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Abstract

Understanding charged polymer behaviour is fundamental in advancing our knowledge

of biological and synthetic polymers, including associating polymers. We first study

single-chain diblock polyampholytes (PA) that are asymmetric in either charge densi-

ties of the two blocks, or in block lengths but with equal charge densities on both sides.

In the former case, the increase in length requires higher energy to fold the longer

block. For strongly associating systems, near symmetric chains are globular, whereas

high asymmetric chains adopt bottle brush conformations.

In the latter case, we study chains that have an overall fixed charge fraction but carry

a net charge due to the difference in block lengths. At very low asymmetry the con-

formations of the PA chains follow the dense packing of electrostatic blobs, however

increasing the asymmetry leads to a net-charged oblong or a stretched PE core with

the opposite block wrapping around in a single helix, depending on charge strength.

Above a universal threshold around, wherein the longer block is 1.5 times the length of

the shorter block, the conformation transitions into a cigar-like, or PE helix wrapped

around an oppositely charged PE core (helix/PE core) head plus a polyelectrolyte tail

carrying excess charge.

Secondly, we study the aggregation of asymmetric diblock PA chains each carrying a
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net charge, and observe a repulsive behaviour over a wide range of chain lengths, chain

asymmetry and charge strengths. Using umbrella sampling we show that symmetric

polyampholytes favour association, however even slightly asymmetric chains exhibit re-

pulsion. We study the stability of pre-assembled aggregates consisting of number of

chains Npoly = 16. The aggregates eventually break up due to the electrostatic repul-

sion. If we introduce a certain amount of polyelectrolyte stabilisers, the aggregates are

much more stable.

Furthermore, we study ionomer systems composed of unentangled polyelectrolyte chains

with counterions and find the nature of Coulombic interactions leads to the formation

of large clusters with complex geometries. For increasing charge strength, we observe a

transition from dipoles, to head to tail aggregation, to double network. The dynamics

and rheological behaviour of the reversible double network systems are investigated and

understood from the microstructures of the systems.
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Chapter 1

Theoretical Background

1.1 Motivation

A polymer is a large molecule consisting of many subunits (monomers) that are cova-

lently bonded. The degree of polymerisation N defines the number of monomers on

a polymer chain and is generally a very large number. For example, a single strand

of DNA can be 2-3 metres long, yet only around 10−9 metres wide. A polymer is a

homopolymer if it consists of a single repeated unit, whereas a polymer with differing

monomers is a heteropolymer. The architecture of the polymers can be varied, from

linear, ring, stars to more complex formations such as dendrimers and Caley trees. In

this work we focus on linear polymers.

Polymers are abundant in nature, such as DNA and proteins, but can also be syn-

thetic. One special class of polymers are those with associative groups, as these exhibit

interesting features such as self healing, shape memory or stimuli sensitivity [1]. These

bonds are formed by these associative groups are physical, not chemical, and are re-

versible. Some examples include π − π stacking [2, 3], hydrogen bonding [4, 5, 6, 7]
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metal-ligand [8, 9, 10] and ionic interactions [11, 12, 13, 14]. In this work we focus on

charged polymers.

Charged polymers have ionizable groups. In certain conditions, for instance polar sol-

vents, these groups dissociate leaving charged monomers on the macromolecules and

counterions in the solvent [15, 16, 17, 18]. These polymers can be categorised into

two classes: polyelectrolytes (PEs) and polyampholytes (PAs). PEs strictly have ei-

ther positive or negative charges on the chains, whereas PAs contain both. These

charges can be distributed randomly along the polymer backbone, or be separated into

sections or blocks. Two examples of PEs are polystyrene sulfonate and DNA. PEs

have a wide range of applications, including rheology modifiers, absorbents, coatings,

biomedicine [19], colloidal stabilising agents and suspending agents for pharmaceutical

delivery systems [20]. An example of a polyampholyte is protein, in which both positive

and negative charges are present on a single polymer chain [15]. By varying the pH

value of the media, it is possible to synthesize polymers to be either weakly or strongly

charged, defined by the fraction f of charged monomers. At a particular pH, known as

the isoelectric point, polyampholytes have zero net charge [15]. It is possible to both

tune the density of charges along the backbone and the net valence of charged groups.

PAs can have differing architectures, such as charges being randomly or alternatively

distributed along the chain, or grouped into blocks of similarly charged monomers. The

individual blocks can be thought of as polyelectrolytes that are covalently bonded to

form block PAs.

Ionomers are flexible polymers with ionic groups distributed along the chain back-

bone, usually less than 10 mole percent. On the other hand, PEs typically have much

higher molar density of ionic groups. Representative examples of ionomers are Nafion
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and polystyrene sulfonate. Their ionic groups can form ionic clusters in low dielectric

solvents [21], which leads to retarded stress relaxation when compared with neutral

polymers of similar architectures [22, 23, 24]. The reversibility of ionic bonds allows

for the formation of self healing or shape memory materials [1]. There are numerous

applications for ionomers, such as rheology modifiers [25], batteries [26] and suspending

agents for drug delivery [27, 28].

Systems with very weak electrostatic interactions show no preference for ionic bonding

and thus behave as their neutral counterparts [17]. Chain charged groups and counteri-

ons undergo pairwise bonding to form dipoles when the electrostatic attraction energy

overcomes the entropic penalty [12]. Further increasing of the electrostatic interaction

strength leads to the formation of multiplets [12], and it is in this regime that ionic

clusters form in the charged polymer systems [21].

Polymeric solutions are created by dissolving polymers in solvent, and range from di-

lute, semi-dilute to concentrate solutions. In the dilute regime, intrachain behaviour

dominates the chain dynamics and the effects of inter-chain interactions can be con-

sidered negligible. In semi-dilute solutions, the interchain behaviour begins to play an

important role. Beyond this regime, we have concentrate polymer solution or even melt

in which inter-chain behaviour dominates. Supramolecular polymer networks can form

in both solutions and melts of associative polymers [29, 11, 30].

Depending on the concentration of polymer chains, the distribution of charged monomers

along the backbones, and the dielectric constant of the solvent, electrostatic interactions

can lead charged polymers to exhibit interesting behaviour such as aggregation, phase

separation or formation of percolated networks [29, 31, 32]. The long range electro-
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static interactions, coupled with neutral chain relaxation, leads to rich structural and

dynamical behaviour of charged polymer systems [14, 30, 33].

1.2 Overview

In the remainder of this chapter we provide an overview of polymer physics with a par-

ticular focus on chains with electrostatic interactions. In the next chapter we introduce

the simulation model and methodology, including some advanced simulation techniques

such as replica exchange molecular dynamics (REMD) and umbrella sampling used in

our study.

In Chapter 3 we study the effect that electrostatic interaction strength and structural

asymmetry have on the conformational behaviour of single-chain asymmetric diblock

polyampholytes. The chapter is split into two parts. Firstly, we study diblock chains

with a fixed positively charged block of length N+, with fraction of charged monomers

f+. Different charge fractions and chain lengths of the negatively charged block are

evaluated. We ensure that the chain is electro-neutral by ensuring N−f− = N+f+. In

the second part of Chapter 3, we study chains that have same block charge fractions

f− = f+ but still vary the number of monomers N−. Thus, the chains are capable

of carrying a net charge, and counterions are present to satisfy electro-neutrality. In

Chapter 4 we increase the density and study the aggregation behaviour of multi chain

asymmetric diblock polyampholytes, each carrying a net charge. We also study the

stability of many chain systems of pre assembled aggregates. In chapter 5 we study

the static, dynamic and rheological properties of Ionomers in melts. We focus on two

systems. Firstly we study so called telechelic chains, which have charges confined on

each end monomer. Secondly we study mixture systems consisting of half telechelic
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chains and the other half have a single charge on the central monomer, both of same

lengths.

1.3 Neutral Polymer Behaviour

The behaviour of charged polymers are determined by two contributing factors, the

neutral parent chain behaviour and the Coulombic interactions between charged objects.

These two separate contributions are often interfering with each other and lead to

difficulty in quantifying the behaviour of charged polymers. In this section we introduce

some important concepts relating to neutral polymer systems.

1.3.1 Brownian Motion

Brownian motion describes the behaviour of a molecule interacting with surrounding

particles, such as the relationship between a monomer and the solvent. Seemingly

random dynamical behaviour of pollen floating in water was first observed by Robert

Brown in 1827 [34]. In his 1905 paper, Einstein showed that this seemingly random

behaviour was due to the collision of surrounding water molecules with the pollen

particle. The diffusion process is governed by Fick’s law [35]

j(x, t) = −D∂c

∂x
(1.1)

where j(x, t) is the flux and D is the diffusion coefficient. Einstein derived the relation-

ship between the diffusion coefficient D and friction constant ζ for particles undergoing

Brownian motion.

D =
kBT

ζ
, (1.2)

where kB is the Boltzmann constant and T is the absolute temperature.
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Figure 1.1: Visualisation of the Rouse model.

1.3.2 The Langevin Equation

The motion of a particle in a solvent can be described by the Langevin equation [36]

m
d2ri
dt2

= −∇U(ri)− ζ
dri
dt

+ Γi(t), (1.3)

where −∇U(ri) are the pairwise interaction forces acting on the particle at position ri

by other particles, −ζ dri
dt

is the friction force it experienced, and Γi(t) is the noise term

associated with the collision of the solvent molecules. ζ is the friction coefficient, m is

the particle mass and t is time.

1.3.3 Ideal Chain

The Rouse model [35] treats the polymer as a chain of N beads, and the covalent

bonding is modelled by a harmonic potential

U(ri+1,i) =
3kBT

2b̂2
(ri+1 − ri)

2, (1.4)

where b̂2 the mean square bond length. In the Rouse model, the inertia term on the

left hand side of equation 1.3 will be averaged out over time, and as such is set to zero.

The Rouse model is the following set of stochastic differential equations for describing
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the motion of the beads

ζdr0 =
3kBT

b̂2
(r1 − r0) dt+

√
2kBTζdWt0, (1.5)

ζdri =
3kBT

b̂2
(ri+1 + ri−1 − 2ri) dt+

√
2kBTζdWti, (1.6)

ζdrN =
3kBT

b̂2
(rN−1 − rN) dt+

√
2kBTζdWtN , (1.7)

where Wti is a Wiener process for bead ri(t)

〈Wti〉 = 0

〈WtiαWt′jβ〉 = δijδαβ min(t, t′)

〈Wti ·Wt′j〉 = 3δij min(t, t′)

Rouse chains can be considered ideal because excluded volume effects are neglected

from the model.

1.3.4 Real Chain

In reality, monomers have excluded volume (hard cores) and the behaviour of the poly-

mer depends on the solvent it is in. The solvent can be characterised as athermal, good,

θ or poor. At high temperatures, the excluded volume becomes independent of tem-

perature, defined as athermal solvent. In good solvents, monomers favour contact with

solvent than amongst themselves and the chain swells. In poor solvents, the monomers

prefer to stay together and the chain adopts a globular conformation that corresponds

to the dense packing of thermal blobs as discussed in the work by DeGennes [37]. The

intermediate regime is called θ-solvent, in which the chain statistics follow ideal chain

behaviour as the attraction between monomers balances the hard core repulsion.
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1.3.5 Static Properties

Mean Squared End to End Distance

The mean squared end-to-end distance R2
e of an ideal chain is given by

R2
e = Nb2,

where N is the degree of polymerization of polymer, and b is the Kuhn length [38]. A

real chain scales as follows, Re ∼ bNν , where the exponent ν = {0.588, 0.5, 0.333} for

good, θ and poor solvents respectively [38].

Mean Squared Radius of Gyration

The squared radius of gyration of a polymer is defined as the average squared distance

between monomers in a given conformation, {ri}, and the centre of mass of the chain

rcm [38].

r2g =
1

N

N∑
i=1

(ri − rcm)2 (1.8)

Rubinstein and Colby [38] show that the average radius of gyration of an ideal linear

chain can be related to the average end to end distance via

R2
G = 〈r2g〉 =

R2
e

6
. (1.9)

In a poor solvent it is often more convenient and informative to discuss the radius of

gyration, whereas in a good solvent the end to end distance is often a good indicator

of the behaviour.
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Gyration Tensor

The gyration tensor S is a 3x3 symmetric matrix that describes the second moments

of position of a collection of particles

Smn ≡
1

2N2

N∑
i=1

N∑
j=1

(rmi − rmj )(rni − rnj )

where m,n are the relevant Cartesian coordinates of the ith monomer.

1.3.6 Dynamic Properties

The mean squared displacement of monomer i is given by [39]

g1,i(t) =
〈
(ri(t)− ri(0))2

〉
. (1.10)

Initially t < τ ∗, the behaviour is ballistic, in which g1,i(t) ∼ t2. For short time τ ∗ <

t < τ0 the monomers are seemingly unaware they belong to a chain and freely diffuse

g1,i(t) ∼ t1. Above this initial lifetime τ0 < t < τR the influence of additional friction

from tethered monomers plays a role and chain monomers are sub-diffusive in this

regime; the end monomers diffuse faster than the middle monomers due to the increased

friction imposed on the middle monomers. The chain centre of mass diffuses according

to the Rouse power law g1,i(t) ∼ t1/2.

1.3.7 Rheological Properties

Consider a viscoelastic material in three dimensional coordinate system along axes α, β

(replace α, β with x, y, z where appropriate). A volume V can be divided by a plane

perpendicular to the β axis. The stress tensor component σαβ is the force per unit area
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on this plane, in the α direction, expressed as

σαβ =
〈Sα〉
a

,

where 〈Sα〉 is the ensemble average of the force in the α-direction and a is the area of

the plane. In a charged polymer solution, the force Sα consists of two parts: the force

exerted by the solvent Ssα and the force acted on by other monomers or beads Spα. The

latter term includes the Coulomb interactions. The stress tensor can then be expressed

as

σαβ = ηs(καβ + κβα) + 〈Pr〉δαβ −
1

V

∑
i

〈Fα
i r

β
i 〉 (1.11)

where ηs is viscosity of the solvent, Pr is the pressure and καβ is the velocity gradient

tensor [35]. Fi = {F x
i , F

y
i , F

z
i } is the total force on particle i. In dilute systems the first

term of equation 1.11 dominates, whereas in dense systems the stress can be expressed

simply by the last term [35]

σαβ = − 1

V

∑
i

〈Fα
i r

β
i 〉.

Stress Relaxation

The stress relaxation modulus G(t) is defined as the ratio of stress remaining at time

t, after a step strain γ, σαβ(t) = γG(t), t0 being the initial observation time. In an

equilibrium system, G(t) is calculated from the stress auto-correlation function

G(t) =
V

kBT
〈σαβ(t+ t0)σαβ(t0)〉 (1.12)

where α and β are any two orthogonal directions, t0 is the initial time. For viscoelastic

solids, G(t) relaxes to a finite value; whereas G(t) tends to zero for viscoelastic liquids
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[40].

1.4 Charged Polymer Behaviour

For systems experiencing significant electrostatic interaction strengths, if the net charge

on all polymers in the system is zero, solutions that contain oppositely charged polyelec-

trolytes phase separate into a dense sediment and dilute solution [12]. If a net charge

is present, the polyelectrolytes form soluble asymmetrically charged aggregates known

as polyelectrolyte complexes [41]. Random polyampholytes with zero net valence per

chain phase separate for very small concentrations and the supernatant is dominated by

neutral single chains, or unimers, that take spherical globular conformations [42]. For

random polyampholyte chains that contain a net charge, the dilute phase has PA chains

of elongated necklace conformations [43]. By contrast, block polyampholytes exhibit

much more interesting properties. The interaction between oppositely charged blocks

is much stronger due to the localisation of similar charges. As such, at the isoelectric

point, charge neutral block PAs form much larger precipitates than the random PAs.

Stable micelles are theoretically predicted to form when there is a net charge on the

block PAs [13].

The theory of neutral polymers is well established [35, 38, 37], however charged systems

are far more complex because of the addition of long range Coulombic interactions [44].

Adding salt can effectively screen the long range interactions, depending on the salt

concentration [45, 46].

Scaling theories for diblock polyampholytes were developed by Castelnovo and Joanny

[47] for solutions with high ionic strength, and by Shusharina et. al. [13] for systems
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without the presence of salt. Shusharina et. al. predicted that a single diblock PA chain

with zero net valence collapses into a globule, whereas a diblock PA with a net charge

forms takes a tadpole shape with globular head and a PE tail. If the surface energy

gain for two globular heads to merge is greater than the electrostatic repulsion between

them, these PAs aggregate into micelles. Shusharina et al predicted two regimes of

a micelle, a dense core of oppositely charged monomers and a more diffusive corona

regime made of PE tails that are not part of the core.

Computer simulation provides an invaluable tool in understanding the behaviour of

charged polymer systems [36]. Early simulations of diblock polyampholytes were per-

formed for relatively short chains [48] due to the limitations of computer power. As tech-

nology progressed, longer chains were able to be studied computationally [12]. Wang

and Rubinstein [12] investigated the conformational properties of flexible symmetric

diblock PAs over a wide range of electrostatic interaction strengths for various chain

lengths and found different regimes upon the change of ionic strength.

Charged polymer systems can be split into two categories, weakly associating and

strongly associating, depending on the charge density and strength of electrostatic

interaction. Their physical properties are described by different theoretical approaches.

1.4.1 Weakly Associating Charged Polymers

One fundamental theoretical technique in studying charged polymers is the concept

of electrostatic blobs [37, 14, 49, 13, 12]. Chain statistics are mostly unperturbed at

length scales shorter than the electrostatic blob size ξe. The blob size, and number of

monomers ge in a blob, are defined by balancing the thermal and electrostatic parts of
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the free energy [12]

kBT ≈
`BkBT (fge)

2

ξe
, (1.13)

where kB is the Boltzmann constant, T is the temperature, f the fraction of charged

monomers and the strength of the electrostatic interaction is represented by the Bjerrum

length `B, defined as the distance at which electrostatic interaction energy between two

elementary charges equals the thermal energy.

`B =
e2

4πε0εrkBT
. (1.14)

where e is the elementary charge and ε0, εr are the permittivity of vacuum and solvent

respectively. see definition in Section 2.1.1. The blob size is related to the number of

monomers in the blob

ξe ≈ gνeσ, (1.15)

where σ is the size of a monomer and ν is the scaling exponent related to the solvent

(0.33 for poor solvent, 0.5 in a θ solvent and 0.588 in a good solvent). Thus we obtain

the following scaling dependencies

ξe = σ

(
`Bf

2

σ

)− ν
(2−ν)

(1.16)

ge =

(
`Bf

2

σ

)− 1
(2−ν)

(1.17)

If the total number of monomers N in a chain is less than ge then the chain is almost

unperturbed and the chain size follows neutral chain scaling behaviour Re ∼ Nνσ. On

the other hand, if there are many blobs per chain then the behaviour is dominated

by electrostatic interaction. Charged polymers that satisfy the condition ge >> 1 are

weakly association, otherwise if ge ∼ 1 they are strongly associating.
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Figure 1.2: Visualisation of different electrostatic blob sizes.

Polyelectrolyte

PE chains in a dilute solution behave similarly to single chains due to the extreme dis-

tance, thus the interchain interactions can be considered negligible [17]. For extremely

weak electrostatic interactions, the behaviour of the neutral parent chain dominates.

On the other hand, for strong enough interactions, the charged behaviour dominates

and the PE chain stretches [50] [17]. The size of a weakly charged polyelectrolyte in

good and θ solvents can be estimated by

Re ≈
N

ge
ξe,

where the number of electrostatic blobs per chain N/ge is multiplied by the blob size

ξe [14] [51], corresponding to a linear array of blobs.

In poor solvents, the neutral polymer would collapse into a globule, however the elec-
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trostatic repulsion between likely charged monomers make the chain want to stretch

[52]. This leads to necklace-like conformation of the polyelectrolyte chain [14].

Polyampholyte

The conformational behaviour of polyampholytes is largely driven by the charge dis-

tribution along the chains, in addition to the neutral parent chain behaviour and ionic

strength. Polyampholytes with zero-net valence and random distribution of charges

collapse into compact globules [53] [32], whereas random PA chains with a net non-zero

charge initially reduce their sizes, then become stretched with increasing electrostatic

interaction strength [43]. Polyampholytes with alternating charge arrangement are

more soluble than those with random charge distribution [32].

Symmetric diblock polyampholytes collapse into globules due to charge density fluc-

tuation induced attraction [13] and several regimes have been identified depending on

charge density [12] and electrostatic interaction strength. As the interaction strength

increases beyond the unperturbed regime, the polyampholyte begins to fold [12]. The

two blocks can be represented by two oppositely charged large spheres, whose centres of

mass are connected via a harmonic spring. At higher interaction strengths the polymers

enter a weak association regime and the size of a diblock PA can be described by the

dense packing of oppositely charged electrostatic blobs [13],

Rgl ≈ ξe

(
N

ge

)1/3

≈ σN1/3

(
`Bf

2

σ

)(1−3ν)/3(2−ν)

(1.18)

A large portion of this thesis is devoted to asymmetric diblock polyampholytes, and will

discuss the behaviour in greater detail in Chapter 3. However, diblock polyampholytes

with high asymmetry N ≈ N−, the polymer chain is effectively a polyelectrolyte and
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the contributions from the positively charged block are negligible.

1.4.2 Strongly Associating Charged Polymers

Polyelectrolytes

The size of strongly charged polyelectrolytes was found to be shorter than originally

predicted [14] owing to counterion condensation [54, 55]. In solutions, polyelectrolytes

begin to overlap at concentration c∗ ≈ N/R3
e [50]. As strongly charged chains are close

to being fully stretched Re ≈ σN , the overlap concentration scales with the degree

of polymerization N as c∗ ≈ σ−3N−2 [17]. Comparing with the neutral chain overlap

concentration c∗ ∼ σ−3N−ν , it can be observed that polyelectrolytes begin to overlap

at much lower concentrations.

At high charge density, a polyelectrolyte chain would be almost fully stretched, Re ∼ Nσ

in the absence of counterions. However counterions can associate with charges on the

chain to reduce the line charge density of linear PEs, which has led to the idea of

counterion condensation introduced by Manning [54]. Deserno et al [56] studied the

counterion distribution around an infinitely long rod in a cell model [57]. The salt

free case of this model can be solved analytically by employing the non-linear Poisson-

Boltzmann equation [58]. More recently, Manning and Ray [59] constructed a potential

between the PE and the counterion. They divide the distribution of counter ions into

two regimes, i.e a layer in which a fraction of the counterions are condensed onto the

PE, and a second, more diffusive regime resembling Debye-Huckel cloud [59]. A counte-

rion located at the interface between these two regions is repelled from the PE, leading

to a sharp boundary between the two regions. Manning and Ray [59] argued that this

distinction is detectable as an inflection point in the integrated radial counterion distri-
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bution. However Deserno et al [56] pointed out a disagreement between the Manning

model and the PB theory without salt and that if the distribution of counterions is

plotted against the logarithmic radial distance, an inflection point exists that separates

the counterions into condensed and diffusive regimes [56] [60]. Deserno compared PB

theory with computer simulations and illustrated the connection between Manning con-

densation and the inflection point, and then derived a PB equation for the concept of

counterion condensation with added salt.

Liu et al [61] studied the behaviour of polyelectrolyte brushes and the effect of coun-

terions on the brush morphology. They observed that flexible brushes with trivalent

counterions collapse into octopus-like micelles, however more rigid chains form den-

dritic condensates. The latter showed much slower relaxation behaviour. Recently

Michalowsky et al [62] developed a polarizable MARTINI model [63] [64] for ions in

aqueous solution. The introduction of the force field allows for simulation results that

are much closer to experiments by eliminating some of the scaling estimates.

Polyelectrolyte complexes are of great interest for their multitude of applications, such

as drug delivery capsules [65] and PE films [66]. Zhang et al [67] studied the effects

that asymmetric concentrations have on the complexation behaviour. Mixtures of op-

positely charged polyelectrolytes have been studied extensively in the literature [68]

[69]. Electrostatic interaction can cause these systems to phase separate into a dense

phase made up of mostly PEs and a dilute supernatant.

Polyampholytes

If the electrostatic attraction strength is large enough to overcome the entropic penalty,

oppositely charged monomers and their counterions bind into dipoles. Further increase
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in electrostatic interaction strength leads to the formation of higher order multiplets

[12].
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Chapter 2

Simulation Methodology

2.1 Molecular Dynamics

Molecular Dynamics (MD) is a numerical simulation method for studying trajectories

of molecules. Each particle in the N body system has its own well-defined set of forces.

The trajectories are found by numerically solving Newtons equations of motion for the

interacting particles.

2.1.1 Pair Interactions

In our polymer simulations, the chains are expressed by the Kremer Grest bead spring

model [70], and counterions are modelled explicitly as beads that do not have any springs

as they are not covalently bonded. The pairwise excluded volume of two monomers

(beads) i and j, a distance rij apart, is modelled by the Lennard Jones Potential

ULJ(rij) = 4εLJ

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (2.1)
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where σ is the bead diameter (size of the monomer), which we have chosen to be uniform

in all simulations. and εLJ is the depth of the attractive well. To save on computation

time, the truncated at a cut off distance of rc. Where rc = 2.5σ or 21/6σ in a poor and

good solvent respectively. Thus, the truncated and shifted form of the Lennard Jones

potential is

ULJ(rij) = 4εLJ

[(
σ

rij

)12

−
(
σ

rij

)6

−
(

σ

rcut

)12

+

(
σ

rcut

)6
]

(2.2)

If beads i, j are covalently bonded, then this interaction is modelled by the finitely

extensible non-elastic (FENE) potential

UFENE(rij) = −1

2
KFENER

2
0 ln

(
1−

r2ij
R2

0

)
, (2.3)

where R0 is the maximum extension and KFENE is the FENE constant.

The Coulomb potential describes the electrostatic interactions between charged beads

i and j

UCOUL(rij) = kBT`B
qiqj
rij

(2.4)

where qi is the valence of bead i.

2.2 Replica Exchange

2.2.1 Parallel Tempering

For strongly associated polymer systems, it is usually very difficult to obtain reliable

equilibrium properties using conventional simulation methods because these systems

are typically trapped in one of many meta stable local minimum energy states [71].
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There are a number of advanced methods that have been developed to overcome for

this difficulty, such as simulated tempering [72, 73] or multicanonical ensemble method

[74, 75], One other such method is Parallel tempering (PT), also known as Replica

Exchange (RE) [76, 77, 71]. which was first devised by Swendsen and Wang [78]. The

idea of PT is to simulateM replica systems over varying temperatures Ti. For simplicity,

one can choose Ti−1 < Ti. These replicas do not interact, however after a given time an

attempt is made to swap the configuration Ci ∈ Ti with neighbouring replica system

Ti−1 or Ti+1. Simulating a system at M different temperatures, parallel tempering is

at least 1/M times more efficient than the conventional Monte Carlo [77], because the

low temperature system is able to explore regions of the phase space that may not be

accessible in a single temperature MC simulation that was M times as long.

2.2.2 Replica Exchange Molecular Dynamics

Swendsen and Wang [78] developed parallel tempering (replica exchange). They cre-

ated replicas of a system of interest at a series of temperatures, and partially exchanged

information between adjacent temperatures via Monte Carlo simulations. Complete in-

formation exchange was presented by Geyer [79]. The general idea of parallel tempering

(PT) is to create M replicas of a system, usually at different temperatures. Low tem-

perature simulations are likely to become trapped in one of many metastable states,

whereas high temperature simulations are more likely to overcome the high energy bar-

riers and explore larger volumes of the phase space. Hansmann [80] applied the parallel

tempering method to biomolecules, and Sugita and Okamoto formulated a replica ex-

change method based on molecular dynamics (REMD). Fukushini et al [81] developed

a Hamiltonian PT method, which allows for the formulation of replica exchanges with

alternative parameters.
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The acceptance probability φ in Hamiltonian PT when attempting to swap replicas

i and j is [77]

φ = min {1, exp [−β ([Hi(X
′) +Hj(X)]− [Hi(X) +Hj(X

′)])]} , (2.5)

where Hi(X) is the Hamiltonian of configuration X = (r,p), where r and p are the

positions and momentums of all the particles. X, X ′ are the configurations in i,j

respectively, prior to swapping. The Hamiltonian is the sum of the Kinetic and Potential

energies

H(r,p) = K(p) + UTOT(r) =
N∑
k=1

p2
k

2mk

+ UTOT(r). (2.6)

The average kinetic energy 〈K(p)〉 = 3
2
NkBT [71], and in our system,

UTOT(r) = UCOUL(r) + UFENE(r) + ULJ(r). (2.7)

If we wish to create replicas with Bjerrum length `B as our parameter choice, then

replica i with Bjerrum length `B,i

Hi(r,p) = K(p) + UCOUL
i (r) + UFENE(r) + ULJ(r), (2.8)

as only the Coulomb energy component relies on the Bjerrum length. For convenience,

we define U∗i (r) = UCOUL
i (r)/(kBT`B,i), the `B,i and kBT independent contribution to

the Coulomb energy.

Thus, highlighting the exponent of equation 2.5
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−β([Hi(X’) +Hj(X)] − [Hi(X) +Hj(X’)]) = (2.9)

−β(
[
UTOT
i (r′) + UTOT

j (r)
]
−

[
UTOT
i (r) + UTOT

j (r′)
]
) = (2.10)

−β(
[
UCOUL
i (r′) + UCOUL

j (r)
]
−

[
UCOUL
i (r) + UCOUL

j (r′)
]
), (2.11)

as the average kinetic energy is the same for both replicas i,j and UFENE,ULJ do not

depend on `B. Substituting in U∗(r),

`B,iU
∗(r′) + `B,jU

∗(r) − `B,iU
∗(r)− `B,jU∗(r′) = (2.12)

(`B,i − `B,j)(U
∗(r′)− U∗(r)). (2.13)

Substituting this back in to equation 2.5 yields a simple expression for finding the

acceptance probability.

2.2.3 Testing the Replica Exchange Molecular Dynamics Model

Nymeyer [82] studied the efficiency of REMD analytically by comparing REMD with

conventional MD in the study of two protein systems. They found that choosing the

maximum temperature too high can greatly reduce the efficiency when compared with

regular MD. To check that it is worth running REMD for our systems, we ran a couple

of test simulations of our highest interaction strength, longest chain.

Figure 2.1 shows the overall average Coulomb energy profile for the system f− = 1/32

and `B = 8.0σ, obtained using attempted swapping frequency of once every 500 time

steps (red) and normal molecular dynamics (black), both with step size ∆t = 0.001. In

this system, we begin with two neutral chains, assign the charges and allow the chains
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Figure 2.1: Coulomb energy, highlighting generic MD getting trapped in a meta stable
state, `B = 8.0σ, f− = 1/32, N+ = 32

to relax. The generic molecular dynamic simulation can be observed getting trapped

in a metastable configuration for around a decade. This graph shows us that for this

model system, REMD approaches equilibrium faster than normal molecular dynamics

and thus we are less likely to be running into the issues described by Nymeyer.

Swap Acceptance Ratio

The optimal choice of temperatures for parallel tempering has been discussed in the lit-

erature [71, 78, 80, 77]. Kofke [83] showed that for a system with constant heat capacity,

a uniform acceptance ratio of swaps can be obtained by taking a Geometric progres-

sion where Ti/Ti−1 is constant. Furthermore, ref [84] discusses in detail the optimal

allocation of replicas in parallel tempering simulations. They showed that 20% swap

acceptance is optimum. We followed these suggestions in our simulations and found

in section 3.2, an optimal Bjerrum length distribution lB,i/lB,i−1 = 1.3σ, which yielded
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during the test runs a uniform distribution of acceptance ratios of approximately 22.5%.

Our test simulation was for a system with through tuning during initial equilibration

of the system f− = 1/32, N+ = 32, N+f+ = N−f−. However, the relationship between

the acceptance rate and the electrostatic strength difference depends on the system pa-

rameters and as such further fine tuning is required during equilibration to determine

the optimal distribution. In our final simulations, we set our Bjerrum lengths to integer

values, and swapped these systems. The ratio is not uniform (3/2 = 1.5, 8/7 ≈ 1.14),

but as we are interested behaviour at a wide range of Bjerrum lengths, the very slight

decrease in swap acceptance of the higher interaction strengths is offset by using much

less computing power, as we can treat each replica as a simulation of interest at sensible

data points if integer values are used.

2.2.4 Advanced Techniques

Although not directly relevant in this work, it is worth discussing briefly current pro-

gresses in advanced simulation techniques. Much of the recent literature is focused on

replica exchange with solute tempering (REST) [85, 86, 87, 88, 89]. This method is

relevant to systems that need to explicitly solve the solvent, and the main aim is to

scale the potential energy with temperature so that the polymer molecules get hotter,

however the solvent remains cold, and has been shown to be considerably more efficient

than generic REMD for these systems [88].
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2.3 Numerical Integration Scheme

2.3.1 Velocity Verlet

For a system with N particles, we can write Newton’s equations of motion as

dri(t)

dt
= vi(t), (2.14)

dvi(t)

dt
= ai(t) =

Fi(t)

m
, (2.15)

where in our system Fi = F (ri(t)) − mζvi(t) +
√

2mζkBTν(t) is the force acting on

particle i, and ν(t) is a noise function, see Equation 1.3

The Velocity Verlet method [36] has the advantage of storing positions ri, velocities

vi and accelerations ai.

ri(t+ ∆t) = ri(t) + ∆tvi(t) + 1
2
∆t2ai(t) (2.16)

vi(t+ ∆t) = v(t) + 1
2
∆t [ai(t) + ai(t+ ∆t)] (2.17)

The algorithm requires two stages. Firstly, new positions at time t + ∆t must be

calculated (Eq 2.16), and mid step velocities are calculated via

v(t+ 1
2
∆t) = v(t) + 1

2
∆ta(t). (2.18)

The second stage is to calculate the forces and accelerations at time t+∆t, and complete

the velocity step

v(t+ ∆t) = v(t+ 1
2
) + 1

2
∆ta(t+ ∆t). (2.19)
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This algorithm gives the positions, velocities and forces. Calculating the velocity at

each step allows us to test the conservation of the total energy. The Velocity Verlet

integrator is a symplectic integrator.

2.4 Periodic Boundary Conditions

Due to the inherent computational cost of simulating N body problems, especially the

inclusion of long range Coulomb interactions, several numerical techniques must be

employed to obtain reliable data. In addition to this, polymers behave differently near

surfaces [36]. If one is not interested in simulating the behaviour near surfaces, periodic

boundaries can be employed. A cubic box of length L is created containing a represen-

tative amount of particles, and replicated in all directions to create an infinite lattice.

As a particle diffuses throughout the simulations and crosses the periodic boundary, its

image reappears across the opposite boundary. A two dimensional representation can

be found in fig. 2.2. In semi dilute/ dense systems, the polymer is able to diffuse and

eventually is replaced by its image. For excluded volume and charge calculations, one

must take into consideration the images. The images do not effect the calculation of

the FENE potential.

2.5 Long Range interactions

As established earlier, charge-charge interactions are long range and decay U(rij) ∼ r−1.

Typical simulation box sizes are too small to neglect the effects from an image, especially

in dense systems. Increasing the box size and number of polymers can be extremely

expensive, especially because the simulation time is proportional to N2, as each particle
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Figure 2.2: Two-dimensional visualisation of particles in simulation box surrounded by
periodic images.

interacts with each other particle in long range systems.

Assuming straight forward truncation would lead to undesirable artificial surface ef-

fects when an ion crosses into the sphere surrounding the target ion.

2.5.1 Ewald Summation

The Ewald sum splits the slowly converging sum of long range potential into two sums

that converge relatively quickly [90, 36]. The total electrostatic energy is

Ucoul =
1

2

Npart∑
i,j=1

′∑
n∈Z3

qiqj
|rij + nL|

(2.20)

where the sum over n takes into consideration the periodic images. The prime is used

to show that n = 0 is not included when i = j. [90]. The main aim of Ewald summation
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is to split the potential using the trivial identity

1

r
=
f(r)

r
+

1− f(r)

r
. (2.21)

The first part must be negligible for r > rmax and the latter must be slowly varying.

Traditionally f is chosen to be the complimentary error function erfc(r) which leads

to the Ewald formula

Ucoul = U r
coul + Uk

coul + U s
coul + Ud

coul (2.22)

where the contributions from the real, reciprocal, self and dipole corrections are given

by

U r
coul =

1

2

∑
i,j

′∑
minZ3

qiqj
erfc(α|rij + mL|)
|rij + mL|

(2.23)

Uk
coul =

1

2

1

L3

∑
k 6=0

4π

k2
e−k

2/4α2|ρ̃(k)|2 (2.24)

U s
coul = − α√

π

∑
i

q2i (2.25)

Ud
coul =

2π

(1 + 2ε′)L3

(∑
i

qiri

)2

(2.26)

here, α = 2.5 is defined as the Ewald Parameter in the literature [36, 90] and the Fourier

transformed charged density is [90]

ρ̃(k) =

∫
Vb

d3rρ(r)e−ik·r =

Npart∑
j=1

qje
−ik·rj (2.27)

P3M

The p3m method modifies the method to allow for the application of Fast Fourier Trans-

forms (FFTs) [91] and the details of the difficulties and application of this modification
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is covered in detail by the literature [90]. Firstly, the charges must be replaced by a

grid based charge density ρM .

ρM(rp) =
1

h

∫ L

0

drW (rp − r)ρ(r) (2.28)

=
1

h3

Npart∑
i=1

qiW (rp − ri) (2.29)

where rp is a discrete coordinate system, separated by h = 1/M and W is the charge

assignment function [90]. The simplest solution for solving with the discrete mesh is to

use the PME method [91] or the SPME method [92]. Alternatively, there is the P3M

method [93].

2.6 Umbrella Sampling

Systems that have an energy barrier separating two regions in configuration space

may suffer from poor sampling, or even remain upsampled in reasonable computing

times. For example, comparing associative polymers in the associated and disassoci-

ated regimes will enter a transitional state relatively infrequently. Furthermore, two

chains that are significantly far apart may prefer to be associated, but this may not

be observed in the simulation time frame. Understanding the free energy differences

between these two states helps to quantify the behaviour.

The Helmholtz free energy is given by A = −1/β lnQ, where Q is the canonical par-

tition function [94]. Q is calculated by integrating over the whole phase space, and if

the potential energy U does not depend on momentum [94],

Q =

∫
exp [−βU(r)] dnr (2.30)
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where n denotes the total degrees of freedom. We can take a reaction coordinate ξ

to distinguish two states, in the aforementioned example we could take the reaction

coordinate to be the physical distance between the centres of mass of the polymers.

Thus, we can evaluate the probability distribution along ξ by integrating over all degrees

of freedom

Q(ξ) =

∫
δ [ξ(r)− ξ] exp [(−βU)] dnr∫

exp [(−βU)] dnr
. (2.31)

So, A(ξ) = −1/β lnQ(ξ) is the free energy along ξ, which is also known as the potential

of mean force (PMF). Equation 2.31 is not possible to solve in computer simulation,

but if the system is ergodic then the ensemble average Q(ξ) is equivalent to the time

average [94]

P (ξ) = lim
t→∞

1

t

∫ t

0

p(ξ(t′))dt′ (2.32)

where p counts the occurrence of ξ. Of course, we are limited by the time it takes to run

a simulation. Several methods have been developed to ’force’ a system to sample rare

events, such as thermodynamic integration [94]. We will focus on Umbrella Sampling

(US) [95]. US works by evaluating sections of ξ at different intervals (windows) and

combining the results in post processing to obtain the PMF A(ξ). To ensure compu-

tation at intervals of ξ, a biased potential is introduced, such as a harmonic spring

between the centres of mass.

These bias potentials can be chosen in such a way that the segmented distributions

overlap, thus covering the phase space. For example, Withers et al [96] evaluate the

second virial coefficient of a polymer solution by introducing a spring that connects the

centres of mass of two chains. Take a bias potential ωi(ξ) in window i. The potential
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energy of the system in this window is [94]

U b(r) = Uu(r) + ωi(ξ) (2.33)

where b,u denote biased/unbiased respectively.

To evaluate the unbiased PMF Ai(ξ) one needs to find the unbiased distribution,

P u
i (ξ) =

∫
exp [−βU(r)] δ [ξ′(r)− ξ] dnr∫

exp [−βU(r)] dnr
. (2.34)

One can obtain the biased distribution from simulation, and

P b
i (ξ) =

∫
exp [−β(U(r)− ωi(ξ′(r)))] δ [ξ′(r)− ξ] dnr∫

exp [−β(U(r)− ωi(ξ′(r)))] dnr
. (2.35)

It can be shown [94] that

P u
i (ξ) = P b

i (ξ) exp [βωi(ξ)] 〈exp [−βωi(ξ)]〉 (2.36)

and thus

Ai(ξ) = −(1/β) lnP b
i (ξ)− ωi(ξ) + Fi. (2.37)

if one window spans the range of ξ, then Fi can be chosen arbitrarily and the Pi(ξ) can

be obtained from simulation, with ωi(ξ) chosen prior to simulation. If windows need

to be combined, then there are several techniques umbrella integration [94], however in

this work we focus on the Weighted Histogram Analysis Method (WHAM) [94].
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2.6.1 Weighted Histogram Analysis Method (WHAM).

WHAM was proposed by Kumar et al [97]. When combining the windows, the global

distribution can be given by the weighted average of the windows [94]

P u(ξ) =
Nw∑
i

pi(ξ)P
u
i (ξ). (2.38)

where Nw are the number of windows and the weights are [94]

pi =
ai∑
j aj

, (2.39)

ai(ξ) = Ni exp
[
−βωi(ξ) + βFi

]
(2.40)

where Ni is the number of steps sampled for the ith window. Fi can be calculated using

exp(−βFi) =

∫
P u(ξ) exp [−βωi(ξ)] dξ (2.41)

Using an initial guess for Fi, One can iterate between 2.38 and 2.41 until convergence

[94].

2.7 Shape Describers

As the gyration tensor S is a symmetric 3x3 matrix and the principal moments are

given by the eigenvalues λx, λy, λz of S, which can be selected so that λ2x ≤ λ2y ≤ λ2z

[98, 99]. These eigenvalues relate to the squared radius of gyration by

R2
g = λ2x + λ2y + λ2z
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The asphericity ψs is defined by

ψs ≡ λ2z −
1

2

(
λ2x + λ2y

)
. (2.42)

which is equal to zero when the particles take a uniform distribution on the surface of

a sphere.

The acylindricity ψc is defined by

ψc ≡ λ2y − λ2x. (2.43)

which is equal to zero when the particles sit in a perfect line. The relative shape

anisotropy κ2 is defined by

κ2 ≡ ψ2
s + (3/4)ψ2

c

R4
g

(2.44)

κ2 is zero for a sphere and one for a line. This allows us to study more complex shapes

than the radius of gyration.

2.8 Efficient on the Fly Calculations of the Auto

Correlation Function

Studying the auto correlation functions is an important tool in understanding the be-

haviour of molecular systems. Whilst instantaneous changes in the force ∆f(t) usu-

ally do not yield useful information, 〈∆f(t)∆f(0)〉 does. A major problem is that

evaluating these functions can be incredibly computationally expensive, especially in
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regards to common molecular dynamics simulation times (≈ 108). Based on the al-

gorithm proposed by Frenkel [100] we implement the multiple τ operator method as

introduced by Ramirez et al [101]. A more detailed formulation can be found in [101],

but the idea is to create a hierarchical box structure that allows for adjustable sam-

pling frequencies. We create a table that remembers past values of the stress tensor

σ0 = {σxx(t), σxy(t), ..., σzz(t)} such as

σ0
0 σ0

−1 σ0
−2 σ0

−3 σ0
−4 . . . . . . . . .

σ1
−3/2 = (σ0

−1 + σ0
−2)/2 σ1

−5/2 = (σ0
−3 + σ0

−4)/2 . . . . . . . . . . . . . . . . . .

σ2
−2 = (σ1

−3/2 + σ1
−5/2)/2 . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

And we solve equation 1.12 for each row of the table. We use 16 columns. This leads

to very accurate early time results of the stress relaxation; less so for higher order

time. However, this method cuts down the total analysis time by allowing us to calcu-

late the stress relaxation during the simulation run (on the fly), without running into

memory issues by storing σ for every time step. Furthermore, time is also saved by

not needed to run the analysis post process. Where appropriate, we run ten simula-

tions of each system to obtain better long term statistics, but there is still noise present.

For charged systems in this work we study the stress relaxation in two ways. Firstly,

the stress tensor including only the neutral contributions to the stress, and secondly,

the real space contributions are included. For discussion on including the long range

contributions, see Appendix B.2.
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Chapter 3

Single Chain

3.1 Introduction

In this chapter we study the static properties of single chain diblock polyampholytes

in equilibrium using the Replica Exchange Molecular Dynamics method outlined in

chapter 2. In chapter 4 we will discuss in greater detail the aggregation behaviour of

diblock polyampholytes, however it is imperative to understand the single chain be-

haviour. There are experimental techniques to study structural properties of polymers

in a laboratory, such as small angle [102, 103] or dynamic light scattering [104], how-

ever certain behaviours are difficult to observe with present technology due to time and

length scale limits.

Wang and Rubinstein [12] studied the conformational behaviour of symmetric diblock

polyampholytes via both scaling theory and molecular dynamics. They identified three

main regimes determined by the electrostatic interaction strength. For small Bjerrum

length `B, the chain as a whole folds but each block swells slightly. The folding is

caused by association of oppositely charged blocks, and the stretching by self repulsion

36



of same charged ions on each block. The second regime is weak association, and chain

conformation in this regime can be explained by the dense packing of electrostatic blobs

[13]. The last regime is strong association in which the charged monomers are able to

overcome the entropic penalty and begin binding to oppositely charged ones. At the

onset of this regime, dipoles form by charged monomer pairing. Increasing electrostatic

interaction strengths leads to the formation of increasing orders of multiplets [12], sim-

ilar to those observed in ionomers [30].

The behaviour of single chains is difficult to observe in experiments with current tech-

nology. Experimentally, diblock polyampholytes have been shown to associate into

stable micelles over a wide range of solution pH [105, 106].

In this chapter we study asymmetric diblock polyampholytes. Firstly, we study chains

with positively charged block length N+ and charge fraction f+. The composition of the

negatively charged block is chosen so that the chain carries zero net valence, specifically

N+f+ = N−f−. In the second half of this chapter, we study chains with fixed positively

charged block length N+ and global charge fraction f = f− = f+, however these chains

are able to carry a net charge by increasing N−.

3.2 Asymmetric Diblock Polyampholytes Carrying

Zero net Charge, N−f− = N+f+, N− ≥ N+

3.2.1 Polymer Models and Simulation Methods

The polymers are represented using the Kremer Grest bead-spring model [70], see Sec-

tion 2.1.1. Each chain consists of N monomers split into positively and negatively
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charged blocks of lengths N+ and N− respectively. The charges are chosen to be

uniformly distributed along each block. We focus on polymers with block length

N+ = 32, and positive charge fraction f+ = 1/2 over a range of Bjerrum lengths

`B/σ = {0.25, 0.5, 1.0, 2.0, 4.0, 8.0}. The fraction of charged monomers on the negatively

charged blocks f− = {1/2, 1/4, 1/8, 1/16, 1/32}, thus N− = {32, 64, 128, 256, 512}. As

all charges are contained on the chain, which is overall charge neutral, periodic bound-

ary conditions are not required and the electrostatic interactions can be calculated via

direct summation. We are interested in polymers in a good solvent and thus we take

εLJ = 1.0 and rcut = 21/6σ for the LJ interactions. For the FENE coefficients we choose

kFENE = 7.0 and RFENE = 2.0 to be consistent with the literature [12].

To study the conformational behaviour, we employ REMD [71, 77, 80] with swaps

in the Bjerrum space as laid out in Section 2.2.2. To start the simulation, a neutral

polymer is generated as a self-avoiding random walk [36] and allowed to warm up in the

absence of charge. The next stage is to turn on the charges and run frequent REMD

swaps to ensure that the highly charged systems are not getting caught in an unrepre-

sentative metastable state. Without REMD, the N = 384 and `B/σ = 4.0 system takes

approximately 2× 106 time steps for the radius of gyration to relax to its equilibrium

value. We run frequent swap attempts every 5× 103 time steps for 107 time steps, with

an average successful swap every 25× 103 time steps. The choice of replica distances is

essential, as too far apart they swap too infrequently, and too close they swap more than

the desired amount. There is no way of knowing a priori the ideal distances. However

this can be done by studying the swap ratio of shorter runs. Attempting a swap every

106 time steps with an acceptance ratio of approximately 20 % [71] yields an average

successful swap approximately 5× 106 time steps. If any dynamical or stress relaxation

analysis is required then analysis should only be performed between swaps to ensure
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adherence to physical behaviour.

3.2.2 Simulation Results

Visualisation

Figure 3.1: Snapshots of the asymmetric net neutral PA chains N−f− = N+f+, with
N+ = 32 and f+ = 1/2 for selected Bjerrum lengths `B/σ = {0.25, 1.0, 4.0, 8.0}

Figure 3.1 shows representative snapshots for the systems analysed. The symmetric

chains (f+ = f−) take globular conformations as expected from the literature [12, 13].
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(a) Distribution of f− = f+, `B/σ =
8.0

(b) Distribution of f− = f+/16,
`B/σ = 8.0 (All charged monomers)

Figure 3.2: Visualisation of the distribution of all charged monomers of the chains. The
symmetric case forms a tightly packed globule and the asymmetric forms a cylindrical
shape. with the shorter block extending along the principle axis

In the absence of charge, the chains behave like neutral polymers with length N . At

low electrostatic interaction strength, an increase in the neutral segment length between

negatively charged monomers as 1/f− yields a swelling of the shorter positively charged

block. As the Bjerrum length `B increases more negatively charged monomers tend to

associate with the positively charged ones. If the asymmetry is low, this leads to the

collapse of the diblock PA chain. But if the asymmetry is high, or f− is small, the

conformational entropy of the longer block forces the chain to take the conformation of

a bottle brush with the shorter block working as the back bone.

Figures 3.2a - 3.3b present a visualisation of the distribution of monomer distribu-

tions for further visualisation. The symmetric case in Figure 3.2a shows a densely

packed globule, as expected in the literature [12]. Figure 3.2b presents the distribution

of all monomers of the highly asymmetric f− = f+/16 chain. As can be observed, the

monomers are packing into a cylindrical shape. Comparing Figures 3.3a and 3.3b, the

negatively charged monomers are closely packing with the positively charged monomers,

however the neutral chain segments are looping up, allowing the ions to associate. This
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(a) Distribution of f− = f+/16,
`B/σ = 8.0 (All negatively charged
monomers)

(b) Distribution of f− = f+/16,
`B/σ = 8.0 (All monomers)

Figure 3.3: Visualisation of the distribution of negatively charged monomers (left) and
all monomers (right) for the f− = f+/16 and `B/σ = 8.0 chains. The ions show close
packing whereas the chains as a whole show a cylindrical shape.

leads to a ’bottle brush’ conformation.

Radius of Gyration and End to End distance

Figure 3.4 shows the average radius of gyration Rg and average end-to-end distance Re

for the f− = 1/2 symmetric system. Neutral chains, `B/σ = 0.0, scale Re ∼ N ν , where

ν = 0.588 in a good solvent [38]. At `B/σ < 1, both blocks swell whilst the chain as

a whole collapses, indicating the chain is in the folding regime. As the asymmetricity

increases, the positive block swells, however both the negatively charged block and the

chains as a whole collapse. Around `B/σ = 1.0 the system enters a weakly associating

regime. Here the symmetric whole chain Rg and block radii of gyration R+
g , R−g are

indistinguishable as the chain has collapsed into a globule [12]. There is an increase

in swelling for positive blocks with higher asymmetries due to the increased energetic

cost of folding the neutral chain segments to allow association of oppositely charged

ions. Further increases in the electrostatic interaction strength lead to denser packing

for the symmetric chains. For asymmetric chains, we see a transitional behaviour. For
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Figure 3.4: Average radius of gyration RG and end to end distance Re, f− = f+, as a
function of `B

low asymmetry, the chains begin to fold as the ions begin to bind. For long enough

neutral segments between the negatively charged monomers, the ionic binding does not

result in a collapse of the chain into a globular conformation, instead it further swells

as the neutral segments are expelled, due to conformational entropy.

A transition in the conformational behaviour is observed at f− = 1/8 in Figure 3.6.

With increase of `B, initially the positively charged block swells, and stays swollen. On

the other hand, the negatively charged block can be seen following the globular col-

lapse behaviour. The distance between charges on the negatively charged block means

the ions must overcome the entropic penalty to associate with the oppositely charged

block. For the oppositely charged monomer to associate with each other it is much

easier for the positively charged block to stretch than for the longer block to collapse,

and thus the positive block swells. As the electrostatic interaction strength increases,

the chain collapses tighter but this is much less pronounced than in the less asym-

metric cases. Further increase in the chain asymmetry leads to a shift in the highly
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Figure 3.5: Average radius of gyration RG and end to end distance Re, for PA chains
with f− = f+/2, as a function of Bjerrum length lB

Figure 3.6: Average radius of gyration RG and end to end distance Re for PA chains
with f− = f+/4, as a function of `B
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Figure 3.7: Average radius of gyration RG and end to end distance Re, f− = f+/8, as
a function of `B

charged behaviour, as observed in Figure 3.7. Initially, the chain follows neutral chain

behaviour. The positively charged block swells and the negatively charged block (and

thus the chain as a whole) folds at smaller `B. However, as `B increases, the positive

block continues to swell, and the collapsing of the oppositely charged block stalls. At

this asymmetry the positive block must swell even further such that the negative block

overcomes the entropic penalty and begins binding, the neutral segments must loop up

as both ends are bonded with the shorter block, forming a bottle brush conformation.

It is more important now to switch to discussing the end to end distance of the positive

block in these high `B cases as it is similar to a polyelectrolyte chain stretching with

increased intra block repulsion. It is worth also noting that in the strongly associating

case, the negatively charged block Re is also increasing with the electrostatic interac-

tion, implying the presence of a bottle brush. The joint point between two blocks is

at one end, and the free ends of the two blocks are near each other on the other end

of the bottle brush. As the positive block stretches, thus so does the negative block Re.
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Figure 3.8: Average radius of gyration RG and end to end distance Re, f− = f+/16, as
a function of `B

Figure 3.8 shows RG and Re of the highly asymmetric PA chains with f− = 1/32 .

Here values of RG for the chain and negative blocks are indistinguishable because the

negative block dominates the overall chain conformation due to its shear size. This

conformational behaviour is similar to that of the f− = 1/16 case, and we reach the

asymmetry limit of conformational behaviour. In the strongly associating, highly asym-

metric cases, the average end to end distances R+
e ≈ R−e . This seems to imply that the

negatively charged monomers are bonded in sequence with the positively charged ones

according to their chemical distances from the joint point.

Average Coulomb energy per charged monomer

Figure 3.9 presents the average coulomb energy for a charged monomer. Both positively

charged (red) and negatively charged (blue) monomers are present. In symmetric PA

chains, the results of both positive and negatively charged monomers are indistinguish-

able as they behave in the same manner. At small `B, the attraction between oppositely

charged monomers is still weak with no ionic bonding, so the intra block electrostatic
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Figure 3.9: Average Coulomb energy per charged monomer, for all systems studied.
both the positively charged monomers (red) and their respective negatively charged
monomers (blue) are presented.

repulsion energy leads to an overall positive Coulomb energy per charged monomer.

As the charge strength increases, the dense packing on ions leads to an overall strong

attraction of monomers.

As the asymmetry increases, the energy data profiles of the negatively charged monomers

seem to converge.

Shape Describers

Figures 3.10-3.12 present the relative shape anisotropy κ2 as a function of `B. If κ2 = 0

the monomers of the PA chains are spherically symmetrical, and κ2 = 1 when all

monomers lie on a straight line. The symmetric case shows an initial elongation over

dense packing, as the repulsion of similarly charged ions dominates in these short chains.

Then, for systems with low asymmetry and increasing electrostatic interactions strength
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Figure 3.10: Relative shape anistotropy of the positively charged blocks

leads an increase in the sphericity. As the asymmetry increases, so does the chain length,

which leads to increasing ashpericity as it requires more energy to overcome entropic

penalty and associate with the oppositely charged block. As `B increases, the whole

chain collapses, driven by the association of oppositely charged monomers. For highly

asymmetric chains, there is a transition in the conformational behaviour with increasing

electrostatic interaction strengths. The whole polymer begins to pack into cylindrical

shapes. As the charged overcome the entropic penalty strong charge association takes

place, the neutral chain segments in the negatively charged block must loop up to al-

low close binding of the oppositely charged monomers, which leads to the bottle-brush

conformation.

Figure 3.10 presents κ2+ for the positively charged blocks. The symmetric system is

following the folding and globular pictures, as expected with increasing `B, reflected

in the decrease in κ2+. For asymmetric chains, the charge density in the negatively

charged block is weak, so the intra-block electrostatic repulsion leads to swelling of the

positively charged block at small `B and consequently an increase in κ2+. If the asymme-
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Figure 3.11: Relative shape anisotropy of the negatively charged blocks

try is relatively low, the increasing electrostatic repulsion between oppositely charged

monomers lead to the collapse of both blocks and so a decrease in κ2+, similar to the

symmetric case. But if the asymmetry is high, the positive block needs to stretch out

in order to bing with the negatively charged monomers due to the high conformational

entropy cost of folding (looping) the longer neutral segments.

Figure 3.11 presents κ2− negatively charged blocks. The differences between the black

lines in Figures 3.10 and 3.11 is due to the rotation of the positive block to align with

the axis. Whilst the positive block is geometrically restricted by this rotation and shift,

the negatively charged block is surrounding, thus the two graphs do not match even

though this is a symmetric system. In the symmetric chains κ2− decreases with `B above

a relatively small `B. For the asymmetric chains, the negatively charged monomers are

pulling closer to the positive charges by increasing electrostatic attraction with `B,

leading to a decrease in κ2− initially. But when all the opposite charges have formed

ionic bonds along the positive block there is no further space for the negative block to

collapse, so κ2− remains nearly constant at high `B. It is noted that conformations of
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Figure 3.12: Relative shape anistoropy of the whole chains

the neutral segments are playing a dominant role in determining the κ2− values for high

asymmetry chains.

Cylindrical Charge distributions

With enough evidence that the asymmetric positively charged blocks are elongating,

it is worth looking at the cylindrical distribution of monomers. We rotate and shift

the PA chains so that the longest principle axis of the positive block sits along the x

axis based on the gyration tensor. Figures 3.13 - 3.17 present charge distributions as a

function of their radial distance from the x axis.

In the symmetric case as low `B, the distributions of different charges should be dif-

ferent with the positive charges closer to the x axis, i.e at smaller r. For increasing

electrostatic interaction strength, the negatively charged monomers behave similarly

to the positive charges as they start to bing tighter and tighter. As the asymmetry is

increased, we see a wider distribution in the negatively charged monomers, as neutral

chain segment behaviour dominates.
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Figure 3.13: Radial distribution of charged monomers relative to the principle axis of
the positively charged block for the symmetric f− = f+ chain

At higher `B values, we see distributions of negatively charged monomers again

showing that they have overcome the conformational entropic penalty of the neutral

chains.

Also presented in the 3.17 are the distributions of all monomers on the negatively

charged block. This shows that at low electrostatic interaction strengths the negative

charged monomer distribution is dominated by the neutral chain behaviour, and at

high `B values the charged monomers are behaving wildly different from the chain as a

whole, again pointing out the bottle brush conformation due to ionic binding.

Radial Energy Profiles

Figures 3.18 - 3.22 present the Coulombic energy per charged monomer as a function of

their radial distance to the principal axis of the positively charged block. These energy

profiles provide further evidence of the above mentions conformational transitions as a
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Figure 3.14: Radial distribution of charged monomers relative to the principle axis of
the positively charged block for the asymmetric f− = f+/2 chains

Figure 3.15: Radial distribution of charged monomers relative to the principle axis of
the positively charged block for the asymmetric f− = f+/4 chains
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Figure 3.16: Radial distribution of charged monomers relative to the principle axis of
the positively charged block for the asymmetric f− = f+/8 chains

Figure 3.17: Radial distribution of charged monomers relative to the principle axis of
the positively charged block for the asymmetric f− = f+/16 chains
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Figure 3.18: Radial Energy profile of charged monomers relative to the principle axis
of the positively charged block for the symmetric f− = f+ chains

function of electrostatic interaction strength and chain asymmetry, namely the folding,

to globular and bottle brush transitions.

The radial energy profiles highlight the barrier transition in the chain boundary

shifting with increased chain length.

3.2.3 Conclusion

In the absence of charge, the diblock chains with N−f− = N+f+ would behave as

neutral polymers of length N = N+ + N−. As the electrostatic interaction strength is

increased, the chain conformation transition from folding to coil, then to weakly and

finally strongly associating state [12]. An asymmetric increase in neutral chain segment

lengths on the negatively charged block yields a swelling in the positively charged block

at increasing electrostatic interaction strengths. It requires higher attraction energy

to fold the negatively charged ions. As the electrostatic interaction strength increases

above the entropic barrier, more negatively charged monomers are able to bind with

the oppositely charged block. For small asymmetries this yields a folding of the two
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Figure 3.19: Radial Energy profile of charged monomers relative to the principle axis
of the positively charged block for the asymmetric f− = f+/2 chains

Figure 3.20: Radial Energy profile of charged monomers relative to the principle axis
of the positively charged block for the asymmetric f− = f+/4 chains

54



Figure 3.21: Radial Energy profile of charged monomers relative to the principle axis
of the positively charged block for the asymmetric f− = f+/8 chains

Figure 3.22: Radial Energy profile of charged monomers relative to the principle axis
of the positively charged block for the asymmetric f− = f+/16 chains
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individual blocks into a globule, however chains with longer neutral segments on the

negatively charged block cause a further extension of the positively charged block and

looping of the neutral segments of the other block due to ionic binding, such that they

take a bottle brush conformation.

3.3 Asymmetric Diblock Polyampholytes carrying

net charge, N− ≥ N+, f− = f+

3.3.1 Introduction

In this section we focus on diblock PA chains with degree of polymerisation N =

N+ + N− and identical charge fractions f = f− = f+, the net charge of the system is

defined by

eZnet = e∆Nf, (3.1)

where ∆N = N− − N+. If the system is charge symmetric, PA chains behave as

discussed in the literature [12, 13], in which they collapse into a globule, driven by the

charge density fluctuation induced attraction of oppositely charged monomers [47, 13].

For low asymmetries the chains follow dense packing of electrostatic blobs [13], giving

the chain size

Rgl ≈ ξe

(
N

ge

)1/3

≈ σN1/3

(
`Bf

2

σ

)(1−3ν)/3(2−ν)

. (3.2)

In the limit of high asymmetry N ≈ N− >> N+, the contribution from the shorter

block to the overall behaviour can be considered negligible and the chain is effectively

equivalent to a polyelectrolyte [13, 17]. Shusharina et al [13] developed scaling theory for

diblock polyampholytes in salt free solutions. They predicted that in the intermediate
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asymmetry regime, a chain should collapse into a tadpole shape with a globular head

of size Rhead and a polyelectrolyte tail of length Rtail. In their prediction, whether a

monomer is in the tail or head is determined by the balancing of charge density induced

attraction against the repulsive energy of bringing another charge into the head, leading

to

`BZhead

Rhead

≈ `BZtail

Rtail

(3.3)

where eZhead and eZtail are the net charges of the head and tail respectively. How-

ever, over a wide range of `B and chain asymmetries, we do not see tadpole as the

most favourable conformation. Instead, single chains deform and stretch to associate

with more oppositely charged monomers, whilst simultaneously reducing the intra-block

electrostatic repulsions. In the limit of high electrostatic interaction strength, the poly-

mers adopt a helical/ PE core conformation. Above a critical asymmetry, the excess

charges are sent out in the form of a tail, leading to a cigar-like helix/PE core head

with polyelectrolyte tail.

3.3.2 Models and Methods

We simulate diblock PA chains withN+ = 128, f− = f+ = 1/2 at `B = {0.5, 1.0, 2.0, 4.0}σ.

The lengths of the negatively charged blocks range from N− = 128 to 416 in increments

of 8. In these cases, counterions are required to satisfy the electro-neutrality of the

system and thus PBC are required [36]. We also define relative charge asymmetry

Nexcess = ∆N/N+, as an important feature relating to the asymmetry. We are inter-

ested in polymers in a good solvent and thus take the LJ parameters εLJ = 1.0 and

rcut = 21/6σ. For the FENE coefficients we choose kFENE = 7.0 and RFENE = 2.0 to be

consistent with the literature [12]. Lastly, the step size is dt = 0.001, the temperature

T = 1, monomer density ρ = 1× 10−3 and friction constant ζ = 1
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Figure 3.23: Snapshot visualisations of chains, from bottom to top, `B =
{0.5, 1.0, 2.0, 4.0}σ. From left to right, N = 252, N = 288, N = 320, N = 384.
N+ = 128, f = 1/2

3.3.3 Results

Visualisation

Figure 3.23 shows snapshots of sample configurations of four different systems. Sym-

metric diblock PAs form globulars due to the electrostatic attraction. As the asymmetry

increases, the globules start to take a more elongated shape. Above a critical asymme-

try, the chain becomes an oblong, consisting of a positive central line with the negative

block wrapping around. In the extreme case, a very stretched central line and increas-
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Figure 3.24: Average Radius of Gyration RG and end to end distance Re of the indi-
vidual components with respect to N for `B = 0.5σ

ingly tight wrapping with a tail pointing out carrying part of the excess charges. This

elongated head structure is clearly different from the tadpole structure with spherical

head theoretically predicted [13].

Radius of Gyration and End to End Distance

Figures 3.24 -3.27 show the average Radius of Gyration RG and end to end distance

Re of the individual components for `B = {0.5, 1.0, 2.0, 4.0}σ respectively for various

chain asymmetries. In all instances, the positively charged block continues to stretch

until reaching a plateau. The chains start to send part of the additional charges out as

a PE tail at around N = 320, corresponding to Nexcess = 0.5. For low asymmetry, the

chains take globular conformations as predicted by Shusharina and follow the picture of

dense packing of oppositely charged blobs. However this behaviour quickly changes. At

intermediate charge asymmetries, instead of favouring the conformation of a globular

head with a polyelectrolyte tail, the head stretches to become a net-charged oblong.
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Figure 3.25: Average Radius of Gyration RG and end to end distance Re of the indi-
vidual components with respect to N for `B = 1.0σ

As the asymmetry increases, it is further stretched until the head is like a positively

charged polyelectrolyte core with the longer chain wrapping around. Thus, in the highly

asymmetric case, we view this as a cigar like head with helix/PE core structure with a

polyelectrolyte tail carrying part of the excess charges.

Head and Tail Conformation Analysis

For characterising the conformation of asymmetric diblock PA chains according to the

tadpole picture, we define the PE tail sticking out of the head as the part of the neg-

atively charged block where the charged monomers have no positively charged neigh-

bours. We define two monomers are neighbours if their centres of mass are within a

distance rneigh Results are sensitive to choice of this value, but we aim to provide qual-

itatively coherent results, and chose rneigh < 1.5. Figure 3.28 shows the comparison

between the simulation data and theoretical prediction, for the number of net charges

Zhead in the head, for all `B studied. The net valence of the head in the tadpole regime
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Figure 3.26: Average Radius of Gyration RG and end to end distance Re of the indi-
vidual components with respect to N for `B = 2.0σ

Figure 3.27: Average Radius of Gyration RG and end to end distance Re of the indi-
vidual components with respect to N for `B = 4.0σ
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Figure 3.28: Net charge of the head Zhead. The dashed line is the theoretical prediction
of equation 3.4, subject to a vertical shift.

is predicted for ∆N/N << 1 [13]

Zhead ≈ N1/3f(uf 2)−4/9 (3.4)

For small asymmetries, the net charge of the head grows linearly, as all charges are

incorporated in the head. A universal transition from globular or cigar to head-tail

or cigar tadpole conformation takes place at a certain charge asymmetry, regardless of

`B. In the range of chain length were head to tail conformation is formed, this scaling

behaviour seems to be followed, but it is noted that the theoretically predicted varia-

tion in Zhead over the N range we studied is very small, thus not much different from a

constant.

Figure 3.29 presents the size of the head (RG) and the size of the tail (Re). In Shusha-

rina et al’s picture, the crossover from globule to head occurs when Rhead ≈ Rtail

[13]. The cross over of Rhead and and Rtail can be seen in figure 3.29 in the range of
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Figure 3.29: Rhead, Radius of gyration (RG) and Rtail end to end distance (Re).

∆N/N+ ≈ 0.5 ∼ 0.8, but the identification of the exact crossing point is subject to

the definitions of head and tails, their sizes Rhead and Rtail and the statistics of the data.

Figures 3.30 - 3.33 present the average radii of gyration and end-to-end distances for

the PA chains as a function of ∆N/N+, for each `B. Shusharina et al predicted that

the length of the tail scales [13]

Rtail ≈ b∆N(uf 2)1/3. (3.5)

This Rtail
e ∼ N scaling behaviour can be qualitatively observed in our simulation results

for the highly asymmetric systems, after the onset of the head-tail conformation regime.
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Figure 3.30: Average Radius of Gyration RG and end to end distance Re of the indi-
vidual components, namely head, tail and entire chain, for diblock PAs at `B = 0.5σ

Figure 3.31: Average Radius of Gyration RG and end to end distance Re of the indi-
vidual components, namely head, tail and entire chain, for diblock PAs at `B = 1.0σ
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Figure 3.32: Average Radius of Gyration RG and end to end distance Re of the indi-
vidual components, namely head, tail and entire chain, for diblock PAs at `B = 2.0σ

Figure 3.33: Average Radius of Gyration RG and end to end distance Re of the indi-
vidual components, namely head, tail and entire chain, for diblock PAs at `B = 4.0σ
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Figure 3.34: Average energy experienced per ion, `B = 0.5σ

Average Coulomb Energy per charged monomer

Figures 3.34 - 3.37 show the average Coulomb energy per ion as a function of relative

charge asymmetry Nexcess = ∆N/N+, each figure corresponds to a different electrostatic

interaction strength. Figures 3.38 - 3.41 show the Coulomb energy per charged monomer

for four sample systems as a function of `B. The results are shown for individual compo-

nents of the chains As the asymmetry increases, the total Coulomb energy experienced

by the positively charged monomers U+
coul is negative with its magnitude increases due

to the increased number of negatively charged monomers associating with them. On the

contrary, the energy U−coul experienced by the negatively charged monomers is positive

with its magnitude, increases due to the increased repulsion among themselves. It can

also be observed that the average Coulomb energy per charged monomer inside the head

follows similar behaviour as that of all charged monomers in the system, showing that

the behaviour of the system is largely dominated by the head. In the highly charged

case, a PE tail sticking out which can attract and condense the counterions.
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Figure 3.35: Average energy experienced per ion, `B = 1.0σ

Figure 3.36: Average energy experienced per ion, `B = 2.0σ
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Figure 3.37: Average energy experienced per ion, `B = 4.0σ

Figure 3.38: Average Coulomb energy experienced per ion N = 256
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Figure 3.39: Average Coulomb energy experienced per ion N = 288

Figure 3.40: Average Coulomb energy experienced per ion N = 320
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Figure 3.41: Average Coulomb energy experienced per ion N = 384

3.4 Conclusions

Please note that the results in this section are subject to noise, and require further

data. However, we show that symmetric diblock PA chains form globules, consistent

with the work of Wang and Rubinstein [12]. With increasing charge asymmetry the

globule starts to elongate into cigar-like shapes. If the electrostatic interaction strength

is high it can extend into into a helix/ PE core structure with the longer block wrapping

around the shorter one. Although infrequent, low symmetric chains at low `B are able to

adopt the helical structure, see figure 3.42. The two oppositely charged blocks scramble

together until N− ≈ 1.5N+. A further increase in charge asymmetry leads to a PE tail

sticking out carrying part of the excess charges. The chain conformation thus turns

into a tadpole-like shape consisting of a cigar-like head carrying excess charge, and a

polyelectrolyte tail containing the rest of the charges. This conformational transition is

qualitatively consistent with the theoretical predictions of Shusharina et al [13], however

the theory didn’t consider the elongation of the head. It is worth noting that our
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Figure 3.42: Snapshot of a symmetric chain of length N = 256 adopting an infrequent
helical structure at `B = 0.5σ

results are relevant to a good solvent, whereas the theory relates to θ solvent. Further

theoretical work is still needed for describing our simulation results.
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Chapter 4

Self-Assembly Behaviour of

Asymmetric Diblock

Polyampholytes

4.1 Interactions between two asymmetric PA chains

4.1.1 Introduction

To understand the underlying mechanisms in the aggregation behaviour of charged

polymers, it is imperative to analyse the interactions between two such chains. Sym-

metric diblock polyampholytes continue to aggregate with increasing number of chains

and form a dense sediment [13]. For the asymmetric PA chains, such as those with

f = f+ = f− and N− > N+, the fluctuation induced electrostatic attractions between

the oppositely charged blocks irrespective of which polymer they belong to, brings the

chains together. The aggregation of the chains can reduce the surface energy per chain,

which can counter-balance the electrostatic repulsion energy caused by the net charge of
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the aggregate [13]. But the size of the aggregate is limited by the net charge carried by

each chain, eZnet. Thus, micelles are predicted to form when the surface energy gain in

the head is larger than the electrostatic energy of the tail [13], i.e., when Znet < Zunimer

Zunimer ≈ Nf

(
Nneutr

N

)1/3

, (4.1)

where

Nneutr = (lBf/σ)−2/3 (4.2)

which is the length of a diblock PA chain whose size is comparable to one electrostatic

blob. It is worth noting that for simulation it is more convenient to discuss the behaviour

in terms of the bead size; the Kuhn length b is proportional to the Lennard Jones

diameter σ, a fully extended bead spring polymer has length L = Nb ≈ Nσ If Znet >

Zunimer the chains prefer to stay as individual unimers (single chains), as the cost of

bringing these excess repulsive charges together outweighs the benefits of reducing the

surface energy.

In this chapter we present our MD simulation results on the association behaviour of

asymmetric diblock PA chains by investigating the stability of the preassembled 2-chain

and 16-chain aggregates. The umbrella sampling method is used to calculate the effec-

tive interaction potential, or potential of mean force, between two asymmetric chains

for understanding the driving force for their association or repulsion. A relatively wide

range of chain length, asymmetric and electrostatic interaction strengths is covered.

4.1.2 Models and Simulation Methods

We study diblock PA chains with fixed positive block length of N+ = 128 and var-

ious negative block lengths N− = {128, 144, 160, 188, 192, 256}. The charge fractions
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are fixed to f− = f+ = 1/2. The polymers are considered to be in a good solvent

and thus we take the LJ parameters εLJ = 1.0kBT and rcut = 21/6σ. For the FENE

parameters we choose kFENE = 7.0kBT/σ
2 and RFENE = 2.0σ as before. The Bjer-

rum length is increased from `B/σ = 1/8, 1/4 to 4 by an increment factor of 2. The

Langevin equations of motion of the monomers and counterions are integrated with

the velocity Verlet method with time step size dt = 10−3τLJ. MD simulations of the

association/dissociation behaviour of PA chains are performed with periodic boundary

conditions with the electrostatic interactions handled by the P3M method. The number

density of particles (monomers and counterions) is taken to be ρ = 10−3σ−3.

We first allow Npoly = 2 neutral chains of length N = N+ + N− to relax freely,

then drag them together with an artificial harmonic force between the centres of mass.

This force is introduced for preassembling the PA chains into aggregate, because it is

computationally impractical to simulate micellization process starting from solutions

of randomly distributed chains. The neutral chains continue to relax whilst still being

pulled together. The charges are then turned on, and after a further 107 time steps

we turn off the drag force and continue with the standard MD simulations. Whilst the

behaviour after the switch-off may be unrepresentative of a real system, it allows us to

investigate the stability of the aggregates and the length of time for reaching possible

equilibrium state.

There is an issue when using only a single starting position in which we have limited

sampling. Most systems has a single starting position, however the N = 272 simula-

tions were performed from five starting configurations to help improve the statistics.

The interaction energy between two PA chains is calculated using the umbrella
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sampling method where we simulate Nw = 20 sufficiently overlapping windows in each

case. We employ a harmonic spring with spring constant k = N−1/3kBT/σ
2, which

is related to the radius of gyration of a collapsed single-chain globule [49]. Periodic

boundary conditions with P3M are still used, but the number density of particles is

taken to be ρ = 10−7σ−3 such that the periodic images of the PA chains play very

minor role in any simulated window. The low density will have some quantitative, but

no qualitative, effect on the counterion condensation behaviour, as will be demonstrated

below for the systems simulated using the standard MD method. No REMD is used

for the umbrella sampling, although Ito et al. [107] presented a method for replica

exchange umbrella sampling (REUS), in which the umbrella windows are swapped with

particular attention paid to ensuring sufficient overlap of the replicas based on test

simulations. Our PA chains can be much longer than the PN molecules they studied.

4.1.3 Simulation results and discussions

Standard MD simulations of preassembled aggregates

Figure 4.1 presents the snapshots of the two asymmetric PA chain systems, each ob-

tained from standard MD simulation at t = 105τLJ after turning off the drag force

between their centres of mass. At Bjerrum lengths `B/σ ≤ 1, the two PA chains show a

general repulsion behaviour, regardless of the chain asymmetry. According to the theo-

retical calculations of Shusharina et al. the net charge Znet = 8 for the PA chains with

length N = 272 is smaller than the critical value of Zunimer (≈ 21) at `B/σ = 1, and so

these chains are predicted to aggregate to form micelles. However the pairs of chains

do not show a stable association state in our simulations. At higher `B values, the PA

chains with low asymmetry can be trapped in the meta-stable preassembled aggregate

state due to the strong electrostatic attraction. The aggregate of the two chains with
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Figure 4.1: Snapshots of the two asymmetric PA chain systems, each obtained at
t = 105τLJ after turning off the drag force between their centres of mass. From left
to right, the chain lengths are N = 272, 320, 384, respectively, corresponding to the
asymmetries of ∆N/N+ from 1/8, 1/2 to 1. The Bjerrum length increases from top to
bottom as `B/σ = 1/4, 1 and 4.
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N = 272 at `B/σ = 4 takes the configuration of a globular head and a double-helix tail.

The one formed by two chains with N = 320 takes a similar configuration, but a longer

helix/PE core tail due to the larger N− and so higher asymmetry. A close inspection

indicates that each positively charged block is associated with the negatively charged

block of the other chain. This is a favourable arrangement for holding the two chains

together, although they may still separate at longer times. When the asymmetry is

further increased to ∆N/N+ = 1 and so N = 384, the aggregate already starts to disas-

sociate with only a small associating section between the PE tail of one chain with the

helix/PE core head of the other chain. Each geometric part of the chain conformation,

i.e., the helix/PE core head or PE tail, is negatively charged and there is no strong

charge density fluctuations in the head to give rise to the local attraction. Therefore

the two PA chains tend to repel each other at high lB values.

Figures 4.2 and 4.3 present snapshots of two much longer chains with N = 1124

(N+ = 512 and N− = 612) at `B/σ = 1/2. Figure 4.2 demonstrates the two blocks in

each chain already wrap around each other to form a helix/PE core structure. Figure

4.2 shows the polymers coloured by the chain they belong to, and shows that these

coils can belong to the same chain. This helix/PE core structure is relatively long and

flexible, so can still coil up to give a head of globule-like shape. Such helix/PE core

structures are net charged and so do not tend to aggregate with each other, so do the

PE tails. The two PA chains thus eventually separate from each other.

Coulomb energy analysis

Since the association of the asymmetric PA chains is driven by the local charge density

fluctuations, the stability of the preassembled aggregates can be partly understood from

analysing the electrostatic interaction energies of the PA chains in their aggregate or

separate state, Eaggregated or Eseparated, respectively. As there are only two PA chains,
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Figure 4.2: Snapshot of two preassembled asymmetric PA chains with length N = 1124
(N+ = 512), f = 1/2 and `B/σ = 1/2.
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Figure 4.3: Snapshot of two preassembled asymmetric PA chains, including counterions
with length N = 1124 (N+ = 512), f = 1/2 and `B/σ = 1/2, coloured by chain and
counterion
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they are either aggregated or separated, never both at once. We can also calculate the

Coulomb energy for each block of the chains.

In Figure 4.4 we plot the total Coulomb energies of the systems comprised of two

preassembled asymmetric PA chains with chain lengths (a) N = 272 and (b) 320 as

functions of time, respectively. For comparison, the Coulomb energies calculated for

the two chains in their aggregate and separate states are also included, where only the

monomer contributions are included. More precisely, these energies are calculated as

Etot = Emonomer-monomer + Emonomer-counterion + Ecounterion-counterion(4.3)

Eaggregated (separated) = Etot − Ecounterion (4.4)

The Bjerrum length is `B/σ = 1 in both cases. Time zero in these plots corresponds to

the moment when the artificial drag force is removed. In each system, the total Coulomb

energy shows a drop at the transition point when the two chains start to separate

from each other, indicating that the unimer phase is energetically more favourable.

The variation of the system configuration from the aggregate to separate state can be

visualised from the snapshots taken at different times. It should be noted that the

results in Figure 4.4 do not include surface energy which is theoretically predicted to

stabilise the micellar core by balancing the electrostatic repulsion [13]. The translational

entropy is another factor which can drive the chains to leave each other. At least for

the systems shown in Figure 4.4, the surface energy gain does not seem to be sufficient

to overcome the electrostatic repulsion between the net charges of the PA chains and

the translational entropy. A more rigorous calculation of the interaction potential, or

the potential of mean force (PMF), between two PA chains can be obtained from the

umbrella sampling simulations as discussed below.

The contributions of counterions to the total Coulomb energy of the system can
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be calculated using the data in Figure 4.4 as Etot − Eaggregated (separated), depending on

the interested time scale. Their contributions are relatively small for the systems with

low chain asymmetry because of the small number of counterions (e.g., 16 for two

PA chains of length N = 272) . They become more important with the increase of the

chain asymmetry, as seen in Figure 4.4(b) for the system with N = 320. The counterion

contributions may also vary with the change of the number density of particles, because

the counterions will prefer to stay away from the PA chains due to translational entropy.

Figure 4.5 presents the results on the average Coulomb energy per charged monomer

obtained from the MD simulations of two preassembled asymmetric PA chains. The

chain lengths are selected to be N = 272, 320 and 384, corresponding to the systems

studied in Figure 4.1. For each given system with chain length N and Bjerrum `B, the

energy is calculated for all charged monomers in the system, EN , and also for those in

the positively and negatively charged blocks, EN+ and EN−, respectively. As shown in

4.1, depending on N and `B, the two preassembled PA chains may separate from each

other at a certain time. In such a case, the Coulomb energy is calculated by averaging

over both the aggregate regime, noted as E
N(+,−)
aggregated, and the separate regime, E

N(+,−)
separated.

If the two chains remain aggregated over the entire simulation run, the results are only

given for E
N(+,−)
aggregated. For the two nearly symmetric chains with N = 272, the chains

fluctuate between being in the aggregated and separated states at `B/σ ≤ 1, owing

to the relatively weak electrostatic attractions between the two chains, induced by the

local charge density fluctuations, allowing chain entropy to play a more significant role.

The energy difference between the aggregate and separate states in these cases is negli-

gible. At larger `B, the two chains always remain to be associated, which is consistent

with the association tendency of symmetric PA chains. When the chain length, and

consequently the chain asymmetry, is increased, the Coulomb energy of the system in
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Figure 4.4: Coulomb energies of the systems comprised of two preassembled asymmetric
PA chains with chain lengths (a)N = 272 and (b) 320, respectively. The Bjerrum length
is `B/σ = 1. Here the total energy refers to the total Coulomb energy of the whole
system including the two PA chains and counterions, while the Aggregate and Separate
energies refer to the Coulomb energies of the two PA chains (excluding counterions)
when they are in the aggregate and separate states, respectively. The data points are
block averaged values over time block interval of 1000τLJ. The snapshots of the PA
chains at different times are also included for reference.
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the separate state becomes lower than that in the aggregate states, and so the two

chains separate into unimers after a certain time. For N = 384, the separation happens

at `B/σ ≤ 2. The overall Coulomb energy of the system also stays positive, reflecting

the electrostatic repulsion feature between the highly asymmetric PA chains. At high

Bjerrum lengths `B/σ = 4, the total Coulomb energies of all three systems are negative

and the chain aggregation is likely the stable state, although further study is required

to confirm this system is not trapped in a meta stable state.

The Coulomb energies calculated for individual blocks can provide further informa-

tion about the association state of the PA chains. Since the length of the positively

charged block is fixed, the attractive energy gain per charged monomer in these blocks

increases with the increase of the chain length due to the presence of more negatively

charged monomers, but this is counter balanced by the increment in the repulsive en-

ergy in the longer negatively charged blocks. It is the sign of the total Coulomb energy,

together with the surface energy, that determines the association state of the PA chains.

Potential of mean force between two PA chains

The association possibility of two PA chains can be found by calculating their potential

of mean force using umbrella sampling simulations. To test our implementation of the

umbrella sampling method, we first run simulations to calculate the PMF between two

identical polyelectrolyte chains of length N and compare the results with the known

potential expression of U(r) = lBkBTN
2/r as expected for two point charges of valence

N at distance r. In all cases, we run Nw = 16 individual windows in parallel and fix the

windows to have the biased potential equilibrium value deq = 4ir/σ, i = {0, 1, .., 15}

apart. The longest chain we simulate is N = 320, with Bjerrum length `B = 1.0σ. From

Figure 3.25, one can see that the longest average end to end distance for a chain of this
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Figure 4.5: Average Coulomb energy per charged monomer obtained from simulations
of two preassembled asymmetric PA chains. See the main text for the description of
the data sets.

Figure 4.6: Potential of mean force between two identical polyelectrolyte chains of
lengths N = {2, 4, 8} and charge fraction f = 1 at `B/σ = 1 as obtained from umbrella
sampling simulations. For each system, the potential of mean force similar to U(r) =
lBkBTN

2/r as expected for two point charges of valence N at distance r is also included
for comparison.
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length is R+
e ≈ 30. As the furthest equilibrium value is around twice this distance, we

argue that this is enough to capture the difference between associated and disassociated

states. Figure 4.6 shows that our umbrella sampling simulation generate PMF results

in very good agreement with the potential of the idealised point charge systems at dis-

tances larger the radii of gyration of the PE chains. This validates the implementation

of the method. These chains are relatively small, and with a Bjerrum length `B/σ = 1

there is no counterion condensation. Thus, these PE chains take a stretched configura-

tion due to the electrostatic repulsions between the like charged intrachain monomers,

with chain end-to-end distance Nσ. Variation in the conformational entropy in these

chains is very small; two similarly charged PE chains undergo purely repulsive inter-

actions, and is analogous to two rigid charged rods. The rotational entropy has been

taken into account via the ensemble average. If we simulated PE chains that are much

longer, the fitting may not work at shorter centre-to-centre distances between the two

chains due to the entropic contributions of the chains.

Our calculation of the PMF of diblock PA chains starts with the shortest chains

of length N = 2 which are actually dipoles consisting of one positively and one nega-

tively charged monomer. Figure 4.7 presents the PMF results for different electrostatic

interaction strengths. At very low `B values, the excluded volume effects dominate.

With increasing `B the PMF shows the 1/r6 behaviour at larger distances which is

the average interaction potential between two rotating dipoles. At higher `B, an elec-

trostatic attraction well appears at around r = 2σ, corresponding to the head to tail

association of the two dipoles. A further increase in `B leads to another well at r ≈ σ,

corresponding to the formation of a quadrupole [12]. In any case the steep growth of

the PMF at small r is due to the Lennard-Jones potential which prevents the overlap

of the monomers.

Figure 4.8 presents the PMF results calculated for two symmetric diblock PA chains.

85



Figure 4.7: Potential of mean force obtained from umbrella sampling simulations of a
pair of dipoles each consisting of one positively and one negatively charged monomer.

The chain length is increased from N = 4 to 256 for two charge fractions f = 1/2 and

1/4. The Bjerrum length is `B/σ = 1 in all cases. The number of monomers in an

electrostatic blob at this `B can be estimated as ge ≈ (lBf
2/σ)−1/(2−ν) ≈ f−1.416 where

ν = 0.588 for good solvent condition. It gives ge ≈ 2.67 for f = 1/2 and 7.12 for

f = 1/4. These ge values are subject to change by a constant multiplication factor,

considering the scaling feature of the estimation and that the chain segments at these

length scales are not flexible. Anyhow, they imply that for short diblock PA chains each

block may correspond to only one or few electrostatic blobs. The fluctuation-induced

attractions between the two chains are not strong enough to overcome the translational

entropy. They will tend to stay as unimers. The PMF data for the short diblock PA

chains thus show the general repulsive feature. With the increase of chain length, the

number of electrostatic blobs per block also increases. The symmetric PA chains will

aggregate into globular clusters whose structures are represented by the dense packing

of oppositely charged electrostatic blobs [12]. Correspondingly the PMF of the longer

symmetric diblock PA chains show significant attractive character at short distances.
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Figure 4.8: Potential of mean force obtained from umbrella sampling simulations of two
symmetric diblock PA chains for various chain lengths and charge fractions f = 1/2 (a)
and 1/4 (b) . The Bjerrum length is `B/σ = 1 in all cases.
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As a result, in the solutions of long symmetric diblock PA chains (say with N = 256)

the aggregate can keep on growing to form a sediment phase. Unlike the steep growth

in figure 4.7, as the chain length increases in figure 4.8, the centres of mass become

easier to overlap, resulting in a softening of the potential.

Figure 4.9 shows the PMF data for asymmetric diblock polyampholytes with asym-

metry ∆N/N+ = 1/8. The chain length is increased from N = 34 to 272 with an

increment factor of 2 for N+. Two charge fractions f = 1/2 and 1/4 are studied and

the Bjerrum length is `B/σ = 1 in all cases. These results are qualitatively similar

to those of the symmetric PA chains with same N+ values in Figure 4.8 due to the

relatively low asymmetry. But for each given N+, in the f+ = 1/2 case, the attraction

strengths at short distances between the asymmetric chains are weaker than those of

their symmetric counterparts. This can be more conveniently seen by comparing the

PMF values at r = 0. For example, this PMF value is about −5kBT for the asymmetric

chains with N = 272 and f = 1/2, which it is close to −8kBT for the symmetric chains

with N = 256 and f = 1/2. The difference can be understood from the electrostatic

repulsion caused by the net valences of the asymmetric chains. Figure 4.9 indicates that

PA chains with relatively low asymmetry can aggregate into clusters if their centres of

mass can approach each other within a certain distance.

When the centre-of-mass distance between two chains is beyond their overlapping

range, the PMF shows the repulsive behaviour as expected for the interaction between

two likely charged objects. This is more evident for the longer chains due to the larger

net valence per chain. Two PA chains with N = 272 and f = 1/2 at `B/σ = 1 repel

each other at a separation r ≥ 20σ. The average radius of gyration of such chains is

Rg ≈ 7σ. For the asymmetric diblock PA chains to aggregate into stable clusters or

micelles in dilute solutions, they need to overcome the long-range repulsion in order

to approach each other. On the other hand, two previously aggregated chains can
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Figure 4.9: Potential of mean force obtained from umbrella sampling simulations of
two asymmetric diblock PA chains with asymmetry ∆N/N+ = 1/8 for various chain
lengths and charge fractions f = 1/2 (a) and 1/4 (b). The Bjerrum length is `B/σ = 1
in all cases.
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undergo many association-dissociation events due to thermal fluctuations. When the

separation between their centres of mass is large enough, the electrostatic repulsion will

push them away. They can either associate with other neighbouring chains in solutions

with relatively high polymer concentrations, or simply draft away in dilute solutions.

The latter case is shown in Figure 4.1 for the two chains with N = 272 and f = 1/2 at

`B/σ = 1. A critical concentration of PA chains needs to be met for the formation of

stable aggregates or micelles.

The situation is totally different for highly asymmetric diblock PA chains. As shown

in Figure 4.10. Here we present just the longest chain studied, as a means of comparison

with the longer chains in Figures 4.8 and 4.9. The PMF between two PA chains with

length N = 320 and so asymmetry ∆N/N+ = 1 at `B/σ = 1 shows strong repulsion

behaviour for the entire range of reaction coordinates studied. Therefore such highly

asymmetric chains could not form stable aggregates.

A note on initial configurations used in umbrella sampling

When performing umbrella sampling simulations of systems with chain lengths N ≥

128, we observe a common problem related to the initial configurations of the system,

which results in unphysical knotting or hooking of the two chains when the charges

are turned on, see Figure 4.11. Due to the chains being held a certain distance apart,

sometimes when the charges are turned on the blocks collapse into an unfavourable

configuration but are unable to reorient into a more favourable position due to the

positioning of the centre of mass being held. Whilst knots may appear in reality,

specifically in this situation the chains look like two pieces of overlapping string being

pulled apart, and is clearly not realistic. One possible solution is to relax the chains

separately to avoid the initial knotting and then drag them to their reference distance.

However this approach could be problematic for the aggregating state, because it may

90



Figure 4.10: Potential of mean force obtained from umbrella sampling simulations of
two asymmetric diblock PA chains with length N = 320, asymmetry ∆N/N+ = 1/2
and f = 1/4. The Bjerrum length is `B/σ = 1.

Figure 4.11: Evidence of an infrequent unphysical knot, caused by the bias potential
harmonic spring between the centres of mass of the two chains (red and blue). Two
symmetric chains, N = 256, peak distribution 16r/σ
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Figure 4.12: Snapshots of the systems comprised of two asymmetric diblock PA chains
with one PE stabiliser taken at t = 105τLJ in the MD simulations. From left to right, the
lengths of the PA chains are N = 272, 320 and N = 384, corresponding to asymmetries
∆N/N+ = 1/8, 1/2 and 1, respectively. The length of the PE chains in all systems is
NPE = N+ = 128. The Bjerrum length is `B/σ = 1/8 in the top row and 1 in the
bottom row.

lead to unfavourable configurations at the early stage in the simulation and consequently

affect more than one windows. Another solution is to run parallel tempering during the

warm-up process, check for the undesired configurations with knotting behaviour and

filter them out . However this is computationally costly, because many parallel runs

are needed if we do not know which system will knot. We found that the unphysical

knotting situation can be easily spotted in the probability distribution of the centre-of-

mass distances in a simulation window when it tends to overlap with the distribution

in a neighbouring window. In that case, we run 10 more simulations in that specific

window and pick up the ones that do not knot.

Polyelectrolyte Stabiliser

As discussed in Chapter 3, the single asymmetric PA chains tend to take the confor-

mations of a net charged elongated globular or helix/PE core head, where the short

positively charged block is wrapped by the longer negatively charged block, and a poly-

electrolyte tail if the asymmetry is high. For forming a stable cluster or micelle, the
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head structures need to open up allowing them to interpenetrate each other and have

cross associations of the blocks or electrostatic blobs from one chain with oppositely

charged blocks or electrostatic blobs from other chains. But in the process of aggrega-

tion or micellization, when the PA chains meet each other in a solution, there may be

no sufficient time for them to unwrap the head structures before separating apart again

due to the electrostatic repulsion and translational entropy, see Figure 4.1.

Here we propose a potential solution by introducing positively charged polyelec-

trolyte chains into the solution which effectively work as cross-linkers to bridge the

overall negatively charged PA chains and allow them sufficient time to unwrap and re-

mix their oppositely charged blobs. The PE chains also help to reduce the net valences

of the aggregates and make them more stable. As a preliminary test, we set the length

of the PE chains equal to that of the positively charged blocks of the diblock PA chains,

i.e., NPE = N+ = 128. They also have the same charge fractions as the PA chains they

are mixing with. This choice is probably also convenient from the experimental point

of view, because only one type of positively charged chains need to be synthesised. For

each system comprised of two PA chains, one PE chain is introduced.

Figure 4.12 shows the snapshots of the systems consisting of two asymmetric diblock

PA chains and one PE stabiliser. The lengths of the PA chains are N = {272, 320, 384}.

The total net charges on the three polymer chains in each system are thus {+48, 0,−64}

at charge fraction f = 1/2, respectively. Despite the net charges in some of the sys-

tems, the preassembled aggregates in all studied systems remain stable throughout the

entire simulation duration. It is noted that helix/PE core is still the dominating local

structure, but now can be formed by blocks from different PA chains or with the PE

chain.

It may look like that the effect of introduction PE chains can also be achieved

by simply reducing the asymmetry of the diblock PA chains. But the key difference
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lies in their role of bridging the PA chains to prevent them from running away before

establishing interchain associations of the oppositely charged blocks or electrostatic

blobs. To keep the original asymmetry of the PA chains also means that only a few

relatively long negatively charged blocks need to stick out of the aggregate which carry

part of the overall excess net charges of the system and stabilise the globular core to

form stable micelles. The functioning of the PE stabilisers will be examined in section

4.2.1 for the aggregates comprised of 16 chains which are more relevant to micelles

studied in theoretical models [13].

4.1.4 Conclusions

The association behaviour between two asymmetric diblock polyampholytes have been

studied by MD simulations using pre-assembled aggregates over a range of chain lengths

and asymmetries, charge fractions and Bjerrum lengths. The potential of mean force

between two asymmetric PA chains has also been calculated using umbrella sampling

methods. The PMF results show that two PA chains with relatively low asymmetry

are attractive to each other at centre-of-mass distances comparable or smaller than the

chain size, which favours the chain aggregation. At larger centre-of-mass distances,

they repel each other as expected for two likely charged objects. Since the single

asymmetric diblock PA chains tend to take the conformations of an elongated globular

or helix/PE core shape at low asymmetries and a head-tail geometry with an elongated

globular or helix/PE core head and a single polyelectrolyte tail at high asymmetries,

the formation of stable clusters or micelles requires the interpenetration of the globular

or unwrapping of the helix/PE core structures to allow the interchain associations of

oppositely charged blocks or electrostatic blobs. The successful association between

two chains may require multiple attempts as the shallow penetration can be easily
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disrupted by thermal fluctuations and the intrinsic electrostatic repulsion between the

likely charged chains. At concentrations below a critical (micellization) value, even

the preassembled PA chains will separate from each other due to translational entropy.

This is observed in our MD simulations of the preassembled PA chains with different

asymmetries at `B/σ ≤ 1. On the other hand, the PMF data of highly asymmetric PA

chains show repulsive behaviour for the entire centre-of-mass distance range, indicating

that no stable aggregates could be formed by such chains.

In order to facilitate the formation of stable aggregates, we have proposed to in-

troduce positively charged polyelectrolyte chains into the solutions of asymmetric PA

chains, which can work as cross-linkers to bridge the PA chains with net negative va-

lences and enhance the probabilities of interchain association of the oppositely charged

blocks or electrostatic blobs. An addition of a PE chain to the systems of the two

asymmetric PA chains lead to stable aggregates at all chain asymmetries studied at

`B/σ = 1 over the entire simulation duration.

4.2 Stability of pre-assembled aggregates of asym-

metric diblock PA chains

4.2.1 Introduction

Shusharina et al predicted that the diblock polyampholyte chains with tadpole shape

conformations will aggregate into micelles when the surface energy gain due to the

aggregation of their heads is larger than the repulsion energy between their tails [13].

The micelles are predicted to take star-like geometry consisting of a globular core, where

most of the constitute chains are completely confined in, and a long corona consisting

of entire stronger charged blocks of other chains, carrying part of the excess charges of
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the system. This is energetically more favourable than the so-called crew-cut micelle

structure where each constitute diblock chain sends out part of its longer block to form

a short corona.

For a micelle comprised of Npoly diblock PA chains of length N in a θ−solvent, the

core size is predicted to be [13]

Rcore ≈ σN
1/3
polyN

1/3
(
`Bf

2
/
σ)−1/9, (4.5)

and the surface energy per chain is given by

Fsurf

kBT
≈ R2

core

Npolyξ2e
≈ N

1/3
polyN

2/3
(
`Bf

2
/
σ)4/9, (4.6)

where ξe is the size of electrostatic blob size.

Balancing the surface energy of the micellar core and the electrostatic energy in the

corona, the equilibrium aggregation number of a micelle formed under the condition

that most of the counterions are in the surrounding solutions is

Npoly ≈ N−1/3
(

∆N

N

)−5/3 (
`Bf

2
/
σ)−2/9. (4.7)

We perform MD simulations of preassembled aggregates comprised of 16 asym-

metric diblock PA chains over a range of chain lengths and electrostatic interaction

strengths. The main focus is on examining the stability of the preassembled aggregates

and whether the star-like or the crew-cut structure is more favourable for the systems

with composition falling well into the parameter range for forming stable micelles as

predicted by the theoretical work of Shusharina et al. [13].
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4.2.2 Models and Simulation Methods

Unless otherwise stated, we simulate preassembled aggregates comprised of Npoly = 16

asymmetric diblock PA chains of length N = {256, 264, 272, ..., 384} at Bjerrum lengths

`B = {0.125, 0.25, 0.5, 1.0, 2.0, 4.0}σ. The length of the positively charged blocks is fixed

to N+ = 128 and the fraction of charged monomers is f = 1/2. We are interested in

polymers in a good solvent and thus we take the LJ potential parameters εLJ = 1kBT

and rcut = 21/6σ. For the FENE coefficients we choose kFENE = 7kBT/σ
2 and RFENE =

2σ to be consistent with the literature [12]. Periodic boundary conditions are applied

with the electrostatic interactions handled by the P3M method. The number density

of particles (monomers and counterions) is taken to be ρ = 10−3σ−3.

Our simulations begin with warming up the neutral chains for a time duration of

103τLJ, and then dragging them together by harmonic springs connecting their centres

of mass to relax for another time period of 104τLJ. Following that the charges are turned

on and the system continue to relax for another 104τLJ with the drag forces on. The

main simulations start at time t = 0 right after the drag forces are turned off.

4.2.3 Simulation Results and discussions

Figure 4.13 presents the snapshots of the systems comprised of 16 preassembled asym-

metric diblock PA chains with lengths N = {256, 272, 288, 320, 384} at two different

Bjerrum lengths `B/σ = 0.5 and 1 taken shortly after the drag forces are turned off.

The aggregates simulated at `B/σ = 1 show clear star-like micellar structures and the

number of long arms in the corona increases from 0 in the symmetric case to 2 at

N = 272 and asymmetry ∆N/N+ = 1/8, 5 at N = 288 and ∆N/N+ = 1/4 and more

for longer chains and so higher asymmetries. In all cases studied, the total number of

arms is always smaller the number of chains in the aggregate. This provides qualitative
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Figure 4.13: Snapshots of the systems comprised of 16 preassembled asymmetric di-
block PA chains taken at simulation times 1 ∼ 2 × 104τLJ after turning off the
drag forces. From top to bottom, the chain length in each row increases as N =
{256, 272, 288, 320, 384}. The Bjerrum length is `B/σ = 0.5 in the left column and 1 in
the right column.
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Figure 4.14: Snapshots of the systems comprised of 16 preassembled asymmetric diblock
PA chains taken at simulation times at simulation times 9× 104 ∼ 105τLJ after turning
off the drag forces. From left to right, the chains lengths are N = 256, 272, 320 and 384,
respectively. The Bjerrum lengths are `B/σ = 1 in the top row and 4 in the bottom
row.

support to the star-like picture predicted by Shusharina et al. [13]. However these

micelle-like structures are unstable and will evolve into different types of structures

depending on the system parameters.

In the top row of Figure 4.14, we show the snapshots of the systems studied in

the right Column of Figure 4.13 at `B/σ = 1 which are taken at simulation times

significantly after turning off the drag forces. The aggregate formed by symmetric

chains with N = 256 remains to be stable as expected. But that formed by the slightly

asymmetric chains with N = 272 and ∆N/N+ = 1/8 breaks into smaller clusters of

various sizes. The aggregates constructed by chains with larger asymmetries also have

some unimers broken off. The remaining parts of the aggregates evolve into star-like

or hyper-branching structures with ”arms” or ”strands” composed of helical structures

and single PE tails. In the highly asymmetric cases, such as N = 384 (∆N/N+ = 1), the
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PA chains take highly stretched conformations composed of helix/PE core and single

PE segments. They connect with each other and even with their periodic images to

form percolated network structures.

An increase of the Bjerrum length to `B/σ = 4 does not improve the situation. As

shown in the bottom row of Figure 4.14, the aggregates constructed by PA chains with

low asymmetries ∆N/N+ ≤ 1/8 remain intact but take non-globular shape, see the

case with N = 272. But the aggregates formed at higher asymmetries also evolve into

complex structures, similar to those at `B/σ = 1. The complication of the structures

formed in different systems make sit difficult to develop theoretical models to describe

them.

Coulomb energy analysis

Figure 4.15 presents the simulation results on the total Coulomb energies, Etot(t), of

the systems consisting of 16 asymmetric PA chains as functions of time. For the system

comprised of symmetric chains with N = 256, Etot(t) reaches its plateau value shortly

after turning off the drag force. The average plateau value decreases with the increase

of the Bjerrum length, indicating that the preassembled aggregate is getting more and

more stable.

The Etot data of the system with low chain asymmetry of ∆N/N+ = 1/8 (N = 272)

also show a general trend of decreasing with the increasing electrostatic interaction

strength. A more detailed energy analysis of this system at `B/σ = 1 is given in Figure

4.16(a) where the aggregate energy is calculated for all chains associated into clusters

of various sizes by using eq. 4.3, while the separate energy is calculated for the chains

in the form of unimers using the same equation. It can be seen that the breakage of the

preassembled aggregate into smaller clusters leads to a decrease of the total Coulomb

energy of the system, which is accompanied with the loss of surface energy and the gain
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of translational entropy. At `B/σ = 4, the aggregate remain intact, but the deformation

of its geometric shape results in a slight increase in the total Coulomb energy, so the

system probably has not reached the equilibrium state.

The total Coulomb energies in the systems with higher chain asymmetries show a

general trend of decreasing with time at each given `B, indicating that the structural

changes are favourable in reducing the electrostatic energy. This can be seen more

clearly in Figure 4.17 for the system with N = 320. Therefore the separate energy

remains to be zero, meaning that all 16 chains are still in connection with each other

over the simulation time duration.

Apart from the symmetric case, the Coulomb energy data show that the asymmetric

systems either have not reached their steady state or been trapped in meta-stable state.

Therefore the simulation results we obtained so far could not lead to a solid conclusion

about the aggregation behaviour of the asymmetric diblock PA chains.

4.2.4 Polyelectrolyte Stabiliser

Similar to the 2-chain cases, we can also introduce positively charged PE chains into the

16- chain systems for stabilising the aggregates. As a preliminary test, we only replace

one of the asymmetric diblock chains with a PE chain of length NPE = N+ = 128. As

can be observed in 4.18, the introduction of a PE stabiliser leads to much more stable

aggregates. The preassembled aggregate comprised of 15 PA chains of length N = 320

and one PE chain develops into a micellar structure composed of a dense micellar core

and a corona constructed by long arms each having an inner helical structure and an

outer single PE tail. A similar structure is also obtained for the system with highly

asymmetric PA chains of length N = 384, where the arms are even longer.

The addition of PE stabilisers thus can potentially lead to the formation of stable
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Figure 4.15: Total Coulomb energies of the systems consisting of 16 asymmetric PA
chains with different chain lengths as functions of time, averaged by blocks of time.
The Bjerrum lengths are `B/σ = 1/8 (a), 1 (b) and 4 (c), respectively.
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Figure 4.16: Total, aggregate and separate energies of the system consisting of 16 PA
chains with N = 272 at Bjerrum lengths `B/σ = 1 (a) and 4 (b), respectively.
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Figure 4.17: Total, aggregate and separate energies of the system consisting of 16 PA
chains with N = 320 at Bjerrum lengths `B/σ = 1 (a) and 4, respectively.
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micelles in the solutions of asymmetric diblock PA chains. Further simulation runs over

much longer time period are still required to study the stability of these micelle-like

structures as well as the optimal length and fraction of the PE stabilisers.

4.3 Conclusions

The stability of preassembled aggregates comprised of 16 asymmetric diblock PA chains

have been studied by MD simulations for different chain lengths/asymmetries and elec-

trostatic interaction strengths. Apart from the symmetric systems where the aggregates

remain intact as stable globules, the preassembled aggregates formed by asymmetric

PA chains either break up into smaller clusters or evolve into complicated structures,

such as star-like, hyper-branching or network structures. Coulomb energy analyses in-

dicate that these complicated structures have not reached the equilibrium state or been

trapped in meta-stable state over the simulation duration. The introduction of a single

PE chain into the systems consisting of PA chains with medium to high asymmetries

has been shown to result in stable micelle-like structures composed of a dense micellar

core and a corona constructed by long arms each having an inner helical structure and

an outer single PE tail. Further simulation runs are needed to test the stability of these

micelle-like structures and understand the functioning mechanism of the PE stabilisers.
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Figure 4.18: Snapshots of the systems consisting of 16 PA/PE chains taken after long
MD simulation runs after switching off the drag forces. The systems on the left column
are comprised of 15 asymmetric diblock PA chains and 1 PE stabiliser, and those on
the right consist of 16 asymmetric diblock PA chains. The chain length increases from
top to bottom as N = {272, 320, 384}. In all cases `B/σ = 1.
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Chapter 5

Dynamics of Ionomers

5.1 Introduction

Ionomers are flexible polymers with ionic groups covalently bonded to the chain back-

bones. Different from polyelectrolytes which typically have very high ionic contents

(up to the point of water soluble), they contain relatively low molar fractions (<

10 − 15mole%) of ionic content. The ionic groups on the chains can associate with

counterions to form ionic clusters in low dielectric solvents, leading to the formation of

supramolecular polymer networks [21]. The reversibility of the electrostatic bonding al-

lows for the development of self healing or shape memory materials [1], similar to other

reversible associative interactions such as hydrogen bonding [4, 5, 6, 7], metal-ligand

bonding [8, 9] and π − π stacking [2, 3]. These materials find numerous applications

such as rheology modifiers [25], batteries [26] and suspending agents for drug delivery

[27].

Charged polymer systems with very low electrostatic interaction strength show no

preference for ion-counterion association and thus behave as their neutral counterparts

[17]. But when the electrostatic attraction energy is strong enough to overcome en-
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tropic penalty, the polymer charges and their counterions undergo pairwise bonding to

form dipoles, which can further associate into multiplets with increasing electrostatic

interaction strength [12]. Ionomer systems are in strong association regime where ionic

clusters are formed and cross-link the precursor or parent polymers into transient net-

works [21]. As a consequence, chain dynamics in the ionomer systems are drastically

slowed down when compared with their neutral polymer counterparts [22, 23, 24].

The factors that determine the dynamics of ionomers can be separated into two

groups, namely the polymeric and electrostatic contributions. The first group includes

the polymer composition, architecture and degree of polymerisation N as well as the

entanglement length Le in the system [35]. The related characteristic times are the

monomer relaxation time τ0, the chain Rouse time τR and reptation or terminal time

τd. In the latter group, the important factors include the number of ionic groups (for

simplicity, ions) along each polymer chain, Ns, and the electrostatic interaction strength

as measured by the Bjerrum length `B. The fundamental characteristic time is the

electrostatic bonding lifetime τb [31]. This can be extended to the so-called renormalized

bond lifetime τ ∗b by considering the many breaking and re-forming events between a pair

of charges before finding new association partners. [11, 29, 108]. In supramolecular

systems, the simplest type of reversible association is pairwise bonding of stickers,

such as binary hydrogen bonding [109, 110], which has been extensively studied both

experimentally and theoretically [110, 31]. Due to the nature of charge associations,

ionic clusters in ionomers can be of various sizes and structures [31]. This makes it very

challenging to give an unambiguous definition of the renormalized association lifetime.

Previous works reported in literature have generally treated the ion-counterion pairs or

dipoles as stickers [23]. We will also refer a closely-associated pair of ion and counterion

as a sticker in this chapter, but bear in mind that the ions and counterions are included

explicitly in our simulations and also in the structure analysis.
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The transient network formation in an associative polymer system depends on the

number of stickers per chain Ns and the functionality of the stickers. If Ns is large,

supramolecular networks can form even if the association of stickers is pairwise due to

the presence of multiple cross links per chain [111, 23]. If Ns is small, a higher sticker

functionality is required for the systems to create three-dimensional (3D) networks [112].

For instance, telechelic chains have stickers only at the chain ends [113, 114]. If the

stickers associate pairwise, they undergo a head to tail association to form long linear

chains [115, 116]. However an increment in the functionality from f = 2 to f ≥ 3 will

lead to 3D transient network formation. [112, 29]. The nature of electrostatic interac-

tions means f > 3 for the stickers in ionomer systems, which apparently facilitates the

formation of percolated networks.

The dynamics of associative polymers, including ionomers, can vary qualitatively

depending on the relative magnitudes of N , Ls and Le, where Ls is the length of a

segment between stickers. The simplest case is Le > N > Ls where the chains are

unentangled [117, 118, 23, 119]. Each sticker in associated state will add extra friction

to the chain motion and so slows down its relaxation dynamics. The effective friction

coefficient incurred by the associated sticker is proportional to the renormalized sticky

bond lifetime τ ∗b [11, 31]. At time scales shorter than τ ∗b the system behaves as a

permanent network. At larger time scales, the chain undergoes Rouse-like relaxation

but with the extra frictions from the associated stickers. The Sticky Rouse model

predicts the sticky Rouse relaxation time as τR ≈ Lsτ
∗
b which is significantly larger

than the standard Rouse time τR ≈ N2τ0[120]. The unentangled ionomer systems we

studied fall in this situation.

The second case is N > Ls > Le where the polymers are entangled with each

other and the average separation between the stickers along the chain is larger than

the entanglement length. Leibler et al. studied such systems with pairwise sticker
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associations [31, 23]. The dynamics of non-associative entangled polymers is described

by the reptation or tube model [35, 40, 37]. The presence of the stickers will not affect

Le greatly, but affect the relaxation modulus at time scales larger than the entanglement

time τe. [31] The sticky Rouse model was extended to the sticky reptation model for

describing the relaxation behaviour of such entangled associative polymers by including

the entanglement effects [31, 11].

The last case is N > Le > Ls where the systems consist of entangled associative

polymer with the average distance between the stickers smaller than the entanglement

length. The high density of stickers will alter the effective diameter of the confining

tube and so change the chain dynamics greatly, leading to significant increase in both

the stress plateau modulus and the terminal relaxation time. In ionomer systems,

multiplets are formed by the association of ion pairs. The resulted high association

energy barrier will consequently prolong the sticker lifetime τ ∗b and so the terminal

relaxation time τd of the system. [23]

Amin et al. have performed hybrid MC/MD simulations of unentangled telechelic

chains with stickers of functionality f = 3 [29]. They found that percolated transient

networks begin to form when the association energy of stickers is around 4.3kBT . At

higher association energy, the majority of stickers are associated into clusters which

work as cross-linkers for the supramoleculer network. The dissociation of stickers from

the clusters they previously belong to is dominated by a partner exchange mechanism. A

phantom chain hopping model was proposed to describe the relaxation of the telechelic

chains.

In this work, we study the dynamics and rheology of unentangled ionomer systems

with two different types charge distributions. One group of systems are composed of

monodisperse telechelic chains with a charged monomer at each chain end [31, 121] The

other type of systems consist of a mixture of 50% telechelic chains and 50% chains with
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a single charge on the central monomer, giving an average of 1.5 ions per chain. [21]

The telechelic and single charged chains are of the same length and carry charges of the

same sign. Counterions are added to neutralize the systems. Ion-counterion association

happens at high Coulomb interaction strength, leading to the formation of percolated

polymer networks and consequently slow relaxation of the ionomers in comparison with

their neutral counterparts.

The rest of the chapter is organised as follows. In Section 2 we present the simu-

lation model and the sampling techniques used in this work. The static, dynamic and

rheological properties of the ionomer systems are presented and discussed in Section 3.

Summaries and prospectives are given in Section 4.

5.2 Models and Methods

The polymer chains are represented by the Kremer-Grest (KG) bead-spring model

which has been widely used for studying the dynamics of polymer melts [70]. In

this model, the monomers interact with each other via the purely repulsive Lennard-

Jones potential with the cut-off distance rcut = 21/6σ. The bonding between adjacent

monomers along the chains are modelled by the FENE potential with the parameters

kFENE = 30σ and RFENE = 1.5σ, which are selected to prevent the chains from passing

through each other [70, 40]. The density of all particles is chosen to be ρ = 0.85σ−3 as

this is widely acknowledged as representative of polymer melts [70]. Counterions are

included when building the periodic boundary. The entanglement length for the flexible

KG bead-spring chains is estimated to be in the range of Le = 50− 80 [40, 122].

Without loss of generality, we assign monovalent positive charges to the end or

middle monomers of the telechelic or single-charged chains and monovalent negative

charges to the counterions. The total number of counterions in each system is thus
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simply equal to the total number of charged monomers. The counterions are represented

by the same type of bead as the monomers, thus have purely repulsive LJ interactions

among themselves and with the monomers.

As mentioned above, two types of ionomer systems are studied, i.e., the systems

containing only telechelic chains and the mixture systems consisting of half telechelic

and half middle-charged chains. We choose two chain lengths, N = 21 and 41, to ensure

the polymers are unentangled. Periodic boundary conditions are used and the Coulomb

interactions are handled with the P3M method. Most of the results reported below are

obtained from simulations using a total number of Npoly = 100 chains in the central

simulation box. The finite size effect is investigated for a selected telechelic system

by increasing Npoly to 200 and 400. For all studied systems, the Bjerrum lengths are

changed in the range of `B/σ = {0, 5, 10, 20} and occasionally 40. The MD simulation

time steps are accordingly varied from 0.01 to 0.001, for around 108 total time steps in

all cases.

For each simulated ionomer system, we first equilibrate its neutral version for 107 time

steps to ensure the chains have fully relaxed, and then turn on the charges. Due to the

high electrostatic interaction strengths being used, we further employ Replica Exchange

Molecular Dynamics (REMD) [71, 77] with swaps in the Bjerrum length space for a

further 107 time steps to allow the system to access the equilibrium state. After that

standard MD simulation runs are carried out for studying the dynamic and rheological

properties of the ionomers, including the stress and chain end-to-end vector correlation

functions as well as the monomer mean-squared displacements.

For the stress relaxation functionG(t), we employ the multiple-tau correlator method

to calculate it on the fly in order to get good statistics [101]. For the ionomer systems,

we calculate G(t) both with and without the electrostatic interaction contributions for
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separating the Coulombic and polymeric contributions. When these calculations were

performed, we were having technical difficulty in using the P3M method to calculate

the stress tensor, mainly with the Fourier space components. Therefore in the G(t)

results reported in this chapter, the electrostatic contributions to G(t) were obtained

by simply summing up the electrostatic interactions between all charges within a cut-off

distance. Future work will need to include the long range contribution to the stress

tensor calculation, using the equation provided in Appendix B.2. This will allow us

to compare our simulation results of G(t) in a more quantitative way with experimen-

tal measurements or possibly theoretical predictions (if available). It should be noted

that this problem only affects the discussions about the stress relaxation in a quan-

titative but not qualitative way. Our simulation results for any other structure are

not affected, and dynamic observables are accurate, because the MD simulations are

performed using the full version of the P3M method. The k-space contribution, which

contains contributions from all periodic images, is typically larger than the real-space

contributions, so can not be neglected, unless the Bjerrum length `B/σ << 1, or the

simulation box is extremely large. Alternatively, the inclusion of added salt effectively

screens the electrostatic interactions. In the following simulations, both the real and

k-space contributions are included when calculating the electrostatic interaction forces.

Therefore the structural and dynamic properties of the simulations are all calculated

properly. This is in principle sufficient for understanding the microscopic relaxation

mechanisms of the charged polymer systems.

The only problem is with the calculation of the stress G(t). At the time when

the thesis was written, we were unable to find an adequate way to include the k-

space contribution to the stress. This will thus affect the quantitative accuracy of the

stress, making it smaller than the actual value. However, the general variation trend

and related discussions are still qualitatively valid. For more quantitative comparison
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with experimental data and theoretical predictions on the rheological behaviour of the

charged polymer systems, we will need to incorporate the k-space contributions. This

is now possible, as suggested in recent literature [126].

5.3 Simulation Results and Discussions

Simulating small box sizes, such as in this chapter, can lead to the introduction of

systematic errors, which are known as finite size effects, and one must take this into

consideration when discussing the following work. To understand these errors one needs

to simulate larger systems and extrapolate up to an infinite system. See Appendix B.1

for further discussion.

5.3.1 Static properties

Formation of ionic clusters and networks.

Figure 5.1 presents the snapshot of a mixture ionomer system consisting of half telechelic

and half middle-charged chains with length N = 21 at Bjerrum length `B = 20.0σ. For

simplicity only charged monomers and counterions are shown. Figure 5.1(a) clearly

shows that the charged monomers or ions have associated with counterions into large

ionic clusters due to strong electrostatic attractions. In order to quantify the ionic

cluster formation, we define a criterion that any two oppositely charged beads at a

centre-to-centre distance r < rc = 1.4σ, or equivalently at a Coulombic interaction

energy U coul < −`BkBT/1.4σ, are considered to be ionically bonded and belong to

the same ionic cluster. By grouping all charged particles into ionic clusters interesting

structural feature is observed. Whilst isolated ionic clusters do exist, the proximity of

charges leads to the inter-connection of ionic clusters via strands of alternating charges
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(a)

(b)

Figure 5.1: Snapshots of an ionomer system consisting of Npoly = 100 telechelic chains
with chain length N = 21 at Bjerrum length `B = 20.0σ. (a) Charged monomers (ions)
and counterions are in red and blue colours, and transparent grey monomers are the
neutral segments;(b) Only the ions. The charges can be seen forming a large network
throughout the simulation box.
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to construct a percolated network that spans the entire simulation box and connects

with its periodic images. This ionic network works as a scaffold to further cross-link the

precursor polymer chains into a supramolecular polymer network. Such a (polymer)

network on (ionic) network structure is distinctive from the transient networks generally

observed in associative polymer systems with sticker functionality f ≥ 3 where sticker

clusters or micellar cores of finite sizes are bridged by polymer chains. [23, 29, 121]

This can be attributed to the nature of the electrostatic interaction, which allows for

formation of large ionic clusters or structures, and the high charge density in the systems

of short ionomer chains. As discussed below, the ionic network provides pathways for

the diffusion of the charged monomers or stickers and so facilitate the relaxation of the

ionomers. If the chain length is increased, e. g. to N = 41, separated ionic clusters are

more likely to be formed due to the reduced charge density. The relaxation mechanism

would be dominated by partner exchange between individual ionic clusters, as proposed

by Amin et al. [29].

One major difficulty in characterising the structural properties of ionomer systems

is to define open and closed electrostatic bonds [11]. Since the electrostatic interaction

energy between two charges varies smoothly with the inverse of their distance, i.e.,

U coul ∼ 1/r, there is no clear cut-off distance rcut to separate the open and close states.

If the charge density is low, the ionic clusters are well separated from each other and

so it is rather insensitive to the rcut value used to quantify the cluster size. However,

at high charge densities, the choice of rcut is more delicate. Wang and Rubinstein have

used rcut = 1.5σ in analysing multiplet formation in diblock polyampholyte chains [12].

We have tested different cut-off values from 1.3σ to 1.6σ and found some quantitative

but no qualitative differences in the ionic cluster size distribution. Therefore we choose

to use rcut = 1.5σ to be consistent with previous publication. Some results on the

probabilities to find ionic clusters of different cluster obtained by using rcut = 1.4σ are
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Figure 5.2: Average numbers of oppositely and likely charged neighbours per charge,
n+− and n++,−− in the ionomer systems consisting of purely telechelic chains with two
different chain lengths N = 21 (dotted lines) and 41 (dashed lines), respectively. The
results are calculated using the cut-off distance rc = 1.5σ.

also given for comparison.

Figures 5.2 presents the average numbers of neighbouring charges for the charged

monomers and counterions as functions of `B in the purely telechelic chains with two

different chain lengths. As the electrostatic interaction strength increases, so do the

number of neighbours per charge as larger ionic clusters are formed [123, 12]. In the

telechelic chain systems with N = 41 and lB = 5.0σ, the average number of oppositely

charged neighbours n+− ≈ 1, but those of likely charged ones n++ ≈ n−− ≈ 0.2,

showing that dipole is the most prevalent association state. If all of the associated

charges are in dipole format, there is no network formation. This is comparable to

the case that all stickers are open [11, 29]. When the Bjerrum length is increased to

`B = 20, each ion or counterion has on average about 1.5 oppositely charged and 0.5

likely charged neighbours. This is evidence of larger multiplet formation. The values

of n+−,++,−− all grow with the decrease of chain length from N = 41 to 21 and also are

higher in the systems of purely telechelic chains than in the mixtures owing to higher
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(a) (b)

Figure 5.3: Probability density for finding a charged particle (ion or counterion) to
be in an ionic aggregate of size Nc formed in the ionomer systems consist of purely
telechelic chains with length N = 21 (a) and 41 (b) at various lB values. There are
a total Np = 100 chains in each system. The results are calculated using the cut-off
distance rc = 1.5σ.

charge densities.

Distribution of Cluster Sizes

Figures 5.3a and 5.3b present the probability density for finding a charged particle (ion

or counterion) to be in an ionic aggregate of size Nc formed in the ionomer systems

consist of purely telechelic chains with two different lengths, respectively. The results

are calculated using the cut-off distance rc = 1.5σ. For comparison, Figures 5.4a to

5.5b present similar sets of data for both the systems consisting of purely telechelic

chains and of mixtures of half telechelic and half middle-charged chains, but calculated

using rc = 1.4σ. It can be seen that the results are qualitatively insensitive to this

change of rc. In Figures 5.4a to 5.5b, simulation results on the probability density for

the largest ionic cluster formed in each ionomer system to be of a certain size are also

given. At each given `B the two types of probabilities show similar variation trend

in the region of relatively large cluster sizes where the weight of the largest cluster

dominates. Consistent with the results in Figure 5.2, the probabilities to form large
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(a) (b)

Figure 5.4: Probability densities for finding a charged particle in the largest (dashed
lines) or any (solid lines) ionic cluster of size Nc. Here the ionomer systems consist of
(a) purely telechelic chains and (b) half telechelic and half middle-charged chains with
chain length N = 21 at various lB values. There are a total Npoly = 100 chains in each
system. The results are calculated using the cut-off distance rc = 1.4σ.

(a) (b)

Figure 5.5: Probability densities for the largest (dashed lines) or any (solid lines) ionic
cluster in the system to be of size Nc. Here the ionomer systems consist of (a) purely
telechelic chains and (b) half telechelic and half middle-charged chains with chain length
N = 41 at various lB values. There are a total Npoly = 100 chains in each system. The
results are calculated using the cut-off distance rc = 1.4σ.
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clusters increase with the decrease of the chain length and also is higher in the systems

consisting of purely telechelic chains than in the mixture systems. The most probable

size of the largest cluster in a given system also shifts to higher value with the increase

of the electrostatic interaction strength. For the purely telechelic system with N = 21,

the probability to have large clusters (> 10) at `B = 5σ is exponentially low. But at

`B = 20.0σ, the cumulative probability to form large ionic structure involving more than

half, even all, of the charges in the system is over 50%. This supports the formation

of a percolated ionic network that involves the majority of charged particles in the

system and spans the entire simulation box. The wide distribution of Nc indicates the

coexistence of ionic clusters of finite sizes and the percolated network, as well as the

reversible feature of the ionic network with frequent association and dissociation of ions

and counterions. Such a percolated structure becomes unlikely in the mixture system

with chain length N = 41 due to the lower charge density, as shown in Figure 5.5b.

Characterising association states of charges

Here we analyze the ionic aggregates in more details. We define a loose ion as a

charged monomer having zero charged neighbours and a dipole as a pair of associated

ion-counterion. An ionic strand is a linear sequence of alternatively arranged ions

and counterions. An ion or counterion belongs to an ionic chain or strand if it has two

oppositely charged neighbours but no likely charged neighbour. A loose end is the end of

a strand that does not connect to another structure. Such an end ion or counterion has

only one oppositely charged neighbour, but that neighbour has two oppositely charged

neighbours. Furthermore we consider an ion or counterion as part of a multiplet, which

could be an ionic cluster of finite size, a junction point for the ionic strands, etc.

Figure 5.6 presents the fractions of charged particles to be in different association

states for the systems consisting of purely telechelic chains with length N = 21 and 41,
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Figure 5.6: Fractions of charged particles to be in different association states for the
ionomer systems consisting of purely telechelic chains with length N = 21 (a) and 41
(b), respectively. The results are calculated using cut-off distance rc = 1.5σ.
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Figure 5.7: Average renormalised lifetime of the electrostatic bonds formed between
charged monomers and counterions as a function of Bjerrum length.

respectively. With the increase of the Bjerrum length, the fractions of loose ions and

dipoles decrease, but those in the multiplets increase, indicating larger ionic aggregates

are formed at high `B. For a given `B, the fraction of charges in multiplets in the

systems with shorter chains or higher charge density is larger than that in systems with

longer chains or lower density. The number of loose ends is shown to decrease with

increasing `B and decreasing chain length, indicating that the ionic strands have been

connected to multiplets to form either large ionic clusters or a transient ionic network.

Based on the understanding of the structural properties, we investigate the dynamics

of the ionomer systems below.

5.3.2 Dynamic and Rheological Behaviour

Lifetime of ionic bonding

The dynamics of associative polymers strongly depends on the lifetime τb of the re-

versible sticky bonds. In systems where the sticky bonds are formed by pairwise associ-
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ation of stickers, it is relatively unambiguous to define τb of a sticky bond according to

the association/disassociation state of the two involved stickers. [11, 124, 29, 108, 125]

However, the problem becomes much more difficult in the ionomer systems. In principle

one can treat pairs of associated ion-counterion or dipoles as stickers and calculate the

bonding lifetime between two associated dipoles as τb. [23] But the dipoles are not fixed,

both the ions and counterions can change their associated partners. This happens with

very low probability for isolated dipoles, but is more likely in the multiplets or larger

ionic structures as the counterions can move easily within the ionic aggregates without

incurring any energy penalty, making it impractical to track the association state of the

original dipole. Therefore we choose to determine the electrostatic bond lifetime using

the association states of the charged monomers. This choice is reasonable because the

formation of the transient polymer network and the relaxation of the studied ionomer

chains are both realised via the counterion mediated association/dissociation of the

charged monomers within or from the ionic aggregates.

We first calculate the average lifetime of the electrostatic bonds formed between

the charged monomers and the associated counterions. An ion-counterion bond is

considered to be broken if the charged monomer moves beyond a distance of 1.4σ

from the counterion. Similar to the sticky bonds studied in other associative systems,

[11, 124, 29] such an electrostatic bond will also experience many breaking and reforming

events before eventually leave each other. To find the renormalised bond lifetime, we

determine an initial, approximate bond lifetime τb. This lifetime tracks just the first

time two monomers are a distance 1.4σ apart, then τb registers a break of the bond

and records a dissociation. The issue with this is that the ions may in fact still be

associated, and may come back to within 1.4σ quickly enough that we should disregard

this association breakage, and as such we need to adjust the lifetime accordingly. We

perform an initial run and record τb and use this as our basis. In future analysis runs,

123



if two ions return to within 1.4σ in a time less than τb, then we consider the bond has

having never broken and continue to count the bond lifetime and construct a new, more

realistic renormalised average bond lifetime τ ∗b .

Figure 5.7 presents the average renormalised bond lifetime τ ∗b between the charged

monomers and counterions for three ionomer systems. τ ∗b increases with the increase

of `B in all three systems as expected, but the growth trend is rather linear than

exponential. More interestingly, at high `B, the calculated bond lifetimes are lower in

the systems with higher charge densities, i.e., those consisting of purely telechelic chains

and/or with shorter chain lengths. It should be noted that these data are calculated

over all charged monomers, regardless of the ionic aggregates they associate with. They

are neither the average lifetime of the isolated dipoles nor the average time for a charged

monomer to stay within an ionic aggregate before breaking off. The average lifetime of

isolated ion-counterion pairs or dipoles would grow exponentially as ∼ exp(`BkBT/σ).

As shown in Figure 5.6 the number of charges in isolated dipoles is much smaller than

those in large ionic aggregates. The probability for a single charge to break off from

the ionic aggregate is also exponentially low due to the high energy barrier. It is

energetically more favourable for the ion and counterion to break off in pairs.

Consider a closely-packed square-shape quadrupole formed by two positive and two

negative charged beads of the same size σ and same absolute unit charge. Its total

electrostatic energy is U quad
coul = (

√
2−4)lBkBT/σ. The energy penalty for it to break into

two dipoles each of energy −lBkBT/σ is (2 −
√

2)lBkBT/σ <≈ 0.59lBkBT/σ, which is

lower than that required for one charge to break off, (2−1/
√

2)lBkBT/σ ≈ 1.29lBkBT/σ.

The electrostatic penalty for a dipole to break off a closely-packed cubic-shape octupole

is (4 + 2/
√

3 − 3
√

2)lBkBT/σ ≈ 1.39`BkBT/σ. The results in Figure 5.7 can not be

interpreted as a measure of the break-off time scales of dipoles from ionic aggregates

which should also follow the exponential dependence on `BkBT/σ.
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The weak dependence of τ ∗b on `B indicates that the change of counterion partners

does not only take place by the dissociation of charged monomers from the ionic aggre-

gates, but also by the motion of the counterions and the charged monomers themselves

inside the aggregates. The latter process is more convenient in the ionic clusters of large

sizes and also in the ionic networks. This explains why at a given `B the τ ∗b value de-

creases with the increase of charge density. The diffusion of the charged monomers and

counterions in the large ionic clusters and networks thus provides a relaxation pathway

for the ionomers, which is energetically more favourable than the sticker hopping pro-

cess purposed for the transient networks formed by inter-linked sticker clusters [124, 29].

This relaxation mechanism is most significant in the ionomer systems composed of un-

entangled chains with few ionic groups per chain, such as the telechelic chain systems

where large ionic structures can be formed and the chain dynamics is controlled by the

motion of the charged end monomers. In systems consisting of entangled chains and/or

high charge per chain, the motion of the ionic groups are restricted by topological con-

straints and the bonding states of neighbours ionic groups along the chain, and so can

only affect the local chain segment relaxation. In the latter case, the sticky Rouse or

sticky reptation model become dominant.

The partner exchange mechanisms purposed by Amin et al. [124, 29] should also play

an important role in the relaxation of the ionomer systems we studied. This can be seen

from the fluctuations in the ionic aggregate sizes, corresponding to frequent association

and dissociation events of the ionic clusters which enables the charged monomers to

exchange their partners and so facilitate the ionomer chain relaxation.

There are thus at least three possible relaxation processes in the unentangled ionomer

systems with high charge density, namely charge or dipole hopping, partner exchange

and charge diffusion inside large ionic clusters or networks. The latter two mechanisms

are energetically more favourable. The chain relaxation dynamics is thus faster than
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Figure 5.8: Mean squared displacements of charged end monomers and counterions in
the systems consisting of purely telechelic chains with chain length N = 21 at different
Bjerrum lengths `B.

that would be expected in the supramolecular polymer networks formed by ionomer or

associative polymers cross-linked by sticker clusters of finite sizes.

Diffusion behaviour of charged monomers and counterions

Figure 5.8 presents the mean squared displacement (MSD), g1(t), for the charged end

monomers and their counterions in the systems consisting of purely telechelic chains

with chain length N = 21 and different Bjerrum lengths. At very short time scales,

the monomers are not aware of the chain connectivity and ionic binding, so their MSDs

follow the same universal behaviour as those of the counterions. These curves separate

from each other at t > τ0. The diffusion of ions/counterions in the systems with higher

lB becomes slower due to the formation of larger ionic aggregates. In each ionomer

system studied, the MSDs of the charged end monomers and counterions grow with

time very closely to each other until reaching the time scale comparable to the renor-

malised ionic bonding lifetime τ ∗b , indicating that they are moving together in pairs
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or dipoles before that. After this characteristic time, the counterions diffuse much

faster and enter the free diffusion regime at earlier time. The diffusion coefficients

of the counterions decrease with increasing `B as D∗counter ∼ {0.0317, 0.0230, 0.0128}

for `B/σ = {5.0, 10.0, 20.0}. This can be attributed to the enhanced effective fric-

tion they experienced due to the strong electrostatic attractions from the oppositely

charged monomers at larger `B. Compared with the counterion diffusion that is very

sensitive to ionic binding, the diffusion of the charged end monomers is controlled by

combined effects of the polymeric behaviour and the ionic binding. The MSDs of these

monomers enter the free diffusion regime at time scales consistent with the terminal

stress relaxation time of the ionomer chains as discussed below. Their diffusion coef-

ficient, D∗end, also decrease with increasing electrostatic interaction strength, but at a

smaller relative magnitude or decaying rate, because the polymeric behaviour is still

playing an important role even at the largest `B studied. For the telechelic chains with

N = 21, our simulations find D∗end ∼ {3.7× 10−3, 3.7× 10−3, 3.3× 10−3, 2.6× 10−3}

for lB/σ = {0.0, 5.0, 10.0, 20.0}. The D∗end values obtained at `B = 5σ and 10σ are not

significantly different from that of the end monomers of non-associative neutral chains,

even though the MSDs of these systems are clearly distinguishable at intermediate time

scales as shown in Figure 5.8.

To have a better picture about the diffusion behaviour of the charged end monomers,

we compare their MSDs with certain monomers in the neutral chains of the same length

in Figures 5.9a to 5.10 for the systems consisting of telechelic chains with N = 21

at different `B values, respectively. Please note that the results here are presented

with different axis views to highlight the behaviour discussed in the following. For

a complete overview, see Figure 5.8. In Figure 5.9a, the MSDs of the charged end

monomers and counterions obtained at `B = 5σ are compared with those of the end

monomers and the monomers right next to the end ones, termed as end-1, of the
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neutral chains. A close inspect reveals that at intermediate time scales, the MSD

of the counterions nearly coincide with that of the neutral chain end monomers, and

the MSD of the charged end monomers grows closely to that of the neutral chain

end-1 monomers. This is evidence that almost all of the charges are associating into

dipoles. The ionically bonded counterion effectively behaves as the end monomer of the

telechelic chain, while the charged end monomer turns into the one next to the end and

so experiences higher friction. This trend terminates around the renormalised lifetime

τ ∗b of the ionic bonds. After that the charged end monomers enter the free diffusion

regime with similar diffusion coefficient as that of the neutral chain end monomers. The

results in Figure 5.9a thus indicate that at a Bjerrum length of `B = 5σ the diffusion

behaviour of the charged end monomers are mainly affected by their pairwise bonding

with counterions. Since the larger ionic clusters formed at this `B value are still subject

to large fluctuations, allowing the charges to exchange partners both inside the clusters

and with other clusters, they do not impose a significant hindrance to the diffusion of

the charged monomers.

When `B is increased to 10σ, the MSD of the charged end monomers is shown in

5.9b to behave similarly to that of the middle monomers of neutral chains with N = 41

until time scales around ∼ τ ∗b . It implies that at this electrostatic interaction strength

the ionic pairs or dipoles have associated into quadrupoles or higher order multiplets to

connect the ionomers into longer chains, in a manner of head to tail association [115].

The diffusion of the charged end monomers is slightly slower than middle monomers

of the long chains due to the additional friction of associated counterions. Even at

`B = 10σ the ionic pairs and individual charges can still undergo intra- and inter-

cluster partner exchanges without overcoming high energy barrier [29]. This exchange

process adds an effective friction to the charged monomers and leads to a diffusion

coefficient smaller than that of the neutral chain end monomers.
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(a)

(b)

Figure 5.9: Mean squared displacements of charged end monomers and counterions
in the ionomer systems consisting of purely telechelic chains with length N = 21 at
Bjerrum lengths `B = 5σ (a) and 10σ (b), respectively. For comparison, we have also
included the MSD data of the chain end monomers (in (a) and (b)) and the (end-1)
monomers right next to the end ones (in (b)) obtained from MD simulations of the
neutral chain melt with N = 21. Also included in (b) are the MSD of chain middle
monomers obtained in the neutral chain melt with N = 41. Results are presented with
different axis to highlight specific behaviour.
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Figures 5.3a and 5.4a indicate that large ionic clusters and even percolated ionic

networks are formed at `B = 20σ. The strong electrostatic interaction energy leads to

tight bonding of the opposite charges. The diffusion of the charged end monomers is

significantly slowed down when compared with the end monomers of neutral chains of

the same length in Figure 5.10. But there is no visible caging effect in the MSD curve.

It means that the charged monomers and counterions inside the large ionic structures

are still mobile but subject to higher effective frictions. Their diffusion behaviour

at intermedia time scales can be mimicked by introducing a high friction coefficient,

ξend = 30.0ξ, to the end monomers of neutral chains of the same length and also some

single beads in the corresponding neutral chain melt, see Figure 5.10. The discrepancy

happens after the average bond lifetime τ ∗b .

Our simulation results on the diffusion behaviour of the charged monomers and

counterions indicate that the formation of ionic clusters and transient networks can slow

down the diffusion of the charged objects, but do not lead to a strong caging effect,

at least not for the Bjerrum lengths we studied. The associated charged monomers

and counterions are still mobile and can diffuse long distances due to the intra- and

inter-cluster partner exchange events which do not incur strong energetic penalty.

5.3.3 Relaxation correlation functions

The relaxation dynamics of the polymer chains can be characterised by the end-to-end

vector correlation function Φ(t) = 〈Re(t) ·Re(0)〉 /R2
e(0) where Re is the end to end

vector of a polymer chain, and the relaxation of whole system can be measured by

using the stress relaxation function G(t) (eq. 1.12) . In order to separate the polymeric

and electrostatic contributions to the stress relaxation, we have calculated G(t) both

without and with the contributions from electrostatic interaction among charge objects.
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Figure 5.10: Mean squared displacements of charged end monomers and counterions
in the ionomer systems consisting of purely telechelic chains with length N = 21 at
Bjerrum lengths `B = 20σ For comparison, we have also included the MSD data of
the end monomers of neutral chains of the same length and some single beads in this
neutral chain melt where 30 times higher frictions are applied to the end monomers and
single beads than other monomers.
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For the results presented in this chapter, the electrostatic part of G(t) only contains

the real-space interaction contributions as calculated in the P3M method. The Fourier

space contributions are discussed in future work section. Since the MD simulations

themselves are performed using the full version of P3M, neglecting the Fourier space

contributions only affects the quantitative but not qualitative discussions.

Figures 5.11 and 5.12 present our simulation results on Φ(t) and G(t) of the ionomer

systems consisting of purely telechelic chains with lengths N = 21 and 41, respectively.

Simulation data obtained from neutral chain melts are also included for comparison.

At each given chain length, both the Φ(t) and G(t) data demonstrate the delayed relax-

ation behaviour with the increase of the electrostatic interaction strength. The delay

behaviour become evident at `B ≥ 10σ, in consistence with the MSD data in Figure 5.8.

The Φ(t) curves reflect that the terminal regime has been reached in the simulations

for `B up to 20σ for both chain lengths, even though large ionic structures have been

formed in these systems. This can be attributed to the fluctuation-induced intra- and

inter-cluster partner exchange processes which allow the charged end monomers of the

chains to move long distances, rather than being trapped. The terminal time of the

chain end-to-end vector relaxation, τ eed , is larger than the terminal stress relaxation

time τ stressd for each system studied. This relation is expected for polymeric materials,

e.g., τ eed = 2τ stressd for Rouse chains.

The G(t) data with and without electrostatic interactions show that at smaller `B

the polymeric contribution dominates, while at larger `B the electrostatic contributions

become more essential. When `B ≥ 20σ, G(t) with electrostatic contributions shows

more viscous behaviour, owing to strong electrostatic interactions inside the large ionic

structures. There seems to be no clear plateau region in the simulated G(t), which

is somewhat different from the experimental results on mono disperse unentangled

telechelic ionomers [121]. At least in our simulation systems, the fluctuation-induced
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partner exchange processes inside and between the ionic clusters play an important role

in facilitating the chain and stress relaxations. This can be seen partly by comparing

the Φ(t) and G(t) data obtained at the two different chain lengths. At small `B, the

polymeric contributions lead to slower relaxation of the system with longer chains as

expected. But at larger `B, even though larger ionic clusters and also ionic networks are

formed in the shorter chain systems due to higher charge density. The N = 41 systems

also present large clusters, although smaller than the N = 21 systems. A plot of G(t)

against t/N2 is presented in Figure B.2. There are no large separations between the

ionic clusters in either system to reduce the probability for the clusters to meet each

other and exchange partners, it is fairly easy for them to do so. The ionic clusters are

much closer to each other in the shorter chain systems. They may even be connected

into percolated networks. The charged monomers can thus diffuse along the continuous

pathways of the network without encountering high energy barriers.

The stress relaxation results of the mixture systems presented Figures 5.13 show

qualitatively similar behaviour to those of the pure telechelic chain systems. The quan-

titative differences arise from the different compositions of the ionomers which lead to

different microstructure formation under electrostatic iterations

5.4 Conclusions

Molecular dynamics simulations have been performed to study the static and dynamic

properties of unentangled ionomer systems consisting of either purely telechelic chains

with charged end monomers or mixtures of half telechelic and half middle-charged

chains. Two different chain lengths N = 21 and 41 have been studied, both are well

below the entanglement length. The effect of electrostatic interactions is examined by

varying the Bjerrum length `B over a wide range from 0 to 40σ.
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Figure 5.11: (a) Stress Relaxation function G(t) for the systems consisting of purely
telechelic chains with length N = 21. The G(t) data are presented both without
(thick circles) and with (dashed lines) electrostatic contributions; (b) End-to-end vector
correlation functions of the telechelic chains in the systems of purely telechelic chains
with length N = 21 at different Bjerrum lengths.
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Figure 5.12: (a) Stress Relaxation function G(t) for the systems consisting of purely
telechelic chains with length N = 41. The G(t) data are presented both without
(thick circles) and with (dashed lines) electrostatic contributions; (b) End-to-end vector
correlation functions of the telechelic chains in the systems of purely telechelic chains
with length N = 41 at different Bjerrum lengths
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Figure 5.13: Stress Relaxation function G(t) for the systems consisting of half telechelic
and half middle-charged chains with lengths N = 21 (a) and 41 (b). The G(t) data are
presented both without (thick circles) and with (dashed lines) electrostatic contribu-
tions.
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With the increase of the electrostatic interaction strength, the charged monomers

and counterions start to associate due to electrostatic attraction. A transition from

ionic pairs or dipoles, to multiplets and linear chains of alternatively arranged ions

and counterions, large ionic clusters and even percolated ionic networks is found with

increasing `B. In the last case, there is a supramolecular double network structure

constructed by the ionic network skeleton which cross links the polymer chains into

percolated polymer network.

The dynamic and rheological behaviour of the ionomer systems, as measured by the

mean squared displacements of charged monomers, the chain end-to-end vector and the

stress relaxation functions, are retarded in comparison with their neutral counterparts

with the increase of the electrostatic interaction strength. We show that the fluctuation-

induced partner exchange processes both inside and between the ionic clusters facilitate

the chain relaxation. Therefore even at high Bjerrum length `B (up to 40σ) when the

large ionic aggregates including percolated networks are formed, the system can still

relax to reach their terminal regime within reasonable simulation times.
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

We have shown that for single chain asymmetric in charge densities, but overall charge

neutral, exhibit a plethora of behaviour for various electrostatic interaction strengths.

In the absence of charge, the diblock chains with N−f− = N+f+ would behave as neu-

tral polymers of length N = N+ + N−. As the electrostatic interaction strength is

increased, the chain conformation transition from folding to coil, then to weakly and

finally strongly associating state [12]. An asymmetric increase in neutral chain segment

lengths on the negatively charged block yields a swelling in the positively charged block

at increasing electrostatic interaction strengths. It requires higher attraction energy

to fold the negatively charged ions. As the electrostatic interaction strength increases

above the entropic barrier, more negatively charged monomers are able to bind with

the oppositely charged block. For small asymmetries this yields a folding of the two

individual blocks into a globule, however chains with longer neutral segments on the

negatively charged block cause a further extension of the positively charged block and

looping of the neutral segments of the other block due to ionic binding, such that they
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take a bottle brush conformation.

We study asymmetric diblock polyampholytes with f− = f+ but with a longer N−

We show that with increasing charge asymmetry the globule starts to elongate into

cigar-like shapes. If the electrostatic interaction strength is high it can extend into

into a helix/PE core structure with the longer block wrapping around the shorter one.

Although infrequent, low symmetric chains at low `B are able to adopt the helical

structure, see figure 3.42. The two oppositely charged blocks scramble together until

the whole chain is about Nexcess ≈ 0.5. A further increase in charge asymmetry leads

to a PE tail sticking out carrying part of the excess charges. The chain conformation

thus turns into a tadpole-like shape consisting of a net-charged cigar-like head and a

polyelectrolyte tail. This conformational transition is qualitatively consistent with the

theoretical predictions of Shusharina et al [13], however the theory didn’t consider the

elongation of the head the theory is developed for θ solvent and our results are relevant

to a good solvent, and this difference needs to be taken into consideration when dis-

cussing the theory. Further theoretical work is still needed for describing our simulation

results.

Bringing two asymmetric chains with a net valence together yields a general repul-

sion behaviour across multiple parameters. Using umbrella sampling we were able to

show that symmetric chains are obviously favourable for the centre of masses to be

close, however even slightly asymmetric chains presented a long range repulsion, albeit

with an attractive core. This implies that asymmetric diblock polyampholytes do not

want to aggregate into stable micelles. This is further evidenced in our analysis of mul-

tiple chains. Chains show an overall dislike for sending out polyelectrolyte arms from

the head and favour instead helix/PE core. It is more favourable to form a helix/PE
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core with ones own chain, and as such the chains eventually dissociate into effective

net-charged polyelectrolytes. However, we observed surprisingly stable formations with

the addition of just a single PE stabiliser, and three regimes were identified, a dense

core, a helix/PE core layer, and polyelectrolyte arms. Although there are charge den-

sity fluctuation induced attraction, there is more charge density induced repulsion.

Molecular dynamics simulations have been performed to study the static and dynamic

properties of unentangled ionomer systems consisting of either purely telechelic chains

with charged end monomers or mixtures of half telechelic and half middle-charged

chains. Two different chain lengths N = 21 and 41 have been studied, both are well

below the entanglement length. The effect of electrostatic interactions is examined by

varying the Bjerrum length `B over a wide range from 0 to 40σ.

With the increase of the electrostatic interaction strength, the charged monomers

and counterions start to associate due to electrostatic attraction. A transition from

ionic pairs or dipoles, to multiplets and linear chains of alternatively arranged ions

and counterions, large ionic clusters and even percolated ionic networks is found with

increasing `B. In the last case, there is a supramolecular double network structure

constructed by the ionic network skeleton which cross links the polymer chains into

percolated polymer network.

The dynamic and rheological behaviour of the ionomer systems, as measured by the

mean squared displacements of charged monomers, the chain end-to-end vector and the

stress relaxation functions, are retarded in comparison with their neutral counterparts

with the increase of the electrostatic interaction strength. We show that the fluctuation-

induced partner exchange processes both inside and between the ionic clusters facilitate

the chain relaxation. Therefore even at high Bjerrum length `B (up to 40σ) when the

large ionic aggregates including percolated networks are formed, the system can still
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relax to reach their terminal regime within reasonable simulation times.

6.2 Future Work

6.2.1 Single Chain

Zero net charge

To study these chains in greater detail, one could lower the valence of the higher density

block so that the positively and negatively charged electrostatic blobs are of the same

size, to see if this would allow the chains to behave more symmetrically, and universally

collapse into a globule.

Net charge

One could run chains of length N = 800, N = 1600 and N = 3200, and have the nega-

tively charged block length N− = 1.5N+, thus Nexcess ≈ 0.5. The difficulty is whether

these chain lengths are feasible computationally. Setting the number of monomers in a

blob ge = 32, and charge fraction f− = 1/8, and `B = 1.0, would yield an electrostatic

blob containing approximately 4 charges. Thus, the self repulsion should be less effec-

tive on the behaviour of the electrostatic blob, and the behaviour in a blob more likely

to be unperturbed. This would yield a total of 25, 50 and 100 total electrostatic blobs

for the respective systems, and these blobs will be sparsely charged. This behaviour

may yield behaviour predicted in the literature, in which case diblock polyampholytes

with a high density of charges with have a tendency for helical behaviour whereas chains

with significant distance between charges will behave as predicted. On the contrary,

the results of the longer chain agree with these results, then it is likely that diblock

polyampholytes globally favour helices for a wide range of parameters, and attention
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should be taken when attempting to construct diblock polyampholyte micelles. One

could also like to run MD simulations of polyelectrolytes in poor solvents and see how

they compare. Also, I’d like to simulate an alternating charged head, with additional

charges sent out in the form of a polyelectrolyte tail. I’d be interested to see if the non

tethering of the lower number of charges would allow for increased globular behaviour,

perhaps even tadpole. There is no need for the alternating block to snake along the

longer block, and helix/PE core behaviour is unlikely due to the similar charges. I be-

lieve these chains will collapse into tadpoles, and perhaps be more likely to form stable

micelles. I believe it is the nature of diblock polyampholytes to form helices due to the

self repulsion.

With some fine tuning of the Umbrella sampling code, one could change the reac-

tion coordinate to bending angle and study bending the positive block. The results

should yield it is favourable in the symmetric case to bend the block, but for increasing

asymmetries and higher electrostatic interaction strengths a favouring for stretching.

6.2.2 Multiple Chains

2 Chain

The next step would be to get the broad spectrum of behaviour using umbrella sampling

across the parameter space. We would then be able to identify the transition from fully

attractive, to closely attractive with long range repulsion, to fully repulsive. I’d also

like to perform umbrella sampling simulations of the chains with the PE stabiliser, to

identify the transition asymmetry that will cause the polyelectrolyte to associate with

a single chain.
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I would also like to apply the analysis to two asymmetric chains with zero net charge.

I expect the net neutral systems to transition from sedimentation in the low asym-

metric and low `B case, to soluble in the high electrostatic interaction strength, high

asymmetry systems due to the bottle brushing.

Multiple Chains

One could study much longer chains, with longer neutral segments, to understand if

the charge density is effecting the conformational behaviour.

In a dense box ρ = 10−2 the highly asymmetric, multi-chain simulation, the chains

appeared to form a potential percolated network, containing large, very strong bonds

connected by less dense polyelectrolyte strands, see figure 6.1. Here, the monomers are

colour coded by chain. Several chains can be observed leaving the simulation box and

re-entering the aggregate from the relevant opposite side. This is likely to be a very

strong, stable, sparse network. However, further study is required to comment on the

behaviour more accurately.

6.2.3 Ionomer

We would study an additional system in which half the telechelic chains are positively

charged whilst the others are negatively charged. This implies that a single chain is

unable to associate with itself without the presence of additional attractive ions. Fur-

thermore, each associative bond counts as an additional part of the network. Finally,

the increased friction due to chain tethering should help stabilise the clustering more.

I fully expect this to form a much more stable network, but without further discussion

I am uncertain of the reality of these systems.
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Figure 6.1: Pearl Network
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I’d like to study entangled chains, as the distance between charges should be suffi-

cient that cluster analysis is a lot more straightforward, as the ions should aggregate

into smaller groups with greater distance. This will also yield a much more informative

lifetime and cluster distribution profile.

To more accurately understand the behaviour, one would need to understand the clus-

ter lifetime. How do the ions diffuse with the highest frequency? How often do large

clusters break away and how long for? Is this the main way that bonds are changed?

What is the life expectancy of the ion network? Does it exist solely as added friction

for the end monomers but in reality provides no stability to the chain network?
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Appendix A

REMD with Bjerrum Length

Replica Swaps

A.1 Implementation

The following is the replica exchange code. Special thanks goes to Pawel Stasiak.

//#ifdef MPI

/*

we attempt a swap between two non interacting replica simulations

Ecou is the Bjerrum Length independant Coulomb energy

th is all particle information

N is number of particles * size of a particle (position, velocity, acceleration,

number of bonds ...)

lA is the array of charge strengths (criteria for swap acceptance)

istep is iteration step

*/
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int temperingSweep (double E, double *th, int N, double *lA, int istep)

{

static double *thbuf;

static int direction = -1;

const static int dM = 1;

static int rank = -1;

static int numtasks;

static double l;

if (rank == -1)

{

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &numtasks);

thbuf = new double[ N + 2];

l = lA[rank]; // lA[rank] is replica specific charge strength

}

static MPI_Status status;

direction *= -1;

//if (direction > 0)

// we only want to swap with nearest neighbour

// (closest replica charge strength either side)

// but it is possible to swap with other replicas

// dM = (dM) % 2 + 1;

int partner = ...

... ((rank / dM) % 2) ? (rank + dM * direction) : (rank - dM * direction);
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MPI_Barrier(MPI_COMM_WORLD);

// Should one need check if the replicas are swapping as expected

//std::cout<<"PT "<<rank<<" "<<direction<<" "<<dM<<" "<<partner<<std::endl;

if (partner >= 0 && partner <= numtasks - 1 )

{

const double r1 = sprng (); //random number

th[N] = E;

th[N + 1] = r1;

const int l = N + 2;

const int ID1 = partner;

const int ID2 = rank;

MPI_Sendrecv (th, l, MPI_DOUBLE, partner, ID1, thbuf, l, MPI_DOUBLE,

partner, ID2, MPI_COMM_WORLD, &status);

const double Epartner = thbuf[N];

const double r2 = thbuf[N + 1];

// Swap criteria

const double bE = -(l - lA[partner]) * (E - Epartner);

// Probability that a swap will be accepted.

const double P = (bE > 0) ? exp (-bE) : 1.0;

const double r = (rank > partner) ? r1 : r2;
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if (r < P)

{

for (int ic = 0; ic < N; ic++)

th[ic] = thbuf[ic]; // swap the replicas

//global variable for tracking direction of swap.

if (direction == -1) acceptedTemperingCounter[0]++;

if (direction == 1) acceptedTemperingCounter[1]++;

overallAcceptance++; // increase if swap is accepted

swapFlag=1;

}

//global variable for tracking direction of attempted swap

if (direction == -1) allTemperingCounter[0]++;

if (direction == 1) allTemperingCounter[1]++;

overallAttempt++;

std::cout << " istep: " << istep << " accept: " << overallAcceptance << ...

... " out of " << overallAttempt << " on rank " << rank << ...

... " with BM length: " << Bjerrum << std::endl;

return 1;

}

return 0;

}

//#endif
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The replica simulations are run in parallel, via mpicc. The array of charge strengths is

a global variable. It is computationally expensive to swap the configurations, and as

such we choose to attempt a swap every 1000 time steps, although this is arbitrary. As

we are interested in the behaviour across multiple charge strengths, and to further save

on computational time, we create replicas at integer Bjerrum lengths, and treat each

replica as a system of interest. However, this is not necessary for the method to work,

should the user be only interested in one temperature. We implement the following

after positions and velocities have been updated in the md loop.

//-----------------------------------------

// ---------- Replica Sweep --------

//-----------------------------------------

if (istep%iswap == 0)

{

E_cou = (energy.Coulomb_r + energy.Coulomb_k)/(Bjerrum*Temp);

temperingSweep(E_cou, (double*) part,...

... N_Particle*sizeof(Particle)/sizeof(double), TA,istep);

}

where istep is the current time step and iswap is the desired swapping frequency. part

is all particle information.

A.2 Testing the REMD method

In addition to the information provided in section 2.2.3, most of the testing for the

replica exchange method revolved around replicating the results of Wang and Rubin-
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stein [12], see Figures A.1 (a) and 3.4. To perform this test, many simulations in

parallel were used over a wide range of electrostatic interaction strengths. Results show

good agreement with the literature. Figure A.1 (b) tracks the journey of a config-

uration over each replica charge strength it experiences. This is to highlight that in

this short time frame, for this test system, the configuration explored each charge state.

Figure A.2 highlights the Coulomb energy jump associated with the configuration swap.

This is not an issue when studying average behaviour, such as the Coulomb energy or

the average end to end distances, as the new configuration is legitimate. One should

note that if dynamical behaviour is to be analysed, this should only be performed

between swaps.
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Figure A.1: (a) Testing the REMD method by comparing the results obtained by Wang
and Rubinstein [12] (b) a set of 5 replicas of symmetric diblock polyampholyte chains
with N = 128, f = 1/2, for `B/σ = {0, 1, 2, 3, 4}, to track a single configuration’s
journey.
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Figure A.2: System Coulomb energy for `B = 8σ, f+ = f− = 1/2, N− = N+, N = 32,
highlighting a swap.
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Appendix B

Ionomers

B.1 Finite Size Effects

Simulations are underway to quantify the finite size effects of the Ionomer systems,

and comparison can be made once the data is more substantial. We present the ini-

tial results here, but further simulation and analysis is required to make any concrete

statements. Figure B.1 presents the stress relaxation function G(t) and the end-to-end

vector correlation functions for telechelic N = 21, `B = 20.0, for number of chains

Npoly = 100 and Npoly = 200, and in the former case, Npoly = 400. These many chain

systems are incredibly computationally expensive; once more data is obtained further

discussions can be made.
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Figure B.1: (a) Stress Relaxation function G(t) consisting of telechelic chains of length
N = 21, Bjerrum length `B = 20.0. (b) End-to-end vector correlation functions of the
telechelic chains in the systems of purely telechelic chains with length N = 21, Bjerrum
length `B = 20.0σ. Data points are presented discretely to highlight the noise.
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Figure B.2: G(t) against t/N2 plotted for both N = 21 and N = 41, `B = 20.0σ. The
higher effective viscosity is more prevalent in the N = 21 system, however comparing
the two shows no considerable slow down in either.

B.2 Long Range Contributions to the Stress Tensor

Following the method described by the Espresso project [126], the long ranged, or

k-space contributions to the stress tensor are given by

σrec
(k,l) =

1

4πε0εr

1

2πV 2

∑
k 6= 0

exp
(
−pi2k2/β2

)
k2 |S(k)|2 ·

(
δk,l − 2

1 + π2k2/β2

k2 kkkl

)
(B.1)

here S(k) is the Fourier transformed charge density. One would need to program this

into their code, taking care to note the comments in [126].

B.3 Renormalised time

Figure B.2 presents G(t) plotted against t/N2. There appears to be no noticeable

long term slow down in the long time relaxation, although a notable slow down for

intermediate time.
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