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1VARIATIONAL APPROACH IN WEIGHTED SOBOLEV SPACES TO SCATTERING BYUNBOUNDED ROUGH SURFACESSIMON N. CHANDLER-WILDE† AND JOHANNES ELSCHNER‡Abstra
t. We 
onsider the problem of s
attering of time harmoni
 a
ousti
 waves by an unbounded sound soft surfa
ewhi
h is assumed to lie within a �nite distan
e of some plane. The paper is 
on
erned with the study of an equivalent variationalformulation of this problem set in a s
ale of weighted Sobolev spa
es. We prove well-posedness of this variational formulation inan energy spa
e with weights whi
h extends previous results in the unweighted setting (Chandler-Wilde & Monk, SIAM J MathAnal 37 (2005), 598-618) to more general inhomogeneous terms in the Helmholtz equation. In parti
ular, in the two-dimensional
ase, our approa
h 
overs the problem of plane wave in
iden
e, whereas in the 3D 
ase in
ident spheri
al and 
ylindri
al waves
an be treated. As a further appli
ation of our results we analyse a �nite se
tion type approximation, whereby the variationalproblem posed on an in�nite layer is approximated by a variational problem on a bounded region.1. Introdu
tion. This paper is 
on
erned with the analysis of problems of s
attering by unboundedsurfa
es, in parti
ular with what are termed rough surfa
e s
attering problems in the engineering literature.By the phrase rough surfa
e, we will denote throughout a surfa
e whi
h is a (usually non-lo
al) perturbationof an in�nite plane surfa
e su
h that the surfa
e lies within a �nite distan
e of the original plane. Roughsurfa
e s
attering problems in this sense arise frequently in appli
ations, for example in modeling a
ousti
 andele
tromagneti
 wave propagation over outdoor ground and sea surfa
es, and have been studied extensivelyin the physi
s and engineering literature from the points of view of developing e�e
tive numeri
al algorithmsor asymptoti
 or statisti
al approximation methods (see e.g. Ogilvy [30℄, Voronovi
h [39℄, Saillard & Sentena
[32℄, Warni
k & Chew [40℄, DeSanto [18℄, and Elfouhaily and Guerin [19℄).Despite this extensive pra
ti
al interest, relatively little mathemati
al analysis of these problems hasbeen 
arried out. In parti
ular, only in the last four years have the �rst results been obtained establishingwell-posedness for three-dimensional rough surfa
e s
attering problems, using integral equation methods (seeChandler-Wilde, Heinemeyer & Potthast [13, 14℄, Thomas [36℄) or variational formulations (see Chandler-Wilde, Monk & Thomas [11, 15℄, Thomas [36℄). The variational approa
h proposed in [11℄ for the soundsoft a
ousti
 problem leads to expli
it bounds on the solution in terms of the data and applies to a rathergeneral 
lass of non-smooth unbounded surfa
es. The approa
h in [11℄ is extended to more general a
ousti
s
attering problems in [36℄, in
luding problems of s
attering by impedan
e surfa
es and by inhomogeneouslayers (and see [15℄).In 
ontrast to the general 
ase of a non-lo
ally perturbed plane surfa
e, there is already a vast literatureon the variational approa
h applied to periodi
 di�ra
tive stru
tures (di�ra
tion gratings) or to lo
allyperturbed plane s
atterers; see, e.g., Kirs
h [25℄, Bonnet-Bendhia & Starling [6℄, Els
hner & S
hmidt [20℄,Bao & Dobson [5℄, Els
hner, Hinder, Penzel & S
hmidt [21℄, Ammari, Bao & Wood [1℄, and Els
hner &Yamamoto [22℄. The assumption made in all of these papers leads to a variational problem over a boundedregion, so that 
ompa
t imbedding arguments 
an be applied and the sesquilinear form that arises satis�es aGårding inequality whi
h simpli�es the mathemati
al arguments 
onsiderably 
ompared to the 
ases studiedin [11℄, [15℄ and [36℄.In this paper we will rigorously analyze time harmoni
 a
ousti
 s
attering, seeking to solve the Helmholtzequation with wave number k > 0,
∆u+ k2u = g ,in the perturbed half-plane or half-spa
e D ⊂ Rn, n = 2, 3. The s
attering surfa
e Γ := ∂D is assumed to liewithin a �nite distan
e of some plane; for example it may be the graph of an arbitrary bounded 
ontinuous
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fun
tion. While the methods we use and results we derive 
an be adapted to other boundary 
onditions, tokeep things spe
i�
 and to make use of earlier results [11, 15℄, we will restri
t our attention to the simplest
ase when a homogeneous Diri
hlet boundary 
ondition u = 0 holds on Γ. The problem formulation is
ompleted by a suitable radiation 
ondition, expressing that the wave s
attered by the surfa
e must radiateaway from the surfa
e.This paper is 
losest in its results to Chandler-Wilde & Monk [11℄, who studied the same Diri
hlets
attering problem. Following [11℄, we introdu
e an equivalent variational formulation of this problem setin an in�nite layer S0 of �nite thi
kness between the surfa
e Γ and some plane Γ0 lying above that surfa
eon whi
h the solution is required to satisfy a non-lo
al boundary 
ondition involving the exa
t Diri
hletto Neumann map T . This 
ondition is often used in a formal manner in the rough surfa
e s
atteringliterature (e.g. [18℄), that, above the rough surfa
e Γ and the support of g, the solution 
an be representedin integral form as a superposition of upward traveling and evanes
ent plane waves. This radiation 
onditionis equivalent to the upward propagating radiation 
ondition proposed for two-dimensional rough surfa
es
attering problems in [10℄, and has re
ently been analyzed 
arefully in the 2D 
ase by Arens and Hohage[4℄. Arens and Hohage also propose a further equivalent radiation 
ondition (a `pole 
ondition').In Se
tions 2 and 3 we formulate the boundary value problem and its variational formulation pre
isely,and give the details about our assumptions on D and about the radiation 
ondition we impose. Se
tion 3 isalso devoted to new 
ontinuity properties of the DtN map T in weighted Sobolev spa
es on Γ0.In Se
tion 4 we study the well-posedness of the variational formulation in an energy spa
e with weightswhi
h de
ay or in
rease polynomially as a fun
tion of radial distan
e within the layer S0. Our main result,Theorem 4.1, is to show, for a range of in
reasing and de
reasing weights, that the problem is well-posedin the weighted spa
e setting if and only if it is well-posed in the unweighted spa
e setting. This resultdepends on te
hni
al estimates of the 
ommutator of the DtN map T and the operation of multipli
ationby the weight fun
tion; see Theorem 3.1. Combining this result with previous results on well-posedness inthe unweighted setting for sound soft s
attering [11℄, we are able to show well-posedness in a weighted spa
esetting.In Se
tion 5, to illustrate the importan
e of these results, we make two appli
ations. First, in the two-dimensional 
ase, we prove existen
e of solution to the problem of plane wave s
attering by an unboundedsound soft surfa
e, extending previous results derived for the 
ase when the boundary is the graph of asu�
iently smooth fun
tion [17℄ to mu
h more general surfa
e pro�les. We note that, even in the well-studied 
ase when the boundary is periodi
 (is a di�ra
tion grating) the uniqueness result we obtain is asigni�
ant extension of the results known to date [22℄. We brie�y dis
uss why our methods do not extend tothe 
ase of plane wave in
iden
e in the three-dimensional 
ase (indeed, why this problem may not be well-posed), and apply our results to prove existen
e of solution to the three-dimensional problems of s
atteringof in
ident spheri
al and 
ylindri
al waves. In the se
ond appli
ation of our results we analyse approximationof the variational problem in the in�nite layer S0 by a variational problem in a bounded region (to whi
h�nite element methods 
an then be applied), this bounded region 
oin
iding with the original layer S0 insidea ball of radius R. We prove stability and 
onvergen
e of this approximation pro
edure and use our weightedspa
e results to prove error estimates as a fun
tion of R.The �nal Se
tion 6 is 
on
erned with the proof of our 
ru
ial 
ommutator estimates stated in Theorem3.1. Note that the DtN map T is a pseudodi�erental operator on Rn−1 with a non-smooth symbol, so thatthe standard 
al
ulus of pseudi�erential operators a
ting in weighted Sobolev spa
es (see, e.g., [31℄) is notsu�
ient to obtain the result.2. The Boundary Value Problem And Radiation Conditions. Let x = (x, xn) ∈ Rn (n = 2, 3)with x ∈ Rn−1, and let D ⊂ Rn be an unbounded domain su
h that, for some b < 0,
U0 ⊂ D ⊂ Ub , Ub := {x : xn > b} . (2.1)For h ∈ R, let Γh := {x : xn = h} and Sh := D\Uh. The variational problem will be posed on the openset S0 whi
h lies between the rough surfa
e Γ = ∂D and the plane (or line) Γ0. In addition to (2.1) we willassume that D satis�es the 
ondition that

x ∈ D ⇒ x + sen ∈ D , for all s > 0 , (2.2)2



where en denotes the unit ve
tor in dire
tion xn. Condition (2.2) is satis�ed if Γ is the graph of a 
ontinuousfun
tion, but also allows more general domains.We now introdu
e weighted L2 and Sobolev spa
es. For ̺ ∈ R, l ∈ N and a domain G ⊂ Rn, de�ne theHilbert spa
es
L2

̺(G) := (1 + x2)−̺/2L2(G) , H l
̺(G) := (1 + x2)−̺/2H l(G) ,equipped with the 
orresponding 
anoni
al norm and s
alar produ
t. The spa
e Vh,̺ is then de�ned, for

h ≥ 0, as the 
losure of {u|Sh
: u ∈ C∞

0 (D)} in the norm
‖u‖Vh,̺

= ‖u‖H1
̺(Sh) =

(
∫

Sh

(

∣

∣(1 + x2)̺/2u
∣

∣

2
+
∣

∣∇((1 + x2)̺/2u)|2
)

dx

)1/2

. (2.3)We set V0,̺ = V̺ in the following, whi
h is the energy spa
e for our variational problem. Moreover, weintrodu
e
Hs

̺(Γh) := (1 + x2)−̺/2Hs(Γh) , s, ̺ ∈ R ,where Hs(Γh) is identi�ed with the Sobolev spa
e Hs(Rn−1) with norm
‖v‖Hs(Rn−1) =

(
∫

Rn−1

(1 + ξ2)s|Fv|2dξ
)1/2

.Here Fv denotes the Fourier transform of v de�ned by
Fv(ξ) = (2π)−(n−1)/2

∫

Rn−1

exp(−ix · ξ)v(x) dx , ξ ∈ R
n−1 ,with the inverse transform given by

F−1w(x) = (2π)−(n−1)/2

∫

Rn−1

exp(ix · ξ)w(ξ) dξ , x ∈ R
n−1 .Note that F is an isometry of L2(Rn−1) onto itself and also an isometry of L2

̺(R
n−1) onto H̺(Rn−1) sin
e

‖Fu‖2
H̺ =

∫

Rn−1

(1 + x2)̺|F 2u|2dx =

∫

Rn−1

(1 + x2)̺|u|2dx , u ∈ C∞
0 (Rn−1) .More generally, F is an isomorphism of Hs

̺(Rn−1) onto H̺
s (Rn−1) for all s, ̺ ∈ R; see [31℄ and [38℄. Fromtime to time we will make use of the following lemma.Lemma 2.1. Suppose h ≥ 0 and ̺ ∈ R. For u ∈ Vh,̺ let

‖u‖′ :=

(
∫

Sh

(1 + x2)̺

(

∣

∣u
∣

∣

2
+
∣

∣∇u|2
)

dx

)1/2

.Then ‖ · ‖′ is a norm on Vh,̺ that is equivalent to the norm ‖ · ‖Vh,̺
; pre
isely, for some 
onstants C1 and

C2 depending only on ̺, ‖u‖Vh,̺
≤ C1‖u‖′ ≤ C2‖u‖Vh,̺

, for all u ∈ Vh,̺, and all h ≥ 0.We now state our boundary value problem, formulated in a weighted spa
e setting. As indi
ated in theintrodu
tion, it is the study of this problem in weighted spa
es, and appli
ation of the new results this givesrise to, whi
h is the obje
t of this paper. Indeed a main result of this paper will be to show that solvabilityof this boundary value problem in weighted spa
es, for the range of ̺ indi
ated, is a 
onsequen
e of itssolvability without weights, i.e. for the 
ase ̺ = 0. (And this is useful sin
e solvability for the simpler 
asewithout weights is already established in [11℄.) After stating the boundary value problem we will 
ommentin the remainder of this se
tion on how the radiation 
ondition is to be understood, in parti
ular when ̺ < 0.We will also 
omment on the restri
tion on the range of ̺ (|̺| < 1) in the statement of the boundary valueproblem, explaining why this range is natural and sharp. Pre
isely, we will point out that the radiation3




ondition (2.4) does not make sense for all u ∈ H
1/2
̺ when ̺ ≤ −1, and will show that the boundary valueproblem is not, in general, solvable for ̺ ≥ 1.The boundary value problem (BVP). Given g ∈ L2

̺(D), with |̺| < 1 and supp g ⊂ S̄0, �nd u ∈ H1
loc(D)su
h that u|Sh

∈ Vh,̺ for every h > 0,
(∆ + k2)u = g in D ,in a distributional sense, and the following radiation 
ondition is satis�ed:

u(x) = F−1 exp
(

−xn

√

ξ2 − k2
)

Fu0(ξ)

= (2π)−(n−1)/2

∫

Rn−1

exp
(

−xn

√

ξ2 − k2 + ix · ξ
)

Fu0(ξ) dξ , x ∈ U0 , (2.4)where u0 = u|Γ0 ∈ H
1/2
̺ (Γ0) (from the tra
e theorem) and √ξ2 − k2 = −i

√

k2 − ξ2 when |ξ| < k.We explain in this paragraph and the next in what sense (2.4) is to be understood and why in theabove formulation we restri
t ̺ to the range ̺ > −1 (the restri
tion to ̺ < 1 is explained at the end of thisse
tion). For ̺ ≥ 0 the integral (2.4) exists in the ordinary Lebesgue sense sin
e Fu0 ∈ L2(Rn−1). Further,for u0 ∈ L2(Γ0), the radiation 
ondition (2.4) 
an be written in the alternative form
u(x) = 2

∫

Γ0

∂Φ(x, y)

∂yn
u(y) ds(y) = 2

∫

Rn−1

∂Φ(x, y)

∂yn
u0(y) dy , x ∈ U0 , (2.5)where the fundamental solution Φ of the Helmholtz equation is given by

Φ(x, y) :=















1

4π

exp(ik|x − y|)
|x − y| if n = 3

i

4
H

(1)
0 (k|x − y|) if n = 2 ,for x = (x, xn), y = (y, yn) ∈ Rn, x 6= y. Here H(1)

0 is the Hankel fun
tion of the �rst kind of order zero. Inthe 
ase n = 2, (2.5) is just the upward propagating radiation 
ondition (UPRC) proposed in [10℄, and werefer to [7, Chap. 5.1.1℄ for n = 3. For further dis
ussion of the rationale for the radiation 
ondition (2.4)and its relationship to other proposed radiation 
onditions for rough surfa
e s
attering we refer the readerto [11℄.For ̺ < 0 we understand (2.4) by extending the mapping u0 7→ u(x), given by (2.4), to a bounded linearfun
tional on H1/2
̺ (Γ0). The restri
tion ̺ > −1 arises pre
isely be
ause this extension is possible only forthe range ̺ > −1. To see this we observe that, sin
e F is an isomorphism from H

1/2
̺ (Rn−1) to H̺

1/2(R
n−1),the mapping u0 7→ u(x) given by (2.4) extends to a bounded linear fun
tional on H1/2

̺ (Γ0) for ̺ < 0 if andonly if fx ∈ H−̺
−1/2(R

n−1), where fx(ξ) := exp
(

−xn

√

ξ2 − k2 + ix · ξ
). But this holds pre
isely for ̺ > −1;in fa
t (this 
an be dedu
ed from (2.5) and Parseval's theorem) the Fourier transform of fx is given by

Ffx(y) = 2(2π)(n−1)/2 ∂Φ(x, y)

∂yn

∣

∣

yn=0
,and straightforward expli
it 
al
ulations (see [10℄ for the 
ase n = 2) yield that

|Ffx(y)| ∼ cnxn|y|−(1+n)/2 (2.6)as |y| → ∞, where the 
onstant cn depends only on k and on the dimension n. From this one dedu
es that
Ffx ∈ H

−1/2
−̺ (Rn−1), so that fx ∈ H−̺

−1/2(R
n−1), if and only if ̺ > −1. For ̺ > −1 the extension of themapping u0 7→ u(x), given by (2.4), to a bounded linear fun
tional on H1/2

̺ (Γ0) is given expli
itly by (2.5),the asymptoti
s (2.6) guaranteeing the existen
e of the integral (2.5). Thus (2.5) makes expli
it the meaningof (2.4) in the 
ase −1 < ̺ < 0. 4



Remark 2.2. We note (and this is important in our later appli
ations) that there is a degree of arbi-trariness in our radiation 
onditions (2.4) and (2.5). By this we mean that one 
ould repla
e xn in (2.4) by
xn − c, for any c > 0 (in fa
t for any c ∈ R su
h that supp g ⊂ S̄c and Uc ⊂ D); the 
orresponding 
hangeto (2.5) would be to repla
e Γ0 by Γc. We will show in Theorem 4.1 below that the boundary value problemis uniquely solvable. Clearly (by a simple shift in the verti
al dire
tion of the axes), one 
an dedu
e fromthis that the above boundary value problem with xn repla
ed by xn − c in (2.4) is also uniquely solvable. Wereassure the reader that these unique solutions are the same! This is demonstrated for the 
ase ̺ = 0 in [11℄and this result, together with the density of L2(S0) in L2

̺(S0) for ̺ < 0 and the stability results proved inTheorem 4.1, implies that the solutions are the same also for |̺| < 1.We have explained above the restri
tion to ̺ > −1 in the boundary value problem formulation. We makethe restri
tion ̺ < 1 be
ause we 
annot, in general, expe
t the boundary value problem to be solvable for
̺ ≥ 1 (with the solution satisfying that u|Sh

∈ Vh,̺ for every h > 0). To see this we 
onsider the instru
tive
ase where D is a half-plane or half-spa
e, i.e. D = Uc, for some c ∈ (b, 0). Moreover, let us 
onsider the
ase when g is 
ompa
tly supported in a ball 
entred on some point z ∈ S0 of radius ǫ > 0 su�
iently smallso that the ball lies in S̄0, and further let us assume that g(x) ≡ 1 inside the ball.We have remarked already that it is shown in [11℄ that the boundary value problem is uniquely solvablewhen ̺ = 0. For the spe
i�
 
ase we are 
onsidering the unique solution to this boundary value problem 
anbe written down very expli
itly. Let Gc(x, y) denote the Diri
hlet Green's fun
tion for Uc, given by
Gc(x, y) := Φ(x, y) − Φ(x, y′

c),where y′
c denotes the image of the point y in the plane yn = c. Then the solution to the boundary valueproblem is

u(x) =

{

k−2(1 +Af(k|x − z|)), |x − z| ≤ ǫ,
Ck−2Gc(x, z), |x − z| > ǫ,

(2.7)where the fun
tion f is de�ned by
f(r) :=

{

J0(r), n = 2,
sin r

r
, n = 3,

J0 is the Bessel fun
tion of the �rst kind of order zero, and the 
onstants A and C are 
hosen to ensure C1
ontinuity of u a
ross the boundary of the ball; for example, in 3D,
A = Q−1(iκ− 1) and C = 4πQ−1 exp(−iκ)(κ cos(κ) − 1),where Q = κ cos(κ) − 1 + sin(κ)(1 − iκ) and κ = kǫ. It is easy to 
he
k that this expression does satisfy

∆u+ k2u = g in D = Uc, and that u|Sh
∈ Vh,̺, for all h > 0, if ρ = 0 (indeed for all ̺ < 1) follows from theasymptoti
s (2.8) below. To see that u, given by (2.7), does satisfy the boundary value problem it remainsto 
he
k that u satis�es the radiation 
ondition; to do this one 
an show that u satis�es the form (2.5) ofthe radiation 
ondition by appli
ations of Green's theorem to G0(x, ·) and u in U0.A �rst observation is that this example demonstrates that, if g is 
hosen 
arefully enough, then theabove boundary value problem is solvable for all ̺ ∈ R. For 
ertainly it is true in this example that g, being
ompa
tly supported, satis�es g ∈ L2

̺(D) for all ̺ ∈ R and, if ǫ is 
hosen so that C = 0, then u is also
ompa
tly supported and so u|Sh
∈ Vh,̺, for all h > 0 and ̺ ∈ R. But the example, slightly more subtly,also illustrates that, in general, even if g is 
ompa
tly supported and so satis�es g ∈ L2

̺(D) for all ̺ > 0, one
annot expe
t that u|Sh
∈ Vh,̺ for any h > 0 and ̺ ≥ 1, sin
e u|S0 6∈ V0,̺ for ̺ = 1 if C 6= 0. To see thatthis is true it is enough to examine the asymptoti
s of G(x, z) as x → ∞ in S0. From [12, equation (4.2)℄ inthe 2D 
ase, and by simple dire
t 
al
ulations in the 3D 
ase, we see that (
f. (2.6))

|G(x, z)| ∼ c′nk
4−n(xn − c)(zn − c)(k|x|)−(1+n)/2, as |x| → ∞, (2.8)uniformly in x ∈ S0, for some 
onstant c′n > 0 depending only on n. From these asymptoti
s it is an easy
al
ulation to see that u|S0 ∈ L2

̺(S0) for ̺ < 1 but not for ̺ = 1, so that u|S0 6∈ V0,1. This example explainswhy the boundary value problem is not, in general, solvable in the 
ase ̺ ≥ 1.5



3. The Diri
hlet to Neumann Map and Variational Formulation. We now 
onsider a variationalformulation in weighted Sobolev spa
es of the above boundary value problem, whi
h involves the Diri
hlet-to-Neumann operator on the arti�
al boundary Γ0. As in [11℄ for ̺ = 0, there exist 
ontinuous tra
eoperators
γ− : V̺ → H1/2

̺ (Γ0) , γ+ : H1
̺(U0\Ūh) → H1/2

̺ (Γ0) , h > 0 .Moreover, if u0 ∈ C∞
0 (Γ0) and u is given by (2.4), then

∂u

∂xn

∣

∣

∣

Γ0

= −Tγ+u ,where the Diri
hlet-to-Neumann map T is given by the pseudodi�erential operator
Tv(x) := F−1t(ξ)Fv(ξ) , t(ξ) :=

√

ξ2 − k2 . (3.1)Note that the symbol t of T is not smooth whi
h makes the study of (3.1) in weighted Sobolev spa
es more
ompli
ated than in the 
ase ̺ = 0 (whi
h was treated in [11℄). The following 
ommutator estimate is 
ru
ialfor our analysis and its proof is 
arried out in Se
tion 6.Theorem 3.1. Consider the 
ommutator
C := T − (a2 + x2)̺/2T (a2 + x2)−̺/2· (3.2)with parameter a > 0. Then, for ka ≥ 1 and |̺| < 1, the norm of C on L2(Rn−1) is bounded by c(̺)√k/a.Here and in the following c(̺) denotes a positive 
onstant whi
h only depends on ̺. We remark (
f. the
omments at the end of se
tion 2) that the range |̺| < 1 in this theorem is optimal, i.e. this result does nothold for ̺ = ±1. This follows in part from the duality exhibited between positive and negative values of ̺in the proof of Theorem 4.1 in se
tion 6 below, whi
h shows that the statement in this theorem holds for

̺ = −1 i� it holds for ̺ = 1. Further, if the above theorem were to hold for ρ = 1 then the proof of Theorem4.1 below would extend to the 
ase ρ = 1, whi
h would 
ontradi
t the example of a solution of the boundaryvalue problem with g ∈ L2
1(D) but u0 6∈ V0,1 at the end of se
tion 2.Sometimes the following weaker version of Theorem 3.1 is su�
ient, the proof of whi
h is analogous butsimpler.Lemma 3.2. For �xed k > 0 and a = 1, the norm of (3.2) on L2(Rn−1) is bounded by some 
onstant

c(̺) for |̺| < 1.The following lemma des
ribes the 
ontinuity properties of T .Lemma 3.3. (i) For any s ∈ R, T : Hs(Rn−1) → Hs−1(Rn−1) is bounded.(ii) For |̺| < 1, 0 ≤ s ≤ 1, T : Hs
̺(Rn−1) → Hs−1

̺ (Rn−1) is bounded.Proof. (i) follows by taking Fourier transform and using the estimate |t(ξ)| ≤ c(1 + ξ2)1/2 on Rn−1; see also[11℄. To prove (ii) for ̺ 6= 0, we apply the 
ommutator estimate of Lemma 3.2 to get the 
ontinuity
C̃ := (1 + x2)−̺/2T − T (1 + x2)−̺/2· : L2(Rn−1) → L2

̺(R
n−1) ,and by the 
ontinuous imbeddings Hs

̺ ⊂ L2
̺ ⊂ Hs−1

̺ , the operator C̃ : Hs(Rn−1) → Hs−1
̺ (Rn−1) is bounded.Moreover, by (i), (1 + x2)−̺/2T : Hs(Rn−1) → Hs−1

̺ (Rn−1) is bounded, so that T (1 + x2)−̺/2· is boundedthere, too. This implies the result. �To state the variational formulation of (BVP), we use the notation
(u, v) :=

∫

S0

uv̄ dx,and de�ne the 
ontinuous sesquilinear form B : V̺ × V−̺ → C by
B(u, v) := (∇u,∇v) − k2(u, v) +

∫

Γ0

γ−v̄ T γ−u ds(x) . (3.3)6



Note that this sesquilinear form is well-de�ned and 
ontinuous on V̺ × V−̺ for |̺| < 1 as a 
onsequen
e ofLemma 3.3 with s = 1/2.The variational formulation (V). Given g ∈ L2
̺(S0), |̺| < 1, �nd u ∈ V̺ su
h that

B(u, v) = −(g, v) , ∀v ∈ V−̺ . (3.4)As in [11℄, the equivalen
e of (BVP) and (V) follows from the following weighted version of Lemma 3.2in that paper.Lemma 3.4. Let |̺| < 1.(i) If (2.4) holds with u0 ∈ H
1/2
̺ (Γ0), then u ∈ H1

̺(U0\Ūh) for every h > 0.(ii) Furthermore, we have (∆ + k2)u = 0 in U0, γ+u = u0, and
∫

Γ0

v̄ T γ+u dx+ k2

∫

U0

uv̄ dx −
∫

U0

∇u · ∇v̄ dx = 0 ∀v ∈ C∞
0 (D) .As in [11℄ (for ̺ = 0), assertion (ii) is a 
onsequen
e of (i). We will prove Lemma 3.4 (i) in Se
tion 6applying our 
ommutator estimates. Following [11℄, Lemma 3.4 then impliesLemma 3.5. If u is a solution of (BVP), then u|S0 satis�es the variational problem (V). Conversely,let w be a solution of (V). If we set u = w in S0 and de�ne u in U0 to be the right-hand side of (2.4) with

u0 = γ−w, and extend the de�nition of g to D by setting g = 0 in U0, then u is a solution of (BVP).Remark 3.6. We note that the equivalen
e of (BVP) and (V) stated in Lemma 3.5 holds whenever(2.1) holds. In parti
ular, the proof is not dependent on (2.2). Further, we note that there is no requirementthat Γ0 ⊂ S0; it may be the 
ase, for example, that S0 is a bounded open set, whi
h need not ne
essarily be
onne
ted. In the 
ase that Γ0 6⊂ S0, the a
tion of the tra
e operator γ− on V̺ in (3.3) should be understoodby extending the de�nition of the fun
tions in V̺ by zero to the whole of the strip Ub \ Ū0, from S0 whi
h istheir initial domain of de�nition. This implies that, for u ∈ V̺, γ−u = 0 on Γ0 \ S0.4. Existen
e and uniqueness results in weighted spa
es. We shall establish that the boundaryvalue problem (BVP) and the equivalent variational problem (V) are uniquely solvable by using the result of[11, Thm. 4.1℄ in the non-weighted 
ase and a perturbation argument based on the 
ommutator estimates.By Lemma 3.3 (ii) the form (3.3) generates a 
ontinuous linear operator B̺ : V̺ → V ∗
−̺, where V ∗

−̺ is thedual of V−̺ (the spa
e of 
ontinous anti-linear fun
tionals on V−̺) with respe
t to the s
alar produ
t (·, ·)in L2(S0).Theorem 4.1. Under the assumptions (2.1), (2.2) and |̺| < 1, the operator B̺ is invertible. Inparti
ular, (V) and hen
e (BVP) have a unique solution for all g ∈ L2
̺(S0).For ̺ = 0, this was proved in [11, Thm. 4.1℄, using a Relli
h identity and the generalized Lax-Milgramtheorem. Moreover, an expli
it bound for the norm of B−1

0 in terms of k and |b| was given there (using wavenumber dependent Sobolev norms on S0 and Γ0; see Remark 4.2 below). A signi�
ant idea in the proof ofthis theorem for the 
ase ̺ 6= 0 is the use of a perturbation argument, redu
ing the proof of invertibilityfor ̺ 6= 0 to that for ̺ = 0. This idea has been used previously to study rough surfa
e s
attering in 2D(n = 2) in weighted spa
es of 
ontinuous fun
tions via integral equation methods in [2, 3℄. A 
ommutatorresult for boundary integral operators (
f. Theorem 4.1) plays in [2℄ an important role, but the idea thereis to prove that the 
ommutator is 
ompa
t, or at least preserves Fredholmness, rather than to show thestronger and more 
onstru
tive result that the 
ommutator is su�
iently small in norm. (And it shouldbe noted that the proof of properties of the 
ommutator in [2℄ is very mu
h more straightforward than theproof of Theorem 3.1, not least be
ause the kernels of the boundary integral operators in [2℄ are absolutelyintegrable.) A key ingredient in our 
ommutator estimate, Theorem 3.1, is the parameter a in the weightfa
tor. We note that the idea of introdu
ing su
h a parameter into 
ommutator estimates goes ba
k at leastto Shubin [33, Theorem 5.3℄, though we seem to be the �rst to use this idea in an estimate of the 
ommutatorof a 
onvolution operator with multipli
ation by a weight fun
tion in the 
ase when the 
onvolution operatorhas a non-smooth symbol. 7



Proof for ̺ 6= 0. Introdu
e equivalent norms ‖u‖L2
̺

= ‖(a2 + x2)̺/2u‖L2 with parameter a > 0 and modifythe norm (2.3) in V̺ 
orrespondingly. We will 
hoose a > 0 su�
iently large, and set, for u ∈ V̺, ϕ ∈ V−̺,
v = (a2 + x2)̺/2u ∈ V0 , ψ = (a2 + x2)−̺/2ϕ ∈ V0 .Then we obtain from (3.3)

B(u, ϕ) = B(v, ψ) +K(v, ψ) , (4.1)where K = K1 +K2 with
K1(v, ψ) = (∇(a2 + x2)−̺/2v,∇(a2 + x2)̺/2ψ) − (∇v,∇ψ)

= (v∇(a2 + x2)−̺/2, ψ∇(a2 + x2)̺/2 + (∇v, ψ(a2 + x2)−̺/2∇(a2 + x2)̺/2)

+ (v(a2 + x2)̺/2∇(a2 + x2)−̺/2,∇ψ)

(4.2)and
K2(v, ψ) =

∫

Γ0

{

(a2 + x2)̺/2ψ̄ T (a2 + x2)−̺/2v − ψ̄ T v
}

dx = −
∫

Γ0

ψ̄ Cv dx (4.3)with C de�ned in (3.2). For (4.2) we obtain the estimate
|K1(v, ψ)| ≤

( |̺|
2a

)2

‖v‖L2(S0)‖ψ‖L2(S0) +

( |̺|
2a

)

(

‖∇v‖L2(S0)‖ψ‖L2(S0)

+ ‖v‖L2(S0)‖∇ψ‖L2(S0)

)

≤ |̺|
2a

max

(

1,
|̺|
2a

)

‖v‖V0‖ψ‖V0 .

(4.4)Note that
sup
S0

∣

∣∇(a2 + x2)|̺|/2
∣

∣(a2 + x2)−|̺|/2 ≤ |̺|/2aand 
ompare [15, Se
. 4℄.Applying Theorem 3.1 to (4.3), we get
|K2(v, ψ)| ≤ c(̺)

√

k/a ‖γ−v‖L2(Γ0) ‖γ−ψ‖L2(Γ0) , (4.5)and sin
e ‖γ−v‖L2(Γ0) ≤ ‖γ−v‖H1/2(Γ0) ≤ c‖v‖V0 , (4.4) and (4.5) then imply that the norm of the operator
K0 : V0 → V ∗

0 generated by the form K tends to zero as a→ ∞. Finally, from (4.1) we have
B̺ = (a2 + x2)−̺/2(B0 + K0)(a

2 + x2)̺/2 · . (4.6)Sin
e B0 is invertible, this operator is invertible provided that a is su�
iently large. �Remark 4.2. Introdu
ing norms dependent on the wave number k and/or the parameter a > 0, de�nedby
|||v|||H1/2(Γ0) =

(
∫

Rn−1

(k2 + ξ2)|Fv|2 dξ
)1/2

,

|||u|||V̺ =

(
∫

S0

(

k2|(a2 + x2)̺/2u|2 + |∇
(

(a2 + x2)̺/2u
)

|2) dx
)1/2

,

|||g|||L2
̺(Sh) =

(
∫

Sh

(

|(a2 + x2)̺/2g|2 dx
)1/2on H1/2(Γ0), V̺, and L2

̺(Sh), respe
tively, we 
an obtain a bound of the norm ‖B−1
̺ ‖ of B−1

̺ : V ∗
−̺ → V̺ interms of κ = k|b|, provided that the parameter a > 0 is 
hosen su�
iently large. From (4.4) we see that

|K1(v, ψ)| ≤ |̺|
2ka

(

1 +
|̺|
2ka

)

|||v|||V0|||ψ|||V0 ,8



and sin
e (
f. [11℄)
‖γ−v‖L2(Γ0) ≤ k−1/2|||γ−v|||H1/2(Γ0) ≤ k−1/2|||v|||V0 ,(4.5) implies that

|K2(v, ψ)| ≤ c(̺)√
ka

|||v|||V0|||ψ|||V0 .Thus we have, for ka ≥ 1 and |̺| < 1,
|K0(v, ψ)| ≤

( |̺|
2ka

(

1 +
|̺|
2ka

)

+
c(̺)√
ka

)

|||v|||V0|||ψ|||V0 ≤ |̺| + c(̺)√
ka

|||v|||V0|||ψ|||V0 ,so that ‖K0‖ ≤ (|̺| + c(̺))/
√
ka. Taking the bound

‖B−1
0 ‖ ≤ γ := 1 +

√
2κ(κ+ 1)2from [11, Thm. 4.1℄ and using (4.6), we obtain the norm estimate

‖B−1
̺ ‖ ≤ 2γ, (4.7)provided that

‖K0‖ ≤ (|̺| + c(̺))/
√
ka ≤ 1

2γ
≤ 1

2
‖B−1

0 ‖,whi
h holds for a ≥ 4γ2(|̺| + c(̺))2/k. Sin
e (V) written in operator form is the equation B̺u = g̃, where
g̃ ∈ V ∗

−̺ is de�ned by g̃(v) = (g, v), v ∈ V−̺, this implies that the solution u of (V) satis�es
|||u|||V̺ ≤ 2γ|||g̃|||V ∗

−̺
≤ 2γk−1|||g|||L2

̺(S0), (4.8)provided ka ≥ max(1, 4γ2(|̺| + c(̺))2).5. Appli
ations.5.1. Plane Wave In
iden
e, Di�ra
tion Gratings, and Other S
attering Problems. As anappli
ation of Theorem 4.1, the problem of plane wave in
iden
e in the 2D 
ase (n = 2) 
an be treated.That is, it 
an be shown, in appropriate fun
tion spa
es, that the s
attering problem for plane wave in
iden
ehas exa
tly one solution in 2D (for a brief dis
ussion of what goes wrong in the 3D 
ase, see Remark 5.5below, and see Remark 5.6 for details of 3D s
attering problems whi
h 
an be ta
kled by Theorem 4.1). Thein
ident plane wave has the form
vin(x) = exp(ik[sin θ x1 − cos θ x2]) ,where θ is the angle of in
iden
e, with |θ| < π/2. In this problem we look for the total �eld v = vsc + vin,

vsc being the unknown s
attered �eld, su
h that
(∆ + k2)v = 0 in D , v = 0 on Γ , (5.1)and vsc satis�es an appropriate radiation 
ondition.This 2D rough surfa
e s
attering problem with plane wave in
iden
e has been treated before, by integralequation methods, in [17℄ where it is shown that there exists exa
tly one solution v ∈ C2(D) ∩ C(D̄) su
hthat v is bounded in Sh, for every h > 0, and vsc satis�es the radiation 
ondition in the form (2.5) (termedthe upwards propagating radiation 
ondition (UPRC) in [17℄). However, the proof in [17℄ is only for the 
asewhere ∂D is the graph of a su�
iently smooth (C1,1) fun
tion (this, or at least a restri
tion to Lyapunovsurfa
es, is an essential restri
tion due to the 
ompa
tness arguments in the existen
e proofs in [17℄). In9



this se
tion we will establish unique existen
e of solution for mu
h more general surfa
es, with only the
onstraints (2.1) and (2.2) on ∂D that we impose throughout the paper.To use the results of the previous se
tion whi
h are formulated in a Sobolev spa
e setting, in
luding theresults of Remark 4.2 whi
h are formulated in terms of wave number dependent norms, we will repla
e theassumption that v is bounded in Sh by an assumption that v|Sh
∈ V∞

h , for all h > 0, where
V∞

h := {w ∈ Vh,−1 : |||w|||V ∞

h
<∞}.In this de�nition the (wave number dependent) norm |||w|||V ∞

h
on V∞

h is de�ned by
|||w|||V ∞

h
:= sup

m∈Z

|||w|Sm
h
|||H1(Sm

h ) , Sm
h := {x = (x1, x2) ∈ Sh : Am < x1 < A(m+ 1)} ,

A > 0 is a parameter at our disposal, and ||| · |||H1(Sm
h ) (
f. Remark 4.2) is a wave number dependent norm on

H1(Sm
h ), equivalent to the usual norm, de�ned by

|||w|||H1(Sm
h ) :=

(

∫

Sm
h

(

k2|w|2 + |∇w|2) dx
)1/2

.It is easy to see that V∞
h is a Bana
h spa
e and that the di�erent 
hoi
es of A > 0 in the de�nition of ||| · |||V ∞

hprovide a family of equivalent norms on V∞
h .In terms of V∞

h our formulation of the plane wave s
attering problem is as follows:Plane Wave S
attering Problem (PW). Given k > 0 and θ ∈ (−π/2, π/2), �nd v ∈ H1
loc(D)∩C2(D) su
hthat v|Sh

∈ V∞
h , for every h > 0,

∆v + k2v = 0 in D,and su
h that vsc := v − vin satis�es the UPRC (2.5).Our main result in this subse
tion is the following, whi
h is an immediate 
onsequen
e of Theorem 5.3below.Theorem 5.1. The plane wave s
attering problem has exa
tly one solution. Moreover, for every h > 0there exists a 
onstant Cp > 0, depending only on κ = k|b|, kh, and kA, su
h that |||v|Sh
|||V ∞

h
≤ Cp.An interesting appli
ation of this result is to the mu
h-studied di�ra
tion grating 
ase whereD is periodi
in the horizontal dire
tion with some period A > 0, i.e.

x = (x1, x2) ∈ D ⇔ (x1 +A, x2) ∈ D. (5.2)The standard formulation of the problem of plane wave s
attering in the di�ra
tion grating 
ase is thefollowing (e.g. [20, 22℄). In this formulation the fun
tion spa
e V qp,θ
h denotes the set of fun
tions in H1

loc(Sh)that vanish on ∂D and are quasi-periodi
 in the x1-dire
tion with the same period and phase shift as thein
ident wave; more pre
isely
V qp,θ

h := {w ∈ V∞
h : w((x1 +A, x2)) = w(x) exp(ikA sin θ), x ∈ Sh}.Note that, for w ∈ V qp,θ

h , the norm |||w|||V ∞

h
simpli�es to
|||w|||V ∞

h
= |||w|S0

h
|||H1(S0

h
) .Di�ra
tion Grating Plane Wave S
attering Problem (DGPW) (e.g. [22℄). Given k > 0 and θ ∈ (−π/2, π/2),�nd v ∈ H1

loc(D) ∩ C2(D) su
h that v|Sh
∈ V qp,θ

h , for every h > 0,
∆v + k2v = 0 in D,10



and su
h that vsc := v − vin satis�es the Rayleigh expansion radiation 
ondition, that
vsc(x) =

∑

m∈Z

um exp(ik[αmx1 + βmx2]), x ∈ U0, (5.3)where the um are 
omplex 
onstants, αm := sin θ + 2πm/(kA), and
βm :=

{ √

1 − α2
m, |αm| ≤ 1,

i
√

α2
m − 1, |αm| > 1.It is shown in [22℄ that (DGPW) has exa
tly one solution in the 
ase that ∂D is the graph of an (A-periodi
) Lips
hitz fun
tion, by extending well-known arguments (see e.g. [25℄), whi
h apply in the 
asewhen ∂D is the graph of a smooth fun
tion, to the non-smooth Lips
hitz 
ase. The following 
orollary ofTheorem 5.1 extends that result further to the mu
h more general 
ase where ∂D is only required to satisfy(2.1), (2.2), and (5.2).Corollary 5.2. Suppose that (5.2) holds. Then (DGPW) has exa
tly one solution, and this is theunique solution of (PW).Proof. Suppose that v satis�es (DGPW). Then it is 
lear that v satis�es (PW), provided we 
an showthat v satisfying the Rayleigh expansion radiation 
ondition implies that v satis�es the UPRC (2.5). Butthis is shown in [8℄. Conversely, suppose that v satis�es (PW). Then

v((x1 +A, x2)) = v(x) exp(ikA sin θ), x ∈ D, (5.4)for otherwise w, de�ned by w(x) = v((x1 +A, x2)), is another, distin
t solution of (PW), whi
h 
ontradi
tsTheorem 5.1. Thus v satis�es (DGPW) provided that (5.3) holds. But, in the 
ase that (5.4) is satis�ed, itis shown in [8℄ that (2.5) 
an be written in the form (5.3).Thus v satis�es (PW) i� v satis�es (DGPW), and the 
orollary follows from Theorem 5.1.We will prove Theorem 5.1 by appli
ations of Theorem 4.1 and the observations in Remark 4.2. Toapply these results we introdu
e the fun
tion u ∈ H1
loc(D)∩C1(D), related to the solution v of (PW) by theformula

u(x) := vin(x)χ(x2) + vsc(x) = v(x) + (χ(x2) − 1)vin(x), x ∈ D , (5.5)where χ ∈ C1(R) is de�ned by
χ(t) :=















1, t < |b|,
cos2

(

π(t− |b|)
2|b|

)

, |b| ≤ t ≤ 2|b|,
0, t > |b|.Moreover, de�ne gP ∈ L∞(D) by

gP (x) = (χ′′(x2) − 2ik cos θ χ′(x2)) v
in(x), x ∈ D, (5.6)so that (∆ + k2)u = gP in a distributional sense in D, supp gP ⊂ S−b, and gP ∈ L2

̺(D) for ̺ < −1/2.Then Theorem 5.1 is an immediate 
onsequen
e of the following result whose proof is largely appli
ations ofTheorem 4.1.Theorem 5.3. De�ne gP ∈ L∞(D) by (5.6). Then v satis�es (PW) if and only if v and u are relatedby (5.5) and u satis�es the following boundary value problem: given ̺ ∈ (−1,−1/2), �nd u ∈ H1
loc(D) su
hthat u|Sh

∈ Vh,̺, for every h > 0,
(∆ + k2)u = gP in D ,in a distributional sense, and u satis�es the radiation 
ondition (2.4) with xn(= x2) repla
ed by x2 − b.Moreover, for every h > 0 there exists a 
onstant C′

p > 0, depending only on κ = k|b|, kh, and kA, su
h that
|||u|Sh

|||V ∞

h
≤ C′

p. 11



Proof. It is almost immediate from the observations immediately above the theorem that if v satis�es(PWSC) then u, de�ned by (5.5), satis�es the above boundary value problem. The only di�
ulty is to showthe radiation 
ondition. To see this we note that vsc satis�es the radiation 
ondition (2.5), from whi
h itfollows (see [9℄ and 
f. Remark 2.2) that vsc satis�es (2.5) with Γ0 repla
ed with Γc, for all c > 0, in parti
ularwith c = −b. Sin
e u = vsc in Uc it is immediate that v satis�es (2.5) with Γ0 repla
ed by Γ−b, whi
h isequivalent (see Remark 2.2) to (2.4) with x2 repla
ed by x2 + b.We next observe that it follows from Theorem 4.1 that the boundary value problem for u has exa
tlyone solution (u satis�es exa
tly a boundary value problem of the form of Se
tion 2 after verti
al translationof the axes by a distan
e |b|). The theorem is thus proved if we 
an show that this solution satis�es that
u|Sh

∈ V∞
h , for every h > 0, and the bound |||u|Sh

|||V ∞

h
≤ C′

p.To see this we make the following 
onstru
tion. Given h > 0 set h̃ := max(|b|, h) and, for j ∈ Z, de�ne
Dj , gj ∈ L∞(Dn), and uj ∈ H1

loc(Dj), by
Dj := {(x1 + jA, x2 − h̃) : x = (x1, x2) ∈ D},

gj(x) := gP ((x1 − jA, x2 + h̃)) , uj(x) := u((x1 − jA, x2 + h̃)) , x ∈ Dj .Then uj satis�es (BVP), with D repla
ed by Dj and g repla
ed by gj in (BVP). (Sin
e u satis�es (2.4) with
x2 repla
ed by x2 − b, it follows in the �rst instan
e that uj satis�es (2.4) with x2 repla
ed with x2 − b− h̃,but this implies that (2.4) holds as written, by Remark 2.2.) Thus Theorem 4.1 and Remark 4.2 applyfor ̺ ∈ (−1,−1/2). In parti
ular, 
hoosing ka su�
iently large (by Remark 4.2, how large is su�
ientdepends only the values of κ and ̺), it follows from (4.8) that, for some 
onstant cκ > 0 depending only on
κ̃ := k(|b|+ h̃) and ̺, |||uj|||V j

̺
≤ cκk

−1|||gj|||L2
̺(S0,j), for j ∈ Z, where S0,j and V j

̺ denote S0 and V̺, respe
tively,in the 
ase D = Dj . Sin
e, for some 
onstant c > 0 depending only on ̺,
|||gj|||L2

̺(S0,j) ≤
(

∫

S0,j

(a2 + x2
1)

̺ dx

)1/2

‖gj‖L∞(S0,j) ≤ c|b|1/2a̺+1/2‖gP‖L∞(S−b) ,we see that
|||uj|||V j

̺
≤ c′κ|b|−1/2a̺+1/2, j ∈ Z,for some 
onstant c′κ depending only on κ̃ and ̺. Careful 
al
ulations yield that, again for some 
onstant

c > 0 depending only on ̺, and where S0
0,j denotes S0

0 in the 
ase D = Dj ,
|||uj|S0

0,j
|||H1(S0

0,j)
≤ c(a2 +A2)−̺/2|||uj|||V j

̺
, j ∈ Z,Thus

|||u|Sh
|||V ∞

h
≤ |||u|Sh̃

|||V ∞

h̃
= sup

j∈Z

|||uj |S0
0,j
|||H1(S0

0,j)
≤ c′′κ

(

1 +A2/a2
)|̺|/2

(ka)1/2,where c′′κ > 0 depends only on κ̃ and ̺. Now this bound holds for all ka su�
iently large, but how large issu�
ient depends only on κ̃ and ̺. Thus, 
hoosing su
h a su�
iently large ka and 
hoosing (say) ̺ = −3/4,we see that the theorem is proved.Remark 5.4. Theorem 5.3 explains how, in the 2D 
ase, the plane wave s
attering problem (PW) isequivalent to an instan
e of (BVP). This enables us to prove solvability of (PW) via the reformulation of(BVP) in variational form as (V). This is 
onvenient for the purpose of proving Theorem 5.1 above, but, asa starting point for numeri
al 
omputation (
f. Se
tion 5.2 below), one would 
hoose rather to reformulate(PW) dire
tly in variational form. Arguing analogously to the proof of Lemma 3.5, in parti
ular using Lemma3.4 whi
h applies to vsc, one 
an show that v satis�es (PW) if and only if, for some ̺ ∈ (−1,−1/2), v|S0satis�es the variational problem: �nd v ∈ V̺ su
h that
B(u,w) = G(w) , ∀w ∈ V−̺ . (5.7)12



where G ∈ V ∗
−̺ is de�ned by

G(w) =

∫

Γ0

γ−w̄

(

∂vin

∂x2
+ Tγ−v

in

)

ds(x) , w ∈ V−̺ . (5.8)The restri
tion to the range ̺ < −1/2 arises sin
e vin ∈ V̺ for ̺ < −1/2 but not for ̺ = 1/2. Having solvedthis variational problem to determine v|S0 , v is determined throughout D through (2.5) satis�ed by vsc. Of
ourse this variational formulation is well-posed, by Theorem 4.1.Remark 5.5. The above results show that the problem of plane wave in
iden
e is well posed in the 2D
ase. In the 3D 
ase it seems to us likely that a solution to the problem of plane wave in
iden
e does notexist for every 
hoi
e of domain D satisfying (2.1) and (2.2). Certainly, the methods of argument above donot extend to the 3D 
ase, for, in the 3D 
ase, gP in Theorem 5.3 is in L2
̺(D) only for ̺ < −1, and Ggiven by (5.8) is in V ∗

−̺ only for ̺ < −1, so that Theorem 4.1 does not apply. Further, even the formulationof the 3D plane wave problem appears problemati
 in 3D. Pre
isely, just as the radiation 
ondition (2.4)does not extend to a bounded linear fun
tional on H
1/2
̺ (Γ0) for ̺ < −1, it does not extend to a boundedlinear fun
tional on L∞(Γ0) (whi
h would require that the integral in (2.5) be absolutely 
onvergent for every

u0 ∈ L∞(Γ0), whi
h is true in 2D but not in 3D, as a 
onsequen
e of the asymptoti
s (2.8)). Thus it isdi�
ult to envisage that the radiation 
ondition (2.4) or (2.5) 
an hold in general in the 
ase of 3D planewave in
iden
e.Remark 5.6. In the 3D 
ase, the above approa
h does apply to prove unique existen
e of solution inweighted spa
es in the 
ases of in
oming spheri
al or 
ylindri
al waves. That is, it applies to the 
ases,respe
tively, where
vin(x) := Φ(x, z) =

1

4π

exp(ik|x − z|)
|x − z| , x ∈ R

3 \ {z}, (5.9)for some z ∈ D, and
vin(x) = H

(1)
0

(

k
√

x2
1 +H2

)

, x ∈ R
3 \ ΣL, (5.10)for some H ∈ R su
h that ΣL := {(0, x2, H) : x2 ∈ R} ⊂ D. This se
ond 
ase is the 
ase of an in
ident
ylindri
al wave generated by a line sour
e o

upying the line ΣL whi
h, without loss of generality we 
hooseto lie in the plane x1 = 0. The problem in ea
h 
ase is to �nd the unknown s
attered �eld vsc and the total�eld v = vsc + vin, su
h that

(∆ + k2)vsc = 0 in D , v = 0 on Γ ,and vsc satis�es an appropriate radiation 
ondition.One way to make use of Theorem 4.1 to study these s
attering problems is to formulate ea
h s
atteringproblem as an instan
e of (BVP) in se
tion 2. To do this one 
an adapt the 
onstru
tion already used aroundequation (2.7). Pre
isely, in the spheri
al wave 
ase one 
hooses ǫ > 0 su
h that dist(z, ∂D) > ǫ and repla
es
vin by ṽin whi
h 
oin
ides with vin ex
ept within distan
e ǫ of the sour
e z, given by

ṽin(x) :=

{

vin(x), |x − z| > ǫ,

A+B
sin kr

r
, |x − z| ≤ ǫ,where the 
onstants A and B are 
hosen to ensure that ṽin ∈ C1(R3) (whi
h is possible provided that ǫ is
hosen su�
iently small, e.g. if kǫ < 1). Then ṽin ∈ H2

loc(R
3) with (∆ + k2)vin = gS, where gS(x) := Ak2,

|x − z| < ǫ, gS(x) := 0, otherwise. Similarly, in the 
ylindri
al wave 
ase one 
hooses ǫ > 0 su
h that
dist(ΣL, ∂D) > ǫ and repla
es vin by ṽin whi
h 
oin
ides with vin ex
ept within distan
e ǫ of the sour
e ΣL,given by

ṽin(x) :=

{

vin(x),
√

x2
1 + (x3 −H)2 > ǫ,

A+BJ0

(

k
√

x2
1 + (x3 −H)2

)

,
√

x2
1 + (x3 −H)2 ≤ ǫ,13



where the 
onstants A and B are 
hosen to ensure that ṽin ∈ C1(R3) (again this is possible provided
ǫ is 
hosen su�
iently small). Then ṽin ∈ H2

loc(R
3) with (∆ + k2)vin = gC, where gC(x) := Ak2,

√

x2
1 + (x3 −H)2 < ǫ, gC(x) := 0, otherwise. We observe that gS is 
ompa
tly supported so that gS ∈ L2

̺(D)for every ̺ ∈ R. Further, it is an easy 
al
ulation to see that gC ∈ L2
̺(D) for ̺ < −1/2, but not for

̺ = −1/2.Sin
e vin = ṽin, ex
ept in neighbourhoods of z or ΣL whi
h do not interse
t ∂D, so that, in parti
ular,
vin = ṽin in a neighbourhood of ∂D, the substitution of vin by ṽin does not 
hange the s
attered �eld vsc.Further, sin
e ṽin ∈ H2

loc(R
3), the s
attering problem with this modi�ed in
ident �eld 
an be formulated asan instan
e of (BVP). Pre
isely, in the spheri
al wave 
ase, we 
an formulate the s
attering problem asseeking the total �eld ṽ = ṽin + vsc whi
h satis�es (BVP) for some ̺ ∈ (−1, 1), with g := gS ∈ L2

̺(D) (andif supp g 6⊂ S0 one needs to repla
e xn by xn − a in (2.4), for some a > 0 su
h that supp g ⊂ Sa). Theorem4.1 tells us that there is exa
tly one solution to this boundary value problem, and that this solution ṽ satis�es
ṽ|Sh

∈ V h
̺ , for every h ≥ 0 and ̺ ∈ (−1, 1). In the 
ylindri
al wave 
ase, we seek the total �eld ṽ = ṽin + vscwhi
h satis�es (BVP) for some ̺ ∈ (−1,−1/2), with g := gC ∈ L2

̺(D) (again, if supp g 6⊂ S0 one needs torepla
e xn by xn − a in (2.4), for some a > 0 su
h that supp g ⊂ Sa). Theorem 4.1 again tells us that thereis exa
tly one solution, and that this solution ṽ satis�es ṽ|Sh
∈ V h

̺ , for every h ≥ 0 and ̺ ∈ (−1,−1/2).5.2. Analysis of a �nite se
tion method for the variational formulation. An obvious approa
hto 
omputing the solution to (BVP) numeri
ally is to solve the variational formulation (V) by a �nite elementmethod. This is a standard approa
h for the numeri
al treatment of the di�ra
tion grating problem (DGPW)[20, 22℄, but in that 
ase the 
orresponding variational formulation, thanks to the periodi
ity, redu
es to oneon S0
0 , a single period of S0. In the 
ase of (V) the region of integration is the whole in�nite region S0. Thusa ne
essary �rst step towards solving (V) numeri
ally is to approximate (V) by a variational formulation ona domain of �nite size, to whi
h standard FEMs 
an then be applied.We are not aware of any analysis of su
h an approximation for the variational formulation (V), orfor any similar variational formulations for rough surfa
e s
attering problems. However, the analogousapproximation when boundary integral equation methods are applied to (BVP), namely trun
ation of theregion of integration, whi
h is the in�nite boundary ∂D, to a �nite part of that boundary (a so-
alled �nitese
tion approximation) has been analysed in both the 2D 
ase [27℄ (and see [28, 23℄) and, very re
ently,in the mu
h more di�
ult 3D 
ase [24℄. In [27, 24℄ 
onvergen
e and stability of modi�
ations of the �nitese
tion method are proved. In the theses [28, 23℄ (
f. [16℄), for the easier 2D 
ase, 
onvergen
e rates arealso established, via results on stability and 
onvergen
e of the �nite se
tion method in weighted spa
es of
ontinuous fun
tions.In this se
tion we prove stability and 
onvergen
e of an approximation method in the same spirit for (V).This approximation method 
onsists simply in repla
ing S0 by a �nite region S(R) ⊂ S0 whi
h 
oin
ides with

S0 in the region |x| < R+1, and making the same approximation for D, so that D is repla
ed by D(R) ⊂ D,with S(R) = D(R) \ Ū0. The only 
onstraint on the 
hoi
e of S(R) is that (2.1) and (2.2) should apply to
D(R); this is the 
ase, for example, for the simple expli
it 
hoi
e S(R) := {x = (x, xn) ∈ S0 : |x| < R+1}. Inaddition to proving stability and 
onvergen
e, we also establish rates of 
onvergen
e for the error measuredin weighted spa
es. In the 
ase when g, the sour
e of the a
ousti
 waves, is 
ompa
tly supported, theseresults imply that, lo
ally in the energy norm, the error 
onverges at a rate O(Rǫ−2), for every ǫ > 0.This 
onvergen
e rate is 
onsiste nt with those obtained previously by methods spe
i�
 to the 2D 
ase forboundary integral equation formulations [28, 16, 23℄. For example, the results in [28℄, in the 
ase when theboundary Γ is the graph of a fun
tion whi
h is su�
iently smooth, imply a 
onvergen
e rate R−2 lo
ally inthe uniform norm for the solution of a boundary integral formulation when the sour
e of the a
ousti
 wavesis 
ompa
tly supported and the �nite se
tion that is taken 
oin
ides with Γ inside a ball of radius R.Given g ∈ L2

̺(S0), with |̺| < 1, let u ∈ V̺ be the unique solution of the variational problem (V), so that
B(u, v) = −(g, v) , ∀v ∈ V−̺ . (5.11)For R > 0, we approximate problem (5.11) by a 
orresponding variational equation on the bounded domain

S(R). For ̺ ∈ R and R > 0 let V (R)
̺ denote the Hilbert spa
e V̺ in the 
ase that we repla
e D by D(R);14



expli
itly V (R)
̺ denotes the 
ompletion of {u|

S
(R)
0

: u ∈ C∞
0 (D(R))} in the norm

‖u‖
V

(R)
̺

=

(

∫

S
(R)
0

(

∣

∣(1 + x2)̺/2u
∣

∣

2
+
∣

∣∇((1 + x2)̺/2u)|2
)

dx

)1/2

. (5.12)We remark, as is easily seen from Lemma 2.1, that the norms ‖ · ‖
V

(R)
̺

, ̺ ∈ R, are equivalent sin
e S(R)
0 isbounded, so that, as linear spa
es, for ̺ ∈ R, V (R)

̺ = V (R) := V
(R)
0 . The approximating variational problemis the following: �nd u(R) ∈ V (R) su
h that

B(R)(u(R), v) = −(g, v) , ∀v ∈ V (R) . (5.13)Here B(R) is the 
ontinuous sesquilinear form on V (R) ×V (R) de�ned by (3.3) with D repla
ed by D(R), i.e.de�ned by
B(R)(u, v) :=

∫

S
(R)
0

(∇u · ∇v̄ − k2uv̄) dx +

∫

Γ
(R)
0

γ−v̄ T γ−u ds(x) , (5.14)where Γ
(R)
0 := S

(R)
0 ∩ Γ0 (see Remark 3.6 for the interpretation of γ− in this 
ase).Making the observation that we 
an view V

(R)
̺ as a 
losed subspa
e of V̺ (the elements of V (R)

̺ be
omeelements of V̺ if we extend them by zero from S
(R)
0 to S0), the analysis of the error in approximating u by

u(R) follows the usual pattern for analysing the Galerkin method for variational problems via a generalizedCéa's lemma. Pre
isely, if ũ ∈ V (R) ⊂ V̺, then, for v ∈ V (R), applying (5.11),
B(R)(ũ, v) = B(ũ, v) = B(ũ− u, v) − (g, v) .Subtra
ting this equation from (5.13) we see that
B(R)(ũ− u(R), v) = B(ũ− u, v) , ∀v ∈ V (R) . (5.15)Now re
all from Se
tion 4 that B̺ : V̺ → V ∗

−̺ is our notation for the bounded linear operator indu
ed bythe 
ontinuous sesquilinear form B. Similarly, let B(R)
̺ : V

(R)
̺ → V

(R)
−̺

∗ denote the operator indu
ed by thesesquilinear form B(R); in other words B(R)
̺ is just B̺ in the 
ase that D is repla
ed by D(R). From Theorem4.1 it is 
lear that B(R)

̺ is invertible for every R > 0 and ̺ ∈ (−1, 1). From Remark 4.2 it is 
lear, moreover,that ‖(B(R)
̺ )−1‖ is bounded uniformly for R > 0, with a bound whi
h depends only on |b|, k, and ̺. Thusfrom (5.15) it follows that, for ̺1 ∈ (−1, 1),

‖ũ− u(R)‖
V

(R)
̺1

≤ c‖ũ− u‖V̺1
,where the 
onstant c > 0, whi
h depends only on |b|, k, and ̺1, is an upper bound for ‖B̺1‖ supR>0 ‖(B(R)

̺1 )−1‖.Thus
‖u− u(R)‖V̺1

≤ (1 + c) inf
ũ∈V

(R)
̺1

‖ũ− u‖V̺1
. (5.16)To obtain a more 
on
rete error estimate, 
hoose a 
ut-o� fun
tion χR ∈ C∞

0 (Rn−1) su
h that, for all
R > 0,

χR(x) := 1 for |x| < R ,χR(x) := 0 for |x| > R+ 1 , sup
Rn−1

{|χR| + |∇χR|} ≤ c1 ,for some 
onstant c1 > 0 independent of R. De�ning ũ ∈ V
(R)
̺1 by ũ(x) := u(x)χR(x), x ∈ S0, we see usingLemma 2.1 that, for −1 < ̺1 ≤ ̺, where S̃R

0 := {x ∈ S0 : |x| > R} and c2, c3, and c4 denote further15




onstants dependent only on ̺ and |b|,
‖ũ− u‖V̺1

= ‖(1 − χR)u‖V̺1

≤ c2

(

∫

S̃R
0

(1 + x2)̺1
(

|u|2 + |∇u|2
)

dx

)1/2

≤ c3R
̺1−̺

(

∫

S̃R
0

(1 + x2)̺
(

|u|2 + |∇u|2
)

dx

)1/2

≤ c4R
̺1−̺ ‖u‖V̺ .We see that we have proved the following result:Theorem 5.7. Suppose g ∈ L2

̺(S0), with |̺| < 1, and let u ∈ V̺ be the unique solution of the variationalproblem (V). Choose, for R > 0, approximating domains D(R) ⊂ D whi
h satisfy (2.1) and (2.2), and aresu
h that S(R) ⊂ S0 is bounded and S(R) ⊃ ΩR := {x ∈ S0 : |x| < R+1}. Then the approximating variationalproblem (5.11) on the �nite region S(R) has exa
tly one solution u(R) for every R > 0. Further, for some
onstant c > 0 dependent only on k, ̺, ̺1, and |b|, it holds for −1 < ̺1 < ̺ that
‖u− u(R)‖

V
(R)

̺1

≤ cR̺1−̺ ‖u‖V̺ .As a 
onsequen
e, for every R1 > 0, it holds that ‖u− u(R)‖H1(ΩR1 ) = O(R̺1−̺) as R → ∞. In parti
ular,if g ∈ L2
̺(S0) for every ̺ < 1, whi
h holds for example if g is 
ompa
tly supported, then, for every ǫ > 0 and

R1 > 0,
‖u− u(R)‖H1(ΩR1) = O(Rǫ−2) as R → ∞ .6. Commutator estimates. This se
tion is devoted to the proofs of Theorem 3.1 and Lemma 3.4 (i).Let k > 0, a > 0, and 
onsider the pseudodi�erential operator Ta on Rm, m = n − 1 = 1, 2, with symbol

ta(ξ):
Tau(x) = F−1ta(ξ)Fu(ξ) , ta(ξ) := a−1

√

ξ2 − k2a2 . (6.1)Here and in the following the square root is 
hosen so that its argument lies in [−π/2, 0]:
ta(ξ) = (−i/a)

√

k2a2 − ξ2, |ξ| ≤ ka; ta(ξ) = (1/a)
√

ξ2 − k2a2, |ξ| > ka . (6.2)We have T1 = T , t1 = t, where T and t are de�ned in (3.1).Using a s
aling argument, we redu
e the assertion of Theorem 3.1 to a 
orresponding estimate for the
ommutator de�ned by
Ca := Ta − (1 + x2)̺/2Ta(1 + x2)−̺/2 · . (6.3)With Sau(x) := u(ax) we obtain FSau = a−mS1/aFu, and the same relation holds with F repla
ed by F−1.Hen
e

amSaF
−1tFu = F−1(S1/at)S1/aFu = amF−1(S1/at)FSau ,giving SaTu = TaSau, where Ta is the operator (6.1) with the symbol t(ξ/a) = ta(ξ). From (3.2) and (6.3)we then have

SaC = TaSa − (1 + x2)̺/2Ta(1 + x2)−̺/2Sa = CaSa . (6.4)Using the relation ‖Sau‖L2(Rm) = a−m/2‖u‖L2(Rm) and (6.4), we now observe that Theorem 3.1 is equivalentto the following 16



Theorem 6.1. For ka ≥ 1 and |̺| < 1, the 
ommutator Ca de�ned in (6.3) has norm ≤ c(̺)
√

k/a on
L2(Rm).It is enough to 
onsider ̺ ∈ (0, 1) sin
e the 
ase of negative ̺ then follows by duality (with respe
t tothe s
alar produ
t on L2(Rm)). We split the symbol ta as

ta = t(0) + t(1) =: χ(|ξ|) ta(ξ) + (1 − χ(|ξ|)) ta(ξ) , (6.5)where χ is a suitable 
ut-o� funtion (see below), and 
onsider the 
orresponding de
omposition of Ta,
Ta = T (0) + T (1) , (6.6)where T (j) is de�ned by (6.1) with t(j) in pla
e of ta. Then the 
ommutator Ca takes the form

Ca = C(0) + C(1) =:
(

T (0) − (1 + x2)̺/2T (0)(1 + x2)−̺/2 ·
)

+
(

T (1) − (1 + x2)̺/2T (1)(1 + x2)−̺/2 ·
)

.
(6.7)We will estimate the norm of the operators

N := (1 + x2)−̺/2C(0) : L2(Rm) → L2
̺(R

m) , (6.8)
N̂u := FNF−1u, N̂ : L2(Rm) → H̺(Rm) , (6.9)

T̂ := t(1)(ξ)· : H̺(Rm) → H̺(Rm) . (6.10)In view of (6.7)�(6.10), and re
alling that F is an isometry of L2
̺(R

m) ontoH̺(Rm) for every ̺ ∈ R, Theorem6.1 then follows fromTheorem 6.2. (i) For ̺ ∈ (0, 1], the norm of N̂ is bounded by c(̺)√k/a.(ii) For ̺ ∈ [0, 1), the norm of T̂ is bounded by c(̺)√k/a, too.We now 
hoose the 
ut-o� fun
tion χ ∈ C∞[0,∞) with 0 ≤ χ ≤ 1 and
χ(r) = 0 on |r − ka| ≤ 1/3 , χ(r) = 1 on |r − ka| ≥ 2/3 , (6.11)and su
h that, for some c > 0 independent of ka ≥ 1.

|∂rχ(r)| ≤ c on R
+ . (6.12)Note that (6.11) implies

∂rχ(r) = 0 on {|r − ka| ≤ 1/3} ∪ {|r − ka| ≥ 2/3} . (6.13)To prove Theorem 6.2, we need some auxiliary results.Lemma 6.3. For ka ≥ 1, where r = |ξ|, we have |∂rt
(0)(ξ)| ≤ c

√

k/a on R
+.Proof. Setting h(r) := ata(ξ) = (r−ka)1/2(r+ka)1/2 for r > ka and h(r) := iata(ξ) = (ka−r)1/2(r+ka)1/2for r < ka, we obtain

∂rh =

{

r/h, r > ka,
−r/h, 0 ≤ r < ka,

∂2
rh = −k2a2/h3 , r 6= ka ,whi
h implies that ∂j

rh (j = 1, 2) do not 
hange sign on (0, ka) and (ka,∞). Therefore, the maximum of
h on 1/3 ≤ |r − ka| ≤ 2/3 is attained at r = ka − 2/3 or r = ka + 2/3, while the maximum of |∂rh| on
|r − ka| ≥ 1/3 is attained at r = ka− 1/3 or r = ka+ 1/3, and both maxima are bounded above by c√ka.Together with (6.11)�(6.13), this easily implies the result. �To prove Theorem 6.2 (i), we write (
f. (6.7)�(6.9))

N̂Fu(ξ) =

∫

Rm

b̺(ξ − η) (t(0)(η) − t(0)(ξ))Fu(η)dη , u ∈ C∞
0 (Rm) , (6.14)17



with b̺ := F (1 + x2)−̺/2. Here the integral in (6.14) is well de�ned sin
e Fu is rapidly de
reasing and
b̺ ∈ L1(Rm) for ̺ > 0 (see the next lemma), and we have used the relation F (1 + x2)−̺/2v = b̺ ∗ Fv for afun
tion v of rapid de
ay, with ∗ denoting 
onvolution.Lemma 6.4. For any ̺ > 0, the fun
tions b̺ and |ξ| ∇ξb̺ are rapidly de
reasing as |ξ| → ∞ and belongto L1(Rm). For the proof of this, we refer to [29, Chap. 8.1℄; see also [34, Chap. 5.3℄.Proof of Theorem 6.2 (i). From (6.14) and Lemma 6.3,

‖N̂Fu‖L2(Rm) ≤
∥

∥

∥

∥

∫

Rm

|b̺(ξ − η)| |ξ − η| sup
R+

|∂rt
(0)| |Fu(η)| dη

∥

∥

∥

∥

L2(Rm)

≤ c
√

k/a ‖ |ξ|b̺‖L1(Rm) ‖Fu‖L2(Rm)

(6.15)using the mean value theorem and Young's inequality. Moreover, sin
e
∇ξN̂Fu(ξ) =

∫

Rm

(

t(0)(η) − t(0)(ξ)
)

∇ξb̺(ξ − η) Fu(η) dη

+

∫

Rm

b̺(ξ − η) (−∇ξt
(0)(ξ)) Fu(η) dη ,we obtain analogously

‖∇N̂Fu‖L2(Rm) ≤ c
√

k/a
(

‖ |ξ|∇b̺‖L1(Rm) + ‖b̺‖L1(Rm)

)

‖Fu‖L2(Rm) . (6.16)Together with Lemma 6.4, (6.15) and (6.16) imply that for any ̺ ∈ (0, 1] the operators N̂ : L2(Rm) → L2(Rm)and N̂ : L2(Rm) → H1(Rm) have norm ≤ c(̺)
√

k/a. By interpolation, we then get the result. �Proof of Theorem 6.2 (ii). We have to show that the multipli
ation operator
T̂ v = (1 − χ(|ξ|)) a−1

√

ξ2 − k2a2 v : H̺(Rm) → H̺(Rm) , 0 ≤ ̺ < 1 , (6.17)has norm ≤ c(̺)
√

k/a. Note that the support of 1−χ is 
ontained in the set R := {|r− ka| ≤ 2/3}, r = |ξ|;see (6.11). By lo
alization, (6.17) 
an be redu
ed to an estimate of the form
‖qv‖H̺(Rm) ≤ c(̺)

√

k/a ‖v‖H̺(Rm) , 0 ≤ ̺ < 1 , (6.18)where
q(ξ) := a−1

√

ξm (ξm + 2ka)1/2 ψ(ξm) (6.19)with ψ ∈ C∞
0 (−2/3, 2/3) �xed and √

ξm = −i|ξm|1/2 for ξm < 0. This redu
tion is 
lear for m = 1, whereone has to lo
alize near ξ1 = ka and ξ1 = −ka. For m = 2, we parametrize the annulus R by ξ2 := r − kaand ar
length ξ1 on |ξ| = r = ka and need two lo
al 
harts again to 
over R. Note that the Ja
obiansof the 
orresponding 
oordinate transformations (with respe
t to the original ξ-
oordinates) are uniformlybounded from above and below for ka ≥ 1. We omit the details sin
e we present an alternative approa
h inthe 3D 
ase below.To prove (6.18), we �rst observe that the operator of multipli
ation by q1 := a−1(ξm + 2ka)1/2 ψ hasnorm
sup

R

|q1| ≤ c
√

k/a and ≤ sup
R

|q1| + sup
R

|∂mq1| ≤ c
√

k/ain L2(Rm) and H1(Rm), respe
tively. Note that ka ≥ 1 implies 1/a ≤ k and
a−1(ξm + 2ka)−1/2 |ψ| ≤ ca−1/

√
ka ≤ c

√

k/a .By interpolation, the norm of this multipli
ation operator in H̺(Rm) is then bounded by c(̺)
√

k/a. Itremains to show that
‖
√

ξm ϕ(ξm) v‖H̺(Rm) ≤ c(̺) ‖v‖H̺(Rm) , 0 ≤ ̺ < 1 , (6.20)18



where ϕ is a smooth fun
tion with somewhat larger support and ϕψ = ψ.Let �rst m = 1. Then (6.20) follows for ̺ ∈ (1/2, 1) sin
e √
ξ1 ϕ ∈ H̺(R) for ̺ < 1 (but not for ̺ = 1)and H̺(R) is a Bana
h algebra. Sin
e (6.20) is obvious for ̺ = 0, we obtain the result by interpolation.Note that the 
onstant c(̺) blows up as ̺→ 1.For m = 2, the proof of (6.20) 
an easily be redu
ed to the 
ase m = 1 by using the relation (
f. [26,Chap. 1℄)

H̺(R2) = L2(R;H̺(R)) ∩H̺(R;L2(R))and the fa
t that the fun
tion (6.19) is independent of ξ1. �Remark 6.5. An alternative proof of Theorem 6.2 (ii) for m = 2 
an be given by the following moredire
t redu
tion to the 
ase m = 1. Let (r, θ) be polar 
oordinates in R2, and 
onsider a multipli
ationoperator M := q· on H̺(R2), ̺ ∈ (0, 1], with a 
ontinuous fun
tion q = q(r) only depending on the radialvariable, supp q ⊂ [1/3, 2/3], and su
h that q· 
onsidered as a multipli
ation operator on H̺(R) is boundedwith norm ‖q · ‖̺. Then the norm of M on H̺(R2) is bounded by a positive 
onstant c(̺). Applying this tothe operator T̂ de�ned in (6.17) and using Theorem 6.2 (ii) for m = 1, we get the result for m = 2.To prove the above norm estimate for M, we �rst note that L2(R2) is the orthogonal sum of the subspa
es
Hj := {v ∈ L2(R2) : v = f(r) exp(ijθ) ,

∫ ∞

0

|f(r)|2 r dr <∞} , j ∈ Z ,and the Fourier transform leaves ea
h spa
e Hj invariant; see [35, Chap. 4.1℄. Therefore, it is su�
ient toverify that
‖qf exp(ijθ)‖H̺(R2) ≤ c(̺) ‖f exp(ijθ)‖H̺(R2) (6.21)for ea
h j ∈ Z and f ∈ C∞

0 (0,∞). Furthermore we have, uniformly in j,
‖qf exp(ijθ)‖L2(R2) ∼ ‖r1/2qf‖L2(R) ,

‖qf exp(ijθ)‖H1(R2) ∼ ‖qf exp(ijθ)‖L2(R2) + ‖∂rqf exp(ijθ)‖L2(R2) + ‖qfr−1∂θ exp(ijθ)‖L2(R2)

∼ ‖r1/2qf‖H1(R) + (1 + |j|) ‖r−1/2qf‖L2(R)and thus by interpolation,
‖qf exp(ijθ)‖H̺(R2) ∼ ‖r1/2qf‖H̺(R) + (1 + |j|)̺ ‖r1/2−̺qf‖L2(R) , (6.22)where ∼ means equivalen
e of norms. Here we used standard interpolation of Sobolev norms and the inter-polation theorem for weighted L2 spa
es (see [37, Chap. 1.18.5℄). Now (6.22) and the boundedness of q· on

H̺(R) imply the estimates
‖qf exp(ijθ)‖H̺(R2) ≤ c(̺)

{

‖qr1/2f‖H̺(R) + (1 + |j|)̺ ‖qr1/2−̺f‖L2(R)

}

≤ c(̺) max(‖q · ‖̺ , sup |q|)
{

‖r1/2f‖H̺(R) + (1 + |j|)̺ ‖r1/2−̺f‖L2(R)

}

≤ c(̺) max(‖q · ‖̺ , sup |q|) ‖f exp(ijθ)‖H̺(R2)giving (6.21).Remark 6.6. (i) Repeating the above proofs with a �xed 
ut-o� fun
tion χ vanishing in a neighbourhoodof |ξ| = k, we obtain the norm estimate of Lemma 3.2 for the 
ommutator T − (1 + x2)̺/2T (1 + x2)−̺/2·.Here we need not take 
are of the dependen
e of the 
onstants on a and k.(ii) Note that the symbol t(0) = χt of the pseudodi�erential operator T (0) = F−1t(0)F is a smoothfun
tion satisfying |t0| ≤ c(1 + ξ2)1/2 and |∇t0| ≤ c on R
m, and this is enough to obtain the boundednessof the 
ommutators T (0) − (1 + x2)̺/2T (0)(1 + x2)−̺/2·, |̺| ≤ 1, on L2(Rm); see the estimates (6.15) and(6.16). 19



Applying this to the operator Λ := F−1(1 + ξ2)1/2F whi
h is an isomorphism of H1(Rm) onto L2(Rm),we observe that Λ is also an isomorphism of H1
̺(Rm) onto L2

̺(R
m), and F is an isomorphism of H1

̺(Rm)onto H̺
1 (Rm), at least for |̺| ≤ 1. This is also true for arbitrary ̺ ∈ R; see [31℄ and [38℄.(iii) Let σ(ξ) be a smooth symbol satisfying the estimates |σ| ≤ c, |∇ξσ| ≤ c(1 + ξ2)−1/2 on Rm. Then,for A := F−1σF and |̺| ≤ 1, the 
ommutator

A− (1 + x2)̺/2A(1 + x2)−̺/2· : L2(Rm) → H1(Rm)is bounded. This follows from (ii) applied to the operator B = ΛA with the symbol (1 + ξ2)1/2σ(ξ) and therelation
Λ−1B − (1 − x2)̺/2Λ−1B(1 + x2)−̺/2· = Λ−1

(

B − (1 + x2)̺/2B(1 + x2)−̺/2 ·
)

+
(

Λ−1 − (1 + x2)̺/2Λ−1(1 + x2)−̺/2 ·
)

(1 + x2)̺/2B(1 + x2)−̺/2 · .
(6.23)Note that B is bounded on L2

̺(R
m).More general results on pseudodi�erential operators with smooth symbols in weighted Sobolev spa
es 
anbe found in [31℄ and [38℄.Finally, we pro
eed toProof of Lemma 3.4 (i). From (2.4) we have, for u0 ∈ C∞

0 (Γ0),
u(x, xn) = F−1 exp(−xnt(ξ))Fu0 =: M0u0 , t(ξ) :=

√

ξ2 − k2 ,

∇xu(x, xn) = F−1iξ exp(−xnt(ξ))Fu0 =: M1u0 = ∇xM0u0 , (6.24)
∂nu(x, xn) = F−1(−t(ξ)) exp(−xnt(ξ))Fu0 =: M2u0 = −TM0u0 .We have to prove the estimates, for |̺| < 1 and h > 0,

‖u‖H1
̺(U0\Ūh) ≤ c(h, ̺)‖u0‖H

1/2
̺ (Γ0)

, u0 ∈ C∞
0 (Γ0) ,or equivalently, with m = n− 1,

∫ h

0

∫

Rm

(1 + x2)̺
2
∑

j=0

|Mju0|2 dx dxn ≤ c(h, ̺) ‖(1 + x2)̺/2u0‖2
H1/2(Rm) . (6.25)This was proved in [11℄ for ̺ = 0 by taking Fourier transform. To verify (6.25) for ̺ 6= 0, it is then su�
ientto show that the 
ommutators

Mj − (1 + x2)̺/2Mj(1 + x2)−̺/2· , j = 0, 1, 2 ,are uniformly bounded on L2(Rm) with respe
t to xn ∈ (0, h); 
ompare the proof of Lemma 3.3 (ii). We 
anwrite (
f. relation (6.23))
AM0 − (1 + x2)̺/2AM0(1 + x2)−̺/2· = A

(

M0 − (1 + x2)̺/2M0(1 + x2)−̺/2 ·
)

+
(

A− (1 + x2)̺/2A(1 + x2)−̺/2 ·
)

(1 + x2)̺/2M0(1 + x2)−̺/2· ,
(6.26)where A is one of the operators ∂j = ∂/∂xj, 1 ≤ j ≤ m, and T . Therefore it is enough to prove the uniformboundedness of

M0 : L2
̺(R

m) → L2
̺(R

m) , |̺| < 1 , (6.27)
M0 − (1 + x2)̺/2M0(1 + x2)−̺/2· : L2(Rm) → H1(Rm) , (6.28)sin
e ∂j , T : H1(Rm) → L2(Rm) are bounded, the 
ommutators ∂j − (1+x2)̺/2∂j(1+x2)−̺/2· are obviouslybounded on L2(Rm), while the 
ommutator T − (1 + x2)̺/2T (1 + x2)−̺/2· is bounded there by Lemma 3.2.20



By taking Fourier transform, the uniform boundedness of (6.27) is equivalent to the estimates
‖m(xn, ξ) v‖H̺(Rm) ≤ c(h, ̺)‖v‖H̺(Rm) , v ∈ C∞

0 (Rm) , xn ∈ (0, h) , (6.29)where m(xn, ξ) = exp(−xnt(ξ)). Consider a de
omposition t = t(0) + t(1) as in (6.5), with a = 1, t(0) = χt,
t(1) = (1−χ)t and a 
ut-o� fun
tion χ vanishing near |ξ| = k, so that t(0) is a smooth symbol. We introdu
ethe multipli
ation operators M = m(xn, ξ)· = M(1)M(0), M(j) = exp(−xnt

(j)(ξ))·, xn ∈ (0, h), and 
he
kthe uniform boundedness of
M(0) : H̺(Rm) → H̺(Rm) , |̺| ≤ 1 , (6.30)
M(1) : H̺(Rm) → H̺(Rm) , |̺| < 1 . (6.31)Sin
e we have, for xn ∈ (0, h) and m0(xn, ξ) = exp(−xnt

(0)(ξ)),
|m0(xn, ξ)| ≤ c(h) , |∇ξm0(xn, ξ)| ≤ c(h)(1 + ξ2)−1/2 on R

m , (6.32)the norm of (6.30) is bounded by some 
onstant c(h). To get a bound for (6.31), we write
exp(−xnt

(1)) =
∑

j≥0

xj
n(−t(1))j/j! (6.33)and apply the proof of Theorem 6.2 (ii) to estimate the norm of (6.31) by

∑

j≥0

hjc(̺)j/j! = exp(hc(̺)) .This �nishes the proof of (6.27).To prove the uniform boundedness of (6.28), we write
M0 − (1 + x2)̺/2M0(1 + x2)−̺/2· = M (1)

(

M (0) − (1 + x2)̺/2M (0)(1 + x2)−̺/2 ·
)

+
(

M (1) − (1 + x2)̺/2M (1)(1 + x2)−̺/2 ·
)

(1 + x2)̺/2M (0)(1 + x2)−̺/2· ,
(6.34)where M (j) = F−1 exp(−xnt

(j)(ξ))F , j = 0, 1. By (6.32) and Remark 6.6 (iii), we obtain the uniformboundedness of
M (0) − (1 + x2)̺/2M (0)(1 + x2)−̺/2· : L2(Rm) → H1(Rm) .Moreover, M (1) is obviously bounded on H1(Rm) sin
e its symbol is uniformly bounded. In view of (6.30)and the isometry F : L2

̺(R
m) → H̺(Rm), it is then su�
ient to verify that the last 
ommutator in (6.34) isuniformly bounded from L2(Rm) into H1(Rm), and for this it is enough to show the uniform boundednessof

N (1) = M (1) − I : L2
̺(R

m) → H1
̺(Rm) , |̺| < 1 , xn ∈ (0, h) , (6.35)where I is the identity operator, and the symbol of N (1) is n1(xn, ξ) = exp(−xnt

(1)(ξ)) − 1. Taking Fouriertransform and using Remark 6.6 (ii), (6.35) is then equivalent to the uniform boundedness of
n1(xn, ξ)· : H̺(Rm) → H̺

1 (Rm) , |̺| < 1 . (6.36)Consider the multipli
ation operator N (1) = (1 + ξ2)1/2n1(xn, ξ)·. Then, using relation (6.33), estimate(6.31) 
an be proved (in the same way) for N (1) in pla
e of M(1); re
all that t(1) has 
ompa
t support. Thiseasily implies (6.36), whi
h �nishes the proof of (6.28). Thus Lemma 3.4 (i) is proven. �
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