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Abstract

In this dissertation a moving mesh method finite element method

is used to approximate moving boundary solutions to the shallow

water equations. An Arbitrary Lagrangian Eulerian method is ap-

plied to an existing finite element scheme. Some exact solutions

to the shallow water equations in a parabolic basin are shown for

comparison. An investigation is conducted into the accuracy of the

method. It is concluded that further work is required to address

the build up of numerical errors around the boundary.
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Chapter 1

Introduction

Fluid dynamics is a field in which moving boundary problems are

an integral part. Transient interfaces between fluids and solid

structures are commonplace. Geophysical and environmental fluid

dynamics, in particular, involve many interesting moving bound-

ary problems, such as the modelling of flood plains, and tidal

flows in coastal regions. This project seeks to use an Arbtitrary

Lagrangian-Eulerian(ALE) finite element method to approximate

moving boundary solutions to the shallow water equations.

Due to the nonlinearity of even the simplest formulation of the

equations for fluid motion, exact solutions to problems with mov-

ing boundaries are rare. In chapter 2, some exact solutions to the

shallow water equations, proposed by W.C. Thacker [1], are intro-

duced. The general solution for nonlinear normal mode oscillatory

motion in a parabolic basin is presented. Specific solutions for two

sets of initial conditions are then derived. In the first case, a so-

lution for which the surface of the fluid remains planar is shown.

The second case is for a solution in which the surface of the fluid
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is parabolic. A 4th order Runge Kutta scheme is also presented

for the numerical integration of the system of ordinary differential

equations derived for the general case. These solutions are used to

compare with the results the ALE finite element method. Chap-

ter 3 introduces a finite element method, Le Roux et al. [3], for

the shallow water equations. The shallow water equations are pre-

sented in nondimensional form. The finite element discretization of

the equations is discussed. Chapter 4 introduces the ALE moving

mesh method that is used to approximate the moving boundary

problems outlined in chapter 2. The method used to derive the

mesh velocities is shown and the implementation within the exist-

ing finite element model is discussed. The results obtained using

the ALE method are presented in chapter 5, they are compared

with the results from the exact solutions in chapter 2. Chapter 6 is

an investigation into the results obtained in chapter 5, in particu-

lar, the cause of the large numerical errors is investigated. Finally,

chapter 7 provides a summary of the work carried out and discusses

further work that could be pursued.
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Chapter 2

Analytic Solutions to the

Shallow Water Equations

2.1 Shallow water equations

The shallow water equations are a simplification of the full equa-

tions of motion for an incompressible fluid. The key assumption

is that the flow is homogeneous along the vertical axis. The hy-

drostatic balance equation (2.1) states that gravity balances the

pressure gradient in the vertical direction.

∂p

∂z
= −ρg (2.1)

where p is pressure of the fluid, z is the vertical axis, ρ is the density

of the fluid and g is the gravitational acceleration. If ρ is assumed to

be constant then it follows that the horizontal pressure gradient is

independent of z. The horizontal flow is assumed to be independent

of z, so incompressibility implies that the vertical velocity is linear
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in z.

As a result of the assumptions made, the shallow water equations

are only accurate if the horizontal scale is much greater than the

vertical scale. They can be used to describe the motion of the

atmosphere or the oceans and can represent many types of motion

including Rossby waves and gravity waves.

The Eulerian formulation of the nonlinear shallow water equations

are as follows

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g

∂η

∂x
= 0 (2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu+ g

∂η

∂y
= 0 (2.3)

∂η

∂t
+

∂

∂x
[u (h+ η)] +

∂

∂y
[v (h+ η)] = 0 (2.4)

where u and v are the horizontal velocity components corresponding

to the orthogonal directions x and y. h is the depth of the fluid

when it is in equilibrium. η is the displacement of the fluid from its

equilibrium state, which is positive above, and negative below, the

equilibrium level, so that h+η is equal to the total depth of the fluid,

H. The shoreline is therefore given by H = 0. Figure 2.1 shows the

depth profile. f is the Coriolis parameter. The terms involving f

represent the effects of the Coriolis ‘force’. This is a fictitious force,

as opposed to a physical force, that appears when the equations of

fluid motion are cast in a rotating frame of reference. In equations

(2.2) and (2.3) they account for the rotation of the earth.

The assumptions that Thacker makes require that the basin is an

elliptical parabaloid given by
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Figure 2.1: Depth profile showing h and η. The total depth is

H = h+ η.

h = h0

(
1− x2

L2
− y2

l2

)
(2.5)

where h0 is the equilibrium depth at the centre of the basin. In this

project, only the situation where L = l is considered.

2.2 General solution

Thacker uses a similar approach to previous work done by F.K. Ball

[2] in that assumptions are made about the nature of the motion

and then solved for in a basin for which that motion should be

possible. Ball formulates the problem in Lagrangian terms, whereas

Thacker formulates it in Eulerian terms. Both approaches require

the motion to occur in a parabolic basin and obtain similar results.

Assume that there are solutions for u and v of the form,
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u = u0 + u1x+ u2y (2.6)

v = v0 + v1x+ v2y (2.7)

where u0, v0, u1, v1, u2 and v2 are functions only of time. This re-

stricts the possible surface shape to planar or parabolic. (Thacker

made attempts, that were not described in [1], to find solutions with

surfaces described by polynomials of a higher degree but obtained

overdetermined sets of equations. Thacker hypothesised that, ’there

may not be any polynomial solutions of degree higher than second’,

[1].) When the assumptions, (2.6) and (2.7), are applied to the mo-

mentum equations, (2.2) and (2.3), it requires, for exact solutions,

that the elevation solution has the form

η = η0 + η1x+ η2y +
1

2
η11x

2 +
1

2
η22y

2 +
1

2
(η12 + η21)xy (2.8)

where

η1 = −1

g

[
du0

dt
+ u0u1 + v0u2 − fv0

]
(2.9)

η2 = −1

g

[
dv0

dt
+ u0v1 + v0v2 + fu0

]
(2.10)

η11 = −1

g

[
du1

dt
+ u2

1 + u2v1 − fv1

]
(2.11)

η22 = −1

g

[
dv2

dt
+ v2

2 + u2v1 + fu2

]
(2.12)
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η12 = −1

g

[
du2

dt
+ u1u2 + u2v2 − fv2

]
(2.13)

η21 = −1

g

[
dv1

dt
+ u1v1 + v1v2 + fu1

]
(2.14)

where η12 = η21 and η0 is a function of t.

If equations (2.5)-(2.14) are substituted into the continuity equation

(2.4) and the spatial derivatives evaluated, then the time varying

coefficients of the linearly independent terms must separately dis-

appear. u0, v0, u1, v1, u2, v2 and h0 must, therefore, satisfy the

following equations

dη0

dt
+ (u1 + v2) (h0 + η0) + u0η1 + v0η2 = 0 (2.15)

dη1

dt
+ (2u1 + v2) η1 + v1η2 + u0

(
η11 −

2h0

L2

)
+ v0η12 = 0 (2.16)

dη2

dt
+ (2v2 + u1) η2 + u2η1 + v0

(
η22 −

2h0

l2

)
+ u0η12 = 0 (2.17)

dη11

dt
+ (3u1 + v2)

(
η11 −

2h0

L2

)
+ 2v1η12 = 0 (2.18)

dη22

dt
+ (3v2 + u1)

(
η22 −

2h0

l2

)
+ 2u2η12 = 0 (2.19)

dη12

dt
+ (2u1 + v2) η12 + u2

(
η11 −

2h0

L2

)
+ v1

(
η22 −

2h0

l2

)
= 0

(2.20)
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These six equations and the requirement that η12 = η21, which

amounts to

d

dt
(v1 − u2) + (u1 + v2) (v1 − u2 + f) = 0 (2.21)

determine the seven unknown functions of time, u0, v0, u1, v1, u2,

v2 and h0. Of these seven ordinary differential equations, (2.15)

and (2.21) are 1st order and (2.16)-(2.20) are 2nd order. As such,

twelve initial conditions are required to obtain a unique solution.

These initial conditions correspond to the initial fields of u, v and

η. The twelve time varying coefficients of (2.6), (2.7) and (2.8),

namely, u0, v0, u1, v1, u2, v2, h0, h1, h2, h11, h22 and h12, are the

initial conditions that fully define these fields.

2.3 Planar Surface

The first type of motion for which these equations are solved is the

simplest. The velocities are assumed to vary in time but not space,

u1 = u2 = v1 = v2 = 0, so η11 = η22 = η12 = η21 = 0. The functions

of time that must be solved for are then, u0, v0 and h0. Equations

(2.18) to (2.21) are satisfied for all time, and equations (2.15) to

(2.17) reduce to

dh0

dt
− 1

g

[
u0
du0

dt
+ v0

dv0

dt

]
= 0 (2.22)

d2u0

dt2
− f

dv0

dt
+

2gh0

L2
u0 = 0 (2.23)

d2v0

dt2
+ f

du0

dt
+

2gh0

L2
v0 = 0 (2.24)
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The equations that define the velocity components, (2.23) and (2.24),

are linear and have constant coefficients. Therefore, u0 and v0 vary

sinusoidally with frequency, ω, that satisfies

(
ω2 − 2gh0

L2

)2

− f 2ω2 = 0 (2.25)

There are two solutions that satisfy these equations. These solu-

tions determine similar fluid motion, in which the surface of the

fluid is planar and tilted with respect to the z-axis. The fluid ro-

tates around the centre of the basin, maintaining the tilting angle

in relation to the z-axis. One solution corresponds to clockwise mo-

tion, the other to anticlockwise motion. The solution for clockwise

motion is presented below, and this is the solution that will be used

for comparison with the ALE method.

u = −λω sinωt (2.26)

v = −λω cosωt (2.27)

η = 2λ
h0

L

(
x

L
cosωt− y

L
sinωt− λ

2L

)
(2.28)

ω =
f

2
+

[
f 2

4
+

2gh0

L2

] 1
2

(2.29)

λ is a constant that determines the amplitude of the motion. The

shoreline remains circular in the x− y plane, and the centre of the

circle traces a circular orbit around the centre of the basin. The

shoreline is given by the points (x, y) that satisfy
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(x− λ cosωt)2 + (y + λ sinωt)2 = L2 (2.30)

Figures 2.2 and 2.3 show the elevation field plotted in the y-z plane

and the x-y plane.

2.4 Curved Surface

The second type of motion looked at in this project is restricted

to divergence from, convergence towards, and rotation about the

centre of the basin (in the x − y plane). So, it is assumed that

u0 = v0 = 0. The functions of time that must be solved for are u1,

u2, v1, v2 and η0. Equations (2.16) and (2.17) are now satisfied for

all time. Further assumptions are made, namely that u1 = v2 and

u2 = −v1. The three unknown functions are now determined by

d2u1

dt2
+

(
8gh0

L2
+ f 2

)
u1 + 6u1

du1

dt
+ 4u3

1 = 0 (2.31)

dv1

dt
+ 2u1

(
v1 +

f

2

)
= 0 (2.32)

dη0

dt
+ 2u1 (η0 + h0) = 0 (2.33)

These have simple, exact solutions,

u1 =
ω

2

A sinωt

1− A cosωt
(2.34)

v1 =

(
v10 +

f

2

)
1− A

1− A cosωt
− f

2
(2.35)
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Figure 2.2: The exact planar solution, equation 2.28, of the el-

evation η plotted at t = 0s with λ = 2500, L = 100000m and

h0 = 100m. The chart on the left shows the profile of the solution

at x = 0. The chart on the right shows a surface plot of η in the

x − y plane. The scaling runs from -5.1(blue) to 5.1(red). The

surface is tilted so part of the boundary falls outside the axis box

that fits tangentially around the equilibrium surface boundary.

Figure 2.3: This is the same solution as 2.2 plotted at t = 4000s.
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η0 = (λ+ h0)
1− A

1− A cosωt
− h0 (2.36)

ω =

(
8gh0

L2
+ f 2

) 1
2

(2.37)

where

A =
(h0 + λ)2 − h2

0

(h0 + λ)2 + h2
0

(2.38)

v10 is the initial value of v1. In this case, v10 = fλ
2h0

. λ is, again, the

amplitude of the motion and also specifies the initial value of η0.

The surface of the fluid is a parabola of revolution,

η = η0 +
1

2
h11

(
x2 + y2

)
(2.39)

The complete solution for the motion is given by

u =
1

1− A cosωt

[
1

2
ωxA sinωt− 1

2
fy

((
1− A2

) 1
2 + A cosωt− 1

)]
(2.40)

v =
1

1− A cosωt

[
1

2
ωyA sinωt+

1

2
fx

((
1− A2

) 1
2 + A cosωt− 1

)]
(2.41)

η = h0

[
(1− A2)

1
2

1− A cosωt
− 1− x2 + y2

L2

(
1− A2

(1− A cosωt)2

)]
(2.42)
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Figure 2.4: The exact curved solution, equation 2.42, of the eleva-

tion η plotted at t = 0s with λ = 5, L = 100000m and h0 = 100m.

The chart on the left shows the profile of the solution at x = 0.

The chart on the right shows a surface plot of η in the x− y plane.

The scaling runs from -5.1(blue) to 5.1(red).The surface is convex

so the boundary has contracted within the equilibrium boundary.

Figure 2.5: This is the same solution as 2.4 plotted at t = 3500s.

The surface is now concave so the boundary has expanded to be

outside the equilibrium boundary.
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Providing λ > 0, the surface of the fluid starts as a convex parabola,

with the centre of the fluid above the equilibrium level and the cir-

cular shoreline below. The circular shoreline, centred at the origin

in the x− y plane, therefore has a smaller radius than the equilib-

rium shoreline. (If λ < 0, the inverse is true and the surface starts

off as a concave parabola.) As the solution evolves, the centre of

the fluid drops and the shoreline rises and expands. The radius, R,

of the shoreline, as a function of time, is given by

R (t) = L

[
h0

h0 + η0 (t)

] 1
2

(2.43)

2.5 Numerical integration of the ODE

system

The specific solutions presented in the previous two sections are

the solutions used to validate the model presented in chapter 4.

Thacker presents some other specific solutions in [1]. Solutions are

given for the planar and parabolic surfaces in parabolic channels,

where l >> L. A solution is also given for a parabolic flood wave,

where h0 = 0, which represents a parabolic mound of water being

dropped onto a planar surface. Further solutions for comparison

can be obtained by numerically integrating the ordinary differential

equations obtained in section 2.3. Equations (2.9)-(2.20) can be

rearranged so that they are of the form

14



d

dt


u0

...

η12

 = f (u0, u1, u2, v0, v1, v2, η0, η1, η2, η11, η22, η12)

This is now a system of 12 first order ordinary differential equations

that, given appropriate initial values for the 12 unknowns, can be

numerically integrated using any number of techniques. The 12 de-

pendent variables can then be used to reconstruct the approximated

solution across the domain at each, or any, time step. The method

used to solve the system of ODEs in this project is the 4th-order

Runge-Kutta, RK4, scheme.

Wn+1 = Wn +
h

6
(K1 + 2K2 + 2K3 + K4) (2.44)

K1 = f

(
tn,Wn +

1

2
K1

)
(2.45)

K2 = f

(
tn +

h

2
,Wn +

1

2
K2

)
(2.46)

K3 = f

(
tn +

h

2
,Wn +

1

2
K3

)
(2.47)

K4 = f

(
tn,Wn +

1

2
K3

)
(2.48)

where h = ∆t, n is the timestep and

Wn =


u0

...

η12


n

15



The RK4 scheme is O(∆t4) accurate and this must be taken into

account when using the numerically integrated solutions for com-

parison with the ALE solutions.
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Chapter 3

A Finite element method

3.1 Background

The moving mesh method used in this project is an extension of

the finite element method proposed by Le Roux et al. [3]. The

results have been obtained by applying the moving mesh method

to the existing code used by Le Roux et al. [3]. This chapter briefly

explains the formulation of the finite element approximation used

in [3].

3.2 Eulerian formulation

The method that shall be adapted uses an Eulerian scheme to solve

the equations. The Eulerian scheme approximates the solution on

a fixed spatial grid. It can be thought of as monitoring the evolu-

tion of the system as it passes through these fixed points in space.

This is opposed to a Lagrangian scheme where the evolution of the
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system is monitored at points that advect with the solution. The

solution is integrated along the characteristics and, in this case, can

be thought of as tracking the motion of individual parcels of fluid.

The Eulerian formulation of the shallow water equations in vector

form are as follows

∂η

∂t
+∇. [(h+ η) u] = 0 (3.1)

∂u

∂t
+ u.∇u + fk × u = −g∇η (3.2)

where k is a unit vector in the vertical direction.

3.3 Nondimensionalization

In this project, the equations are solved using dimensionless vari-

ables. In order to do this, equations (3.1) and (3.2) must be nondi-

mensionalized.

u = Uũ

η = Eη̃

h = Hsh̃

x = Lx̃

t = T t̃

where s is the dimensional variable, s̃ is the dimensionless variable

and S is the scaling factor. Equation (3.1) with the dimensional

18



variables replaced by their dimensionless counterparts, and scaling

factors, is

E

T

∂η̃

∂t̃
+
U

L
∇.

[(
Hsh̃+ Eη̃

)
ũ

]
= 0 (3.3)

This can be rearranged so that

∂η̃

∂t̃
+
THsU

EL
∇.

[(
h̃+

E

Hs

η̃

)
ũ

]
= 0 (3.4)

In order to prevent the divergence term from swamping the time

derivative term, T can be chosen so that the total scaling factor is

equal to 1.

T =
EL

HsU
(3.5)

The same process is applied to equation (3.2), replacing the di-

mensional variables by their dimensionless counterparts and scaling

factors,

U

T

∂ũ

∂t̃
+
UU

L
ũ.∇ũ + Ufk × ũ = −gE

L
∇η̃ (3.6)

This can be rearranged so that

1

Tf

∂ũ

∂t̃
+

U

Lf
ũ.∇ũ + k × ũ = − gE

fUL
∇η̃ (3.7)

This time the pressure gradient term must be prevented from swamp-

ing the solution, so U is chosen so that the total scaling factor is

equal to 1.

U =
gE

fL
(3.8)
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The dimensionless variables are used throughout the project. From

this point onwards, for ease of notation, the tildes shall be dropped

from the dimensionless variables.

3.4 Finite element discretization

The finite element method is a way of approximating the solution to

a boundary value problem. The boundary value problem must be

rephrased in its weak form and then discretized in finite dimensional

space. Typically, in two dimensions, this involves a triangulation

of the domain into piecewise linear functions.

The weak form of equations (3.1) and (3.2) are defined so that

the elevation solution is continuous everywhere but the velocity

solution can be discontinuous between elements. The weak form is

defined as thus so that the PNC
1 shape functions, discussed in the

next section, can be used. The integral forms of equations (3.1)

and (3.2) are multiplied by test functions ωη and ωu respectively.

NE∑
e=1

∫
Ωe

(
∂η

∂t
ωη − (h+ η) u.∇ωη

)
dΩ+

NE∑
e=1

∫
∂Ωe

(h+ η)ωηu.nedΓ = 0

(3.9)

NE∑
e=1

∫
Ωe

(
∂u

∂t
.wu − (∇. (uwu)) .u + f (k × u) .wu + g∇η.wu

)
dΩ

(3.10)

+

NE∑
e=1

∫
Ωe

(uu.ne) .wudΓ +

NΓ∑
l=1

∫
Γl

[u] . [a (wu)] dΓ = 0
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where NE and NΓ are the number of elements and the number of

interelement boundaries, respectively. ne is the outward normal

vector to the boundary of each element δΩe. [b] = b|Ωe − b|Ωf
is the

jump of b on an interior edge Γl and b|Ωe denotes the restriction of

b on Ωe. The final integral in (3.10) appears because the velocity

can be discontinuous between elements. It weakly imposes the con-

tinuity of the velocity. The function a imposes continuity of the

solution along the characteristics.

a (wu) =

{
u.n (γ − 1/2) wu, on Ωe

u.n (γ + 1/2) wu, on Ωf

where γ ∈ [−1/2, 1, 2]. Choosing γ = 0 gives a centred advection

scheme. In this project an upwind advection scheme is used, Le

Roux et al. [4] and Houston et al. [6], which is obtained by choosing

γ =
1

2

u(x).n(x)

|u(x).n(x)|
(3.11)

The elevation solution is continuous so there are no jump terms in

the finite element discretization of equation (3.9). The boundary

integral in (3.9) is assumed to be equal to zero to enforce mass con-

servation in the finite element discretization. With some standard

algebra, Le Roux et al. [4] and Houston et al. [6], the weak form

can therefore be rewritten as

NE∑
e=1

∫
Ωe

(
∂η

∂t
ωη − (h+ η) u.∇ωη

)
dΩ = 0 (3.12)
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NE∑
e=1

∫
Ωe

(
∂u

∂t
.wu − (∇. (uwu)) .u + f (k × u) .wu + g∇η.wu

)
dΩ

(3.13)

+

NΓ∑
l=1

∫
Ωe

〈uu.n〉γ . [wu] dΓ

where 〈b〉γ is the weighed average of b on the segment Γl

〈b〉γ =

(
1

2
+ γ

)
b|Ωe +

(
1

2
− γ

)
b|Ωf

(3.14)

The finite element approximation is obtained by replacing η and u

by

η ≈ ηh =

NV∑
i=1

ηiωi (3.15)

u ≈ uh =

NS∑
j=1

ujψj (3.16)

where NV and NS are the number of vertices and segments respec-

tively. ηi and ui are the nodal values for the elevation and velocity

respectively and ωi and ψi are the shape functions associated with

them. ωj replaces the test function wη in (3.12). (ψi, 0) and (0, ψi)

replace the test function wu in (3.13).

3.4.1 The non-conforming mixed PNC
1 -P1 discretiza-

tion

The elevation variable is approximated using standard linear con-

forming P1 shape functions, as shown in figure 3.1. The elevation
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nodes are at the vertices of this triangulation and therefore the el-

evation field is continuous everywhere. The velocity variable is ap-

proximated using linear non-conforming PNC
1 shape functions, also

shown in figure 3.1. The velocity nodes are situated at the mid-

points of the sides of each element. The velocity field is only con-

tinuous at the nodes and discontinuous at all other points around

the element boundary. These nonconforming shape functions have

the orthogonality property

∫
Ω

ψpψqdΩ =
Aq

3
δpq (3.17)

where Aq is the area of support of ψq and δpq is the Kronecker

delta. This orthogonality property greatly reduces the computation

required.

Figure 3.1: The P1 shape function is shown on the left and the PNC
1

shape function on the right.

A global linear approximation of the product of uh with f is made

to simplify the algebra. fi represents the value of the coriolis pa-

rameter at a velocity node. f varies smoothly across the domain so

the effect on the accuracy is small.
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∫
Ω(e)

f
(
k × uh

)
ψjdΩ =

∫
Ω(e)

f
Ns∑
i=1

(k × ui)ψiψjdΩ (3.18)

≈
∫

Ω(e)

Ns∑
i=1

fi (k × ui)ψi︸ ︷︷ ︸
(fk×u)h

ψjdΩ

The space discretized finite element formulation of equations (3.1)

and (3.2) are therefore

NE∑
e=1

∫
Ωe

(
∂ηh

∂t
ωi −

(
h+ ηh

)
uh.∇ωi

)
dΩ = 0 (3.19)

NE∑
e=1

∫
Ωe

(
∂uh

∂t
ψj − uh∇.

(
uhψj

)
+ (fk × u)h ψj + g∇ηhψj

)
dΩ

+

NΓ∑
l=1

∫
Γl

〈
uhuh.n

〉
γ
[ψj] dΓ = 0 (3.20)

3.4.2 Mass lumping

A rigorous treatment of the integrals in equations (3.19) and (3.20)

requires that a mass matrix is formed at each timestep. This mass

matrix is a sparse matrix and would require a linear solver, such as

the conjugate gradient method, to invert it. To avoid this inversion

of the mass matrix, and the large amount of computation it neces-

sitates, the mass matrix is lumped. The integrals that require this

treatment are

∫
Ω(e)

ωiωjdΩ =
Ae

12


2 1 1

1 2 1

1 1 2


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If it is assumed that the mass of each element is concentrated at

the nodes, then the off diagonal components can be added to the

diagonal components to create a diagonal mass matrix.

∫
Ω(e)

ωiωjdΩ ≈ Ae

3


1 0 0

0 1 0

0 0 1


The integrals in the momentum equation do not require this treat-

ment as the orthogonality property, (3.17), of the nonconforming

shape functions ensure that the mass matrix is already diagonal.

∫
Ω(e)

ψiψjdΩ =
Ae

3


1 0 0

0 1 0

0 0 1


Le Roux et. al [5] have studied the effect of mass lumping on the

shallow water equations. They have shown that, for the P1 − PNC
1

shape function pairing, the effect on the propogation of gravity

waves is limited. The lower frequency Rossby waves are slowed

down by the mass lumping. However, Le Roux et. al [5] concluded

that the 2D shallow water equations, with the P1 − PNC
1 shape

function pairing, could be mass lumped without significantly com-

promising the model’s accuracy and dispersion properties.

3.5 Time discretization

In order to apply the finite element method, equations (3.19) and

(3.20) must be discretized in time. The time discretization pre-

sented in this section is of the original equations, (3.1) and (3.2), for
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ease of notation. The explicit 3rd order Adams-Bashforth scheme

is used. The scheme is O(∆t3) accurate and conditionally stable for

both advective and diffusive processes. Durran [7] shows that the

scheme, with sufficiently small timestep, provides excellent damp-

ing of the computational modes compared with limited damping of

the physical modes. The scheme is a linear multistep method and

requires the storage of the solution at three timesteps.

un+1 − un

∆t
=

1

2

(
23bnu − 16bn−1

u + 5bn−2
u

)
(3.21)

bnu = −un.∇un − fk × un − g∇ηn (3.22)

ηn+1 − ηn

∆t
=

1

2

(
23bnη − 16bn−1

η + 5bn−2
η

)
(3.23)

bnη = −∇. [(h+ ηn) un] (3.24)
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Chapter 4

A Moving mesh method

4.1 Background

One of the major advantages of the finite element method, over the

finite difference method for instance, is that unstructured meshes

can be used. Most physical problems involve irregular shaped

domains that can be more precisely modelled using unstructured

meshes. Unstructured meshes can also be adjusted to give higher

resolution, and therefore greater accuracy, at areas of interest within

the domain. Many problems in fluid dynamics involve domains that

change shape. Also, it is often not known a priori where the areas

of interest will be within the domain. For these reasons, methods

that dynamically adapt the mesh to track the boundary, or to follow

areas of interest, are sought in fluid dynamics.

There are three main adaptive mesh methods used in numerical

ocean modelling, Piggott et al. [12], h adaptivity, r adaptivity and

p adaptivity. h adaptivity modifies the mesh by adding, or remov-

ing, grid points at areas of the domain that require, respectively,
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increased or reduced resolution. Each time the mesh is updated,

the solution must be interpolated onto the new grid points. The

advantage of this method is that, in a highly transient flow, the

resolution of the grid can be altered very quickly, however, the in-

terpolation can be computationally expensive. With r adaptivity,

the mesh contains a fixed number of gridpoints. These gridpoints

are moved within the domain to satisfy some requirement of the

flow. The advantage of r adaptivity, with respect to fluid dynam-

ics, is that areas of interest, such as eddies, move with the flow and

so unnecessary interpolation is not required at each time step to re-

solve them. p adaptivity seeks to improve the accuracy at certain

areas within the domain by increasing the polynomial order of ap-

proximation at those points. In this project, a form of r adaptivity

is used to move the mesh with the moving boundary.

4.2 ALE method

There are two classical descriptions of motion for systems such as

the shallow water equations. The Lagrangian description, which

tracks individual particles as the system evolves, and the Eulerian

description, where the evolution of the system is tracked from fixed

reference points in space. These two descriptions of motion have

advantages and disadvantages when applied to computational fluid

dynamics. The Lagrangian description is physically fundamental,

as most physical laws are expressed in Lagrangian terms. As such,

numerical approximations to physical systems like the shallow wa-

ter equations are often simpler, and more accurate, when stated in

Lagrangian terms. The problem that arises, is that the computa-
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tional domain can become distorted quickly as the nodes track the

motion of the fluid. The Eulerian description, with its fixed compu-

tational nodes, does not have this problem, although a higher grid

resolution will often be required to attain the same level of accuracy

as the Lagrangian method. The method used to move the mesh in

this project is the Arbitrary Lagrangian-Eulerian(ALE) method.

This method seeks to use the advantages of both the Eulerian and

Lagrangian methods.

4.3 Derivation of mesh velocities

In this project, the mesh velocities are obtained by conserving the

integral of a monitor function over the patch of elements surround-

ing each node. The monitor function is the total depth of the fluid,

H = η + h, so that the volume of fluid in a control volume is con-

served. The Eulerian form of the continuity equation, (3.1), must

be transformed into a moving frame of reference with velocity q.

4.3.1 Integral form in a moving frame

The Reynolds’ Transport Theorem states that the rate of change of

H is equal to the rate of change of H within the control volume and

the net rate of change ofH through the control surface. Application

of the divergence theorem leads to

d

dt

∫
Ω(t)

HdΩ =

∫
Ω(t)

∂H

∂t
dΩ +

∮
∂Ω(t)

Hq.nds (4.1)
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=

∫
Ω(t)

(
∂H

∂t
+∇. (Hq)

)
dΩ

where
∂H

∂t
=
∂η

∂t
(4.2)

The integral form of the continuity equation, 3.1, in the moving

frame of reference can therefore be written as

d

dt

∫
Ω(t)

HdΩ−
∫

Ω(t)

∇. (Hq) dΩ = −
∫

Ω(t)

∇. [(H) u] dΩ (4.3)

4.3.2 Introduction of monitor function

The method used to move the mesh is based on the conservation of

the integral of H.

∫
Ω(t)

HdΩ = C (4.4)

where C is constant in time. So

d

dt

∫
Ω(t)

HdΩ = 0 (4.5)

The first term in equation 4.3 is therefore zero. With the volume

of water conserved, equation 4.3 becomes

−
∫

Ω(t)

∇. (Hq) dΩ = −
∫

Ω(t)

∇. [(H) u] dΩ (4.6)

4.3.3 Weak form

In order to apply a finite element method, equation 4.3 must be

generalised to the weak form. A test function ω is introduced that
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moves with velocity q which therefore satisfies the advection equa-

tion

∂ω

∂t
+ q.∇ω = 0 (4.7)

Using a generalisation of equation (4.3)

d

dt

∫
Ω(t)

ωHdΩ−
∫

Ω(t)

ω∇. (Hq) dΩ = −
∫

Ω(t)

ω∇. [(H) u] dΩ (4.8)

the weak form of equation (4.6) is

−
∫

Ω(t)

ω∇. (Hq) dΩ = −
∫

Ω(t)

ω∇. (Hu) dΩ (4.9)

This can be integrated by parts to obtain

−
∮

∂Ω(t)

ωHq.ndΓ+

∫
Ω(t)

Hq.∇ωdΩ = −
∫

Ω(t)

ω∇. (Hu) dΩ (4.10)

4.3.4 Introduction of velocity potential

In the problem being solved, H = 0 on the boundary, so the bound-

ary integral in 4.10 disappears. To determine q uniquely, additional

constraints are needed. If the vorticity, ∇ × q, is defined, then

given H, it is possible to uniquely determine the velocity q using

Helmholtz’ Theorem. For the initial investigation the mesh veloc-

ity q is defined as irrotational, ∇× q = 0. A velocity potential φ,

therefore exists that satisifies

q = ∇φ (4.11)
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So, substituting 4.11 into 4.10 gives

∫
Ω(t)

H∇φ.∇ωdΩ = −
∫

Ω(t)

ω∇. (Hu) dΩ (4.12)

4.3.5 Finite element Discretization

In order to discretize equation 4.12 for the finite element method,

the test function ω is replaced by a compact basis function ωi(x, y).

In this case, ωi is the P1 shape function discussed in chapter 3.

ω = ωi(x, y) (4.13)

The continuous variables, φ and H, are replaced by their discretized

approximations, Φ and Ĥ as

φ ≈ Φ =
N∑

j=1

Φjωj (4.14)

∇Φ =
N∑

j=1

Φj∇ωj (4.15)

H ≈ Ĥ =
N∑

k=1

Ĥkωk (4.16)

So the finite element discretization of equation 4.12 is

N∑
j=1

[∫
Ω(t)

∇ωi.∇ωjĤdΩ

]
Φj = −

N∑
j=1

∫
Ω(t)

ωi∇.ĤudΩ (4.17)

The right hand side of 4.17 can be integrated. The left hand side

forms a weighted stiffness matrix which is assembled element by

element to get a linear system of the form
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K(Ĥ)Φ = f (4.18)

4.3.6 Stiffness matrix assembly

The element contribution to the stiffness matrix is

Ke
ij =

∫
Ω(t)

Ĥ∇ωi.∇ωjdΩ (4.19)

Over a triangular element, ∆ABC, with angles α, β and γ, and

sides a, b and c, the off diagonal element KAB is equal to

Ke
AB = ∇ωA.∇ωB

∫
Ω(t)

ĤdΩ (4.20)

Ĥe =
3∑

k=1

Ĥk (4.21)

Ke
AB = ∇ωA.∇ωBĤe

A(e)

3
(4.22)

where A(e) is the area of the element.

KAB =
1

HA

.
1

HB

cos (π − γ) Ĥe
A(e)

3
(4.23)

KAB =
a

2A(e)
.
b

A(e)
cos (π − γ) Ĥe

A(e)

3
(4.24)

KAB =
1

12

ab

A(e)
cos (π − γ) Ĥe (4.25)

KAB =
1

6

cos (π − γ)

sin(γ)
Ĥe (4.26)
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KAB = −Ĥe

6
cot γ (4.27)

The same derivation applies to all the off-diagonal components of

the element matrix. The diagonal components are derived as fol-

lowing. Since

∇ωA +∇ωB +∇ωC = 0 (4.28)

so equation 4.22 applied to a diagonal element, B = A, becomes

KAA = Ĥe
A(e)

3
∇ωA. (−∇ωB −∇ωC) (4.29)

KAA =
Ĥe

6
cot (β + γ) (4.30)

Again, the same derivation applies to the other two diagonal com-

ponents of the element matrix.

Ke =
He

6


cot (β + γ) − cot γ − cot β

− cot γ cot (α+ γ) − cotα

− cot β − cotα cot (α+ β)


The element matrices are then assembled into the full stiffness ma-

trix, each component of the 3 × 3 element matrix being added to

the full matrix component that corresponds to the computational

nodes involved. The mesh used in the investigation contains 1353

nodes. The full stiffness matrix K is a sparse matrix, most of the

components are zero. To avoid storing all of these zero components

a column position array, Kp is used. The non zero values of K are

read into a computational Kc matrix. These values are placed in
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the first available column in Kc in the same row as their theoretical

position in K. The theoretical column position is then placed in

the corresponding component in Kp. This reduces the number of

components stored from 1830609 in K to 2760 in Kc and Kp. It also

reduces the computation required in the linear solver by a similar

magnitude.

In order to make the matrix K non-singular, and therefore ensure

that 4.18 has a unique solution, a value of Φ must be specified at

one node. The position of this node, and the value specified, are

unimportant because it is only the gradient of Φ that is required.

The linear system can be solved using any linear solver, although

the conjugate gradient method is a good choice as K is symmetric

and positive definite.

4.3.7 Solving for Q

Once Φ has been obtained by solving 4.18, the mesh velocity q must

be derived from equation 4.11. Discretizing equation 4.11 into finite

element form using 4.13, 4.15. The left hand side of the equation

can be approximated using the PNC
1 shape functions

q ≈ Q =
N∑

j=1

Qjψj (4.31)

so that

N∑
j=1

(∫
Ω(e)

ψi.ψjdΩ

)
Qj =

N∑
j=1

(∫
Ω(e)

ωidΩ

)
∇ωjΦj (4.32)

The left hand side forms a mass matrix. When implementing the
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method this mass matrix was initially lumped, see section 3.4.2.

When the method was found to be unstable, the full mass matrix

was applied. This did not fully resolve all the problems but did

allow the model to run for a longer period of time before blowing

up.

Ae

12


2 1 1

1 2 1

1 1 2

 Qi =

∫
Ω(e)

ωidΩ∇Φi(e)

where A(e) is the area of the element and

∇Φi(e) =
3∑

j=1

∇ωjΦj (4.33)

The mass matrix is assembled element by element and solved using

the conjugate gradient method.

4.4 Moving the mesh

The new coordinates of the mesh points are obtained by integrating

the mesh velocities using the forward Euler method.

xn+1 = xn + ∆tq (4.34)

4.5 Equations in the moving frame

With the mesh velocities derived, and the grid points moved, the

governing equations must be derived with respect to the moving

frame of reference. The continuity equation is simple
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d

dt

∫
Ω(t)

ωHdΩ = 0 (4.35)

∫
Ω(t)

ωHdΩ = C (4.36)

where C is constant in time. In order to conserve the volume of

water in a patch of elements C is set as the integral of H at t = 0.

∫
Ω(t)

ωHdΩ =

∫
Ω(0)

ω(0)HdΩ (4.37)

The total depth of the fluid at each node, at time t, is therefore

given by a weighted average of the areas of support

Hi(t) =

∑M
k=1Aek(0)Hke(0)∑M

k=1Aek(t)
(4.38)

where M is the number of supporting elements, Aek(t) and Aek(0)

are the area of element k at time t = t and t = 0 respectively, and

Hke(0) is the average height of element k at t = 0.

The momentum equations, 3.2, are also modified to account for the

moving frame of reference. An advective term, that moves with

velocity q is included to account for the movement of the mesh.

The mesh velocities q are interpolated onto the PNC
1 nodes before

the calculation takes place.

∂u

∂t
+ u.∇u + fk × u−∇. (qu) = −g∇η (4.39)

The momentum equations are implemented in the same way as be-

fore. The extra term is approximated using the same finite element

technique and the resulting ODE’s are time integrated using the

3rd order Adams-Bashforth scheme.
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Chapter 5

Numerical Results

5.1 Planar surface

In this section, the results from the ALE method described in chap-

ter 4 are compared with the exact planar surface solution described

in section 2.3. Throughout this section L = 100000m, h = 100m,

f = 0.0001, ∆t = 5s and λ = 2500. Figure 5.1 shows the ini-

tial solution at t = 0. The mesh used in the model is displayed

along side. Figure 5.2 shows the solution after 2000 seconds, 400

time steps. The exact solution is displayed along side for compari-

son. Qualitatively, the approximate solution is similar to the exact

solution. Close inspection shows that the isolines do not match per-

fectly. Figure 5.3 shows the solution after 3000 seconds, 600 time

steps. Numerical errors can clearly be seen in the bottom right of

the plot. In these plots, the exact solution is evaluated at the same

points as the approximated solution. The boundary of the exact

solution is therefore defined by the boundary of the finite element

approximation. The boundary of the exact solution may therefore
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Figure 5.1: This is the planar solution plotted at t = 0. The plot

on the right shows the initial mesh.

Figure 5.2: This is the planar solution plotted at t = 2000. The

plot on the left shows the solution approximated using the ALE

method. The plot on the right shows the exact solution.
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Figure 5.3: This is the planar solution plotted at t = 3000. The

plot on the left shows the solution approximated using the ALE

method. The plot on the right shows the exact solution.

Figure 5.4: This is the planar solution plotted at t = 4000. The

plot on the left shows the solution approximated using the ALE

method. The plot on the right shows a close up of the mesh losing

its shape at the boundary.
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be incorrect. Figure 5.4 shows the solution after 4000 seconds, 800

timesteps. The numerical errors have increased and the structure

of the mesh has become inconsistent. The left hand plot shows a

close up of the boundary, the boundary points are no longer equidis-

tant from the centre of the domain. The solution blows up before

t = 1000.

Figure 5.5: This is the curved surface solution plotted at t = 0 on

the left, and t = 2000s on the right.

5.2 Curved surface

In this section, the results from the ALE method described in chap-

ter 4 are compared with the exact curved surface solution described

in section 2.4. Throughout this section L = 100000m, h = 100m,

f = 0.0001, ∆t = 10s and λ = 5. Figure 5.5 shows the numeri-

cally approximated solution at t = 0s and t = 2000s. During this

time interval the surface of the fluid has gone from being convex to

concave. Figure 5.6 shows the solution at t = 4000s. The numer-
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Figure 5.6: This is the curved surface solution plotted at t = 4000s.

The plot on the left shows the solution approximated using the

ALE method. The plot on the right shows the exact solution.

Figure 5.7: This is the curved solution plotted at t = 6000. The

plot on the left shows the solution approximated using the ALE

method. The plot on the right shows the exact solution.
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ical approximation is presented alongside the exact solution. The

numerical errors can be observed in the isolines of the numerical

solution. Figure 5.7 shows the solution at t = 6000s. The numer-

ical approximation is becoming swamped by the numerical errors.

The solution blows up before t = 7000s.

5.3 Error analysis

In the previous section it was shown that the ALE method used

in this project approximated the solution for a short time before

blowing up. Figures 5.8 and 5.9 are plots of the local error, they

show the absolute value of the difference between the ALE approx-

imated solution and the exact solution. The plots are taken from

the planar surface solution, using the same parameters as the previ-

ous section. Figure 5.8 shows the difference after 100 seconds, with

a timestep of 10 seconds. Figure 5.9 shows the difference after 100

seconds, with a timestep of 10 seconds. The error is greatest at the

boundaries, in the direction orthogonal to ∂η
∂t

= 0. The scaling of

the error is approximately twice as large in figure 5.8 than in 5.9.

So the error is of O(∆t). This is the order of error to be expected

when using Euler’s method for the time integration of the mesh

velocities.
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Figure 5.8: A plot of the local error at t = 100s with a timestep

of ∆t = 10s. The scale range is 5.15 × 10−7m (blue) to 6.25 ×
10−4m(red). The maximum relative error is 0.0125%

Figure 5.9: A plot of the local error at t = 100s with a timestep

of ∆t = 5s. The scale range is 1.9 × 10−7m (blue) to 3.125 ×
10−4m(red). The maximum relative error is 0.00625%
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Chapter 6

Investigation

6.1 Errors at the boundary

The results in chapter 5 show that numerical errors are introduced

at the boundaries that cause the solution to blow up. In this sec-

tion, the cause of these numerical errors is investigated. The inves-

tigation is conducted on the planar surface solution using the same

parameter values as section 5.1. The velocities in the planar surface

solution vary only in time, this means that there is no vorticity and

the mesh velocity must therefore be equal to the physical velocity.

Figure 6.1 shows the initial velocity field u at t = 0 and the mesh

velocities q calculated at the first time step. The mesh velocities

q are therefore calculated from the initial values of η and u which

can have no numerical error. The mesh velocities are exactly equal

to the physical velocities. No significant error is introduced when

deriving the mesh velocities in the first timestep.

The magnitude of the velocity u should remain constant in time.

Figure 6.2 shows the velocity field u at t = ∆t. The right hand plot
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Figure 6.1: This plot shows, on the left, the velocity u at t = 0

and, on the right, the mesh velocity q at t = ∆t.

Figure 6.2: This plot shows, on the left, the velocity u at t = ∆t

and, on the right, the difference between the exact velocity and the

approximated velocity at t = ∆t. The maximum relative error is

0.25%.
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shows the difference between the numerically approximated veloc-

ities and the exact velocities. Clearly there is significant numeri-

cal error introduced during the time integration of the momentum

equation. The errors are introduced along the boundary as velocity

components pointing approximately in the direction of the gradient

of η.

Figure 6.3 shows the same plots as figure 6.2. The only difference is

that the mesh has been rotated through 90◦ beforehand. The mesh

was rotated before the initial conditions were specified and can

therefore have no effect on the physical problem. Figure 6.3 shows

that there is still significant numerical error around the boundary,

however, the position of the greatest numerical error has rotated

through 90◦. This suggests that the numerical errors are greatly

influenced by the quality of the mesh.

The initial conditions being used for the investigation mean that

there should be no vorticity in the fluid motion. The mesh velocity

q derived at t = n∆t should therefore be the same as the velocity

u at t = (n− 1) ∆t. The advection terms in equation (4.39) should

be identical and can therefore be removed without effecting the

solution

∂u

∂t
+ fk × u = −g∇η (6.1)

Figure 6.4 shows the velocity u at t = ∆t with the advection terms

removed, using the same mesh as 6.2. The errors introduced at

the boundary are identical to figure 6.2. The numerical errors are

therefore introduced as a result of the time integration of the Cori-

olis term or the pressure gradient term in the momentum equation.
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Figure 6.3: This plot shows, on the left, the velocity u at t = ∆t

and, on the right, the difference between the exact velocity and the

approximated velocity at t = ∆t. The mesh has been rotated by

90◦ prior to simulation. The maximum relative error is 0.25%.

Figure 6.4: This plot shows, on the left, the velocity u at t = ∆t

and, on the right, the difference between the exact velocity and the

approximated velocity at t = ∆t. The advection terms have been

removed. The maximum relative error is 0.25%.
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6.2 Conclusion

The investigation conducted identifies significant numerical errors

appearing at the boundaries. The errors appear immediately and

grow quickly, causing the solution to blow up before completing a

full oscillation in both test cases. In any numerical scheme it is

expected that errors will build up as a result of the approximation

of derivatives. It is also the case that the boundaries are where the

error is likely to have the greatest effect. Specifically to the problem

modelled in this project, the bathymetry also has a greater effect

on the error at the boundary. The error is dependent on the gradi-

ent of h which is steepest at the boundaries. It has been identified

that the quality of the mesh used in this project has a great bear-

ing on the build up of numerical errors. Figure 6.5 shows a pair

of boundary elements from the mesh used in this project. These

elements are significant in that they are boundary elements that

share a segment with other boundary elements. During the investi-

gation it was observed that it was elements such as these where the

maximum error would occur. The node on the boundary is only

supported by the two elements it connects. It is concluded that

greater resolution around the boundary, and particular avoidance

of the element structure shown in 6.5, is required to improve the

numerical accuracy of the scheme.
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Figure 6.5: The two elements that contain the red arrows are typical

’problem’ elements. The edges of the elements on the lower side of

the diagram make up the boundary.
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Chapter 7

Summary and further work

7.1 Summary

In this dissertation, an ALE moving mesh method has been applied

to a finite element scheme for the shallow water equations. The

moving mesh method is based on a conservation of mass principle.

In chapter 2, some exact solutions to the shallow water equations

in a parabolic basin were presented, along with a scheme for the

numerical integration of the system of ordinary differential equa-

tions obtained from the general solution. Chapter 3 introduced

an existing finite element method for the shallow water equations.

The shallow water equations were put into nondimensional form

and the finite element discretization was discussed. In chapter 4, a

moving mesh method was proposed based on conserving the volume

of water within a patch of elements. The implementation of this

method within the finite element scheme was explained. Chapter 5

showed some numerical results and compared them with the results

obtained from the exact solutions in chapter 2. In chapter 6, an
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investigation was conducted into the numerical errors arising at the

boundary. Conclusions were drawn on the cause of these errors.

7.2 Further investigation of boundary

errors

Further investigation into the cause of the errors at the boundaries

could be conducted. Generation of a mesh with greater concentra-

tion of elements at the boundary would be desirable.

7.3 Comparison with other solutions

Thacker, [1], presented some other solutions not discussed in this

dissertation. In particular, solutions were presented for an elon-

gated parabolic basin, or ’canal’, where L >> l, and a parabolic

flood wave, where the bathymetry is a planar surface, h = 0. With

a fully working model, these different solutions can be investigated.

The numerically integrated solutions from chapter 2 could also be

used for comparison with different kinds of motion.

7.4 Adding vorticity to the mesh move-

ment

In section (4.3.4) the mesh velocities were specified to have zero

vorticity, ∇ × q = 0. This may be undesirable in flows with high

vorticity, where the mesh may become tangled. In this section, the
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idea of applying vorticity to the mesh movement is proposed. A

velocity function s(x, y, t) is specified such that ∇ × q = ∇ × s.

Equation 4.11 becomes

q = ∇φ+ s (7.1)

and equation 4.12 becomes∫
Ω(t)

H∇φ.∇ωdΩ = −
∫

Ω(t)

ω∇. (Hu) dΩ +

∮
ωHs.ndΓ (7.2)

+

∫
Ω

Hs.∇ωdΩ

Given s, equation 7.2 can be solved for φ in the same way as before.

The mesh velocities must be derived from equation 7.1

∫
Ω

ωqdΩ =

∫
Ω

ω∇φdΩ +

∫
Ω

ωsdΩ (7.3)

The mesh vorticity s can be chosen to be any function of (x, y, t).

An interesting development would be to make s equal to minus the

vorticity

s (x, y, t) = −
(
∂v

∂x
− ∂u

∂y

)
(7.4)

Choosing this function for s should prevent tangling of the mesh

due to the vorticity of the flow.
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