1.12), and the corresponding

vector of unknowns is given by (u(x0), u(x1), . . . , u(xN))T .

To solve the problem numerically, we employ a simple trick involving polynomials

related as follows

u(x) = (1− x2)q(x), q(±1) = 0. (5.8)

Differentiating (5.8) four times, we obtain

uxxxx(x) = (1− x2)qxxxx(x)− 8xqxxx(x)− 12qxx(x) .

A polynomial q(x) such that deg(q(x)) 6 N , with q(±1) = 0, corresponds to a polyno-

mial u(x) such that deg(u(x)) 6 N + 2, with u(±1) = ux(±1) = 0. Hence deg(u(x)) =
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deg(q(x))+2. We take the interior Chebyshev points x1, . . . , xN−1 as our computational

grid with u = (u1, . . . , uN−1)
T as the corresponding vector of unknowns:

• Let q(x) be the unique polynomial such that deg(q(x)) 6 N with q(±1) = 0 and

q(xj) =
uj

1−x2
j
, j = 1, . . . , N − 1.

• Set fj = (1− x2
j)qxxxx(xj)− 8xjqxxx(xj)− 12qxx(xj), j = 1, . . . , N − 1.

Hence

(
(1− x2

j)D
4
N − 8xjD

3
N − 12D2

N

)
q(xj) = f(xj) , j = 0, . . . , N ,

where q(±1) = 0, and D2
N , D3

N and D4
N are defined by taking the appropriate powers

of the matrix DN . Therefore the matrix
[
diag(1− x2

j)D
4
N − 8diag(xj)D

3
N − 12D2

N

] ×
diag

(
1

1−x2
j

)
, maps the vector (u0, . . . , uN)T to the vector (f0, . . . , fN)T . Hence, to solve

(5.7), we define our spectral biharmonic operator by

L =
[
diag(1− x2

j)D̃
4
N − 8diag(xj)D̃

3
N − 12D̃2

N

]
× diag

(
1

1− x2
j

)
, j = 1, . . . , N − 1 ,

where D̃2
N , D̃3

N and D̃4
N are the matrices obtained by taking the indicated powers of DN

and stripping away the first and last rows and columns. The solution of the original

problem is now obtained from solving the following linear system of equations for u(x)

on the interior grid points:

Lu = f , f = (f1, . . . , fN−1)
T .

Remark 5.2.1. This approach can be compared to the analogous third order case, given

by (5.2), where the boundary conditions u(±1) = 0 and ux(1) = 0 were imposed by

letting u(x) = (1− x)q(x) where q(±1) = 0.

5.2.2 Weideman’s Matlab Differentiation Matrix Suite

The Matlab Differentiation Matrix Suite of Weideman and Reddy [51] comprises 17 Mat-

lab functions for solving differential equations by the spectral collocation (pseudospec-

tral) method, and combines the concepts of the differentiation matrix, along with the

matrix-based approach to the numerical solution of differential equations. The codes

presented, enable the user to generate spectral differentiation matrices, plus associated
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nodes, based on Chebyshev, Fourier, Hermite and other interpolants, and can be used

to solve a variety of boundary value problems.

The emphasis of the paper is on the matrix-based implementation of the spectral

collocation method. It is recognised that transform methods, such as the fast Fourier

transform (FFT), can be computed in O(N log N) operations rather than O(N2) oper-

ations, required by the direct computation. However, for small values of N , the matrix

approach is faster than the FFT implementation. Hence, there are situations when the

matrix approach is preferable.

Remark 5.2.2. The general approach used for the numerical schemes in the paper of

Weideman [51], can be compared to the approach used for the schemes that have already

been presented in Section 5.1 for the third order numerical results. However, the schemes

of interest in [51] are presented in the context of solving fourth order problems, and hence

are discussed in this section for the first time.

Clamped Boundary Conditions

In this section, we present two more approaches for solving the problem, given by (5.7).

The first is an adaptation of the method presented by Weideman [51], for the imposition

of the hinged boundary conditions u(±1) = uxx(±1) = 0, and the second involves the

construction of an interpolating polynomial.

Method One

In this section we explain how the approach of Weideman, used for the imposition of

hinged boundary conditions, can be adapted for the imposition of the clamped boundary

conditions u(±1) = ux(±1) = 0. This approach can be compared to the analogous third

order example of Section 5.1.1. We begin by writing the problem uxxxx(x) = f(x), for

some given function f(x), on the N + 1 point grid, as the linear system of equations,

given by

D4
Nuj = fj , 0 6 j 6 N ,

where D4
N represents the fourth power of the Chebyshev differentiation matrix DN ,

uj = (u(x0), u(x1), . . . , u(xN))T and fj = (f(x0), f(x1), ..., f(xN))T . The imposition of

the Dirichlet boundary conditions, corresponds to removing the outer rows and columns
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of D4
N and reducing the problem to a linear system of N−1 equations. The interpolating

polynomial is given by

pN−1(x) =
N−1∑
j=1

ujφj(x) , pN−1(±1) = 0 , (5.9)

where {φj(x)} is the Lagrangian basis set corresponding to the set of Chebyshev nodes

{xj} on [−1, 1], and the requirement that the equation uxxxx(x) = f(x) is satisfied on

the interior N − 3 grid points, implies

p
′′′′
N−1(xk) =

N−1∑
j=1

ujφ
′′′′
j (xk) = f(xk) , k = 2, . . . , N − 2 . (5.10)

The Dirichlet boundary conditions have already been considered, but the Neumann

boundary conditions, p
′
N−1(±1) = 0, must now be accommodated. These imply

p
′
N−1(1) =

N−1∑
j=1

ujφ
′
j(x0) = 0 , p

′
N−1(−1) =

N−1∑
j=1

ujφ
′
j(xN) = 0 . (5.11)

Hence (5.10) and (5.11) form a linear system of N−2 equations, solvable for the unknown

interior points u1, . . . , uN−1. In matrix form we write

D̃4
Nuj = fj , 1 6 j 6 N − 1 ,

which is given explicitly, in matrix form, as




φ
′
1(x0) φ

′
2(x0) . . . φ

′
N−1(x0)

φ
′′′′
1 (x2) φ

′′′′
2 (x2) . . . φ

′′′′
N−1(x2)

...
...

. . .
...

φ
′′′′
1 (xN−2) φ

′′′′
2 (xN−2) . . . φ

′′′′
N−1(xN−2)

φ
′
1(xN) φ

′
2(xN) . . . φ

′
N−1(xN)







u1

u2

...

uN−2

uN−1




=




0

f2

...

fN−2

0




. (5.12)

The entries of the matrix are numerically computed using the Chebyshev differentiation

matrix DN .

In summary, the interpolation process outlined above, corresponds to replacing the

first and last equations of the linear system D̃4
Nuj = fj, 1 6 j 6 N − 1, with the

interpolants, given by (5.11). In agreement with the notation of Section 5.1, if we let

φ
′
i(xj) = DN(j, i) ,

φ
′′′′
i (xk) = D̃4

N(k, i) ,





i = 1, 2, . . . , N − 1 , j = 0 or N ,

k = 2, 3, . . . , N − 2 ,
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then the matrix system, given by (5.12), can alternatively be written in the form




DN(0, 1) DN(0, 2) . . . DN(0, N − 1)

D̃4
N(2, 1) D̃4

N(2, 2) . . . D̃4
N(2, N − 1)

...
...

. . .
...

D̃4
N(N − 2, 1) D̃4

N(N − 2, 2) . . . D̃4
N(N − 2, N − 1)

DN(N, 1) DN(N, 2) . . . DN(N, N − 1)







u1

u2

...

uN−2

uN−1




=




0

f2

...

fN−2

0




.

Method Two

The final approach that we present for the imposition of clamped boundary conditions, is

the approach used by Weideman [51]. This involves the construction of an interpolating

polynomial pN+2(x) of degree N + 2, satisfying the N − 1 interpolating conditions

pN+2(xk) = uk , k = 1, . . . , N − 1 , (5.13)

and the four boundary conditions

pN+2(±1) = 0 , p
′
N+2(±1) = 0 . (5.14)

The nodes {xk} are the interior Chebyshev points, with corresponding Lagrangian in-

terpolating polynomials, given by

φj(x) = (−1)j
1− x2

j

(N − 1)2

T
′
N(x)

x− xj

, j = 1, . . . , N − 1 ,

where TN(x) is the Chebyshev polynomial of degree N . We define
{

φ̃j(x)
}

by

φ̃j(x) =

(
1− x2

1− x2
j

)2

φj(x) , j = 1, . . . , N − 1 ,

and conclude that the interpolating polynomial pN+2(x), satisfying all of the conditions,

posed by (5.13) and (5.14), is given by

pN+2(x) =
N−1∑
j=1

ujφ̃j(x) .

The approximation to uxxxx(x) = f(x), is therefore given by

p
′′′′
N+2(xk) =

N−1∑
j=1

ujφ̃
′′′′
j (xk) , k = 1 , . . . , N − 1 ,
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and hence the approximation can be written as the following matrix × vector multipli-

cation:



φ̃
′′′′
1 (x1) φ̃

′′′′
2 (x1) . . . φ̃

′′′′
N−1(x1)

φ̃
′′′′
1 (x2) φ̃

′′′′
2 (x2) . . . φ̃

′′′′
N−1(x2)

...
...

. . .
...

φ̃
′′′′
1 (xN−2) φ̃

′′′′
2 (xN−2) . . . φ̃

′′′′
N−1(xN−2)

φ̃
′′′′
1 (xN−1) φ̃

′′′′
2 (xN−1) . . . φ̃

′′′′
N−1(xN−1)







u1

u2

...

uN−2

uN−1




=




f1

f2

...

fN−2

fN−1




.

The Imposition of Alternative Boundary Conditions

In this section we generalise the approach used by Weideman [51], and develop a nu-

merical scheme for the solution of the general problem, given by

uxxxx(x) = f(x) , x ∈ [−1, 1] , (5.15a)

u(±1) = 0 , u
(n)
x (−1) = 0 , u

(m)
x (1) = 0 , n, m ∈ {1, 2, 3} , (5.15b)

where f(x) is a given smooth function.

The interpolating polynomial, and the requirement that uxxxx(x) = f(x) on the

interior N − 3 grid points, yields the expressions, given by (5.9) and (5.10) respectively.

The four boundary conditions, given by (5.15b), imply that

p
(n)
N−1(−1) =

N−1∑
j=1

ujφ
(n)
j (xN) = 0 , p

(m)
N−1(1) =

N−1∑
j=1

ujφ
(m)
j (x0) = 0 .

Therefore the resulting linear system of N − 1 equations, can be written in matrix form

as



φ
(m)
1 (x0) φ

(m)
2 (x0) . . . φ

(m)
N−1(x0)

φ′′′′1 (x2) φ′′′′2 (x2) . . . φ′′′′N−1(x2)
...

...
. . .

...

φ′′′′1 (xN−2) φ′′′′2 (xN−2) . . . φ′′′′N−1(xN−2)

φ
(n)
1 (xN) φ

(n)
2 (xN) . . . φ

(n)
N−1(xN)







u1

u2

...

uN−2

uN−1




=




0

f2

...

fN−2

0




.

For consistency with the notation that has been used throughout, we let

φ
{m,n}
i (xj) = Dm,n

N (j, i) ,

φ′′′′i (xk) = D̃4
N(k, i) ,





i = 1, 2, . . . , N − 1 , j = 0 or N ,

k = 2, 3, . . . , N − 2 ,
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and give the alternative form of the matrix system:




Dm
N (0, 1) Dm

N (0, 2) . . . Dm
N (0, N − 1)

D̃4
N(2, 1) D̃4

N(2, 2) . . . D̃4
N(2, N − 1)

...
...

. . .
...

D̃4
N(N − 2, 1) D̃4

N(N − 2, 2) . . . D̃4
N(N − 2, N − 1)

Dn
N(N, 1) Dn

N(N, 2) . . . Dn
N(N, N − 1)







u1

u2

...

uN−2

uN−1




=




0

f2

...

fN−2

0




.

The approximation to the solution on the interior grid points is therefore easily obtain-

able from inverting the matrix.

This approach can be extended to accommodate more complicated boundary condi-

tions. As a final example, we consider problem (5.15a) with the boundary conditions

u(1) + ux(1) = a+ , u(−1) + ux(−1) = a− ,

uxx(1) + uxxx(1) = b+ , uxx(−1) + uxxx(−1) = b− ,

(5.16)

for some given constants a± and b±. The boundary conditions are imposed numerically

by taking the system

D4
Nuj = fj , 0 6 j 6 N , (5.17)

where uj = (u(x0), u(x1), . . . , u(xN))T and fj = (f(x0), f(x1), . . . , f(xN))T , and replac-

ing the first two and last two rows of D4
N by appropriate linear combinations of D0

N ,

DN , D2
N and D3

N , as indicated by the boundary conditions. Explicitly, the system of

equations that results is given as follows:




d(0, 0) d(0, 1) . . . d(0, N)

d(1, 0) d(1, 1) . . . d(1, N)

D4
N(2, 0) D4

N(2, 1) . . . D4
N(2, N)

...
...

. . .
...

D4
N(N − 2, 0) D4

N(N − 2, 1) . . . D4
N(N − 2, N)

d(N − 1, 0) d(N − 1, 1) . . . d(N − 1, N)

d(N, 0) d(N, 1) . . . d(N, N)







u0

u1

u2

...

uN−2

uN−1

uN




=




a+

b+

f2

...

fN−2

b−

a−




,
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where

d(0, i) = D0
N(0, i) + DN(0, i) ,

d(1, i) = D2
N(0, i) + D3

N(0, i) ,

d(N − 1, i) = D2
N(N, i) + D3

N(N, i) ,

d(N, i) = D0
N(N, i) + DN(N, i) ,





i = 0, 1, . . . , N .

Remark 5.2.3. This approach can be extended to any linear operator acting on u(x).

For example, if the problem was given by uxxxx(x) + uxx(x) = f(x), with the boundary

conditions given by (5.16), then the initial system, given by (5.17), would be replaced

by

(
D4

N + D2
N

)
uj = fj , 0 6 j 6 N ,

and the remainder of the method for imposing the boundary conditions is unchanged.

Remark 5.2.4. The general approach of the numerical schemes for imposing the bound-

ary conditions, given by (5.16), can be adapted to accommodate other, more compli-

cated, boundary conditions.

5.3 Numerical Transforms

We conclude this chapter by discussing an alternative approach for solving boundary

value problems, involving the implicit imposition of the boundary conditions.

The use of numerical transforms will be discussed in further detail in Chapter 6, in

the context of periodic problems. Indeed, the use of the discrete Fourier transform,

which can be implemented using the fast Fourier transform algorithm, offers a fast and

efficient approach for solving such problems. However, our attention now turns to the

problem of solving linear boundary value problems by using the appropriate transform.

The most common boundary conditions are when either the solution vanishes, or when

the derivatives vanish, at the two endpoints of the interval. i.e., when the boundary con-

ditions are either of Dirichlet or Neumann type. In these cases, the two transforms that

are employed, for the implicit imposition of the boundary conditions, are the discrete

sine transform and the discrete cosine transform respectively, and these will be the focus

for the remainder of the chapter.
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5.3.1 The Sine Transform and the Cosine Transform

Let us begin with the continuous case. Recall the Fourier transform pair of a function

u(x), x ∈ R, defined in Section 1.2.1 by

û(k) = Fu(x) =

∫ ∞

−∞
e−ikxu(x) dx , x , k ∈ R ,

u(x) = F−1û(k) =
1

2π

∫ ∞

−∞
eikxû(k) dk .

In the case where u(x) is either an odd or an even function, the Fourier transform pair

reduces to the sine transform pair or the cosine transform pair respectively. Furthermore,

if u(x) is either an odd or an even function, then û(k) will be either odd or even too:

i.) Fourier Sine Transform: If u(x) is an odd function, i.e., u(x) = −u(−x), x ∈ R,

then the Fourier sine transform ûs(k), and the inverse Fourier sine transform us(x),

are defined by

ûs(k) = Fus(x) =

∫ ∞

0

us(x) sin(kx) dx , x , k ∈ R , (5.18a)

us(x) = F−1ûs(k) =
2

π

∫ ∞

0

ûs(k) sin(kx) dk , (5.18b)

where

u(x) =
1√
2

us(x) , û(k) = −
√

2 iûs(k) .

ii.) Fourier Cosine Transform: If u(x) is an even function, i.e., u(x) = u(−x),

x ∈ R, then the Fourier cosine transform ûc(k), and the inverse Fourier cosine

transform uc(x), are defined by

ûc(k) = Fuc(x) =

∫ ∞

0

uc(x) cos(kx) dx , x , k ∈ R , (5.19a)

uc(x) = F−1ûc(k) =
2

π

∫ ∞

0

ûc(k) cos(kx) dk , (5.19b)

where

u(x) =
1√
2

uc(x) , û(k) =
√

2 ûc(k) .

The formulae used to obtain the Fourier sine/cosine transform of a derivative, are

achieved by integration by parts of equations (5.18a) and (5.19a) respectively. For
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example, the first derivatives are given by

û′s(k) = −kûc(k) , û′c(k) = ûs(k)− u(0) ,

and the second derivatives are given by

û′′s(k) = −k2ûs(k) , û′′c (k) = −k2ûc(k) .

Higher order derivatives are calculated analogously.

Let us now consider the discrete case, and assume that we are given a function u(x),

defined on the interval [0, π]. We consider the discrete sine transform and the discrete

cosine transform separately:

i.) Discrete Sine Transform: Matlab has two built in functions for implementing

the discrete sine transform and the inverse discrete sine transform, that we shall

refer to as the dst and idst respectively. The formula for the dst is given by

Fsuj = ûk =
N∑

j=1

uj sin

(
πkj

N + 1

)
, k = 1, . . . , N .

i.e., Fsuj = ûk computes the discrete sine transform of the function u(x).

It may be convenient to think of the discrete sine transform as a matrix × vector

multiplication. The discrete sine transform of the vector u(x) = (u1, u2, . . . , uN)T ,

is given by ûk = (ûk1 , ûk2 , . . . , ûkN
)T , and can be performed according to the

following system:



ûk1

ûk2

...

ûkN




=




sin
(

π
N+1

)
sin

(
2π

N+1

)
. . . sin

(
Nπ

N+1

)

sin
(

2π
N+1

)
sin

(
4π

N+1

)
. . . sin

(
2Nπ
N+1

)
...

...
. . .

...

sin
(

Nπ
N+1

)
sin

(
2Nπ
N+1

)
. . . sin

(
N2π
N+1

)







u1

u2

...

uN




.

The idst function, that is used to transform back to physical space, is given by

F−1
s ûk = uj =

2

N + 1

N∑

k=1

ûk sin

(
πjk

N + 1

)
, j = 1, . . . , N ,

and is given explicitly by the following matrix × vector multiplication:



u1

u2

...

uN




=
2

N + 1




sin
(

π
N+1

)
sin

(
2π

N+1

)
. . . sin

(
Nπ

N+1

)

sin
(

2π
N+1

)
sin

(
4π

N+1

)
. . . sin

(
2Nπ
N+1

)
...

...
. . .

...

sin
(

Nπ
N+1

)
sin

(
2Nπ
N+1

)
. . . sin

(
N2π
N+1

)







ûk1

ûk2

...

ûkN




.
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Hence, the second derivative of a function, satisfying Dirichlet boundary condi-

tions, is given by

u′′j u F−1
s

(−k2Fsuj

)
, j = 1, . . . , N . (5.20)

Remark 5.3.1. Matlab stores the wavenumbers in the order 1, . . . , N/2+1,−N/2+

2, . . . , 0.

ii.) Discrete Cosine Transform: Matlab has built in functions for implementing

the discrete cosine transform and the inverse discrete cosine transform, that we

shall refer to as the dct and idct respectively. The formula for the dct is given by

Fcuj = ûk = yk

N∑
j=1

uj cos

(
π(2j − 1)(k − 1)

2N

)
, k = 1, . . . , N ,

where

yk =





√
1
N

, k = 1 ,

√
2
N

, 2 6 k 6 N .

(5.21)

i.e., Fcuj = ûk computes the discrete cosine transform of the function u(x). This

can be written in matrix × vector form as follows:



ûk1

ûk2

ûk3

...

ûkN




=

√
2

N




1√
2

1√
2

. . . 1√
2

cos
(

π
2N

)
cos

(
3π
2N

)
. . . cos

(
π(2N−1)

2N

)

cos
(

2π
2N

)
cos

(
6π
2N

)
. . . cos

(
2π(2N−1)

2N

)

...
...

. . .
...

cos (π(N−1)
2N

) cos ( 3π(N−1)
2N

) . . . cos (π(2N−1)(N−1)
2N

)







u1

u2

u3

...

uN




.

The idct function, that is used to transform back to physical space, is given by

F−1
c ûk = uj =

N∑

k=1

yk ûk cos

(
π(2j − 1)(k − 1)

2N

)
, j = 1, . . . , N ,

where yk is given by (5.21), and is given explicitly by the following matrix × vector

multiplication:




u1

u2

u3

...

uN




=
2√
N/2




1√
2

cos
(

π
2N

)
. . . cos

(
π(N−1)

2N

)

1√
2

cos
(

3π
2N

)
. . . cos

(
3π(N−1)

2N

)

1√
2

cos
(

5π
2N

)
. . . cos

(
5π(N−1)

2N

)

...
...

. . .
...

1√
2

cos
(

π(2N−1)
2N

)
. . . cos

(
π(2N−1)(N−1)

2N

)







ûk1

ûk2

ûk3

...

ûkN




.

195



Hence the second derivative of a function, satisfying Neumann boundary condi-

tions, is given by

u′′j u F−1
c

(−k2Fcuj

)
, j = 1, . . . , N .

Remark 5.3.2. Matlab stores the wavenumbers in the order 0, . . . , N/2,−N/2 +

1, . . . ,−1.

Example: We conclude this chapter with a simple example to illustrate the use of the

discrete sine transform algorithm and consider the following fourth order beam equation

with Dirichlet boundary conditions:

utt(x, t) + uxxxx(x, t) = 0 , u(x, 0) = u0(x) , t > 0 , x ∈ [0, π] , (5.22a)

u(0, t) = 0 , u(L, t) = 0 , uxx(0, t) = 0 , uxx(L, t) = 0 , (5.22b)

for some given smooth function u0(x).

Remark 5.3.3. Whilst (5.22a) is not of the form of the fourth order PDEs studied in

Chapter 4, it has a physical application to the real life situation of a vibrating beam with

stationary end points. Furthermore, the focus of the example is on the approximation

of the fourth order spatial derivative and the imposition of the boundary conditions,

and the form of both in (5.22) is the same for the analogous PDE with a first order time

derivative.

For the time derivative we use a simple leap-frog formula, and we approximate the

fourth order spatial derivative using the discrete sine transform formula, analogous to

expression (5.20). Hence

uxxxx(x, t) u F−1
s

(
k4Fsu(x, t)

)
, j = 1, . . . , N ,

and therefore

u(x, t + ∆t) = 2u(x, t)− u(x, t−∆t)− (∆t)2F−1
s

(
k4Fsu(x, t)

)
.

The domain was discretised by 256 grid points and the program was run with ∆t =

0.00001 and the initial solution

u(x, 0) = e−100(x−π
2 )

2

, (5.23)

and the numerical output is given in Figure 5.1.
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Figure 5.1: The PDE utt(x, t)+uxxxx(x, t) = 0 with initial condition given by (5.23), solved using 256

grid points, ∆t = 0.00001 and the discrete sine transform for the implicit imposition of the Dirichlet

boundary conditions.

Remark 5.3.4. Numerical transforms offer an alternative approach for the implicit im-

position of boundary conditions and the discrete Fourier transform will be used in the

next chapter to model the periodic KdV equation. The concept of developing this ap-

proach for the imposition of more complicated boundary conditions, for example Robin

or coupled boundary conditions, is left as an open problem and a topic for future work.
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Chapter 6

Nonlinear Numerical Results

In this chapter we consider the KdV equation posed on a finite interval. To be precise,

we consider the following problem

ut + uux + uxxx = 0 , t > 0 , x ∈ [0, L] , (6.1a)

u(x, 0) = u0(x) , x ∈ [0, L] , (6.1b)

where u0(x) is a given smooth function, L is a positive constant, and it is assumed

that appropriate boundary conditions are imposed, see Theorem 2.1.1. Equation (6.1)

is not quite the KdV equation, as the linear term ux(x, t) is missing. However, (6.1)

is equivalent to the KdV equation on R, hence for our periodic examples we can easily

add the consideration of the extra term in all computations.

The first difficulty is caused by the lack of symmetry, characteristic to any third order

boundary value problem, and the second by the nonlinearity. The numerical schemes

we use are all spectral. In particular, we shall use the FFT described in Section 1.2.1, as

well as the Toeplitz differentiation matrix approach, see Section 1.2.1. To set the stage,

we begin by addressing the periodic problem, and consider the evolution of an initial

solitary wave of the form

u(x, 0) = 3A2sech2

(
1

2
Ax

)
, (6.2)

where A is a constant that determines both the amplitude and speed. All schemes are

based on either the one-step method of Fornberg and Whitham [25] or the split-step

method of Tappert [45]. We use them to study the interaction of solitary solutions. We

also consider the issue of numerical conservation of energy. This is satisfied to a very

good accuracy, when the problem is periodic.
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We then consider the non-periodic boundary value problem. We first discuss the well

known issue of the necessity for unevenly spaced grid points in the construction of our

spectral methods. All the non-periodic problems considered are solved using Chebyshev

differentiation matrices and the split-step method of Tappert [45]. The focus of the

non-periodic results will be on the implementation of the boundary conditions, in view

of studying their effect on the evolution of the solitary solutions of the form (6.2).

6.1 The Periodic Problem

In this section, we consider two numerical methods for solving the third order periodic

problem for the KdV equation (6.1). The first scheme is a one step method while the

second uses a split step approach.

6.1.1 Method One: The One-Step Fourier Method by

Fornberg and Whitham

Fornberg and Whitham [25] consider the nonlinear wave equations of the form

ut + f(u)ux + Lu = 0 ,

where f(u) is a given function, and L is a linear operator with constant coefficients.

They present an efficient numerical method for solving such nonlinear wave equations

using a simple leap-frog scheme in time, along with a Fourier transform treatment of

the space dependence. The equation that will be the focus of our attentions is equation

(6.1), hence f(u) = u(x, t) and L = ∂3

∂x3 .

The spatial period is [0, 2π] discretised by N points. Using a leap-frog scheme in

time, equation (6.1) is approximated by

u(x, t + ∆t)− u(x, t−∆t)

2∆t
+ u(x, t)F−1 (ikFu(x, t))− F−1

(
ik3Fu(x, t)

)
= 0 ,

where F−1 (ikFu(x, t)) and −F−1 (ik3Fu(x, t)), according to Section 1.2.1, are the

Fourier approximations to ux(x, t) and uxxx(x, t) respectively. Rearranging yields

u(x, t + ∆t)− u(x, t−∆t) + 2i u(x, t) ∆t F−1 (kFu(x, t))− 2i ∆t F−1
(
k3Fu(x, t)

)
= 0 .

(6.3)

199



The accuracy of all consistent difference approximations to a differential equation de-

creases rapidly as the wavenumbers increase. This is particularly true for the leap-frog

scheme in time. However, the accuracy of the scheme for high wavenumbers can be

improved by modification of the last term to give

u(x, t + ∆t)− u(x, t−∆t) + 2i u(x, t) ∆t F−1 (kFu(x, t))

− 2i F−1
(
sin(k3∆t)Fu(x, t)

)
= 0 , (6.4)

noting that the two methods are identical in the limit ∆t decreasing to zero. The

computational cost for both equations, (6.3) and (6.4), is three fast Fourier transforms

per time step, and since the scheme is second order accurate in time, when ∆t is halved

the overall error due to the time discretisation can be expected to decrease by a factor

of four.

For low wavenumbers k, the difference between (6.3) and (6.4) is only O(k3). If

equation (6.3) is considered for high wavenumbers k, then the term approximating uxxx

dominates uux, and equation (6.3) is essentially

u(x, t + ∆t)− u(x, t−∆t)− 2i ∆t F−1
(
k3Fu(x, t)

)
= 0 ,

which approximates the linear equation

ut(x, t) + uxxx(x, t) = 0 . (6.5)

In comparison equation (6.4) becomes

u(x, t + ∆t)− u(x, t−∆t)− 2i F−1
(
sin(k3∆t)Fu(x, t)

)
= 0 ,

for large wavenumbers, and is exactly satisfied by any solution of the linear equation

(6.5). To see this, consider the solution u(x, t) = eikx+ik3t of equation (6.5). It follows

that

u(x, t + ∆t) = eik3∆tu(x, t) , u(x, t−∆t) = e−ik3∆tu(x, t) ,

and hence

u(x, t + ∆t)− u(x, t−∆t)− 2i sin(k3∆t) u(x, t) = 0 .
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Furthermore, the linearised stability condition for (6.4), which is discussed in detail in

[25], is given by

∆t

∆x3
<

3

2π2
u 0.1520 .

Hence, for the spatial domain [0, 2π] it is required that

∆t <

(
2π

N

)3

0.1520 .

This method is used to study the interaction of solitary waves, and we begin by modelling

the evolution of a single soliton. The initial solution takes the form

u(x, 0) = 3A2sech2

(
1

2
A(x− π + 2)

)
, (6.6)

where the parameter A determines both the amplitude and speed. The program was

run using 128 grid points with ∆t = 0.00001 and A = 15.
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Figure 6.1: Fornberg and Whitham’s one-step method for the periodic KdV equation with the single

soliton initial solution (6.6), solved using 128 grid points, ∆t = 0.00001 and the FFT to approximate

the spatial derivatives.

The numerical output, given by Figure 6.1, confirms the known behaviour of the

soliton. On a periodic grid, the soliton travels without losing energy, collides with the

boundary, emerges from the opposing boundary and continues to travel in the same
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direction, with the same speed. The stability properties of the solution u(x, t) can be

analysed by examining the Euclidean norm

||u(x, t)||22 =

∫ L

0

|u(x, t)|2 dx ,

where x ∈ [0, L]. We begin with equation (6.1), multiply throughout by u(x, t) and

integrate with respect to x over the domain to give

∫ L

0

(
uut + u2ux + uuxxx

)
dx = 0 .

Integration by parts yields the following

1

2

d

dt
||u(x, t)||22 =

[
1

2
u2

x − uuxx − 1

3
u3

]L

0

. (6.7)

It follows trivially that if the problem is periodic, then the following conservation of

energy law must be satisfied:

d

dt

∫ L

0

|u(x, t)|2 dx = 0 . (6.8)

We now consider the numerical form

N∑
i=1

|ui(x, t)|2 =
N∑

i=1

|ui(x, t + ∆t)|2 , (6.9)

which is the discrete analogue of (6.8). Hence numerically the Euclidean norm, for each

solution u(x, t), is computed using the formula

||u(x, t)||22 =
N∑

i=1

|ui(x, t)|2 ,

and the normalised Euclidean norms are calculated using the formula

||u(x, t)||22 =
1

||u(x, 0)||22

N∑
i=1

|ui(x, t)|2 . (6.10)

The same program is used to demonstrate the clean interaction of two waves (Figure

6.2) and repeated for three waves (Figure 6.3). Since these problems are also periodic,

the energy is conserved and therefore in both cases the solitons travel without losing

energy. The initial solutions take the form

u(x, 0) = 3A2sech2

(
1

2
A(x− π + 2)

)
+ 3B2sech2

(
1

2
B(x− π)

)
, (6.11)

202



where B = 10 for the double soliton initial solution, and

u(x, 0) = 3A2sech2

(
1

2
A(x− π + 2)

)
+ 3B2sech2

(
1

2
B(x− π)

)

+ 3C2sech2

(
1

2
C(x− π − 1)

)
, (6.12)

where C = 8 for the three soliton initial solution. All other parameters remained as for

the single soliton example.
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Figure 6.2: Fornberg and Whitham’s one-step method for the periodic KdV equation with the double

soliton initial solution (6.11), solved using 128 grid points, ∆t = 0.00001 and the FFT to approximate

the spatial derivatives.

The programs return favourable results, showing the clean interaction of solitary

waves. It can be seen in Figure 6.2 that for the double soliton, since the wave speed

is proportional to the amplitude, the wave starting furthest left has greater amplitude

than the smaller soliton to its right and therefore travels faster, catches up with the

smaller soliton, passes thorough its path, and continues to travel in the same direction

and at the same speed as it was travelling before the collision. The interaction is clean

and the waves propagate without any distortion. The interaction of the three solitons,

demonstrated in Figure 6.3, follows analogously to the interaction of the two soliton

example.
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Figure 6.3: Fornberg and Whitham’s one-step method for the periodic KdV equation with the triple

soliton initial solution (6.12), solved using 128 grid points, ∆t = 0.00001 and the FFT to approximate

the spatial derivatives.

Table 6.1, gives the normalised numerical Euclidean norms, calculated using equation

(6.10), at the initial solution and thereafter in time intervals of 0.003 up to the final

solution at time t = 0.030. The values obtained agree favourably with the conservation

of energy law, given by (6.9).

For completeness, the previous three examples, for the single, double and triple soli-

ton initial solutions, were repeated using the same one-step approach to numerically

model equation (6.1) but rather than using the Fourier approach to approximate the

derivatives, the spectral derivatives were calculated using the Toeplitz differentiation

matrices, (see (1.11)). Using a leap-frog scheme in time, the approximation to equation

(6.1) is given by

u(x, t + ∆t) = u(x, t−∆t)− 2∆t u(x, t)DNu(x, t)− 2∆tD3
Nu(x, t) ,

where DNu(x, t) and D3
Nu(x, t) are the spectral approximations to ux(x, t) and uxxx(x, t)

respectively.

This approach was successfully applied with the single soliton solution, given by (6.6),

used in method one and also to demonstrate the interaction of two solitons, given by
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t Single Soliton Double Soliton Triple Soliton

0 1.0000 1.0000 1.0000

0.003 1.0037 1.0030 1.0027

0.006 1.0043 1.0035 1.0032

0.009 1.0011 1.0008 1.0006

0.012 0.9972 0.9981 0.9984

0.015 0.9962 1.0009 0.9998

0.018 0.9985 0.9986 1.0017

0.021 1.0019 0.9982 0.9998

0.024 1.0035 0.9994 0.9975

0.027 1.0024 1.0007 0.9980

0.030 0.9996 1.0015 0.9998

Table 6.1: The normalised Euclidean norms of the numerical results, given by Figures 6.1, 6.2 and

Figure 6.3, for the periodic KdV equation, solved using Fornberg and Whitham’s one-step method with

N = 128, ∆t = 0.00001 and the FFT to approximate the spatial derivatives.

(6.11), and three solitons, given by (6.12). In all cases the spatial domain was discretised

by 128 grid points and ∆t = 0.000001 and the results are shown in Figures 6.4, 6.5 and

Figure 6.6.

The normalised numerical Euclidean norms for the results given by Figures 6.4, 6.5

and Figure 6.6 are presented in Table 6.2, for the initial solution and every solution

thereafter in time intervals of 0.003, up to the final solution at time t = 0.030.

If we compare the results from Table 6.2 to Table 6.1, we see that the normalised

numerical Euclidean norms calculated at comparative time intervals, suggest that the

Toeplitz differentiation matrix approach yields more accurate results.
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Figure 6.4: Fornberg and Whitham’s one-step method for the periodic KdV equation with the single

soliton initial solution (6.6), solved using 128 grid points, ∆t = 0.000001 and Toeplitz differentiation

matrices to approximate the spatial derivatives.
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Figure 6.5: Fornberg and Whitham’s one-step method for the periodic KdV equation with the double

soliton initial solution (6.11), solved using 128 grid points, ∆t = 0.000001 and Toeplitz differentiation

matrices to approximate the spatial derivatives.
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Figure 6.6: Fornberg and Whitham’s one-step method for the periodic KdV equation with the triple

soliton initial solution (6.12), solved using 128 grid points, ∆t = 0.000001 and Toeplitz differentiation

matrices to approximate the spatial derivatives.

t Single Soliton Double Soliton Triple Soliton

0 1.0000 1.0000 1.0000

0.003 1.0004 1.0003 1.0003

0.006 1.0004 1.0003 1.0003

0.009 1.0000 1.0000 1.0000

0.012 0.9996 0.9998 0.9998

0.015 0.9996 1.0000 0.9999

0.018 1.0000 0.9998 1.0001

0.021 1.0003 0.9998 0.9999

0.024 1.0003 1.0001 0.9997

0.027 1.0000 1.0002 0.9999

0.030 0.9997 1.0001 1.0001

Table 6.2: The normalised Euclidean norms of the numerical results, given by Figures 6.4, 6.5 and

Figure 6.6, for the periodic KdV equation, solved using Fornberg and Whitham’s one-step method with

N = 128, ∆t = 0.000001 and Toeplitz differentiation matrices to approximate the spatial derivatives.
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6.1.2 Method Two: The Split-Step Fourier Method by Tappert

We now present a scheme that discretises the time variable using a split-step Fourier

method. This method is due to Tappert. We follow the presentation given by Taha

and Ablowitz [45]. The idea is to split the problem into the linear and nonlinear parts

and alternate between the steps. The first step advances the solution half of the time

step using only the nonlinear term, and the second half advances the new solution the

final half of the time-step using only the linear term. The scheme can be considered as

successfully solving the equations

ut + uux = 0 , ut + uxxx = 0 ,

where the solution of the former equation is used as the initial condition for the latter.

The advantage of this method is the fact that it avoids solving a nonlinear system of

equations at each time level, and the fact that the linear step can be solved exactly.

We begin by considering the problem with spatial domain [0, 2π] and periodic bound-

ary conditions. The spatial variable as usual, is discretised spectrally.

For the first step, we transform the problem into Fourier space, advance the solution

using the classical fourth-order Runge-Kutta formula, and transform back to physical

space using the standard inversion formula. We begin by rewriting the equation as

follows

ut + uux = 0 ⇒ ut +
1

2

(
u2

)
x

= 0 .

Transforming into Fourier space yields

ût +
1

2
ikû2 = 0 ,

where the hat denotes the Fourier transform. Therefore

dû

dt
= −1

2
ikF (u2) = f(û) .

The fourth-order Runge-Kutta formula is given by

ûn+1 = ûn +
1

6

(
d(1) + 2(d(2) + d(3)) + d(4)

)
, (6.13)
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where

d(1) =
∆t

2
f (ûn) ,

d(2) =
∆t

2
f

(
ûn +

d(1)

2

)
,

d(3) =
∆t

2
f

(
ûn +

d(2)

2

)
,

d(4) =
∆t

2
f

(
ûn + d(3)

)
.

To implement the second step, the solution is advanced using only the linear term by

means of the FFT. Taking the Fourier transform of the equation ut + uxxx = 0, gives

d

dt
ûk = ik3ûk .

Integrating with respect to t implies

ûk = û0e
ik3t ,

and thus

ûk

(
t +

∆t

2

)
= ûke

ik3∆t/2 .

Therefore, for the second step, we advance the solution using the formula

u(xj, t + ∆t) = F−1

(
eik3∆t/2Fu

(
xj, t +

∆t

2

))
.

The split-step method is successful and the results achieved are more accurate than

those from the one-step approach of Fornberg and Whitham. The first program was run

using 128 grid points, ∆t = 0.00001 and an initial solution given by

u(x, 0) = 3A2sech2

(
1

2
A(x− π + 2)

)
, (6.14)

where A = 15. The program was then repeated for the double soliton solution given by

u(x, 0) = 3A2sech2

(
1

2
A(x− π + 4)

)
+ 3B2sech2

(
1

2
B(x− π + 3)

)
, (6.15)

where B = 10, and the triple soliton solution given by

u(x, 0) = 3A2sech2

(
1

2
A(x− π + 4)

)
+ 3B2sech2

(
1

2
B(x− π + 3)

)

+ 3C2sech2

(
1

2
C(x− π + 2)

)
, (6.16)

where C = 8. The results for the three cases are given in Figures 6.7, 6.8 and Figure

6.9 respectively.
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Figure 6.7: Tappert’s split-step method for the periodic KdV equation with the single soliton initial

solution (6.14), solved using 128 grid points, ∆t = 0.00001 and the FFT to approximate the spatial

derivatives.
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Figure 6.8: Tappert’s split-step method for the periodic KdV equation with the double soliton initial

solution (6.15), solved using 128 grid points, ∆t = 0.00001 and the FFT to approximate the spatial

derivatives.
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Figure 6.9: Tappert’s split-step method for the periodic KdV equation with the triple soliton initial

solution (6.16), solved using 128 grid points, ∆t = 0.00001 and the FFT to approximate the spatial

derivatives.

The normalised numerical Euclidean norms are given in Table 6.3 for the initial

solution and every solution thereafter in time intervals of 0.003 up to the final solution

at time t = 0.030. The results show that the conservation of energy law, given by (6.9),

is satisfied exactly. In comparison to the one-step method of Fornberg and Whitham,

we conclude that the split-step approach yields more accurate results.

As with the first method, we now solve equation (6.1) using the split step approach of

Tappert, but using Toeplitz differentiation matrices, as opposed to the FFT, to approx-

imate the spatial derivatives. The problem we consider is equation (6.1), with spatial

domain [−π, π] and periodic boundary conditions. For step one we begin by rewriting

the equation ut + uux = 0 in the form

ut = −1

2

(
u2

)
x

= f(u) ,

and use the classical fourth-order Runge-Kutta formula and approximate the spatial

derivative using the Toeplitz differentiation matrix DN given by (1.11).

For step two the solution is advanced using an implicit Crank-Nicolson formula given
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t Single Soliton Double Soliton Triple Soliton

0 1 1 1

0.003 1 1 1

0.006 1 1 1

0.009 1 1 1

0.012 1 1 1

0.015 1 1 1

0.018 1 1 1

0.021 1 1 1

0.024 1 1 1

0.027 1 1 1

0.030 1 1 1

Table 6.3: The normalised Euclidean norms of the numerical results, given by Figures 6.7, 6.8 and

Figure 6.9, for the periodic KdV equation, solved using Tappert’s split-step method with N = 128,

∆t = 0.00001 and the FFT to approximate the spatial derivatives.

by

u(xj, t + ∆t) = u

(
xj, t +

∆t

2

)
− ∆t

4

(
uxxx(xj, t + ∆t) + uxxx

(
xj, t +

∆t

2

))
.

The program was run using 128 grid points, ∆t = 0.00001 and an initial solution given

by

u(x, 0) = 3A2sech2

(
1

2
A (x− 2π + 2)

)
, (6.17)

where A = 15, and the numerical output is given by Figure 6.10.

The normalised numerical Euclidean norms are given in Table 6.4, for the initial

solution and every solution thereafter in time intervals of 0.003 up to the final solution

at time t = 0.030. The results show that the scheme satisfies the conservation of energy

law, given by (6.9), exactly.
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Figure 6.10: Tappert’s split-step method for the periodic KdV equation with the single soliton initial

solution (6.17), solved using 128 grid points, ∆t = 0.00001 and Toeplitz differentiation matrices to

approximate the spatial derivatives.

t Single Soliton

0 1

0.003 1

0.006 1

0.009 1

0.012 1

0.015 1

0.018 1

0.021 1

0.024 1

0.027 1

0.030 1

Table 6.4: The normalised Euclidean norms of the numerical results, given by Figure 6.10, for the

periodic KdV equation, solved using Tappert’s split-step method with N = 128, ∆t = 0.00001 and

Toeplitz differentiation matrices to approximate the spatial derivatives.
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An Alternative Approach to the Split-Step Method

In the split-step scheme, as proposed by Tappert [45], the first half-step was taken by

solving the nonlinear problem. Here we show that the order of the steps can be inverted

at no cost to the computation. Hence we advance the solution according to the linear

terms first. We do this because for some boundary value problems the imposition of the

boundary conditions is more difficult at one step than at the other.

To analyse this effect, we consider the third order nonlinear KdV equation, given by

(6.1), and consider the scheme as successfully solving the equations

ut + uxxx = 0 , ut + uux = 0 ,

where the solution of the former equation is used as the initial condition for the latter.

For completeness we repeat two of the examples. The first is the example, whose results

are given by Figure 6.7 and whose Euclidean norms can be found in Table 6.3. The

program uses 128 grid points, ∆t = 0.00001 and initial solution

u(x, 0) = 3A2sech2

(
1

2
A(x− π + 2)

)
, (6.18)

with A = 15. The first half advances the solution using only the linear term by means

of the FFT, and the second half advances the solution according to the nonlinear terms

using the classical fourth-order Runga-Kutta formula. The new results are given by

Figure 6.11 and the normalised Euclidean norms are given in Table 6.5. The results are

identical to those given in Table 6.3, achieved from the standard split-step approach.

We also repeat the example using the split-step method and the Toeplitz differen-

tiation matrices, whose results are given by Figure 6.10 and Table 6.4, but with the

order of the steps reversed. Hence the first step advances the solution according to the

linear terms using an implicit Crank-Nicolson formula, and the second step advances

the updated solution according to the nonlinear terms using the classical fourth-order

Runga-Kutta formula. The program was run using 128 grid points, ∆t = 0.00001 and

initial solution given by

u(x, 0) = 3A2sech2

(
1

2
A(x− 2π + 2)

)
, (6.19)

where A = 15, and the numerical output is given by Figure 6.12.
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Figure 6.11: Tappert’s split-step method, with the order of the steps reversed, for the periodic KdV

equation with the single soliton initial solution (6.18), solved using 128 grid points and ∆t = 0.00001

and the FFT to approximate the spatial derivatives.

t Single Soliton

0 1

0.003 1

0.006 1

0.009 1

0.012 1

0.015 1

0.018 1

0.021 1

0.024 1

0.027 1

0.030 1

Table 6.5: The normalised Euclidean norms of the numerical results, given by Figure 6.11, for the

periodic KdV equation, solved using Tappert’s split-step method with the order of the steps reversed,

N = 128, ∆t = 0.00001 and the FFT to approximate the spatial derivatives.
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Figure 6.12: Tappert’s Split-Step method with the order of the steps swapped, for the periodic KdV

equation with the single soliton initial solution (6.19), solved using 128 grid points, ∆t = 0.00001 and

Toeplitz differentiation matrices to approximate the spatial derivatives.

The normalised numerical Euclidean norms are given in Table 6.6, for the initial

solution and every solution thereafter in time intervals of 0.003, up to the final solution

at time t = 0.030. This example also demonstrates that swapping the order of the steps

has no effect on the scheme, and using either approach the conservation of energy law

is exactly satisfied.

Before concluding this section, we remark that further approaches to the split-step

method can be employed. One such scheme, splits each time step ∆t into three parts,

and can be considered as successfully solving the equations

ut + uux = 0 , ut + uxxx = 0 , ut + uux = 0 .

The first step, advances the solution a quarter of the time step according to the nonlinear

terms. The second step then uses the solution achieved from step one as the initial

condition, and advances it half of the time step using only the linear term. The final

step then advances the solution from the second stage, the remaining quarter time step

according to the nonlinear terms.

We will use this approach of swapping the order of the steps later, for solving some

two-point boundary value problems.
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t Single Soliton

0 1

0.003 1

0.006 1

0.009 1

0.012 1

0.015 1

0.018 1

0.021 1

0.024 1

0.027 1

0.030 1

Table 6.6: The normalised Euclidean norms of the numerical results, given by Figure 6.12 for the

periodic KdV equation, solved using Tappert’s split-step method with the order of the steps reversed,

N = 128, ∆t = 0.00001 and Toeplitz differentiation matrices to approximate the spatial derivatives.

6.1.3 Alternative Initial Conditions

In this section we consider once again the one-step method of Fornberg and Whitham,

and the split-step numerical scheme of Tappert for solving the periodic KdV equation,

given by (6.1), but with the imposition of a Gaussian type initial condition of the form

u(x, 0) = 3A2e−10(x−L
2 )

2

, x ∈ [0, L] . (6.20)

for some constant A. To begin with, we repeat the one-step method of Section 6.1.1

solved using a leap-frog scheme in time, with the FFT approach to approximate the

spatial derivatives and then using the Toeplitz differentiation matrix approach for the

numerical approximation of the spatial derivatives (see Figures 6.1, 6.2, 6.3 and Figures

6.4, 6.5, 6.6 respectively).

All of the programs were run using N = 128 grid points and A = 15. The first

program using the FFT approach was run with ∆t = 0.00001 and the second program

using the Toeplitz differentiation matrices was run using ∆t = 0.000001. The results

are given in Figure 6.13 and Figure 6.14 respectively.
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These results were then compared to the split-step Fourier method of Tappert, de-

scribed in Section 6.1.2, and the programs using both the FFT (Figures 6.7, 6.8 and

Figure 6.9), and the Toeplitz differentiation matrix approach (Figure 6.10) were run

with the initial condition of the form (6.20). The results are given in Figure 6.15 and

Figure 6.16 respectively.

In all four examples, we see that as the initial solution begins to propagate, it im-

mediately splits and forms two soliton type solutions. The energy that remains forms a

trail of smaller dispersive waves. The soliton that is to the left is smaller in amplitude

to the wave to its right, and therefore travels slower. Both waves travel without losing

energy or changing in form. The wave whose amplitude is greatest collides with the

boundary first and then reappears from the opposing boundary. This behaviour is then

repeated by the second wave. When the two waves collide, the interaction is clean and

the waves continue to travel in the direction they were travelling before the collision.

The normalised Euclidean norms, calculated at time intervals of 0.005 up to the final

time of t = 0.050 for all four programs, are given in Table 6.7.

0
1

2
3

4
5

6
7

0

0.01

0.02

0.03

0.04

0.05

0.06

−500

0

500

1000

1500

x

t

u

Figure 6.13: Fornberg and Whitham’s one-step method for the periodic KdV equation with the ini-

tial condition u(x, 0) = 3A2e−10(x−π)2 , solved using 128 grid points, ∆t = 0.00001 and the FFT to

approximate the spatial derivatives.
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Figure 6.14: Fornberg and Whitham’s one-step method for the periodic KdV equation with the initial

condition u(x, 0) = 3A2e−10(x−π)2 , solved using 128 grid points, ∆t = 0.000001 and Toeplitz differen-

tiation matrices to approximate the spatial derivatives.
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Figure 6.15: Tappert’s split-step method for the periodic KdV equation with the initial condition

u(x, 0) = 3A2e−10x2
, solved using 128 grid points, ∆t = 0.00001 and the FFT to approximate the

spatial derivatives.
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Figure 6.16: Tappert’s split-step method for the periodic KdV equation with the initial condition

u(x, 0) = 3A2e−10x2
, solved using 128 grid points, ∆t = 0.00001 and Toeplitz differentiation matrices

to approximate the spatial derivatives.

The results show that the one-step method, using both the FFT approach and the

Toeplitz differentiation matrix approach for the numerical approximation of the spatial

derivatives, achieves adequate results. In comparison, the results given in Table 6.7

for the two numerical schemes using the split-step method of Tappert, show that the

solution satisfies the conservation of energy law exactly.

We conclude this section by remarking that all of the periodic problems studied in

Section 6.1 using the split-step method, satisfy the conservation of energy law exactly.
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One-Step Split-Step

t FFT Toeplitz FFT Toeplitz

0 1.0000 1.0000 1.0000 1.0000

0.005 1.0008 1.0000 1.0000 1.0000

0.010 0.9988 1.0000 1.0000 1.0000

0.015 0.9994 0.9999 1.0000 1.0000

0.020 0.9995 1.0000 1.0000 1.0000

0.025 0.9980 0.9997 1.0000 1.0000

0.030 1.0009 1.0000 1.0000 1.0000

0.035 1.0004 1.0000 1.0000 1.0000

0.040 0.9991 0.9999 1.0000 1.0000

0.045 1.0031 1.0000 1.0000 1.0000

0.050 1.0000 1.0001 1.0000 1.0000

Table 6.7: The normalised Euclidean norms of the numerical results, given by Figures 6.13, 6.14, 6.15

and Figure 6.16 for the periodic KdV equation with a Gaussian initial condition of the form (6.20),

solved using N = 128.

6.2 The Non-Periodic Problem

The focus of the remainder of the third order numerical results is on the imposition of

a variety of boundary conditions. All of the schemes presented will combine the split-

step approach outlined in the previous section for discretising the time variable, with

the methods developed in Chapter 5 for the linear boundary value problems for the

imposition of the boundary conditions.

6.2.1 Uncoupled Boundary Conditions

We begin by considering the third order nonlinear problem

ut + uuy + uyyy = 0 , u(y, 0) = u0(y) , t > 0 , y ∈ [−L,L] ,

u(−L, t) = 0 , u(L, t) = 0 , uy(L, t) = 0 .
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The spatial domain is transformed to [−1, 1] be letting x = y/L to give

ut + 1
L
uux +

(
1
L

)3
uxxx = 0 , u(x, 0) = u0(x) , t > 0 , x ∈ [−1, 1] ,

u(−1, t) = 0 , u(1, t) = 0 , ux(1, t) = 0 .

If we compare the results of this section with the results of the periodic problem, we

see that for the non-periodic problem, the solitary wave solutions travel without losing

energy until colliding with the boundary. After colliding with the boundary the waves

then start to lose energy and disperse. This can be easily proved by considering the

Euclidean norm for this problem. Equation (6.7), evaluated for x ∈ [−1, 1], reduces to

the following

1

2

d

dt
||u(x, t)||22 = −1

2
u2

x(−1, t) 6 0 ,

proving that the problem is dispersive, with energy seeping away through the boundary.

Split-Step method

The split-step approach of Tappert is used to numerically model this problem, and all

three boundary conditions are imposed numerically at both stages of the step. For the

first step, the solution is advanced by using the nonlinear part of the equation

ut +
1

L
uux = 0 ,

and the boundary conditions u(±1, t) = 0 and ux(1, t) = 0 are imposed using the

polynomial trick

u(x, t) = (1− x)q(x, t) , q(±1, t) = 0 . (6.21)

(This method of imposing the boundary conditions was described in detail in Section

5.1.1, for the third order linear ODE uxxx(x) = f(x) given by (5.2)).

So, given an initial condition u(x, 0), q(x, 0) is computed according to equation (6.21),

and then the equivalent problem in q(x, 0), with Dirichlet boundary conditions, is ad-

vanced in time using the classical fourth-order Runge-Kutta formula, given by (6.13).

The spatial derivatives are imposed using the Chebyshev differentiation matrix DN ,

defined by Theorem 1.2.1. The problem is formulated as follows

qt(x, t) =
1

L
q2(x, t)− 1

2L
(1− x)(q2)x(x, t) , q(±1, t) = 0 .
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The Runge-Kutta formula, given by (6.13), then implies

qn+1(x, t) = qn(x, t) +
1

6

(
d(1) + 2

(
d(2) + d(3)

)
+ d(4)

)
,

d(1) =
∆t

2L
q2
n(x, t)− ∆t

4L
(1− x)(q2

n)x(x, t) ,

d(2) =
∆t

2L

(
qn(x, t) +

1

2
d(1)

)2

− ∆t

4L
(1− x)

(
qn(x, t) +

1

2
d(1)

)2

x

,

d(3) =
∆t

2L

(
qn(x, t) +

1

2
d(2)

)2

− ∆t

4L
(1− x)

(
qn(x, t) +

1

2
d(2)

)2

x

,

d(4) =
∆t

2L

(
qn(x, t) + d(3)

)2 − ∆t

4L
(1− x)

(
qn(x, t) + d(3)

)2

x
.

Once q(x, t) is known at the appropriate time level, u(x, t) is trivially computed using

equation (6.21). This solution then becomes the initial solution that is advanced the

remaining half of the time-step according to the linear part of the equation

ut +

(
1

L

)3

uxxx = 0 ,

and the boundary conditions u(±1, t) = 0 and ux(1, t) = 0. For the time derivative we

use an implicit Crank-Nicolson formula, which yields the following approximation:

− ∆t

4L3
uxxx(x, t + ∆t) + u(x, t + ∆t) = − ∆t

4L3
uxxx

(
x, t +

∆t

2

)
+ u

(
x, t +

∆t

2

)
,

u(±1, t + ∆t) = 0 , ux(1, t + ∆t) = 0 .

This is a time independent problem, which can be solved by rewriting the problem in

terms of q(x, t) using (6.21) evaluated at t + ∆t, and adapting the method presented in

Section 5.1.1 for the imposition of the same boundary conditions on equation (5.2).

The program was run using 128 grid points, ∆t = 0.00001, L = π and initial solution

given by

u(x, 0) = 3A2sech2

(
1

2
A(xπ − 1)

)
, (6.22)

where A = 15. The numerical output is given by Figure 6.17(a), which is then rotated

to produce Figure 6.17(b).

223



−4
−3

−2
−1

0
1

2
3

4

0

0.02

0.04

0.06

0.08

0.1

−500

0

500

1000

y

t

u

(a)

−4

−3

−2

−1

0

1

2

3

4

0

0.02

0.04

0.06

0.08

0.1

−500

0

500

1000

y
t

u

(b)

Figure 6.17: The non-periodic KdV equation with the boundary conditions u(±L, t) = 0 and

uy(L, t) = 0 and the single soliton initial solution (6.22), solved using Tappert’s split-step method

with N = 128 and ∆t = 0.00001.
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If we compare these results with the results of the periodic problem (Figures 6.1,

6.4, 6.7 and Figure 6.10) we see that the behaviour of the solitary wave is similar

until reaching the boundary. In the periodic case the soliton reaches the boundary and

emerges from the opposing boundary with the same amplitude and speed and continues

to travel in the same direction. In the non-periodic case (Figure 6.17) the soliton travels

with constant speed and amplitude until it reaches the boundary, at time t u 0.0185,

and then it is reflected and it starts to lose energy and disperse.

The program was then repeated for the double soliton initial solution of the form

u(x, 0) = 3A2sech2

(
1

2
Axπ

)
+ 3B2sech2

(
1

2
B(xπ − 1)

)
, (6.23)

where A = 15 and B = 10, and the output is given by Figure 6.18(a), which is then

rotated to produce Figure 6.18(b).

If we compare these results to the periodic problem (Figures 6.2, 6.5 and Figure 6.8)

we see that for the non-periodic problem (Figure 6.18), both solitons travel without

losing energy until they collide with the boundary. After colliding with the boundary,

at time t u 0.0255, the waves start to lose energy and disperse.

The single soliton solution collides with the boundary when t u 0.0185, and the

numerical Euclidean norm calculations, given in Table 6.8, show that after the solution

is reflected back from the boundary, it continues to lose energy and disperse. This is

reflected both in the graphical output, given by Figure 6.17, and in the numerical norm

calculations, given in Table 6.8 at time intervals of t = 0.005 up to t = 0.100. Table

6.9 gives the normalised Euclidean norm calculations for the single soliton solution for

the period 0.0150 6 t 6 0.0200 within which the collision with the boundary occurs, in

time intervals of 0.0005.

Similarly, the double soliton initial solution travels uniformly until the collision with

the boundary at t u 0.0255, and thereafter the Euclidean norm values decrease as the

solution disperses. Table 6.10 gives the normalised Euclidean norms for the double

soliton solution for the period 0.0230 6 t 6 0.0280 within which the collision with the

boundary occurs.
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Figure 6.18: The non-periodic KdV equation with the boundary conditions u(±L, t) = 0 and

uy(L, t) = 0 and the double soliton initial solution (6.23), solved using Tappert’s split-step method

with N = 128 and ∆t = 0.00001.
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t Single Soliton Double Soliton

0 1.0000 1.0000

0.005 1.0457 1.0111

0.010 1.1356 1.0391

0.015 1.3603 1.1005

0.020 1.5898 1.2269

0.025 1.2219 1.6562

0.030 1.1074 1.2972

0.035 1.0806 1.1532

0.040 1.0417 1.1309

0.045 0.9610 1.1327

0.050 0.8503 1.1227

0.055 0.7717 1.0892

0.060 0.7072 1.0025

0.065 0.6760 0.9013

0.070 0.6721 0.8605

0.075 0.5751 0.7765

0.080 0.5802 0.7501

0.085 0.5217 0.7237

0.090 0.5322 0.7321

0.095 0.5243 0.6515

0.100 0.4454 0.6686

Table 6.8: The normalised Euclidean norms for the non-periodic KdV equation, with the boundary

conditions u(±L, t) = 0 and uy(L, t) = 0, given by Figure 6.17 and Figure 6.18, solved using Tappert’s

split-step method with N = 128 and ∆t = 0.00001.
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t Single Soliton

0.0150 1.3603

0.0155 1.4052

0.0160 1.4601

0.0165 1.5277

0.0170 1.6078

0.0175 1.6889

0.0180 1.7437

0.0185 1.7501

0.0190 1.7131

0.0195 1.6539

0.0200 1.5898

Table 6.9: The normalised Euclidean

norms for the non-periodic KdV equation

with the boundary conditions u(±L, t) = 0

and uy(L, t) = 0, given by Figure 6.17, for

the single soliton initial solution (6.22) and

the period 0.0150 6 t 6 0.0200 including the

collision of the soliton with the boundary at

t = 0.0185.

t Double Soliton

0.0230 1.4168

0.0235 1.4752

0.0240 1.5440

0.0245 1.6124

0.0250 1.6562

0.0255 1.6582

0.0260 1.6248

0.0265 1.5745

0.0270 1.5213

0.0275 1.4718

0.0280 1.4271

Table 6.10: The normalised Euclidean

norms for the non-periodic KdV equation

with the boundary conditions u(±L, t) = 0

and uy(L, t) = 0, given by Figure 6.18, for

the double soliton initial solution (6.23) and

the period 0.0230 6 t 6 0.0280 including the

collision with the boundary at t = 0.0255.

An Alternative Split-Step Method

We now consider the effect of swapping the order of the steps and advancing the solution

according to the linear terms first. Since the boundary conditions are imposed at each

half-step, we expect the swapping to have no effect, and this is indeed what we find.

The problem we consider is given by

ut + uuy + uyyy = 0 , u(y, 0) = u0(y) , t > 0 , y ∈ [−L,L] ,

u(−L, t) = 0 , u(L, t) = 0 , uy(L, t) = 0 .

We follow the example for the single soliton exactly, whose results are given by Figure

6.17, Table 6.8 and Table 6.9, but reverse the order of the steps. Hence the first step
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advances the solution according to the linear terms using an implicit Crank-Nicolson

scheme, and the second half advances the updated solution according to the nonlinear

terms, using the classical fourth-order Runge-Kutta scheme. The program was run using

128 grid points, ∆t = 0.00001 and L = π. The problem was transformed to the domain

[−1, 1], and the initial solution was given by

u(x, 0) = 3A2sech2

(
1

2
A(xπ − 1)

)
, (6.24)

where A = 15. The numerical output is given by Figure 6.19.
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Figure 6.19: The non-periodic KdV equation with the boundary conditions u(±L, t) = 0 and

uy(L, t) = 0 and the single soliton initial solution (6.24), solved using Tappert’s split-step method

with the order of the steps reversed, N = 128 and ∆t = 0.00001.

The numerical calculations for the normalised Euclidean norms are given in Table

6.11 at time intervals of t = 0.005 up to t = 0.100, and can be compared to the results

for the single soliton given in Table 6.8. Table 6.12 gives the values for the time period

0.0150 6 t 6 0.0200, including the collision of the soliton with the boundary at time

t = 0.0185, and can be compared to the results in Table 6.9.

If we compare the two schemes we conclude that preliminary results indicate that

swapping the steps appears to have very little effect on the dissipation of energy of the

solution.
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t Single Soliton

0 1.0000

0.005 1.0457

0.010 1.1356

0.015 1.3605

0.020 1.5947

0.025 1.2227

0.030 1.1076

0.035 1.0811

0.040 1.0423

0.045 0.9611

0.050 0.8513

0.055 0.7718

0.060 0.7076

0.065 0.6763

0.070 0.6716

0.075 0.5752

0.080 0.5803

0.085 0.5220

0.090 0.5324

0.095 0.5246

0.100 0.4454

Table 6.11: The normalised Euclidean

norms of the numerical results, for the non-

periodic KdV equation with the boundary

conditions u(±L, t) = 0 and uy(L, t) = 0,

given by Figure 6.19, solved using Tappert’s

split-step method with the order of the steps

reversed, N = 128 and ∆t = 0.00001.

t Single Soliton

0.0150 1.3605

0.0155 1.4054

0.0160 1.4603

0.0165 1.5282

0.0170 1.6091

0.0175 1.6920

0.0180 1.7494

0.0185 1.7574

0.0190 1.7203

0.0195 1.6600

0.0200 1.5947

Table 6.12: The normalised Euclidean

norms for the non-periodic KdV equation

with the boundary conditions u(±L, t) = 0

and uy(L, t) = 0, given by Figure 6.19, for

the single soliton initial solution (6.24) and

the period 0.0150 6 t 6 0.0200 including the

collision of the soliton with the boundary at

t = 0.0185.
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6.2.2 Non-Homogeneous Uncoupled Boundary Conditions

We now consider the third order nonlinear problem

ut + uuy + uyyy = 0 , u(y, 0) = u0(y) , t > 0 , y ∈ [−L,L] ,

u(−L, t) = a , u(L, t) = b , uy(L, t) = c ,

for some given smooth function u0(y) and constants a, b and c. Transforming the problem

to [−1, 1], by substituting x = y/L, gives

ut + 1
L
uux +

(
1
L

)3
uxxx = 0 , u(x, 0) = u0(x) , t > 0 , x ∈ [−1, 1] , (6.25a)

u(−1, t) = a , u(1, t) = b , ux(1, t) = Lc = d , (6.25b)

for some given smooth function u0(x) and constant d. This problem is solved numeri-

cally, using exactly the same approach that was used in Section 6.2, but the imposition

of the boundary conditions follows the method that was presented in Section 5.1.1 for

equation (5.4).

The first step is the advancement of the solution according to the nonlinear term. The

boundary conditions are imposed according to equation (5.5). The equivalent problem

in terms of q(x, t) is given by

qt = − 1

L

[
1

2
(x− 1)

(
q2

)
x

+ q2 +
1

(x− 1)
qh + qxh + qhx +

1

(x− 1)
hhx

]
= f(q) ,

where

h(x) =

(
a + 2d− b

4

)
x2 +

(
b− a

2

)
x +

(
3b + a− 2d

4

)
,

and q(±1, t) = 0. Given an initial condition u(x, 0) we define q(x, 0) (on the interior

points) as q(xj) =
u(xj)−h(xj)

(xj−1)
, and following the standard procedure, advance the solution

in time using the classical fourth-order Runge-Kutta formula (6.13). The resulting

solution u(x, t) is then used as the initial solution for the second half of the step and

advanced according to the linear term in equation (6.25a). A backward Euler scheme is

used and the boundary conditions imposed according to equation (5.5). The numerical

solution to this follows immediately from the general form of the problem solved in

Section 5.1.2.
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The first result, given by Figure 6.20(a) and rotated to produce Figure 6.20(b), was

obtained by imposing the initial condition

u(x, 0) = 3A2sech2

(
1

2
A

(
xπ − 5

2

))
, (6.26)

where A = 15, ∆t = 0.00001, L = π and N = 128. The boundary conditions were

chosen with a = 0 and b = 0.1785, according to the exact values of (6.26) at the two

end points x = −1 and x = 1 respectively, and d = −8.4118 which is the exact value of

ux(1, 0). It follows that for the corresponding problem on [−L,L], c = −2.6776.

The program was then repeated for the initial condition

u(x, 0) = 3A2sech2

(
1

2
A

(
xπ +

5

2

))
, (6.27)

with the boundary conditions given by a = 0.1785, b = 0 and d = 0. The numerical

output is given by Figure 6.21(a), which was then rotated to produce Figure 6.21(b).

The normalised Euclidean norms for both examples, are given in Table 6.13. The

results demonstrate the dispersive nature of the solution, with similar behaviour to the

initial solution of the equivalent homogeneous problem (Figure 6.17, Table 6.8).

The particular choice of a, b and c was motivated by the initial condition. To analyse

the example in greater detail, we examine the Euclidean norm given by

1

2

d

dt
||u(y, t)||22 =

[
1

2
u2

y − uuyy − 1

3
u3

]L

−L

. (6.28)

Imposing the boundary conditions u(−L, t) = a, u(L, t) = b and uy(L, t) = c reduces

(6.28) to the following

1

2

d

dt
||u(y, t)||22 =

1

2
c2 − buyy(L, t)− 1

3
b3 − 1

2
u2

y(−L, t) + auyy(−L, t) +
1

3
a3 .
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Figure 6.20: The non-periodic KdV equation with the boundary conditions u(−L, t) = 0, u(L, t) =

0.1785 and uy(L, t) = −2.6776 with the single soliton initial solution (6.26), solved using Tappert’s

split-step method with N = 128 and ∆t = 0.00001.
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Figure 6.21: The non-periodic KdV equation with the boundary conditions u(−L, t) = 0.1785,

u(L, t) = 0 and uy(L, t) = 0 with the single soliton initial solution (6.27), solved using Tappert’s

split-step method with N = 128 and ∆t = 0.00001.
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Single Soliton

t a = 0 , b = 0.1785 , c = −2.6776 a = 0.1785 , b = 0 , c = 0

0 1.0000 1.0000

0.005 1.3469 0.8643

0.010 0.9314 0.7988

0.015 0.7950 0.7616

0.020 0.7423 0.7406

0.025 0.7215 0.7316

0.030 0.6803 0.7330

0.035 0.6289 0.7462

0.040 0.5886 0.7760

0.045 0.5639 0.8366

0.050 0.5161 0.9875

0.055 0.4644 1.0943

0.060 0.4582 0.8308

0.065 0.4297 0.7326

0.070 0.3976 0.6910

0.075 0.3796 0.6664

0.080 0.3942 0.6280

0.085 0.3417 0.6177

0.090 0.3400 0.5600

0.095 0.3346 0.5445

0.100 0.3095 0.5017

Table 6.13: The normalised Euclidean norms of the numerical results for the non-periodic KdV equa-

tion with the boundary conditions u(−L, t) = a, u(L, t) = b and uy(L, t) = c, given by Figure 6.20 and

Figure 6.21, solved using Tappert’s split-step method with N = 128 and ∆t = 0.00001.

235



The particular boundary conditions chosen according to the initial solution (6.26),

generalise to the case where a = 0, b > 0 and c < 0. Hence for this example

1

2

d

dt
||u(y, t)||22 =

1

2
c2 − buyy(L, t)− 1

3
b3 − 1

2
u2

y(−L, t) .

Similarly, the particular boundary conditions chosen according to the initial solution

(6.27), generalise to the case where a > 0, b = 0 and c = 0. Hence

1

2

d

dt
||u(y, t)||22 = −1

2
u2

y(−L, t) + auyy(−L, t) +
1

3
a2 .

Given we do not know the signs of uyy(±L, t) or uy(−L, t) we cannot predict for either

example how the wave should evolve, but the numerical investigation for both cases

indicates strongly that the problems are dispersive in nature.

If we consider again equation (6.28), we see that the problematic terms in analysing

the sign of 1
2

d
dt
||u(y, t)||22 are primarily those involving uyy(±L, t). However, even if

a = b = 0 then

1

2

d

dt
||u(y, t)||22 =

1

2
c2 − 1

2
u2

y(−L, t) ,

and we could still not conclude anything about 1
2

d
dt
||u(y, t)||22 unless we knew how the

value of 1
2
u2

y(−L, t) compared to the value of c.

6.2.3 Non-Homogeneous Time-Dependent Uncoupled

Boundary Conditions

We now consider the following third order nonlinear problem

ut + uuy + uyyy = 0 , u(y, 0) = u0(y) , t > 0 , y ∈ [−1, 1] ,

u(−1, t) = f(t) , u(1, t) = 0 , uy(1, t) = 0 ,

where f(t) is a prescribed time-dependent function. For the first half of the split-step

procedure, the boundary conditions are imposed using the following polynomial trick

u(y, t) =
1

2
(1− y)q(y, t) , q(1, t) = 0 , q(−1, t) = f(t) .

The equivalent problem in terms of q(y, t) is therefore given by

qt(y, t) = −1

4
(1− y)(q2)y(y, t) +

1

2
q2(y, t) = f(q, t) .
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Given an initial condition u(yj, 0), 0 6 j 6 N , define q(yj, 0) =
2u(yj ,0)

1−yj
, 1 6 j 6 N − 1.

The standard fourth order Runge-Kutta formulae, given by (6.13), is used to advance

the solution half of the time-step:

d(1) =
∆t

2
f(q̂n) = −∆t

8
(1− y)(q2

n)y +
∆t

4
q2
n ,

d(2) =
∆t

2
f

(
q̂n +

d(1)

2

)
= −∆t

8
(1− y)

(
qn +

1

2
d(1)

)2

y

+
∆t

4

(
qn +

1

2
d(1)

)2

,

d(3) =
∆t

2
f

(
q̂n +

d(2)

2

)
= −∆t

8
(1− y)

(
qn +

1

2
d(2)

)2

y

+
∆t

4

(
qn +

1

2
d(2)

)2

,

d(4) =
∆t

2
f(q̂n + d(3)) = −∆t

8
(1− y)

(
qn + d(3)

)2

y
+

∆t

4

(
qn + d(3)

)2
.

Therefore

q

(
yj, t +

∆t

2

)
=

[
0; q

(
yj, t +

∆t

2

)
; f(t)

]
, 1 6 j 6 N − 1 ,

and thus

u

(
yj, t +

∆t

2

)
=

1

2
(1− yj)q

(
yj, t +

∆t

2

)
, 0 6 j 6 N .

To advance the solution the remaining half of the time step a Backward Euler formula

is used:

uyyy(yj, t + ∆t) +
2

∆t
u(yj, t + ∆t) =

2

∆t
u

(
yj, t +

∆t

2

)
,

where

u(−1, t + ∆t) = f(t) , u(1, t + ∆t) = 0 , uy(1, t + ∆t) = 0 .

The boundary conditions are imposed by letting

u(yj, t + ∆t) = (yj − 1)q(yj, t + ∆t) + f(t)

(
y2

j

4
− yj

2
+

1

4

)
,

where q(±1, t) = 0. Hence

(yj − 1)qyyy (yj, t + ∆t) + 3qyy (yj, t + ∆t) +
2

∆t
(yj − 1)q (yj, t + ∆t)

+
2

∆t
f(t)

(
y2

j

4
− yj

2
+

1

4

)
=

2

∆t
u

(
yj, t +

∆t

2

)
.
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This equation is solved for q (yj, t + ∆t) using the formula

q(yj, t + ∆t) = L−1f ,

where

L = diag(yj − 1)D̃3
N + 3D̃2

N +
2

∆t
diag(yj − 1)D̃0

N ,

f =
2

∆t
u

(
yj, t +

∆t

2

)
− 2

∆t
f(t)

(
y2

j

4
− yj

2
+

1

4

)
.

The solution u (yj, t + ∆t) is therefore given by

u(yj, t + ∆t) = (yj − 1)q(yj, t + ∆t)

(
y2

j

4
− yj

2
+

1

4

)
.

The spatial domain was discretised by 128 grid points, a time step ∆t = 0.00001 was

used along with f(t) = sin(t) and the initial solution was taken to be

u(y, 0) = 3A2sech2

(
1

2
Ay

)
, (6.29)

where A = 15. The output obtained is given by Figure 6.22(a), which is then rotated

and presented for time up to t = 0.025 only, to produce Figure 6.22(b).

The normalised numerical Euclidean norms were calculated at every time interval,

and Table 6.14 shows the values obtained starting with the initial solution, and thereafter

in time intervals of t = 0.005.

If we consider the formula for the Euclidean norm, given by (6.7) for the domain

[−1, 1], then the boundary conditions u(−1, t) = sin(t), u(1, t) = 0 and uy(1, t) = 0

reduce equation (6.7) to the following

1

2

d

dt
||u(y, t)||22 = −1

2
u2

y(−1, t) + sin(t)uyy(−1, t) +
1

3
(sin(t))3 ,

and therefore, with just the knowledge of the boundary conditions, we cannot conclude

anything about the sign of d
dt
||u(y, t)||22. However, the numerical analysis shows the

problem to be highly dispersive in nature.
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Figure 6.22: The non-periodic KdV equation with the time-dependent boundary conditions u(−1, t) =

sin(t), u(1, t) = 0 and uy(1, t) = 0 and the initial solution (6.29), solved using Tappert’s split-step

method with N = 128 and ∆t = 0.00001.
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t Single Soliton

0 1.0000

0.005 1.0875

0.010 1.1426

0.015 0.9268

0.020 0.7717

0.025 0.5755

0.030 0.5881

0.035 0.4148

0.040 0.4114

0.045 0.3748

0.050 0.3328

0.055 0.2973

0.060 0.2681

0.065 0.2438

0.070 0.2235

0.075 0.2062

0.080 0.1914

0.085 0.1785

0.090 0.1673

0.095 0.1573

0.100 0.1485

Table 6.14: The normalised Euclidean norms of the numerical results for the non-periodic KdV equa-

tion with the time-dependent boundary conditions u(−1, t) = sin(t), u(1, t) = 0 and uy(1, t) = 0, given

by Figure 6.22, solved using Tappert’s split-step method with N = 128 and ∆t = 0.00001.
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6.2.4 Coupled Boundary Conditions

We now construct a numerical method for approximating the solution of the KdV equa-

tion with coupled boundary conditions. The problem that we consider is given by

ut + uuy + uyyy = 0 , u(y, 0) = u0(y) , t > 0 , [−L,L] ,

u(−L, t) = 0 , u(L, t) = 0 , uy(L, t) = αuy(−L, t) .

This problem was considered in Section 3.2.4 where it was explained that α can take any

value. It is the most difficult of the examples examined in terms of numerical modelling.

The split-step method of Tappert is used to solve this problem, and the imposition

of the coupled boundary condition is restricted to the linear step. Hence at each time

level, the solution is advanced according to the nonlinear terms of the equation, but

only the Dirichlet boundary conditions are imposed. The solution that then results is

treated as the initial solution for the advancement of the solution the final half of the

step according to the linear terms, and all three boundary conditions are imposed. We

therefore anticipate a lack of accuracy from this scheme.

The problem is transformed to [−1, 1] by letting x = y/L to give

ut + 1
L
uux +

(
1
L

)3
uxxx = 0 , u(x, 0) = u0(x) , t > 0 , [−1, 1] , (6.30a)

u(−1, t) = 0 , u(1, t) = 0 , ux(1, t) = αux(−1, t) . (6.30b)

For the first half of the step, the fourth-order Runge-Kutta formula is applied to u(x, 0),

defined on the interior grid points of the interval [−1, 1], according to the formula

un+1(x, t) = un(x, t) +
1

6

(
d(1) + 2

(
d(2) + d(3)

)
+ d(4)

)
,

where

d(1) = −∆t

4L

(
u2

n(x, t)
)

x
,

d(2) = −∆t

4L

(
un(x, t) +

1

2
d(1)

)2

x

,

d(3) = −∆t

4L

(
un(x, t) +

1

2
d(2)

)2

x

,

d(4) = −∆t

4L

(
un(x, t) + d(3)

)2

x
.
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This achieves the solution u
(
x, t + ∆t

2

)
. The solution is advanced the remaining half

of the time step using the linear part of the equation and a Backward Euler scheme,

according to the equation

ut +

(
1

L

)3

uxxx = 0 .

Advancing the solution half a time-step, implies that

(
D3

N + L3

(
2

∆t

)
D0

N

)
u (x, t + ∆t) = L3

(
2

∆t

)
u

(
x, t +

∆t

2

)
.

Hence, the problem to be solved is of the form

(
D3

N + L3

(
2

∆t

)
D0

N

)
uj = fj , 0 6 j 6 N ,

where uj = u (xj, t + ∆t) and fj = L3
(

2
∆t

)
u

(
xj, t + ∆t

2

)
. The procedure for imposing

all three boundary conditions, follows identically the method applied to equation (5.6),

by replacing D3
N with

(
D3

N + L3
(

2
∆t

)
D0

N

)
. This achieves the solution u(x, t + ∆t).

The analysis of the Euclidean norm yields expression (3.44), evaluated for the domain

[−L,L], and shows that the stability of the solution u(x, t) depends on the value of the

constant α:

• |α| > 1 ⇒ the energy of the solution u(x, t) grows as t →∞,

• α = 1 ⇒ the energy of the solution u(x, t) is conserved as t →∞,

• |α| < 1 ⇒ the energy of the solution u(x, t) is dispersed as t →∞.

The program was run using 128 grid points and a time-step of ∆t = 0.00001. The initial

soliton solution, given by

u(x, 0) = 3A2sech2

(
1

2
A(xπ − 1)

)
, (6.31)

where A = 15, was used in all cases and the results plotted on the domain [−π, π]. The

outputs, for different values of α, are given by Figures 6.23, 6.24, 6.25 and Figure 6.26.

The normalised Euclidean norms, for all the cases, are given in Table 6.15, for time

increments of 0.005 up to the time t = 0.070.
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Figure 6.23: The non-periodic KdV equation with initial solution (6.31) and the coupled boundary

conditions (6.30b) with α = −2, solved using Tappert’s split-step method with N = 128 and ∆t =

0.00001. The soliton reaches the boundary when t u 0.0195.
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Figure 6.24: The non-periodic KdV equation with initial solution (6.31) and the coupled boundary

conditions (6.30b) with α = 0, solved using Tappert’s split-step method with N = 128 and ∆t =

0.00001. The soliton reaches the boundary when t u 0.0185.
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Figure 6.25: The non-periodic KdV equation with initial solution (6.31) and the coupled boundary

conditions (6.30b) with α = 1, solved using Tappert’s split-step method with N = 256 and ∆t =

0.000005. The soliton reaches the boundary when t u 0.0185.
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Figure 6.26: The non-periodic KdV equation with initial solution (6.31) and the coupled boundary

conditions (6.30b) with α = 2, solved using Tappert’s split-step method with N = 128 and ∆t =

0.00001. The soliton reaches the boundary when t u 0.0190.
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t α = −2 α = 0 α = 1 α = 2

0 1.0000 1.0000 1.0000 1.0000

0.005 1.1189 1.0312 1.0380 1.0628

0.010 1.1429 1.1022 1.1179 1.1786

0.015 1.2877 1.2825 1.3182 1.2954

0.020 1.5816 1.4981 1.5361 1.5112

0.025 1.1281 1.0940 1.1490 1.1827

0.030 1.0206 0.9583 1.0212 1.0228

0.035 0.9760 0.9048 0.9943 1.0623

0.040 1.2215 0.8639 0.9975 1.1312

0.045 1.2089 0.8071 0.9934 1.1855

0.050 1.3162 0.7908 1.0293 1.3926

0.055 1.3996 0.7074 1.0226 1.3528

0.060 1.4683 0.6809 1.0214 1.6641

0.065 1.5837 0.6344 0.9425 1.6473

0.070 1.7094 0.5807 1.0109 1.7304

Table 6.15: The normalised Euclidean norms of the numerical results for the non-periodic KdV equa-

tion with the single soliton initial solution (6.31) and the coupled boundary conditions u(±1, t) = 0

and ux(1, t) = αux(−1, t), given by Figures 6.23, 6.24, 6.25 and Figure 6.26, solved using Tappert’s

split-step method.

The program was then repeated under the same conditions, but with the double

soliton initial solution of the form

u(x, 0) = 3A2sech2

(
1

2
Axπ

)
+ 3B2sech2

(
1

2
B(xπ − 1)

)
, (6.32)

where A = 15 and B = 10. The outputs are given by Figures 6.27, 6.28, 6.29 and Figure

6.30 and the numerical normalised Euclidean norms are tabulated in Table 6.16.
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Figure 6.27: The non-periodic KdV equation with initial solution (6.32) and the coupled boundary

conditions (6.30b) with α = −2, solved using Tappert’s split-step method with N = 128 and ∆t =

0.00001. The solitons first collide when t u 0.0120 and then collide with the boundary when t u 0.0255.
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Figure 6.28: The non-periodic KdV equation with initial solution (6.32) and the coupled boundary

conditions (6.30b) with α = 0, solved using Tappert’s split-step method with N = 128 and ∆t =

0.00001. The solitons first collide when t u 0.0120 and then collide with the boundary when t u 0.0255.
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Figure 6.29: The non-periodic KdV equation with initial solution (6.32) and the coupled boundary

conditions (6.30b) with α = 1, solved using Tappert’s split-step method with N = 256 and ∆t =

0.000005. The solitons first collide when t u 0.0120 and then collide with the boundary when t u 0.0255.
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Figure 6.30: The non-periodic KdV equation with initial solution (6.32) and the coupled boundary

conditions (6.30b) with α = 2, solved using Tappert’s split-step method with N = 128 and ∆t =

0.00001. The solitons first collide when t u 0.0120 and then collide with the boundary when t u 0.0260.
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t α = −2 α = 0 α = 1 α = 2

0 1.0000 1.0000 1.0000 1.0000

0.005 1.0033 1.0004 1.0049 1.0058

0.010 1.0267 1.0198 1.0282 1.0256

0.015 1.0752 1.0736 1.0854 1.0795

0.020 1.1763 1.1756 1.1979 1.1767

0.025 1.5182 1.5184 1.5820 1.5148

0.030 1.2036 1.2007 1.2413 1.2057

0.035 1.0410 1.0097 1.0685 1.0033

0.040 0.9894 0.9512 1.0274 0.9565

0.045 1.0095 0.9550 1.0600 1.0040

0.050 1.1485 0.9737 1.1115 1.0690

0.055 1.1776 0.9340 1.0668 1.1939

0.060 1.1604 0.8836 1.0657 1.2783

0.065 1.2678 0.8173 1.0201 1.3533

0.070 1.3998 0.7477 1.0403 1.4246

0.075 1.5278 0.7085 0.9640 1.4112

0.080 1.4182 0.6862 0.9540 1.8814

0.085 2.0672 0.6398 0.9961 1.8692

0.090 2.1647 0.6447 0.9348 4.6602

Table 6.16: The normalised Euclidean norms of the numerical results for the non-periodic KdV equa-

tion with the double soliton initial solution (6.32) and the coupled boundary conditions u(±1, t) = 0

and ux(1, t) = αux(−1, t), given by Figures 6.27, 6.28, 6.29 and Figure 6.30, solved using Tappert’s

split-step method.

The cases where α = 0, correspond directly to the problem with boundary conditions

u(±L, t) = 0 and uy(L, t) = 0 studied earlier, and the outputs given by Figure 6.24

and Figure 6.28 can be compared to Figure 6.17 and Figure 6.18 respectively. The

normalised Euclidean norms for α = 0, in Table 6.15 and Table 6.16, correspond to

the general case where |α| < 1, and demonstrate the dissipative nature of the solution

under this condition. The single soliton travels uniformly until reaching the boundary at
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time t u 0.0185, and thereafter continues to lose energy and disperse. The results show

that the Euclidean norm increases in value up until the collision with the boundary.

The double solitons travel with constant speed and direction, pass through each others

path at time t u 0.0120 and continue to travel uniformly, with increasing Euclidean

norms, until the collision with the boundary at time t u 0.0260. The collisions with the

boundaries occur at exactly the same times for the equivalent programs with outputs

given by Figure 6.17 and Figure 6.18 and coincide, for all cases, with the value of the

Euclidean norm being at its maximum. For both the single and double soliton solutions,

after the collision with the boundary the energy is gradually dispersed.

If we compare the results for α = 0 in Table 6.15 and Table 6.16, with the numerical

results given in Table 6.8, we see that the rate of dispersion is greater from this scheme

that uses the Backward Euler approach for the linear half of the time-step. The results

shown in Table 6.8, were obtained from applying the split-step method with a Crank-

Nicolson scheme for advancing the solution according to the linear terms.

When α = 1, the boundary conditions are u(−L, t) = u(L, t) = 0 and uy(−L, t) =

uy(L, t), and are very nearly periodic. However, they are not periodic and it is this

crucial difference that makes this a much harder problem to treat numerically. Figure

6.25 and Figure 6.29, along with the norm calculations, confirm the conservative nature

of the solution. In both cases, for the single and double soliton initial solutions, the

program was run using 256 grid points and ∆t = 0.000005. The norm values increase

up until the collision of the solutions with the boundary, indicating an increase in energy.

For the single soliton, given by (6.31), this collision occurs when t u 0.0185, and for the

double soliton solution, given by (6.32), the collision with the boundary occurs when

t u 0.0255. After the collision, the values decrease slightly but stay consistently close

to 1, sufficiently satisfying the conservation of energy law, given by (6.9).

When |α| > 1, the numerical calculations for α = −2 and α = 2, demonstrate the

increasing energy of the wave and the instability of the schemes. For the single soliton

solution, the numerical results for α = −2 and α = 2 become unstable for t > 0.070.

Similarly, for the double soliton, the solution blows-up by the time t = 0.095 for both

α = ±2. We stress once again that the inaccuracy of the scheme is due to the imposition

of only the Dirichlet boundary conditions for the first nonlinear step.
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Chapter 7

Conclusions and Further Work

This work started from the initial idea of a study of the behaviour of the solutions of

the KdV equation on a bounded domain. However, it quickly became clear that first

of all it was necessary to acquire a detailed knowledge of the solution of the linearised

problem, subject to a variety of boundary conditions.

Although these are classical problems and many second order examples are exten-

sively treated in the literature, the classical methods are not naturally or easily gener-

alisable to higher order, and in particular to odd order problems. We were led to their

investigation (or re-investigation) because of the appearance of a new method for their

study, due to Fokas, which offered an alternative way to consider them, as well as an

alternative, integral representation of their solution, valid in general.

The research therefore naturally split into two parts: the analysis of the solution

of the two-point boundary value problems for linear evolution PDEs, using the new

method of Fokas and comparing it with the available classical results, and the problem

of the numerical imposition of boundary conditions for linear and integrable nonlinear

evolution PDEs. In particular, interesting results were obtained for third order problems,

which paved the way for the numerical treatment of the KdV equation on a finite domain.

For second order two-point boundary value problems, it has been shown that, in

agreement with classical theory, the method can be used to derive the infinite series

representation of the solution, which always exists. This series solution can be achieved

in two ways. Firstly, the algorithmic construction of the solution, and the analysis of

the system of global relations, yields the appropriate basis of eigenfunctions. Using

additional information on this basis, coming from classical functional analysis, one then
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obtains the solution as an infinite series. Alternatively, the contours of integration, in

the integral representation of the solution, can be deformed to the real line. During this

process one acquires a series term due to the explicit computation of the residues at the

zeros of a certain function ∆(k), which is always a linear combination of exponential

functions.

For third order problems the integral representation of the solution is only equivalent

to an infinite discrete series, in the cases for which the boundary conditions couple the

two end points of the interval. This has been illustrated for the simple case in which

the boundary conditions are periodic, quasi-periodic and also for a more general case

of coupled boundary conditions. It has been shown how in general, the derivation of

the solution representation depends on the location in the complex k-plane of the zeros

of the determinant function ∆(k). For uncoupled boundary conditions, we showed that

it is not possible to deform the integral representation of the solution to an infinite

series. However, this integral representation of the solution can alternatively be written

as the sum of an integral term along the real line and a complex contour in the upper

half complex k-plane, and a series term due to the explicit computation of the residue

contributions at the zeros that lie in the lower half complex k-plane.

Finally, we studied, in some detail, the spectral representation of two-point boundary

value problems for fourth order linear evolution PDEs. The examples presented illustrate

the two classes of problems that arise in the case of a fourth order differential operator,

characterised by whether or not the operator is self-adjoint. It has been shown that

regardless of whether or not the boundary conditions give rise to a self-adjoint operator,

the Fokas transform method can be used to achieve the solution as an infinite discrete

series.

In summary, the only cases presented, for which the Fokas transform method fails to

achieve a series representation of the solution, are the third order problems, for which

the boundary conditions are uncoupled. Of all the cases considered, these are the only

ones for which the classical theory does not have a positive answer: there are to our

knowledge no results implying that such a series representation must exist. In all other

cases the method presents a fast and efficient algorithmic approach, for the derivation

of the integral representation of the solution, involving complex contours of integration,

along with the infinite discrete series representation of the solution.
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As a final result, it has been proven that the effective discrete spectrum of a PDE

boundary value problem, defined as the set of zeros of the determinant function ∆(k),

coincides with the classical discrete spectrum of the operator associated with the PDE,

equipped with the same boundary conditions. A general result regarding the location

in the complex k-plane of the zeros of the determinant function ∆(k), has also been

addressed, and generalised for the nth order case.

The secondary interest of the research presented has been the construction of nu-

merical schemes, using spectral methods, for modelling two-point linear and nonlinear

boundary value problems. In particular, we focused on the KdV equation since in this

case, due to a lack of symmetry, it is more difficult to impose boundary conditions and

we had to adopt a series of tricks to do so.

For third and fourth order linear ODE boundary value problems, the primary inter-

est of the numerical schemes has been on the explicit imposition of a wide variety of

boundary conditions, using either a simple polynomial trick, or via the manipulation of

the specific rows and columns of the Chebyshev differentiation matrices. This approach

is very versatile and all of the schemes that have been presented can be adapted to

accommodate a wide variety of boundary conditions, that have not been discussed in

this work. For the fourth order linear ODE boundary value problems, the work follows

closely the approach outlined by Weideman [51].

This approach for the imposition of the boundary conditions is not the only method

that can be used, and we have also discussed the implicit imposition of boundary con-

ditions by means of discrete numerical transforms. The examples of the discrete sine

transform and the discrete cosine transform have been presented, and in the case of

Dirichlet or Neumann boundary conditions, this alternative approach offers a fast and

efficient method for solving boundary value problems. Indeed, it is clear that if the

boundary conditions are periodic, Dirichlet or Neumann in form, then they can be im-

plicitly imposed by using the discrete Fourier, sine or cosine transforms respectively. It

is natural then to seek transforms that can be used to impose implicitly more general

boundary conditions. Since the method of Fokas, used in this work, yields constructively

the appropriate eigenfunction basis, it is possible that this kind of approach will yield an

alternative numerical way to solve boundary value problems, by using first appropriate

approximation techniques for the eigenvalues (that cannot be computed exactly).
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Another direction of investigation, departing from the usual series representation

starting point, is the idea of the direct numerical evaluation of the integral representation

which, we stress once more, can always be derived. Preliminary results in this direction

are very promising, and we intend to consider this possibility further for the case of the

boundary value problem analysed in this work.
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