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Abstract

In the numerical solution of partial differential equations, by finite methods,
greater efficiency can be obtained if the geometry of the grid is determined by
the solution. Many techniques for adapting the grid to the numerical solution it
supports, have been proposed. One such scheme for convection equations in one
dimension is considered here, and its application to convection-diffusion problems

is investigated.
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Introduction

The subject of this dissertation is adaptive finite difference schemes, for the nu-
merical solution of partial differential equations involving convection. A scheme is
said to be adaptive if the underlying discretisation mesh (grid) undergoes changes
in geometry, in response to the numerical solution it supports.

An existing adaptive finite difference scheme [1] for convection problems is
investigated, with a view to its application to convection-diffusion problems. This
scheme is based on the first order upwind method. Before the adaptive scheme
is discussed in Chapter 3, the problems associated with first order schemes are
investigated in Chapter 1.

Chapter 2 reviews two broad categories of adaptive grid methods. A particular
adaptive scheme [7] is examined in some detail. This scheme highlights important
considerations for all adaptive methods.

The adaptive scheme [1] discussed in Chapter 3, is presented together with
two alternative discretisations of the differential equation. A comparison is made
of the numerical results produced by the two discretisations. The test problem
used for this purpose is one which consists of the time development of a steep
front, confined to a fixed region.

The model problem is changed in Chapter 4 to one involving diffusion in



addition to convection. An attempt is made to modify the scheme presented in
Chapter 3, to provide solutions to the new problem. In addition, the solution
of this test problem contains a steep, moving front which the grid is required to
track.

Conclusions drawn from the numerical results contained in Chapter 4 lead to

further modifications to the scheme, which are considered in Chapter 5.



Chapter 1

Background

The modelling of partial differential equations (PDEs) which involve dominant
convection terms, has long been recognised to pose significant problems for nu-
merical solution methods. For instance, first order upwind schemes provide some
desirable properties : they preserve monotonicity of the solution and give rea-
sonably accurate phase speed. However, for these schemes, numerical diffusion is
severe. This is demonstrated in figure 1.1, which shows how the first order upwind
scheme produces unwanted smearing in the solution. The initial data is shown in
the first graph. Subsequent graphs show the numerical solution at intervals of 20
time steps, with the dotted lines representing the corresponding exact solutions.
Numerical diffusion is a particular drawback when modelling convection-diffusion
processes. Key features of the solution of such problems often involve steep fronts,
which propagate through the solution domain. Numerical diffusion tends to cause
smoothing of sharp features, which is often highly pronounced.

In an attempt to find improvements to simple first order schemes, a natural

starting point would seem to be an investigation into numerical diffusion.
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Figure 1.1: Numerical Diffusion in Upwind Solution for u; + u, = 0

1.1 Numerical Diffusion and the Modified

Equation

One approach to investigating the phenomenon of numerical diffusion, is to con-
sider the Modified Equation of the scheme which is to be used. This is the
differential equation which the exact, smoothed solution to the difference scheme
satisfies. It is obtained by expanding each term of the scheme in a Taylor se-
ries. Mixed space and time derivatives are then eliminated, along with all time
derivatives higher than the first. This results in a differential equation with an
infinite number of purely space derivative terms, which are equated to the first
time derivative.

The first few terms of this modified equation are just those of the original

PDE. Subsequent terms are scaled by the space and time discretisation lengths,



and represent a form of truncation error for the scheme. It is the largest of these
terms which will be of interest here.

There is a slight subtlety involved in obtaining the modified equation [9]. This
occurs when the high order time and mixed derivatives are to be eliminated. It
is not valid to use the original differential equation for this purpose, which is the
familiar technique used in deriving, for example, the Lax-Wendroff scheme, the
reason being that solutions of the modified equation are not also solutions of the
original equation, but rather of the difference scheme. The modified equation
itself must be used in the elimination process. This is best illustrated with an

example.

Example Consider the numerical solution of the linear advection equation,

a—u—l—a@:() where a > 0.

ol Ox

The first order upwind scheme for this equation is obtained by making the fol-

lowing one-sided discretisation,

u}“’l —uy ul —uy_y
- 4a| ———] =0

By

At AN,

which is well known to preserve the monotonicity of the solution, but also to
smear it. (A scheme is said to be monotonicity preserving, if the solution data
remains monotonic, given monotonic initial data.) The first step in obtaining
the modified equation is, to replace each of the discrete terms with its Taylor

expansion.

At a (Ax)?
Up+ U+ U~ U= U AT U — | =0
2 Az



where u is evaluated at the point (jAz, nAt).

Collecting terms, this reduces to

At JAN
w + au, + 7utt—aum7x—|—O(At2,Ax2) =0 (1.1)
) At 0 . . .
By applying ~ 5 to (1.1), the following equation is obtained,
At
- S — gmuﬂ +O(AL, AtAx, Ax?) =0 (1.2)

Adding (1.2) to (1.1) would remove the second time derivative but would leave
a mixed time and space derivative. A further equation involving this unwanted

At 0
derivative may be obtained by applying a5 5 to (1.1). This gives,
x

aA;um + aZAQtum + O(A, Athe, Aa?) =0 (1.3)

Finally, adding (1.1),(1.2) and (1.3) we have the modified equation for the first

order upwind scheme :

At AN
u; + au, + a27um — agum + O(A, AtAz, Az®) =0

This may be written in a more revealing form by observing that,

, At AN, AN,
A —Upy — A— Uy = —a— (Upyp — VlUyy)
2 2 2
Ag)?
= — (25; v(l = v)ug,
where ¥ = a— is the Courant number.

X

For this particular problem, the Courant-Friedrichs-Lewy condition imposes
0<r <1

as a necessary stability condition. Hence, the modified equation may now be seen
in its final form, which to first order in A¢ and Ax is,

it auy = 20 O(A, AtAz, N 1.4
 +au, = ZAtV( V)uge + O(ALY, AtAx, Ax*) (1.4)




The upwind scheme models this equation more accurately than it does the original
differential equation. The principal source of error is the numerical diffusion term

on the right-hand side of the modified equation.

1.2 Improvements to First Order Schemes

As seen above, first order schemes offer desirable properties, such as monotonicity
preservation and computational simplicity. But this is much to the detriment of
accuracy, which suffers principally from the mechanism of numerical diffusion.

One obvious way in which to improve matters is to use a higher order scheme,
such as Lax-Wendroftf. This certainly removes the troublesome diffusion term
from the modified equation. However the monotonicity preserving property is
lost, allowing spurious oscillations to enter the solution in regions of rapid spatial
change. This important property may only be recovered by the use of non-linear
schemes. In particular, flux limiter schemes have enjoyed remarkable success in
this respect, offering solutions free of unwanted oscillations and preserving, in
general, the accuracy of a second order scheme.

Another approach is that of the so-called adaptive schemes. These schemes
attempt to adapt the grid, by moving the nodes, to provide finer resolution in
regions of rapid spatial variation. By providing a greater density of grid nodes in
such regions, computational effort can be concentrated where it is most needed.
As may be seen from equation (1.4), the degree of numerical diffusion present in
a particular region depends strongly on the grid spacing there. A finer grid, in
regions where the gradient of the solution changes rapidly, will provide a marked

reduction in numerical diffusion. It is this particular approach of adaptivity,



which will be followed in the remainder of this dissertation.

Finally, there is an approach to the problem of numerical diffusion, which
forms a natural complement to that of adaptive grids. This is the anti-diffusive
velocitities introduced by Smolarkiewicz [8] and Margolin [6]. Here the diffusion
term of the modified equation is re-written as an extra convective term. The
scheme involves multiple passes (often just two) of a first order upwind scheme.
The result of the first pass is used to gain a first estimate of the numerical
diffusion present in the solution. This is manipulated into the form of a wave
velocity. When this is added back to the original equation, and a second pass of
the upwind scheme is made, a less diffused solution is obtained. Since corrections
are made to compensate for the first order error only, further iterations improve
the accuracy but not the order of the solution.

The connection with moving grids is most striking in the case of problems
where there are steep features which develop in situ. In such cases any grid
movement can be attributed solely to numerical diffusion considerations, since
there are no translating features to be tracked. So whereas the Smolarkiewicz
and Margolin scheme removes diffusion by imposing an extra velocity into the

discretised equation, the adaptive scheme produces extra velocities in the grid.



Chapter 2

Adaptive Grid Methods

By imposing velocities onto grid nodes, which hold solution values, we are now
attempting to solve the differential equation within a moving frame of reference.
(The term moving is here to be read as translating and deforming.) It is impor-
tant to consider how the form of the equation is changed, when its independent

variables are transformed to those of the moving frame.

2.1 Transformation to the Moving (Lagrangian)

Frame

Let (£,7) be the space and time coordinates in the moving frame. Since the
moving frame is free to distort, as well as translate, we must consider a general

space transformation,
r=ux(£,T)

It is commonly the case that the discretisation of the PDE proceeds in two stages.

First a space discretisation is carried out, which results in a system of ordinary



differential equations in the time variable. Then this system is discretised and
solved using some time stepping procedure. This is the approach of the Method of
Lines. It is in the first of these stages that the transformation to the moving frame
occurs. Hence the time transformation equation plays a réle of little importance,

and we may make the convenient choice,

To obtain the transformed differential equation, we require the partial derivatives
of the above coordinate transformation. These are most readily calculated by

means of the Jacobian.

The Jacobian For the coordinate transformation,

the Jacobian is readily seen to be

and the inverse of the Jacobian is found to be

a, ) & & V/ze —a;/z¢

Ty Ty 0 1

1 T,
o = — & o= ——

e e (2.1)
7, = 0 o= 1
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Now consider the differential equation

uy = Lu,
where L is some operator containing space derivatives only. By defining,

w(é, ) = u(x,t)

we obtain, by use of the partial derivatives found above,

ou_oidc onor _oi  0coi
ot 9Eot  Or ot Ot Ot O¢
Ju Ot  wx,0u
— = - —— 2.2
T T O w06 (2:2)
And the differential equation in the moving frame is,
ou  x,0u

A

2 _ Ttz 7 2.
or ~ ze0e T L (2:3)

where £ is obtained by a suitable transformation of L.

This equation often appears in a slightly different form. Since x is the velocity
of the moving frame, we may write

Ju | 1 du .. .
use, where the symbol 5 used to denote v O The equation in the moving
T Te

and refer to  as the frame velocity. A further notational shorthand is also in

frame now reads,

(2.4)

Equations (2.3) and (2.4) will play an important part in the remaining chapters.

11



2.2 Adaptive Grids

Two broad classes of adaptive grid methods may be identified [3] :
[. Dynamic Rezone Methods

II. Static Rezone Methods

2.2.1 Dynamic Rezone Methods

In grid adaption algorithms of this class, grid node movement is bound to that
of the solution. Individual grid nodes attempt to keep pace with moving features

of the solution.

Example Petzold [7] has proposed the following two stage finite difference
scheme.

The first stage produces grid movement which serves to minimise the time
rate of change of the solution at individual grid nodes. This allows for a larger
time step to be used, without loss of accuracy.

The second stage belongs properly to the static class of methods. It consists
in applying refinements to the grid produced by the first stage, in order to obtain
better resolution in regions of rapid spatial change.

Since this scheme contains elements of the two main classes of adaptive meth-

ods, it is worth considering it in a little more detail.

Petzold’s Scheme The first stage is based on a transformation to a Lagrangian

frame, due to Hyman [4]. This transformation is obtained by finding the frame

12



velocity which minimises the quantity

A\ 2 2
Q = a—u + « a—x , where a€ R,
or or

The notation proceeds a little more smoothly it the following definitions are made,

.o
YT o
. dz
T
1 aa
Uy = x—éa—f

Then (2.4) reads

U = Uy + TU,
The quantity to be minimised now takes on the more revealing appearance

Q = W+ ai?

= (u+ :JZ;ugL,)2 + az?

Minimising this with respect to the frame velocity,

dQ .
i = T T T e (wy

Ut Uy

This equation defines trajectories along which the time rate of change of the

solution is

QU

T arwr
The free parameter, a, provides some control over the properties of the transfor-
mation.

Even though this transformation produces grid movement which follows the
solution in some fashion, it is far from ideal. Extra parameters must be added to

the minimisation to prevent nodes coalescing. The values which the parameters

13



take to achieve their purpose are highly problem dependent, and must be found
by inspection. This reduces the possibility of the method being incorporated into
a fully automatic package, a standard aim of many methods of this kind. This is
a problem common to many adaptive techniques.

In addition, the grid so far does not necessarily adapt to sharp features of
the solution. A second, grid enhancement, stage is required. Petzold uses a
grid redistribution technique, where nodes are added or deleted from the grid, to
achieve

Az |uy| 4+ (Ax)? Jug,| < preset tolerance,

a process which also involves a number of interpolations.

2.2.2 Static Rezone Methods

The principal technique of this class of adaptive methods is that of equidistribu-
tion. The second stage of Petzold’s scheme (discussed above) introduced the idea
of redistributing the grid nodes, according to some predetermined criterion. Such
a criterion may also be used as the starting point for grid adaption.

In the equidistribution method, a function is defined which we require to be
equidistributed across the mesh. This function also serves as the space coordi-
nate in the moving (Lagrangian) frame of reference. By equidistributed we mean
that the function increments by a constant amount, between neighbouring nodes,
throughout the grid. For instance, the arc-length along the solution may be used
as the equidistributing function, in which case the nodes will be placed at equal
intervals along the curve of the solution.

In general, the equidistributing function is defined in terms of a monitor func-

14



tion, m(u, x),
1 z
art) = 57 [ mlule, 1), 2) de

1
where M:/ m(u(x,t),x)de
0

The solution domain is assumed to be the unit interval, 0 < < 1. The monitor
function is chosen to be some quantity related to the spatial variation of the

solution.

Summary To conclude, the Petzold scheme highlights many aspects which are

of importance in designing adaptive methods :
e The choice of solution properties to which the grid is to adapt
e The manner in which the grid is to be altered

e Can it be guaranteed that the grid will remain monotonic, that nodes will

not overtake one another

e Can the technique be made fully portable, without the need for externally

set parameters

15



Chapter 3

An Adaptive Finite Difference

Scheme

Two desirable properties of any adaptive scheme are that it should be monotonic
in both function values and node positions. In particular we do not want the
solution to develop spurious oscillations near steep fronts, nor the grid to fold
over on itself. One scheme which satisfies both these criteria has been outlined
in [1].

This scheme (which is referred to as the Masterful' scheme) consists of a
simple first order upwind scheme, in conjunction with a best-fit node displacing
algorithm. The latter is taken from [2], and is in the form of an iteration. For the
purposes of the scheme being considered here, consistent accuracy is obtained by

making just one iteration of this algorithm.

!Monotonic Adaptive Solutions of Transient Equations using Recovery, Fitting, Upwinding

and Limiters

16



3.1 Test Equations and Boundary Conditions

The Masterful scheme may be readily implemented to provide numerical solutions

to the following differential equations,

Uy + auy, =0 a = const  Linear Advection (3.1)
uy + uu, =0 Inviscid Burgers’ Equation (3.2)
Uy + Uty = Uy, € = const >0 Viscous Burgers” Equation (3.3)

Solutions to these equations will be sought on the unit interval, 0 < x < 1. This
raises the need to find suitable boundary conditions to impose. For the type of
solution sought here, in which the major interest is away from the boundaries,
Dirichlet boundary conditions will be used, obtained from the initial data. For
the test problems to be considered there exist concise analytic solutions, against

which the accuracy of the numerical solutions may be tested.

17



3.2 Outline of the Masterful Scheme

The scheme is implemented on a grid which subdivides the unit interval into J 41
cells, or subintervals. Such a grid has J internal nodes, whose positions are free to
be varied as the scheme proceeds. The nodes at either end of the interval remain

fixed throughout.

| | x x | ‘
0 =ag xq 9 T; T Ty =1

The Masterful scheme is constructed from a first order upwind scheme and the

node adjusting algorithm [2], combined in the following steps :

Scheme

a) Apply the upwind scheme to current solution, producing a first approxima-

tion to the solution at the next time level

b) Apply the best-fit algorithm to piecewise linear recovered function (see sec-
tion 3.3.2.) This produces new nodal positions, which are better suited to

represent the solution at the new time level
c¢) Use the nodal displacements to obtain a new frame of reference

d) Apply the upwind scheme to the current solution a second time, but this

time the differential equation is solved within the new frame

18



3.3 Computational Detalils

Consider the differential equation

Ju du
N + a(u, x,t)% =0. (3.4)

The scheme advances the numerical solution of this equation, through one time

interval At, according to the following steps :

3.3.1 Predictor Step

Let {u}:j=0,1,---,J+ 1} be the finite difference solution of (3.4) obtained by

an upwind step on the data at time level #,,,

o d (3.5)

j lf Cl;b_l > 0
where E = 2

]—1 lf a?_l<0

2
ie3 ie3
al +aj_y

2

and a” =

[
|
=

3.3.2 Grid Adaption Step

The grid adaption routine is based on a technique for obtaining piecewise constant
best L, fits, to a piecewise linear continuous function [2]. The motivation for
using this procedure, is the Donor Cell interpretation of upwind schemes. In this
formalism the region is considered to be divided into cells. Each cell contains one
node, where the cell value of the solution is stored, with cell interfaces midway
between nodes, figure 3.1. In (3.5) the spatial difference term is considered to

represent a flux difference across cell walls. Upwinding is achieved by selecting

19
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Figure 3.1: Donor Cell

which of the neighbouring cells receives this flux contribution, according to the
direction of flow.

Hence the data produced by the predictor step constitutes a piecewise constant
function. In order to apply the best fit algorithm, to obtain nodal positions better
suited to represent this function, a piecewise continuous linear function must first
be recovered. There are many ways to make such a recovered function, but only

two will be considered here.

(a) linear interpolation between nodes

(b) linear interpolation between cell centres

The first option is the simplest to implement. The second provides a recovered
function which is less prone to rapid variations of gradient than is the first. This
latter smoothing property is perhaps counter to the desired aim of reducing the
numerical diffusion in the solution, and will not be considered further here.
Given the recovered linear function obtained by option (a) above, new nodal
positions are calculated for a best L, piecewise constant fit. In fact only one
iteration of the algorithm which achieves this fit, is performed. Extra computa-

20



tional effort expended in this stage of the scheme, would not be matched by the
accuracy attainable in the upwind solution stages.
If the nodal positions at time ¢,,1 are :1;?"'1, then the nodal displacements,

(A$n+1)j — xn"'l — " are given [1] by

J Yl
» 4Au§(A$j) if ‘Auj > ‘Auj-u‘
R Azjp)" it |Aw] < |Aw
4Au;+1( zs)" i || < |Bu,|

where y = 1,---,J. This algorithm has the property that nodes can not overtake

one another. The nodes at either end of the region remain fixed.

3.3.3 Transformation to the Moving Frame

Since the donor cell scheme employs velocities evaluated at cell walls, the frame
velocity must also be calculated there for computational stability. Hence the
following quantities, which describe the velocity field of the moving frame, are

required

where j =1,---,J + 1.

3.3.4 Corrector Step

The upwind scheme is applied to the data {u} :j =0,1,---,J + 1}, on the grid
{a%:j5=0,1,---,J + 1}, for a second time. This time allowance is made for the
movement of the nodes during the time step. In [1] a discretisation of the moving

frame equation (2.4) is used for this purpose




-z, >0

1
I=3z

J if a” 4
where k£ = Iz

jo1 ot ar, —dr, <0

2

Since both upwind passes preserve monotonicity , and the grid adaption method
maintains the ordering of the nodes, the scheme as a whole is also monotonicity

preserving.

3.4 Discretisation in the Moving Frame

The first two stages of the scheme are straight forward : first obtain a prediction
for the solution at the next time level ; then adjust the nodal positions to give a
better fit to this new solution. The nodal displacements per time step describe the
required velocity of the frame of reference. In the last stage the upwind method
is to be applied in this moving frame.

In [1], the differential equation in the Lagrangian frame is discretised in the
form (2.4). However this was only notational shorthand for (2.3).

Consider the case where the differential equation is

o
at—l_uax_

The equation in the moving frame, (2.3), is now

o (w8 _
8t l’g 85_

(3.6)

where u, t, & are now used to denote w, 7, x, respectively.
A discretisation of (3.6) can be obtained by employing the identities between

derivatives of the transformation, (2.1).



&L = —— (3.8)

Using (3.7), (3.6) becomes

aﬁ+ . O0& Ou
ot B

This equation poses the problem of finding a discretisation for —.
x

In the moving frame coordinate system, the grid remains stationary with a
constant spacing. There is freedom to choose any convenient spacing, say A¢ = 1.
The moving frame coordinate, £, now takes the same value as the node index at

each node,
(et n At = j (3.9)

A differential equation for ¢ is given by (3.8),

o e

The coordinate function, ¢, must satisfy this equation together with the initial

data,

X

f(l‘,O) = K

X

where Ax is the initial regular grid spacing.

It is not necessary to solve (3.10) completely, since it is only — which is

Ox

required. An approximation to this is found by making a time discretisation of

(3.10),
e g 08

X

At ox 0

The scheme already employs a discretisation of &, evaluated at (x;?_l, nAt).
2

n

Using this, an approximation for (:1;?_1) is obtained,

T 2

ger . ai) =&y
oo (Wimt) = N (3:11)

)
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Now ¢ has been chosen such that Eat,nAt)y=j, j=0,1,---,J+1 Vn

By applying linear interpolations to this data, the two quantities in the numerator

of (3.11) are found to have the following approximations,

o1

fn(l’?_%) = J75
", — it
nlpn ) = o4 T
ST = I e e

Details of the calculations involved are given in the Appendix. Combining these

with
n+1 n n+1
7 1:1 Ly L _I_xj—l_x] 1
Tz 2 At At
equation (3.11) reduces to,
o 1
P (%_%) = atl _ il
X x] — wj_l

When this is written into the upwind scheme, the resulting discretisation
differs from that of (2.4) only in the calculation of the space interval. In this new
scheme the grid differences are calculated at the new time level, instead of the
current level. A comparison between the two discretisations is given in the next

section.

3.5 Numerical Results

The schemes derived from equations (2.4) and (2.3) are here referred to as the
first and second discretisations respectively.

A comparison is made between the two discretisations applied to the test

24



problem,

Ju N ou 0
ot "o T
with initial data,
1
u(x,0) = 5%

The measure of the error used here is

;
{;[uu;,tn) - uyﬁ}

J+1

error =

The results, in table 3.1, are typical of the two discretisations. The second form

of discretisation provides a slight improvement in accuracy, in most cases.

Number of Error at t = 0.5 Steps required
free nodes || First discretisation | Second discretisation | First | Second
9 6.53 x 1072 777 < 1073 4 4
19 3.65 x 107? 3.03 x 1072 8 8
39 1.66 x 1072 1.30 x 1073 16 15
59 9.88 x 10™* 7.72 x 107* 24 23
99 5.00 x 1072 3.89 x 107* 40 38

Table 3.1: Error comparison
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Chapter 4

Convection-Diffusion Problems

So far, the scheme, presented in Chapter 3, has only been applied to problems
which involve the development of static, steep fronts in the solution. The model

equation for this purpose is the inviscid Burgers’ Equation

Ju Ju

The numerical results, given in table 3.1, exhibit quadratic convergence to the
exact solution, as the number of nodes is increased. This demonstrates that the
scheme significantly reduces the size of the numerical diffusion term, present in
the modified equation for the upwind discretisation.

It was suggested that, as a next stage in the development of the scheme, prob-
lems involving physical diffusion processes should be investigated. The addition
of a diffusion term to (4.1) provides a suitable model equation. Consequently, we

shall now consider numerical solutions of the viscous Burgers’ Equation,
— 4+ u—=¢c—— where £¢>0 (4.2)
In the case of static fronts, equation (4.2) poses no new obstacles for the

scheme. The static fronts for (4.2) merely differ from those for (4.1) in being

26



smeared over a larger region, and less steep. Since the monotonicity preserving
property of the scheme ensures sharp resolution of steep fronts for (4.1), the
more rounded solutions of (4.2) should cause no extra difficulties. For this reason
a test problem is chosen which possesses a moving front, in addition to the extra
physical diffusion.

Before this problem can be tackled, it is first necessary to obtain a discretisa-

tion of the diffusion term in (4.2), and its associated stability requirements.

4.1 Discretisation of the Diffusion Term

In Section 2.1, two forms of the differential equation in the moving frame were
given : the fully transformed equation (2.3), and a notationally shortened version
(2.4). When a discretisation for the inviscid Burgers’ Equation was required in
Section 3.4, a comparison was made between discretisations based on these two
equations. It was found that slightly better results may be obtained by using the
full form, (2.3).

Again it is possible to identify two forms of (4.2), when it is transformed to a

frame moving with velocity z.

4.1.1 Full Discretisation

Consider the viscous Burgers” Equation, (4.2),

2
Ou Ou 5a—u where ¢ >0

ot T or T Son
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FEach term may be written in (£,7) coordinates by use of the elements of the

Jacobian of the transformation,

1 x
L= — &= -=

Le Le
7, = 0 o= 1

The time derivative transforms as follows,

ou . .
o gt + Uy Ty
= U, — 2, U
First space derivative,
Ju . .
oz Uely + Ur Ty
= Lol
And the second space derivative,
gj; = aax(fxﬁs)

= Caple + &gl + UgrTy)

= Euolie + (€,) lige

Hence the equation in the moving frame is

oi . ou 0%
or Tllu =8 — bl ge = e(6) 5

In order to discretise the &, term, consider the following,

0

= oo = —(€2) wee
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In the previous Chapter, a discretisation of £, was found,

1 1 )
n+1 = (l’g)]_% = $]
~1

By applying first differences to this, an approximation for ¢ is obtained,

(51/'5);1% - (1’5)?_%

(zee)] = At

Using A¢ = 1, this reduces to the simple relation,
(2ee)? = 2 — 227+ 4 277}

These results produce the following upwind discretisation in the moving frame,

u — y” l/;b 1
k k 2 n n n
_I_ _I_glu U, — U _ = &
At At k ( j J 1) (xn-l—l _xni-l)?
k k-1
At
n o n _ an =
where viy = (uj_% 51?]_;_) (xn-l—l _ ntl
J Jj—1
n+1 n+1 n+1
. Ty —2x
E = nt1 nt1\3
(g™ —2pT)

j lf l/;_1_ —I‘E:IUZ>O
2

and
g—1 if Vi Fepp <0
2

4.1.2 Abbreviated Equation
As an alternative to discretising equation (4.3), which exhibits the transformation
2
explicitly, the diffusion term can be retained in the form ¢——. This is then
x

discretised consistently using central differences on an irregular grid

2 n n n
a U 2 Uiy — U ur — Uy
a 2 n n ( Zl+ Z”L - Z”L Z”L
z Tipr =T \ Ty — 4y Ty — 5
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4.1.3 Stability of the Scheme

Fourier stability analysis for a scheme of the form,

uf —ul N au? —ul _ 6(u?_l_l —2u? + u?_l)
At Az (Ax)? ’

provides an indication of the quantities which are of importance to the stability
of the explicit schemes to be considered here :

AN AN
Ifv= LN and p = em then

e The necessary stability condition involves terms due to diffusion, as well as

convection. For this particular example, |v| 4+ 2p < 1.

e A measure of the relative importance of convection and diffusion processes,

is given by the mesh Peclet number,

_ 1Yl

po=1" 4.
2 (4.5)

When the scheme, obtained by the method of Section 4.1.2, is implemented,
some method must be found for selecting the time increment, At, to ensure
stability. In general this value will change from step to step. It is a simple matter
to select a value, of At, for which the condition above is satisfied by the data at
the current time level. Furthermore, the adaptive scheme has the flexibility to
allow At to be changed, if need be, to satisfy the stability requirements of the
second upwind pass. This is due to the fact that, the second pass only uses the
nodal displacements, £/At, and not the nodal velocities.

However, for the discretisation in Section 4.1.1, the matter is not so simple.
The second upwind pass now involves quantities from the Jacobian of the trans-

formation. The transformation depends on the frame velocity, and not just on its
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displacement. Hence it is no longer valid to change At between upwind passes.
Some method must be found to select At, from the data at time t,, which will
guarantee the stability of both upwind passes. Such a method might be found
from inequalities which provide bounds on the nodal movement. An alternative
approach would be to make the scheme implicit, and so remove the stability

constraint on At.

4.2 Results

The following results were obtained for the simple form of discretisation outlined
in Section 4.1.2. Graphical output is given for the test problem derived from an

analytical solution [5] of (4.2) :
a
u(x,t) = g — atanh 2—(:1; — B — ut)
£

The parameter values are chosen to be a = 0.4, p = 0.6 and 5 = 0.125 This
solution represents a steep front which progresses across the region from left to
right. The value at the left hand boundary is held fixed at the initial value. The
number of nodes used is 21.

There are two distinct regimes of behaviour possible for a convection-diffusion
scheme. These are distinguished by the mesh Peclet number, P., which provides
an comparison of how accurately the scheme represents the separate processes
of diffusion and convection. A high value of P, indicates that the convection
process is the principal source of error. This may be seen by considering the

non-dimensional quantity, g, which appears in the denominator of (4.5).

w= (Ax)?
At
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(Az)?
At

If the discretisation measure, , 1s small in comparison to the physical diffu-
sion strength, ¢, then the scheme models the diffusion process with great accuracy.
This corresponds to a small value of, i, and a consequently large value of P.. It is
when the value of P, is large that convection-diffusion problems pose the greatest
challenge to numerical methods.

For the current test problem, values of ¢ were chosen to provide high and low

mesh Peclet numbers.

4.2.1 Low Peclet Number : P. ~ 0.01, ¢ =0.01

Figure 4.1 contains a graph showing the nodal positions, with time represented
vertically. The thick line shows the position of the centre of the front, as it moves
across the grid. Beneath this, is shown the numerical solution at times ¢t = 0.0,
0.25, 0.5, 0.75, 1.0. The dotted lines show the corresponding exact solutions.
This figure identifies two principal defects in the numerical solution.

First, the initial regular grid results in deterioration of the solution during
the first few time steps. As the grid becomes better adapted to the solution,
numerical diffusion decreases and the solution deteriorates much less rapidly.

Secondly, the grid fails to match the speed of the front, which quickly moves
beyond most of the grid.

The first of these problems, is due to the fact that the time step is being
chosen to suit stability requirements only. Figure 4.2 shows how the total time
elapsed changes as the solution is stepped forward. As nodes converge on the
steep front, the minimum of the grid spacings decreases, which forces At to

decrease to maintain stability. Once a distribution of nodes is achieved which fits
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Figure 4.1: Moving Front with Low Peclet Number
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the front well, the time step remains constant. After about 100 steps the front
has almost left the grid completely, causing the nodes to separate again, to give
a good representation of the constant valued solution which remains.

To remedy this problem, a measure of the goodness of fit to the solution is
required. This will indicate if the node moving algorithm is failing to reduce
numerical diffusion. In which case the time step should be reduced to maintain
the required accuracy, until the nodes are better placed.

The second of the problems, outlined above, will be considered in the next

Chapter.

4.2.2 High Peclet Number : P. ~ 0.1, ¢ = 0.001

The difficulties which arose for the low Peclet number, are even more severe when

the scheme attempts to solve the convection dominated problem. Figure 4.3
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shows that the front effectively leaves the grid at about ¢ = 0.7, and the solution

becomes meaningless.
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Figure 4.3: Moving Front with High Peclet Number
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Chapter 5

Attempts to Solve the Problems

Posed by Convection-Diffusion

5.1 Node Speed

The results given in Chapter 4 indicate that the adaptive scheme, so far developed,
is not suited to the task of modelling a moving front. Grid adaption causes the
separation between nodes to decrease near a steep front. In the Appendix it is
shown that, at each time step, each node is limited to move, at most, one quarter
of the distance towards either of its nearest neighbours. Hence, unless the time
step is suitably reduced, there is a severe restriction on the translational speed
attainable by the section of grid which contains the front.

The only control which the scheme allows over the speed of the nodes, is
provided by the time step At. By reducing At, a small nodal displacement
during one time step can represent a large nodal speed. In order to investigate

the effect of different selections for /At, it is convenient to remove restrictions due
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to stability of the upwind scheme. A fully implicit, unconditionally stable version

of the scheme was applied to the problems presented in Chapter 4.

5.1.1 Results for Implicit Scheme

The fully implicit scheme requires a tridiagonal matrix to be solved at each time
step. An algorithm employing LU decomposition, with forward and backward
substitutions, is used for this purpose.

Figures 5.1, 5.2 show the result of applying the implicit scheme to the test
problem of Chapter 4. In each case the time step has been selected, by trial and
error, to obtain the most accurate solution.

The implicit scheme appears to offer little, if any, improvement on the explicit

scheme, and will not be considered further.
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Figure 5.1: Implicit Scheme : Low Peclet Number
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Figure 5.2: Implicit Scheme : High Peclet Number

40



5.2 Drift Velocity and Numerical Diffusion

It now seems to be necessary, to remove the requirement of the grid to follow the
moving front. This is achieved by imposing the drift velocity (i.e. the velocity
of displacement) of the front onto the grid. The grid is now co-moving with the
front. Any grid adjustment will be solely a response to numerical diffusion and
the changing geometry (if any) of the front.

In Chapter 3, it was demonstrated that the scheme is efficient at reducing
the numerical diffusion present at a static front. However for the particular test
problem considered, the initial regular grid provides a good representation of the
initial data. Thus it is able to keep pace with the developing steep front, and so
reduce the numerical diffusion present for each time step.

For the test problem in Chapter 4, the initial regular node distribution disre-
gards the presence of a localised steep front in the initial data. It takes several
time steps for the adaption algorithm to correct for this. When a better node
distribution is achieved, numerical diffusion is drastically reduced but the early
loss of accuracy has degraded the solution. The initial ineffectiveness of the grid
adusting algorithm, must be compensated for by other means. A search for a
suitable time step control, based on the limits on node movement given in the

Appendix, was not successful.

5.2.1 Adaptive Scheme in a Moving Frame

The problem set out in Chapter 4 is now recast in a slightly different form. The
initial function is the same tanh curve, but now given a central position in the

region. The grid on which the adaptive scheme is to work is set in a frame which is
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moving with the speed of the front. Figure 5.3 shows that, under these conditions,
the nodes eventually move to stable positions around the front. Once the grid
has reached this stable configuration, the solution displays a dramatic reduction
in numerical diffusion. The remaining error, which can be seen in the lower graph

(solution at t = 1.0), is almost entirely a remnant of the early ill-placing of nodes.
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Figure 5.3: Grid with Drift Velocity
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Conclusion

Chapter 1 introduced the problems, associated with first order schemes, for solv-
ing differential equations involving convection. The principal source of error was
seen to be the phenomenon of numerical diffusion. The technique of the modified
equation was used to analyse the numerical diffusion, associated with a simple
upwind scheme for convection. The numerical diffusion term of the modified
equation (1.4), demonstrates the strong dependence, of numerical diffusion, on
the grid spacing in regions of high curvature.

This provided the motivation for examining adaptive grid schemes in Chapter 2.
Two basic methods of grid adaption were outlined. Dynamic Rezone Methods
involve grids which move with features of the solution, such as sharp fronts. In
Static Rezone Methods individual grid nodes do not track the solution, but are
distributed to give a good representation of the solution.

In Chapter 3, an existing adaptive finite difference scheme, [1], was discussed.
A test was carried out, between the original form of this scheme and a modified
version. This second form of the scheme was obtained from a discretisation of
the equation, in a moving frame of reference.

The adaptive convection scheme, presented in Chapter 3 and extended to

convection-diffusion in Chapter 4, shows the ability to reduce numerical diffusion.
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However, the grid is seen to be unable to respond to moving features in the
solution, Section 4.2. This indicates that the scheme is not of the Dynamic
Rezone type.

In Chapter 5, the adaptive grid is given the translational speed of the front
to be tracked. This drift velocity must be found by means independent of the
adaptive scheme. The numerical solution, though much improved, still suffers
deterioration due to numerical diffusion on the initial, ill-adapted grid. This
problem may be remedied by monitoring the goodness of fit of the grid to the
solution. If the grid is not well adapted, other means must be employed to reduce

numerical diffusion and maintain accuracy.
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Appendix

Let {u}:j=0,---,J+1} be the result of the upwind predictor step and also be
monotonic. The grid adaption routine moves the nodes according to the following
scheme [1],

it =2 4 (A", (1)

J

L 1 6% )

where (A"t ) = A i(A:L'j)” if ‘Au;
u,

j

*
> ‘Auj-u‘

16%ux
and (Al’n-l_l)‘ _ - u]-l—l

1= T, o) I

*
< ‘Auj-u‘

Consider the case \Auj > ‘Auj_l_l‘. Since {u}} is monotonic there can only be

two possibilities,
a. Aut > Auiyy
% %
b. —Aut > —Aul,

Both (a) and (b) result in the same inequality for ratios of the function differences,

%
Uit

—T= >0
Auj

1>

The node movement formula (i) for this particular case is,

= (1) 8
J
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A similar inequality is obtained for the case \Au;

< ‘Auj_l_l‘. Combining

these inequalities and using the definition,

the following limit on the movement of node j, in one time step, is obtained :

x?—l + 31;? x?ja-l-l 31?? + x?—l-l (11)
4 I 4
. L . . " L :
When this inequality is combined with, Ty = T it is a simple
2
matter to obtain,
:1;?_1 < l‘?_% < :1;?"'1 (iii)

This inequality is the justification for the particular linear interpolation, which is

chosen to obtain "+ (:1;;?_1) in Section 3.4.
2
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