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Abstract

Payne Whitham model (PW) is a macroscopic second order traffic model

involving two parameters which directly influence the solution of the model,

but which are independent from time and space.

The aim of the study is to estimate the optimal values of these parameters

using the four-dimensional variational data assimilation (4D-Var). This al-

lows the incorporation of all available observational data into the model.

In order to implement the 4D-var method, the cost function has been min-

imised using the conjugate gradient method. The gradient of the cost func-

tion is approximated by implementing a finite difference scheme.

The tangent linear model has been derived from the non linear system, to

investigate the time window in which it is possible to operate the parameter

estimation.

The results show that the model trajectory estimated with the optimal pa-

rameters is more consistent with the true state, which is assumed to be

known.
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Introduction

Traffic managment is a present-day issue; in fact it has been estimated that

every year humans spend 10 million years driving a vehicle.

This expalins the importance of a better understanding of the traffic be-

haviour and evolution.

The first experiments of creating a mathematical model for predicting the

traffic flow were made in the middle of the last century[3]; nowadays there is

no unique model able to accurately match the observational data.

This study wants to be an attempt of improving the state generated from

a well established model. In particular, we are going to operate on some

parameters which have a direct impact upon the results of the model, but

which are independent from time and space (i.e. constant in time and space).

The estimation of these parameters is carried out through a data assimilation

technique, 4D-Var, which consists of incorporating all the available data into

the model, in order to improve the model trajectory.

For the implementation of the 4D-Var some assumptions need to be made.

In particular, the estimation is valid in a specific time window, which corre-

sponds to the time range in which the tangent linear hypothesis holds. Such

a hypothesis guarantees that the non linear system can successfully be ap-
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2 Introduction

proximated by a linear model (tangent linear model). Obviously when the

higher order terms become large this assumption does not hold anymore and

we are out of the range of validity for the tangent linear model.

The implementation of 4D-Var consists of minimising the distance between

the model trajectory and the observations (which is measured by the cost

function). To minimise it we have used the conjugate gradient method which

requires the availability of the gradient of the cost function.

We have approximated the gradient of the cost function with a finite differ-

ence scheme. This approximation will reveal to be quite crude and it will

weigh on the minimisation accuracy. However, the results show the success

of the optimal estimation: in fact the model trajectory estimated with the

optimal parameters is more consistent with the true state.

The first chapter describes the main characteristic of the PW system and it

briefly illustrates the numerical method which solves it. The second chapter

introduces the technique of the parameter estimation for the general case

using the 4D-Var.

In the third chapter it is presented the tangent linear model and it is inves-

tigated the validity time window through some tests.

A description of the 4D-Var implementation, the conjugate gradient method

with its stopping criterion is presented in Chapter 4. Finally, the results of

the assimilation are presented.



Chapter 1

The choice of the model

There are two different approaches for modelling the traffic depending on

which aspects one is interested in.

There exist the microscopic models, which analyse the interactions between

vehicles and in which attention is put on the behaviour of each car, its veloc-

ity and position; they are extremely precise, but the computational cost rises

excessively with the increase of vehicles involved. The basic idea is that the

velocity and acceleration of each car is adjusted according to the conditions

ahead (car-following models).

On the other hand, the macroscopic approach aims to describe the gen-

eral system, without looking specifically at each vehicle. This approach is

definitely less accurate, but it enables the problem to be written in a math-

ematical compact system dependent on just a few variables, which makes it

computationally efficient.

The macroscopic approach treats the traffic as a fluid flow, and applies the

fluid dynamic laws in order to describe the evolution over time and space of

3



4 CHAPTER 1. THE CHOICE OF THE MODEL

some average quantities such as the mass density and the mean velocity of

the flux.[2] The analogy with fluid behaviour requires some assumptions:

• the continuum hypothesis: we are going to consider the traffic as a

continuum fluid, uniformly distributed in the space. Obviously this

condition is not physically satisfied by cars along a road; however, this

assumption can be accepted as an approximation of the physical reality

if the number of vehicles is large enough so that it makes sense to

introduce macroscopic quantities;

• the flux is conserved and there exists a conservation law (as for the

fluid);

• there exists a bijective correspondence between the density and the ve-

locity and between the flux and the density; this latter correspondence

is given by an equation of state1

In order to derive the equation for the conservation of the flux we consider

an infinitesimal length 2 dx of road, as illustrated in figure (1.1), which is

occupied at time t by ρ · dx vehicles (the analogue of the mass for a fluid),

where ρ is the density.

This quantity varies both when more vehicles arrive to occupy that infinitesi-

mal length of road, or when some vehicles leave it. So the quantity of vehicles

1An equation of state is an equation describing the state of the matter under a given
set of physical conditions. It provides a relation between two state functions associated
with the matter.

2In fluid dynamics we usually consider the infinitesimal volume, but in this study we
will consider a monodimensional road.
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Figure 1.1: Infinitesimal rectangule of road

entering and leaving the length of road per unit time and space is given re-

spectively by ±ρu where u is the velocity. We need to evaluate this quantity

at the points x and x + dx. The derivative with respect of time is given by
∂ρ
∂t

dx. We get:
∂ρ

∂t
dx = (ρux)dx− (ρux+dx)dx

using the Taylor expansion for ux+dx we get:

∂ρ

∂t
dx = (ρux)dx− (ρux)dx− (

∂ρux
∂x

dx) (1.1)

calling q = ρu the flux, we finally get the equation for the conservation law:

∂ρ

∂t
+
∂q

∂x
= 0 (1.2)

This equation does not give a self-consistent model, as it involves two vari-

ables ρ and u. There are two ways to overcome this problem; the first order

model consists in expressing the velocity u (or equivalently the flux q) as a

function of the density ρ, q = f(ρ).
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Therefore for a first order model we rewrite the equation (1.2) as:

∂ρ

∂t
+

∂

∂x
f(ρ) = 0 (1.3)

with q = f(ρ).

The second way is represented by second order models, which are systems

of two first order equations. While the first equation is given by (1.2), the

second one is an evolution equation for the flux:

∂q

∂t
+

∂

∂x
(qu) = A[ρ, u,∆ρ,∆u] (1.4)

where A is some model for the forces acting on the system and responsible for

the momentum variations. Writing q = ρu and differentiating, it is possible

to rewrite (1.4) as a model for the lagrangian derivative of the acceleration
3:

∂ρu

∂t
+

∂

∂x
(ρu2) = A[ρ, u,∆ρ,∆u]

u (
∂ρ

∂t
+
∂ρu

∂x
)︸ ︷︷ ︸

=0 for eq.(1.2)

+ρ
∂u

∂t
+ ρu

∂u

∂x
= A[ρ, u,∆ρ,∆u]

∂u

∂t
+ u

∂u

∂x
= a[ρ, u,∆ρ,∆u]

(1.5)

where a = A
ρ
is a material model for the acceleration of the vehicles and is

specified depending on the model used. Therefore the general system for a

3Since on a road we consider vehicles going in the same direction, we have just one
dimension: du = ∂u

∂t dt+ ∂u
∂x dx. Dividing by dt:

du
dt = ∂u

∂t + ∂u
∂x

dx
dt where du

dt is the derivative calculated following a car and ∂u
∂t is the partial

derivative in a fixed point. This is the physical explanation of the left hand side of the
equation (1.5)
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second order model is given by:
∂ρ
∂t

+ ∂
∂x

(ρu) = 0

∂u
∂t

+ u∂u
∂x

= a[ρ, u,∆ρ,∆u]
(1.6)

1.1 The Payne-Whitham model

We will use the Payne-Whitham (PW) model [12] that dates back to 1971,

which is the prototype of the second order models.

The material model of the acceleration is the sum of relaxation and antici-

pation terms.

a[ρ, u,∆ρ,∆u] = ar[ρ, u] + aa[ρ, ρx]

The first term models the tendency of the drivers to travel at the free flow

speed U(ρ) depending on the congestion on the road:

ar[ρ, u] =
U(ρ− u)

τ
(1.7)

where u is the actual speed and τ (> 0) is the relaxation time, i.e. the

drivers’ reaction time in adjusting their speed to the ’maximal and out of

danger’ velocity U(ρ).

The anticipation term accounts for the reaction of the drivers to the variations

in the traffic conditions ahead them. It therefore depends on the density and

its partial derivative:

aa[ρ, ρx] = −c
2
0

ρ
ρx (1.8)



8 CHAPTER 1. THE CHOICE OF THE MODEL

where c0 (>0) is the traffic sound speed, which measures the ratio of the

anticipation constant with the relaxation time.

We can now write the system for the PW model:
dρ
dt

+ d
dx

(ρu) = 0

du
dt

+ udu
dx

= U(ρ)−u
τ
− c20

ρ
dρ
dx

(1.9)

In this system there appear two parameters c0 and τ , which are not dependent

on time and space, but which directly affect the results of the system.

In the next chapters they will be the target of our study, with the aim of

estimating their optimal values for insertion into the model and produce an

improved forecast.

In order to investigate the solutions of the system, let us show that it is

hyperbolic4.

The dynamic system (1.9) has the following matrix representation:

(
ρ

q

)
t

+

(
q

ρ(u2 + c2
0)

)
x

=

(
0

ρ(U(ρ)−u)
τ

)
(1.10)

We write the system in the form Ut+A(U)Ux = s(U), with A(U) the jacobian

matrix: (
ρ

q

)
t

+

 0 1

c2
0 − u2 2u

(ρ
q

)
x

=

(
0

ρ(U(ρ)−u)
τ

)
(1.11)

4Let us write the conservation law in a vector form:
Ut +A(U)Ux = s(U). We say that this is a hyperbolic system if A(U) has real and distinct
eigenvalues.
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where the right hand side is the source term. The eigenvalues and the re-

spective eigenvectors of the above matrix are:

λ1,2 = u∓ c0 e1,2 =

(
1

u∓ c0

)
(1.12)

Since the eigenvalues are real and distinct the system is hyperbolic, and this

implies that information propagates along characteristic directions and that

discontinuities can develop spontaneously, and either persist or expand.

The solution consists of two waves each moving with a speed given by the

characteristic. Since the flux fluctuations are nonlinear it is difficult to derive

exact solutions to the system for general initial data5.

The two waves can either be a shock or a rarefaction:

• shock: initial data may generate a discontinuity in the solution, that

is not acceptable as a classic solution of a partial differential equation.

Therefore a shock is introduced to continue the discontinuity propaga-

tion;

• rarefaction: because of a discontinuity in the initial data the charac-

teristics do not fill the whole plane (x, t). Therefore a rarefaction is

generated.

We therefore need a condition to select the correct physical solution: the

entropy condition (which assures that characteristic goes into the shock).

The solutions of the PW model are not always acceptable; there can be

cases of negative velocity and the analysis of characteristic speeds shows
5It is possible to derive the analytical solution that holds just at a certain time called

the collapsing time [3].
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that sometimes the vehicles dynamics can affect forward traffic dynamics [2].

This leads to a violation of traffic dynamics6

Even if the PW model has some limitations, we have chosen it as a starting

point for the study of the parameters estimation in the traffic flow model.

1.2 The numerical model

The hyperbolicity of the system illustrated above justifies the use of special

schemes to approximate it numerically [5]. In particular schemes need to be:

• able to capture shocks (i.e. the correct speeds of the discontinuities);

• consistent with the original system;

• stable over time (in order to avoid oscillations and blow up in the

vicinity of the shock);

• convergent to the correct physical solutions of the original system.

We have decided to use a Roe scheme; given a system of conservation laws

written in the form:

Ut + A(U)Ux = s(U)

where A(U) is the Jacobian matrix, the idea behind Roe’s scheme is to de-

compose the system into scalar problems by locally approximating A(U) as

constant over discrete cells.

Because the resulting individual approximate problems are linear, their so-

lutions contain only discontinuities and not expansion fans. For this reason
6The anisotropy principle guarantees that the vehicle behaviours are directionally in-

fluenced only by the traffic dynamics ahead.
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Roe’s method is not entropy satisfying and therefore it is necessary to add a

standard entropy correction term.

Roe scheme is a first order upwind sheme, which assures that its accuracy of

order ∆t in time and ∆x in space.

It follows a brief description of the Roe’s flux difference splitting algorithm

for Payne’s model [1].

Let us call u =
(
u
q

)
where q is the flux ρu and let us consider f the flux

function; we can write the PW model as:

ut + f(u) = s(u)

where s is the source term; we are looking for an approximation such that:

∆u = α1e1 + α2e2

∆f = λ1α1e1 + λ2α2e2

(1.13)

For the PW formulation the approximate values are:

λ̂1 = û− c0 ê1 =

(
1

û− c0

)
ê2 =

(
1

û+ c0

)
λ̂2 = û+ c0

α̂1 =
1

2
∆ρ+

1

2

ρ̂

c0

∆u α̂2 =
1

2
∆ρ− 1

2

ρ̂

c0

∆u

û =

√
ρ
l
ul +

√
ρ
r
ur√

ρ
l
+
√
ρ
r

ρ̂ =
√
ρl
√
ρr

β̂1 = ∆x
ŝ1λ̂2 − ŝ2

2c0λ̂1

β̂2 = ∆x
ŝ2−̂hats1λ1

2c0λ̂2

ŝ =
1

2
[sl + sr] s =

(
s1

s2

)

(1.14)
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where with û we are calculating the velocity in the middle of each cell and

with the indices l and r we are indicating the velocity at the space point

respectively behind and ahead.

The final difference scheme then becomes:

wn+1
i = wn

i −
∆t

∆x
[fni+1/2 − fni−1/2] +

∆t

2
[ŝni+1/2 + ŝni−1/2] (1.15)

where the index i indicates the space step and n the time step. fi+1/2 is the

interface flux between cells and is given by:

fni+1/2 =
1

2

[
fni+1 + fni −

2∑
m=1

(
| λ̂ |m (α̂m + β̂m)êm

)n
i+1/2

]
(1.16)

1.3 The structure of the numerical model

Our numerical model is divided in four subroutines: the two bottom level

subroutines are Ve and PWdecomp, which calculate respectively the out of

danger velocity U(ρ) and the approximate values of equation (1.14). The

subroutine fluxes computes the interface flux between cells at each space-

step, using the two bottom level subroutines. Finally the top level program

implements the finite difference scheme of equation (1.15) for all the time-

steps, using the values calculated in fluxes(code in the Appendix A).

The figure (1.2) is the result of running the model for 200 time-steps and 100

space-steps, ∆t = 2.510−5 and ∆x = 0.01. The initial velocity and density

are two constant states with a discontinuity in x = 0.5.
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Figure 1.2: (from the top left) density, flux and velocity along space at the
final time-step



Chapter 2

Data Assimilation

As we have mentioned previously the variables involved in the PW dynamic

system are:

• ρ(x, t) = traffic density (vehicles per km).

• u(x, t) = mean speed (km per hour).

• q(x, t) = ρu = traffic flow (vehicles per hour).

• U(ρ)= free flow velocity.

• τ= relaxation time.

• c0= traffic sound speed.

The last two variables are parameters that are usually determined empiri-

cally.

Their values directly impact upon the performance of the model. Thus in

order to improve the numerical simulation, our aim is to estimate optimal

14
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parameters making use of all the information available [7]. This information

includes any kind of observational data available, information from previous

forecasts (also called background), or any statistical information relating to

their respective errors.

We have carried out the parameter estimation procedure through the tech-

nique of data assimilation.

Data assimilation has the purpose to incorporate all the available informa-

tion into the numerical model in order to determine the state of the system

as accurately as possible.

There are two main families of assimilation techniques: sequential and vari-

ational. While variational techniques proceed by the global fitting of an

assimilation model to the available information, sequential assimilation steps

through the observations sequentially in time.

The current success of variational methods is attributed to both their capa-

bility in handle large size models and the availability of efficient minimization

algorithms [6].

We have chosen to apply the four dimensional variational method (4D-Var).

This technique allows us to estimate the parameters, taking into account

both the information about the dynamics from the dynamical model and

the information about the true state contained in the observations and the

background.

Moreover the 4D-Var method enables us to incorporate into the numerical

model the observations at their correct time and the method combines the

previous data with the currently available ones. This guarantees the infor-

mation recovery not only of the variables whose observations are available
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but also of the related variables via the full model dynamics [8].

We expect the numerical forecast run from the new estimated parameters to

fit the observations better and give the true state of the system.

In our study we do not consider any background term, as we do not have

any information from previous forecasts. In fig (2.1) there is a graphic rep-

resentation of the 4D-Var approach:

(a) (b)

Figure 2.1: Trajectory of the state obtained (a) running the non linear
model with the first guess parameters, (b) running the non linear model with
the parameters estimated (analysis parameters) -graphs modified from [9]-
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As shown from the pictures we are trying to minimize the distance between

the model trajectory and the observations.

This discrepancy is measured by the cost function J(p) where p is the pa-

rameters vector p =
(
c0
τ

)
. We perform the parameter estimation [7] to obtain

the best value pa such that

J(pa) < J(p) ∀p.

In other words 4D-Var minimizes the cost function with respect to the pa-

rameters c0 and τ .

To minimize the function numerically we have used the conjugate gradient

method which is a gradient based method and therefore requires the avail-

ability of the gradient ∇J (see chapter 4).
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2.1 4D-Var parameter estimation

Let us introduce some of the features that take part in the technique for the

parameter estimation: 1

Notation Variables
xt =

(zt

pt

)
true state of velocity, density, flux (given from zt) and the

parameters c0 and τ (from pt).
pb background state. It comes from a good quality forecast
pg initial guess of the parameters c0 and τ
pa final analysis of the parameters c0 and τ
y vector of observations
h observation operator
H linearization of h.
m non linear model
M linearization of m.
B covariance matrix of background errors (pb − pt).
R covariance matrix of observation errors (y− h(zt)).
A covariance matrix of analysis errors (pa − pt).

Since we are performing a parameter estimation we assume that the true

state is known. We are looking for a good analysis of the parameters able to

improve the simulation.

So basically we are trying to minimize the variance of the errors of the param-

eters (assumption of Gaussian distribution in order to minimize the variance).

1In the table it appears the covariance matrix; the covariance measures the dependence
between two variables; it is define as cov(x, y) =< (x− < x >)(y− < y >) >. If the
variables are independent the covariance is zero. cov(x, x) = V (x) where V(x) is the
variance i.e. the measure of the spread of x around the expectation value < x >. The
covariance matrix between two variables is a symmetric matrix with the variances on the
diagonal entries.
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For random, unbiased 2 Gaussian errors the minimum variance estimate is

equivalent to the maximum likelihood estimate, which we can find by min-

imising the cost function (that measures the weighted sum of squares of

distances to the background state pb and the observations y distributed over

a time interval [t0, tn]).

The cost function is given by:

J(p) = (p(t0)−pb(t0))TB−1(p(t0)−pb(t0))+
n∑
i=0

(yi−hi(xi))TR−1
i (yi−hi(xi))

(2.1)

with xi = m(x0,p, ti, t0) being the solution operator of the non linear model,

and with the index i indicating the time step.

As in any function minimisation we need to find any equilibrium points, i.e.

we want the gradient of the cost function null to satisfy the necessary con-

dition for equilibrium points). Since the cost function is convex, its linearity

assures the uniqueness of the minimum.

2.2 Tangent linear model (TLM)

In order to proceed with the 4D-Var and the minimization of the cost func-

tion, we need to linearize the model m. In fact if the linearization of m is a

good approximation of the model, we are sure that the equilibrium point is

an absolute minimum (i.e. the null gradient of the cost function becomes a

2Let consider η the error in a measurement; we expected it to average to zero over
many cases, i.e. < η >= 0 (expectation value = 0). In this case the measure is said to be
unbiased.
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sufficient condition for the minimum, which is unique).

To linearize m we use the Taylor expansion of the non linear model with a

perturbation: let consider the non linear model at time ti:

xi = m(x0,p, ti, t0)

where x0 is an initial state given and p is the parameters vector; if we per-

turbed p we have:

xi + δxi = m(x0,p + δp, ti, t0)

and using the Taylor expansion we can write:

xi + δxi = m(x0, p, ti, t0) +
∂m
∂p

δp+ higher order terms (H.o.t)

δxi ≈
∂m
∂p︸︷︷︸
M

δp (2.2)

whereM represents the tangent linear model (TLM) defined byM(x) = ∂m
∂p .

The linear model neglects higher order terms (H.o.t); so the more non linear

the modelm is, the bigger the H.o.t are and the worse the TLM approximates

m.

The tangent linear hypothesis states that the linearisation of a nonlinear

model and the model itself must exhibit similar behaviour for a period of

time, known as the validity time.

Thus, once we have the TLM we need to investigate the time window for

which the tangent linear hypothesis holds. Outside that validity time the
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TLM does not retain the original features of the nonlinear system, therefore

it is not a good approximation and the parameters estimated by minimising

the cost function are not optimal values. It follows that the accuracy of the

TLM determines the accuracy of the variational assimilation.

2.3 Correctness test

There follows a test to verify the correctness of the TLM [10].

Let consider the linear model with the parameter perturbed, which we can

write as:

m(x0,p + δp, ti, t0) ≈ Mδp +H.o.t+ m(x0,p, ti, t0)

then if we put:

δp = γδp0 (2.3)

where δp0 represents the perturbation of the parameters, we can write:

m(x0,p + γδp0, t0, ti)−m(x0,p, t0, ti) ≈ Mγδp0 +O(γ2) (2.4)

On the left hand side we have the difference between the state originated by

the perturbed parameters and the one originated by the true parameters; this

gives us the perturbation of the state (δzNL). Mγδp0 is the perturbation of

the state given by the TLM (δzL). Rearranging the eq. (2.4) we can write:

‖m(x0,p + γδp0, t0, ti)−m(x0,p, t0, ti)−Mγδp0‖
‖Mγδp0‖

≈ O(γ) (2.5)
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that is equivalent to:
‖zNL − zL‖
‖zL‖

≈ O(γ) (2.6)

For small γ we have that zNL ≈ zL and therefore the left hand side of (2.5)

is zero.

Therefore a standard method of validating the TLM is to show that the left

hand side of (2.5) tends linearly to zero for small γ.

2.4 Validity test

As we explained in section (2.2) it is necessary to detect the validity time of

the tangent linear hypothesis. Outside that interval the tangent linear model

will not be applicable and our study becomes inefficient.

The validity time is the period over which the linear model exhibits a be-

haviour similar to the non linear system. Therefore we are going to compare

the trajectories of the perturbated state given by the linear and nonlinear

model, and their difference [9].

2.5 Minimization of the cost function

Since the numerical method that we will use to minimize the cost function

is a gradient based method we need to calculate ∇J:

∇J = ∇Jb +∇Jo
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where Jb is the background part of the cost function and Jo is the observation

part. The gradient of the background part is given by:

∇Jb = 2B−1(p− pb)

while for the observation term the gradient is:

∇Jo = −2
n∑
i=0

(HiMiMi−1 . . .M1)TR−1
i (yi − hi(xi)) (2.7)

Therefore the gradient of the cost function evaluated at p is given by:

∇J(p) = 2B−1(p− pb)− 2
n∑
i=0

(HiMiMi−1 . . .M1)TR−1
i (yi − hi(xi)) (2.8)

where (MiMi−1 . . .M1)T is given by the adjoint model [13].

This model is built from the linear model:

xn+1 = Mxn

then the adjoint model is given by

x̂n = MT x̂n+1 (2.9)

In our case, we have chosen to run a finite difference scheme instead.

So choosing a vector perturbation ∂p for the parameters we are going to
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calculate the gradient as:

∇J(pi) ≈
J(pi + ∂pi)− J(pi)

∂pi
(2.10)

In general if we needed parameter estimation for a large amount of parame-

ters, or if we had a different parameter for each spatial point, using the finite

difference approach would mean run the scheme for each parameter, which

would become computationally expensive; therefore in these cases the adjoint

model would be preferred (of which we would need just one run). However

in this study it is acceptable to use the finite difference scheme.
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Bulding of 4D-Var for the traffic

model

We now want to apply the parameter estimation technique to the PW model.

Since we do not have any previous forecast data, the background term does

not appear.

Moreover we assume that the instruments which collect the information, can

measure data of the velocity and the density only, thus the observation vector

is given by
(
uo

i
ρo

i

)
The cost function (2.1) has the form:

J
(
c0

τ

)
=

n∑
i=0


(
uoi
ρoi

)
−Hi


ui

ρi

qi



T

R−1
i


(
uoi
ρoi

)
−Hi


ui

ρi

qi


 (3.1)
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where
(
ui

ρi

)
is the vector state given by the ith run of the non linear model.

The gradient then follows from eq. (2.7):

∇J
(
c0

τ

)
= −2

n∑
i=0

(MiMi−1 · · ·M1)THT
i R

−1
i

((
uoi
ρoi

)
−Hi


ui

ρi

qi


)

(3.2)

We can proceed with the building of the tangent linear model. The TLM for

our model is reported in Appendix B.

Particular attention needs to be paid to the linearisation of the interface flux

between cells given by equation (1.16) because of the presence of the absolute

value; we need to linearise an equation of the form:

y = a · |λ| · e

where all a, λ and e are active variables 1.

We can rewrite y as:

y = a ·
√
λ2 · e

then by differentiating it we get:

δy = δa · |λ| · e+ a · |λ| · δe+ a · e · δλ · λ
|λ|

1In eq. (1.16) a = α̂ + β̂, λ represents each single eigenvalue and e each single eigen-
vector.
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3.1 TLM correctness test

We perform the correctness test of the TLM presented in the section (2.3):

we choose a perturbation vector δp =
(
δc0
δτ

)
and we run the non linear model

twice, once with the initial parameters and then with the parameters per-

turbed. The difference between the two resulting states gives the perturbed

state δzNL, which needs to be compared with the perturbed state given from

the TLM δzL. The absolute error of the perturbed state is:

abs err = m(x,p + δp, ti, t0)−m(x,p, ti, t0)︸ ︷︷ ︸
δzNL

−Mδp︸ ︷︷ ︸
δzL

The ratio between the absolute error and δzL gives the relative error. We

then plot its L2 norm (eq (2.5)) against γ, (defined in eq (2.3) as δp = γδp0)

and we expect it to tend linearly to zero (fig (3.1)). For the following graphs

we have used the values:

c0 = 50 δc0 = 0.2

τ = 5 δτ = 0.5
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(a)

(b)

Figure 3.1: Graph to illustrate the correctness of the TLM after 10 timesteps
for: (a) flux, (b) velocity
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Figure 3.2: Graph to illustrate the correctness of the TLM after 10 timesteps
for the density

From the graph of the density (fig (3.2)) we do not get a proper linear path;

however, looking at the trajectory of the perturbation from both the TLM

and the NLM, the TLM appears to be a good approximation, also seen in

the difference between the two perturbations, which is of the order of 10−12

(fig (3.3(b))). Moreover the correctness test for one time step gives the result

expected. We therefore conclude that the apparent failure of the test for ten

time steps is due to the rounding errors, as the values of the perturbation of

ρ are of the order of 10−8 (see figure (3.3(a))):
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(a)

(b)

Figure 3.3: (a) Density perturbation trajectory (order of 10−8) (b) difference
between linear and non linear perturbation of the density (order of 10−12)
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3.2 Time window test

In order to investigate the length of the time window for which the tangent

linear hypothesis holds, we are going to calculate the relative error for differ-

ent time windows. We need to make sure that the numerical model remains

stable (stability criterion: ∆t
∆x
max(λ) < 1), so we keep ∆t fixed at 2.5 · 10−5

and we vary the number of time steps. We can see from the graph below that

after about 900 steps (time window 0.0225) the tangent linear hypothesis is

unacceptable.

(a) (b)

(c)

Figure 3.4: Representation of the relative errors for (a) density, (b) flux, (c)
velocity over 1000 time steps.
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For further proof we compare the values of δzNL and δzL at time 1000 and

notice that the large relative error is due to the fact that perturbations given

from the nonlinear model are positive values, while the ones given from the

linear model are negative.

Moreover the relative errors of the density, the flux and the velocity oscillate

quite regularly. Observing a sequence of local maximum and minimum we

notice that the oscillation is due to the fact that the wave obtained from the

TLM moves faster than the one from the NLM; therefore a local minimum

of the relative error (fig. (3.4(a), 3.4(b),3.4(c))) corresponds to the instant

in which the waves are in phase, and viceversa a maximum (in the relative

error) occurs when the waves are out of phase.

This is shown by fig (3.5) that represents a sequence of local max-min-max-

min-max in the relative errors of the density. The table (3.1) shows the

maximum relative error for 900 time steps:

Variables max rel.err
(%))

density 48.7783
flux 72.4166

velocity 45.6048

Table 3.1: Values of maximum relative errors for a time window of 0.0225
(900 time steps)
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(a) (b)

(c) (d)

Figure 3.5: Sequence of phase and out of phase waves propagation for the
density trajectories (plot corresponding to the space steps 40-70 where the
discontinuity occur). (a), (c), (e) instant corresponding to the local max rel-
error: out of phase trajectories. (b), (d) corresponding to the local min of
rel-error: in phase trajectories
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We try to investigate the sensitivity of the system to the perturbation and

it is a remarkable fact that the perturbation of the parameter τ does not

noticeably affect the error of the solutions: in fact considering that τ = 5,

and keeping the perturbation δc0 = 0.2 we get the following values of the

relative error for the time window 5 · 10−3 (table (3.2)):

δτ = 0.02 δτ = 0.2 δτ = 2
max rel. err. velocity (%) 19.5926 19.5998 19.7008
max rel. err. density (%) 35.4662 35.4665 35.4678
max rel. err. flux (%) 53.5651 53.7036 55.7918

Table 3.2: Effect of the change of δτ over the relative errors

On the other hand, the increase in the perturbation of c0 leads to a consid-

erable change in the relative errors:

δc0 = 0.2 δc0 = 2
max rel. err. velocity (%) 19.5926 75.2486
max rel. err. density (%) 35.4662 67.3842
max rel. err. flux (%) 53.5651 48.6669

Table 3.3: Effect of the change of δc0 over the relative errors

However the only way to make the relative errors tend to zero is by decreasing

the length of the time step (if we keep ∆t = 2.5 · 10−5 the decrease of the

perturbations of both c0 and τ does not cause any significant reduction of the

relative error). The table (3.4)) shows some values of the maximum relative

errors for smaller ∆t (with the stability criterion respected):
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Time window timesteps max rel. err. max rel. err. max rel. err.
length velocity (%) density (%) flux (%)

5 · 10−6 2.5 · 10−8 0.2907 1.1713 1.0933
5 · 10−5 2.5 · 10−7 3.3142 9.3612 10.6297
5 · 10−4 2.5 · 10−6 17.9544 33.8193 39.6312

Table 3.4: p =
(
c0
τ

)
=
(

50
5

)
, δp =

(
0.2
0.02

)
, 200 time steps.

We notice that for a time window of the order of 10−4 the function of the

relative errors is monotonically increasing (fig 3.6(b), (3.7(b)), (3.7(d))); this

means that there is not any delay in the linear and non linear wave movement

over time and the relative errors depend only on the time steps.

The figures (3.6(a)), (3.7(a)) and (3.7(c)) show the difference between the

linear and non linear trajectories for a time window of 2.5 · 10−4

(a) (b)

Figure 3.6: (a) Difference between the states of the density, (b) relative error
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(a) (b)

(c) (d)

Figure 3.7: Difference between the states of (a) the flux (c) the velocity and
(b), (d) respective relative error
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3.3 Summary of the results

The tests illustrated in this chapter have led to the following conclusions:

• The code for the tangent linear model is correct; however we get some

rounding errors in testing the density due to the small order of magni-

tude (10−8) ;

• the tangent linear model is a good approximation for a maximum time

window of 5 · 10−3 with the relative errors within the range 20-60 %.

For bigger time intervals the higher order terms become large, and the

tangent linear hypothesis is not guaranteed;

• the oscillation of the relative error is due to a delay in the propagation

of the nonlinear wave respect to the linear wave;

• the parameter τ and its perturbation do not excessively affect the rel-

ative errors;

• to decrease the size of the relative error we need to choose a time

window of the order of 10−4. In such a small time window the relative

error increases monotonically and its maximum corresponds to the last

time step.
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Minimization of J and parameter

estimation

To code the 4D-Var we modify the full 4D-Var program for the Lorenz equa-

tions from [16].

In order to set the true state (that we assume to be known) we run the non-

linear model with the true parameters.

In this study we use artificial data, so we generate observations with some

random noise and we set the linearised observation operator H.

Choosing some first guess parameters, we calculate the cost function (2.1)

and its gradient. In order to evaluate the gradient using the finite different

scheme of eq (2.10) we choose some perturbation of the parameters and run

the nonlinear model with the first guess parameters perturbed, and we cal-

culate the cost function of the state perturbed.

The examples given in this chapter have the perturbation set at 10−4. Ap-

pendix C illustrates the code to calculate the cost function and its gradient.

38
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4.1 Minimisation

As mentioned before, we use the conjugate gradient method (CG) that is

a gradient based method (i.e. it needs the availability of the values of the

gradient). It is implemented following a line search strategy in the directon

of the steepest descent (see more details about the method in chapter 5 of

[15]). We use one of the variant of this method, which is the Polak-Ribière

method [15].

Since the CG is an iteration method it is necessary to select a proper stopping

criterion which ensures an accurate approximation of the minimum.

Our stopping criterion is going to be the Lawless-Nichols criterion [14] which

is:
‖∇Ji‖
‖∇J0‖

< ε (4.1)

where ε is the user-set tolerance, and the index of the gradient is referred to

the timestep.

However, since our approximation is crude, the error becomes significant

before the stopping criterion is reached (see next section).
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4.2 Results

As we exlpained in the previous section the crude approximation of the gradi-

ent makes the minimisation terminate. This causes less iteration and there-

fore the norm of the gradient reaches the order of 10−3 (figure (4.1)).

(a) (b)

Figure 4.1: ‖∇J‖ in its path towards 0. (a) time window of 2.5 · 10−4, (b)
time window of 5 · 10−3

We report here the results of two experiments; the values used are:

ct0 = 50 cg0 = 55

τ t = 5 τ t = 7

where with g we indicate the first guess parameters and with t the true ones.

The frequency of the observations is set to 1 (i.e. at each timesteps), and the

variance for the observational noise is set to 4 · 10−4
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Case T window num t steps Range of rel.err Parameter estimated iter.
expected by TLM test

A 2.5 · 10−4 10 17-40% c0 = 49.9716 4
τ = 7.0001

B 5 · 10−3 200 20-60% c0 = 49.9620 3
τ = 7.0070

Table 4.1: Parameter estimation experiments with ∆t = 2.5 · 10−5

As shown in the table (4.1), even if we were expecting a larger error in B, we

still get quite similar parameters. This arises because running the model for

a larger time window also means includes more observations into the model.

As proof of what we said about the small sensitivity of the model with respect

to τ , we get a large error between the true τ and the analysis one; however

this does not affect the forecast. Moreover from the analysis of the gradient,

we notice that ∂J
∂c0

is of 3 or 4 orders of magnitude bigger than ∂J
∂τ
.

The success of the parameter estimation is shown in the following graphs

(4.2): we basically find that the difference between the true state and the

state forecasted by the first guess parameters is larger than the one between

the true state and the state forecasted by the analysis parameters.

Therefore the state forecasted after the parameter estimation results to be

more consistent with the true state.
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(a) (b)

(c) (d)

Figure 4.2: Results from case B. (a)(b)Difference of the density trajectories:
(a) true state and state after the parameter analysis, (b) true state and state
from the first guess; (c),(d) trajectories of the flux compared with the true
trajectory (c) with parameter estimation (d with first guess parameters).
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Conclusions and further work

We succeeded in improving the forecast with the optimal parameters esti-

mated. However, the approximation of the gradient of the cost function is

crude and the error become significant before the stopping criterion is satis-

fied; this leads to a less accurate minimisation.

Thus the next step would be to build the adjoint model [13], that is able to

return a sharper gradient.

By investigating the relative errors we can say that the variation of the pa-

rameter τ does not influence the state significantly. A further proof of this

has been given from the 4D-Var, as the analysis of τ is quite different from

the true value (but this does not negatively influence the success of the esti-

mation).

The time window in which we can perform the parameter estimation is of

the order of 10−3 with a quite large error, as tested from the time validity

test of the TLM.

However in the 4D-Var we have obtained results smilar to the ones from

43
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smaller time window; this happens because a larger time window leads also

to more observations to include in the non linear model, and also more time

for the waves to propagate.

Further, an interesting point would be investigate the reason for the delay of

the non linear wave propagation respect to the linear one. This would help

to understand the reason for which with a time window of the order of 10−3,

even with small perturbations, the relative error does not tend to zero.

Also, we have used the PW model with a discontinuity in the initial state.

This causes problem in the TLM since the point of discontinuity does not al-

low derivatives; it is possible to modify the program in order to have smoother

initial data and investigate whether this change can improve the TLM valid-

ity.

Finally a further step in this study would be substitute the artificial data

with real observations.

Once the technique has been properly experimented, it would be possible

also to apply it for different macroscopic model (for example the Aw-Rascle

model [2]).
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Non linear model code

-Subroutine Ve

function [omega] = Ve(rho)

omega = (tanh(1./rho-2)-tanh(-2));

end

-Subroutine PWdecomp

function [lambda,X,alpha,beta,lamL,lamR]=PWdecomp(uL,uR,scell,c0)

% performs Payne-Whitham Roe decomposition

vtilde = (uR(2)/sqrt(uR(1))+uL(2)/sqrt(uL(1)))/(sqrt(uR(1))+sqrt(uL(1)));

lambda(1) = vtilde-c0;

lambda(2) = vtilde+c0;

Delta_t=0.005;

X(1,1) = 1;

X(2,1) = lambda(1);
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X(1,2) = 1;

X(2,2) = lambda(2);

alpha(1) = ((vtilde+c0)*(uR(1)-uL(1)) - (uR(2)-uL(2)))/(2*c0);

alpha(2) = (-(vtilde-c0)*(uR(1)-uL(1)) + (uR(2)-uL(2)))/(2*c0);

beta(1) = (lambda(2)*scell(1)-scell(2))/(2*c0);

beta(2) = (scell(2)-lambda(1)*scell(1))/(2*c0);

lamL(1) = (uL(2)/uL(1)-c0);

lamL(2) = (uL(2)/uL(1)+c0);

lamR(1) = (uR(2)/uR(1)-c0);

lamR(2) = (uR(2)/uR(1)+c0);

end

-Subroutine fluxes

function [h,s] = fluxes(u,Dt,Dx,c0,tau)

%calculates and applies Roe increments - WITHOUT entropy fix

%

imax = size(u,2);

evals=zeros(imax,1);

l1min=10000;l1max=-10000;l2min=10000;l2max=-10000;
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f(1,:) = u(2,:);

f(2,:) = u(2,:).^2./u(1,:)+c0^2*u(1,:);

source = [zeros(1,imax);(u(1,:).*Ve(u(1,:))-u(2,:))/tau];

s = Dx*(source(:,1:imax-1)+source(:,2:imax))/2;

for i = 1:imax-1

[lambda,X(:,:,i),alpha,beta,lamL,lamR] = PWdecomp(u(:,i),u(:,i+1),...

s(:,i),c0);

h(:,i) = (f(:,i)+f(:,i+1))/2 ...

-((alpha(1)+beta(1)/lambda(1))*abs(lambda(1))*X(:,1,i)+ ...

(alpha(2)+beta(2)/lambda(2))*abs(lambda(2))*X(:,2,i))/2;

% collect extremes of wavespeeds

l1min = min(lambda(1),l1min);

l1max = max(lambda(1),l1max);

l2min = min(lambda(2),l2min);

l2max = max(lambda(2),l2max);

end

end

-Subroutine RFtraffic

function [x,rho,q,v] = RFtraffic(rhoL,vL,rhoR,vR,imax,tmax,nmax,c0,tau)

% traffic Riemann problem
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Dx = 1/(imax-1);

%Dt = tmax/nmax;

Dt=0.000000025;

x = 0:Dx:1;

for i = 1:imax

if (x(i)<=0.5)

u(1,i) = rhoL;

u(2,i) = rhoL*vL;

else

u(1,i) = rhoR;

u(2,i) = rhoR*vR;

end

end

rho = u(1,:);

q = u(2,:);

v = u(2,:)./u(1,:);

for n=1:nmax

[h,s] = fluxes(u,Dt,Dx,c0,tau);

for i = 2:imax-1

u(:,i) = u(:,i)-(Dt/Dx)*(h(:,i)-h(:,i-1))+...

(Dt/Dx)*(s(:,i)+s(:,i-1))/2;

end

rho = u(1,:);
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q = u(2,:);

v = u(2,:)./u(1,:);

end
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Tangent linear model code

-Subroutine VeTL

function [omega_TL] = Ve_TL(rho,rho_p)

omega_TL = -(rho_p./(rho.^2)).*(1./(cosh(1./rho-2)).^2);

end

-Subroutine PWdecompTL

function [lambda,lambda_p,X,X_p,alpha, beta,alpha_p,beta_p,lamL_p,lamR_p]...

=PWdecomp_TL(uL,uR,uL_p,uR_p,scell_p,scell,c0_p,c0)

vtilde = (uR(2)/sqrt(uR(1))+uL(2)/sqrt(uL(1)))/(sqrt(uR(1))+sqrt(uL(1)));

vtilde_p=(((uR_p(2)*sqrt(uR(1))-uR(2)*0.5*1/sqrt(uR(1))*uR_p(1))...

/uR(1)+(uL_p(2)*sqrt(uL(1))-uL(2)*0.5*1/sqrt(uL(1))*uL_p(1))/uL(1))...

*(sqrt(uR(1))+sqrt(uL(1)))-(uR(2)/sqrt(uR(1))+uL(2)/sqrt(uL(1)))...

*(0.5*1/sqrt(uR(1))*uR_p(1)+0.5*1/sqrt(uL(1))*uL_p(1)))/...

((sqrt(uR(1))+sqrt(uL(1)))*(sqrt(uR(1))+sqrt(uL(1))));

lambda(1) = vtilde-c0;
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lambda(2) = vtilde+c0;

lambda_p(1) = vtilde_p-c0_p;

lambda_p(2) = vtilde_p+c0_p;

X(1,1) = 1;

X(2,1) = lambda(1);

X(1,2) = 1;

X(2,2) = lambda(2);

X_p(1,1) = 0;

X_p(2,1) = lambda_p(1);

X_p(1,2) = 0;

X_p(2,2) = lambda_p(2);

alpha(1) = ((vtilde+c0)*(uR(1)-uL(1)) - (uR(2)-uL(2)))/(2*c0);

alpha(2) = (-(vtilde-c0)*(uR(1)-uL(1)) + (uR(2)-uL(2)))/(2*c0);

beta(1) = (lambda(2)*scell(1)-scell(2))/(2*c0);

beta(2) = (scell(2)-lambda(1)*scell(1))/(2*c0);

alpha_p(1) = (((vtilde_p+c0_p)*(uR(1)-uL(1))+(vtilde+c0)...

*(uR_p(1)-uL_p(1))-(uR_p(2)-uL_p(2)))*2*c0-2*c0_p...

*((vtilde+c0)*(uR(1)-uL(1)) - (uR(2)-uL(2))))/(4*c0*c0);
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alpha_p(2)=((-(vtilde_p-c0_p)*(uR(1)-uL(1))+(vtilde-c0)...

*(uR_p(1)-uL_p(1))+(uR_p(2)-uL_p(2)))*2*c0-2*c0_p...

*(-(vtilde-c0)*(uR(1)-uL(1)) + (uR(2)-uL(2))))/(4*c0*c0);

beta_p(1) = (2*c0*(lambda_p(2)*scell(1)+lambda(2)*scell_p(1)-scell_p(2))...

-2*c0_p*(lambda(2)*scell(1)-scell(2)))/(4*c0*c0);

beta_p(2) = (2*c0*(scell_p(2)-lambda_p(1)*scell(1)-lambda(1)*scell_p(1))...

-2*c0_p*(scell(2)-lambda(1)*scell(1)))/(4*c0*c0);

lamL_p(1) = ((uL_p(2)*uL(1)-uL(2)*uL_p(1))/(uL(1)*uL(1))-c0_p);

lamL_p(2) = ((uL_p(2)*uL(1)-uL_p(1)*uL(2))/(uL(1)*uL(1))+c0_p);

lamR_p(1) = ((uR_p(2)*uR(1)-uR(2)*uR_p(1))/(uR(1)*uR(1))-c0_p);

lamR_p(2) = ((uR_p(2)*uR(1)-uR_p(1)*uR(2))/(uR(1)*uR(1))+c0_p);

end

- Subroutine fluxesTL

function [h_p,s,s_p] = fluxes_TL(u,u_p,Dt,Dx,c0_p,c0,tau,tau_p)

imax = size(u,2);

l1min=10000;l1max=-10000;l2min=10000;l2max=-10000;

[omega]=Ve(u(1,:));

[omega_p]=Ve_TL(u(1,:),u_p(1,:));

f(1,:) = u(2,:);

f(2,:) = u(2,:).^2./u(1,:)+c0^2*u(1,:);
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f_p(1,:) = u_p(2,:);

for k=1:imax

f_p(2,k) = (2*u(2,k)*u_p(2,k)*u(1,k)-u_p(1,k)*(u(2,k)^2))...

/(u(1,k)^2)+2*c0*c0_p*u(1,k)+c0^2*u_p(1,k);

end

source = [zeros(1,imax);(u(1,:).*omega-u(2,:))/tau];

s = Dx*(source(:,1:imax-1)+source(:,2:imax))/2;

source_p=[zeros(1,imax);

(tau*(u_p(1,:).*omega+u(1,:).*omega_p-u_p(2,:))-...

tau_p*(u(1,:).*omega-u(2,:)))/(tau*tau)];

s_p = Dx*(source_p(:,1:imax-1)+source_p(:,2:imax))/2;

for i = 1:imax-1

[lambda,lambda_p,X(:,:,i),X_p(:,:,i),alpha,beta,alpha_p,beta_p,lamL_p,...

lamR_p] = PWdecomp_TL...

(u(:,i),u(:,i+1),u_p(:,i),u_p(:,i+1), s_p(:,i),s(:,i),c0_p,c0);

h_p(:,i) =(f_p(:,i)+f_p(:,i+1))/2-0.5*((alpha_p(1)+(beta_p(1)*lambda(1)-...

beta(1)*lambda_p(1))/((lambda(1))^2))*X(:,1,i)*abs(lambda(1))...

+(alpha(1)+(beta(1))/(lambda(1)))*X_p(:,1,i)*abs(lambda(1))+...

((alpha(1)+(beta(1))/(lambda(1)))*X(:,1,i)*sign(lambda(1))*lambda_p(1))...

+(alpha_p(2)+(beta_p(2)*lambda(2)-beta(2)*lambda_p(2))/((lambda(2))^2))...
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*X(:,2,i)*abs(lambda(2))+(alpha(2)+(beta(2))/(lambda(2)))*X_p(:,2,i)...

*abs(lambda(2))+((alpha(2)+(beta(2))/(lambda(2)))*X(:,2,i)*sign(lambda(2))*...

lambda_p(2)));

end

end

- Subroutine RFtrafficTL

function [x,rho_p,q_p,v_p] = RFtraffic_TL(rhoL,vL,rhoR,vR,imax,tmax,nmax,...

c0,tau,c0_p,tau_p)

% traffic Riemann problem

u_p=zeros(2,imax);

Dx = 1/(imax-1);

%Dt = tmax/nmax;

Dt=0.000000025;

x = 0:Dx:1;

%

for i = 1:imax

if (x(i)<=0.5)

u(1,i) = rhoL;

u(2,i) = rhoL*vL;

else

u(1,i) = rhoR;

u(2,i) = rhoR*vR;

end

end
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rho = u(1,:);

q = u(2,:);

v = u(2,:)./u(1,:);

rho_p = u_p(1,:);

q_p = u_p(2,:);

for k=1:imax

v_p(1,k) = (u_p(2,k)*u(1,k)-u_p(1,k)*u(2,k))/((u(1,k)^2));

end

for n=1:nmax

[h,s] = fluxes(u,Dt,Dx,c0,tau);

[h_p,s,s_p] = fluxes_TL(u,u_p,Dt,Dx,c0_p,c0,tau,tau_p);

for i = 2:imax-1

u(:,i) = u(:,i)-(Dt/Dx)*(h(:,i)-h(:,i-1))+...

(Dt/Dx)*(s(:,i)+s(:,i-1))/2;

u_p(:,i) = u_p(:,i)-(Dt/Dx)*(h_p(:,i)-h_p(:,i-1))+(Dt/Dx)...

*(s_p(:,i)+s_p(:,i-1))/2;

end

rho = u(1,:);

q = u(2,:);

v = u(2,:)./u(1,:);
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rho_p = u_p(1,:);

q_p = u_p(2,:);

for k=1:imax

v_p(1,k) = (u_p(2,k)*u(1,k)-u_p(1,k)*u(2,k))/((u(1,k)^2));

end

end
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Calculation of the cost function and the gradient

function [f,g] = calcfg(X,nmax,imax,tmax,datrho,datv,D,freq,truerhoL,...

truevL,truerhoR,truevR)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% List of main variables

% X: Guess of c_0 and tau

% nmax: Number of time steps

% imax: Number of space steps

% tmax: Time window

% D: Observation weighting matrix

% h: Time step for numerical scheme

% freq: Frequency of observations

% tstep: Number of time steps to perform

% [x,rho,q]: Forward trajectory

% [datrho,datv]: Observation values -no obs of the flux

% [truerhoL,truevL,truerhoR,truevR]: initial state of density and

% velocity
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% Output:

% [f,g]: Cost function and gradient

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f=0.0d0;

f1=0.0d0;

f2=0.0d0;

guessc0=X(1,1);

guesstau=X(2,1);

%set perturbation

pert=[1d-4,1d-4];

%parameters perturbed

guessc0_p=pert(1)+guessc0;

guesstau_p=pert(2)+guesstau;

%run of the non linear model for first guess parameters

[x,rho,q,v]=RFtraffic(truerhoL,truevL,truerhoR,truevR,imax,tmax,nmax,guessc0,...

guesstau);

[x1,rho1,q1,v1]=RFtraffic(truerhoL,truevL,truerhoR,truevR,imax,tmax,nmax,...

guessc0_p,guesstau);

[x2,rho2,q2,v2]=RFtraffic(truerhoL,truevL,truerhoR,truevR,imax,tmax,nmax,...

guessc0,guesstau_p);

%

% Calculate the cost function

for n=1:freq:nmax
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for i=1:imax

f=f+0.5 * ((rho(i,n)-datrho(i,n))*(rho(i,n)-datrho(i,n))*D(i,n)...

+(v(i,n)-datv(i,n))*(v(i,n)-datv(i,n))*D(i,n));

f1=f1+0.5 * ((rho1(i,n)-datrho(i,n))*(rho1(i,n)-datrho(i,n))*D(i,n)...

+(v1(i,n)-datv(i,n))*(v1(i,n)-datv(i,n))*D(i,n));

f2=f2+0.5 * ((rho2(i,n)-datrho(i,n))*(rho2(i,n)-datrho(i,n))*D(i,n)...

+(v2(i,n)-datv(i,n))*(v2(i,n)-datv(i,n))*D(i,n));

end

end

%

% Calculate gradient of cost function

g1=(f1-f)/pert(1);

g2=(f2-f)/pert(2);

g=[g1;g2];
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