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Abstract

A numerical algorithm for constructing a state feedback for a controllable sta-
ble linear system is presented and tested. Main attention is given to maximizing
the distance to instability such that the system remains stable. Two methods
are considered, namely robust eigenstructure assignment and singular value as-
signment. Examples are looked at to illustrate the theoretical results discussed.
A comparison between these two methods is considered and conclusions drawn

from the numerical results.
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Notation

Symbols Meaning

A e R state matrix

B e R input matrix

C e Rr*n output matrix

K e Rm™*" state feedback matrix

F e rrx» output feedback matrix

X e R matrix of eigenvectors

N null space

U the set of unstable matrices
A+BK € R*» state closed loop matrix
A+4+BFC € R output closed loop matrix

A e R diagonal matrix of eigenvalues ()
x € Rt state vector

u e Rmxd control vector

y € Rp<! output vector

v € Rmx! input vector

A (%) jth eigenvalues of *

ra(X) condition number of X

o: (%) ith largest singular value of *
T min(¥) minimum singular value of *
Tmaz(™) maximum singular value of *
| || the 2-norm of *



Chapter 1

Introduction

The aim of this project is to construct a numerical algorithm for finding a state
feedback, for a linear time-invariant control system, which will increase the dis-
tance to instability and keep the eigenvalues stable.

Before we consider this work in more detail, it is necessary to give some basic
definitions.

A control system may be defined as an arrangement of physical components
connected or related in such a manner as to command or regulate itself or another
system. Control systems influence every way of modern life. Automatic washers
and dryers, microwave ovens, aircraft control, chemical plants, even economic
modelling are a few examples of where control systems are used.

In general, control systems can be thought of being either open loop or closed
loop. An open loop system is one in which the control action is independent of
the output. An idealised example is the heating system of a room, with a radiator
which is fed with water of constant temperature. Such a system of a room is not

perfect, since any change in the status of the room will effect the temperature of



the room. For example, changes in the outside temperature or the opening and
closing of doors. A closed loop system is one in which the control action depends
on the output in some way. The use of thermostats in order to control the heating
system of a room or a house is a well known example of a closed loop system.

Both of these systems are given in the following figures.

Controllin Inputs Outputs
. 9 P System L
Device

Figure 1.1: An open loop system

Reference Inputs

Controllin Inputs Outputs
. g P System P
Device

Feedback

Figure 1.2: A closed loop system

In practical control problems, analysis starts with the formulation of a mathe-
matical model of the physical system under investigation. This is done in chapter
2, and there the problem is formulated and the conditions given for the system

to be controllable and observable.



In chapter 3 we look at the method of eigenstructure assignment. This method
is used most commonly and is known to produce good results. In this method
we are given a set of eigenvalues that we wish to assign and a feedback is sought
that will assign these eigenvalues to our system. A numerical algorithm is given
for finding a state feedback. Some examples are also given of finding a state
feedback. It is known that if we assign the eigenvalues robustly we get a good
distance to instability.

In chapter 4 we consider the method of singular value assignment. Here we
have some fixed singular values and we wish to assign the remaining singular
values. A numerical algorithm is given with some examples. In this chapter we
look at finding a state feedback, since algorithms are available that assign singular
values in this case. The area of finding an output feedback is not discussed as it
is a recent area of research. It is not known what happens to the eigenvalues if
we try to increase our distance to instability.

In chapter 5 we look at the distance to instability. A definition is given as well
as some theory. We see that the distance to instability depends on the minimum
singular value and so the method of singular value assignment would be a good
way of increasing this singular value.

In chapter 6 the numerical algorithm for increasing the distance to instability
is discussed. We look at some examples where we use this algorithm. We then use
robust eigenstructure assignment to find a state feedback and compare whether

this method give a better distance to instability than the algorithm discussed.



Chapter 2

Problem Formulation

In this chapter we introduce the concept of feedback, the equations that describe
it, and the motivation behind pole or singular value assignment. We differentiate
between state and output feedback and provide definitions of controllability and

observability. We begin with the basic system.

2.1 Feedback

The most general form of feedback control system is shown in Figure 2.1:

Reference Inputs

Controllin Inputs Outputs
¢ P System P

Device

Feedback

Figure 2.1: A feedback control system



Figure 2.1 shows a simple closed loop feedback control system which is em-
ployed in order to achieve or maintain a prescribed behaviour (ie stability). The
controller examines the difference between the output of the process and the in-
put and so employs a function to control the system. The equations describing

the system in Figure 2.1 are

= _ Ax(t) + Bu(t) (2.1)

y(t) = Ox(t) (2.2)
where,
x € R™! is the system state vector,
u € R™*! is the system input vector,
y € RP*! is the system output vector,
A € R™™ is the state matrix,
B € R™*™ is the input matrix,
C € RP*™ is the output matrix.
Both the matrices B and C are assumed to be of full rank. If A, B and C are
constant then our system is known to be time invariant; otherwise it is time
varying.

Additionally we have the feedback
u=Fy+ Bv (2.3)

where,
F € R™*? is the constant gain matrix and

v € R™ is a reference input.



Then equation (2.1) becomes :

d
ch = (A+ BFC)x + Bv (2.4)

We can see from (2.4) that the state matrix of the closed loop system is now
given by A+ BF(C. We can see that this change in the state matrix may produce
a change in the system behaviour, and that the feedback matrix F' will control
the way that the system behaves. The choice of F'is therefore critical if we wish
the system to behave in a certain way. If we employ a feedback that only uses
the system outputs, then we have an output feedback problem and this has a
closed loop matrix given by A + BF(C'. In the case of state feedback we assume
that ' is the n x n identity matrix and assume that we may measure all of the
system states. Notationally we make a distinction between the state feedback
and output feedback matrices by labelling the state feedback matrix K € R™*".
In this case, substitution of

u=~AKx+v (2.5)
into (2.1) yields the following equation:

d
dit‘ = (A+ BK)x + Bv (2.6)

Now the closed loop matrix has the form A + BK.

So from equations (2.6) and (2.2) and C' = [ we have a state feedback problem
and from (2.4) and (2.2) an output feedback problem. The problem of state
feedback will be defined more formally in the next chapter, but before we do
that we give conditions for controllability and observability and then look at the

motivation behind pole and singular value assignment.



2.2 Controllability

Here we introduce the concept of controllability, that is, the ability of a given
system described by (2.1), to achieve some desired final state by an admissible

control.

Definition 2.1 [1]
We say that a system is completely controllable if for any to, any initial state
x(ty) = @, and any given final state s there exists a finite time t; > to and a

control w(t), to <t < ty, such that x (t;)=x;. O

An equivalent definition is given by:

Theorem 2.2 The system (2.1) is completely controllable if and only if the

nxnm controllability matriz associated with (A, B),
W=[B,AB,AB,...,A""' B]
has rank n.

For proof see [1]. O

Now we give another alternative definition of controllability :
Theorem 2.3 The system is completely controllable if and only if:
s'A=ps ands' B=0<%<s"=0, Vuel

Proof [9] :
i) Complete controllability = [s' A =u s’ and s' B =0 < s = 0]
Suppose complete controllability and that there exists an s' # 0 such that, s* A

=u s' and s'B=0 Then



s'[B,AB,.....A""'B]=[s'B,u s'B,...,u""'s'B]=0.

This implies that there exists an s' # 0 such that s*W=0 which implies that W
has rank < n
and hence the system is not controllable, by Theorem 2.2 which implies a contra-
diction.
ii)[s' A =p s’ and s' B =0 < s' = 0.] = complete controllability.
For proof of this part see [9]. O.

We have now looked at some conditions which are needed for the existence
of a controller u. We next look at the conditions needed for the existence of an

observer.

2.3 Observability

Twinned with the concept of controllability is that of observability, or more pre-
cisely the ability to determine the state of a system by measurements of its outputs
only. In this section we give equivalent definitions of observability and conditions

to be satisfied for the existence of an output feedback matrix.

Definition 2.4 [1] A system is observable if for any ty and any initial state
x(ty)=x,, there exists a finite time t; > ty such that knowledge of w(t) and y(t)

for to <t <ty suffices to determine &,. O.

Again we give a equivalent definition which may be used to determine observ-

ability.

Theorem 2.5 The system given by (2.1)-(2.2) is completely observable if and

only if the np x n observability matriz associated with (A,C'),



CA

V=1 ca?

C A

has rank n.

For proof see [1]. O

Theorem 2.6 The system (2.1)-(2.2) is completely observable if and only if:
At=As and Cs=0=s=0, Ve U

For proof of we make use the duality theorem in [1].0
By comparison of the controllability matrix associated with the pair (A*, C?)
and the observability matrix associated with the pair (A’, B"), we have the fol-

lowing theorem:

Theorem 2.7 The system (2.1)-(2.2) is completely controllable if and only if the

dual system

dx . .
T —Ax(t) + Ctu(t) (2.7)

y(t) = Bix(t) (235)
is completely observable and vice versa.

So we have that controllability and observability are dual concepts.



We have now looked at conditions that are needed for a system to have either
a controller or an observer, that is, the system to be completely controllable
or completely observable. In the next chapter we define the problem for pole

assignment and singular value assignment.

2.4 Motivation for Pole and Singular Value As-

signment

Now we look at the motivation behind pole assignment and we examine the use
of a feedback in a particular way to achieve some property. A general time-

continuous system can be described by the differential problem

dx

where the matrix A is of dimension n x n and is constant.

Equation (2.9) has the following solution:
x(1) = exp(At)xg (2.10)
If we expand the exponential term and take norms, we have

lexp(AD[I< 330 eap( Re(A)1)| Zis] (2.11)

k=1j=1
where,
Re(Ar) denotes the real part of the eigenvalues of A,
q is the number of distinct eigenvalues,

ay, 1s the order of the largest Jordan block associated with the eigenvalues of A

10



[1].

Zy; are constant matrices determined entirely by A and finally ||.|| is the /, norm.
From (2.11), |lexp(At)|| — 0 as t — oo, provided that Re(A;) < 0V k, since

(2.11) is a finite sum of terms which each tend to zero as t — oo. Now we need

the following definitions [1]:

Definition 2.8 We say that the equilibrium state x=0 is stable if for any positive
scalar € there exists a positive scalar 6 such that ||x(t9)]|, < 6 = |[x(t)], <€, ¥

t > 1. .

An necessary and sufficient condition for stability can be given as follows:

Theorem 2.9 Let the eigenvalues of A be A\, k = 1,2,..,n. Then system (2.9)
is stable if and only if Re(A\y) < 0 and for any A\, with Re(\y)=0, the eigenvalues
are simple, ie the eigenvalues are non defective and have a full set of associated

independent eigenvectors. O

Definition 2.10 We say that the system is asymptotically stable if x=0 is stable

and if:

x(t) — 0ast — oo.

a.

From (2.10) it follows that [[x(t)|| < |lexp(At)||||xo|| and therefore the system
(2.9) is asymptotically stable provided that Re(A;) < 0.

We see then for stability it is sufficient that the eigenvalues of the system

state matrix have negative real parts. We aim to design a feedback that is able

to alter the state matrix so that this is the case. Specifically, the method we

11



plan to use will assign eigenvalues or poles to precise locations and is commonly
known as pole placement. So the motivation behind pole assignment is to find
a feedback matrix which makes the system stable by moving the eigenvalues to
new locations.

We now look at the motivation behind singular value assignment. It is as-
sumed that we have a stable matrix A in the sense that all the eigenvalues of A
have negative real parts. We consider the set of matrices & which have at least

one eigenvalue on the imaginary axis and so are unstable. Then the distance from

A to set U is defined to be:
B(A)= min [|E|[|A+ E e U]
EeC’ﬂX’ﬂ

This is a measure of how nearly unstable’ is the stable matrix A (ie the distance
to instability). So we need to find a feedback such that we maximise the distance
between our closed loop matrix and the set of the set of unstable matrices. In a
later chapter we see that the distance to instability is related to singular values
and so the motivation behind singular value assignment is that we wish to find a
feedback such the distance to instability is as large as possible. More details on
how this is done will be discussed in a later chapter. In either case we require
that our new system matrix is stable. Before we look at these methods, we need

to give some basic matrix theory.

2.5 Basic Matrix Theory

In this section we describe two basic decompositions of a matrix. Throughout

this dissertation we make extensive use of the singular value decomposition(SVD)

12



and the QR decomposition of a matrix M € R**™. In the usual notation the SVD

is given by:

where U and V are n X n and m x m orthogonal matrices, respectively, and X
is a rank(M) x rank(M) diagonal matrix with positive diagonal entries. Also we

refer to the orthogonal reduction of M to diagonal form:

¥ 0
UMYV =
as an SVD of M because we always need it in this form.
The o; are the singular values of M and the vectors w;,v; are the wth left
singular vector and the ith right singular vector, respectively. It is easy to see

that by comparing columns in the equations MV=XU and M'U=X"V that

Mvizaiui

toy. —
M U, =0;U;

The next decomposition is the QR decomposition. Again in the usual notation

a QR decomposition of the matrix M is given by:

M=QR,

where () € R"*" is orthogonal and R € R"*™ is upper triangular.
More information about numerical techniques for computing these decompo-

sitions are given in [5].

13



Chapter 3

Robust Eigenstructure

Assignment

3.1 Introduction

In this chapter we look at a way of assigning eigenvalues and eigenvectors by
state feedback in the linear time invariant system described by the equations

(2.1)-(2.2). There are two approaches for doing this:
e by Linear State Feedback.
e by Output Feedback.

In the following section we discuss how we assign eigenvalues and eigenvectors
by linear state feedback. We could find a feedback by output feedback but this

is not discussed here.

14



3.2 Background Theory for Linear State Feed-

back

The state feedback pole assignment problem in control system design is essentially
an inverse eigenvalue problem; that is, we assign eigenvalues and find the system
which has these assigned eigenvalues. A desirable property of any system design
is that the poles should be insensitive to perturbations in the coefficients matrices
of the system equations. There are many way of assigning eigenvalues discussed
in earlier papers [4, 11] but in this section we look for ways of obtaining a robust
solution that is "a well conditioned solution.’

We now consider the completely controllable, time invariant, linear, multi-
variate system (2.1)-(2.2). In this section C' = I the n x n identity matrix. The
behaviour of the system (2.1) is governed by the eigenvalues of the matrix A. If
we have an unstable system, then it is often desirable to make the system stable,
and this is done by pole(eigenvalue) assignment. This is achieved by using the
state feedback control

u=HKx+v (3.1)

where the matrix K is called the feedback or gain matrix and is chosen such

that the modified dynamic system :

dx R
T = (A+ BE)x(t) + By (t). (3:2)

now with an input v, has the desired poles. In this case K, the feedback matrix,
is found by assigning linearly independent eigenvectors corresponding to the re-
quired eigenvalues, such that the matrix of eigenvectors is as well conditioned as
possible. Thus this method is called eigenstructure assignment.

15



The state feedback pole assignment problem for system (2.1) can be formu-

lated as:

Problem 3.1 [6]
Gliven real matrices (A,B) of orders (nxn, nx m) respectively, and a set of
n complex numbers , A=(A, Ay....\, ), closed under complex conjugation, find a

real mxn matric K such that the eigenvalues of A+BK are A\j,j =1,2,...n.

(Given the Problem 3.1 can we find a solution to this?. Conditions for a

solution to exist are well known and the following theorem is well established.

Theorem 3.2 [13]
A solution K to Problem 3.1 exists for every set A of self conjugate complex
numbers if and only if the pair (A,B) is completely controllable, that is , if

and only if:

st A =p s ands' B=0<< s' =0

If the pair (A, B) was not controllable, i.e. there exists s' # 0 such that s* A
=u s' and s B =0, thus s' (A+BK) =p s’ for all K. Then we can see that u
is an eigenvalue of A+BK for all K and must belong to any set A of poles to be
assigned. The pole p is said to be uncontrollable, and it cannot be modified by
any feedback control.

In the case where m = n, a solution always exists, since rank(B) = n implies
that the left null space of B contains only the trivial solution and the pair (A, B)
is always completely controllable.

It we restrict the choice of the feedback matrix such that the resulting system
matrix A + BK is nondefective, then Problem 3.1 can be reformulated as the

16



following:

Problem 3.3 [6]
Given (A, B) and A (as in Problem 3.1), we need to find a real matriz K such
that

(A+ BK)X = XA (3.3)

for some nonsingular X, where

A:diag()\l, )\27 ceeny )‘n)

From equation (3.3) it can be seen that the columns xj, 7 = 1,2,...n of the
matrix X are the right eigenvectors of A+BK corresponding to the assigned
eigenvalues A;. Similarly, the rows (yj)t, J = 1,2,...n of the matrix Y = X1
are the corresponding left eigenvectors. It has been shown by Wilkinson [12] that
the sensitivity of the eigenvalues A; to perturbations in the components of A B,
and K depends upon the magnitude of the condition number ¢; = 1/s;,

where:

s |
7= Mgl Tl =

s

In the case of multiple eigenvalues, a particular choice of eigenvector is as-

sumed. (For A; the sensitivity s;, is just the cosine of the angle between the right
and left eigenvectors corresponding to A;).

We also observe that a bound on the sensitivity of the eigenvalues is given by

Wilkinson [12], and is

max ¢; < w2(X) = || X[l X7,

17



where £2(X) is the condition number of the matrix X =[x1,x2,...... , Xn]
Bearing in mind what we have just discussed, we can now reformulate Problem
3.3 such that we have a robust pole assignment problem to solve. It can be stated

as follows:

Problem 3.4 [6] Given (A,B) and A (as in Problem 3.1) we need to find a
matriz K such that:

(A+ BRK)X = XA (3.4)
for some nonsingular X, where
A:diag()\l, )\27 ceeny )‘n);

such that some measure v of the conditioning, or robustness of the eigenproblem

is optimized.

We could take this measure v to be 11 = ||c||s where ¢' = [¢1,¢a, ..., ¢,] is the
vector of the condition numbers (ie. the condition number ¢; defined above)
corresponding to the selected matrix X of eigenvectors. Alternatively, we could
take the measure of robustness to be vy = k3(X), the condition number of the
matrix X. The measure vy then gives an upper bound on the measure vy, and
both attain their common minimum values simultaneously.

It would be a good idea to ask under what conditions a given nonsingular
matrix X can be assigned to the a system problem. The following theorem can

be used to demonstrate the conditions that are needed:

Theorem 3.5 [6]
Given A = diag(A1, A, ..., An) and X nonsingular, then there exists a solution
to Problem 3.4 if and only if

18



UY(AX — XA) =0, (3.5)

where

B = [Uy, Uy] ; (3.6)

with U = [Uy, Uy] orthogonal and Z is nonsingular. Then K is given explicitly by:
K =770, " (XAX™! — A). (3.7)

Proof: See ref [6]
The assumption that B is of full rank implies the existence of the decompo-

sition (3.6). From (3.4), K must satisfy

BK = XAX™' — A (3.8)

and pre-multiplication by U’ then gives the two equations

ZK = U (XAX™t — A) (3.9)
0=0U"(XAX" — A), (3.10)

from which (3.5) and (3.7) follow directly, since X is invertible from our condition
that X is nonsingular. O

We observe that the decomposition of B in (3.6) is in fact a QR decomposition
in which Z is an upper triangular matrix. Alternatively we could take the de-
composition to be the Singular Value Decomposition in which we have Z = ¥V,
where ¥ = diag(oy, 09, ...,0,) is a positive matrix and V' is orthogonal.

19



Now we have looked at some of the theory behind the assigning of eigenvalues

and eigenvectors, we present an algorithm that will do this.

3.3 Numerical Algorithm

We now consider the practical implementation of the theory discussed in the
previous section for the linear state feedback design. The following algorithm can
be found in [6]. The procedure consists of three basic steps :

oStep 1:

Compute the decomposition of matriz B by either using SVD or QR, to find the
matrices Uy, Uy and Z , and construct the orthonormal bases, comprised of the
columns of the matrices S, S’j} for the null space S; =N[U,"(A — \;I)] and its
complement Sj forh; e Ay =1,2,...,n.

Standard library software is available to compute the decomposition of B using
either SVD or QR. We see that QR is less expensive to compute than SVD but
doesn’t give as much information as SVD does about the system.

We consider two methods to find the orthonormal bases S; and S’j;

Case 1(SVD):

We determine the singular value decomposition of U;*(A — A; 1) in the form:
U (A= M) = Z[0,0)[8;, 5] (3.11)

Then the columns of 5; and S’j give the required orthonormal bases.
Case 2(QR):

We determine the QR decomposition of (U;'(A — )\j]))t partitioned as the

20



following:

, R;
(A= NI =15, 5] : (3.12)

0

Then §;, and S’j are the required matrices.
oStep 2:
Select vectors x5 =5; wy € S; with || xj||,=1 and set X=] X1,X2,.,Xn]

There are four basic methods which are used for this step namely Methods
0, land 2/3 which can be found in [6]. Each of the methods aims to mimimize
a different measure of the conditioning of matrix X, although two of them use
relatively simple measures. Each of these methods are based on an iteration where
we have an initial set of eigenvectors x5 € S; and X;=[X1,X2,Xj_1, .., Xj41, --, Xn)-
At each sweep of the iteration, the vector x;j is replaced by a new vector x; € S,
selected to improve the conditioning of X. A complete sweep has been made when
j has run from 1 to n. The iteration is then continued with the new matrix X
until it becomes well conditioned in some sense (ie the condition number of X
becomes unchanged for some tolerance). A more detailed description of these
methods are given elsewhere [6] and shall not be discussed any further in this
dissertation.
oStep 3:
Find the matric M=A+BK by solving MX=XA and compute K explicitly from
K=Z7U' (XAX~! — A)

The matrix M=XAX ! is constructed in Step 3 by solving the following equa-
tion X'M* = (XA)' for M* using direct LU decomposition or Gaussian Elimina-

tion methods.

21



oStep 4:
All of the above steps can be carried out using the system MATLAB [7]. This

system uses standard library routines from software packages such as LINPACK

and EISPACK.

3.4 Examples

In this section we look at some examples which have been collected from the
literature [6] for which the numerical procedures in the earlier sections have been
used. In two of the examples a linear state feedback control has been used.

Example 1: Chemical Reactor [6]

n=4m=>2
1.380  —0.0277 6.715 —5.676 0 0
—0.5814  —4.290 0 0.6750 5.679 0
A — B =
1.067 4.273 —6.654 5.893 1.136 —3.146
0.0480 4.273 1.343 —2.104 1.136 0

EIG(A)=(1.991, 6.351 x107%, —5.057, —8.6666)

This system can be seen to be unstable (ie. Re();) > 0) and a feedback
gain matrix is required to stabilize the system. We therefore assign the following
eigenvalues A=(—0.2, —0.5, —5.0566, —8.6659). If the procedure of Section 3.3
is carried out to find a state linear feedback control of the form u= Kx, we get

the following feedback gain matrix (using Method 2/3 in Step 2 [6]):

22



0.10277 —0.63333 —0.11872 0.14632

K=

0.83615 0.52704 —0.25775 0.54269

The conditioning of the results are given in the following table [6]:

(a) sol. after two sweeps (b) sol. at convergence
Method flell. #2X) llel, 150, | el #(X) liel, [IK]l, Sweeps
0 1.82 3.43 3.28 147 - - - - -
1 1.79 3.38 327 144 | 1.76 3.32  3.23  1.40 106
2/3 236 456 371 1.16 | 237 454 3.68 1.17 6

Table 3.1 Conditioning

The last column in the table is the number of sweeps needed for convergence.
From the table the magnitude of the gain matrix using Method 2/3 is | K||,=1.17
and the condition number of the matrix of eigenvectors is k(X )=4.54. The matrix

which has these assigned eigenvalues is:

1.38 —0.20770 6.715 —5.6760
0.0022062 —7.8867 —0.67420 1.5059
A+BK=
—1.4468 1.8955 —5.9780  4.3519
0.16474 3.5535 1.2081  —1.9378

The condition number of X is not too large so we conclude that we have fond
a well-conditioned solution. If Method 0, is used the best result is obtained after
one sweep; if Method one is used, then we have convergence within 106 sweeps
compared with 6 when Method 2/3 is used. Although Method 1 gives a better

condition number for X which is 3.32, we use a lot of sweeps to achieve this. The
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maximum condition number ||c||_ using method 2/3 is increased slightly as is
the magnitude of ||, of the gains.

We now go on and look at a different example which comes from the area of
aircraft control. We wish to move the eigenvalues such that they are all real.

Example 2: Aircraft control [6]

n=4m=
0 1 0 0 0 0 0
0.00014 —2.04 —-1.95 0.013 —5.33 0.0065 —0.27
A — B =
—0.00025 1 —1.32 —0.024 —0.16 —0.012 —0.25
—0.56 0 0.36 —0.28 0 0.11 0.086

EIG(A)=(-3.12 x107%, —2.46 x107", —1.68 & 1.351)

This time we assign the eigenvalues A=(—1, -2, -3, —4), and so we want all
the eigenvalues to be real. Again, if Method 2/3 is used, then we get a state
feedback matrix which has || K||=28.255 after two sweeps and has converged at
this point. With the other methods we get the same sort of results with the
condition number of K ranging from 25-30. The errors introduced are due to
rounding error . More details about this example can be found in [6].

In the examples we have illustrated the method of eigenstructure assignment.
In the next chapter we look at the method of singular value assignment. The
theory is discussed and then the numerical algorithm is stated to achieve this. In
all of the examples either the system given is unstable or we just wish to move

the eigenvalues to obtain different system behaviour.

24



Chapter 4

Singular Value Assignment

In this chapter we again consider the time invariant continuous dynamical system
of the form (2.1)-(2.2) with state feedback (3.1). The closed loop system takes
the form (3.2).

The closed loop matrix A + BK gives us the response of the system and
therefore we have to choose K to obtain the required behaviour. In this chapter we
are interested in assigning singular values which give the system certain properties
(i.e. to make the matrix A+ BK as well-conditioned as possible or, equivalently,
to make the distance to instability as large as possible). The method presented is
a numerically stable method. To obtain the feedback matrix we apply a method

which employs a number of orthogonal matrix decompositions.

4.1 Preliminary Theory

Again our system has to be completely controllable. The following theorem gives
us the basic tool and provides a ’canonical form ’ for our system, which can be

obtained in a numerically stable way. The theorem is a modification of the theory
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presented in [2].

Theorem 4.1 Let A € R, B € R"™™ and let rank(B)=m < n. Then there

exists orthogonal matrices Q, U,V such that:

2 0 0 0
QA U= A21 A22 0 QB V= ZB
0 0 0 0

where X1, Xp are [ X [ and m x m diagonal matrices respectively with positive

diagonal entries and Aay is a matriz with full column rank. The partitioning in

QAU and BV is conformable.

Proof. Let
. Yp
PBV=
0
be an SVD of the matrix B . Now let
0 ]n—m A
P= P
I, 0
Then we obtain
0 Ay
PBV= , PA=
ZB A2
with a compatible partitioning. Let
¥ 0
WAl le
0 0

be an SVD of A, where ¥ is an [ x [ diagonal matrix with positive entries. Then
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¥ 0

W 0
PAZy =1 0 0
0 I, A
An Ag

where [A217A22] is a compatible partitioning of A,Z;. Let Z; be an orthogonal

matrix which does a 'column compression’
Agy Zy=[A2,0]

on 12122, such that A,y has full column rank. This matrix could, for example, be
derived from an QR decomposition of 12132

Then from the above matrices we get the desired transformation as :

I 0 0 hIN 0 hIN 0 0
I, 0
0 0 I, 0 0 = | Ay Ay O
0 Z
0 I,y O Agr Ay 0 0 0
and
I 0 0 0
W 0
0 0 I, PBV= Y 0.
0 I,
0 I,_...;1 O 0

Theorem 4.2 [8] If the system pair (A, B) is completely controllable, then we

have the decompositions:

S0 0
QAU= QBV=

A21 [A227 0] ZB
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Proof
We know from the definitions given in Section 2.2 that we have:
controllability if and only if rk[A — A, B] =n V.

In particular when A=0, for the system to be completely controllable we need

U o0
rk[A, B] = rk[Q[A, B] | = rk[QAU, QBV] = n. Therefore we require

0 Vv

"kl Ay Ayp 0 | Sp | =m

which implies that we can only have a controllable system, if we haven’t got the
last row of zero’s, and hence we obtain our two decompositions. O.
Now [Ajys, 0] is a square matrix of dimension n—{xn—/{if the system is completely

controllable, and therefore:

> 0
QA+ BK)U = QAU + QBVV'KU= ,
Agr + ZBRH [Ag2,0] + ZBR’z

and we can assign a set of desired singular values by choosing [g':[lg’l ) [{'2]: VIKU

appropriately. In particular, we obtain:

X 0
Q(A4+BK)U= ,
0 X

where ¥y contains n-m fixed singular values and Y, contains m assigned singular

values, by taking

Ky = —Yp 1Ay

[%2 - ZB_I(ZQ - [AQQ,O]).
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We can then recover K from VA U*. So we have now found a K that will assign
the required singular values to our system. In all the numerical work described

here, orthogonal transformations are used to achieve the required K.

4.2 Numerical Algorithm

In this section a numerical algorithm is presented where we compute the decom-
positions of A and B and then find the feedback K which gives the system the

required singular values.

oStep 1:
, . Xg
Find orthogonal matrices P and V such that, PBV= , using the singular
0
value decomposition of B.
oStep 2:
0 ]n—m A Al A
Let P= and partition PPA= , compatibly with PPBV=
L, 0 As
0
Xg
oStep 3:
Find orthogonal matrices W and 7y such that
¥y 0
WA1Z1: 5 lediag(al,...,al),
0 0

where [ is the rank of Ay, by the singular value decomposition of Ay. Here the
singular values are ordered such that oy > o9 > ... > o7 > 0.

oStep 4:

Partition Ay 7, :[Azl,%im] compatibly with W Ay Z, and find an orthogonal matrix
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Zy such that AQQZQ:[AQQ,O] where Agg is of full rank. This is achieved by the

Q-R decomposition of Al,.

eStep 5:
Then let
I 0 0
W 0 ) I, 0
=10 0 I, PP, U=Z;
0 I, 0 Z,
0 ]n—l—m 0
eStep 6:

Now we have to choose our assigned singular values. We choose them to be such

that Yo=diag(o141, ..., 0,) where 01(X1) < 0j(X3) < o01(Xq),5=1+1,..,n
oStep T:
We now find the feedback matriz K such that A+BK has these assigned singular

values. Let K = [Ky, K,] where:

. .
Ky =—-Yp" Ay,

[%2 — ZB_I(ZQ — [AQQ,O])

and set K=VKU?.

4.3 Examples

Example 1

In this section we consider the following numerical example:

42 1.2 10
A=l 2 12 08 B=10 o0
1.2 0.8 0.5663 0 1
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Omaz(A)=5.462, 0., (A)=0.003108, ko(A)=1757.

The matrix A can been seen to be fairly ill conditioned. We therefore want
to design a K that will modify this system such that the matrix becomes well
conditioned. When the numerical algorithm of Section 4.2 is applied, we get the

state feedback matrix:

—2.5996 —3.2883 —2.7685

K =
—0.8547 —2.5265 1.1601
and
_ 1.4004 —1.2884 —1.5685_
A+BK= 2 1.2 0.8

0.34530 —1.7265 1.7265

Now the closed loop matrix A + BK has singular values oy = 09 = g3 = 2.466

and the matrix is well conditioned with condition number one.

Example 2
0 1 0 0 0 0 0
0.00014 —0.04 —1.95 0.013 —5.33 0.0065 —0.27
A — R B =
—0.00025 1 —1.32 —0.024 —0.16 —0.012 —0.25
—0.56 0 0.36 —0.28 0 0.11  0.086

Omaz(A)=2.463, 0, (A)=0.018, ko(A)=136.789.
Again when the numerical procedure is applied we get the state feedback

matrix :

0.1578 —0.2298 —0.2843 0.2045

K=11.059 —3.3687 0.8932 11.8373

—3.001 4.3088 —5.2886 —3.5991

31



and

0 1 0 0

—0.0239 0 0.9993 —0.0283
A+BK=

0.7121 0 0.0369 0.7010

—0.7015 0 0.0034 0.7125

The singular values of this closed loop matrix A + BK are then o) = 0, = 03 =
o4 = 1. Again this matrix is well conditioned with condition number equal to
one.

We now look at the distance to instability and how singular value assignment

can be used to widen the distance to instability.
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Chapter 5

Distance to Instability

It we consider a matrix A that is stable in the sense that all its eigenvalues lie
in the open left half plane, then the distance to instability is a measure of "how
stable’ matrix A is. In this chapter we describe a bisection method which enables
us to find this distance.

Suppose that A € C"*" has no eigenvalues on the imaginary axis. Let
U C €™ be the set of matrices with at least one eigenvalue on the imaginary

axis. The distance from A to U/ is defined to be:
B(A)= min [|E|[|A+ E e U]
BeCnxn

Theorem 5.1 [3]

B(A) = min(opmin(A — iwl)

wER

Proof See [3] for reference.
If matrix A is stable, let B be the closest unstable matrix to A (i.e. B is
unstable and minimizes ||A — C|| over all unstable C.) Then B has an eigenvalue

on the imaginary axis with the same imaginary part as some of the eigenvalues
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of A, then one may conclude that,
|A— Bl = Lnellr%l(amm(A —wl)).

where 0,,;,(A — twl) is the smallest singular value of A — wI (i.e. the distance
from A to B an unstable matrix). O.

So for any real w, an upper bound on 3(A) is
B(A) < opin(A — iwl)

In the next section we describe a bisection method which will enable us to

find this distance.

5.1 Bisection Method

It we are given ¢ > 0 and A € R"™", then we may define the 2n x 2n matrix

H=H(o) by:
A —ol,
H=H(o)= \
ol, —AH
where I, denotes the n by n identity matrix and A represents the complex

transpose.

The following theorem shows how the eigenvalues of H(o) distinguish the cases

o > B(A) from o < B(A).

Theorem 5.2 H(o) has an eigenvalue whose real part is zero if and only if o >

plA).
Proof Can be found in [3] O.
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Suppose that « is a lower bound and + is an upper bound on F(A). The
bounds can be improved by choosing a number o that lies between « and v and
checking to see if H(o) has any eigenvalue with a zero real part. The following
algorithm gives an estimate of the distance to instability, S(A) to within a factor
of ten. Also this algorithm uses the naive upper bound 3(A) < 1/2||A + AX||
found in [3].

Bisection Algorithm.

oStep 1:

Input: A € U™ and a tolerance 7 > 0
oStep 2:

Finding o and ~:

a=0, y=1/2|(A+ A")]|
WHILE ~ > 10MAX(r,a)

o=\/7TMAX(T,a)

IF H(o) has an eigenvalue with zero real part THEN ~ = 0 ELSE a = ¢

oStep 3

Output: o € R and v € R such that either v \ 10 < o < (A) < v or 0=«
< pB(A) <~ < 107,

With the choice of 7 = 1/2(107%||A + A¥]|), then at most we require three bisec-
tion steps.

Now we require to know the value of w which gives the smallest singular value,
as it 1s this that we are trying to maximise. There are two way of doing this:
either by plotting w against o,,;,(A — iwl) for some range of w or by simply
modifying the bisection algorithm.
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Modified Bisection Algorithm

oStep 1:

Input: A € O, ¢ and a tolerance 7 > 0.
oStep 2:

Finding o and ~:

a=0, y=1/2|(A+ A")]|
WHILE + > (MAX(7, )

o=\/YMAX(1, )

IF H(o) has an eigenvalue with zero real part THEN ~ = 0 ELSE a = ¢

oStep 3:
Finding w:
Take the singular value &=~
Calculate the eigenvalues of H(6) and find the eigenvalues A=twi which have
real part which is zero.
Calculate 0,,;,(A — iwl) for each w and take w for which ¢,,;,(A —iwl) = 6.
oStep 4:
Output: o € R and v € R such that either v \ ( < a < B(A) < v or 0=«
<BA) <~y <(r,andw and &

In the modified algorithm we again take the tolerance 7 to be as before, but
this time ( is taken to be less than 10 as we want the error on $(A) to be quite
small. Then our estimate of the minimum singular value will be as accurate as

possible, and our estimate of w will be close to the real value of w.
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5.2 Examples

In the examples to follow we use the modified bisection algorithm of Section 5.1
to calculate the distance to instability and then find the corresponding value of
w.

Example 1[10]

o o0 0 0 0 0 -6 =*

Note in this example *=—1x107°
The eigenvalues are —107°, —10, —107° & 27, —107° 4 44, and —107° £ 67 and
can be seen to be distinct.

From the modified algorithm we get a value of 0.29738124 x107° for 3(A)
with w =43.99 and (=1.00001. This is verified by plotting and can been seen in

Figure 5.1.
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Example 2[10]

—0.01 3 -1 —1
-5 —0.01 3 -1
A=
0 0 —0.01 3
0 0 -5 —0.01

Here we have the following eigenvalues —0.01 4+ 5¢ which can been seen to be
double defective.

From the modified algorithm we get w=44.9995 and a value of 0.3170150
x10~* for B(A) with (=1.00000001. Again this is verified by plotting and can
been seen in Figure 5.2.

The graphs of the minimum singular values against w shown in the Figures
5.1 and 5.2 were found by the program plotl.m in Appendix 1. The programs

were written using the package MATLAB.
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Finding Singular value
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Figure 5.1: Example 1

Finding Singular value
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min singular value

O 1 1 1
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omega

Figure 5.2: Example 2
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Chapter 6

Methods for Increasing the

Distance to Instability

In this chapter we look at some numerical examples where we have used two
different ways of achieving a state feedback namely singular value assignment and
robust eigenstructure assignment. In either case we are interested in increasing
the distance to instability. We state the numerical algorithm for increasing the
distance to instability by singular value assignment. Then we consider some
numerical examples were we have used this algorithm. We then look at some
examples were we have used the method of eigenstructure assignment to increase

the distance to instability and then make a comparison of the two methods.

6.1 Numerical Algorithm

The numerical algorithm for constructing a state feedback which increases the

distance to instability via singular assignment consists of two steps :
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oStep 1

Input: A, B,(,~,7,a, H(o).

oStep 2

In this step we calculate the minimum singular values and the corresponding w.
oStep 2.1:

First set o = \/’MT(T,@) and caleulate the eigenvalues A; of H(o). If any of
A; have Re(X;) > 0, then set v = o, else a = 0.

Repeat this until v < (MAX (7, a).

oStep 2.2:

Take 6 = ~ and calculate the eigenvalues of H(&). Store w; = Im(A;) of any
eigenvalues which have Re(X;) = 0.

oStep 2.3:

Caleulate A —iw; 1, and find 0, (A — 1w, l). If 6in(A —tw;l)=6 then w; = w
else repeat until such w; is found.

oStep 3

In this step we aim to find the state feedback K which increases the distance to
instability.

oStep 3.1

Calculate A = A — iwl with w found by the previous step. Find orthogonal

matrices ), U and V' such that:

> 0 0
QAU = . @BV = ;
A21 [A227 0] ZB

where ¥ € R [Ay, 0] € Rr-IXn=t,
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oStep 3.2

Choose singular values such that:

O'[(Zl) < O'Z'(ZQ) < 0'1(21),i = Z—I— 1, sy 1,

where Y9 = diag(oi41, ..., 0n).
oStep 3.3

Caleulate K from K = VKU where K = [12’1,[%2] and,

Ky ==Y Ay

Ky = S5 (5 — [A2,0])

eStep 3.4

Repeat step one with A+ BK where K is the state feedback just found, to find &4
and w1 .

Step 4

Output: K,61,w,w,6,A+ BK.

6.2 Singular Value Assignment

The following examples were computed using the MATLAB package. The pro-
grams are given in Appendix 1. In each example we apply the numerical algorithm

described in Section 6.1.

Example 1]6]
0 1 0 0 0 0 0
0.00014 —2.04 —1.95 0.013 —5.33 0.0065 —0.27
A — R B =
—0.00025 1 —1.32 —0.024 —0.16 —0.012 —-0.25
—0.56 0 0.36 —0.28 0 0.11 0.086
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When the algorithm of Section 6.1 is applied we get the state feedback:

0.15786
K =1 1.0597

—3.0017

—0.6184

—3.5707

4.5672

—0.2843

0.8932

—5.2887

0.2045

11.837

—3.59913

where the singular values of A+BK are 0, = 1,1 = 1,2, 3, 4.

The results are as follows:

i B(¥)

Aji(*)

A 0.010912

0 -0.031, -0.2473, —1.6809 £ 1.35042

A+ BK | 0.53813 | £

0.85 | —0.535 £ 0.84432,0.9106 £+ 0.4312:

Table 6.1 Example 1

As we can see from the Table 6.1 we have managed to increase our distance to

instability, but the eigenvalues have moved from eigenvalues which were stable to

eigenvalues that are unstable. We observe that ||K||=13.8512. Let see if we get

the same sort of results with another example.

Example 2[6]
0
—10.940
A=
—1.5163
—0.44748
B =

1 0 0 _
—6.4894 1.5838  0.023645
0.16176 ~ —0.51425 0.042692 |

—0.087530  0.20686  —2.9964 |
0 0 _

—0.172  0.0000745

—0.0238 —0.0000778
0 0.00369 |
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When the algorithm is applied we get the state feedback matrix:

—0.5785 —0.3689  0.085  0.001585
K =10% x
1.20939  0.29728 —0.6476 9.47286
where the singular values of A4+BK are o = 1.54989,0, = 1,03 = 0.5 and
oy = 0.466129.

The results for this example are:

§ B*) w Aj(¥)

A 0463111 | 0 —1, -2, =3, —1

A+BK | 1.265059 | £0.90 | 2.86922, -1.299946.47732: -3.3044

Table 6.2 Example 2

We see from Table 6.2 that we have increased the distance to instability but
again the eigenvalues have moved. In this example we find || K||=9.5767 x 10%. If
all we wanted was to maximise the distance to instability and were not worried
about the eigenvalues this, would be fine. Unfortunately we require the distance to
instability to be increased and our eigenvalues to remain stable. We now consider
A+ aBK, instead of A + BK, and find the value of a where the eigenvalues
change from a stable set to an unstable set. In the examples to follow we wish to

find this a. In all of the examples a € [0, 1].
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Example 3[6]

—3.6240  0.049567 —0.24564 —0.013853
N 0.33486  —1.8875 —0.81251 —0.28102
. —0.19958 —1.1335 —=2.2039 —0.45523
0.13784 —0.47140 —0.33229 —0.40605

_ 0.23122  0.88339 _

0.30761 0.21460

B =
0.36164 0.56642
0.33217 0.50153

where A + BK has the singular values oy = 3.367, 0 = 2.8,03 = 1.5 and 04 =

1.388172.

When the algorithm is applied we get the state feedback matrix:

—4.2039 2.06077 5.0511 5.2694

5.78910 0.90811 0.31872 0.0253

The results for this example are as follows:

45



The comments on these results will be discussed after we have considered another

example.

a | f(A+aBK) | w | eg(A+aBK) | cond(};)
0 1.04 0 -1.04 1.01
-3.62 1.01
-2.86 1.12
-4.29 1.02
0.3 1.09 0 -3.68 1.04
-1.68 1.12
-2.66 1.06
-1.13 1.15
0.6 0.23 0 0.23 1.001
-3.43 1.07
-2.01 1.59
-1.32 1.54
0.8 1.26 0 1.55 1
-3.35 1.07
—1.489 4+ 0.424 1.28
1 1.26 +0.6 2.8692 1
—1.299 £+ 0.647 1.05
-3.30 1.06

Table 6.3 Example 3
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Example 4[6]

1.38 —0.20770 6.715 —5.676 0 0
0.0022062 —7.8867 —0.67420 1.5059 5.679 0
A — R B =
—1.4468 1.8955 —5.9780  4.3519 1.136 —3.146
0.16474 3.5535 1.2081  —1.9378 1.136 0

We get the state feedback matrix,

0.6616 1.4225 0.7077  0.7158

21271 1.0166 —2.7255 0.93764
when the algorithm of Section 6.1 is applied. The closed loop matrix A + BK
has the singular values oy = 9.3212, 05 = 8.5,03 = 7.5 and o4 = 4.926141

The results are shown in the following table:
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a |pB(A+aBK) | w |eig(A+aBK) | cond();)
0 0.087 0 -5.06 2.35
-0.2 2.37
-8.66 1.08
-0.5 1.07
0.03 0.1875 0 -4.38 2.9454
-0.649 2.774
-0.298 1.387
-8.54 1.0820
0.08 0.005 0 -2.31 £0.6162 8.463
-8.344 1.072
0.006 1.206
0.3 1.29 0 —1.41+4.11: 1.43
-7.62 1.04
1.50 1.09
1 4.89 +1 | 1.725 £ 7.8542 1.040
-6.493 1.057
6.890 1.034

Table 6.4 Fxample 4

From the Tables and Figures 6.1-6.2, we see that there seems to be a general
trend. As we increase «, the distance to instability reaches an optimum where
the distance to instability has increased as well as the eigenvalues staying stable.
In Example 3 the optimum value is 0.3 and the eigenvalues become unstable at
0.6. In Example 4 we get an optimum value of 0.03 and the eigenvalues become
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unstable at 0.08. In all of the cases we notice that when the eigenvalues go from
a real pair to a complex pair the condition number increases and then decreases.
When our eigenvalues become unstable then our distance to instability decreases
to zero and increases soon afterwards. If a different set of assigned singular values
were assigned, as in the next example, we observed the same behaviour as in the
previous examples.

Example 5

In this example we take the system matrices A and B to be same as the ones in
Example 4 but this time our closed loop matrix A+ BK has singular values o =
9.3212,05 = 7.5,053 = 5 and o4 = 4.926141. Again from Figure 6.3 we observe
the same behaviour; that is, we reach an optimum value where the distance to
instability is increased and the eigenvalues remain stable. The optimum value
occurred at a = 0.042 and the eigenvalues became unstable at a = 0.15.

From the examples in this section we observed that if we assign singular values
to increase the distance to instability then we can’t guarantee that the eigenvalues
to remain stable. In all cases except Example 1 we could assign 2 singular values
and these were oy and o3 but in the case of Example 1 they were ;¢ = 2,3, 4.
We go on now and consider the distance to instability when we assign eigenvalues

using robust eigenstructure assignment.

6.3 Eigenstructure Assignment

The distance to instability was observed for some examples where we assign the

eigenvalues using the robust eigenstructure technique of Chapter 3.
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Example 6
The matrices A and B of Example 1 in Section 6.2 are used. The following
eigenvalues were assigned A = (=1, —2, -3, —4). When the algorithm of Chapter

3 is used we get the state feedback matrix using method 2/3:

0.79689  0.35594 —0.54029 —0.089527
K=| 59292 —3.1747 —6.0894 —26.640

—0.78300  3.9039 3.335 1.1934

The magnitude of the state feedback matrix is || K]|=28.255 We know from Ex-
ample 1 that the distance to instability of A is 0.010912 and that when we apply
the algorithm in Section 6.1 the distance to instability is increased.

The distance to instability of the closed loop matrix found by the method of
robust eigenstructure assignment is 0.620017 with w = 0. The optimum value for
Example 1 was 0.20064 with w = 0 and occurs at a« = 0.0015. By comparison
we have managed to increase the distance to instability and see that the method
of robust eigenstructure assignment gives a higher distance to instability than
the method of singular value assignment. The norm of K using the method of
robust eigenstructure assignment is higher than the norm of K when singular
value assignment is used. We now go on and look at another example.
Example 7
This example uses the system matrices A and B from Example 1 in Section
3.4 and the eigenvalues to be assigned are A = (—0.2, —0.5, —5.0566, —8.6659).
When the algorithm of Chapter 3 is used we get the state feedback matrix using

method 2/3:
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0.10277 —0.63333 —0.11872 0.14632
K=
0.83615  0.52704 —0.25775 0.54269
The magnitude of the state feedback matrix is | K ||=1.17.

The distance to the instability of the closed loop matrix found by the method
of robust eigenstructure assignment is 0.087 with w = 0. The optimum value
for this example when the numerical algorithm of Section 6.1 is used, was found
to be 2.75135 with w = 0 and occurs at @ = 0.6. Unfortunately the matrix
A+BK is unstable and so this distance is the distance to the imaginary axis.
The matrix A is also unstable and has a distance of 0.06 from the imaginary
axis, so we have managed to increase this distance but the eigenvalues remain
unstable. If the method of robust eigenstructure assignment is used we have
increased this distance as well as making our eigenvalues stable. In this case the
norm of K obtained using the algorithm in Section 6.1 is higher than using the
eigenstructure assignment method.

From the examples that we have observed we deduce that if our system is
already stable then the method of robust eigenstructure assignment gives a higher
distance to instability than what we get with the algorithm that assigns singular
values to increase the distance to instability. If the system is unstable then the
method of robust eigenstructure assignment give the best results as we can make
the eigenvalues stable and increase the distance to instability. We see that if
we use the method of robust eigenstructure assignment we can guarantee our

eigenvalues are stable and that the distance in increased.
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Figure 6.1: Example 3
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Figure 6.2: Example 4
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Figure 6.3: Example 5
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Conclusions

In this dissertation we have described an algorithm that aims to construct a
state feedback to maximize the distance to instability. The method is based on a
numerically stable approach. This method however turns out not to be a good one
if we want to increase the distance to instability as well as keeping the eigenvalues
stable. We see from the numerical results that in fact we have an optimum value
where the distance to instability is increased as well as the eigenvalues staying
stable, although this value tends to be lower than the distance observed by the
algorithm. Unfortunately there is no time in this dissertation to construct an
algorithm that will find the optimum state feedback and so opens up a new area
of research. If on the other hand we obtain this feedback by robust eigenstructure
assignment then we can guarantee that we have a stable set of eigenvalues and

have increased the distance to instability.

o4



Appendix 1

Programs in Matlab Notation

Throughout this dissertation the following programs were used to generate

the results. The programs were written using the MATLAB package [7].

Plotl.m

Eigplot.m

Byersl.m

Singl.m

)



Bibliography

1]

[6]

S. Barnett and R.G. Cameron. Introduction to Mathematical Control

Theory. Clarendon Press, Oxford, 1985.

A. Bunse-Gerstner, V. Mehrmann, and N.K. Nichols. Regularization of
descriptor systems by derivative and proportional state feedback.

Stam J. Matriz Anal and Applic, 13:46-67, 92.

R. Byers. A bisection method for measuring the distance of a stable
matrix to the unstable matrices. Siam J.Sci.Stat.Comput, 9:875-881,

1988.

M.M Fahmy and J. O’Reilly. On eigenstructure assignment in lin-
ear multivariate systems. I[FEFE Trans. Auto. Control, AC-25:1128-1133,

1930.

G.H Golub and C.F. Van Loan. Matrix Computations. The Johns Hop-

kins University Press, Baltimore,Maryland, 1989.

J. Kautsky, N.K.Nichols, and P.Van Dooren. Robust eigenstructure as-

signment in state feedback control. Int.J.Control, 41:1129-1155, 1985.

65



[7] C.B. Moler. MATLAB User’s Guide. The Mathwork,inc, Cocchituate

Place Natick,Mass.01760, 1992.

[8] N.K. Nichols. Private communications, August 1994. Department of

Mathematics.

[9] S. Slade. Robust partial pole assignment via output feedback. Phd

thesis, University of Reading, Dept of Mathematics, 1989.

[10] C.F. Van Loan. How near is a stable matrix to an unstable matrix.

Contemporary Mathematics, 47:465-477, 1985.

[11] A. Varga. A schur method for pole assignment. [EEFE Trans. Auto.

Control, AC-26:517-519, 1981.

[12] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University

Press, Oxford, 1965.

[13] W.M Wonham. Linear Multivariate Control: A Geometric Approach

.2nd Edition. New York Springer, 1979.

66



