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Abstract

Data assimilation is needed to generate an analysis, whigbdad as the initial conditions for
numerical weather prediction. Four-dimensional variaicdata assimilation (4D-Var) is the
most advanced data assimilation algorithm to be used opeadl/; it uses observations that
are distributed in time through the use of the model equation

The aim of this thesis is to understand the extent to whichvdbDean develop the struc-
tures needed for the growth and decay of baroclinic systedueh mid-latitude storms can
cause severe damage and play a key role in the evolution aitthespheric flow. The ap-
proach taken isolates the important mechanisms in 4D-Vaomgidering a simple model of
baroclinic instability.

Idealized case studies using the 2D Eady model considersh®fua time-sequence of
observations to reconstruct the state in unobserved regidmovel technique using the sin-
gular value decomposition of the 4D-Var observability mais developed, based on methods
that are commonly used in satellite retrieval studies. Utsisd here to provide a new and useful
understanding of the information content of observatiorn&D-Var.

It is shown that the information that is propagated to thebseoved regions is strongly
penalized by the background state and is also extremelytiserts observational noise. This
is understood by establishing a link with the literature dchdnov Regularization. An analysis
increment will result in growth if the observations are giva only the end of the window, or if
a relatively large weight is given to the background statds Tay result in a poor forecast if
the required analysis increments lead to decay. Two waysatamze the benefits of 4D-Var
are identified: the initial and final observations should &edpart in time, and appropriate

values for the regularization parameters should be spécifie
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‘I don’t understand you,’ said Alice. ‘It’s dreadfully com$ing!’

‘That’s the effect of living backwards,’ the Queen said Kindit al-
ways makes one a little giddy at first—-’

‘Living backwards!” Alice repeated in great astonishmefitnever
heard of such a thing!”

‘“but there’s one great advantage in it, that one’s memomksvboth

ways.’

— Lewis Carroll, “Through the Looking Glass”



Chapter 1

Introduction

1.1 Motivation

Data assimilation (DA) uses observational data to genarasmalysis - the best estimate of the
present state of the atmosphere. The analysis is used astthkdonditions for a numerical
weather forecast. The chaotic nature of the atmospheresribansmall errors in the initial
conditions may amplify rapidly (Lorenz, 1993), and therefthe analysis needs to be as accu-
rate as possible. For this reason, DA is one of the most irmpbparts of numerical weather
prediction (NWP).

The DA algorithm must be able to assimilate observationsal@anonlinearly related to
the analysis variables, for example, satellite data. Treeations have errors and a sparse
spatial distribution, so the DA algorithm must filter the s®and interpolate between the obser-
vation points, whilst ensuring that the fields are meteaiclally realistic. The DA algorithm
must also be able to solve large-dimensional problems, as imperational context there are
approximatelyl0” unknowns. Further, the algorithm must compute the anatysiskly, so
that the forecast can be generated.

Variational DA finds the analysis by minimizing a cost fulctithat contains two terms.
One term penalizes the squared distance from the backgsiatel(usually a forecast that is
valid at the same time as the analysis) and the second terafizenthe squared distance from
the observations. The variational formulation is suitdbtesuch large-dimensional problems,
and also allows the use of observations that are (weaklylimearly related to the analysis
unknowns (Lorenc et al., 2000).

In three-dimensional variational DA (3D-Var), observasaollected over a certain time
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period are assimilated by assuming that they are all takéimeagsame time. This means that
there may be up to a three hour difference between the timea obaervation and the time

at which the background state is valid. 3D-FGAT (First Guasthe Appropriate Time) (Ra-

bier et al., 1998) extends 3D-Var so that the backgroune ssaevolved to the time of the

observations.

In four-dimensional variational DA (4D-Var), a whole timegience of observations are
assimilated, by linking them together with the numericaétast model equations. The ability
of 4D-Var to combine information from observations with tkreowledge of the evolution of
the atmosphere means that it is one of the most advancedthigsrto have been used in
operational NWP (Rabier et al., 2000). 4D-Var is much momagotationally expensive than
3D-Var and it is therefore important to assess whether thargedges of 4D-Var can justify the
expense.

It has been shown that 4D-Var produces better results thawaBn situations of baro-
clinic growth (e.g. Rabier and Courtier, 1992, Rabier etl&198, Desroziers et al., 1999, Rabier
et al., 2000). Baroclinic instability is one of the dominam¢chanisms for the generation of
mid-latitude depressions. These depressions can cause skamage and it is important that
NWP centres are able to forecast them well. Thus, it is ctticéz the DA algorithm correctly
develops the initial conditions needed for such storms. CEpability of 4D-Var to develop the
correct vertical structures needed for the growth and detagroclinic systems is the subject
of this thesis.

This chapter begins by briefly summarizing a history of datmilation methods, so that
we can understand why 4D-Var is known as an advanced dataikgin algorithm. Then,
the current knowledge regarding 4D-Var in the presence afdbiaic growth is summarized.
The chapter finishes by discussing issues that have not get tlesearched, stating the key

questions that are addressed in this thesis, and the laf/the cest of the thesis.

1.2 History of Data Assimilation

A brief overview the history of DA and a description of curt&A algorithms are now given.
More detailed overviews may be found in, for example, DalE§9(), Ghil and Malanotte-
Rizzoli (1991), Wunsch (1996) and Bouttier and CourtierQ2)0

In as early as 1850, the very first synoptic charts were ale@éservations were plotted

on geographical maps, and isobars and isotherms were dnaweg band. There were very
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few observations, so the analyst would use his knowledgeoéwaous synoptic chart together
with his knowledge of how weather systems evolve, to infergbsition of the isolines in the
data void regions. Knowledge about the relationships betvdfferent variables could also
be applied. For example, the geostrophic balance reldtiprssates that the wind direction is
approximately parallel to the isobars, and that the isobgrsloser together in regions where
the wind speed is stronger. These synoptic charts were thidirgt type of subjective analysis.
The method relied heavily upon the subjective judgemerti@tinalyst, and as the charts were
produced by hand, the method would take a great deal of timberWhumerical weather
models were created, the synoptic chart had to be trandferte a gridded data set to use as
the initial conditions. It was realized that computers vabhé able to generate much better
objective analyses in a shorter time. However, the undeglgbncepts of subjective analysis,
such as using extra knowledge about the evolution of the siivere and atmospheric balance,
are still used in present day objective analysis algorithms

The first objective analysis algorithms fitted polynomialshe observations by minimiz-
ing the squared difference between the analysis and thewaess (Gilchrist and Cressman,
1954). To achieve a good analysis, the spatial distancedesithe observations needed to
be small in comparison to the size of the weather systemysew| but in reality there are
many data sparse areas. Therefore, it was suggested (8egh and Doos, 1955) that a
background state is used as a first guess. The backgrouedsktild be the best available
approximation to the present state, before the use of theraditsonal data. This could be,
for example, a climatology or a forecast that is valid at taens time as the observations.
This suggestion led to the iterative technique known as tlee&ssive Corrections Method or
Cressman Analysis, where the background state was modifidtelobservations to produce
an analysis. To ensure that the analysis was smooth, therafmn from an observation was
also used to update the surrounding grid points.

The Cressman analysis is a weighted average of the backijstate and the observations;
however there is no direct way to specify the optimal weightse specification of the optimal
weights is important so that, for example, a good qualitikgeaund state is not deteriorated by
poor quality observations, and so that the information ftbenobservations is optimally spread
to the surrounding grid points. Statistical techniguesweessary to determine the expression
for the optimal analysis. Such optimal estimation forms ltlasis of most data assimilation
algorithms that are commonly used at the present time. THateassimilation algorithms

are summarized in Table 1.2. Sequential algorithms suchpasn@l Interpolation and the



Chapter 1. Introduction 4

Use observations at the Use a time sequence
same time (Simple) of observations with the
model (Advanced)

Sequential Optimal Interpolation Kalman Filter

Variational 3D-Var 4D-Var

Table 1.1: A comparison of statistically optimal data assimilatiogatithms, based on Ghil
and Malanotte-Rizzoli (1991).

Kalman Filter use the optimal estimation equations to camplue analysis explicitly, whilst
the variational algorithms such as 3D-Var and 4D-Var coragbe analysis by minimizing
a cost function. The simple algorithms only use observattaken at one time level, whilst
the more advanced algorithms use an entire time-sequeraigsefvations through the use of
the model dynamics. These algorithms are now discussediail.d®nly linear observation
operators and models are considered, although the algwitan be extended to consider
nonlinear models. The notation in this section and in theakthe thesis follows that advised
in Ide et al. (1997).

1.2.1 3D-Var and Optimal Interpolation

Suppose that the true state of the atmosphere is repredsngedectork’ of dimension n, and
that the first guess or background state is givexbySuppose that m observations are given
in a vectory, and are related to the true state variables through tharlolgservation operator

H. The background state and observations have etfarade?, such that

xt=x"+¢&° (1.1)

y = Hx' + ¢°. (1.2)

The errors are assumed to be unbiaséttl) = E(°) = 0), whereE(x) denotes the expec-
tation of z, and also to have covariancBs= E(ete’’ ), R = E(e°°7).

The aim of the data assimilation algorithm is to combine thekiground state’ and the
observationgs such that the analysis” is as ‘close’ to the true state as possible. In current
data assimilation methods, the analysis is defined as the@maxlikelihood estimate or as
the minimum variance estimate. In fact both the maximumlilik®d and minimum variance

estimates result in the same analyses provided that thevaltieas and background probability
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distribution functions (pdfs) are Gaussian. This is diseualsby Lorenc (1986) and Bouttier and
Courtier (2003).

The maximum likelihood estimate (or more precisely the mmaxin a priori estimate) ap-
proach is based on Bayesian statistics. By assuming thbattiground state and observations
are independent, then from Bayes’ theorem, it can be shoatrith analysis pdP,(x) can be
written as:

P,(x) xx Py(x)P,(x) (1.3)

where B,(x) and P,(x) are the background and observation pdfs. The maximum tiked
estimate is then given by the state which maximizes the aigaprobabilityP,. This can be

simplified by assuming that the pdfs are Gaussian. In paaticoy letting:

Py(x) = ¢y exp E(X —x")TB (x — Xb):| 1.4)
Py(x) = cyexp E(y —Hx)"R™(y — HX)} (1.5)

and taking the log of (1.3) then the maximum likelihood estiex” is given by the state which

minimizes the cost function:
1
J(x) = 3 {x-x")"B'(x—x")+(y—Hx)"R™'(y —Hx)} . (1.6)

The minimum variance estimate, also known as the Best Lidebhrased Estimate (BLUE)
or the Gauss-Markov Theorem, assumes that the analysighie @drm of a linear combination
of the background state and observations and uses the welgtitminimize the trace of the

analysis error covariance matrix. This gives the equations

x* =x" 4+ K(y — Hx") a.7)

K=BH'(HBH" +R)!' = (B! + H'R'H)"'H'R . (1.8)

By setting the gradient of the cost function to zero, it carsbhewn that the analysis that
is found by minimizing the cost function (1.6) is the samelas found by solving the BLUE
equations (1.7 and 1.8) directly. The weight malbspecifies the optimal weights that were
not specified in the Cressman method. The analysis is givea Wgighted average of the

background state and the observations. If the backgroudseare small compared to the



Chapter 1. Introduction 6

(@)x® has small errors in comparisonyo (b) x” has large errors in comparisongo

Figure 1.1: Schematic diagrams of th& and J® parts of the 3D-Var cost function for a state
vector with only one variablex® is the background stats; is the observation, ang® is the
analysis, which is given by the minimumJf+ Je.

observations, then the analysis would be close to the baakgrstate. If the background state
errors are large compared to the observations, the anabgsitsl be close to the observations.

The method known as Optimal Interpolation (Ol) is a seqaémiethod that finds the
analysis by using the BLUE equations (1.7 and 1.8) direéity. the global data assimilation
problem, the covariance matrices are very large, so areuliffio store and invert. Therefore,
the optimal interpolation scheme is implemented on subalosof the globe (Lorenc, 1981).
Further, the equations can only deal with linear obseraaijmerators. This means that satellite
radiances can not be directly incorporated as the radiativsfer models are nonlinear.

The method known as Three-Dimensional Variational Datamistion (3D-Var) finds
the analysis by minimizing the cost function (1.6) directtypractice, the covariance matrices
do not need to be inverted, so it is possible to solve the prolglobally. It is also possible
to extend the cost function to use nonlinear observatiomadpes so that satellite data can
be included directly. The minimization of the cost functisralso a weighted, tapered, least
squares method, provided that the weight matrices are diyehe inverse error covariances
Wunsch (1996). The analysis is given by the state which mz@mthe noise vectors in thg
norm. The vector which the cost function is minimized witBpect to is known as the control
vector. The control vector may not be the same as the statervepreconditioning is applied.

The 3D-Var cost function (1.6) has two terms. The first terikniswn as the/® or back-

ground term and the second is known as #4eor observation term. These two terms are
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®
@ /AVEPROCESSES

®
OBSERVATIONS

Figure 1.2: Schematic diagram of the propagation of information intoagiadhole, based on
Fig. 1 from Thompson (1961).

illustrated in Fig. 1.1. If it is assumed that the backgroatate has small errors (Fig. 1.1(a))
then theJ’ term is narrow in comparison to th& term, so that the minimum of® + J° is
close to the background state. However, if it is assumedhledtackground state has relatively

large errors (Fig. 1.1(b)), then the minimum.Bf+ .J° is close to the observations.

1.2.2 4D-Var and the Kalman Filter

There many regions in the atmosphere that are data sparseex&mple, there is little in-
situ data over the oceans and also at upper levels. Howgvwempassible to combine a time
sequence of observations with a numerical forecast modettinstruct the atmospheric state
in these data holes. This method was first proposed by Tham{@$$1), and a schematic
diagram based on this is shown in Fig. 1.2. At the first timellesbservations are taken,
and there are no observations in the data hole. These oheasrare then used in the initial
conditions for the model, and the model is integrated. Tharmation is then propagated into
the data hole by advection or wave processes. Observatiericen taken again, so that the
entire state at that time has been observed. Similarly,akeeltble could be positioned so that
the state over the data hole is first advected and then oloserve
Sasaki (1970) developed a variational method to combineéntieemation from a time-

sequence of observations with a numerical model. The ngaleriodel was added as a con-
straint to the minimization, through the use of Lagrangetiplig¢rs. The control variables
for the minimization were given by the model state at evanetievel. Such an algorithm is
too large to be solved operationally, but can be simplifiedgighe ‘reduction of the control
variable’, as introduced by Le Dimet and Talagrand (1986y.f@mulating the problem as

an optimal control problem, it is possible to use only théiahconditions as the control vari-
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ables. The resulting minimization problem can be efficieatllved by using an adjoint model
(Errico, 1997) to calculate the gradient of the cost furrctibhe method that was developed is
now known as 4D-Var as the time-sequence of observationsdara fourth dimension.

Full NWP models are nonlinear and so it is possible for theimim of the cost function
to be non-unique. Courtier et al. (1994) extended 4D-Varite oqncremental 4D-Var, where
the NWP model is linearized and a series of linear assinitgbroblems are solved instead.
The cost may be further reduced by running the linear modedslewer resolution or with
simplified physics. The incremental 4D-Var was first appteedn operational model by Rabier
etal. (1998). Inthis thesis, only linear models are consideand so we define the cost function
for this problem only.

In general, the cost functios contains a background territ and an observational term
J°,

J(xo) = J° 4 J° (1.9)

wherex, denotes the model state at timygthe control-variable). The background term is the
same as for 3D-Var:
1
J*(x0) = 5 (%o = x") "B~ (x) — x) (1.10)

wherex’ is the background state at the initial time, dAds the background error covariance

matrix. The observational term is

N
> (Hx —y) "R (Hix; - yi) (1.11)

i=1

J?(xo) =

DO | =

wherey; is a vector of observations at timig H; is the observation operator, which converts
from model space to observations space Bnds the observational error covariance matrix.

The 4D-Var problem is then to minimizé(x,) subject to the strong constraint that the
sequence of model states must also be a solution of the mqgdatiensx; . ; = Mx;. A
strong constraint means that the model is assumed to becpeH®wever it is possible to
formulate the problem with a weak constraint so that theqoeénmodel assumption can be
relaxed. The 4D-Var method is illustrated in Figure 1.3. sTisia constrained optimization
problem. However, by using an adjoint model, the problembmatransformed into an uncon-
strained minimization through the use of Lagrange mukigli This will be described in detail
in Chapter 2.

It was demonstrated that the analysis for 3D-Var can alsoiiteew as a solution of the
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Figure 1.3: Schematic diagram of the Four Dimensional Variational dasgimilation method:
minimize the squared distance between the analysis andittiglound state at the beginning
of the assimilation window, and the squared distance batwe=observations and the forecast
state throughout the assimilation window.

BLUE equations that are used in optimal interpolation. &ny, the analysis for 4D-Var can
be written explicitly in the form of a sequential algorithmdwn as the Kalman Filter. This
algorithm will be discussed below. The equivalence betw#@rVar and the Kalman Filter
gives a key result that the analysis at the end of a 4D-Vamalsgion window is the same as
that obtained by the Kalman Filter, if the same backgrounar @ovariance matrix is specified
at the beginning of the window, and the models are perfectiagdr. This can be proved by
showing that 4D-Var and the Kalman Filter both solve the Ricequation, as discussed by
Jazwinski (1970), Ghil and Malanotte-Rizzoli (1991) andi&fch (1996), but is perhaps more
easily proved by considering a sequence of 3D-Var analysg¢gepagating the background
error covariance matrix using the Kalman Filter (e.g. Larel986, Li and Navon, 2001).

The Kalman Filter (Kalman, 1960) is a sequential assinulaalgorithm, like the BLUE
equations, but the background error covariance matrixapggated explicitly in time. The
Kalman Filter can be viewed in two stages: forecast and armsalyVe denote the state covari-
ance matrix at time;, asP;, so that the error covariance at the beginning of the 4D-\fadaw
isPy, = B.

The Forecast step is:

x/ = Mx? |

P =

(1.12)
P/ = MP* M.
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The Analysis step is:

K, = P/HHP/HY + R = [P+ HVRH] IR,
x* = x! + Ki[y; — Hx!] (1.13)

P = [I - K;H,|P/.

x¢ gives the analysis at timg, with associated error covarian®¥. It is not possible to
use the full Kalman Filter for the assimilation of the atmlosge as the size of the state vector
is too large. For example, the background error covarianatixwould be(10” x 107) and
therefore inverting and storing such a matrix is not possii@th now and in the future. As
both computer power and memory increase in the future, ikétyl that the state vector will
become even larger and so the covariance matrix will alsorbedarger.

The equivalence between 4D-Var and the Kalman Filter allmvsnderstanding of the 4D-
Var algorithm. The Kalman Filter propagates the backgraemok covariance matrix explicitly
through the assimilation window, and therefore the 4D-V@oathm also implicitly propagates

the covariance matrix.

1.3 Baroclinic Instability

This thesis is concerned with the ability of 4D-Var to genethe correct analysis in regions
of baroclinic instability. We therefore now describe bdirac instability, before discussing the
previous literature concerning 4D-Var and baroclinic afslity.

Baroclinic instability plays a key role in the developmehirad-latitude cyclones that are
seen in the atmosphere. It is an instability associated avilonal wind shear with height,
which through thermal wind balance, depends on the meradlimmperature gradient. The
instabilities grow by converting the available potentiaegy in the temperature gradient of the
basic state, into eddy potential and eddy kinetic energyaa@d@n important part of the global
energy cycle (Holton, 1992). There are two approaches tmenag baroclinic instability. The
first approach is to consider an eigenvalue problem. Theveggors of the model, also known
as normal modes, grow exponentially without changing thpatial structure. According to
linear theory, the eigenvectors with the largest eigeraskventually become the dominant

structures in a forecast from random initial conditionse Becond approach is to consider an
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initial-value problem. That is, to consider the non-modalfot normal mode) growth. It is
possible for some initial perturbations to grow for limitpdriods at faster rates than normal
modes, and these perturbations change their spatialwteueith time. Singular vectors of the
model give such rapid linear growth over a finite time. Botl #igenvalue and initial-value
approaches examine the linear growth of perturbations tasectstate, and both are highly
relevant for interpreting the growth of cyclones in the asiwere. In the rest of this thesis, we

refer to normal modes of the model as modal, and any othestateias being non-modal.

1.3.1 Quasi-Geostrophic Potential Vorticity (QGPV)

Before the mechanisms for modal growth and non-modal grevdldescribed further, we first
describe a quantity known as quasi-geostrophic potenigicity (QGPV). It is important to
understand this quantity, as a model based on QGPV, knowredsady model, is used in this
thesis.
QGPV,q, also known as pseudo potential vorticity (Hoskins et &89, Hoskins, 1997)
may be defined in terms of the geostrophic streamfunctias:
13 0

_ 2, 9 ([ 0¥
9=+ Vit + <N2 82) (1.14)

wheref = fo + 3(y) is the Coriolis parametefy? = %% is the Static Stability, wher@, is
the potential temperature of a hydrostatically balancéeteace state such théat= 60,(z) + ¢,
andV? = 88—;2 + 3722. Equation (1.14) is an elliptic equation and is central t@athk known as
the ‘Action at a Distance’ principle (Davies and Bishop, 429%Given the QGPV and suitable
boundary conditions, it is possible to infer the correspogdtreamfunction field, which can
be considered as a smoothed version of the QGPV. A change iIQ@PV at a single point
would not only give a significant change in the correspondingamfunction at the same point
but would also give a significant change in the streamfundield in a surrounding region.
This surrounding region is stretched in the vertical duénedoefficientf?/N? ~ 10~

QGPV can be considered as a dynamical tracer as it is comsérilewing adiabatic,
geostrophic flow and is important as it combines both dynah@od thermodynamical infor-
mation. This can be illustrated by considering importariaibee relationships in the atmo-

sphere. Geostrophic balance states that the geostrophewyiv, and geostrophic relative
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Figure 1.4: Schematic diagrams of potential vorticity anomalies arerthssociated circula-
tions (green arrows) and temperature anomalies (W and Q)a(aegative PV anomaly and
(b) a positive PV anomaly. W and C represent Warm and Cold afiesrespectively. The
thin lines represent isentropes (constéhtsuch that the potential temperature increases with
height. Based on Fig. 6 from Hoskins (1997).

vorticity £, are related to the streamfunction by:

v, 0
= Tl 2y, (1.15)

oY 0
: _w) 59—8:6 dy

(ur10) = (-5 5
Hydrostatic balance states that the potential temperdtuaed buoyancy are related to the

streamfunction) by:

Gy K
b= 009 = fog (1.16)

These relationships may be combined to give the Thermal \Baddnce relationship, which

states that the vertical shear of the horizontal wind isteeldo the horizonal temperature

Oug Ovg\ ob . Ob
(52.52) = (-6.5,1:57): (117)

Using the geostrophic balance and hydrostatic balanceae$hips, the QGPV can also

gradient by:

be written as:
00’ |0z

TIds (1.18)

q:f+£+fo

This equation illustrates that a positive QGPV anomaly soamted with a cyclonic circula-
tion with a warm anomaly above and a cold anomaly below, amilagily a negative QGPV
anomaly is associated with an anticyclonic circulatiorhvaitcold anomaly above and a warm
anomaly below. These relationships are also illustratetheyliagrams in Fig. 1.4.

Boundary temperature anomalies can also be describedms ®rQGPV. The boundary

may be a lower boundary such as the ground or an upper bouswlamas the tropopause. The
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Figure 1.5: Schematic Diagram of lower boundary temperature anomalres their associ-
ated circulations. (a) a warm anomaly and (b) a cold anomBlgsed on Fig. 6 from Hoskins
(1997).

tropopause is the interface between the troposphere, eligively low static stability, and
the stratosphere, with relatively high static stabilityheThigh static stability means that the
tropopause may be modelled as a rigid boundary. Brethet@66) showed that a temperature
distribution on a boundary is equivalent to a distributi6@Q&PV on a thin sheet just within the
fluid. On the lower boundary, a warm anomaly is equivalentpositive QGPV anomaly, and
a cold anomaly is equivalent to a negative QGPV anomaly. E&sely, on the upper boundary,
a warm anomaly is equivalent to a negative QGPV anomaly, awddsanomaly is equivalent
to a positive QGPV anomaly. Thus, boundary temperature atiesthave associated circula-
tions. These are illustrated in Fig. 1.5. Consider a warnmaaip at ground. The amplitude of
the anomaly decays upwards, and therefore, from thermal batance, the warm anomaly is
associated with a cyclonic circulation. Similarly, a coltbenaly is associated with an anticy-
clonic circulation. Temperature anomalies at the tropspalecay downwards, and therefore
they have circulations of the opposite sign. The changegin setween the boundaries is im-
portant for baroclinic instability in the Eady model. Thedthey-Stern Instability Criterion
(Charney and Stern, 1962, Holton, 1992) states that fordiaro instability, there must be a
change in the sign of the meridional QGPV gradient in the domiBhis reversal in sign may
be associated with a change in the meridional basic state/Q@Rlient in the interior or with

the boundary temperature gradients which are associatbdaiindary QGPV gradients.

1.3.2 Modal Growth

Charney (1947) and Eady (1949) formulated mathematicaktsddr baroclinic instability. In

this section, the baroclinic mechanism, based on the sesylCharney and Eady, is described
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Figure 1.6: Schematic diagrams illustrating the direction of propagatof Rossby waves at
the tropopause and at the ground. Each diagram is an x-y cgestion of the atmosphere at
mid-latitudes. It is warm in the south and cold at the norttheTcircles represent tempera-
ture anomalies on the basic state meridional temperatus&idution. At the tropopause, the
warm anomaly (W) is associated with an anticyclonic cirtiola, and at the ground, the warm
anomaly is associated with a cyclonic circulation. The miemal advection by the induced
velocities means that the wave at the tropopause propagagstsvards relative to the flow, and
the wave at the ground propagates eastwards relative to the fl

non-mathematically. In the Charney formulation, the béfiece (y-dependence of the Coriolis
parameter) and density decay with height were included lagiek twas no rigid lid at the top.
However, in the Eady formulation, beta was assumed to be #e¥aensity was uniform, and
a lid was added to simulate the tropopause. Neverthelessetults from the two different
formulations provide similar results. This section bedigglescribing edge-wave propagation
in the atmosphere and then describing the coupling betwpeerruand lower edge-waves,
which gives baroclinic instability.

Consider an atmosphere with a constant Coriolis paramateméth a meridional tem-
perature gradient. This gradient is associated with a zemal shear with height, through
thermal wind balance (1.17). The ground and the tropopaaiséoe considered as horizontal
boundaries at which the vertical velocity is very small.tlisiassumed that there is no vertical
motion at the boundaries, the basic state can support Resfgswaves, as illustrated by Fig.
1.6 and discussed in Gill (1982) for example. These waves hamaximum amplitude at the
boundary, and then decay exponentially with the distara® the boundary.

The propagation of the Rossby edge-waves is now describedir$Vconsider an edge-
wave at the ground. The amplitude of the wave decays upwandtherefore, from thermal
wind balance, a warm anomaly is associated with a cyclonttilztion, whilst a cold anomaly
is associated with an anticyclonic circulation as illusgthin Fig. 1.6 (a). The circulations
act to move colder air to the east of the cold anomaly and waainé¢o the east of the warm

anomaly, so that the entire wave propagates eastward$vedtathe flow. In contrast, consider
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Figure 1.7: Schematic Diagram of baroclinic instability. The meridatemperature gradient

is associated with a zonal wind shear with height throughrtred wind balance. There is a
wave on the upper boundary (tropopause). The warm anomahedtopopause is associated
with an anticyclonic circulation as marked by the red arroviigis circulation extends down to
the ground and induces a wave on the lower boundary.

an edge-wave at the tropopause, as illustrated in Fig. 3.6 The amplitude of the wave
decays downwards, and so from thermal wind balance, a waomaly is associated with an
anticyclonic circulation and a cold anomaly is associatéth & cyclonic circulation. These
circulations act so that the entire wave propagates wedsyeglative to the flow.

This edge-wave propagation is in fact the same as Rossbyprapagation, as the merid-
ional temperature gradient acts in the same manner as &pasgridional PV gradient at the
ground and a negative meridional PV gradient at the tropegpaas indicated also in Fig. 1.6. If
a parcel of air moves from a region of high PV to a region of |Iowy iPmust generate positive
relative vorticity so that the PV of the air parcel is conggtvThe circulations associated with
the relative vorticity again act to move the wave so that tagespropagates westwards at the
tropopause and eastwards at the ground. In the real atmesphe Coriolis parameter varies
with latitude due to the curvature of the earth. This alsecff the meridional PV gradient of
the basic state, and hence also gives rise to Rossby waveiteha

We now consider how the upper and lower edge waves interactescribed by Davies
and Bishop (1994). Consider the situation where there isdge @ave at the tropopause as
shown in Fig. 1.7. The circulation associated with the waemgerature anomaly extends
down to the ground. This circulation induces a wave on thesfo@oundary. The wave on

the lower boundary also has an associated circulation (litht tve opposite sign to that at
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the upper boundary), which then extends to the upper bowraaar intensifies the upper level
wave. Thus, the upper and lower level edge waves are couptgdhter via the meridional
velocity field. This process is referred to as ‘self-devetent’.

From thermal wind balance, the meridional temperatureigrads also associated with a
vertical shear of the zonal wind, so that the wave at the frapse is advected eastwards faster
than the wave at the ground. Since this is counter to theivel&ossby wave propagation
speeds, it is possible for the edge waves to become phdsedldagether, so that they move
at the same speed. Thus, the two edge waves become an eniplectovave that travels
downstream. The edge waves interact with each other sohbarhplitude grows in time
whilst the spatial structure or shape is preserved. Thistisial mode or eigenvector growth.
If a model is integrated from random conditions, the normaldes with large eigenvalues
will dominate the structure of the solution. The self-deyehent mechanism relies on the fact
that temperature anomalies on the upper and lower bousdeneeassociated with circulations
of the opposite sign. This is necessary so that the Rossbgsyanopagate in the opposite
directions, and so that they can become phase-locked &rgeth

The spatial structure of the normal mode is vital for the groar decay of the mode. For
the growing mode, as shown in Fig. 1.8 (a), the pressureafstitection) field tilts westwards
with height, so that the upper level ridge is close to beimgaly over the maximum meridional
winds at the lower level. The effects of meridional advet&md wave propagation mean that
the maximum temperature anomalies lie just to the east @lttface low and just to the west of
the surface high so that the temperature field tilts easswaitth height. For the decaying mode,
as shown in Fig. 1.8 (b), the pressure field tilts eastwartls gight, and the temperature field
tilts westwards with height. Baroclinic growth is assoedtvith the vertical coupling between
upper and lower waves. However, this is not possible for wateall wavelengths. Edge-
waves with short wavelengths have smaller vertical scaldsd® not exert a large influence
on the opposite boundary, so that baroclinic growth can onotio(Davies and Bishop, 1994).
Thus, short waves are neutral (neither grow nor decay) sidoihger waves are baroclinically
unstable. Using the Eady model, it can be shown that the wag#h of the most unstable
mode is around 4000km (James, 1994). This is similar to thlogs that are seen in real life,
as discussed by Carlson (1994). Baroclinic instabilityssaziated with a strong meridional
temperature gradient, or baroclinicity, of the atmosph&has strong gradient is found at mid-
latitudes, and is more intense in the winter; hence the maxinm storm tracks are found at

mid-latitudes during the winter season.
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Figure 1.8: The most rapidly (a) growing and (b) decaying Eady waves.t®pganels show
the streamfunction fields, with high and low regions marketdi the bottom panels show the
buoyancy fields with the warm and cold regions marked.

A real example of baroclinic growth in the atmosphere is sihowFig. 1.9. This example
was chosen over the United States as there is a large amodatafcompared with regions
over the oceans. The low pressure system has developedgia with a large temperature
gradient. The low level (850 mb) trough is located to the efishe upper level (500 mb)
trough, illustrating the westward tilt with height that igat for the growth of the system.

1.3.3 Non-Modal Growth

The linear models of Charney and Eady are non-normal, whigdins that the discrete normal
modes do not form a complete orthogonal basis. Pedloskyjl€owed that a continuous
spectrum of waves must also be included, so that any ingdupbation can be represented. In
fact, the continuous spectrum involving delta functionBYhplay an important role in the rapid
development of perturbations. This has been shown by F&t882, 1984), where the growth
of perturbations is examined in the form of an initial valuelgem. Instead of analytically
finding the eigenvectors, the equations were integratewywiiferent initial conditions. This

approach emphasized that it is possible for the growth rate merturbation to exceed the
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Figure 1.9: 500mb and 850 mb level heights and temperature on the 12 Feb &000Z.
Plotted station data shows the wind, temperature and dewtpemperature. The solid lines
represent contours of the Geopotential Height (m), and #ehdd lines represent the temper-
ature (Celcius). Note that these contours have been detednising a data display package
(McIDAS-X), and not a data assimilation algorithm. Takesnirhttp://apollo.lsc.vsc.edu/

exponential growth of the most unstable normal mode, ovenield period of time. Farrell
(1989) extended this work, to calculate the ‘optimal pdrations’ which give the maximum
linear growth in a finite time interval. Optimal perturbatgwere first calculated for a full
primitive equation model by obtaining the dominant singukectors (Buizza and Palmer, 1995,
Buizza, 1997), and are now routinely calculated for use asirftial perturbations for the
ECMWF ensemble prediction system (e.g. Buizza et al., 2000)he rest of this thesis, we
will use 'Optimal Perturbations’ to mean the singular vestof the model, to reduce confusion
with other singular vectors that will be introduced later on

The structures of the optimal perturbations at the initraktare characterized by the su-
perposition of the interior PV delta functions, with a smadttical scale. For example, Fig.
1.10 shows the QGPV and buoyancy fields for a typical pertiobavhich gives rapid finite-
time growth. Such a perturbation will be used in some of theeexnents in this thesis, and
the details of the calculations may be found in Section 6@ ianAppendix A. The associ-
ated streamfunction and meridional wind fields are also shdihe initial QGPV anomalies
(at T+0) are advected eastwards and westwards by the zoeel 8ow. This ‘unshields’ the

QGPV located near to the middle of the domain. The meridianatls associated with the
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Figure 1.10: The evolution of a perturbation which gives rapid finite¢imon-modal growth.

Each panel shows a z-x cross section, with the horizontéwce and height in km. The top
panels show the initial perturbation and the bottom panéisve the perturbation 24 hours
later. The QGPVy, Buoyancyp, Streamfunctiony) and Meridional Windv fields are shown

at both times. The vertical axis is the height (km) and thézomtal axis is the distance in the
zonal direction (km). The basic state flow is such that theakemd is zero in the middle of
the domain.

interior PV produce boundary thermal anomalies, so thapénrairbation evolves into a struc-
ture that resembles that of a growing normal mode. The sfreation field has grown in
amplitude, has a westward tilt with height, and new system®merging to the east at upper
levels and to the west at low levels. This growth mechanisalss described by Badger and
Hoskins (2001) and Morgan (2001), Morgan and Chien (2002).

If the true state has a small-scale interior structure,logi$ not captured in the analysis, it
is possible that the forecast error will grow rapidly. Suctadi scale errors may be due to a poor
observational network or imperfect parameterization sehéBeare et al., 2003). Sensitivity
tests have shown (Rabier et al., 1996), that large forecemtsecan be traced back to small
analysis errors, with a strongly tilted structure. Rabieale(1996) state that the assimilation
system must be able to “deal with structures that are botimgly tilted and small scale (in
the horizontal and the vertical)”. The sensitivity testedis® linear assumption, but Beare
et al. (2003) used a method termed as 'PV-sensitivity mappto understand the effect of
nonlinear processes. It was found that baroclinic regi@as the steering level are particularly
sensitive to localized PV perturbations. Targeted obsems, such as dropsondes, may be
added into these sensitive regions. Hence, it is importaitthe DA algorithm can use these
extra observations to correct, or add localized sharpgldiVertical structures.

It is difficult to obtain reliable estimates of the true baakgnd state errors in an opera-
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tional setting, as the true state is unknown. However, iky that these error structures are
important as they grow fast and may trigger large forecast&r We should therefore ensure
that DA algorithms are able to capture these structuresriSovaet al., 2000, Hollingsworth,
2000).

In summary, the vertical structure of both modal and non-ahettuctures is very impor-
tant for the growth and decay of cyclones, and hence it i$ thit a DA algorithm analyses

this structure correctly.

1.3.4 4D-Var in the Presence of Baroclinic Instability

We now review some of the previous studies that have showiatle perform well in the
presence of baroclinic instability.

The ability of 4D-Var to perform well in cases of baroclinitstability was first demon-
strated by Courtier and Talagrand (1987). A total numberddf%observations, during a 24
hour period, were assimilated by 4D-Var with no backgrowrdt using a spectral model of
the vorticity equation with 231 degrees of freedom. The ols@ns were mostly over the
land, and in particular did not cover a region containingAlheutian depression, yet the 4D-
Var algorithm was able to combine the information from theetations with the dynamics,
to reconstruct the depression. They noted that unreatistge was also generated in data poor
areas, but that this could be reduced by adding a smoothimgtéethe cost function.

The reconstructive ability of 4D-Var was further demont&dan experiments by Thépaut
and Courtier (1991) where the mass field was observed anda4Dv&s used to reconstruct
the vorticity field. Rabier and Courtier (1992) examinedrage baroclinic model where the
small scales were observed, and the large scales were temtad. Tanguay et al. (1995)
showed that if only the large scales are observed, the dasioniwindow length must be large
enough so that information can be transferred to the smalkscExperiments by Thépaut et al.
(1993b) where data was excluded over an area with a stronglbac development show that
dynamics are able to infer the correct information in thehs®wved regions. However, the
analysed systems in the excluded data areas were sligbslyrtense.

To understand how 4D-Var uses information from observatidrhépaut et al. (1993a)
showed that by assimilating a single observation, the amalpcrement is proportional to a
column of the Kalman Filter covariance matrix that is imghcpropagated in 4D-Var. The

single observation experiments are therefore useful irergtdnding how 4D-Var spreads the
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Figure 1.11: Comparison of x-z cross sections of 3D-Var and 4D-Var stm&cfunctions for
geopotential height, from single observation experimeisboth cases, the observation is
placed at 1000 hPa. Note that East is on the left hand side aa&t M/on the right. (Figures 3
and 12 from TBpaut et al. (1996)).

information from an observation to the surrounding gridnp®i An example of these flow-
dependent structure functions is shown in Thépaut et 8B For clarity, Figs. 3 and 12
from Thépaut et al. (1996) are also shown here in Fig. 1.14de 3D-Var structure function
(background error correlation between the observationtmmd surrounding grid points) is
isotropic with an equivalent barotropic structure, havirtilt with height. The equivalent
4D-Var structure function is anisotropic and exhibits atweasd tilt with height with the upper
levels showing more correlation with the lower level obsdion than for 3D-Var. Thépaut
et al. (1996) also showed that it is important to have a lorsgnatation window (within the
validity of the tangent linear model) to ensure that the dyitcal structure functions are fully
developed. Westward tilting structure functions and asialjncrements can also be found in
the ECMWF operational 4D-Var, as shown by Rabier et al. (12980). This westward tilt is
vital for baroclinic growth

Thus, with observations at the end of the window, the ansiiysirements have a vertical
structure that is required for baroclinic growth. The relaship between analysis increments
and unstable modes has been shown by Rabier et al. (1996)e whie gradient of a cost
function is shown to be dominated by the most unstable coesrof the initial analysis error.
Pires et al. (1996) showed theoretically that future olest@was in a 4D-Var algorithm provide
accuracy of the unstable modes and experiments by Thépalu{E96) demonstrated a strong
link between singular vectors of the tangent linear modéh wD-Var analysis increments.

In summary, 4D-Var is able to combine information from olséipns with the model
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dynamics. This gives two main advantages in comparison t&&D First, 4D-Var is able to
generate analysis increments with a westward tilt with ligigs required for baroclinic growth.
Second, 4D-Var is able to reconstruct or infer the state observed regions. Although, these
advantages have been demonstrated, there are still masyiangeconcerning 4D-Var that

remain. These are discussed in the following section.

1.4 CurrentIssues

We now consider some of the important issues concerning dlavthe present time. In the
future, there will be a greater emphasis on the use of dateliita and adaptive observations
rather than in-situ data. We therefore need to assess hoviadiill use these observations,
and whether we can expect to see a large improvement in &iracauracy. There are also
guestions concerning the specification of the assumedseriéor example, there has been
much research involved with the specification of the initiatkground error covariance ma-
trix, B. ldeally, the covariance should be flow-dependent and gated from the previous
assimilation window. However this is not possible and sorapipnations are needed. In the
previous sections, we have presented 4D-Var using the nasdelstrong constraint. This as-
sumes that the model is perfect, and although some methodsdean suggested to account
for the model error, it is still not clear how this should beldevith. A related problem is to
consider the nature of the background error. The backgretatd is given by a forecast valid
at the same time as the analysis. Therefore, the backgrdatelreay contain phase errors
and amplitude errors. It is therefore important to constdaw 4D-Var will behave in such a
case, and whether there are alternative methods that ailldéh phase errors in a better way.

These issues are now discussed further.

1.4.1 The Global Observing System and Adaptive Observatian

The Global Observing System (GOS) (WMO, 2003) is a core carapbof the World Weather
Watch (WWW) - the international meteorological observiygtem that is directed by the
World Meteorological Organisation (WMO). GOS consistslad surface and radiosonde net-
works, and the aircraft and satellite systems that are tgubitay member countries of the
WMO.

At the present time, there are about 13 000 land stationgtbaide surface observations
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every 3 hours. There are also about 1000 ships and 3000 moodedting buoys that provide
surface observations over the ocean. It is important thaémations are not only taken at
the ground, but that the vertical profile of the atmospherebiserved. Therefore, there are
approximately 600 upper-air stations that provide radidebservations twice a day. Aircraft
data also provide an important addition at upper levelsnipaiear the tropopause. Thus, the
in-situ observations are mostly over the land and at thasarigiving many regions with sparse
observations. For example, the southern hemisphere isylarty data sparse as it is mostly
covered by the ocean. In these regions, remote-sensingnmsits on satellites make a vital
contribution. Observing system experiments by Anderssaal. €1991), Bouttier and Kelly
(2001) showed that in the southern hemisphere satelliee diz¢s indeed have a large impact
on forecast accuracy.

There are two main types of satellites: polar orbiters arusionary satellites. Polar
orbiters, or low earth orbiting satellites, orbit at antaltie of 600-1000km from pole to pole.
The instruments, for example Advanced TIROS Operationgidz Sounder (ATOVS), scan
sideways to give bands or swathes of observations. Thaeimstits on these satellites provide
vertical profiles of temperature and humidity in cloud freeas. The vertical resolution of
the instrument is determined by the number of channels, eeleagths that are measured.
Geostationary satellites, for example Meteosat, orbiladdhe equator and with the same rate
of rotation as the earth so that the same part of the Earthnsncmusly monitored. These
satellites are at a high altitude of about 36 000km, and fberehe instruments do not give
such a fine resolution as the polar-orbiting satellites. Hstruments on the geostationary
satellites are often used to measure wind velocities inrthgds by tracking clouds and water
vapour.

In the future, it is expected that there will be fewer, but emevenly distributed radiosonde
and surface stations and satellite data is expected to @ieater role. The future polar orbiting
satellites will carry instruments, for example the Infitmospheric Sounding Interferom-
eter (IASI), which measure the emitted radiation at a vastlmer of channels, giving a much
increased vertical resolution (1-4km compared with the@né4-10km). The new geostation-
ary satellites, for example Meteosat Second GenerationQM®&ill also give an enhanced
horizontal resolution (1 km) of derived winds at more vetievels.

It is expected that the increased vertical resolution ialkeg data will particularly benefit
the analysis of regions of baroclinic instability where tretical structure is important. It

Is important to assess whether these observations will pabta of identifying the correct
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vertical structures, and in particular, to understand hoesé¢ observations are used in a 4D-
Var algorithm.

In the future, adaptive or targeted observations should @levide a large contribution
to GOS. These observations can be added to particular egiotie atmosphere which are
thought to be important to be observed. For example, drafessomay be released from air-
craft into regions which are particularly sensitive to emgoowth or that need to be analysed
accurately (Desroziers et al., 1999). Observations areresipe, and therefore there are re-
straints on the total number of observations. It is theeeforportant to place both the fixed
observing system observations and the extra adaptive@is®Ts in the optimal positions in
space and time so that the forecast errors are as small ablpoShe optimal positions are
non-trivial as they depend on the true state of the atmospliee data assimilation scheme,
the forecast model and the definition of ‘optimal’ (Snyd&96, Berliner et al., 1999). Much
research has focussed on choosing the optimal positionsrgeted observations using the
concept of sensitive regions. These regions can be idehtifisng singular vector or sensitiv-
ity vector techniques. There has been little study on thetiueof where observations should

be placed from the perspective of the data assimilationrsehe

1.4.2 Understanding 4D-Var

4D-Var is an expensive method in comparison to methods ssi@bavar and FGAT (First-
Guess at the Appropriate Time, described in Rabier et 288}, 9vhere the background state is
evolved to the correct time). It is therefore important talerstand the advantages of 4D-Var
so that the cost can be justified and to maximize the benefits.

Many of the studies that have been used to understand 4DaVarlsed single observation
experiments. These have provided an understanding of thedigpendent structure functions
and the equivalence with the Kalman Filter. However, thexeh#ot provided insight into how
the information from more than one observation interactas #D-Var system. In particular,
they cannot be used to understand how a time sequence ofatises is used.

The 1D-Var equations have been used for many satelliteeveirstudies. These are the
same as 3D-Var, except that the state vector representuimicaf the atmosphere and not
the full three dimensions. Because the dimension of thi®lpro is much smaller than the
dimension of atmospheric data assimilation, mathematexiniques have been applied to

give an understanding of how the information from the siabbservations are used in the 1D-
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Var algorithm, for example Mateer (1965). These studiecareently useful for determining
the optimal subset of satellite channels to be used in eevalriRabier et al., 2002). An
interesting question is whether some of the techniqueshthet been used in this context
can be applied to 4D-Var with a view to understanding the 4D-Mgorithm further and to
choosing an optimal set of observations. For example, F(@®93) has developed a method
to evaluate the degrees of freedom for signal and entropyctidh in a 4D-Var system. These
numbers give an indication of the amount of useful informatontained in the observations

when used in a 4D-Var system.

1.4.3 Background Error Covariance Specification

The background error covariance is generally considerbe tine of the most important parts
of a data assimilation algorithm as this matrix is respdedir the directions in which data is
spread. For example, in a region of dense noisy observattombackground error correlations
are needed to ensure that the analysis is smooth. In a regibromly one observation, the
background error correlations are needed to spread themafemn from the observations to
the surrounding grid points. The background error covagaa also necessary to specify the
correlations between different variables. For examplenify the pressure field is observed,
and if geostrophic balance is incorporated into the conaganatrix, the algorithm will be able
to infer the correct wind field.

The correlations may be specified from observation minukdracind statistics (Hollingsworth
and Lonnberg, 1986), or from differences between forecastl analyses verifying at the same
time, for example the NMC method, (Parrish and Derber, 199Bese methods assume that
the covariance can be separated into horizontal and viepiaces. It is possible to define the
covariance so that the vertical correlations vary with te@enumber (Rabier et al., 1998), but
this still does not give flow-dependent covariances.

In theory it is possible to fully transfer information frorhe previous window by propa-
gating the covariance matrix with the Kalman Filter (Li angvdn, 2001). Practically, it is not
possible to evolve the whole matrix and approximations agelired. The results by Thépaut
et al. (1996) showed that there is a strong link between $angrectors and the structure func-
tions, and therefore it has been suggested that it may béjpmgsapproximate the covariance
using singular vectors (e.g. Ehrendorfer and Tribbia, 298K orithms known as ‘simplified’
or ‘Reduced Rank’ Kalman Filters (RRKF), (e.g. Fisher andd&rsson, 2001, Beck, 2003)
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have been proposed as feasible methods to gain some of tetbeh the Kalman Filter. In
such algorithms, only a subset of the covariance matrixyssdhe parts corresponding to the
optimal perturbations of the model) is propagated in timetidds such as the geostrophic co-
ordinate transform (Semple, 2001) have also been suggtestgzherate flow-dependent error
structures. At the present time, it is not clear how the davae matrix should be approxi-

mated and this area requires further research.

1.4.4 Model Error

In this chapter, both 4D-Var and the Kalman Filter have beasented with the model as a
strong constraint. This assumes that the model is perfatthis is clearly not the case. It is
possible to add the model as a weak constraint, by adding extms to the control variable
to give an extended or augmented assimilation. These exttrastcould either represent the
model forcing or the model parameters. By applying contnebty or parameter estimation,
it is then possible to use a minimization algorithm to find dpgimal model variables (e.qg.

Griffith, 1997, Wergen, 1992, Zou et al., 1992b, Lu and Hsi€l97, Navon, 1997). However,
the problem is that the number of control variables needg teelatively small and so it is not

possible to add a different model forcing at every time st&[so, it is not known what the

covariance matrix for the model errors should be. Thus, hest to incorporate model error

into 4D-Var remains an open research problem.

1.4.5 Phase Errors

The BLUE equations optimally blend together observatiombsabackground state. However,
this may not give a good analysis in the case where there iara ghadient such as a front. For
example, Bennett (2002) describes the case of ocean tetugsaear the Gulf stream. If the
background state is in the wrong place, then when obsenséie added, the sharp front may
become smeared out. For example, Lorenc (1981) considerstdtiat has been mispositioned
in the background state. Instead of moving the front, as aamusubjective analysis would,
the optimal interpolation algorithm has smeared the frantioto an extended region. This is
because the error covariances were not representative obthect error structures.

We therefore need to consider new data assimilation methhba$h may be able to blend
together the information from observations and the baakguistate in a better way, especially

in cases where the background state contains displacemerg.e
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Hoffman et al. (1995) suggested a technique where the costifun is split into separate
terms to account for displacement errors explicitly. A aaanal method is then used to find
a displacement vector, which may be constant throughowtdh®ain, or defined spectrally as
in Hoffman and Grassotti (1996). A similar method has alsenbienplemented by Brewster
(2002a,b), where a displacement vector is found by dividive grid into subvolumes and
using a ‘brute-force search method’. The translation isenad by adding a pseudo wind to
the model equations. A second possible technique is to d@pplylonge-Kantorovitch optimal
mass transfer problem (Benamou et al., 2002). In this caseloaity field is applied to the
state so that it is rearranged to be closer to the obsergtighilst the size of the velocity
vector is constrained to be small. The application of the eKantorovitch problem to data
assimilation has been briefly discussed by Douglas (2000dhir8l possible technique is to
adjust the PV field so that it is more consistent with wateroumgmagery. This could be
achieved manually (e.g. Swarbrick, 200L9®ng et al., 2001, Carroll, 1997), or through the
use of digital image warping (Alexander et al., 1998), whides tie points that are defined
manually. This allows the model fields to be distorted in a Waat preserves the dynamical

balance.

1.5 Key Questions Addressed

Section 1.4 discussed some of the important issues thattoderresearched. We now focus
on a subset of questions that are addressed in this thesovEnall focus of this thesis is:

To understand the extent to which 4D-Var can develop thestress needed for the growth
and decay of baroclinic systems

The key questions are:

1. How are observations used in 4D-Var?

We aim to understand how 4D-Var uses the model dynamics eadpnformation from
observations to surrounding grid points. This is importargssessing how much better
4D-Var is compared to 3D-Var. It is known that 4D-Var is alidink together informa-
tion from a time sequence of observations with the model ayeosito reconstruct the
state in unobserved regions, but this process is not weknstolod. A particular aspect
of this is to investigate whether some of the informationteahtechniques that are used

in 1D-Var satellite retrievals can be extended to 4D-Var.
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2. Why has 4D-Var been shown to perform well in regions of bamnarinstability?

Many studies have shown 4D-Var to develop structures thavéistwards with height,
necessary for baroclinic growth, and that there is a strimkgoletween the analysis incre-
ments and singular vectors. We wish to develop this furtlyerdmsidering situations in
which modal growth or decay dominates, and situations whenemodal growth dom-
inates. With the increase in satellite data, it is importardask whether 4D-Var will be
able to capture the correct aspects of the vertical strectaeded for baroclinic growth

and decay.

3. How can the benefits of 4D-Var be maximized?

Given that 4D-Var does give some benefits in comparison to/8Dit is important to
understand how these benefits can be maximized. In parti¢alanderstand how 4D-
Var can be designed so that it always performs well in regadrisaroclinic instability.
This includes considering what the optimal observing syst®uld be from the perspec-
tive of the data assimilation scheme. We aim to understaretevbbservations should
be placed so that the maximum amount of useful informationbEaextracted. In par-
ticular, we consider where the observations should be glacthe 4D-Var assimilation
time window. Many studies have shown that the 4D-Var windbawd be as long as
possible (within the validity of the tangent linear modelipd that observations at the
end of the window produce flow-dependent analysis incremétwever, these studies
have only considered single observations. We thereforsidenthe best positions for

observations at more than one time level.

1.6 Thesis Outline

To answer these questions, we consider idealized 4D-Vararpnts with the Eady model.
This is the most simple model of baroclinic instability ahditefore allows the important mech-
anisms to be isolated.

Chapter 2 describes the development of a 4D-Var algorithm using theyEaodel. The
solution of the 4D-Var minimization is derived using linedgebra and Lagrange multipliers,
and then the Eady model and adjoint model are described. tAldeiminimization algorithm
is chosen by comparing four different algorithms, and theveogence criteria are defined. A

simple background error correlation model based on Laat®othing is also developed.
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Chapter 3 discusses the results from idealized 4D-Var identical t@iperiments. The
experiments consider the case where the true state is gieither normal mode growth
or decay, the lower level wave is observed and 4D-Var is useddonstruct the upper level
wave. These experiments are used to examine the ability éfato reconstruct the state in
unobserved regions and also to infer the vertical structaesled for the growth or decay of the
state. The impacts of the background state, observatiaise rfbackground error correlations
and temporal position and weights of the observations aestigated.

Chapter 4 introduces the use of the singular value decomposition (Sidlunderstand
4D-Var. We first describe how the SVD has previously been eseshderstand the informa-
tion content of observations in satellite retrieval stgdi€his is then extended to consider the
information content of observations in 4D-Var. We will shdvat the 4D-Var analysis incre-
ments can usefully be written as a linear combination of tfjlet singular vectors (RSVs) of
the observability matrix, and discuss the similaritiesnstn these RSVs and optimal pertur-
bations. The chapter finishes by discussing the computafitime SVD of the observability
matrix for the Eady model.

Chapter 5 discusses the SVD of the observability matrix that was ioihi used by the
experiments in Chapter 3. This is used to give a new inteapogt of the 4D-Var analyses and
to give a further understanding of how observations are usd@d-Var. Finally, it is shown
that 4D-Var may be formulated as a method known as Tikhon@uRezation which is often
used to solve discrete ill-posed problems.

Chapter 6 considers more realistic experiments. The impact of bamkyst error cor-
relations, in both dense and sparse data regions, is coediffiem an SVD perspective by
examining the SVD of the normalized observability matrixieTability of 4D-Var to generate
analysis increments for non-modal growth is then consilefée final experiments consider
the information content of different observing systemdsagtwo horizontal lines and vertical
lines.

Chapter 7 concludes the work of this thesis. We return to the key qaestihat have been
addressed, and discuss the extent to which they have besarads All the experimental work
in the thesis has dealt with highly idealized case studiesthrefore discuss the implication
of this thesis to operational DA. The chapter finishes by wismg the future work which

follows from this thesis.



Chapter 2

Development of a 4D-Var algorithm using

the Eady model

The focus of this thesis is an understanding of the extentiiciw4D-Var is able to develop
the structures necessary for baroclinic growth and dedas Will be addressed using 4D-Var
identical twin experiments with the Eady model - a simple elad baroclinic instability.

Identical twin experiments involve two stages. First, thenerical model is integrated to
provide the ‘true’ atmospheric state. Then, synthetic olag®ns of the true state are used by
the data assimilation algorithm to find the analysis, fromaltihe forecast is generated. In
identical twin experiments, the model can be assumed to tiegb@nd known errors may be
added to the background state and observations. Thus,dh&ddl twin experiments isolate
the behaviour of the data assimilation algorithm; this is passible using real data and real
models.

The 4D-Var algorithm requires a forward model to link the eéfvations together. In this
thesis, the 2D Eady model is used so that the behaviour of @Difvthe presence of baro-
clinic instability can be addressed. The Eady model is lin@éghough the quasi-geostrophic
equations have not been linearized. Hence we only consitearl models in the derivation
of the solution to the 4D-Var minimization. The minimum o&thost function is found using
a minimization algorithm which uses values of both the casicfion and its gradient. The
gradient of the cost function with respect to the initialtstes found using an adjoint model.
In this chapter, the adjoint model is described and a miration algorithm is selected. The
background error covariance matrix plays an importantirotiata assimilation, so the chapter

finishes by describing the development of a simple cor@tathodel. We begin by deriving

30
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the equations used to minimize the constrained 4D-Var aosttion. Further details of the

work in this chapter may be found in Johnson et al. (2002).

2.1 The 4D-Var algorithm

The 4D-Var algorithm was introduced in the first chapter, ead be summarized by the fol-
lowing.

The 4D-Var analysik® is given by the initial stat&, which minimizes the cost function:

J(xo) = J* + J° (2.1)
1 1
_ NTa—1 b T -1
= §(x0 —x")' B (xo — x°) + B E_O (vi — Hx;)" R, (y; — Hx;) (2.2)

subject to the strong constraint thaf also satisfies the linear model equatiegs; = Mx;,
givenx,, wherex; = x(t;) is the state vector at timg, x’ is the background state, and
y: = y(t;) is the vector of observations at tiniesuch that the observations are given in
an assimilation window of time length, ¢y]. H is the observation operator which converts
from state space to observation space, 8hdndR are the background and observation error
covariance matrices.

This is a constrained minimization, however, it can be ti@msed to an unconstrained
minimization. To find the minimum, the gradient of the coshdtion with respect to the
initial state is required. The equations that are used wutate the gradient can be derived by
applying linear algebra to the discrete case, or perhaps slegantly by applying the method
of Lagrange to the continuous case. Both derivations areapplied to the observation term
J°. It is not necessary to consider the background tétrat this stage as this can simply be
added to the equations for the observation term. The 4D-Marighm will be used for the

Eady model, which is a linear model. Therefore, only lineadeis are considered.

2.1.1 Derivation using Linear Algebra

The derivation using linear algebra is first given. Thisdwals Bouttier and Courtier (2003) and

Lagarde et al. (2001). The observation term can be written as

N

Jo= "0 (2.3)

=0
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where the index is the observation time and

Jp = 4(yi — Hx)"R; (y; — Hx;)
(2.4)
Then the gradient of? with respect to the initial conditions, is given by:
Ved? = —(HM... M)"R; (y; — HM... Mx,)
(2.5)

= —-MT... MTHTR;d,

whered; = (y; — Hx;) denotes the innovation vector at tifyeand where the adjoint model
M7 satisfies:

< Mx,y >=<x,M'y > (2.6)

where<, > is an inner product. Hence the gradient of the observation i given by:

Vi’ = —{H"Ry'dg + M"(H'R;'d; + M"(H'R;'dy +... + M"H'R'dy)...)}.
(2.7)
In 4D-Var, the initial data is used as the control variabgesthe adjoint model is used to
propagate the gradient vector backwards in time (see fanpka Lewis and Derber (1985)
and Errico (1997)). It is important to note that the adjoirddual is in general not the same as

the inverse modeéVi—! (i.e. running the forward model backwards in time).

2.1.2 Derivation using Lagrange Multipliers

The derivation using Lagrange multipliers and the calculfisariations (see for example,
Gelfand and Fomin (1963) and Forray (1968)) is now illugttidiy considering the continuous
multivariable case. Similar derivations are also given lgyimet and Talagrand (1986),
Griffith and Nichols (1994), Griffith (1997) and Wlasak (1997

The continuous 4D-Var problem can be stated as:

Minimize the functionaﬁZN F(x,t)dt, defined over an assimilation windadty, |, tx >
to > 0, subjectto the (strong) model constraint= %—’t‘ = m(x, t), wherex is an n-dimensional

state vector and the time € [to,¢y] is a scalar. F andm are scalar and vector functions
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respectively. All variables are real and are assumed to lfiecgently smooth and continuous.

Using the method of Lagrange, the Lagrangian functighean be constructed as:

L= /tN {F(x,t) + AT (x — m(x, )} dt (2.8)
- /tN G(x, %, A, A, t)dt (2.9)

where is an n-dimensional vector of Lagrange multipliers aitd= F + A" (x — m) is a
scalar function. Using a Taylor series expansion and iategr by parts, necessary conditions
for the first variation ofC to be zerog £ = L(x + 0x, A+ A, t) — L(x, A, t) = 0 are given by

Eulers equations:

d
VG — EV;\G =0 (2.10)
d
ViG — =ViG =0 (2.112)
dt
and the transversality condition:
[6x" VG, =0. (2.12)

Equation (2.10) gives the model constraint, and equatiahilj2gives what is known as the
adjoint equation:

. om\” oF ‘
_/\j_<8—x]—) ,\—a—xjfor]—l,...,n. (2.13)

The transversality condition (2.12) gives the final comufi§A(¢y) = 0 and also implies that
V)L = —A(lo). That is, the gradient of with respect to the initial conditions is found
from the adjoint variable also at the beginning of the winddWis gradient can be used by a
minimization algorithm to find the minimum.

This theory can be extended to the multivariate discrete ¢gsconstructing the La-

grangian functional:
N
L=+ Al (xip1 — Mx;) (2.14)
=0

and deriving the adjoint equations (Griffith, 1997):

)\N+1 =0
(2.15)

AZ‘:MTAH_l—VXiJiO Z:N,,O
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Then the gradient of ° at the initial time is given by
Vi’ = —Ao. (2.16)

If M is the forward linear model, thelI” is theadjoint model, A is the vector ofadjoint
variablesandV,, J¢ = —~H'R,; ' (y; — Hx;) is known as thadjoint forcing . Thus, the result
using linear algebra (2.7) gives the same result as theatenvwith Lagrange multipliers
(2.16).

Xo FORWARD MODEL  X;, | = MX; J(x)
AN

: 3 3 3

S e+ = Ex

S <O <O < O
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Figure 2.1: A schematic diagram illustrating the calculation of the thsctionJ and the
gradient of the cost functioX.J. These are both used by a descent (or minimization) algorith
to find the minimum.

2.1.3 Summary

To summarize, the 4D-Var algorithm is solved using a minatian algorithm. On every
iteration, the minimization algorithm computes the valfi¢he cost function and the gradient

of the cost function using the following steps:
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1. Integrate the forward model for = X1 = Mx;

0,...,N — 1, given the initial data,

2. Calculate the innovation vectors for= d, =y, — Hx;
0,....,N
3. Calculate the value of° Jo =1V dTR; 4,
4. Calculate and add the value &f J? = 1(x0 — x)TB (%9 — x")

5. Set the adjoint variables at the final time Ay.; =0

to zero

6. Integrate the adjoint model backwards in  A; = M™\,; — V, J?

time, fori = N,...,0,
using the adjoint forcing¥y, J¢ V., J? = —H'R; 'd;

7. The gradient is then given by the negative V,,J° = —A,.

of the adjoint variables at the initial time

8. Calculate and add the gradientBf VJb =B (x — x?).
Some of these steps are also illustrated in the schemagcagiain Fig. 2.1.

2.2 The 2D Eady model

The 2D Eady model (Eady 1949) is a simple linear quasi-gepbkic (QG) model of baro-
clinic instability, and will form the basis for the experimts in this thesis. The qualitative
mechanisms for baroclinic instability were described imtler 1. In this section, the non-
dimensional equations for the Eady model are introduceesé&lare derived from the quasi-
geostrophic equations, as given in Appendix A. The quasstyephic equations are an approx-
imation of the primitive equations for synoptic scales, ethassume that the Rossby number
is small and that the Burger number is unity.

The Eady model contains rigid surfaces at the ground andeatréipopause. The basic
state is given by a zonal wind shear with height, that is aateat with a uniform meridional

temperature gradient. The density, static stability anddlie parameter are all taken to be
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constants. The Eady model equations describe the lineartmroof the perturbations to this
basic state. Although the model is linear, the equations nat been linearized.

The non-dimensional Eady model equations are now descrilfge domain is infinite in

the North-South direction y, periodic in the West-East clian X, and is between = —%

and%. The initial state is given by the interior quasi-geostiogiotential vorticity (QGPV)

perturbationg and the perturbation buoyancy on the boundaties,

. 11
(2, %,0) = ol 2) in = [—5, 5} 0, X) (2.17)
1
b(z,z,0) = by(z, 2) onz = ié’ zel0, X]. (2.18)

The perturbation QGPV is defined ((1.14) and (A.35) in Apperd as:

o o

. 11
4= 53 + 5.2 in ze {——, —} , z€l0, X], (2.19)

2°2

where is the perturbation geostrophic streamfunction. The banndonditions are periodic

in the horizontal:

0(0, 2,1) = B(X, 2,1) in e {—% %} €0, X (2.20)

and, through Hydrostatic balance (1.16), the buoyancy @elthe upper and lower boundaries

provides the vertical boundary conditions:

oy _

1
9 b onz = i§, zel0, X]. (2.21)

Due to the periodic boundary conditions, an extra equasaeeded to ensure that the problem
for calculatingy is well posed. Thus, the mean of the streamfunction fieldbgrarily set to

Zero:

/ Ydrdz =0 in ze {—%, %} , z€[0, X]. (2.22)

Perturbations to the basic state are advected zonally bgabie state flow. The QGPV
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conservation equation ((A.34) in Appendix A),

0 0 . 11
(a + Z(?_:E) qgq=20 in ze {—5, 5} , z€[0, X] (2.23)

is derived from the QG thermodynamic equation and the QGoityrequation. This states that
QGPV is conserved following the horizontal, geostrophitabatic, frictionless flow (Hoskins,
1997).

The QG thermodynamic equation reduces to:

(% + za%) g—f = g—i onz = i%, zel0, X (2.24)
by assuming that there is no vertical motion at the boundg(®.33) in Appendix A). This
equation describes the evolution of the Rossby-edge wavdseaipper and lower boundaries.
Notice that it is the meridional wind that provides the calicioupling between the upper and
lower waves, although this is still a 2D model.

The Eady model is discretized using 11 vertical levels faganhfunction and QGPV, with
the upper and lower level buoyancy defined on levels 1 and hkrerare 40 grid points in
the horizontal, giving 520 degrees of freedom. The advedatiguations are discretized using
a Leapfrog advection scheme, and the NAG routinegaglin_sys (NAG) is used to perform
an LU factorization to solve the Laplace equation. The @itcmodel is described in more
detail in Appendix A and has previously been used, for examipy Badger (1997), Badger
and Hoskins (2001) to investigate the nature of optimalysbédtions, and also by Fletcher
(1999) to investigate advection schemes.

The simple dynamics of this model should allow a clear urtdaing of the mechanisms
in 4D-Var. Further, as the model is computationally cheag laas only 520 variables, it is
straight-forward to explicitly compute the singular vactalculations required later in the

thesis.

2.2.1 The Adjoint model

Section 2.1 showed that the adjoint model is used to caketiat gradient of the cost function
J with respect to the initial state,. The adjoint model for the Eady model is now described.
There are two methods to create the numerical adjoint mddelioear model: find the

adjoint of the continuous equations and then discretizendrtfie adjoint of the discrete forward
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equations (Sirkes and Tziperman (1997) and Lawless (20@9Q}th approaches have been
taken to derive the adjoint for the Eady model, and are braglcribed in Appendix B.

The adjoint of the continuous equations can be found usiad-#tgrange multiplier ap-
proach, as described for a general model in the previougseckuch an approach has pre-
viously been used for other simple models (e.g. Birkett ardhdls, 1983, Birkett, 1986, Xu
and Nichols, 1991, Griffith and Nichols, 1994, Griffith, 199¥lasak, 1997, Le Dimet et al.,
2002). All the equations must be considered simultanepasig hence such an approach is
not suitable for the case of large meteorological modelswéver, it is useful for the Eady
model as it allows an understanding of the dynamics of theimidinodel. Using the notation

Gx = %, the continuous forward equations are summarized by:

. 11
G+ 2q, =0 V) = q,/ Ydxdz =0 in ze [—5, 5} (2.25)
1
by + 2b, = 1, v, =b onz = ~3 (2.26)
1
by + zb, = 1, v, =b onz = +§ (2.27)

where the initial conditiong(t = t,) andb(t = t,) are given. The continuous adjoint equations

are summarized by:

R . . . 11
Gr — 24, = +1 Vi) = 0,/ Ydrdz =0 in ze [—5, ﬂ (2.28)
. . . . . 1
b, — zb, =+ ¥, = —b, onz=—2 (2.29)
. . R R . 1
b, — zb, = — U, = +by onz =+ (2.30)

where the final conditiong(t = ,) andb(t = t,) are given and the equations are integrated
backwards in time. The time co-ordinatewhereq, = —¢;, has been introduced to make the
backwards time integration explicit. The mean values offtineard and adjoint streamfunc-
tion fields are also set to zero. Comparing the adjoint eqonatwith the forward equations,
it can be seen that the direction of propagation has beemnsexyén the adjoint equations, the
derivative boundary conditions are given by the horizod&lvative of the buoyancy field and
the streamfunction is used to force both the buoyancy an@@RV fields.

The adjoint of the discrete equations can be found by coriegi¢he linear model as a
sequence of linear operators. The adjoint of each operatoibe found and then these are

linked together in the reverse order. Such an approach lasused to find the adjoint models
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of full meteorological models (e.g. Chao and Chang, 1992poN&t al., 1992, Rosmond, 1997,
Marotzke et al., 1999) and in automatic differentiation @iers such as Giering and Kaminski
(1996). Special care needs to be taken if the forward modehats switches (Thuburn and
Haine, 2001), although this is not relevant for the Eady rhadd is therefore not considered
in this thesis.

To check that the adjoint model is coded correctly, the ‘NdBst’ and the ‘Gradient Test’
are used. These are already estabilished methods to tesitadpdels, for example, Navon
et al. (1992), Li et al. (1994) and Rosmond (1997).

From the definition of the adjoint model (2.6), the adjointdabM” should satisfy:

(M(tw, to)x0)" (M(tw, to)xo) = xq (M (to, tn)M(tw, to)xo) (2.31)

whereM(ty, to) is the linear model which is integrated framto ¢, andM? (¢, ty) is the
adjoint model which is integrated frotw to ¢,. TheNorm test uses random initial conditions
for x, to check whether this relation is satisfied to the accuraapadthine precision and was
used to check the adjoint for the Eady model. The initial ¢omals had random data with unit
norm, and the model was integrated for 6 hours. The differdmtweenMzx,)’ (Mx,) and

xJ (MTMx,) was zero to 16 decimal places.
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Figure 2.2: Verification of the gradient calculation for the Eady modgl) variation of¢ with
respect tay, (b) variation oflog |¢(a) — 1| with respect ta.

The Gradient test is used to test that both the cost function and adjoint mooé¢ are
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correct. From a Taylor series expansion of the cost function
J(xo + adxp) = J(xq) + adx} VJ(xo) + O(a?) (2.32)

which can be rearranged to give

J(xo + adxg) — J(x0)

o) = adxi'V J(x)

— 14 0(a), (2.33)

so that¢(a) — 1 as « — 0. However, this does not hold whenis close to machine
zero. Thusg(a) — 1 should be close to zero for values®fvhich are small but not too close
to machine zero. Results of this test for the Eady model avevshin Fig. 2.2, where again,
the forward model was integrated for 6 hours and random dataumit norm was used for
the vectorox. These figures are almost identical to those in Navon et 894)Land Li et al.

(1994), and verify that the adjoint model, cost function gnaidient of the cost function have

been coded correctly.

2.3 Choice of the Minimization Algorithm and Termination

Criteria

The 4D-Var analysis is given by the state which minimizes adgatic cost function. There-
fore, a suitable minimization algorithm is required. Onte#eration, the forward model is
used to calculatd and the adjoint model is used to calcul&td. This is computationally ex-
pensive, so the algorithm should ideally converge in as feraiions as possible. To give fast
convergence, the algorithm needs to make good use of thedtegt information. The choice
of the minimization algorithm will not affect the resultsopiding it has converged correctly.
However, the choice is important so that the 4D-Var alganitakes a short time to converge
to the minimum.

In this section, we compare steepest descents, conjugategt, quasi-Newton and mem-
oryless algorithms. Before the minimization algorithms @escribed, we begin by understand-
ing the properties of the Hessian matrix.

Consider the 3D-Var cost function:

J(x) = %(X —x""B (x —x%) + %(y — Hx)"R(y — Hx). (2.34)
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The Hessian matrix of is defined as the second derivative of the cost function:
A=VVJ=B'+H'R'H. (2.35)

and is constant becauddas quadratic (Gill et al., 1981). By diagonalizing the He@ssmatrix
(see for example, Jordan and Smith (1997)), it can be shoatrthle isocontours of the cost
function are ellipsoids whose principle axes are the eigetors of the Hessian with lengths
proportional to the reciprocals of the square roots of threesponding eigenvalues (Gill et al.,
1981).

For example, consider the two variable quadratic funcfigr) = 1x” Ax — b”x, where

A is a symmetric positive definite matrix:

55. 4.5 22.5
A= b= . (2.36)

4.5 5.5 27.5

At a minimum,Ax = b, andx = (0, 5). The eigenvectors ai®.7, —0.7) and(0.7,0.7), with
corresponding eigenvalues = 1 and\; = 10. The isocontours of’ and the eigenvectors

and eigenvalues A are illustrated in Fig. 2.3.

15
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Figure 2.3: Isocontours of the quadratic functidn = %XTAX — b”x. The blue and red lines
show the directions of the eigenvectorsAgfwith the corresponding lengths written at the side
of each eigenvector, where the eigenvalued @fre \; = 1 and A, = 10.

As the ratio between the maximum and the minimum eigenvaha@esases, the isocon-
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tours become more elliptical. If one eigenvalue becomes, zke isocontours become parallel
and the minimum is then non-unique. Thus, a minimum of the fwoxtion can only exist if
all the eigenvalues are real and positive, which is satisfiadd only if the Hessian matrix is
positive definite (e.g. Atkinson, 1989).

The condition number is defined as the ratio between the maximnd the minimum
eigenvalue of the Hessian matrix. If this is large, then ttabfem is poorly conditioned, and
a minimization algorithm will take a long time to reach thenimum. Some minimization
algorithms, however, implicitly use information about tHessian matrix to speed up the rate
of convergence.

The minimization algorithms that are commonly used in dasinailation approximate
Newtons’ method (Navon and Legler, 1987), which is now desd:. Lettingx;., 1 = x+xy,

wherek is the iteration number, a truncated Taylor series exparsid gives:
J (k1) = J (%) + (Xpp1 — xx) VI (3) + %(le —x) VI (xp01 — %) (2.37)
Setting the Jacobian of with respect ta,. . ; to zero, therNewtons’ methodis:
Xpp1 =X — ATV, (2.38)

whereA = V'V J is the Hessian of, andV J, is the Jacobian of with respect tax,. There
is no guarantee thak(x;1) < J(xx) and therefore it is better to modify the method (Beale,
1988), so that on each iteration a line search is performédthtba scalara, > 0 which
minimizes.J (x1) such that

Xpi1 = X — ATV I, (2.39)

In 4D-Var the Hessian matrix is unknown as onlyandV.J are calculated. Therefore the
Hessian matrix must be approximated.

The steepest descentnethod approximates the Hessian with an identity matrixiciwh
results in an equation such that a step is made in the ‘dolvdhiéction on each iteration.
However, if the condition number of the Hessian matrix igéarthe method is slow to con-
verge. This is sometimes known as the ‘narrow valley effaatd the algorithm is seen to
zig-zag into the minimum.

There are two main types of algorithm which give much betiés of convergence than

the steepest descents method by using information aboudeksian matrix: the conjugate



Chapter 2. Development of a 4D-Var algorithm using the Eadgen 43

gradient method and the quasi-Newton method.

The conjugate gradient methodconstructs a set of conjugate search directions from the
set of V.J. A pair of conjugate directiond; andd; are A-orthogonal, §7 Ad; = 0 for i # j).
This means that if a co-ordinate transformation is appl@that the isocontours are spherical,
the search directions become orthogonal (Shewchuk, 19979.use of conjugate directions
means that the conditioning of the Hessian matrix is takemaecount and the directions are
conjugate to each other, so the algorithm is effectivelystepping in the same direction twice.
By using theVJ to construct the conjugate directions, it is possible tostact directions
which are conjugate to all previous directions even thougl the previous search direction
needs to be stored, giving a storage(®f3n) wheren is the dimension of the state vector
(Beale, 1972, 1988). The main problem is that with inexane Bearches and rounding errors,
the directions may lose their conjugacy giving slower cogeace and the algorithm may even
need to be restarted.

The second type of algorithm is tt@@uasi-Newton method also known as the variable
metric method. This uses tHé.J to successively update an approximation to the Hessian

matrix. The approximatior , must satisfy the quasi-Newton condition:
Ak(xk—H — Xk) = VJk_H - VJk (240)

which can be derived from (2.38) (Press et al., 1992). Thithotkegives an estimate for the
optimal step size so that line searches are not necessamnyeudq it requires a storage of
O(n?). This is not feasible for operational data assimilatiomads large, but is suitable for
4D-Var with the Eady model.

It is possible to combine the conjugate gradient and quaswbin methods to giviemited
memory or memoryless methods In the conjugate gradient method, search directions are
generated using the set ®fJ, but in a limited memory method, the set Af''V.J are used
whereA~! is approximated using a limited number of quasi-Newton tgslaAsA ~! does

not need to be stored, these methods require only smalbst@@7n)).

2.3.1 Minimization Algorithm Comparison Experiments

We now use 4D-Var experiments with the Eady model to compaue different minimiza-

tion algorithms: steepest descent, conjugate gradiemtsiddewton and memoryless quasi-
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Newton. The steepest descent algorithm U8ds as the search direction and uses the largest
possible step sizey such thatJ,,; < J,. The conjugate gradient algorithm, known as
A22CGM (Nash, 1990, 2003), uses a linear search to bracketienomm to finday,. The quasi-
Newton algorithms use a BFGS (Broyden-Fletcher-Goldfanlanno) update and are known as
CONMIN or algorithm 500 from TOMS (Shanno and Phua (19760 @®d Shanno and Phua
(2003)). The memoryless version uses two vectors to buédcthrent approximation of the
Hessian matrix and uses Beale restarts with an inexactéiarck (Davidons’ cubic interpola-
tion). The algorithms have previously been used by Chao drah@§ (1992) and Navon and
Legler (1987).

The 4D-Var experiment considered uses no background #tateue state is given by the
most unstable growing Eady wave (A.38) and perfect obsensbf both the buoyancy on the
lower boundary and the interior QGPV are provided at T+0 af@l. TThis problem is well-
posed without a background state. All the minimization athms, except for the steepest
descent algorithm, are terminated WHEA.J||3 < 5 x 1072,

The comparison of the minimization algorithms is shown ig. F2.4. The steepest descent
algorithm shows an extremely slow rate of convergence. Tagnitude of the gradient oscil-
lates as the algorithm zig-zags into the minimum. This is tugne poor conditioning of the
Hessian matrix. The experiment has been run until 200 iterst with no further change in
the rate of descent.

The conjugate gradient algorithm gives a much faster ratewfergence than the steepest
descents method, and reaches the minimum in 10 iteratiamge¥er, on each iteration, many
function evaluations are required. This is because thedesch is found by bracketing a
minimum.

The quasi-Newton method also gives a much faster rate ofecgance than the steepest
descents method, reaching the minimum in 10 iterationsthEByron each iteration, there are
only a few function evaluations as an estimate of the optste size is provided. For this
reason, the quasi-Newton algorithm performs better thardmjugate gradient algorithm.

The memoryless algorithm gives a slower rate of convergtdrareboth the conjugate gra-
dient method and the quasi-Newton method, requiring 18atitsms to give the same accuracy.
This is because the Hessian is approximated with only a 2amlatrix. It is surprising that the
combined conjugate-gradient, quasi-Newton (memorykgeyithm has a worse performance
than the conjugate gradient method. This is perhaps duestditferences in the line search

methods or the restarts.
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Figure 2.4: Behaviour of the cost functia®® using (a) Steepest Descent Algorithm (b) Con-
jugate Gradient Algorithm (c) Quasi-Newton Algorithm (deMoryless Algorithm, with in-
creasing iterations (gradient evaluations). The solicelicorresponds to the cost functiohn
and the dotted line corresponds to the squared Euclideamnafrthe gradient|VJ|* with
the magnitude on the left hand axes. The circles show the ewuailtsimulations (function
evaluations) used to calculate the next step, with the ntadgaion the right hand axes. This
minimization is for the case with no observations on the tmpriglary. Note that the axes have
different scales.
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Based on this comparison, the CONMIN quasi-Newton algorithchosen for all further
4D-Var experiments.

Itis important to terminate the minimization algorithm erithas converged. To terminate
before convergence is reached would not give the optimdysisabut to terminate after it has
converged would waste computer time. There are three basis te define the termination or

convergence criteria:

1. Ata minimum\VJ = 0.
2. At a minimum, there is negligible change.in

3. At a minimum, there is negligible changexn

The size of these quantities can be defined using differeasores and norms. For exam-

ple, the absolute error and relative error of the gradient afe defined as:

vJ
abs(VJ) = ||V J|| rel(VJ) = H—JH (2.41)
where|| .|| is a specified norm. It is hard to define a tolerance using tiselate error as

it does not take into account the value Afwhich may vary for different minimizations. It
is also difficult to use the relative error, as this is undefimhenJ is zero. Therefore the

combination error (Gill et al., 1981), defined as:

v

comb(VJ) = T,

(2.42)

is chosen instead. This is a combination of the absolutetantetative errors. Wheikis zero,
it gives the absolute error, but whens large it gives a value similar to the relative error. The
maximum norm ¢o-norm), defined byj|x|| :mqu |z;| is chosen to measure the size of the
vectors, as it gives an indication of the extreme values.

For the experiments in the rest of this thesis, the quasitbieminimization algorithm is

terminated if any one of the following convergence critenia satisfied:

VIl
< 2.43
i+ (2.43)

1%e — Xk—1]|oo
1%k = Xk—tlloc 2.44
T halle = (2.49)
Ve = Vil Ts (2.45)

1+
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Figure 2.5: The behaviour of the cost functioh= J* + J° with increasing iterations (a) cost
function (solid line), squared Euclidean norm of the gradieector (dashed line), simulations
or function evaluations (circles). (See Fig. 2.4 for funtietails). (b) The set of termination
criteria (2.43,2.44,2.45). The specified tolerances a@ghby the thin solid lines.

wherer; are specified toleranced. is similar to a squared Euclidean norm, therefofé is
chosen so that this is similar to the Euclidean norm and shioade a similar magnitude to the
other termination criteria. The cost functidncontains a multiplicative constant; therefore, to
ensure that the termination criteria are robust, the costtion J and the gradientV.J|| are
first scaled so that they both have a value of unity at the Inéggnof the minimization.

The experiments in the rest of this thesis use a backgroatel sherefore the convergence
criteria for a minimization using a background state arengrad. The 4D-Var experiment
considered uses the true state given by the most unstabjevizzad, with a background state
which has a phase error. Observations of the lower level @ee/given at the beginning and the
end of a 6 hour window. The weight given to the observatiomtisro,? = 1, and the weight
given to the background terms > = 10-5. This experiment is described in further detail in
Chapter 3. The behaviour of the cost function and the diffiecenvergence criteria are shown
as a function of iterations in Fig. 2.5. The tolerances am@seh so that the minimization
algorithm will terminate at the point where machine premisil0~') is reached. That is, we
would ideally wish to terminate at the point at which on thetrigeration, there is a dramatic
increase in the number of function evaluations. In Fig. &.5¢his occurs at iteration number
32 and therefore the tolerances should be chosen so thatrihmeiration algorithm terminates
on iteration 31. The values of the termination criteria shaw Fig. 2.5(b) show that the

measure of/ reaches a lower value than the other termination critefierdfore, this is set to
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have a lower tolerance. Based on Fig. 2.5(b) and plots follaimxperiments (not shown),
the tolerances are chosen ag:= 8 x 10714, 7, = 8 x 1071, 75 = 2 x 10715, If any of the
termination criteria are satisfied, the minimization aition is stopped. The tolerances have
been specified as relatively low values to ensure that themzation algorithm has converged,
and so it may occasionally be the case that a large amounthetessary simulations (function

evalutions) are computed.

2.4 Background Error Correlations

The background error covariance matrix contains the veesrand the correlations of the
background state errors. The correlations may be betweaempgints corresponding to a par-
ticular model variable (auto-correlations), or may be kestw grid points corresponding to
different model variables (cross-correlations) (Weavet @ourtier, 2001). In the Eady model,
the QGPV and buoyancy errors are assumed to be uncorrelatetharefore there are no
cross-correlations. In this section, we describe the fipation of the background error auto-
correlations that will be used in further experiments.

The auto-correlations play an important role in data agation as they ensure that the
analysis is smooth and spread information from an obsenvabi the surrounding grid points.
That is, the analysis algorithm filters the observationa@and then interpolates the filtered
data to the grid points. Daley (1985) and Hollingsworth (2,.98003) illustrated the filtering
and interpolating properties of the background error dav&e using an eigenvector decom-
position of the covariance matrix. The structures with $miglenvalues are damped, and the
experiments by Daley (1985) showed that these are the stascwvith small wavelengths. As
the small-scale structures are damped, the analysis isaratyely smooth.

The background error covariance matixcan be written explicitly in terms of the as-

sumed background error variances and correlations as:
B =opo (2.46)

(see for example, Weaver and Courtier (2001) and Kalnay3p0@vhereos is a diagonal
matrix of background error standard deviatiengndp is a symmetric matrix of background

error correlation coefficientg, such that the correlation coefficientd < p < 1 are related
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to the covariances by:

cov(z, )

o (@)o(y) where —1 < p < 1. (2.47)

p(r,y) =

The first data assimilation methods modelled the backgramaok covariances using
correlation functions (see for example, Julian and Thigb@975), Thiébaux (1975), Daley
(1991) and Kalnay (2003)). For example, a Gaussian exp@h&mction:

2

pGaussiaréx) = 672% (2.48)

was used in optimal interpolation schemes (using subdsmdithe globe), where thB ma-
trices were inverted explicitly. Here,is the distance between the correlated grid pointsiand
is the length scale. This function was used for example,erlBEMWF optimal interpolation
scheme (Lorenc, 1981).

It is expensive to invert the background error covarianc&imand therefore it is better
to define the inverse matrix. For example, in the the ECMWEF lsliedl Office variational
data assimilation schemes (Courtier et al. (1998), Raltiat. €1998), Derber and Bouttier
(1999) and Lorenc et al. (2000)), th¥é term is defined in spectral space using a a spherical-
harmonic expansion with the correlation spectra definet tuat the small wavelength modes
are penalized.

A further alternative is to use a Laplace based method wiidefined in grid space. For
example, Derber and Rosati (1989) used an iterative Lagolagiid point filter, Schroter et al.
(1993) used a second derivative smoothness constrainb\Vaaster and Courtier (2001) de-
veloped a correlation method based on the diffusion equafio advantage of these methods
is that they are particularly suitable for domains with fixemlindary conditions, such as the
ocean.

A simple technique to model the horizontal error correlagidor the 4D-Var algorithm
using the Eady model is now developed. As matrices are catipnally expensive to invert,
we define the inverse covariance matrix. The technique s alsaplace based method, and
we illustrate how this method is in fact very similar to defigia Gaussian correlation function.
The relationship between Laplace-based correlation ifometand Gaussian correlation func-
tions was also briefly described by Rodgers (2000) and Be(@2@d2). The Eady model has

periodic boundary conditions in the horizontal, so the @atron model also requires periodic
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boundary conditions.

We first consider the Gaussian functiaghussiakz), With spectral response (Fourier trans-

form) ,aGaussiar(k) :

2 k22

pGaussiaréx) = 672% /A)Gaussiarék) =le” 2 (2-49)

where! is the length scale and is the wavenumber, as shown by for example Riley et al.
(1998). We then define an inverse covariance matrix basedaptate smoothing, to give a
similar spectral response (or Transfer function) to thesSeaun correlation function. Following
the work by Lea (2001) and Bennett (2002) the inverse cdroglanatrix p[;placewith spectral

respons@yapiacd k) is defined as:

1

Wo + U}lk?4

p[ellplace: wol +w; (Lm)Q ﬁLaplace(k) = (2.50)

whereL,, is a second derivative matrix with periodic boundary caods, andw, and w;
are constant scalar coefficients. Choosing= % andw; = wog, then P apiace has a similar

spectral response {@;aussian @S Shown in Fig. 2.6. In the following, the coefficients and
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Figure 2.6: A comparison of power spectra with= 1. The dashed line represents a Gaus-

1252
sian correlation function with the spectral respon®g, csiad k) = le=z—, and the solid line

represents a Laplace smoother with spectral respgngg.c.(k) = 1/(1 + ’“4214).

wy have indeed been chosen so that the Laplace-based cometairix has a similar spectral
response to a Gaussian correlation function.

The similarity between Laplace-based correlations ands&aun correlations can be made
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more clear by comparing the functions in physical grid pspece rather than spectral space.
We consider a domain of length = 200, with n = 80 grid points, and grid spacingx =
X/(n — 1) and compare the correlation functions associated with aervhtion at the 0"

grid point.

0.8r
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o
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Figure 2.7: A Gaussian correlation function with periodic boundary daions and length
scalel = 20Az. The dashed curves represent equatigrend g from equation (2.51). The
solid curve represents the sum of f and g.

The Gaussian correlation function does not account forogeriboundary conditions.

Therefore, we consider a sum of Gaussian functions:
, i—10)Az)? , i— (80 +10))Az)?
(i) = eap [—{7< et S IR [—{< e

l
wherei is the grid point number. These curves are shown in Fig. 2t iv= 20Az. The

(2.51)

individual functions are not periodic, however the sum @f fillmctions is periodic.

We now compare the Gaussian correlation function with thegldee-based correlation.
The p paceMatrix is inverted using MATLAB, and the 10th column is comgrawith the sum
of the two correlation functions. Comparisons with lengthles! = 20Az andl = 5Az are
shown in Fig. 2.8 (a) and (b) respectively. There are songhtsdifferences in the curves.
For example, with = 20Ax, pLaplace Nas a smaller amplitude th@@ayssian Ut with = 5Ax,
pLaplaceN@s a larger amplitude. Also, fore= 5Ax, papiacelS SOMetimes negative, whilsgayssian
is always positive. Nevertheless, the two approaches dowgiky similar results.

In this section, a horizontal correlation model has beereldged. The inverse back-

ground error covariance matrix is modelled using a secomgat®ee matrix. This approach
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Figure 2.8: Comparison of a column gf ,,ce (SOlid curves) and a sum gfaussianfunctions
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means that th& matrix does not need to be inverted, and periodic boundamngitions are
easily incorporated. Further, the method is extremely B code and apply to the Eady
model experiments. Whilst this technique is not a central foethis thesis, representing in-
verse covariances with differential operators is an irstiamg technique which may be suitable
for operational data assimilation. Such a technique isetully being developed by Qin Xu

(personal communication).

2.5 Summary

The 4D-Var algorithm, that is to be used in the identical texperiments in the rest of this

thesis, has been described in detail. The equations thatsadeto minimize the constrained

4D-Var cost function have been derived using two approaclesar algebra and Lagrange

multipliers. In both cases, the gradientbis found by integrating the adjoint model backwards
in time from final conditions of zero and adding the adjointfog at each timestep.

The 2D Eady model, used for the 4D-Var experiments has aksio tescribed. The model
is one of the most simple linear models of baroclinic indtgbi Although it contains many
approximations, this model is highly suitable as it has allstiraension and should isolate the
important mechanisms in 4D-Var. The model is derived froendhasi-geostrophic equations
and uses quasi-geostrophic potential vorticity (QGPV) bindyancy as the model variables.

The QGPV and buoyancy are advected by the basic state zondlamd are linked together
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via an elliptic equation.

The continuous adjoint equations were described, with @nevakion of the adjoint of the
discrete equations and the adjoint of the continuous egpusmiutlined in Appendix B. The
discrete adjoint model has been validated using both tha test and the gradient test.

Four minimization algorithms have been compared: steepestent, conjugate gradi-
ent, quasi-Newton and a memoryless combined quasi-Newvaojugate method. The quasi-
Newton minimization algorithm has been selected as therbeiiod for 4D-Var with the Eady
model, and convergence criteria based on the valukg ®fJ andx have been specified.

The inverse background error covariance matrix has beerleddising Laplace smooth-
ing and it has been shown that this is similar to using a Gans=irrelation function.

In the following chapter, the 4D-Var algorithm will be usemltackle the questions that

were posed in the first chapter.



Chapter 3

4D-Var Results

Previous studies have shown 4D-Var to perform well in regiohbaroclinic instability in
comparison with 3D-Var, as discussed in Chapter 1. In pdeticit has been shown that 4D-
Var is able to reconstruct parts of the atmospheric stateatiegaunobserved (e.g. Courtier and
Talagrand, 1987, Thépaut and Courtier, 1991, Rabier amaitieo, 1992, Tanguay et al., 1995).
It has also been shown that 4D-Var is able to generate westitarg analysis increments that
are necessary for baroclinic growth (e.g. Thépaut et @861 Rabier et al., 1998, 2000).

Although these two properties have been demonstratedatieayot well understood. The
purpose of this chapter is to investigate these propersiegsimple identical twin experiments
with the Eady model. In the experiments, the true state isrghwy the most rapidly growing
or decaying Eady wave. These modes grow or decay throughhtemction of boundary
temperature waves. The background state contains onlypkdemnent error and observations
are provided of the lower boundary wave only. There are nemasions of the interior QGPV.
Thus, 4D-Var must use the observations of the lower boungawe to reconstruct or infer the
correct position of the upper level wave. Due to the symmefrthe Eady model, this is
equivalent to providing observations of the upper levelavand inferring the position of the
lower level wave.

The chapter begins by describing the experimental desighéoexperiments in this chap-
ter. Section 3.2 investigates the ability of 4D-Var to restouct the upper level wave and Sec-
tion 3.3 investigates the ability to generate the corredicad structure, for both growing and
decaying modes. The chapter ends with a concluding dismusBEior simplicity, this chapter
considers the ability to reconstruct, and the ability toegate the correct vertical structures

separately. It is important to note, however, that thesegreperties are strongly linked in the

54
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following experiments.

3.1 Experiment Design

The experiments in this chapter are now described. ffiee state initial conditionsx’ are
given by the most rapidly growing or decaying Eady wave. Fegmation (A.38) in Appendix

A, the values of the non-dimensional buoyancy anomaliesiemoundaries are defined as:

!/

Growing Mode: %¢ = sinh(kz)cos(kx) — a cosh(kz) sin(kx) onz = j:% (3.1)
2

/

Decaying Mode:%¢

1
= sinh(kz)cos(kx) + a cosh(kz) sin(kx) onz = j:§ (3.2)
2

where the non-dimensional wave numbeér is 1.6, « ~ 1.5 and the interior QGPV anomalies
g are zero. The true state is then evolved using a 6 hour irttegiaf the Eady modeM (¢, t,)

to give an assimilation window length of 6 hours. The notatio+ 0 and 7T + 6 define
the beginning and the end of the assimilation window resgsgt It is important to use a
numerical integration of the true state rather than theyaical evolution so that model error
can be neglected.

Syntheticobservationsy, andy  of the entire lower level buoyancy field are taken from
the evolved true state at the beginning and the end of the BAiadow. For example, suppose
thatx, is a vector of the interior QGPV of dimension 440 and andx;, are vectors of the
upper and lower buoyancy values respectively with dimendi@ Then, the state vector and

observation operator can be defined using:

XL

Random noise&, andey is added to the observations so that = ng + gp andyy =
Hng + exn. The noise is defined to have a Gaussian distribution withdstal deviatior,
using an algorithm based on Press et al. (1992).

Thebackground statex’ is given by the same wave as the true state but with a displace-

ment error ofi wavelength, which i20Ax = 1000km.
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The 4D-Var algorithm, described in the previous chaptahes used to find the analysis

x“ that minimizes the cost function:

J(x0) = (x0—x")"B7!(xg —x") + (yo — Hxo)"R ! (yo — Hxo)
(3.4)

+ (ynv —Hxy)"R ! (yy — Hxy)

subject to the constraity = M(ty, to)Xo.

Thus, the 4D-Var algorithm must use the observations ofdvet level wave, given at the
beginning and end of a 6 hour window, to move the unobservpdipvel wave.

These experiments are not unrealistic, although they areragly simple. For example,
in operational data assimilation, there are many surfaservhtions and only a few upper
air observations. This is particularly the case over langrtter, due to the symmetry of the
model, these experiments are equivalent to the case whenepther level wave is observed
and the lower level wave is reconstructed. This may be the wéth satellite data or aircraft
data where there are many observations of the upper tropoespht only a few observations
near the surface. For example, the infra-red sounding maeliers such as HIRS and IASI can
only obtain atmospheric profiles above cloud (Eyre, 20009, @urrent microwave sounding
radiometers such as AMSU are mainly sensitive to the upppospheric temperature (Bout-
tier and Kelly, 2001). Also, satellite derived winds are tho# the upper troposphere (M.

Forsythe, Personal Communication).

3.2 Reconstruction

This section investigates how 4D-Var uses the time sequehodservations on the lower
boundary to reconstruct the upper level wave. The true sagésen by the growing Eady
wave and so 4D-Var must use the evolution information toritife upper level wave.

We begin by first considering perfect observations, so titedD-Var interpolating proper-
ties may be isolated from the filtering properties. The behawf the minimization algorithm
is examined to gain some insight into how the informationrigpagated to the unobserved
regions. The effect of varying the weight given to the baokad state is then examined.
Many of the previous studies did not include a backgrountéstden examining the recon-

structive properties, for example, Rabier and Courtie®@)9Tanguay et al. (1995), Thépaut
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and Courtier (1991). Therefore, it is important to inveategthe effect of the/® term on the

reconstructive properties. The effect of observation&@e finally considered. Courtier and
Talagrand (1987) found that a smoothing term was neededdtecesunrealistic small scale
noise. We therefore investigate the effect of incorpotptiarrelations (or smoothing) into the

background error covariance matrix.

3.2.1 Behaviour of the Minimization

This section aims to understand how the upper level wavecsnstructed during the mini-
mization process, to gain some insight into how the inforomaits propagated from the lower
boundary to the upper boundary.

We consider the case with perfect observatiors (= ey = 0) and assume that the
background state and observation errors are uncorrelatéthsthe error covariance matrices
are diagonal. We also assume that the error variamtasdo? are the same for all grid points
and observations respectively. Both the true state andablegibbound state QGPV fields are
zero, and therefore, the background state errors for QGB\eno. Thus, we assume that a
relatively small analysis increment is added to the QGPM fi€bllowing these assumptions,

the error covariances are defined as:

1
o, *1 for Buoyancy org = 4~
R!=071 B = . 2 (3.5)
10°I for QGPV in— 5 < z< 3

where the numbet(0° is chosen as an arbitrary large number so that only smalliardpl
analysis increments are added to the QGPV field. As only sam@hges are made to the
QGPV, the QGPV fields are not shown in the figures that follow.

The values of/ and||V.J||3, during a minimization using, > = 0.04 ando,? = 1, are
shown in Fig. 3.1. There are two stages to the minimizatianthk first stage, the lower
boundary is moved to the correct position. This was estadtidy examining the state vector
on each iteration, (Johnson et al., 2002) but is not showa fdre lower boundary is observed,
so this causes a dramatic decrease in the value of the cagicdionIn the second stage, the
upper boundary is moved to the correct position. This hag asimall effect on the value of
J, but eventually results in a dramatic reduction in the valtigV /|3, as the minimum is
reached.

On the 10th iteration, it may seem that the minimization atgm has converged, as the
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Figure 3.1: The values of (a)og J and (b)log ||V.J|| during the minimization process for

perfect observations with;2 = 1 ando,? = 0.04. Note that the graphs have different
vertical scales.

value ofJ does not change significantly. However, if the minimizatagorithm was termi-
nated after only ten iterations, the upper boundary wavedwat be moved, and the recon-
structive benefits of 4D-Var would be lost. Thus, it is cldattit is vital that the minimization
algorithm is not terminated until it has satisfied the cogeece criteria.

This experiment suggests that the minimization algorithitally builds up the informa-
tion in the observed regions before inferring the state@nuobserved regions. This behaviour
suggests that the effect can be related to the conditiorfitigediessian matrix of the cost func-
tion. The minimization algorithm will initially take steps directions such that the gradient is
large. These directions correspond to eigenvectors of #ssidn, with large eigenvalues. This
is especially the case for the first few iterations as the idesgsatrix is initially approximated
by the identity matrix. Then the minimization algorithm nihke steps in directions which
correspond to the eigenvectors with small eigenvaluegreakaching the minimum. This

argument is qualitative. However, it suggests that there nslationship between the recon-

struction of the upper boundary and the eigenvalues of thsside matrix. This relationship
will be made precise in the next chapter.
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3.2.2 Effect of the Background State

With diagonal covariance matrices, the cost function cacdmsidered to contain two weights:
o, 2 ando; 2. If 0,2 is relatively large, then a large weight is given to the otzatons but
if o, % is relatively large, then a large weight is given to the baokgd state. The impact of
different specifications of, > on the reconstruction of the upper level wave is now examined
Figures 3.2(a)-(b) show a 4D-Var analysis at the end of tlseralation window where
a relatively small weight is given to the background statbe #D-Var algorithm has propa-
gated the information from the observations (circles) &f ibwer level wave with the model
dynamics to move the unobserved upper level wave from thiegpaond state (dashed) to the
correct position (dotted). It is crucial that the upper levave is moved so that the forecast is
close to the truth. A method such as 3D-Var (with no verticatelations in the background
error covariance matrix) would only move the lower level @ao that in a 3D-Var analysis the
buoyancy field would tilt westwards instead of eastwardss Would produce a forecast with
decay instead of growth. This simple experiment thereftustrates one advantage of 4D-Var

in comparison with 3D-Var.
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Figure 3.2: 4D-Var analyses shown at the final time of a 6 hour assimifatandow, with
(@)-(b) o, * = 0.01 and (c)-(d)e, > = 0.1. In both cases, perfect observations, shown by the
circles, are given at the beginning and the end of the window,are given the weight,? = 1.

The true state, shown by the dotted lines, is a growing Eadyevead the background state,
shown by the dashed lines, has a displacement error. The papels show the buoyancy on
the upper boundary and the lower panels show the buoyandyeloiver boundary.

We now consider the same experiment, but with more weighdrgte the background

state. The analysis is shown in Fig. 3.2(c)-(d). The 4D-\lgo@thm has moved the upper
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level wave closer to the true state, but now the analysis paase error and an amplitude error.
As the upper boundary wave is now in the wrong position andalemsaller amplitude than the

true wave, the analysis gives a smaller growth rate thanrtieesolution. To compensate for

this, the amplitude of the lower boundary wave is too largé+d and too small at T+6.

Thus, the effect of the background state is to penalize tfegnmation propagated to the
unobserved regions. Although 4D-Var is still able to re¢nrt the unobserved part of the
flow when theJ® term is included, if too much weight is given to the backgmbstate, these
reconstructive properties are lost. Many of the experisi@nprevious literature did not in-
clude theJ’ term in the cost function. Thus, we can perhaps infer thatdfekground term
were included in the previous studies in the literature réselts may not have shown 4D-Var

to have been so advantageous.

3.2.3 Effect of Noise on the Observations and Background Ear Corre-

lations

The effect of adding noise to the observations is now ingagtd. When the observations
are noisy, the 4D-Var algorithm must filter the informatioarh the observations, as well as
reconstructing the upper level wave. The background eooetations play a key role in the
filtering of the observational noise. Therefore, the eff#fcsmoothing as applied through the
background error correlations is also examined in this@ect

The following experiments are identical to those in the jes section, except that ran-
dom noise is added to the observations and correlationmeoeporated into the background
error covariance matrix. The random noise has a Gaussiaibdison with a standard devia-
tion of one. The background error covariance with correfaiis defined as:

Oy

—2 14 1
B! = ; (I + g(Lm)z) for Buoyancy org = -5 (3.6)

andB~! is as before elsewherd.,, is a finite difference second derivative matrix in the
direction and is the correlation length scale. This form of correlatiortmxavas described in
detail in Chapter 2.

We first examine the effect of background error correlatiith noisy observations. An
analysis with noisy observations but no correlations issshim Fig. 3.3 (a)-(b) with weights

0,2 = 0.04 ando;? = 1. These weights are chosen to clearly illustrate the efféth®
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Figure 3.3: As for Fig. 3.2 but the observations now have noise added avi@aussian
distribution of standard deviation = 1. The assumed background state errors have (a)-(b)
no correlations and (c)-(d) correlations with length scéle- 10Az on the lower boundary
only. In both cases, the weight given to the observationgfs= 1 and the weight given to
the background state s, > = 0.04.

correlations. In previous experiments, a smooth analysiddcbe obtained from the perfect
observations. However, with noisy observations the amalgsnow noisy. The same exper-
iment but with correlations included is shown in Fig. 3.3-(@). The length scale used is
[ = 10Ax = 1000km. The analysis is very similar to that without correlatioescept that the
lower boundary is now smooth. This simple comparison hagfoe shown that the correla-
tion model, developed in the previous chapter, providestheothing that is needed when the
observations are noisy. Thus, it is vital that backgroumdrezorrelations are included when
noisy observations are used.

In Section 3.2.2, it was shown that if the weight* given to the background state is too
large, 4D-Var is unable to reconstruct the upper level wanreectly. These experiments are
now repeated but with both noisy observations and coraglaton the lower boundary.

Variational data assimilation is based on minimum variaggteénates and Bayesian prob-
abilistic arguments. From these statistical derivatiaresknow that the a priori weights should
reflect the assumed size of the errors of the backgroundssidtie observations. More specif-
ically, the weighto, > should be the the reciprocal of the background state erraanee, and
similarly for the observation errors.

The error variance for the observations is trivial to estamas the errors added to the

observations have a Gaussian distribution with a standewéhilon of one. In this case, the
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statistically correct weight given to the observationsj$ = 1. The error variance;? for the
background state is not so obvious. The background stateseare not taken from a Gaussian
distribution as we assume that the background state hasse @neor. However, it is still

possible to calculate a ‘globally averaged’ variance ofitlneer boundary errors using:

. 1
varianceg; = 4—0(xb —x"HT(x" —x*) (3.7)

wherex® andx’ are the background state and true state lower buoyancy fietds40 grid
points. This assumes that the error characteristics of dlit&kground state are the same for
all grid points. This is a reasonable assumption since wernagine that the wave will be
advected over all the grid points. For these experimentsye#tt has a phase error, this gives
a variance 0fi2.48 and hence the statistically correct weight given to the gemknd state is

o, % =0.08.
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Figure 3.4: As for Fig. 3.3 (c)-(d), but with (a)-(by, > = 0.08 and (c)-(dy; > = 0.01. In both
cases, there are correlations on the lower boundary Wwith 10Ax, the noise has a standard
deviation ofc = 1, ando,? = 1.

The analysis using the statistically correct weights isnshm Fig. 3.4(a)-(b). The upper
boundary wave has been moved closer to the true positiorgventhere is still an amplitude
error. This is due to the effect of the weight given to the lgaokind state. The experiments
in Section 3.2.2, concerning the weight given to the baakgdostate, showed that without
noise on the observations, the upper level wave can be regotesl if less weight is given to
the background state. However, this is not the case whem mo&sdded to the observations.

Figure 3.4(c)-(d) shows the same experiment as Fig. 3(®jajsut with less weight given to
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the background state. A non-physical wave has been gederatthe upper boundary due to
the presence of the noise on the observations.

Fig. 3.5 illustrates further the sensitivity of the unobset regions to noise on the ob-
servations. A small weight is now given to the backgrountestg, > = 0.004), creating an
unphysical wave on the upper boundary. If the noise on thergbhBons is generated using a
different random seed than the noise in Fig. 3.5 (a)-(b)wtit the same variance, the upper
level wave has a different structure, as shown in Fig. 38dx) Thus, the unobserved regions
are sensitive to the noise on the observations. This resdtalso found by Courtier and Tala-
grand (1987) and was briefly discussed by Bennett and Mil@®1) who interpreted the result

in terms of the ill-conditioning of the underlying inverseplem.
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Figure 3.5: The random noise added to the observations is generated aglifferent random
seed (idum): (a)-(b) idum=-3, (c)-(d) idum=-4. In both case, > = 0.004, 0,2 = 1, and the
noise has a standard deviation @f= 1. The details are as for Fig. 3.4.

In these experiments, we have only considered correlgtmmsmoothing, on the lower
boundary and not the upper boundary. The unobserved uppedboy has been shown to be
sensitive to noise on the observations and so it seems tetsibuggest that the unphysical
wave on the upper boundary may perhaps be removed by appigimglations also to the
upper boundary.

The experiment shown in Fig. 3.4(c)-(d) used correlatiomgh® lower boundary with
[ = 10Ax. If this is repeated, but with correlations applied to bdta tpper and the lower
boundary, the results look very similar to those in Fig. 8)4(¢l), and are therefore not shown.
Thus, upper level correlations with a length scalé ef 10Az make little difference to the

analysis. This is because the unphysical upper level waseheavelength which is long in
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comparison with the correlation length scale.

We now consider the effect of adding correlations with a Emgprrelation length scale.
The experiment shown in Fig. 3.4(c)-(d) is repeated but witirelations using = 20Ax =
2000km. When the correlations are only applied to the lower boupdas in Fig. 3.6 (a)-
(b), the lower boundary wave is much more smooth, but an uipalywave has still been
generated on the upper boundary. When correlations aréedppl both the upper and the
lower boundary, as in Fig. 3.6 (c)-(d), both the upper anddher level wave are smooth and
are close to the truth.

Thus, it is possible to create a smooth wave by increasindetiggh scale of the corre-
lations. However, the length scale in these last experisnsnéxtremely long, and would be
unrealistic for operational data assimilation, where itiportant to be able to resolve smaller
scale structures. Thus, we may conclude that it is impottamfive enough weight to the

background state, so that unphysical solutions are notrggstein the unobserved regions.
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Figure 3.6: As for Fig. 3.4, with (a)-(b) correlations are only appliedl the lower boundary
wave, (c)-(d), correlations are applied to both the loweuhdary and the upper boundary. In
both cases, observations have noise with a Gaussian disvibof standard deviation = 1.
The weights given to the observations and the backgroune atas,;? = 1 ando, * = 0.01.
The correlations have a length scalelof 20Ax.

3.2.4 Signal-to-Noise Ratio

To summarize, the experiments in this section have denairdtthat it is important to specify
the weightss, ? and o2 correctly. That isg? should represent the size of the background

state error variance ang should represent the size of the observation error variaodbat
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the maximum amount of information may be extracted from thseovations, without con-
taminating the analysis with noise. It will be shown in a sdpgent chapter that in fact, these
weights may be computed without knowing the true state.

The experiments with perfect observations showed thatdlkdround state strongly pe-
nalizes the information needed to reconstruct the stataabserved regions. The experiments
with noisy observations showed that the background stateaded to penalize the generation
of unphysical waves in the unobserved regions. This can imerguized by considering what
is known as the signal-to-noise ratio.

The signal-to-noise ratio is defined as the ratio of the ntageiof the signal to that of the
interference or noise. The signal may be for example, artredatcurrent, radio wave, or a
light ray. In our case, the signal is the true state, and tieeris the errors on the observations.
The purpose of data assimilation is to extract the sigridrom the noisy observationg.
The signal-to-noise ratio gives an indication of how muclhef signal can be extracted from
the noisy observations, or equivalently, how much weiglbusth be given to the observations
relative to the background state (Eyre, 2000). If an obsemvdas a large error in comparison
with the background state, then we would wish to give the olagi®n a small weight. But, if
an observation has a relatively small error, then we woukhwo give a large weight to the
observation. Thus, the ratjo= 2 gives an indication of the signal-to-noise ratio.

If the specified valug: is too large and too much weight is given to the observatithes)
the analysis will be noisy. However, if the specified valueuok too small and too much
weight is given to the background state, the maximum amoluavalable information in the
observations will not be extracted. Thus, the specificatibthe relative weight given to the
observationsy, is critical in extracting the maximum amount of useful infation from the

observations.

3.3 \Vertical Structure and Growth Rates

The results in the previous section showed that 4D-Var is &ibuse a time-sequence of ob-
servations on the lower boundary to reconstruct the ungbdarpper level wave. However,
we did not consider the impact on the vertical structure efdpstem and the growth rate of
the subsequent forecast. This section investigates thigyadfi 4D-Var to generate the cor-
rect vertical structures needed for baroclinic growth aadag. We first examine the effect

of the background state when a decaying mode is observedp@ating the experiments in
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Section 3.2.2, but with the true state given by the most tgpiecaying Eady wave. The study
is then extended by investigating the effect of the asstiitawindow length, the temporal
position of the observations in the assimilation window #reltemporal weights given to the

observations.

3.3.1 Analysis of Decaying Modes

Many of the studies in previous literature have shown 4D-4{daperform well in cases of
baroclinic growth, and the experiments in the previousigadtave also shown that 4D-Var
is able to move the upper level wave so that the growing Eadsevisas the correct vertical
structure. However, there has been very little researchherbehaviour of 4D-Var in the
presence of baroclinic decay. It is important to understaowl 4D-Var behaves when the true
state is decaying, to fully assess the advantages and disad)es of the data assimilation
algorithm.

The experiments in the previous section are now extendedrtgpare the behaviour of
4D-Var when the true state is given by either a decaying made growing mode. As in
Section 3.2.2, perfect observations of the lower level langy are given at T+0 and T+6 and
the background state has a phase error00bkm. When a growing mode is observed, the
analyses are exactly the same as those in Section 3.2.2.

If the analysis has the correct vertical structure, thedasewill have the correct growth
rate. Therefore, we choose to measure the analysis acdwyayamining the Euclidean norm
of the streamfunction during the following forecast.

Fig. 3.7 gives the evolution of the norm of the streamfunctiaring the 6 hour assimila-
tion window and also the following 30 hour forecast.

Fig. 3.7 (a) gives the norm evolution when a growing mode &eoked. Ifo; * is small,
the forecast from the analysis (dotted line) is close to ththt(solid line). Ifo, * is large, the
forecast from the analysis (dashed line) has a smaller roate. The forecast has the wrong
growth rate because the upper level wave in the analysidhibagrong position and amplitude,
as shown in Fig. 3.2(c), in the previous section.

Fig. 3.7 (b) shows the norm evolution when a decaying modbsewed. Ifr; * is small,
the forecast from the analysis (dotted line) is again clog@e truth (solid line). However, if
o, % is large, the forecast from the analysis grows instead adiylag. Thus, the background

state has a greater detrimental effect when a decaying rsabserved.
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Figure 3.7: The squared Euclidean norm of the streamfunction for fatc&om 4D-Var
analyses of (a) Growing and (b) Decaying modes. In both ¢gsedect observations are
given at T+0 and T+6, with weights,? = 1. The solid lines show the forecasts from the true
state, the dashed lines show the forecasts from analysegit= 0.1, and the dotted lines
show the forecasts from analyses wift = 0.01.
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Figure 3.8: The true analysis incremenk{ — x;) (black, dashed) and the actual analysis
increment ¢, — x;) (red, solid) from the analysis of (a)-(b) Growing and (d)-©ecaying
modes. In both cases, perfect observations are given at fie0Ta6 with weightsr; 2 = 1,

-2
o, " =0.1.
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To compare the analysis of a decaying mode with the analysasgoowing mode, it is
useful to examine the actual analysis incremests{x’) compared with the required analysis
incrementsx’ — x%), as shown in Fig. 3.8. If the true solution is the growing moithe true
buoyancy field increment tilts eastwards, and if the truatsmh is the decaying mode then the
true buoyancy field increment tilts westwards. When a grgwiode is observed, the actual
analysis increment is close to the required analysis inergnHowever, when a decaying mode
is observed, the analysis increments are very differerg.réquired increment tilts westwards,
yet the actual increment tilts eastwards. So, a growingyarsincrement has been added to
the background state instead of a decaying analysis inererii@is produces a forecast with
growth instead of decay.

Again, the signal-to noise ratjp= 2, is an important aspect in obtaining structures with
the correct growth rates. This can be understood furthephgidering the schematic diagram
in Fig. 3.9. When the observations have large errors, asmsiowig. 3.9(a), there is a large
difference between the possible growth rates of the arslygione extreme, the state decays
and at the other extreme, the state grows. When the obsmrgdtiave small errors, as shown
in Fig. 3.9 (b), both possible analysis extremes are growaimd) there is a small difference
between them. Thus, it is easier to infer the growth rate vthere is a small amount of noise
on the observations. In the case of the Eady model, if the tyromte can be inferred, then the
upper boundary wave can be corrected so that the analysis thie correct growth during the

assimilation window.

(b)

T+0 T+6 T+0 T+6

Figure 3.9: Schematic diagram illustrating the effect of noise on theeotations. The solid
line represents the growth of the true state and there areefagions (circles) at T+0 and
T+6. The arrows represent the error bars on the observatiansl the dashed lines show the
forecasts from possible analyses with the most extremetgn@ates. The observations have
(a) relatively large errors, and (b) relatively small err
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Thus, 4D-Var is able to generate the vertical structure @@éor baroclinic growth, but is
not always able to generate the structure needed for balodecay. If the observations have
large errors, then a relatively large weight must be giveheédbackground state. This penalizes
the decaying part of the analysis increment, so that in éagtowing analysis increment may

be added instead of a decaying analysis increment.

3.3.2 Temporal Position of the Observations

We now examine where the observations should be placed iasienilation time window,
so that 4D-Var can generate the best vertical structures.egivalence between the Kalman
Filter and 4D-Var means that 4D-Var implicitly evolves theckground error covariance ma-
trix through the time window. It is difficult to specify the eariance at the beginning of the
window, and so it is often approximated using isotropic elation functions which are not
flow dependent. As the covariance matrix evolves throughwiinelow, it becomes flow de-
pendent. Hence, it would seem that it is better to place tlsemiations near to the end of the
assimilation window, so that the information from the olaéions is spread to the surround-
ing grid points in a flow-dependent way. The single obseovetixperiments by Thépaut et al.
(1996) showed that it is indeed important to have as long amdlation window as possi-
ble, to ensure that the baroclinic structures are fully ted. High-resolution experiments
with the ECMWF 4D-Var system have also shown a consistentorgiment in analyses from
a 12-hour assimilation window compared with analyses fro@aheur assimilation window,
(Bouttier, 2001).

With this in mind, we now investigate the impact of the lengtlthe assimilation window
and the temporal position of the initial observations. Ting@artant differences between the
experiments in this section and those of Thépaut et al.gL88d Bouttier (2001) is that in
these experiments we consider sets of observations at twelévels rather than at one time
level, and the true state is known.

We consider a series of 4D-Var experiments with differentgeral positions of the ob-
servations, and different assimilation window lengthse Experiments use either a 6 hour or
12 hour assimilation window. For a fair comparison betwdwn@ hour and 12 hour windows,
the true state is first evolved for 6 hours if a 6 hour windowsed! The true state is given by
either the most rapidly growing or decaying Eady wave anditiekground state has a phase

error of 1000 km. Observations are provided of the lowerllbueyancy at two time levels.
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Figure 3.10: Correlation coefficients' and Amplitude errorsA, plotted against the time of
the initial observations (hours). The experiments useeeith6 or 12 hour window, with
two sets of observations. The initial observations areegitit the beginning of the window
or somewhere in the middle of the window. The final obsematare always at the end of
the window. The observations are of the lower level buoyameye, and have noise with
a Gaussian distribution, with a standard deviationcof= 0.1. The weights arer,? = 1,
o, 2 = 0.04 and smoothing is applied to the lower boundary through thekgeound error
correlations. The experiments with the initial observa@t the end of the window, only have
one set of observations at the end of the window. The sokd liapresent the experiments
where the true state is given by the most rapidly growing Badye and the dashed lines
represent the experiments where the true state is given dynibst rapidly decaying Eady
wave.
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The final set of observations are always at the end of the wiradal the initial set are either
at the beginning of the window or at a specified time in the neicd the window. Random
noise with a Gaussian distribution with= 0.1 is added to the observations and smoothing
is applied to the lower level through tid& matrix. The weights given to the observations are
0,2 =1ando,? = 0.04.

Note that the weight 2 given to the observations is smaller than the statisticgitymal
value. This is to ensure that the analysis is not noisy. Atgte that when the initial observa-
tions are at the end of the window, there is only one set ofrebiens and the weight given to
these is not doubled.

The correct position of the upper boundary wave is vital itedaining whether the fore-
cast from the analysis will grow or decay. Therefore, to ss#ee analysis accuracy, we choose
to separate the phase and amplitude errors. The phasesmaasured using the correlation
coefficient,C, as discussed by Lawless (2001).

The correlation coefficient,' , is defined as:

cov(x*, x")
o(x?)o(x’)

C = (3.8)

where—1 < C < 1. If C = 1, the analysed wave has the correct phase aod+# —1, the
analysed wave is completely out of phase with the true wave.

The amplitude erro#, is defined as:
A = (max(x®*) — min(x*)) — (maz(x") — min(x")). (3.9)

If A = 0, the analysed wave has the correct amplitudel it 0, the analysed wave has an
amplitude that is too large and.if < 0 the amplitude is too small.

Figure 3.10 shows a summary of the experiments with diffen@mdow lengths, temporal
position of the initial observations and growing and dengyirue states. For example, Fig.
3.10 (a) and (b) show the correlation coefficiéhénd amplitude erroA of the analysed upper
level wave for assimilation experiments using a 6 hour wimd®he final observations are at
T+12 and the initial observations are at T+6 , T+9 or T+12. @halysis window is defined
from T+6 to T+12.

These plots show that when the growing mode is observedi(soés), the phase error is

always small, and the amplitude error increases as thalinliservations are moved to the end
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of the window. Thus, for the growing mode, the analysed uppel wave is always in the
correct position and the amplitude is the best when thairotiservations are at the beginning
of the window.

Figure 3.10 (a) and (b) also show that for the decaying modshd lines), the phase
error increases as the initial observations are moved tertdeof the window. However, the
amplitude error decreases. Thus, for the decaying modha,oliservations at the beginning
and the end of the window, the phase of the upper level wavead glthough the amplitude
is poor. When the observations are only at the end of the wintite analysed upper level
wave has the correct amplitude. However it is completelyobphase with the true wave. This
is because a growing analysis increment has been added bat¢kground state instead of a
decaying analysis increment, as discussed in Section.3.3.1

These results are now compared with those of the 12 hour wirekperiments, by ex-
amining Fig. 3.10 (c) and (d). With observations at the beigig and the end of the 12 hour
window, both the phase error and the amplitude errors ardlesmlaan the errors when ob-
servations are at the beginning and the end of a 6 hour windbws, it seems that a longer
window does give better results. However, this is not alwhgscase when the observations
are only at the end of the window.

For a growing mode, with observations at only the end of thedew, the experiments
with a 12 hour window give better results than those with a @rlvandow. In both cases, the
upper level wave has the correct phase, but the amplitudattisrifor the 12 hour window than
the 6 hour window. For a decaying mode, with observationsgtthe end of the window, the
experiments with a 12 hour window give worse results thaseheith a 6 hour window. The
phase error is larger and the wave now has too large an anhplitihat is, a large analysis
increment has been added to the upper level, but it is in cet@lylthe wrong position.

To summarize, these experiments have shown that it is bésithe observations as far
apart as possible in time. This means that the observattomddbe placed at the beginning
and the end of a long assimilation window (within the vajdiff the tangent linear model).
They have also shown that with observations at only the etloeofvindow, a growing analysis
increment is added to the background state. This gives tineatwertical structure if a growing
mode is observed, but not if a decaying mode is observed.hier gtords, if observations are
only at the end of the window, a longer assimilation window give better results if a growing
mode is observed, but worse results if a decaying mode isudxke

To illustrate further the difference between the analy$igrowing and decaying modes,
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Figure 3.11: The streamfunction norm for forecasts from 4D Var analyde@p Growing
and (b) Decaying modes. Observations are given at either (fieted) or T+9 (dashed) and
also at the end of a 12 hour window. The observations havemith a standard deviation
of o = 0.1, and the weights are,;> = 1, 0, > = 0.04. Smoothing is applied to the lower
boundary.

and the importance of specifying the observations as fat apgossible in time, we examine
the growth rate of the following forecast, as measured bgtiteamfunction norm. We consider
the experiments with a 12 hour assimilation window, and cammnalyses with the initial
observations at T+0 with analyses with the initial obseoret at T+9. The streamfunction
norm during the 12 hour assimilation window and the follogv¥ hour forecast is shown in
Fig. 3.11.

When the growing mode is observed (Fig. 3.11 (a)), the fatdioam the analysis is closer
to the true state when the initial observations are at thenbaw of the window (T+0) rather
than near to the end of the window (T+9). When the decayingemsabserved (Fig. 3.11
(b)), the forecast from the analysis is close the true stétervithe initial observations are at
the beginning of the window. However, when the initial olvs#ions are near to the end of the
window, a growing analysis increment is added to the backupicstate instead of a decaying
analysis increment. This produces a forecast with grondteed of decay. Thus, to give the
correct decaying analysis increment, it is vital that theesbations are at the beginning and

the end of the window rather than both near to the end of thdovin
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Figure 3.12: Schematic diagram illustrating the effect of the temporaipon of the observa-
tions. The solid line represents the growth of the true statdkthere are observations (circles)
at two time levels. The arrows represent the error bars onabservations, and the dashed
lines show the possible forecasts from analyses with thé esbeme growth rates. The obser-
vations are at (a) T+0 and T+6, and (b) T+3 and T+6.

This can be understood by considering the schematic diagr&ig. 3.12. The diagram
illustrates a one-variable problem with an observatiorcles) at two times with associated
errors as shown by the error bars. When the observationgaaspart in time, the solution
has grown a large amount during the time between the obgamsarelative to the noise on
the observations. Therefore, there is a small different@dsn the possible extreme analyses.
When the observations are close together in time, the sollias only grown a small amount
relative to the noise on the observations. Therefore, itiffcdlt to infer the growth rate
accurately. That is, there is a large difference betweempdssible extreme analyses. At one
extreme, the forecast from the analysis will not grow, artti@bther extreme, the forecast from
analysis will grow rapidly. This diagram shows clearly thas important that the observations
are far apart in time, so that the growth rate can be infercedrately. In the context of the
Eady model, the correct vertical structure of the analyais anly be obtained if the growth

rate is correct.

3.3.3 Temporal Weights Given to the Observations

The situation where the temporal position of the obserwnatis fixed but the weight given to
the observations can be varied is now addressed. It can Is&deoed that twice the number
of observations is equivalent to doubling the weight giverthe observations. This can be

justified by considering a super-observation (Lorenc, ) 984t is a linear combination of two
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observations that are close together. Given that therpisaly twice as much radiosonde data
at 00Z and 12Z than at 06Z and 18Z, the issue concerning thghivgiven to the observations
is important in defining a 4D-Var assimilation window.

The previous experiments showed that the analysis of a decave is worse when the
observations are provided only near to the end of the windhan tvhen observations are near
to the beginning of the window. Thus, it might be expected thaay be better to give more
weight to the initial observations that the final observagio

The following experiments use a 12 hour window, with obseoves at T+0 and T+12.
The true state is given by either the most rapidly growing ecaying Eady wave and the
background state has a phase error as in previous expesinidmg weight given to the back-
ground state is chosen ag* = 2 and the weight given to the observations are chosen as
eithero, 2 = 1 given to the initial observations ang? = 20 given to the final observations or
o, % = 20 given to the initial observations arg? = 1 given to the final observations. These
weights are chosen so that the background state is givematavedy large weight and so that
there is a large difference between the weight given to thialiiand final observations.

To assess the performance of 4D-Var in the different cabesstreamfunction norm of
the forecast from the analysis is examined. The case whergué state is given by the most
rapidly growing Eady wave is shown in Fig. 3.13(a). It can bersthat a better forecast is
achieved when more weight is given to the final time obsewuatirather than giving more
weight to the initial time observations. When a growing wavebserved, if a large weight is
given to the initial observations, the analysis is requicete close to the initial observations
but not to the final observations. Hence, a large analysisiment is added but it does not need
to grow. If a large weight is given to the final observationspzall analysis increment can be
added to the background state so that it grows to fit the fimed bbservations. Therefore, the
analyses are better if more weight is given to the final olzgems.

The case where the true state is given by the most rapidlyder&ady wave is shown in
Fig. 3.13(b). It can be seen that it is also the case that thlysis is better when more weight
is given to the final time observations. This is opposite ®aRpected result and the reasons
for this are not clear. The state at the final time has a smeathgalitude than at the initial time
as the state is decaying. Therefore, it is perhaps the casamhanalysis increment with a
smaller amplitude is added when more weight is given to tred fime observations. This will

be answered more fully in a subsequent chapter (Section 5.6)
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Figure 3.13: The streamfunction norm for forecasts from 4D Var analys¢a)oGrowing and
(b) Decaying modes. The background state has a phase ertbpariect observations of the
lower boundary wave are given at T+0 and T+12. The weightsspecified ag, > = 2, and
o,2=20atT+0ands,? = 1 at T+12 (dashed), and; 2 = 1 at T+0 ando,? = 20 at T+12
(dotted). The solid line represents the true state.

3.4 Conclusions

This chapter has focussed on two properties of 4D-Var: iimigrthe state in unobserved re-
gions and generating the necessary vertical structuresselfproperties were investigated using
simple experiments where the lower level wave was obseméedB-Var was used to infer the
position of the upper level wave. The main results are nowsarized.

The behaviour of the minimization algorithm showed that dhserved regions are first
corrected, and then the unobserved regions are correctégs hints that the information
needed to reconstruct the unobserved regions correspmadgenvectors of the Hessian matrix
with small eigenvalues.

The experiments with perfect observations showed thatdlokdround state strongly pe-
nalizes the information needed to reconstruct the unobdgemwave. The experiments with
noisy observations showed that the reconstructed regienseasitive to noise. Correlations
may be used to smooth the noise, however, this may not be alsEntove the unphysical
waves in the unobserved regions if the correlation lengdtess too small. Thus, it is impor-

tant to give a large weight to the background state in the cbseisy observations. Together,
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the experiments with and without noise show that it is vitespecify the weight given to the
observations relative to the weight given to the backgrastate, so that the maximal amount
of information may be extracted from the observations.

By comparing the results with growing and decaying trueestat has been shown that 4D-
Var is able to generate analysis increments with verticatsiires necessary for both baroclinic
growth and decay. However, it is sometimes the case thatwairggoanalysis increment is
added instead of a decaying analysis increment. This odcargrge weight is given to the
background state or if all the observations are near to td®&the assimilation window. Thus,
it is important that the observations are both accurate afar @apart as possible in time, so that
4D-Var is able to analyse the correct growth rate. Givingeneeight to the initial observations
does not improve the analysis of decaying modes.

The experiments in this chapter have led to a number of isti@geresults. However, they
have not provided a full understanding of how observatiosasiaed in 4D-Var. In the next two
chapters, we aim to provide a new understanding of the 4DaNalyses in this chapter, using
an approach based on information content concepts, thansnonly used to solve inverse

problems such as satellite retrievals.



Chapter 4

Qualitative Information Content of

Observations in 4D-Var

Information theory or Communication theory is concernethwyhat is known as the infor-
mation content of a message, which is the amount of usefafnmdtion contained within a
message. Information theory was first used by electricaineregs to design better telecom-
munications systems, but now has a wide variety of apptioati In particular, concepts from
information theory have been applied to 1D-Var satelliteieeal studies (e.g. Mateer, 1965,
Eyre, 1990, Prunet et al., 1998, Rodgers, 2000, Rabier,2G)2). There are many different
methods to evaluate or measure the information contenteobliservations. For example, in
satellite retrieval studies, it is useful to obtain a singlanber as a quantitative measure of
the information content. However, there are many othemtiegles which are useful in under-
standing the information content. The singular value dgmusition (SVD) is one particular
technigue that can be used, as first described by Mateer)1965

The SVD has previously been used to evaluate the informatoent of observations
in 1D-Var retrievals. In this chapter, the method is extehttethe temporal dimension to
evaluate the information content of observations in 4D-Véis technique should allow a new
understanding of how the information from observation®mabined with the model dynamics.

The chapter begins by formulating the 1D-Var/3D-Var datsiragation algorithm as an
inverse problem. We then give a review of the SVD and its usederstanding the information
content of observations in 3D-Var. The technique is theerkd to consider the information
content of observations in 4D-Var. The technique involVesright and left singular vectors

of what is known as the observability matrix and so we go onetscdbe how these relate to

78
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the singular vectors or optimal perturbations that are ncoramonly used in meteorology.
We also discuss how the SVD can give information about thelitioming of the problem and
hence the expected rate of convergence of the minimizafioa chapter finishes by describing

the computational aspects of the SVD technique.

4.1 Data Assimilation as an Inverse Problem

Consider a simple example where the true state of the atreosghrepresented by a vector
of dimension n, and that m observations are given in the vgctBuppose that the observations
are not of the atmospheric variables, but can be relatectto through a set of linear equations
So that:

y = Hx" + ¢°. (4.1)

wheree® is the observational error arid is the forward model. Then the best estimate
of the true statex' must be found, such that a measureyof Hx" is small. This is known
as an inverse problem (Wunsch, 1996) and can be solved byfating it as a least-squares

problem. This finds the statewhich minimizes the cost function:
1 _
J°(x) = Q(HX —y)'R7'(Hx — y). 4.2)

J. Hadamard defined a problem to be well-posed if three reaugints are met: a solution
exists, the solution is unique and the solution dependsrogmisly on the data. If any one
of these three conditions are not satisfied, the problenmto#ed (see e.g. Kalnay, 2003). In
general, equation (4.2) is ill-posed. That is, there arerofhiore unknowns than observations
so the solution is non-unique. Further, even if there areas/mbservations as unknowns, the
observations are noisy and therefore the analysis can ety sensitive to the noise.

For this reason more information must be provided to maketbblem well-posed. For
example, in 1D-Var/3D-Var a background term is added to g® function so that the analysis

is given by the state which minimizes the cost function:
1
J(x) = ) {(x — xb)TB_l(X - xb) + (Hx — y)TR_l(HX - y)} ) (4.3)

Then the analysis is given by the background state in regiudrese there are no observations

and the analysis is smooth in regions of dense noisy obsangatin the rest of this chapter,
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we consider diagonal covariance matrices with constamanvees. However, it is possible to
extend the technique to include correlations, as will bexshim a subsequent Chapter.

As before, we leB = ¢7I andR = ¢?2I. Then the cost function becomes:
T = 5 o= %) (x — x) + 0, *(Hx — y) (Hx — y)} . (4.4)
Multiplying the cost function by2c?, then, 3D-Var minimizes the cost function:
Jao(x) = p? {(x = x")T(x = x) } + (Hx — y)" (Hx — y) (4.5)

wherey? = g—z is a parameter that determines the relative weight givelneddackground state
b

in comparison to the observations.

4.2 Information Content and the Singular Value Decompo-
sition

The least squares equations have also been used for masyysatve other inverse problems
such as deducing unknown constants in dynamic oceanog(#nysch, 1977) and determin-
ing the vertical distribution of ozone in remote sensing {®4a, 1965). The least squares
equations continue to be used to solve the satellite redrieverse problem. For example, ver-
tical temperature and humidity profiles are linked to obedmadiances through the radiative
transfer equation.

Itis important to understand the information content of oéely sensed observations. That
IS, to understand how different observations contribui tetrieval. By observing more radi-
ances at different wavelengths (channels), the vertisalugion of the profile can be improved.
However, there may be a point where adding further obsemvatias a negligible effect on the
retrieved profile. Further, with the vast increase in siedlata in the future, it will not be pos-
sible to include all the available observations in retrigvd herefore, it is necessary to select
an optimal subset of the observations such that the impdrteonmation is retained ( Rodgers
(1996) and Collard (2000)).

In the case of satellite retrievals, there is a complicagdationship between the observed

variables and the retrieved variables. However, many igades have been developed to assess

the information content of the observations. The inforomaitontent determines how many
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linearly independent pieces of information are contaimealset of observations. This not only
depends on the observations, but on the algorithm in whiet #éne used, for example on the
radiative transfer model and on the errors in the obsematio

One of the methods used to examine the information conteheisingular value decom-
position (SVD). This is a matrix factorization that can belgd to any matrix, even if it is
rectangular, and has many uses such as finding the rank ofix,maducing the storage space
of a matrix (commonly used in image reconstruction and dignacessing), extracting a sig-
nal from noisy observations using a truncated SVD and alnidg the optimal perturbations
which exhibit large finite-time growth, used to generate aseenble of forecasts in meteorol-
ogy. In this chapter we develop a technique which uses the &\Be so-called observability
matrix in 4D-Var. But first, we discuss how the SVD may be useeidamine the structure and
identify the important parts of the observation operaior

Following Golub and Van Loan (1996) and Strang (1986), th®%®¥an (m x n) matrix

H (m rows and n columns) with rank r, can be written as the prodiihree matrices:
H=UAVT (4.6)

whereA is a diagonalm x n) matrix, with r positive singular values; on the diagonal. The
singular values are ordered such that> X, > ... > A, > 0. The m columnay; of U

(m x m) are also known as the left singular vectors (LSVs) and a thks eigenvectors of
HHT”. The n columns; of V(n x n) are known as the right singular vectors (RSVs) and are
also the eigenvectors &1 H.

The SVD can be used to identify the four fundamental subspligewn as the column
space, left null space, row space and null space. The firstMsR&m a basis for the row
space, whilst the remaining RSVs form a basis for the nultep@his distinction is important,
as all the vectors in the null space satisfx = 0. Similarly, the first r LSVs form a basis for
the column space and the remaining LSVs form a basis for fheu# space. These subspaces
are illustrated in Fig. 4.1.

Both the RSVs and LSVs form orthonormal bases,l8oU = I,, and V'V = 1I,,.
Using this with equation (4.6) then we find that each righgslar vector is mapped onto the
corresponding left singular vector and the magnificatiagiven by the corresponding singular
value:

HVj = )\jllj. (47)
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Figure 4.1: Schematic Diagram illustrating the SVD of the observatiperatorH. There aren = 10
observations and hence the length of the left singular ve@$dl0. There aren = 7 unknown variables
and hence the length of the right singular vectors is 7. Asetlage more observations than there are
unknowns, a left-null space exists. In this case the observaperator does not have as many linearly
independent equations as unknowns. Therefore, one ofrtgelar values is zero, and so a null space
also exists.

This means that the vectors in the row space (in state spee@)apped onto vectors in the
column space (in observation space). However, as the #eictdhe null space have a corre-
sponding zero singular value, the null space vectors aregethpnto zero and not onto the
left-null space vectors.

It is sometimes the case that there are singular valuesthaiom-zero but are extremely
small. In this case, an effective or numerical rank may benddfi where there is a sharp
decrease in the singular values (Golub et al., 1976). ThesRB8&t correspond to the small
non-zero singular values are infact important in 4D-Varwdkbe demonstrated in the next
chapter.

To illustrate how the SVD can be used to identify the imparfzart of a matrix, matlab
has been used to produce an SVD analysis @2a x 200) digital image of a clown. Using

the SVD, the image matrikd can be approximated by a rank-k matrix:
k
He =) \uyv). (4.8)
j=1

Some of the approximations are shown in Fig. 4.2. The ranpggbaximation shows the basic

large scale structure, but it appears very blurred. Moraidet added with more singular
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vectors, as shown by the rank-20 approximation. To the égaank-60 approximation is very
similar to the true image. Thus, a truncated SVD can be useetam the dominant features

of the image but discard the unnecessary small scale stesctu

rank—-20

True Image

Yia

Figure 4.2: The 'true’ image of a clown, and rank-5, rank-20 and rank-gpepximations. The true
image has rank-200.

When the SVD of the observation operator is found, the RS¥snlistate space. This
means that the RSVs are the same dimension as the state aedttire variables in the RSVs
correspond to the variables in the state vector. Similanky,LSVs lie in observation space.
This means that the SVD can be used to identify the structustate space that will map onto
a particular structure that is observed.

Thus, the SVD can be used to identify which variables in tatetpace can be determined
by the observations. If a retrieved state has componentshwitg in the null space of the
observation operator, their values can not have been @at&iom the measurements (Rodgers,
2000). It is obvious that a null space will exist if there aggvér observations than unknown
state variables. Even if there are more observations thiamawns, it is still possible for a null
space to exist; for example, if there are two observatiorth@same variable. A null space
may also exist if the equations linking the observationfiwhite unknowns are not all linearly
independent, but this may not be obvious at first sight. Imsucase, the SVD can be used to
identify the rank of the matrix and also the state varialid@s tan obtain information from the

observations.
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To summarize, the SVD is a useful tool which can be used totiigethe dominant or
important part of the observation operator. This allowsvdweables which can be determined
from the observations to be identified. We now show this ineraetail, by considering the

SVD in a 1D-Var/3D-Var algorithm.

4.3 Application to 3D-Var

The solution to minimising the least-squares problem (&5)ow written in the form of a
singular vector decomposition. Setting the gradient ottt function (4.5) to zero, gives the
BLUE analysis equation:

x* =x"4 ()’ 1+HTH)'H'd (4.9)

whered = y —Hx" is the ‘innovation vector’. Substituting an SVD of the obsion operator

H = UAVT into the BLUE equation gives:
x? = x" + (P T+ (UAVHT(UAVT))H(UAVHTd. (4.10)

Lettingz = V”x and using the orthonormal property of the RSWay” = I, and of the
LSVs,UTU =1, then

(W*VVT + VA*VT) V(2" — z") = VAU, (4.11)
and again usiny ’V =1, then
x* —x" =V (> + A?) " AUTd, (4.12)

Thus, the analysis increments can be written as a linear ic@&tidn of the right singular vec-

tors of the observation operath,

. j(ufd)
X“:xb—i—E: v, (4.13)
j=1 'u2+/\j
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whereu,v, A andr are the LSVs, RSVs, singular values and ranKofWith a similar notation
to Hansen (2001), this can be written as:
r T
A7 uid

e _xb=3" 1 __J . 4.14
x =X ZM2+)\? Y Vi ( )

j=1

The weight given to the RSVs is partly determined by the t@%ﬁl If the the innovation
vectord is similar to the LSVu;, then the corresponding RSV is given a large weight. For
example, if they are exactly the same thefd = 1. However, if the vectors are completely
orthogonal, then the RSV is given zero weight. Usually, tregmtude ofu]Td has a similar

magnitude to\;, so that the magnitude 5;%1 is similar for different values of;.
3
as the Tikhonov Filter Factors (Hansen, 2001). These wedginp all the contributions to the

The weight given to the RSVs is also determined by the tgrm which are known

analysis increment which have small singular valdgsas:

1 )‘j >> 1%
fi=q L N\=u (4.15)
2
\ % )‘j << W

These weights are illustrated in Fig. 4.3. Ror= 0.1, the RSVs withA > 0.1 are given a
significantly large weight, whilst the RSVs with< 0.1 are given much less weight. Thus, the
damping of the RSVs occurs far< p. This is also discussed by Rodgers (2000).

If the observability matrix contains a null space, for ex#mg there are more unknowns
than observations, then some singular values will be zerdhis case there would be some
RSVs (in the null space) that do not have corresponding LS¥shere is no background
term, then it would not matter how much weight was given to¢beesponding RSVs, as
they would have no impact on the value of the cost functionusTHhe solution would be
non-unique. Thus, the background state is essential ta@misat the solution is unique, by
providing extra information where there is no availablemfation from the observations.

Even if the problem has full rank, there may be some singwares that are very small.
The background state also damps the RSVs that have smalllainglues. It will be shown
that this is important as many of these RSVs contain smalé stauctures corresponding to

noise. However, some of these RSVs also contain the impgoni@nmation needed in 4D-Var.
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Figure 4.3: The Tikhonov Filter Factorg as a function of the singular valweand the relative weight
parametery, for singular values\ = 10~%% for i = 1,10. The red solid line indicates the values for
A=10"1

The SVD analysis of the 3D-Var scheme is well-known, and jgles a useful technique
to examine the information content of, for example, obssiuna in satellite retrievals. This
technique is now extended so that the temporal dimensioDiNat is included. To the best of
the authors knowledge, such an extension has not been eoegioh previous literature. De-
spite being a simple extension, this will allow a new underding of the information content

of observations in 4D-Var.

4.4 Extension to 4D-Var

The 4D-Var cost function is similar to the 3D-Var cost fuoctj except that the observations
are distributed in time and linked together by the model &qna. Mathematically, 4D-Var

finds the analysis* which minimizes the cost function:

J(x0) = 03, *(x0 — x") (%o — x°) + Z o, (y; — Hx;)" (y; — Hx;) (4.16)
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subject to the strong constraixt, ; = Mx;. This can be rewritten in the form of an uncon-

strained minimization as:

J(x0) = 0,%(x0—x")T(x0 —x")
+ 0,%(yo — Hxo)" (yo — Hx¢) + 0, *(y1 — HMx0)" (y; — HMXx) (4.17)
+ o+ 02 (yy — HMVx0) T (yn — HM"xy)

which, with a simple rearrangement, gives:

J(x0) = 0,%(x0 —x")"(x0 — x")
(yo — Hxo)
(4.18)
+ U(;Q (yo — HXQ)T e (yN - HMNXQ)T
(yn — HM"x,)
or equivalently the analysts®” minimizes the cost function:
Ja(x0) = 12 ]|x0 — x°|13 + |13 — Hixolf3. (4.19)

The cost function is now written in the same form as for 3D;\éacept that the vector
of observations now includes observations distributedhiie tand there is a ‘new’ observation

operatortl and vector of observatiorgswhich can be written in block matrix form as:

Yo H
y1 R HM

V= H= (4.20)
Yn HM"

The matrixH is known as the ‘observability matrix’ in optimal controktbry, and so we will
continue to use this term in the rest of this thesis. The ofagdity matrix is also derived in

Appendix B of Zou et al. (1992a) to show that if the rank of thservability matrix is equal
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to the number of unknowns, then it is possible to obtain awmeapalysis with no background
state.

The observability matrix can be thought of as an effectivgeneralized observation op-
erator for 4D-Var, as it acts in a similar way to the obseomatperator in 3D-Var. Thus, itis
possible to apply the SVD to this matrix. During the rest o$ tihesis, it will be shown, using
the SVD, that the observability matrix plays a key role intinelerstanding of the mechanisms
in 4D-Var.

Following a similar procedure as for 3D-Var, then the 4D-¥aalysis increments can be

written as )
. A2 udld
a b J J
_xt = E 7 , 4.21
x =X EEDVIDY Vi ( )

Jj=1

whereu,, v;, A; andr are the LSVs, RSVs, singular values and rank of the 4D-Vaeadil-
ity matrix H, and 2 = j—g is the weight given to the background state relative to thighte
given to the observations, add= y — Hx" is the 4D-Var generalized innovation vector.

This is a key result of this thesis. The technique allows udeatify which components
of the state vector can be identified from the observationmt 15, the RSVs indicate which
components of the analysis can be updated by the obsersatmma particular model and
observing system.

The technique also allows us to assess the influence of thkgimamd state. The relative
weight given to the observationg?, has been separated from the RSVs. This allows easy
inference of how the analysis would change if the weightsevebianged. That is, we can infer
which RSVs (and therefore, which components of the stateowgevould be penalized if the

weight given to the background state was increased.

4.5 Relationship between 4D-Var and Optimal Perturbations

The singular value decomposition is commonly used in metegy to define a set of optimal
perturbations that maximize the growth, defined by suitaidrics, in a finite-time interval
(Buizza and Palmer, 1995). They are used to locate senséijiens where errors are likely
to grow and therefore used to generate a set of perturbaionse in ensemble prediction.
Optimal perturbations are the right singular vectors oflittear forecast model and the growth
rate is proportional to the corresponding singular valuée Term ‘optimal perturbation’ is

used to denote the RSVs of the model to avoid confusion wghRBVs of the observability



Chapter 4. Qualitative Information Content of Observagion4D-Var 89

matrix.

It is useful to understand how the RSVs of the observabiligtrm relate to the optimal
perturbations. There are clear similarities between agtperturbations and 4D-Var when a
full set of observations are given at the end of the assimilatindow as previously shown by
Rabier et al. (1996) and Thépaut et al. (1996).

Optimal perturbations, are defined to maximize the ratio

PxyE

growth=
[1%ollc

(4.22)

whereP is an operator which maps from a space of dimensida a smaller space (for ex-
ample, so that the perturbations identify the maximum ghomithin a specified region of the
atmosphere) an@ andE are the initial and final time norms respectively (Barknregeal.,
1998). Commonly, these norms are taken to be the total emengy. To illustrate the rela-
tionship between optimal perturbations and the RSVs defabede, we choose the norms to
be the observation and background error inverse covariaateces, and that the operatdr

is the observation operat#f, so that:

< HMxy; R"'HMx, >

rowth =
g < xo; B~ 1x¢ >

(4.23)

UsingR = o2l andB = ¢71, then

growth— - <%0 HHx, > (4.24)
w2 < Xo;Xo >

whereH = HM(ty,t,), andpy = 2. Therefore, in 4D-Var, with observations at only the
end of the assimilation window, the RSVs of the observahbihatrix are the same as optimal
perturbations with the observation operaklracting as the operatd?. If a large weight is
given to the background statg (s large), then the RSVs have a large growth rate. This is
intuitive, as we can imagine that the analysis incremenicé shat the analysis is close to the
background state at the initial time and close to the obsensat the final time.

There are also many differences between optimal perturtegind RSVs of the observ-
ability matrix. First, optimal perturbations are RSVs tlaa¢ defined at the initial time and
evolve into the LSVs which are defined at the final time. Howgtvee RSV offI are defined

in state space and evolve into LSVs which are defined in obiervspace. Second, by using a
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time sequence of observations, the analysis incrementodoager projected onto the optimal
perturbations; decaying structures are also included.ddewwe will demonstrate in Chapter
5 that the decaying modes are penalized by the backgrouted $tard, optimal perturbations
are usually defined with respect to metrics such as totabgnenstrophy or the analysis error
covariance, whilst the appropriate metrics for the RSVELare the error covariance matrices
B! andR™!. This last fact will be made more clear in Chapter 6, wheniapedrrelationsof

the background state error are also included.

4.6 Rate of Convergence of the Minimization Algorithm

In the second chapter (Section 2.3), we discussed how thditmomng of the Hessian matrix

is central to understanding the convergence of the minitoizalgorithm. We now discuss
how the SVD of the observability matrix can be used to deteemihether the Hessian matrix
is well-conditioned.

The Hessian of the cost function (4.19), is:
VVJ, =1+ HTH. (4.25)

Suppose the observability matf has RSVsv and associated singular valugsthen

these also satisfy the eigenvector relationship:
H Hv = \*v (4.26)
and therefore, these are related to the Hessian matrix by:
(WPT+HH)v = (112 + \)v. (4.27)

Thus the right singular vectors of the observability ma#ii also the eigenvectors of the
Hessian of the cost function. This has two important conseges.

The first consequence is that the RSVs with the smallest kingalues are also the di-
rections of the Hessian ellipsoid axes in which the isocorg@re stretched the most. Thus,
the minimization algorithm has difficulties in finding therelitions with the smallest singular
values. The minimization algorithm will first identify theS¥s with large singular values and

will then identify the RSVs with small singular values later.
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The second consequence is that the conditioning of the &tessatrix is related to the
maximum and minimum singular values. That is, the conditiomber is defined as:

Amax + 112

cond(VV.J) = :
)‘rQnin + ,LLQ

(4.28)

whereAmax and Apmin are the maximum and minimum singular valueghf Consider the case
with a zero singular value. Then, if there was no backgrodateg: = 0), this would give
an infinite condition number. That is, the analysis would be-annique. This is expected, as a
zero singular value corresponds to the observability matot having full-rank. If, however,

a large weight is given to the background stateg(large), then the condition number would
no longer be infinite. This illustrates why the backgrouratesis needed to ensure that the
problem is well-posed. Even if there were no zero singuléues adding a background state
(u* > 0) reduces the condition number and hence improves the ¢omidigy of the problem.

Therefore, the background state also improves the corveegate of the minimization.

4.7 Calculating the SVD for the Eady model

In the next chapter, the SVD of the observability matrix toe 4D-Var with the Eady model is
discussed; the method used to find the SVD is now discusseddétails are described further
in Appendix A.

There are three strategies to compute the SVD of a lineaatpdiToumazou, 2001). The
SVD strategy computes all the singular values and vectdk. dfhe QR strategy computes all
the eigenvectors and eigenvaluedBfH, and the Lanczos method is an iterative eigensolver
which computes only the k largest singular values and aamtsingular vectors.

The Lanczos strategy is particularly useful for large peotd as the algorithm does not
need the linear model to be in matrix form. Therefore, thedzas approach is commonly
taken when computing optimal perturbations of NWP modelsdBa, 1997). However, the
algorithm is not able to accurately and efficiently computdhee RSVs (P. Haas, A. Beck,
Personal Communication).

In this thesis, all the singular vectors and singular varesequired. Therefore, the NAG
routine naggensvd (NAG), based on the SVD algorithm described by Golub aawl Moan
(1996), is used. This algorithm requires that the linearatoe is in matrix form.

Considering the case with a complete set of observationiseofower level buoyancy at
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the beginning and the end of the window, we compute the SVD of:

) H
H= . (4.29)

HM(ty, to)

To generatdd in matrix form, the Eady model also needs to be in matrix foffinis is found
by applying the discrete Eady model equations to successluenns of the identity matrix. As
these initial conditions are discontinuous fields, the Mderdroff numerical scheme is used,

as discussed in Appendix A.

4.8 Conclusions

The 4D-Var algorithm has been considered as an inversegmotiiat is similar in form to
3D-Var. The observation operator in the 3D-Var cost funti®replaced by the 4D-Var ob-
servability matrix, which contains both the observatioem@bor and the linear forecast model.
Writing the 4D-Var cost function in this form allows the 4CaManalysis increments to be given
by a linear combination of the right singular vectors (RS¥E)he observability matrix. The
weight given to the RSVs is partly determined by the TikhoRdter Factors. These factors
penalize the RSVs with small singular values in comparisahe relative weight given to the
background state.

The SVD formulation of 4D-Var has provided a number of instireg results concerning
the need for the background state, the similarities betwi&eivar and optimal perturbations
and an understanding of the behaviour of the minimizatigorahm.

The background state is needed to ensure that the 4D-Vasapeoblem is well-posed.
First, the background state ensures that the analysisgsi@nirhis is vital if the observability
matrix does not have full rank and hence a null space exigisor®l, the background state is
needed to penalize the RSVs with small, but non-zero, sangialues. It will be shown in the
next chapter that these RSVs have small scale spatialstescnd hence correspond to noise.
Thus, the background state is needed to ensure that thesendbes not include unphysical
structures corresponding to the observational noise.

It was previously known that there are similarities betwéBrVar and optimal perturba-

tions. The SVD formulation has provided a more precise igahip which has highlighted
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both the similarities and differences between the two. Tlaedifferences occur when the
observations are at more than one time level and also in thecséhat are used to define the
optimal perturbations.

By considering the Hessian of the cost function, it was shdvan the background state
acts to improve the conditioning of the problem and that tB&&of the observability matrix
are also the eigenvectors of the Hessian. This implies trentinimization algorithm will
correct the directions of the RSVs with large singular valdering the first few iterations.

An important consequence of the SVD formulation of 4D-Vathiat it provides a useful
tool to understand the information content of observatiod®-Var. This will be demonstrated

in the next chapter by discussing the SVD of the observgligtrix for the Eady model.



Chapter 5

SVD Results

Results from simple 4D-Var identical twin experiments witie Eady model were presented
in Chapter 3. The experiments investigated the ability of\&D to reconstruct the state in
unobserved regions, and to generate analysis incremettitdhei vertical structure necessary
for baroclinic growth or decay. Five main results were foutiee background state penalizes
the information needed to reconstruct the state in unobgamegions; the unobserved regions
are particularly sensitive to observational noise; thekgemund state penalizes the decaying
analysis increments; analyses are improved when the aig®rg are moved further apart in
time; and giving more weight to the initial observations sloet improve the analysis of a de-
caying mode. These results play a key role in assessing tlemtdjes of 4D-Var, and towards
maximizing these benefits. However, the reasons for thesdtseare not well understood. In
this chapter, the singular value decomposition (SVD) isiuseprovide a new understanding
of 4D-Var.

It was demonstrated in Chapter 4, that the SVD provides auliggkrpretation of the
information content of observations in 4D-Var. This chagiegins with a brief review of
the SVD technique, and then the SVD computations of the 4DeWgervability matrix are
shown. These computations are used as a basis for undensiémel five main results found in
Chapter 3. The structure of the matrix of right singular vestand the singular values are used
to understand why the background state penalizes the iatoymneeded to reconstruct the
unobserved regions, the weights given to the RSVs are usetigrstand why the unobserved
regions are sensitive to noise, and the spatial structdithe ®&SV's are examined to understand
why the background state penalizes the decaying modes. VDe8&mputations are modified

so that the effect of the temporal position and weights obtteervations can also be examined.

94
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The chapter concludes by establishing a link between 4Dakdra method known as Tikhonov

regularization. This provides a more complete understandf the 4D-Var algorithm.

5.1 Singular Vector Technique

Following the experiments in Chapter 3, observatignsndy y of only the lower buoyancy,
are provided at the beginning and the end of an assimilatiodaw [y, ¢y]. It is assumed
that there are no background error correlations so thatrtibe @variances are diagonal with
constant variance® = o7I andR = o21.

Then, the 4D-Var cost function can be written as:
1 B _ " ~
J(xo) = 5 {3 o =3I+ ;2 — Fixol 3} (5.1)

where the generalized observation vedtand the observability matrikl are given by:

Yo H

D)
I
o
Il

(5.2)
yN HM(ty, to)

wherex; is the state vector at time, y; is the vector of observations at timgandM(t v, to)
is the linear Eady model such that, = Mx,.

Setting the gradient of with respect tax, to zero, and using the singular value decom-
position (SVD) of the observability matrifl = UAVY, then the 4D-Var analysis increments
can be written as: .

! A7 ujd

a b
x? —x’ = ZM2+)\?A—jVj (5.3)

J=1

whereu, v, A andr are the left singular vectors (LSVs), right singular vest®SVs), singular
values and rank of the observability matrjxis the singular vector indexi = y — Hx is the
generalized innovation vector apd = 02/07 is the relative weight given to the background

state in comparison to the observations.
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Figure 5.1: Singular values\ and V matrix of the observability matril as a function of the
singular vector index, when there are observations of tikeldevel buoyancy at the beginning
and the end of a 6 hour assimilation window. T¥ienatrix is shown as an image so that each
element corresponds to a colour, as shown by the colour be.vEry small values have been
shaded white. Each column ¥f gives the RSV that corresponds to the singular values above,
and the RSVs are such that the first 40 elements contain ther iggel buoyancy (B upper),
the last 40 elements contain the lower level buoyancy (Brpaved the elements in the middle
correspond to the QGPV on the 11 vertical levels.
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5.2 The Background State Penalizes Important Information

In Chapter 3, it was shown that if a large weight is given tolihekground state, the informa-
tion needed to reconstruct the state in unobserved regsastsangly penalized. The SVD of
the observability matrix is now used to illustrate why thiormation needed to reconstruct the
state is particularly sensitive to the relative weighigiven to the background state.

The singular values and theV matrix of the observability matri¥I are shown in Fig.
5.1. There are 40 observations at two time levels, givingal td 80 observations and hence
only 80 singular values. Although there are 80 non-zerowdargralues, there is a sharp-drop
in the singular value spectrum, suggesting an effectivie chd0.

The V matrix shows two distinct regions: RSVs corresponding tgdasingular values
and RSVs corresponding to small singular values. The laxgdses of the first 40 RSVs are
on the lower boundary (B lower), whereas the largest valtidsoRSVs from 40 onwards are
on the upper boundary (B upper), and also on the lower boynairior QGPV.

In both regions, there tends to be an increase in the numiosicofations in the horizontal
in the RSVs, with increasing singular vectar That is, the horizontal wavelength tends to
decrease as the singular values decrease; although tbeserae regions where the horizontal
wavelength increases with decreasing singular valuesgXample,j = 30,...,40 & 7 =
70, . . ., 80.

The structure of th& matrix shows that the information needed to reconstruc{abe
served) lower level wave is mainly contained in the RSVs esponding to large singular
values. In contrast, the information needed to reconsthacfunobserved) upper level wave is
mainly contained in the RSVs corresponding to small singudéues.

The background state penalizes the RSVs with small singalaes (from equation (5.3)).
However, these RSVs contain the information needed to stnact the state in the unobserved
regions. It is therefore evident that this is the reason vieyltackground state penalizes the
important information that is propagated from the obsemregiibns to the unobserved regions.

We noted in Section 3.2.1 that the minimization algorithrstfrorrected the observed
lower boundary and then corrected the unobserved upperdaounThe relationship between
the RSVs of the observability matrix and the behaviour of fiaimization was discussed
in Section 4.6. The minimization algorithm first updates thections with large singular
values. From Fig. 5.1 the RSVs with large singular valuedaiarthe information needed

to reconstruct the lower boundary, whereas the RSVs witHlsimgular values contain the
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Figure 5.2: Values ofu;f& whereu; are the left singular vectors and is the generalized
innovation vector. The true state is given by the most utestahdy wave and the background
state has a phase error @0 Ax. Observations have (a) no noise and (b) noise with a Gaussian
distribution witho = 1.

information needed to reconstruct the upper boundaryfdr ithis reason that the minimization

algorithm first corrects the lower boundary wave and theneots the upper boundary wave.

5.3 Unobserved Regions are Sensitive to Noise

It was shown in Chapter 3 that the unobserved regions ardiserts the noise on the observa-
tions. If a relatively large weight is given to the obsergas, then an unphysical wave may be
generated in the unobserved regions. The reasons for thivoar demonstrated by examining
the values oth& and what are known as the Picard ratio values.

The SVD ofH is only dependent on the position of the observatidi}s gnd the model
(M). It is independent of the true state that is observed analiservational noise. Thus,
although the structure of th& matrix has been examined, this does not determine which
particular RSVs give a large contribution to the analysisement. The values an‘f& are now
used to understand how the observational data is projeatedioe particular RSVs.

For comparison with the experiments in Chapter 3, we condiidetrue state given by the
most unstable Eady wave, and the background state with & @hes ofI0Az. When there
are perfect observations, there are four valuesf(ii which are relatively large, arising in two
pairs, as shown in Fig. 5.2(a). This means that RE&/8 and41&42 give a large contribution
to the analysis increment. When noise is added to the olsmmsamany of the other values
of ujT& become almost comparable so that more RSVs are includeé aridysis increment.

These RSVs have smaller wavelengths, as shown bywtheatrix in Fig. 5.1, so that the
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Figure 5.3: Values of (a) the Picard ratios and (b) the ratio betwe}aﬁ&\ and \;. In both
cases the thick red solid line represents the values foregedbservations, and the thin solid
line represents the values for noisy observations withddah deviationo = 1. In (a), the
case for noisy observations with standard deviatioa 10~* (dashed line)g = 10~ (dotted
line) are also shown.

analysis is closer to the noisy observations.
The values oﬁf& do not directly show why the unobserved regions are the neosiisve
to the noise. Instead, itis necessary to examine the r%%%smhich are the weight coefficients
in equation (5.3). Since the rati<‘al§'Tj—;i span several orders of magnitude, it is more convenient

to examine what is known as the Picard ratio, (Winkler, 1997)

lu’d]|
log [ S0} (5.4)
Aj

The Picard ratios for perfect observations and noisy olasemns are shown in Fig. 5.3 (a).
In all cases, there is a sharp increase in the Picard ratig+®@& This is due to rounding errors
in the SVD computations, and can be ignored. For perfectreagens (thick, red line), there
are two large spikes in the value of the Picard ratio, simdahe values oh]T&. This clearly
highlights that only four RSVs are needed to make the coemealysis increment. When noise
is added to the observations (thin, black lines) there isaandtic increase in the Picard ratios
corresponding to the other RSVs, and these values incredgberfwhen the standard deviation

of the noise is increased.
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The Picard ratio values illustrate why the unobserved regae sensitive to noise. When
there is no noise on the observations, the Picard ratio sa@tegenerally small, apart from the
two spikes. Thus, the RSVs with small scale structures amenga small weight. When noise
is added to the observations, all the Picard ratio valuesrhedarge. Importantly, the values
increase with the singular vector index j. As a log scale eduhis increase is significant and
is perhaps more easily illustrated in Fig. 5.3 (b). It implibat with no background state, an
extremely large weight is given to the RSVs with extremelaBraingular values{ > 42).
From theV matrix, these RSVs have small scale structures and largétadgs on the upper
boundary. Thus, the analysis increment is dominated byetR&Vs causing an unphysical
wave to be generated on the unobserved upper boundary.

To summarize, the SVD analysis has shown that if a small wegggiven to the back-
ground state, the RSVs with small singular values domirfaeainalysis increment. These
RSVs contain small scale structures in the unobservednegilf a large weight is given to
the background state, the RSVs are strongly damped. It ihif®reason that the unobserved

regions are particularly sensitive to noise.

5.4 The Background State Penalizes the Decaying Modes

In Chapter 3, it was shown that the background state pesahesdecaying part of the analysis
increment, so that a growing analysis increment may be aohdé¢elad of the required decay-
ing analysis increment. This is now understood by compattiegRSVs that are needed for
growing and decaying analysis increments and by examihmgertical structure of the RSVs.

The previous section showed that with perfect observatitms pairs of RSVs are re-
quired to create the analysis increment. R&¥2 have the same singular value, as do RSV
41&42. This is due to the symmetry of the Eady model, as discuss&tdigendorfer (1988).
The streamfunction fields for RSMs:2 are shown in Fig. 5.4. The RSVs have exactly the
same structure except for a difference in phase. Thus, e8vhdair has a cosine and a sine
component, so that the correct horizontal position of theexan be obtained.

Given that the RSVs form sine and cosine pairs, it is usefaksess the combined weight
given to an RSV pair. This is achieved by writing the sum ofwesghted RSVs as a linear

combinationy of sine and cosine waves, where the weights are given by ibeS/afujT&,

Y(z,2) = uldsin(z + ¢(2)) + uld cos(z + ¢(2)). (5.5)
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Figure 5.4: Streamfunction fields of an RSV pair: (a) RSV 1 and (b) RSV th Bots use the
same contour interval.

Setting the derivative of with respect tor to zero, then the maximum or minimum value of

1 is at a distance:

Ty = tan ! <u1Td> — ¢(2). (5.6)

A
u,d

This can then be used to find the maximum amplitude:of

wmam = |¢(xmam)| (57)

It should be noted that this formula is used to find only the mitaigle and not the sign of the
combined weight.

The weight given to an RSV pair is then determined by the Hicatio for an RSV pair,
Ymaz/Aj. This value allows an easier interpretation than the wsighien to the separate RSV
pair components. Table 5.1 shows the values)f,/); for the RSV pairs when either a
growing or a decaying mode is observed, over either a 6 hol2 twour assimilation window.
RSVs41&42 have a significantly smaller singular value than RS¥= , but they also have
smaller values of),,,,,. Thus, the values af,,,, /A, for the various RSV pairs are of the same
order of magnitude, allowing a fair comparison.

For a 6 hour window, when a growing mode is observed, a largggtwis given to RSVs
1&2 than RSVsi1&42. However, when a decaying mode is observed, more weightvengi
to RSVs41&42 than RSVs1&2. Thus, RSVsi1&42 are more important when a decaying
mode is observed. These vectors have very small singulaesand hence they are penalized
strongly when a large weight is given to the background state

The difference between the weights for growing and decagiodes is more evident for
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Figure 5.5: RSVs shown at the initial time T+0. The RSV is defined by thgdmeay and the
QGPV, but streamfunction is calculated from these fieldes&RSVs give a large contribution
to the analysis increment when either the most unstableigg@ar decaying mode is observed,
and observations are taken of the lower boundary at the Ibéggand the end of a 6 hour
assimilation window. The values at the top right of each gleé the maximum magnitudes of

the fields.
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Indexj Singular Value\;  Growing Decaying
mode is mode is
observed observed

6 hour window

1&2 1.4463 24.99 19.15
41 & 42 0.2660 20.11 21.77
12 hour window

1&2 1.6168 26.47 14.47
41 & 42 0.4669 19.34 25.38

Table 5.1: Values ofi),,,.,./\; for the RSV pairs. Perfect observations of the lower levelybu
ancy are given at the beginning and the end of either a 6 hoa2drour window, the true state
is given by either the most rapidly growing or decaying Ea@dye&vand the background state
has a phase error. Note that by definitiaf,./A\; > 0.

a longer (12 hour) assimilation window. Thus, for a longesi@mdation time, there is a more
distinct splitting between the RSVs needed to produce a iggpanalysis increment (RSVs
1&2) and the RSVs needed to produce a decaying analysis inct¢R®Ws41&42).

To understand the difference between RS¥2 and RSVst1&42, the vertical structures
of the RSVs are now examined. As the RSVs are in pairs, onlyR®¥ from each pair
is shown. Figure 5.5 shows RSV 1 and RSV 41 at the beginningetitne window. The
streamfunction field for RSV 1 is the same as that in Fig. 5.4f@r RSV1, the magnitude
of the buoyancy on the lower boundary is much larger thandghahe upper boundary. The
streamfunction tilts westwards with height and the buoydietd tilts eastwards with height;
these are both characteristics of growing normal modes a@htherefore result in growth. In
contrast, for RSV 41, the magnitude of the buoyancy is laogethe upper boundary than the
lower boundary. The streamfunction tilts eastwards witiglieand the buoyancy field tilts
westwards with height; these are both characteristics cdyleg normal modes. The QGPV
has relatively small but non-zero values and thereforesgiivte contribution to the growth
and decay in comparison to the upper and lower temperatweswva

The RSVs are defined at the beginning of the assimilation ewvindHowever, they can be
evolved to the end of the window, by integrating them with Bsely model, to give evolved
RSVs, shown in Fig. 5.6. As the RSVs are not the singular veabthe model, the evolved
RSVs are not the same as the LSVs.

For RSV 1, there is a large increase in amplitude of the ugyet ivave, and the maximum
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Figure 5.6: As for Fig.5.5, but now the RSVs are shown at the final time T+6.
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amplitude of the streamfunction field has also increased.QGPV field has been sheared by
the basic state flow. The upper level wave has moved slightistwards and the lower level
has moved slightly eastwards so that at the final time, tiietstre is more similar to a growing
normal mode structure.

For RSV 41, there is a reversal in the sign of the lower buoyamave, and again, the
upper level wave has moved slightly westwards and the QGRY li@s been sheared by the

basic state flow. In contrast to RSV 1, the maximum amplitdde@streamfunction field has

decreased.
RSVs1& 2 RSVs 41 & 42
® w O c X w © cC
INITIAL
TIME X © R ®
X © &) ®
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Figure 5.7: Schematic Diagram showing the evolution of the right siaguéctors. The panels

on the left show the evolution of RSV 1 (large singular valkm) the panels on the right
show the evolution of RSV 41 (small singular value), botihatteginning and the end of the
assimilation window. The boundary temperature anomalresiradicated by W (warm) and

C (cold), and the interior QGPV anomalies are indicated bpagitive) and -(negative). The
circles indicate the direction and magnitude of the memdibwind associated with the QGPV
anomalies in the interior and the buoyancy anomalies on thenbaries.

The schematic diagram in Fig. 5.7 summarizes the evolutiechanisms of the RSVs.
For RSVs1&2, the maximum meridional wind (horizontal derivative ofestmfunction) lies
directly underneath the maximum temperature anomaly oagper boundary. Thus the lower

level circulation intensifies the amplitude of the uppeelevave. As the lower level wave has
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Figure 5.8: LSVs 1 and 41. The panels on the left show LSV 1 at T+0 and T-+btherpanels
on the right show LSV 41 at T+0 and T+6. Note that the LSVs dfieel@in observation space,
and hence are given by the lower level buoyancy field at thiealiaind the final time.

a relatively large amplitude this is a large effect. Theuwlmtion from the upper level wave also
acts to slightly intensify the amplitude of the lower levedwe so that the streamfunction field
grows. The basic state zonal wind acts on the QGPV field satttilké eastwards with height
at the final time. Rossby wave propagation on the upper andrlboundaries acts to move
the upper level wave westwards and the lower level wave @adswvThus, at the final time the
structure is similar to a growing normal mode structure.réhg a smaller difference between
the amplitude of the upper and lower buoyancy waves and tearstunction field has a larger
westward tilt with height than at the beginning of the window

For RSVs41&42, the position of the upper level wave acts to weaken the |dexel
wave. As the upper level wave has a relatively large amdittivis is a large effect. Further,
the circulation associated with the QGPYV field reinforcas #ifect so that the wave actually
becomes zero and then starts to grow again in the oppos#etioin. The circulation from the
lower level wave also acts to slightly weaken the upper lewale so that the streamfunction
field decays. Again, the structure at the final time is sintdeat growing normal mode.

To understand how the observational data is projected ti&REVs, it is of interest to
also examine the structure of the LSVs. If an L&Ms in the same direction as the generalized
innovation vectoi, then the corresponding RSY, is given a large weight. The LSVs lie in
the observation space which is given by buoyancy on the Id®eandary at both the initial

and the final time. LSV4&41 are shown in Fig. 5.8. LSV 1 has a similar structure at T+6
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to that at T+0, with a small change in the amplitude. This iegpthat the weights given to
RSVs1&2 are determined by the general shape and position of thevadzserave. In contrast,

LSV 41 at T+6 has the opposite sign to the wave at T+0. Thisigsphat the weights given to
RSVs41&42 are determined by the change in magnitude of the observed between T+0

and T+6. If LSV 41 is added to LSV 1, a decaying wave resultd,ibhSV 41 is subtracted

from LSV 1, a growing wave results. Thus, the LSVs with smilgslar values are detecting
the growth or decay of the system.

To summarize, RSV$&2 contain the information needed to reconstruct the stathen t
observed regions and to give a growing analysis increme®¥/sR1&42 contain the informa-
tion needed to reconstruct the state in unobserved regiahalao to give a decaying analysis
increment. In particular, they are needed to detect the tixowhe growth may be small in
comparison to the amplitude of the wave and hence is hardéetect and therefore a large
weight should be given to the background state if the obsensare relatively noisy. It is for
this reason that RSV&l1&42 have a small singular value and thus RSN'§:42 are penalized
so that the position of the upper level wave cannot be deterhi

When the assimilation window is longer, there is a more nicstsplitting between the
weight given to the RSV pairs when growing and decaying madesbserved and the singular

value of the RSV41&42 is larger. These aspects are investigated in the follonaatj@n.

5.5 Observations Should be Placed Far Apart in Time

In Chapter 3, it was shown that it is best to place the obsenstas far apart as possible
in time. It was also shown that if observations are only atehéd of the window, a longer
assimilation window will give better results if a growing dmis observed, but worse results if
a decaying mode is observed.

The reasons for this are now investigated by repeating the &¥mputations but with
different temporal observing systems. We first examine tB&Rwhen a 12 hour assimilation
window is used with observations at T+0 and T+12, and we tikaméee the singular values
when the temporal position of the initial observations iaraiped.

Figure 5.9 shows the structures of the RSVs for a 12 hour @asiom window, with
observations of the lower level buoyancy at T+0 and T+12. Sthectures are very similar to
those for a 6 hour window (Fig. 5.5), but there are some ingmbrdifferences. The QGPV

field exhibits a greater tilt with height, as the longer windarovides a longer time to untilt.
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Figure 5.9: As for Fig. 5.5, but for a 12 hour window.
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Also, there is a smaller difference between the amplitudh@fwave on the upper boundary
and that on the lower boundary.

The upper level wave in RSV 1 and the lower level wave in RSVréllarger for a longer
assimilation window. Thus, the RSVs exhibit tilted struesithat are more intense. That s, for
a longer time window, RSV 1 exhibits a more pronounced varstructure for growth whilst
RSV 41 exhibits a more pronounced vertical structure foagie€hus, there is a more distinct
difference in the vertical structure for the two RSV pairs.

The difference in the amplitude of the buoyancy waves on gigeuand lower levels is
important for the reconstruction of the wave with the carkectical structure. If a large weight
is given to the background state, a small weight will be giteeRSVs41&42 and the analysis
increment will be dominated by RS\Mg:2. The amplitude of the upper level wave is larger for
a longer time window. Thus, a larger analysis incrementlvaladded to the upper boundary, in
a position to give growth in the following forecast. Thenmefaf a growing mode is observed at
the beginning and the end of the window, a longer assimitatimdow gives a better analysis.
However, if a decaying mode is observed at the beginninglaménd of the window, a longer
assimilation window may give a worse analysis because adfha large analysis increment is
added, the position of the upper level wave relative to tiaeldevel wave is incorrect.

The temporal positiort,, of the initial observations is now considered by calculgtihe

SVD of the observability matrix:

i (5.8)
HM(ty, to)

whereM(t,, ty) represents the integration of the linear model from therb@gg of the as-
similation windowt, to the time of the initial observations, andM(t¢y, ty) represents the
integration of the linear model fromg to the end of the assimilation windaiy.

For a fixed assimilation window length, the position of thiiah observations has little
impact on the structure of the RSVs and so their structueeseatrshown. There is, however, a
dramatic change in the size of the singular values of thergkpair of RSVs, as shown in Fig.
5.10.

For both a 6 hour and 12 hour window, the singular value of #mid pair of RSVs

decreases as the initial set of observations is moved t®eaarlend of the window. If the
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Figure 5.10: The singular values of the second pair of RSVs (not necégdati42 ) plotted
against the time of the initial observations. The solid lfapresents the values for a 12 hour
window, and the dashed line represents the values for a 6 Wodow. In both cases, the final
observations are given at T+12.

initial observations are at the end of the window (T+12)nthkige singular value is zero. In
other words, when there are only observations at the enceoithdow, there is only one pair
of RSVs that contribute to the analysis increment (R3¥8).

This diagram explains why it is better to place the obseovatias far apart as possible
in time. When a large weight is given to the background staeRSVs with small singular
values are penalized. Thus, the weight given to the secombp&SVs decreases as the
initial observations are moved to the end of the assimitaticndow. Alternatively, as the
initial observations are moved to the end of the window, nweegght should be given to the
observations; this can only occur if the observations becomre accurate. With observations
at only the end of the window, the analysis increment is asnaygrowing solution. Even if
the weight given to the background state is zero, it is nosipbsto add an analysis increment
with a decaying structure.

To summarize, a longer assimilation window produces RS\s mbre vertical structure.
RSVs 1&2 have a larger amplitude on the upper boundary and RE\MsI2 have a larger
amplitude on the lower boundary. With observations at dmyend of the window, RSVE2
alone contribute to the analysis increment. Thus, if a gngveinalysis increment is required, a
longer assimilation window gives better results. This issistent with Thépaut et al. (1996),
where it was shown that the length of the assimilation pasaducial to ensure fully developed
dynamical structure functions. However, it is for the sama&son that a longer assimilation

window will give worse results if the observations are onfyttee end of the window and a
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decaying analysis increment is required.

If the observations are further apart in time, the singuéne of the second pair of RSVs
is larger, so that the weight given to the RSVs is also largéreq considering a significant
weight given to the background state). This is consistetit thie fact that it is easier to detect
the growth of the true state over a longer assimilation wivida larger singular value of the

second pair of RSVs indicates that the observations comane useful information.

5.6 Temporal Weights Given to the Observations

In Chapter 3, it was shown that the analyses with more weiyeihgo the final observations
were better than the analyses with more weight given to titi@liobservations. In particular,
it was shown that the analysis of the decaying mode is notakgat by giving more weight to
the initial observations.

The SVD is now used to understand the effect of the temporahi®given to the obser-
vations. We consider a 6 hour window with observations at an@ T+6 and with 10 times
more weight given to either the initial of the final obsergas. This is achieved by calculating
the SVD of:

U}lH
(5.9)

wQHM(tN, f}o)

with the scalar weights); andw, defined byw; = 1, w, = 10 to give more weight to the final
observations and; = 10, w, = 1 to give more weight to the initial observations.

The structures of the RSVs of the observability matrix thaea large contribution to
the analysis increment when the most rapidly growing or yiecgEady wave is observed are
now examined. The RSVs for the case when more weight is givéinet initial observations
are shown in Fig. 5.11(a) and the RSVs for the case when maghtve given to the final
observations are shown in Fig. 5.11(b). When more weighiengo the initial observations,
there is a large difference between the amplitudes of thergopd lower waves so that the in-
formation needed to reconstruct the lower level wave anthfioemation needed to reconstruct
the upper level wave is clearly separated. When more wesgiiven to the final observations,
there is a small difference between the amplitudes of theugpd lower waves and thus there
is a stronger vertical tilt. These structures are similahtise for a 12 hour window.

If we consider the case where a relatively large weight iggito the background state,
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Figure 5.11: The upper and lower buoyancy field for RSVs 1 and 41 of the wélsdity matrix

for the case of a 6 hour window with observations of the loveemulary buoyancy at T+0 and
T+6. (a) The weight given to the initial observations is Ifiés greater than that given to the
final observationsy; = 10, we = 1), and (b) the weight given to the final observations is 10
times greater than that given to the initial observations & 1, wy = 10).

then because RS¥1&42 have small singular values, they are strongly penalizeeréfbre,
the analysis increment is dominated by RSM&. If an eastward tilting analysis increment
(growing) is required, then it is better to give more weighthe final time observations. If a
westward tilting analysis increment (decaying) is reqiiitben it makes little difference as to
whether more weight is given to the initial or the final obsdions. In both cases, a growing
analysis increment will be added to the background stataole weight is given to the initial
observations, a large analysis increment must be addecetbabkground state so that the
analysis increment is close to the observations at the bagjrof the window. If more weight
is given to the final observations, a small amplitude analysirement may be added to the
background state. This increment has a strong verticadithat it grows rapidly during the
window so that the analysis is close to the final observations

If a decaying analysis increment is required, giving moreWweto the initial observations
does not improve the analysis. The only way to obtain an arsigcrement with the required
growth rate is to give a relatively small weight to the backgrd state so that the RSVs with

small singular values (RS &42) can be included in the analysis increment.
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Figure 5.12: Schematic Diagram illustrating the (a) Discrete Picard ddion (b) L-Curve
5.7 Tikhonov Regularization

In Chapter 4, the SVD and information content concepts tteauiaed in 1D-Var satellite re-
trievals were extended to 4D-Var. This technique has beed umsthis chapter to understand
how observations are combined with the model dynamics in/VdD-One of the results from
this study is that the background state is needed to filtendi®y components of the solution.
This aspect gives strong links to a method that is widely kmowthe mathematical literature
as Tikhonov Regularization (Aleksandrov, 1976). The métbbTikhonov Regularization is
now introduced and then a link between 4D-Var and TikhonoyURaization is established.

Following Winkler (1997) and Hansen (2001), suppose thatithe statex’ satisfies the
matrix equation:

Ax' =b! (5.10)

and that the given datawhich is used to infer the true statéhas errorg,

b=">b'+e. (5.11)
Then, the inverse problem is to find the statewhich minimizes:

| Ax — bl (5.12)

This is a discrete ill-posed problem if the solutiwhis sensitive to the datia. Strictly speak-
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ing, an ill-posed problem must have an infinite dimensionydxer certain finite dimensional
problems have similar properties to those of ill-posed [@mis and are known as discrete
ill-posed problems (Hansen, 1992).

Extra information about the desired solution is necessarpdke the problem well con-
ditioned. In Tikhonov Regularization, this is achieved lgoarequiring that the 2-norm of the

solution is small. The standard form for Tikhonov Regulatiizn is to minimize:
1Ax = Dbl3 + 2|3 (5.13)

wherey is the regularization parameter which controls the amotistrmothing. The solution
x,, is known to be a good approximation to the true solution mteglithat the exact solution
is dominated by the large singular values. That is, if thecegalution satisfies the discrete
Picard condition:

The exact coefficientsjf b’ decay, on average, faster than the singular valugs

Thus, the ratio‘%bt must decay, whera; and \; are the LSVs and singular values of
the matrix A. A schematic diagram illustrating the typical behaviourtleé values of the
Picard ratios is shown in Fig. 5.12(a). The solid line repnts the exact coefficients for the
exact dataiTw. They decrease, so the discrete Picard condition is satisfiee dashed line
represents the coefficients for noisy défg(,;’;i. These values decrease to a minimum and
then increase. Thus, if the regularization parametersmall, the solution is dominated by the
RSVs with very small singular values. The regularizatiorapzeter should be chosen so that
these components are damped, and so that the approximatilmse to the true solution.

The parameter controls the amount of smoothing. If too much regularizat®imposed,
the solution will not fit the data well anfA x,, —b||3 will be large; but if too little regularization
is imposed, the solution will be dominated by the data eramd||x, |3 will be large. Thus, it
Is important to specify: well.

The L-Curve is one method that may be used to chgosaed may also be used to illustrate
the fundamental foundations for Tikhonov Regularizatidine L-Curve is a parametric plot
of log ||x,.||» againstlog || Ax,, — b||, and is known as an L-Curve due to the L shape of the
curve. The log-log scale is used so that the corner of the tvw&€is emphasized. It has been
proved (see for example, Winkler (1997) and Hansen (20@43)},if the unperturbed dataf
satisfies the discrete Picard condition, the neigean unbiased random vector with a diagonal

covariance matrix anfle|| << ||b*||, the L-Curve assumes the shape shown by the schematic
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diagram in Fig. 5.12 (b). The L-Curve is always concave atethds near the axes and a
corner exists at C. Whemis small (region A), the solution is dominated by the effdataise,
and henceog ||Ax, — bl|3 is small andlog ||x,|3 is large. Whery is large (region B), the
solution has been over-smoothed and hdnggl Ax,, — b||3 is large andog ||x, |3 is small.
The appropriate value fqr therefore lies at the corner of the L shape (point C). Thisisin
as the L-Curve criterion.

The 4D-Var algorithm is now explicitly formulated as TikimnRegularization. The 4D-

Var cost function can be written as (see Section 4.4):
J(x0) = (x0 — x") "B (x0 — x°) + (¥ — Hxo)"R™(§ — Hxy). (5.14)

To account for correlations in the error covariancesBet o2pz andR = o2py, then the

cost function can be rewritten as:

_1 N
J(x0) = 03 % lp5" (%0 — x")3 + 05 %[l pr” (Hxo — 9)3. (5.15)

Lettingx = ps2(xo — x°) andd = § — Hx", then

a2J(x) = 12Ix|3 + P’ Hpix — pr’d| (5.16)

2
o

where againy? = Z_g

This is in the standard form for Tikhonov Regularizatiorl@®.whereA = p}fﬂp% and
b = p;%&. Therefore, it is now possible to apply our understandinghefdiscrete Picard
condition and the L-Curve to 4D-Var.

The 4D-Var experiments in Section 3.2.3 (for example, Fid) 8onsidered the true state
given by the most unstable Eady wave and a background stdte@whase error. Observations
of the lower level buoyancy were given at T+0 and T+6 with aeigth a Gaussian distribution
with o = 1. Background error correlations were applied to the loweell®uoyancy with
[ = 10Az. Using the known true state, the statistically optimal iseevariances were, % = 1
ando, > = 0.08. An L-Curve for this experiment is now found, to determineatiter the ratio
u? = o2/of can be found without the knowledge of the true state. Theecigvfound by
repeating the 4D-Var analysis with different valuesdgr and witho; 2 = 1 fixed.

The L-Curve, shown in Fig. 5.13 for this case is a parametot @f log || p52 (x*(u) —
x|, andlog ||§ — Hx®(u)]|2, or equivalently oflog v/(02J%,,) andlog \/(02J2, ) . The
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Figure 5.13: The L-Curve: a parametric plot dbg \/c2J%;, = log ||pBQ(XZ — x|, and
log \/02J%, = log HﬂXZ — ¥|l2. The values of, * = 1% are written by the side of each point
ando; 2 is fixed.

value of:? at the corner of the curve is 0.14; this is slightly largemttize statistically optimal
value of0.08. Thus, the L-Curve does indeed find a parameter in the covreiciity of the
optimal value, but is perhaps slightly too large. This omewsthing is consistent with the
results found by Hansen (2001).

The values of the Picard ratios for 4D-Var with no correlatavere shown in Fig. 5.3.
The values for perfect observations show two spikes and dalexay on average with the
singular vector index. That is, the underlying true solnfilmes not satisfy the discrete Picard
condition. It is for this reason that 4D-Var is not alwayseald reconstruct the unobserved
regions and that the analysis is a poor approximation tortieedtate. When the observations
are noisy, the RSVs with small singular values must be dampkegvever, in the process of
damping the unwanted RSVs, the background state also démpsportant information.

The SVD computations shown in this chapter have not consitieorrelations; these will
be considered in the next chapter. It will be shown that tliecefof the correlations is to

re-order the RSVs so that the discrete Picard condition essabsfied.



Chapter 5. SVD Results 117

5.8 Conclusions

In this chapter we have used the singular value decompogtvD) to understand how 4D-
Var combines the information from observations with the elatinamics. For comparison
with the experiments in Chapter 3, we have examined the cheeavonly the lower boundary
is observed and either the most rapidly growing or decayidyBvave is observed.

The SVD of the observability matrix showed that for this gasdy two pairs of RSVs are
needed to form the correct analysis increment. The firstlpaie a large singular value and
are needed to reconstruct the state in the observed regidraso to give a growing analysis
increment. The second pair have a small singular value andesded to reconstruct the state
in the unobserved regions and to give a decaying analysisrment.

The Picard ratio values for perfect observations do not yedgth the singular vector
index. This means that when noise is added to the obsergatioil other RSVs are given a
large weight, it is impossible to damp the unwanted noisy R8Milst retaining the second
pair of RSVs. It is for this reason that the background statmgly penalizes the information
needed to reconstruct the state in the unobserved regionslsmto give a decaying analysis
increment.

The Picard ratio values for noisy observations increasa Wié singular vector index.
Thus, the RSVs with extremely small singular values doneitta¢ analysis increment if there is
no background state. However, it is these RSVs which areagliyalamped by the background
state. These RSVs contain small scale structures with & langplitude in the unobserved
region. Itis for this reason that the unobserved regionpartcularly sensitive to noise on the
observations and also to the weight given to the backgrotatd.s

We have shown that the choice of the regularization parameageessential in generating
an analysis that has extracted the maximum amount of alailaflormation but that does not
contain unphysical structures due to noise. By relatingvbto Tikhonov Regularization, we
have shown that it is possible to use the data (the obsemgatinod the background state), to
find the appropriate choice for the regularization paraméi@s has been demonstrated using
the L-Curve.

If the assimilation window length is increased, the RSVsaligy more vertical structure.
When the initial and final observations are close togetheime of the background state is
given a large weight, the growing RSVs dominate the analgsiement and therefore a longer

assimilation window gives better results if a growing as@éyncrement is required, but worse
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results if a decaying analysis increment is required.

If the initial and final observations are moved further apatime, the singular value of
the second pair of RSVs increases. This indicates that teerasitions provide more useful
information when they are far apart in time.

The SVD computations have provided a new understanding éfaDand in particular the
extent to which 4D-Var can reconstruct the state unobseegidns and generate the correct
vertical structures, and also how these benefits can be nmedmHowever, only very simple
experiments have been examined and it is important to askiiese results might differ for
more realistic data assimilation cases.

The section on Tikhonov Regularization (Section 5.7) shibthat correlations may also
be considered by formulating the problem with a change afée. The background error
correlations play a key role in spreading the informatiamfrobservations in both dense and
sparse data regions. In all the experiments so far we hayeconkidered the case where the
true state is given by the most rapidly growing or decayindyBaave and where only the lower
boundary buoyancy is observed. It is therefore importambvtestigate 4D-Var for different
true states and observing systems. In particular, it is mapbto consider the case where the
true state exhibits non-modal growth, and to consider a¢gstical lines of observations, for

example given by radiosondes. These issues will be invastign the next chapter.



Chapter 6

Extension to More Realistic Cases

The experiments in previous chapters considered the dasoniof a full horizontal line of
observations of the lower level buoyancy at two time levalsgd where the true state was
given by either the most rapidly growing or decaying Eady evawhis has been useful in
understanding how 4D-Var can reconstruct the upper leveéyand does simulate a real data
case where only surface observations (or upper air) obsengaare used. Both the 4D-Var
analyses and the SVD computations have illustrated how dDe¥mbines the information
from observations with the model dynamics. However, theegrpents were highly idealized.
The purpose of this chapter is to understand whether thequevesults can be applied to
an operational 4D-Var algorithm. This is investigated byeexing the experiments to more
realistic, although still idealized cases.

In operational data assimilation, the observational datdains many vertical temperature
profiles, for example, from radiosondes or satellites. &foee, it is important to understand
how 4D-Var uses the information from vertical temperatudifes and how this compares and
contrasts with the assimilation of horizontal lines of alvaéions. Since a vertical profile of
observations samples the vertical structure of the atnersplt is to be expected that 4D-Var
will be able to use this data to generate analyses with godatakstructures.

All the previous experiments in this thesis have considéhedtrue states given by the
most rapidly growing or decaying Eady wave. The vertical&tuire of these normal modes is
vital for the vertical coupling between the upper and loweuitdary waves and hence for the
growth or decay of the waves. Chapter 1 also discussed pations which can grow faster
than the exponential growth of normal modes. The verticakcstire of these perturbations is

very different to that of the normal modes as they are charaeid by interior QGPV structures

119
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with small spatial scales. Therefore, it is important to enstnd whether 4D-Var is able to
generate analyses with such non-modal structures. \Veproéiles sample such structures
well, and therefore it is expected that 4D-Var should be a@blextract the information to
generate analyses with structures necessary for non-rgomlath.

Vertical temperature profiles give sparse data in the hot&éoTherefore, the interpolating
effect of background error correlations is important intsaases. The 4D-Var experiments in
Section 3.2.3 showed that correlations play an importalet irocreating a smooth analysis
when a full line of noisy observations is assimilated. Nohthe SVD experiments, however,
have considered correlations or sparse observations., fthesmportant to investigate how
the SVD results differ when correlations are included arst athen sparse observations are
assimilated.

All the experiments in this chapter consider the assinuitatif observations of the interior
buoyancy field. In the first section, the technique used talleaobservations of the interior
buoyancy is described and the assimilation of interior lamagy is compared with the assimi-
lation of the lower level buoyancy. In the second sectios,tdthnique to compute the SVD
incorporating correlations is described and the filterind eterpolating effects of correlations
are investigated. In the third section, the assimilatioomlzservations from a true state with
non-modal growth is compared with that from modal growthe Tdurth section considers the
assimilation of observations from different observingteyss. First, the experiments are ex-
tended to consider the assimilation of two horizontal lioksbservations, and then to consider

the assimilation of two vertical lines of observations.

6.1 Observing Interior Buoyancy

This section describes the assimilation of observationtb@interior buoyancy. Such obser-
vations will be used for all the experiments in the rest o$ tthapter. The assimilation of a
horizontal line of interior buoyancy is compared with thaadorizontal line of buoyancy on

the lower boundary, by examining the SVD of the observahitiatrix:

H
H= (6.1)

HM
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whereH is the observation operator ai is the linear Eady model.

The SVD of the observability matrix gives an indication oé timformation that is con-
tained in the observations when they are assimilated udbdwyat. The background state
penalizes the RSVs with small singular values. This is irtgrdrin removing the noisy com-
ponents from the analysis increment, but may also remove srthe important information
that is contained in the observations.

In the Eady model, when the lower boundary buoyancy is oleserthe observation op-
eratorH is simply a matrix of ones and zeros, but when the interiorybaoy is observed,
the observation operator must contain diagnostic equatidrich link the interior buoyancy
to the control variables (QGPV and buoyancy on the bounglarighe non-dimensional buoy-
ancy is given by the vertical derivative of the non-dimensiostreamfunction field. There-
fore, the observation operator first uses the QGPV and bugyamthe boundaries to find the
streamfunction field, and then the interior buoyancy is gilsg the vertical derivative of the
streamfunction field. This is described in further detaibppendix A.

The structures of the RSVs, for the assimilation of the inteouoyancy at a height of
2.5km, are now examined. RSVs 2 and 10 are shown in Fig. 6.% fif$t pair have an
eastward tilting buoyancy field with a maximum in amplitude the lower boundary. The
second pair have a westward tilting buoyancy field with a mmaxn in amplitude on the upper
boundary. Although the observations are closer to the raidtithe domain than in the previ-
ous experiments, there is still a distinction between tli@mation needed to reconstruct the
boundary that is closest to the observations and the infitaméhat is needed to reconstruct
the boundary that is furthest from the observations. Alse,ibformation to give a growing
analysis increment is found in the first RSV pair, whilst theormation to give a decaying
analysis increment is found in the second RSV pair. The idiffee between these RSVs and
the RSVs for observations of the lower boundary is the digtilecture in the QGPV field.
Such a structure is expected from the relationship betwempérature and QGPV. A warm
buoyancy anomaly is related to a negative QGPV anomaly adadgositive QGPV anomaly
below, as shown by the schematic diagrams in Fig. 1.4. Itjpeeted that this structure will
enable the reconstruction of small-scale structures in \Q@Rt are necessary for non-modal
growth.

The effect of the height of the horizontal line of observasios now considered. The
singular values of the two RSV pairs that are necessary o floe analysis increment when the

most rapidly growing or decaying Eady wave is observed ape/shn Fig. 6.2. As the height
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Figure 6.1: Right singular vectors of the observability matrix thateyia large contribution
to the analysis increment for the analysis of the most rgpdbwing or decaying Eady wave.
Observations of the interior buoyancy at a height of 2.5kegiven at the beginning and the
end of a 6 hour window.

of the horizontal line is increased from 0.5km to 4.5km, timgslar value of the first pair of
RSVs decreases. The structure of the RSVs also changestasgheis increased (not shown).
When the observations are at 0.5km, the first pair of RSVs makavely large amplitude on
the lower boundary and the second pair have a relativelg langplitude on the upper boundary.
When the observations are moved higher to 4.5km, the RS\&s hearly equal amplitudes on
the upper and lower boundaries. As the height of the obsensis increased even further,
the first pair of RSVs gain a larger amplitude on the upper damnand the second pair gain a
larger amplitude on the lower boundary. Thus, the first ppR®Vs contains the information
needed to reconstruct the boundary which is closest to thereations, whilst the second pair
of RSVs contains the information needed to reconstructdo@bary which is furthest from the
observations. At all heights, the first pair of RSVs has amvessl tilting buoyancy field and
the second pair of RSVs has a westward tilting buoyancy fighdis, the second pair of RSVs
always contains the information to give a decaying analysiement. When the observations

are in the middle of the domain, there is a smaller differdnemveen the singular values so
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Figure 6.2: Singular values of the two pairs of RSVs that contribute oathalysis increment
when the most rapidly growing or decaying Eady wave is oleger¥Dbservations of a hori-
zontal line of the interior buoyancy are given at T+0 and T+tdaat a specified height (the
abscissa). The black dashed line shows the singular valube dirst pair of RSVs and the red
solid line shows the singular values of the second pair of RSV

there is less distinction between the information neederhfer the growing and decaying
parts of the analysis increment. The singular value of thieseaying’ RSVs is always smaller
than that for the ‘growing’ RSVs, even when the observatemesin the middle of the domain.
Thus, the background state will continue to strongly pewesihe decaying part of the analysis
increment.

To summarize, the SVD of the observability matrix for a hontal line of interior buoy-
ancy observations has shown that there are still two paiRSds needed to form the analysis
increment. Therefore, the conclusions from the previowsptdr can be applied to the as-
similation of interior buoyancy. That is, the first pair of RSwith a large singular value, is
needed to reconstruct the state on the boundary closest tbdervations and to give a grow-
ing analysis increment whilst the second pair of RSVs, wiimall singular value, is needed
to reconstruct the state on the boundary furthest from tiserations and to give a decaying
analysis increment. As the background state penalizes 8\sRvith small singular values,
this implies that the background state may penalize thenmdtion needed to reconstruct the
state on the boundary furthest from the observations awndoaisalize the decaying part of the
analysis increment. The structures of the RSVs show thaeihbrizontal line is moved from
near the lower boundary to the middle of the domain, theress bf a distinction between the
information to reconstruct the upper level wave and thermfdion needed to reconstruct the

lower level wave. However, the singular values show thattieestill a distinction between the
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information needed to reconstruct the growing and decayants of the analysis increment.

6.2 Background Error Correlations

The SVD experiments are now extended to understand therfgtand interpolating effects of
correlations. The section begins by rewriting the 4D-Vaalgsis increments in terms of the
RSVs of what will be known as the normalized observabilitytnima

Consider the minimization of the 4D-Var cost function:
J(x0) = (%0 — x")TB7 (%0 — x*) + (¥ — Hxo) TR (¥ — Hx() (6.2)

where the generalized observation vegt@and the observability matriKl are given by:

Yo H

<>
I
o
Il

(6.3)
yn HM

We assume that the background state and observations hiémeruerror variancess? ando?

so that the covariances may be split into the variance anmdleation components:
B =gipp R =0.pp (6.4)

wherep; andpj, are the background and observation error correlationgotisgly. Defining
_1
the co-ordinate transformatiop= p?(x, — x°), then the cost-function may be written in the

standard, preconditioned form:
2 2 2 —39p 3 -3 2
o, J(x) = 1 lIxllz + lpr*Hpgx — pr*dll; (6.5)

where the generalized innovation vectodis- § — Hx? andy = 0, /03,

In the previous chapters, the SVD of the observability mdifiwas examined. However,
by using the co-ordinate transformation, the cost functias now been transformed such
that the analysis increments may be written as a linear auaibn of the RSVs ob;,%f{p%g
which we will call the ‘Normalized Observability matrix’. hie term normalized is used to be

consistent with the terms used in Rabier et al. (2002) wher&t/D of a normalized Jacobian
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matrix (or equivalently, a normalized observation opanagexamined.
If u;, v;, \; andr now denote the LSVs, RSVs, singular values and rank of thealeed

_1 L 1
observability matrixp,*>Hp}, then the analysis increments can be written as:

(6.6)

Thus, the RSVs of the normalized observability matrix deiae the structure of the analysis
increments when correlations are included.

In the following, observation correlations are not consedesop, = I. However, itis in-
teresting to note that the impact of temporal observatiocor @orrelations may be investigated
using this technique. Such correlations are highly relef@rthe assimilation of satellite data,
but at the present time, it is unclear how such correlatibosisl be treated.

The matrixflp%B first needs to be calculated before the SVD can be computquartic-
ular, a method is required to compmé. In this thesis, the background error correlations are
defined as:

p5' = wol +wi(Ly,)? (6.7)

wherew, andw; are positive constants depending on the correlation ldngtidL,, is a finite
difference second derivative matrix (see equation (2.50Nere are many decompositions
which satisfyp, = CC”. Here, we choose to find the real, symmetric positive defstteare
root of p; using the Schur decomposition, following Higham (1984) &tcing (1986). This

derivation is simplified considerably by first noting the peaties ofp,":
1. p3'is areal symmetric matrixi(x n),
2. the diagonal elements pf;' are all positive,

3. pj' is strictly diagonally dominant

1The matrixA is strictly diagonally dominant if and only if

n
|(I“'| > Z|aij| = 1,...,71.
=1
141

wherea;; is the element of on the ith row and jth column.
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From these three properties, it can be shown ghatis also symmetric positive definfte
As p3' is symmetric positive definite, it is invertible, apd; is also symmetric positive
definite (e.g. Noble and Daniel, 1988).

Any square matriy may be written as a Schur decomposition (e.g. Atkinson, 1989
ps = VDVT (6.8)

whereV is a unitary matrix and is an upper triangular matrix whose diagonal elements are
the eigenvalues gb .

As py is symmetric, then the eigenvalues @f are real and the eigenvectors form an
orthonormal basis. This means tiats then a diagonal matrix with the eigenvaluespgfon
the diagonal, and the eigenvectorsegf form the orthonormal columns 6&f.

As p is symmetric positive definite, then the eigenvalueg gare also all positive. Thus,
the square roots of the eigenvalues are real. This meana tleal square root gs; can be
defined as:

pl = VD VT (6.9)

whereD: is a diagonal matrix whose diagonal elements are squars obthe eigenvalues of
pg- This may be verified by forming;j%p%B — (VD2VT)(VD:VT) = VDVT = p,,.

There exist both positive and negative square roots of tiengalues, so that there are
possible square roots (Higham, 1984). Here, the positivarggroots are chosen so that the

unique, real and positive definite square root is
1 1
pz =VD:zVT, (6.10)

whereD? is a diagonal matrix whose elements are the positive sqoats of the eigenvalues.
The matrixpy' is inverted using the NAG routine naymmatinv, (NAG) which com-

putes the inverse of a real symmetric matrix. The Schur deosition of p is then found

using nagsym eig all, which computes all the eigenvalues and eigenvectoaseél symmet-

ric matrix. The eigenvalues and eigenvectors are then wsedmputep? using (6.9), which

2The matrixA is symmetric positive definite if and only if

xTAx = Z Zaijximj >0 Vx 7é 0, xeR andA = AT.

i=1 j=1
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is then premultiplied byH.

6.2.1 Relationship to Optimal Perturbations

It was briefly mentioned in Section 4.5 that the appropria¢trits for the RSVs are the back-
ground and observation error covariances, although ths nvea justified. The relationship
between the RSVs and optimal perturbations are now recerezido show that these are in-
deed the relevant metrics.

Optimal perturbations maximize the ratio:

IPxn|e

growth=
I%ollc

(6.11)

whereP is an operator which reduces the n-dimensional vector toctowavith a smaller
dimension, andC andE are the initial and final time norms. These norms are now chuse
be the background and observation inverse error covasaice andR~! respectively and

the observation operat®f is used a® so that:

< HMx,; R"'HMx, >

rowth= 6.12
g < x9;B71xy > ( )
LettingR = o2p, andB = o7pj, then
| < pr"HMxq; p,? HMx, >
growth— — = Pr —X0 Pr 22R0 7 (6.13)
H < pp*Xo; P’ Xo >
_1
Using the co-ordinate transformatiogn= p;>x, then
| < p"HMpix; p,HMp:
< 2 2 . 2 2 >
growth= — ~ PR ZZVIPEX Pr 2 VPEX = (6.14)

I <X;X >

so that these are also the RSVf Hp?, whereFl = HM.

Thus the optimal perturbations of the moddl that are found using the operatr and
with the metrics given by the background error correlatiaihe initial time and the observa-
tion error correlations at the final time are equivalent ® RSVs of the normalized observ-

_1 L 1
ability matrix p,>Hpj},.
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Figure 6.3: Singular values\ and'V matrix of the (a) observability matrix and (b) normalized
observability matrix, when there is a full line of obsereais of the interior buoyancy at a
height of 0.5km, at T+0 and T+6. The correlations are appliecevery level with a length

scale ofl = 10Az.The details are as for Fig. 5.1.
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6.2.2 Impact of Correlations on the Assimilation of Dense O$ervations

The 4D-Var experiments in Section 3.2.3 showed that whesyrabservations are assimilated,
the background state must be given enough weight to pertakzeoise and to give a smooth
analysis. However, the background state also acts to pertak information needed to recon-
struct the state in unobserved regions. When correlati@re added in the background error
covariance matrix, it was possible to extract more of thenmiation needed to reconstruct the
upper level wave whilst giving a smooth analysis. Thus, beaknd error correlations act to

filter the noise from observations that have a dense spasiailaition.

The SVD computations in Section 5.3 showed that with peidéservations of the most
rapidly growing or decaying Eady wave, two pairs of RSVs weired to form the analysis
increment. However, with noisy observations, many of tHeeoRSVs, with smaller-scale
spatial structures were also given a large weight. The ifigeeffect of correlations is now
understood by computing the SVD of the normalized obseliyabatrix.

The SVDs ofH and ﬂp% for the case with a horizontal line of interior buoyancy ob-
servations at a height of 0.5km are shown in Fig. 6.3. If the state is given by the most
rapidly growing Eady wave and the background state has aepdrasr, then with no correla-
tions, the RSVs needed to form the analysis increment aendly RSVs1&2 and41&42.
But with correlations, the RSVs needed to form the analygisement are given by RS\24:3
and5&6. This is because the RSVs with small scale structures andja &nplitude on the
lower boundary are now associated with very small singudédmas. Thus, the effect of the
correlations is to re-order the RSVs so that the RSVs withelacales are associated with the
largest singular values. Note that the second pair of RSMave a small singular value;
this is important as there is no change in the observatiorshance there is also no change
in the information that can be extracted from the obsermatibhe re-ordering of the RSVs
means that the regularization parametaran be chosen so that the RSVs that are needed to
reconstruct the upper level wave are given a large weighgdthat the RSVs with small scale
structures are strongly penalized by the background state.

The SVD has shown that the background error correlation®datis the analysis incre-
ments towards the spatial structures that are expected.igachieved by strongly penalizing
the error structures that are not expected. In this casejrt&epected structures are the RSVs
with small spatial scales. When correlations are includleglse RSVs have smaller singular

values and are therefore penalized more by the backgroate st
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Figure 6.4: As for Fig. 6.1 but with four sparse observations at T+0 andTand no correla-
tions.

6.2.3 Impact of Correlations on the Assimilation of Sparse ®@servations

The SVD ofH andﬂp% are now used to consider the information content of sparserga-
tions. First, the SVD oHl for a horizontal line of only four observations at T+0 and Ti$6
found. The RSV pairs which give a large contribution to thalgsis increment, if the most
rapidly growing or decaying Eady wave is observed, are showg. 6.4. Again, there are
two pairs of RSVs, but their structure is vastly differenthat for a full horizontal line of ob-
servations. These RSVs have small horizontal scales wiktima@eand minima in the buoyancy
field at the positions of the observations. This makes italiffito interpret the information that
is contained in the RSVs.

Itis more useful to examine the RSVsﬁfp%B so that the effect of correlations can also be
considered. These RSVs are shown in Fig. 6.5. In contraket&8Vs offl, these RSVs now
have large horizontal scales and can usefully be compartée ®SVs for a full horizontal line
of observations. RSV8&3 for the sparse observations (Fig. 6.5 (a)) are almost ic&int
RSVs2&:3 for the full line of observations (Fig. 6.1(a)). RSY&6 for the sparse observations
(Fig. 6.5 (b)) are also very similar to RSW8& 11 for the full line of observations (Fig. 6.1(b)),
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Figure 6.5: RSVs of the normalized observability matrix, with corrglas with a length scale
of [ = 10Ax applied to every level. Four sparse observations are givern@ and T+6.

although there are still some small scales near to the loaendary.

The similarities between the RSVs for a full line of obseimas and those for sparse obser-
vations mean that the results concerning the reconstruofithe unobserved regions and the
vertical structure of analysis increments are still refgvfar the assimilation of sparse obser-
vations; the background state penalizes the informati@d®e to reconstruct the unobserved
regions and also penalizes the decaying part of the anahggsEment.

There are, however, two fundamental differences betwesmadating a full line of obser-
vations and assimilating sparse observations. The fifgrdrice is that the sparse observations
need to be more accurate than the full line of observatiopsaduce the same analysis. This is
illustrated by the difference in the magnitude of the cquoggling singular values. The singu-
lar values for the sparse observations are 7 times smaéletthiose for a full set of observations
because the number of observations are also reduced byoa ¢dict0. With smaller singu-
lar values, the regularization parameterlso needs to be smaller so that the same amount
of information can be extracted; this is equivalent to atathat the observations need to be

more accurate. The second difference is that only the largles can be successfully recon-
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structed using sparse data. In particular, at least fowsgaddent observations per wavelength
are needed to reconstruct a wave. With only two observattbegosition of the wave cannot
be inferred, and the maxima and minima of the wave are simpliieapositions of the ob-
servations. This was found through 4D-Var experiments ghotvn) but may be deduced by
considering polynomial interpolation. That i, + 1 independent pieces of information are
needed to determine the parameters for a polynomial of degi@.g. Atkinson, 1989).

To summarize, the SVD of the normalized observability nxafﬁo%g has illustrated both
the filtering and interpolating effect of background errorrelations. The SVD Oﬂp% has
also shown that the conclusions from previous experimeamse applied to the assimilation
of sparse data, provided that only the large scales needrecbastructed and that the sparse

data is less noisy than the dense data.

6.3 Non-Modal and Modal Growth

The ability to generate the vertical structures necessaryniodal and non-modal growth is

now investigated. The experiments consider a backgroae with both zero QGPV and zero
buoyancy and the true state given by either the most rapidiwigg Eady wave, as shown

in Fig. 6.6, or by an interior QGPV dipole as shown in Fig. &hich is associated with a

negative temperature anomaly which may have resulted fiabatic cooling. The equations

for the non-modal initial conditions are given in Appendix Fhe Eady wave results in expo-
nential growth through the vertical coupling between thermtary waves, whereas the QGPV
dipole structure results in rapid finite-time growth thrauge PV-unshielding mechanism, as
discussed by Badger and Hoskins (2001). Figures 6.6(c) at{d)&how the final state from

integrations with a basic state such that the zonal windns aa the lower boundary. These
true states will not be used until Section 6.5, but are givene fior comparison.

In the following experiments, the observations are giveraldyll horizontal line of the
interior buoyancy at a height of 4.5km at T+0 and T+6. Thig jpasses through the centre of
the buoyancy anomaly. The horizontal domain has been isedetp 80 grid points to ensure
that the spatial extent of the perturbation to the flow is $an&than the domain length.

It will be found that there is a significant dependence on ti@ae of the specified back-
ground error variances. For this reason, we choose to fateuhe problem as solving an
ill-posed inverse problem using Tikhonov’s method of regiziation, with multiple regulariza-

tion parameters.
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Figure 6.6: Buoyancy fields for the true state for modal growth (a)T+QTé6 such that the
basic state zonal wind is zero in the centre of the domainT¢® such that the basic state

zonal wind is zero on the lower boundary. The QGPV fields dreesb and are therefore not
shown.

The 4D-Var control variables, contains both the interior QGPV variableg and the

boundary buoyancy variables- so thatx, can be written as:

X = : (6.15)

XT

It is assumed that the background error covariance is delgeso that there are no auto-
correlations or cross-correlations. However, we now asstimat the QGPV and buoyancy
have different background error variances. Denoting thekdp@und error variances of the

QGPV and buoyancy asg andc? respectively, and the observation error variance’ahen:
B = R = 0’1 (6.16)
0 o2l
With x* = 0, then the 4D-Var problem can be formulated as minimizingctiet function:
T(x0) = pgllxgll3 + pillxrll3 + |19 — Hxoll3 (6.17)

where, = g—q pr = 2= are regularization parameters. The importance of choadsiag

appropriate parameterg andr is now illustrated.

The case where the true state is given by the most unstabsteahorode is first considered.
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Figure 6.7: As for Fig. 6.6, but for non-modal growth.

A comparison of three 4D-Var analyses with different valos, andy is shown in Fig. 6.8.

If the parameters are specified a@: = 1 andu? = 1075, then a large analysis increment is
added to the buoyancy fields (amplitude3is) and a small increment is added to the interior
QGPV (amplitude isl0~°). This gives an analysis that is close to the true state, asrsin
Fig. 6.8 (a). In contrast, if the parameters are specifigifas 10~° andy3 = 1, then a large
analysis increment is added to the interior QGPV (ampliisde5) and a small increment is
added to the buoyancy on the boundaries (amplitu@etis as shown in Fig. 6.8 (c), giving
a very poor analysis. The QGPV field of the analysis has a ratical structure, and so
the structure will grow using a PV-unshielding mechanistheathan a boundary coupling
mechanism.

The parameters chosen in these cases give two extremes. ttdéhparameters represent
the error variances well, the analysis is close to the trbtbwever, at the opposite extreme,
when the parameters do not represent the error varianaantlysis is far from the the true
state. The analysis shown in Fig. 6.8 (b) uses ‘climatolagjgarameters which are in the
middle of these two extremes. A medium sized increment has beded to both the buoy-
ancy field and the QGPV field, giving an analysis that is aldavben the two extremes. Such

‘climatological’ values are representative of an operaialD-Var algorithm, where the back-
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Figure 6.8: 4D-Var analyses shown at T+0 with the true state given by rhgaavth. The
upper plots show non-dimensional QGPV and the lower plais/ston-dimensional buoyancy.
Perfect observations of a horizontal line of buoyancy akeegiat T+0 and T+6. The assumed
observation error variance is; = 1. The assumed background error variances are{ay 1,
o3 =10%, (b)o? = 2 x 10°, 0% = 10% and (cp?2 = 10°, 0. = 1.

ground error covariance is estimated using a climatologgrafr statistics.

The case where the true state is given by a QGPV dipole, deaisicc of non-modal
growth, is now considered. The 4D-Var analyses are repeaitddthe same parameters as
for the normal mode case. If the parameters are specified as 1 andu7. = 107°, then
4D-Var tries to add a large analysis increment to the boueslaso that the interior buoyancy
in the observed regions will have the correct initial amyulé. This gives an analysis that has
completely the wrong structure, as shown in Fig. 6.9 (a). dinelitude of the buoyancy field
is 0.8, whereas the amplitude of the QGPV fieldlig x 10~*. In contrast, if the parameters
are specified a,sg = 107° andu? = 1 then a large analysis increment is correctly added to the
interior QGPV and the analysis resembles the true staténagsin Fig. 6.9 (c). An analysis
using ‘climatological’ parameters in between the two exies is shown in Fig. 6.9 (b). As
expected, the analysis is better when the parameters aredargpresentation of the actual
background error variances.

To illustrate further the detrimental effect of the ‘clio&dgical parameters’, as used by

operational 4D-Var at the present time, the growth ratehefforecasts from the analyses
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Figure 6.9: As for Fig. 6.8, except the true state is given by non-modahgr with non-zero
interior QGPV.

are examined. The growth rates are measured using the lpsrtaar kinetic energy norm as

defined in Badger and Hoskins (2001). The non-dimensiomedtid energy norm is defined

KE = // v?dxdz (6.18)

where’ is the perturbation meridional wind, and the KE growth ratéirae t, oxg(t) is

as:

defined as:

oxp(t) = QL In (gg%) (6.19)
where At is the time step. This measure allows a clear view of non-ingieavth and also
allows a clear comparison with the work by Badger and Hos{@081).

The kinetic energy growth rate of the state during the 6 hesmailation window and the
following 18 hour forecast is now examined for both modal and-modal growth.

When the true state is given by modal growth (Fig. 6.10 (&), true kinetic energy
growth rateo iz (T) is constant with time, as expected. The forecast fromatiadysis with
the ‘appropriate parameters’ for the modal growth case @)= 1, 07 = 10°, ando? = 1,
Fig. 6.8(a)) also has the same growth rate. However, thetbroate of the forecast from

the analysis with ‘climatological parameters’ (@)}(= 2 x 10%, o7 = 10%, ando, = 1,
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Figure 6.10: Kinetic energy growth ratesy (107°s71) for the true state (T) given by (a)
the most rapidly growing normal mode and (b) a PV-dipole pexation, during the 6 hour
assimilation window and following 18 hour forecast. Thewgilorates from the truth (T, solid),
and analyses with climatological parameters (C) (dashexd)&ith appropriate parameters for
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Fig. 6.8(b)) is larger than that of the true state becauseauiadysed QGPV field has a large
amplitude and grows through the PV-unshielding mechanism.

When the true state is given by non-modal growth (Fig. 6.0 (be true kinetic energy
growth rate (T) varies with time. There is a peak at 6 hoursthed it decreases to the value
of the growth rate of the most unstable normal mode. The droate of the forecast from
the analysis with the ‘appropriate parameters’ for the nmadal growth case (N)a(f = 10°,

o2 = 1,ando? = 1, Fig. 6.9(c))) also reaches a value that exceeds the rateofaral mode
growth, although it is never as high as the that for the tratesiThe growth rate of the forecast
from the analysis with ‘climatological parameters’ (G} (= 2 x 10°, 07 = 10%, ando? = 1,
Fig. 6.9(b))) is far less than that of the true state and it feisever reaches a value that is larger
than that of the normal mode. This is because a large propoofithe analysis increment has
been added to the boundaries and not to the interior QGP\%, The analysis does not contain
the vertical structure that is needed to give the rapid gndahat is seen in the true solution.

To summarize, for normal-mode growth, the best analysif@amtast are achieved when
the parameters are such that a large analysis incrementiezldd the boundaries; for non-
modal growth the best analysis is achieved when the parasrate such that a large analysis
increment is added to the interior. Although the backgroamdr covariances are diagonal,

4D-Var has been able to generate analysis increments farrbotlal and non-modal growth,
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providing that the regularization parameters are specapgutopriately.

6.4 Two Horizontal Lines

In the final section (Section 6.5) in this chapter we will ddes how 4D-Var uses the infor-
mation from vertical temperature profiles and how this compand contrasts with the use
of horizontal lines of observations. The previous resullisgpter 3) have shown that a time-
sequence of observations in the horizontal can providenmdtion about the vertical structure.
The question is whether vertical profiles can provide a §icant increase in the amount of
useful information about the vertical structure.

As a step towards understanding the information from variicofiles, the assimilation
of two horizontal lines at different vertical levels is caeyed. This should provide a strong
link with the knowledge that has already been gained frompttesious experiments. The

assimilation of two horizontal lines of observations is sidiered in this section.

6.4.1 4D-Var Experiments

In the following experiments, perfect observations of honital lines of the interior buoyancy
at two heights are given at the beginning and the end of a 6 Wowdow. The background
state is zero and the true state is given by either the mogtlyagrowing Eady wave or by
a QGPV dipole. For the QGPV dipole, one set of observatiossgmclose to the centre of
the buoyancy anomaly, whilst the other set of observatiangdes the zero values below the
anomaly.

Analyses using the ‘climatological values’ @f = 2 x 10°, o7. = 10* ando; = 1 are first
examined. Note that these values have not been derived frdimatology of error statistics
but were chosen for the experiments in the previous sedd@®) {o represent the values used
in operational 4D-Var.

The analyses for the true state given by modal growth are showig. 6.11. Again,
as for the assimilation of a single horizontal line, the karogy field correctly tilts eastwards
with height, but the interior QGPV is not zero, but instead hdarge amplitude. However,
the region between the two horizontal lines does have QGResdhat are relatively small.
When the horizontal lines are moved further apart (b), tlggorewith near zero QGPV also

extends. To be able to determine whether these analysestéeethan that for the assimilation
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Figure 6.11: 4D-Var analyses shown at T+0 with the true state given by rhgaavth. Perfect
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o2 = 10% o2 = 1. The associated kinetic energy growth rates; (10~°s~!) from the true
state (solid) and from the analyses are shown in (c).

of a single line of buoyancy, it is useful to examine the glovdte of the following forecast.

The kinetic energy growth rates for the 6 hour window, andbfeing 18 hour forecast are

shown in Fig. 6.11 (c). When the two horizontal lines are elaxgether (a), there is some
improvement in the analysed growth rate in comparison t@atsgmilation of a single line of

observations. When the two horizontal lines are furthertafigere is even more improvement,
and there is little distinction between the true growth &atd the analysed growth rate.

The analyses for the true state given by non-modal growtlsfaoen in Fig. 6.12. When
an extra horizontal line is given at 2.5km (a), there is sonfermation indicating that the
buoyancy is zero at that height and therefore the spatiahéxtf the analysed buoyancy per-
turbation has been cut off below 2.5km. When the upper limaased higher in the domain
(b) , the structure of the analysis looks very similar, hogrethe minimum amplitude of the
perturbation is now higher and coincides with the positibthe observations. Thus, the 4D-
Var algorithm has not been able to infer that the minimum &mongbé in the perturbation lies in

between the two lines of observations, and instead the roimiin the analysis is found at the



Chapter 6. Extension to More Realistic Cases 140

Non-Dimensional QGPV, max q =0.39367

Non-Dimensional QGPV, max q =0.82698 Non-Dimensional QGPV, max q =0.59029
10

10 10
[ r
8 8 8f | 5
(W]
— — 7 8
Es & Es @ Es
- — 117\ -—
= < HN 5 N
o 12 ° S 4
24 o 24 m 2 i
o 2 [
2 = 2 oo 2 O A
N
2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000
zonal direction (km) zonal direction (km) ) lzonal direction (km)
Non-Dimensional buoyancy, max b =0.10938 Non-Dimensional buoyancy, max b =0.11002 Non-Dimensional buoyancy, max b =0.052983
10.0 T 10.0 ;;u‘,y‘ 10.0
[ \ [N \
8.5 T 85 N
1 l‘ ! ! ] ' \
IV I
€65 R £65
£ ! 2 —————
- 1y vl E 1 \\:l’ \
545 545 o
g \\\ =0 g S
2.5 2.5“
0.5 0.5
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000

zonal direction (km)

zonal direction (km)
Kinetic Energy Growth Rate

Kinetic Energy Growth Rate

zonal direction (km)
Kinetic Energy Growth Rate

6 12 18 24 6 12 18 24
Time (hours) Time (hours)

12 18 24
Time (hours)

(a) Observations at 2.5 and
4.5 km, weights:o? = 2 x
103, 0% = 10%, 02 = 1.

(b) Observations at 2.5 and
5.5 km, weights:o} = 2 x
103, 0% = 102,02 = 1.

(c) Observations at 1.5 and
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Figure 6.12: 4D-Var analyses shown at T+0 with the true state given by maatal growth.
Perfect observations of two horizontal lines of buoyaney@ven at T+0 and T+6 at (a) 2.5
and 4.5km, (b) 2.5 and 6.5km and (c) 1.5 and 8.5km. The weaghtgiven by: (a) and (b)
ol =2x10% o7 = 10%, 0 = 1 and (c)o; = 10°, 07 = 1, 0, = 1. The top panels show
the QGPV fields, the middle panels show the buoyancy fieldshenoiottom panels show the
associated Kinetic Energy growth rates s (10~°s!), from the truth (solid) and from the
analyses (dashed).
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positions of the observations.

Again, itis useful to examine the growth rates for the folilogvforecasts. These are shown
in the bottom panels of Fig. 6.12. With observations at 2.& 4@®km, the growth rate now
reaches a value 6fx 10° s~!, as opposed to the value of orflys x 10° s—! which was attained
with the assimilation of only a single line of observatiowéth observations at 2.5 and 5.5km,
the growth rate again peaks3ak 10° s~!, but then the growth rate reduces in the last 12 hours.

In both analyses, the maximum in amplitude was found at tiséipa of the observations.
This leads on to an investigation of whether 4D-Var is indablé to infer the perturbation if
it lies in an unobserved region. The following experimerdgsunes of observations at heights
of 2.5 and 7.5 km. These are below and above the spatial extehe initial perturbation,
but should be able to detect the growth of the perturbatiohe fesults from the previous
chapters showed that to be able to infer the state in unobdeegions, it is important to give
a relatively large weight to the observations in comparisoime background state. Therefore,
the parameters are now adjustedsfo= 10°, 07 = 1 ando. = 107°. These weights are
chosen to maximize the use of the information from the oladems. The analysis is shown
in Fig. 6.12(c). The perturbation has been correctly if@ioy 4D-Var, with a maxima in the
buoyancy field at the correct position. The growth rate astai maximum of.4 x 10° 571,
but the peak growth rate occurs at 12 hours rather than ati®hdhis experiment has shown
that 4D-Var is able to reconstruct the interior QGPV peratidns that are necessary for rapid

finite-time growth, although a relatively large weight ng¢a be given to the observations.

6.4.2 SVD Experiments

To make this understanding more complete, it is necessayamine the RSVs that are used
to reconstruct the most unstable Eady wave. From the val‘ueﬁfbthere are four RSV pairs
that contribute to the analysis increment. The QGPV and &uooy fields for these vectors
are shown in Fig. 6.13. RSV&&3 (Fig. 6.13(a)) have an eastward tilting buoyancy field
with a maximum in amplitude on the lower boundary. These arg gimilar to the first pair
of RSVs for a single line of observations. RS¥&7 (Fig. 6.13(b)) have a westward tilting
buoyancy field with a maximum in amplitude on the upper boupnd@hese are very similar
to the second pair of RSVs for a single line of observationsuslthe information content
of two horizontal lines of observations is very similar te@ tthe information content of one

horizontal line. However, with two lines of observationserte are also another two pairs of



Chapter 6. Extension to More Realistic Cases 142

QGPV, max q =0.020201 QGPV, max q =0.023511

height (km)
height (km)

1000 2000 3000 4000

1000 2000 3000 4000 e
zonal direction (km)

zonal direction (km)

Buoyancy, max b =0.18882 Buoyancy, max b =0.18512
10.0 10.0
8.5 8.5
€ 65 € 6.5]
=3 =3
E, 45 % 45
Q [}
< =
2.5 2.
NN sy,
(NN iy,
0.5 \\\\\‘H\ /\ :l!,///,/ 0.5 m
1000 2000 3000 4000 1000 2000 3000 4000
zonal direction (km) zonal direction (km)
(a) RSV 2 and 3\ = 1.2005 (b) RSV 6 and 7\ = 0.4652
QGPV, max q =0.13009 QGPV, max q =0.15527
10
8
g6 £
= =
(=2} (=)
T 4 ©
< e
2
0
1000 2000 3000 4000 1000 2000 3000 4000
zonal direction (km) zonal direction (km)
Buoyancy, max b =0.023242 Buoyancy, max b =0.015109
10.0 10.0
8.5 8.5,
€ 65 € 6.5}
=3 =3 pote
E, 45 % 45
Q [}
< ~
2.5 2.
0.5 N 0.5} : m
1000 2000 3000 4000 1000 2000 3000 4000
zonal direction (km) zonal direction (km)
(c) RSV 19 and 20) = 0.1257 (d) RSV 127 and 128 = 0.0084

Figure 6.13: RSVs of the 4D-Var observability matrix with no correlasowith two horizontal
lines (80 observations) at the beginning and the end of a & wndow, when either the most
rapidly growing or decaying Eady wave is observed.
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Figure 6.14: Singular values of the four pairs of RSVs that contributé&oanalysis increment
when the most rapidly growing or decaying Eady wave is olezbr@bservations of two hori-
zontal line of the interior buoyancy are given at T+0 and TH&e lower line of observations
is given at 0.5km and the vertical distance between the biotd lines is given by the abscissa.
The singular values of the first, second, third and fourthrpaf RSVs are represented by the
black, red, green and blue lines respectively.

RSVs that have very different structures. RS\W4:20 (Fig. 6.13(c)) contain a PV monopole
that is situated between the two horizontal lines, and RB\$:128 (Fig. 6.13(d)) contain a
PV dipole that is situated between the two horizontal lifdsese RSVs have extremely small
singular values and hence an extremely small weight alsgsteebe given to the background
state so that these RSVs may be included in the analysisnieecre These RSVs are needed
to contribute to the analysis increment when the most utestgddy wave is observed. Similar
RSVs are used for the analysis increment when the non-medgairpation is observed.

It is surprising that although there is more information attibe vertical structure of the
wave, there is still a large distinction between the grovang decaying parts of the analysis in-
crement. Thatis, there is a large difference in the singtdares of RSV24&3 and RSVH&:7.
This is possibly because the horizontal lines are closelegeTherefore, we now investigate
how the singular values differ if the distance between thézbatal lines is increased. Singular
values of the four pairs of RSVs that contribute to the angaiyerement when the most rapidly
growing or decaying Eady wave is observed are shown in Figl. & he lower line is given at
0.5km and the height of the upper line is varied. As the ddretween the horizontal lines
increases, the singular value of the first pair of RSVs deg®ahilst the singular value of the
second pair of RSVs increases. Thus, when the horizonts kame close together, there is a

large distinction between the information for the growimgl@ecaying modes; when the hori-
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zontal lines are far apart, there is a smaller distinctidwben the information for the growing
and decaying modes. However, even when the horizontal aness far apart as possible,
there is still a significant difference between the singuédues of the first and second pairs of
RSVs. Thus, the decaying part of the analysis incrementaiilbys be penalized more than
the growing part of the analysis increment, regardlessehtight of the two horizontal lines.
To summarize, the 4D-Var and SVD experiments both showetdthieaanalyses of nor-
mal modes are improved when the horizontal lines of obsemvaare further apart. The SVD
experiments also showed that the decaying part of the asatgsement is still strongly penal-
ized by the background state even though there is more isfitmmabout the vertical structure.
The 4D-Var experiments showed that if a relatively largeghieis given to the background
state the maxima in the analysis is found at the position@bthservations, although it is pos-
sible to use the time-evolution information to infer thetsti@ an unobserved regions provided
that sufficiently large weight is given to the observatiotige (observations must be accurate

enough).

6.5 Vertical Lines

The following 3D-Var and 4D-Var experiments consider thsimdation of vertical lines of
observations of the interior buoyancy. Each vertical linetains an observation at each of the
twelve vertical levels. At a single instant in time, a veatiine of observations cannot provide
any information about the vertical tilt of the atmosphere gaéin information about the vertical
tilt, at least two vertical profiles are required. In 3D-\re vertical profiles need to sample
the atmosphere at different points in space, but in 4D-Vaw#rtical profiles may sample the
atmosphere at different points in time. Therefore, we nowsaer the assimilation of two
vertical lines in both 3D-Var and 4D-Var. The 3D-Var expeeimis assimilate two vertical
profiles given at the same time, and the 4D-Var experimeigdate a single profile given at
both the beginning and the end of the assimilation window.

The first experiments consider the ability to generate amalycrements necessary for
modal growth and decay, whilst the final experiments comglteability to generate analysis

increments necessary for non-modal growth.
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6.5.1 3D-Var and 4D-Var Experiments

3D-Var and 4D-Var analyses using two vertical lines are neangined. The true state is given
by the most rapidly growing Eady wave, shown in Fig. 6.6(ad ¢he background state is
zero. The purpose of these experiments is to determine ehd-Var is able to use the
model dynamics to link together the observations distatun time and successfully infer the
vertical tilt of the state.

The assumed background error variances for the QGPV ancetamape are now the same.
The weights are chosen so that a relatively large weightvisngio the observationst, > =
1072 ando,? = 1. Horizontal correlations with a length scale lof= 5Ax are applied to
both the buoyancy and the QGPV at every vertical level, so ttia information from the
observations is distributed to the surrounding grid points

A 3D-Var analysis using two vertical lines of buoyancy olvs¢ions at 2000km and
3000km is shown in Fig. 6.15(a). The analysis increment g loeen added to a small
region near to the observations. The size of this regionterdgned by the correlation length
scale. The buoyancy field tilts eastwards with height in #gans between the observations,
as required. However, the analysis does not exhibit anintthe regions to the east and west
of the observations because there are no further vertioéilgs to link together.

The experiment is repeated but for 4D-Var with only a singdgieal line of observations
at both the beginning and the end of a 6 hour assimilationewind his experiment is designed
to assess whether the model dynamics can provide the necagsamation so that the correct
vertical structure can be obtained using two vertical lithed are distributed in time instead of
space.

The 4D-Var analysis for vertical lines at 2000km is showniop B.15(b). At 2000km, the
true vertical structure has a sharp gradient and a smalliardel The analysis is similar, with
a cold anomaly in the upper half of the domain and a warm anpmahe lower half. The
upper anomaly is slightly to the west of the position of theatvations and the lower anomaly
is slightly to the east. These anomalies are advected byeitie btate wind so that the maxima
are at 2000km at T+6.

The 4D-Var analysis for vertical lines at 3000km is shown ig. F6.15(c). At 3000km,
the true vertical structure has a large amplitude and is sstmecal about the middle of the
domain. It can clearly be seen that the buoyancy field of tladyars tilts eastwards with height

as required.
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Figure 6.15: Analyses where the true state is given by the most rapidiywiggp Eady wave,
shown at T+0. The assumed variances are givendjy* = 1, o, > = 1072, and horizontal
correlations are applied with a horizontal length scdle= 5Az. (a) 3D-Var analysis with
two vertical lines of buoyancy observations, (b) 4D-Varlgees using a vertical line of obser-
vations at 2000km at T+0 and T+6, (c) 4D-Var analysis usingedical line of observations
at 3000km at T+0 and T+6. The top panels show the QGPV fieleésmidle panels show
the buoyancy fields and the bottom panels show the assod{atetic Energy growth rates
oxr (107°s71), from the truth (solid) and from the analyses (dashed).
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To assess the performance of 4D-Var, it is necessary to eeatineé growth rates for the
following forecast. The associated kinetic energy grovees are also shown in Fig. 6.15.
None of the analyses give the correct growth rate becausaniigses have localized spatial
structures. It can clearly be seen that the 4D-Var analygisabservations at 3000km gives a
growth rate that is close to that for the 3D-Var analysis. SD-Var is able to determine the
correct vertical structure from the time-sequence of olzgems. However, with observations
at 2000km, the resulting growth rate is very small

The three experiments are repeated but with the true staga gy the most rapidly decay-
ing Eady wave; the analyses are shown in Fig. 6.16. The 3DaNalysis (a) has a westward
tilting buoyancy field in the region between the observaj@s required. This results in a neg-
ative growth rate during the 6 hour assimilation window bpbaitive growth rate for the next
18 hours. The 4D-Var analysis with observations at 2000ksneheold anomaly in the upper
half of the domain and a warm anomaly in the lower half. Theuhes in a positive growth rate
during both the assimilation window and the following faaist The 4D-Var analysis with ob-
servations at 3000km does give a westward tilting buoyardy &s required and this results in
a negative growth rate during the assimilation window, batgain positive during the forecast.

The experiments have shown that 4D-Var is able to use a tegaence of vertical profiles
to infer the correct vertical structure. This is similar ©-%ar with horizontal lines of obser-
vations, where the time-sequence was used to infer the enagzsboundaries. The difference
between the two is that with a horizontal line of observationis the time-evolution informa-
tion that is used to infer the unobserved regions. Howewvign, awertical line of observations,
it is not necessarily the same part of the state that is obdetue to the horizontal advection.
Thus, the 4D-Var with observations distributed in time isyvsimilar to 3D-Var with obser-
vations distributed in space. If we imagine advecting thsitpan of the initial observations,
by the basic state flow, to the final time, then the verticafifg® may be thought of as being
distributed in space and hence the vertical tilt may be retefrom this.

The ability of 4D-Var to use vertical profiles to generate toerect vertical structure for
non-modal growth is now considered. A vertical profile sagsphe vertical structure of such
perturbations well, and therefore it is expected that tisenatation of vertical profiles should
give better analyses than for horizontal lines.

The analyses and growth rates shown in Fig. 6.17 illusthetethe appropriate choice of
the regularization parameters is still vital to give a goodlgsis. In (a), a large weight has

been given to the background state QGPV so that a relatiedg lanalysis increment has been



Chapter 6. Extension to More Realistic Cases 148

Non-Dimensional QGPV, max q =0.1948

Non-Dimensional QGPV, max q =0.041748 Non-Dimensional QGPV, max q =0.12415
10 P 10 10
'/ '/ \\\\ @ M @
8o 8 LI 8
\ ! = 2N —
Eor o Eep i Es
£ = il =
o S oty =
2 , A g
N VN s ,/’ _
2 oY Noor PO
. A/A . L
2000 4000 6000 8000 2000 4000 6000 8000 2000 4000 6000 8000
~ zonal direction (km) zonal direction (km) zonal direction (km)
NOn—D'me'lS'O”i' buoyancy, max b =3.2775 Non-Dimensional buoyancy, max b =1.2197 Non-Dimensional buoyancy, max b =3.2046
10.0 & @ 10.0 IARRY S 10.0 T T @
0‘ Ve el
8.5 ‘ " !r [ 8.5 | ‘\\.’/,/ ! 8.5 | : | \\./’ | ‘\ lv
LR I Ve P
E®® Si® £65 e £65 e
= e e = ° < RN XN
9o haE 545 . Z4s el
£ tha £ s el
25 ihaael 25 25 Vel
Wi i
p. et
0.5 BaSEN 05 05 e
 — . gl
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
zonal direction (km) zonal direction (km) zonal direction (km)
4 Kinetic Energy Growth Rate . Kinetic Energy Growth Rate 4 Kinetic Energy Growth Rate
3 3 3
2 2 2 -
1 -7 1 -7 1 -7
o -7 or ~ of -~
A~ 1 r
_2 -2 -2
_3 -3 -3
-4 ‘ ‘ -4 -4
6 12 18 24 6 12 18 24 6 12 18 24
Time (hours) Time (hours) Time (hours)
(a) 3D-Var (b) 4D-Var with Observations  (c) 4D-Var with Observations
at 2000km at 3000km

Figure 6.16: As for Fig. 6.15 but with the true state given by the most rigpil@caying Eady
wave.
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Figure 6.17: Analyses where the true state is given by non-modal growthwis at T+0. A
vertical line of buoyancy observations is given at T+0 andTand horizontal correlations are
applied with a length scale éf= 5Ax. The assumed variances are given byo(gﬁ = 1072,
o7’ =102, 0,2 =1and (b)o,? = 107*, 07> = 1, 0,2 = 1. In both cases the basic state
zonal wind is zero in the middle of the domain. The associkiteetic energy growth rates
ok (107°s71) from the true state (solid) and from the analyses are show)in

added to the boundaries. Although the QGPV field containpalelistructure, the buoyancy
field does not contain the monopole and the amplitudes ar#. sthas, the associated growth
rate is very small and so the finite-time growth is missed mftirecast. The spatial extent
of the perturbation is too large in the horizontal due to theice of the horizontal correlation
length scale.

If the weight given to the QGPV background state is reduced tihe analysis (b) has
the correct structure and the growth rate achieves a maxiofumearly3.5 x 10=5s71. The
horizontal length scale of the perturbation is now smaltettere is less weight given to the
background state QGPV.

The experiments for vertical profiles of non-modal growtle aow repeated but with the
basic state such that the zonal wind is zero on the lower ByndVhen the basic state flow
was zero in the middle of the domain, the observations at R90fampled the centre of the

buoyancy anomaly at both T+0 and T+6. When the basic stateifiaero on the lower
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Figure 6.18: Analyses where the true state is given by non-modal grovitbnis at T+0.
Horizontal correlations are applied with a length scalelof 5Ax and the assumed variances
are given byo,* = 107, o2 = 1,0,2 = 1. A vertical line of buoyancy observations is
given at (a) 2000km at T+0 and T+6, and (b) 3000km at T+0 and Tixthoth cases the basic
state zonal wind is zero on the lower boundary. The assatikteetic energy growth rates
oxr (1075s71) from the true state (solid) and from the analyses are shown)in

boundary, the buoyancy anomaly is advected eastwards. eGoestly, with observations at
2000km, the buoyancy anomaly is sampled at T+0 but not at &m@,with observations at
3000km, the buoyancy anomaly is sampled at T+6 but not at THe. effect of the different
basic state on the analysis increments is now investigated.

The analysis for observations at 2000km is shown in Fig. @)L8The buoyancy anomaly
and QGPV dipole have been reconstructed. The spatial eatehe buoyancy anomaly is
larger to the east of the observations than to the west. $Hiscause the observations at T+6
sampled the state to the west of the anomaly, where the tluessare zero. The growth rate in
(c) shows that the KE growth rate attains a value of neastyl0—3s~!. Thus, the perturbation
does give rapid growth, although this is again 6 hours ldtan the rapid growth of the true
state. The maximum growth rate is slightly less than thatHerbasic state with zero flow in
the middle of the domain.

The analysis for observations at 3000km is shown in Fig. @).8The buoyancy anomaly
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Figure 6.19: Picard Ratio VaIues(log u;Tvd ) with the true state given by the growing Eady
wave, and a background state of zero, with a vertical linebdapvations at (a) 3000km and

(b) 2000km at T+0 and T+6.

has correctly been inferred to the west of the observatiaitipa. The reconstruction of the
upper QGPV anomaly is better, with a larger amplitude, thahaf the lower anomaly because
the upper anomaly is advected further by the basic state.slireunding regions have very
small negative values so that the mean of the QGPV field is Zévis is due to the constraint
that the mean of is zero (2.28). The values of the KE growth rate show that #réupbation
does not give rapid finite-time growth, perhaps becauseaverl QGPV anomaly is small in
comparison to the upper QGPV anomaly and because the maxamyotitudes are very small.
In both the 2000km and 3000km cases, the growth rates atesedyasmall during the 6
hour assimilation window. This is because the maximum inbih@yancy anomaly was only

sampled at one time, rather than at both times.

6.5.2 SVD Experiments

The SVD of the normalized observability matrix for vertitiaes is now examined. The results
should clearly show how the information from a vertical lofeobservations is combined with
the model dynamics.

The Picard ratio (5.4):

ujd

Picard Ratio= log (6.20)

.

J
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was introduced in Chapter 5, where and \; are the LSVs and singular values of the nor-
malized observability matrix, andl is the generalized innovation vector. These values may be
used to determine which RSVs contribute to the analysi®#ment. The Picard Ratio values,
for the most rapidly growing Eady wave with a vertical lineatifservations at either 3000km
or 2000km are shown in Fig. 6.19.

When a single horizontal line of observations at T+0 and T-e6anassimilated, two pairs
of RSVs contributed to the analysis increment. For a doubkdf observations at T+0 and
T+6, there were four pairs of RSVs. For a vertical line of aliagons, it can be seen that there
are no longer just a few RSVs that contribute to the true amalpcrement; with observations
at 3000km, all 24 RSVs give a significant contribution to timalgsis increment, and with
observations at 2000km, 12 RSVs give a significant coniobuto the analysis increment.
Thus, there are two RSVs for each vertical level. The RSVsatdarm pairs as there is only
one observation at each vertical level.

The background state strongly penalizes the RSVs with ssirdular values so that the
RSVs with large singular values will dominate the analysigeément when a relatively large
weight is given to the background state. Therefore, we emxarni detail the structures of only
the first four RSVs. The QGPV, buoyancy and streamfunctidddief the first four RSVs
are shown in Fig. 6.20. The amplitudes of the QGPV fields arallsmcomparison to the
buoyancy fields, so that it is the buoyancy fields that domeitta structures. The values of the
buoyancy field at the position of the observations for RSVeladrnegative. This corresponds
to a streamfunction field with negative values in the uppérdral positive values in the lower
half. The streamfunction field also has a westward tilt wigight.

In contrast, the values of buoyancy at the position of theenlagions for RSV 2 are pos-
itive in the upper half and negative in the lower half. Thisagsociated with an equivalent
barotropic streamfunction field.

The buoyancy fields for RSVs 3 and 4 have much smaller scaletstes, making it
difficult to interpret the information that is contained hrese vectors.

To understand the information that is contained in the R$Ms,useful to examine the
difference between the values ofa for the growing and decaying modes. These values
emphasize the first few RSVs that have large singular valuesreas the Picard ratio values
(in Fig. 6.19) show all the RSVs that are given a large weigstonly the first four RSVs are
now being considered, the valuesué’f& therefore allow a clearer comparison than the Picard

ratio values.
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QGPV Buoyancy Streamfunction
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Figure 6.20: The first four RSVs for the normalized observability matnthva vertical line
of buoyancy observations at T+0 and T+6. Horizontal cortelas are applied with a length
scale ofl = 5Ax. Each row gives the QGPV field, Buoyancy field and streamfumtield for
an RSV. The horizontal axes are the zonal directions(km)tlamdertical axes are the height
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Figure 6.21: Values ofuf&, with perfect observations of a vertical line of buoyancyl &0
and T+6 at (a)-(b) 2000km, (c)-(d) 3000km, and with the trtegesgiven by the most rapidly
(a),(c) Growing and (b),(d) Decaying Eady wave. The backgdstate is zero. The zero
values are represented by the dashed line for clarity.

Fig. 6.21(a) show the values tufjf& when the true state is given by the most rapidly
growing Eady wave, with a background state of zero, and witleréical line of buoyancy
observations at 2000km. The values show that a large catibibcomes from RSVs 2 and
4. Both RSVs 2 and 4 are given negative weights when the ggpwave is observed. When
this is repeated for the decaying Eady wave, a negative wisgfiven to RSV 2 and a positive
weight is given to RSV 4 (Fig. 6.21(b)).

This is then repeated when the observations are at 3000kewvdalbes ofu]T& show that
RSVs 1 and 3 give a large contribution to the analysis incréem&/hen a growing mode is
observed, a negative weight is given to RSV 1 and a positivgiweés given to RSV 3. When
a decaying mode is observed, negative weights are giverthoRf8®V 1 and RSV 3.

The difference between the sign of the weights for the grgveind decaying modes can
be explained by the structures of the LSVs. Fig. 6.22 shoeditkt four LSVs. The LSVs
are defined in observation space, so are vertical profiles@tahd T+6. LSVs 1 and 3 have
structures that are symmetrical about the centre of the ohoméiereas LSVs 2 and 4 have
structures that are anti-symmetrical about the centres fliri this reason that LSVE3 and
2&4 occur together. The first two LSVs have very similar struesuat the initial and the final
time, whereas the second two LSVs change sign between tied smd final times. Thus,

the second two LSVs are needed to determine the structudedder growth or decay. For
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Figure 6.22: The first four LSVs of the normalized observability matrixe 6rdinate gives the
height(km) and the abscissa gives the amplitude. Note lteadlbscissae use different scales.

example, if LSV 1 and LSV 3 are added together, then a decagmgture is obtained, but if
LSV 3 is subtracted from LSV 1, then a growing structure isaoisd.

The analysis increments for non-modal growth had a vergufit structure to those for
modal growth. This was due to the different specificatiorhefriegularization parameters. The
SVD is now computed for the normalized observability matFéB:, whereo? = 10~ and
072 = 1 (ando,;? = 1) correlations with a length scale 6f= 5Ax are also applied and
where the basic state is such that the zonal wind is zero olowes boundary. The first four
RSVs are shown in Fig. 6.23. In Fig. 6.20, the RSVs were dotathby the buoyancy fields,
whereas now the RSVs are dominated by the QGPV fields. Thgrdtes again how the effect
of the covariance is to bias the analysis increments towhrlexpected structures. RSV 1 and
RSV 2 have QGPV dipoles and buoyancy monopoles. For RSVIhubgancy is maximum
to the west of the observations and therefore correspontietmformation contained in the
final time observations. For RSV 2, the buoyancy is maximurinéoeast of the observations
and therefore corresponds to the information containedanrtitial time observations. RSV 3
contains three QGPV anomalies and RSV contains four QGPYhahes. Thus, the vertical
scale of the structures decrease with the singular valugs.i3 similar to the assimilation of
horizontal lines where the horizontal spatial scales demé with increasing singular vector

index.
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QGPV Buoyancy Streamfunction
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Figure 6.23: As for Fig. 6.20, but with weight(sq*2 = 10~*ando;? = 1, and for the basic
state with zero flow on the lower boundary.
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To summarize, the 4D-Var experiments for modal growth arzhgdave shown that 4D-
Var is able to generate analysis increments with the couextical structures. However, the
decaying part of the increment is strongly penalized so ithdhe subsequent forecast, the
analysis increment starts to grow instead of decaying. Th&/dr experiments also showed
that the analysis is better if the position of the observegtis at the maxima and minima of the
required analysis increment. The corresponding SVD erparis showed that the first two
RSVs are needed to determine the general structure of theseiacrement whilst the second
two RSVs are needed to determine the growth or decay of tHgsamancrement.

The 4D-Var experiments for non-modal growth have shown #iatvar is able to use
vertical profiles of observations to generate the correxttoz structure provided that the reg-
ularization parameters are specified appropriately. Wighasic state such that the zonal flow
is zero on the lower boundary, 4D-Var is again able to inferghart of the state in the unob-
served regions. This is clearly illustrated by the SVD ekpents where the first RSV contains
a maxima to the west of the position of the observations. RI8¥ corresponds to the infor-
mation obtained from the final time observations, and assthe largest singular value so that

it is not strongly penalized by the background state.

6.6 Conclusions

This chapter has extended the idealized 4D-Var experintemmre realistic cases by consid-
ering the effect of background error correlations, différeue states and different observing
systems. In all the experiments in this chapter we have densil the assimilation of observa-
tions of the interior buoyancy field. The SVD results havevghthat the results from previous
chapters can be applied to the assimilation of horizontakliof the interior buoyancy field. It
has also been found that as the horizontal line is moved neatae middle of the domain,
there is less distinction between the information needegt¢onstruct the upper and lower
boundaries, but still a large distinction between the gngrand decaying parts.

The filtering and interpolating effect of background errataacorrelations have been un-
derstood from an SVD perspective. For dense observatiomas ibeen found that correlations
act to bias the analysis increments towards the expecté@disgtauctures. This is achieved by
penalizing the unexpected RSV structures with small spset@les. For sparse observations,
the RSVs of the normalized observability matrix have simskauctures to the RSVs for a full

line of observations. This means that it is possible to afipyprevious conclusions to the as-



Chapter 6. Extension to More Realistic Cases 158

similation of sparse data. However, to be able to retriegestime amount of information from
sparse observations, the observations must be a great dealaccurate than the full line of
observations. Further, only the large-scale structurasbeasuccessfully reconstructed using
sparse observations.

It was shown in Chapter 5 that the specification of the apjaitgoralue of the ratio be-
tween the observation error variance and the background eariance is vital to extract the
maximum amount of information. This ratio can be consida®d regularization parameter in
the context of Tikhonov Regularization. This concept has heen extended to multiple regu-
larization parameters. It has been found that the correadysis increment structures for both
modal and non-modal growth can be generated provided thdiabkground error variances
for the QGPV and buoyancy fields are specified appropriateyD-Var uses ‘climatological
values’ for these parameters, the growth rates of the subséfprecast can be vastly different
from the truth. For example, if the required analysis inaairhas a vertical structure which
leads to rapid finite-time, non-modal growth, a relativelygle analysis increment needs to be
added to the interior. If, however, the background erroravanes are specified so that a rela-
tively large analysis increment is added to the boundattesanalysis will produce a forecast
with a very small growth rate. Thus, the appropriate speifio of the regularization param-
eters, on each analysis, is vital for the analysis of extree@her events such as mid-latitude
storms.

The 4D-Var experiments concerning the assimilation of twazontal lines showed that
the analyses for modal growth are improved if the lines ofeokstions are moved further
apart. The analyses for non-modal growth showed that thémmuem in the analysis increment
is found at the position of the observations if a large weiglgiven to the background state.
It was also possible to infer the maximum in an unobserverned more weight is given to
the observations. The corresponding SVD experiments stholag the decaying part of the
analysis increment is still strongly penalized despitedkia information about the vertical
structure. The extra horizontal line is used to providerimfation about the state in between the
two horizontal lines. The time-evolution information isedls for example, to infer the position
of a temperature maximum in between the two lines of tempezatbservations. These RSVs
have very small singular values, so a large weight must bengir the observations.

The experiments concerning the assimilation of verticafifgs showed that 4D-Var is
able to use vertical profiles to generate the correct védicactures. The analysis increments

have structures that are extremely localized in the hotaéphowever, instead of the large-
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scale structures produced by the assimilation of horizdimeas. The region surrounding the
position of the observations can still be inferred from tineetsequence of observations. The
4D-Var experiments for modal-growth showed that both gngnénd decaying analysis in-
crements can be generated, but the decaying part of thesialgrement is again strongly
penalized so that the forecast quite rapidly gives growsteiad of decay. The corresponding
SVD experiments showed that the RSVs with large singularasahre used to give the general
structure of the analysis increment and result in growthe RI$Vs with small singular val-
ues are used to give the correct sign of the growth rate. Ehagmilar to the assimilation of
horizontal lines. The 4D-Var experiments for non-modahgtoshowed that the appropriate
choice of the regularization parameters is still vital iriabing a good analysis, even though
there is more information about the vertical structure. Wttee appropriate parameters are
specified, an analysis increment resulting in rapid finiteetgrowth can be obtained. When
the basic state flow is such that the perturbation is advebtedigh the position of the ob-
servations, 4D-Var is still able to infer the position of therturbation, although if there are
fewer observations at the maximum of the perturbation, tioevth rate of the analysis in-
crement is reduced significantly. The corresponding SVDearments showed that the RSVs
with the largest singular values correspond to the infolomateeded to infer the position of
the maxima, and the RSVs with smaller singular values cparg to the information needed
to reconstruct smaller scale structures. Thus, there isa geal of useful information that can
be extracted from the observations, provided that the gypate regularization parameters are
specified.

In conclusion, we have shown that the results from previdwapters can be extended
to more realistic situations. It was expected that the aksion of vertical profiles would
give much better analyses of the vertical structure tharafisémilation of a single horizontal
line. Indeed, the vertical profiles are able to generatdoarstructures for both modal and
non-modal growth. If the non-modal perturbations are atbgethrough the position of the ob-
servations by the basic state flow, 4D-Var is still able teirthe position of the maxima. With
a few, sparse, vertical profiles, the SVD with correlatioas Bhown that the time-evolution
information in the horizontal can still be used to infer thertical structure. However, we
have also shown that the decaying parts of the analysisnreareare still strongly penalized
by the background state and that the vertical structureBrigdo either modal or non-modal
growth can only be achieved if the appropriate regulairagtiarameters are chosen and if the

observations are sufficiently accurate.
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Conclusions

4D-Var is one of the most advanced data assimilation alyostto be used in operational
numerical weather prediction, as it combines the inforarafrom the observations with the
knowledge of the atmospheric dynamics and physics. The atmsthesis is to understand
the extent to which 4D-Var can develop the vertical struesureeded for the growth and decay
of baroclinic systems.

Most of the development of 4D-Var has previously been madéencontext of the full
weather forecast problem; here, 4D-Var has been examined igkealized case studies with
the Eady model of baroclinic instability. A 4D-Var algonthusing the Eady model has been
developed. This included the development of the adjointeh@dbackground error correlation
model based on Laplace smoothing and a comparison of miatiaizalgorithms.

A novel technique for examining the information content bservations in 4D-Var has
been developed. The technique is a straightforward terhpatansion of methods that are
commonly used to examine the information content of obsema in satellite retrievals and
is based on the singular value decomposition (SVD) of thenatized observability matrix.
The technique has enabled the gaining of a new understanfiimgyv the information from a
time-sequence of observations is combined with the mod®haiycs in 4D-Var.

The majority of experiments in this thesis have considem@d AD-Var can use a time-
sequence of the lower level wave to reconstruct the posdfdhe upper level wave. These
experiments have provided an understanding of both thenstieetion of the state in unob-
served regions and the generation of the vertical strustneeded for baroclinic growth or
decay. These experiments were extended in the Chapter 6réorealistic cases. In particular,

the effect of correlations, different true states and dififd observing systems were considered.
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This final chapter returns to the key questions that weregws€hapter 1, discusses how
the results from this thesis can be applied to operationaPN&d ends with a discussion of

some of the possible directions for future work.

7.1 Answers to the Key Questions

The results from this thesis are now summarized by returtorthe three key questions that

were posed in Chapter 1.

1. How are observations used in 4D-Var?

A time-sequence of observations provides information abfmiatmospheric state in the
region that is observed; through the use of the equationthétime-development of the sys-
tem, it also provides information about the state in unoleeregions. For example, the
experiments with horizontal lines of observations showed 4D-Var is able to use the time-
evolution information to infer the rate of growth or decaylamhence able to infer the vertical
structure. The experiments with vertical lines of obseoret showed that 4D-Var is able to
link the observations together through the model advedtonfer the vertical tilt of the state
near the observations.

It was shown in Chapter 4 that the 4D-Var analysis incremeaisbe written as a linear
combination of the RSVs of the 4D-Var observability matrikhis formulation was used in
Chapters 5 and 6 to examine the information content of olsiens in 4D-Var. By considering
the true state given by the most rapidly growing or decayiadyEwave, with either horizontal
or vertical lines of perfect observations, it was shown thatRSVs with large singular values
contain the information needed to infer the state in the eskregions, whilst the RSVs
with small singular values contain the information needethter the state in the unobserved
regions.

It was also shown that when the observations have error&R s with smaller spatial
scales are also given significantly large weights. TheseR@Whpletely dominate the anal-
ysis increment so that unphysical structures are genenatéee unobserved regions. Thus,
the analysis is extremely sensitive to the observationalenand for this reason, 4D-Var with
no .J® term can be considered as a discrete ill-posed inversegumlgven if there are enough
observations to define a unique solution. Such a problem raaplyved using Tikhonov reg-

ularization; in 4D-Var, this is equivalent to adding the kgiound term to the cost function.
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Thus, a link between the literature on 4D-Var and the liteaion Tikhonov regularization,
which is used to solve many types of ill-posed inverse prolslehas been established.

The background state acts to penalize the RSVs with smajukan values and small
spatial scales that correspond to noise. This is necessargate a smooth analysis. However,
the background state may therefore also penalize the R&¥sdhtain the information needed
to reconstruct the state in the unobserved regions. Thehivgigen to the background state
in comparison to the observations determines how many R&/pemnalized. This signal-to-
noise ratio can be considered as a regularization paranaeteit is important to specify the
appropriate value so that the maximum amount of useful in&tion can be extracted from the
observations, but that the analysis is sufficiently smooth.

The background term also provides a priori information saglauto-correlations. Corre-
lations act to filter the observational noise in dense daj@ns so that the analysis is smooth.
From an SVD perspective, the correlations act to bias thlysisancrements towards the ex-
pected large-scale structures, by penalizing the uneggestiuctures. Such correlations allow
more of the useful information to be extracted from the obestgons as it is possible to penalize
the noisy structures without penalizing the informatioeded to reconstruct the state in the
unobserved regions. Background error correlations alsmaaterpolate the information from
sparse observations. This means that a time-sequencersésgzservations may also be used
to reconstruct the state in the unobserved regions provigdanly the large scales need to be
reconstructed and also that the observations are sufficerturate.

The 4D-Var algorithm may also be considered to have multigdilarization parameters
so that the background state has different error variararesdch variable. Again, from an
SVD perspective, this allows the analysis increments toiagell towards the expected struc-

tures and allows the information from the observations tagesl in a better way.

2. Why has 4D-Var been shown to perform well in regions of darie instability?

If observations are only given at the end of the window, thenanalysis increment can
be considered as a linear combination of optimal pertusbati These structures maximize the
amount of growth during the assimilation window, so that aalgsis increment with a small
amplitude is added to the background state but that the sisasyclose to the observations at
the final time.

With a horizontal line of observations at only one time levigk not possible to infer the

growth rate. Therefore, to infer the vertical structuresatvations are required at two time-
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levels or more. The SVD experiments showed that with obsens at both the beginning
and the end of the window, the analysis increments are arlcaabination of both growing
and decaying structures. This means that both growing acalydey analysis increments can
be generated. However, the decaying vector has a smalllaimgalue and so it is strongly
penalized by the background state. Therefore, even witma-equence of observations,
4D-Var is likely to add a growing analysis increment.
It is for this reason that 4D-Var performs well in regions aftclinic growth. Although

a growing analysis increment is added to the background,stat not necessarily the cor-
rect flow-dependent structure. For example, if a decayirdyars increment is required, but a

growing analysis increment is added, then this will be catgly detrimental to the forecast.

3. How can the benefits of 4D-Var be maximized?

This work has highlighted two ways to maximize the benefitd@fVar: the initial and
final observations should be as far apart as possible in ainethe appropriate values for the
regularization parameters should be specified.

The experiments concerning the temporal position and weigikren to the observations
in the assimilation window showed that the best analyseactieved if the observations are
as far apart as possible in time and if more weight is giverhtofinal time observations
than the initial time observations. Thus, the assimilatindow should be designed to be
as long as possible (within the validity of the tangent Im@ssumption), and such that there
are many observations at both the beginning and the end e¥ittdow. This agrees with the
results by Thépaut et al. (1996), where it was shown thastifueture functions are more fully
developed for a longer assimilation window. However, ibalaplies that the observations at
the beginning of the window also play a crucial role in getiegavertical structures with the
correct attributes.

The experiments also showed that the position of the obsengashould ideally be near
to the maxima and minima in the required analysis incremdnts example, if the required
analysis increment has a structure which leads to modaltbraive observations should be
placed near to the upper and lower boundaries, but if theinedj@nalysis increment has a
structure which leads to non-modal growth, the observatgiould be placed in the interior.
It is possible to design the observing system so that theredisens are far apart in time.
However, the true state and hence the required analysesmarts are unknown. Therefore, it

is not possible to know in advance the optimal spatial pas#ifor the observations.
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If the observational errors are larger than the amount oivtiraluring the assimilation
window, it is not possible to infer the growth rate. Thusagisequence of noisy observations
may not be able to provide any information about the growti ren such instances, the knowl-
edge of the model dynamics will not be able to reconstrucstaee in the unobserved regions.
Therefore, to maximize the benefits of 4D-Var, the obseovatineed to be accurate enough
to infer the growth rate or vertical tilt. If the observat®are not accurate enough to infer
such information, it is doubtful that 4D-Var would be sigo#ntly beneficial in comparison to
3D-Var. Although flow-dependent structures would be geteeliathey would not necessarily
have the correct attributes.

To maximize the amount of useful information that is exteddrom the observations, it is
important to choose the appropriate value for the regutidm parameter?, which is the ratio
between the observation error variance and the backgrawodwariance. It may seem from
the BLUE equations (1.7 and 1.8), that the error covariaragioes need to be known a priori.
However, the discussion in this thesis has shown that theresisons and the background state
can be used to specify the appropriate valug/{orhis was illustrated using a technique known
as the L-Curve, which is commonly used in problems involviitghonov Regularization.

Not only is it important to specify the ratio between tifeand theJ° terms, but also to
specify multiple regularization parameters. For examible background error variances may
be different for different variables in different geogragai regions and at different times. As
the parameters differ for each analysis, they must be re#fgpleon each analysis cycle. The
specification of such parameters is particularly importanthe analysis of extreme weather
events such as mid-latitude storms and can be consideredeah@mique to generate flow-

dependent analysis increments.

7.2 Implications for Operational NWP

The experiments in this thesis are highly idealized, in cangon to operational data assimila-
tion. The Eady model is extremely simple in comparison tbNWP models and in particular
only a linear (although not linearized), perfect model vaiimple true states has been consid-
ered. Nevertheless, the understanding of how the infoondtom observations is combined
with the model dynamics can be applied to understand theepses in operational 4D-Var.
The benefits of 4D-Var in comparison to 3D-Var, the implioas for an algorithm known as

the reduced rank Kalman Filter, and techniques to maxintieebenefits of 4D-Var are now
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discussed.

It is important to assess the benefits of 4D-Var, given thatVADis significantly more
expensive than 3D-Var (Rabier et al., 1998), and that 4Df¥guires a great deal of time
to develop the tangent linear and adjoint models. Previtudiess (Rabier et al., 2000) have
shown that 4D-Var has a clear advantage over 3D-Var in regidmapid cyclogenesis. Such
benefits have been attributed to the dynamical evolutioh@tbvariance matrix (e.g. Thépaut
et al., 1993a). The work in this thesis has also shown thdt aliservations at only the end
of the window, the vertical structure of the analysis inceats are more fully developed and
lead to a faster growth rate. However this is not necesshatier if the required analysis
increment is decaying. Observations at the beginning ofag®milation window are also
needed so that 4D-Var is able to infer the growth rate. We shesvn that 4D-Var is able to
use a time-sequence of observations to infer the state ibhsemeed regions, and to infer the
growth rate during the assimilation window. It is these tvmiliies that give 4D-Var clear
advantages in comparison to 3D-Var. Thus, the dynamicdugwea of the covariance matrix
is not necessarily the only reason for the benefits of 4D-Vars has important implications
for the development of data assimilation algorithms suclsiagplified Kalman Filters and
Ensemble Kalman Filters.

Experiments with the Reduced Rank Kalman Filter (RRKF) retvewn that the RRKF
has an entirely neutral impact on the analysis quality (@sher and Andersson, 2001, Beck,
2003). The reasons for the neutral impact are not undersbabthe work from this thesis may
aid towards an understanding. 4D-Var is likely to add a gngnanalysis increment even if a
decaying analysis increment is required, and hence 4D{x&aidy handles the growing struc-
tures well. This is therefore perhaps the reason why ewplthe covariances corresponding to
the growing structures has little impact on 4D-Var. Furttesearch is required to investigate
whether this is indeed the case.

This work has highlighted that the benefits of 4D-Var are mdy alue to the propagation
of the covariance matrix, but to the use of time-evolutiofoimation. The time-evolution
information that is contained in the observations playsmapartant role in ensuring that the
analysis leads to a good forecast. The dramatic increaseinumber of observations in the
future should also give more time-evolution informatiorertde, it should be expected that the
benefits of 4D-Var will become more apparent in the future.

It is vital that the maximum amount of useful information tained in the observations is

extracted. This thesis has identified two ways to maximieeaimount of information that is
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extracted: to use observations that are placed far aparh& aind to choose the appropriate
regularization parameters.

Previous research concerning targeted observations hak/roansidered where the sen-
sitive atmospheric regions are, but here we have considenede the observations should be
placed in both space and time so that the data assimilagomigdm can extract the maximum
amount of useful information. Previous studies have shdwan it is important to place ob-
servations at the end of a long assimilation window. The worthis thesis has highlighted
that the observations at the beginning of the assimilatiodow also play an important role,
particularly for the accuracy of the following forecast.rfeperational data assimilation, it is
likely that it is still the case that the initial observatgare important, although the observa-
tions in the middle of the window may also be important in thsecof, for example, non-modal
growth. Therefore, the observing system and assimilatiodew should be designed with this
in mind.

The specification of the multiple regularization parameteas been shown to play a vital
role in extracting the information contained in the obsgores. This has previously been
considered (e.g. Wahba and Wendelberger, 1980, Dee, 1¥¥pflers and lvanov, 2001),
but has not been implemented in an operational data assonilacheme, although online
covariance estimation is currently being developed in tHRUAM (High Resolution Limited
Area Modelling) variational data assimilation system (Nhdskog, personal communication).
The work in this thesis has illustrated that the specificatifbsuch parameters is vital to exploit
the benefits of 4D-Var and therefore further research iseréalidentify a robust and feasible

method to calculate the appropriate values. This is disclfsther in the next section.

7.3 Future Development

Having begun to answer the questions which were posed int€hapwe now consider how

this work may be extended.

1. How can better analyses of the decaying modes be obtained?

One of the main conclusions from this thesis is that the degayart of the analysis in-
crement is strongly penalized by the background state. @agon for this is that the control
variables are defined at the beginning of the window. Thigésalt of the reduction of the size

of the problem using the ‘reduction of the control varialfleg Dimet and Talagrand, 1986). If
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the control variables were at the end of the window, then thevimg structures would be pe-

nalized instead (Pires et al., 1996). Thus, to eliminataltbenction between the growing and
decaying modes, it would be necessary to reformulate th&aiproblem so that the control

variables are given by the state vector at every time levedt ¢east by the state at both the
beginning and the end of the time window. For example, theehoty be added as a weak
constraint and an elliptic problem (rather than a hypedoptoblem) solved (Sasaki, 1970).
Such an approach is currently being considered by Juck@8&20).

2. What technique should be used to calculate the regulinizgarameters?

This work has also shown that it is important to specify therapriate values for the reg-
ularization parameters, which are the ratios of the errdaaaes. In particular, the estimation
of multiple parameters is particularly important for theabysis of extreme weather events.
Although the true state is unknown, it is possible to obtaie appropriate values for these
parameters from the data (the background state and thevakises). This was demonstrated
with the L-Curve for a single parametgrin Chapter 5. It is possible to extend the L-Curve
framework to an L-hypersurface to consider multiple paramse(Belge et al., 2002). This
has not been addressed in this thesis, but illustratesttiepossible to obtain the appropri-
ate values for multiple regularization parameters, from data. Both the 4D-Var and SVD
experiments showed that the specified background erroeletions act to bias the analysis
increments towards the expected structures. One quekabfotlows from this is whether itis
possible to use the data to specify the appropriate valueofoelation length scales. Again,
this has not been addressed in this thesis, but is considgM@hba and Wendelberger (1980).

An important question that has not been addressed is howpihr@@riate values should
be calculated. There have been a number of suggestionsfoattulation of such parameters
and these are now briefly outlined.

The L-Curve (Hansen, 2001), described in Chapter 5, is kxa by repeating the 4D-
Var analysis many times with different parameters. Thisostly for large problems, and is
therefore not appropriate for operational data assimiatiWahba and Wendelberger (1980)
suggested the use of a method known as Generalized Crassti@ (GCV). This uses the
criteria that a good choice for the regularization paransatethe ability to predict the value of
the field where the observational data are withheld and z&sithe appropriate parameter by
minimizing a GCV function. Dee (1995) suggested a methoédbas the assumption that the

covariance matrix of the innovation vectors has a Gaussgrnhdition. The parameter, based
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on this maximume-likelihood concept, is also found by mirgmg a function.

Both the GCV and the maximume-likelihood techniques reqthieeevaluation of the trace
of large matrices. Therefore, the minimization of the fimes is non-trivial. Dee (1995)
used a simple descent algorithm, with no gradient evalnatmofind the minimum, but a more
sophisticated algorithm would be required if many paranseteeeded to be estimated. To
reduce the computational cost, the problem would need to\bded into sub-domains. A
more sophisticated approach is to estimate upper and loaands of the functions using
randomized trace estimation, Gauss quadrature and Labaiagonalization. Golub and von
Matt (1996) describe such an approach, and also illustrate the minimum of the GCV
function may be found. Fisher (2003) has also used such aochédhcalculate the degrees of
freedom in the ECMWF 4D-Var system.

An alternative method to estimate the parameters is to esatite tuning. Talagrand
(1998) showed that if the background and observation etatisics have been specified cor-
rectly, the value of the cost function at the minimum shoutdelgual to the number of ob-
servations (see also, Rodgers (2000)). Based on this chrigeproziers and lvanov (2001)
suggested an iterative technique to tune covariance pésegrso that the correct value of the
cost function is attained. They showed that it is possiblag®e such a technique to tune the
observation errors in a 3D-Var global analysis.

Itis not clear which approach would be most suitable for tingpses of data assimilation.
Therefore, future work is needed to identify a method toWake the appropriate values that
is robust, and possible to use within a global 4D-Var scheme.

The analyses using different regularization parametetsvieay different structures and
resulted in very different forecasts. Therefore an alti&ragossibility is not to tune the pa-
rameters, but to repeat the analysis using different paeasi® generate an ensemble of initial
conditions that are consistent with the background sthéepbservations and the model. This
is perhaps an important application as ensemble foregastilikely to become increasingly

important in the future.

3. What is the effect of model error, nonlinearity, verticatrelations, cross-correlations
and temporal observation correlations?

This thesis has not considered the effect of model errodjmearity, vertical correlations,
cross-correlations and temporal observations correlgtithese are all important issues for

operational data assimilation.
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There are a number of issues concerning the model erroe thibdel is wrong but model
error is not taken into account in the data assimilationrigm, then it is likely that the state
at the end of the assimilation window has larger errors thiaheabeginning of the window,
and hence it may be the case that the initial observatiors@remore important than the final
observations. A second issue is that the model may prop#uaterong information into the
unobserved regions and hence the benefits of 4D-Var may b&lus third issue is to consider
the case when model bias or model parameters are estimatiee thgta assimilation algorithm
as well as the initial conditions. Then, it would be intemegto extend the information content
concepts to understand whether the observations contaumgérninformation to estimate the
model errors.

Only a linear model has been considered in this study, tberef is important to extend
the studies to understand the effect of nonlinear models 4ChVar problem with a non-linear
model is solved as a sequence of linear problems in increahébtVar. The singular vectors
will depend on the linearization state, which may changeughout the window, and will
also change on each outer loop. Therefore, the particulsstouns to answer are: how do the
singular vectors of the observability matrix depend on thedrization state, and how is the
information from the observations used to change the line@gon state?

This thesis has only considered the effect of horizontakgamund error correlations and
not vertical correlations. In the Eady model, the elliptiGRV equation provided some vertical
correlations so it was not necessary to apply vertical tatioms. However it would be of
particular interest to understand the effect of verticatelations on the assimilation of growing
and decaying modes, where the vertical structure is impbfta the growth rate.

Cross-correlations between different variables are amrtapt part of data assimilation to
ensure that analysis fields are balanced. They also allobs@meed model fields to be inferred.
The SVD approach may aid the understanding of the impactabf stoss-correlations in a 4D-
Var algorithm.

Temporal observation correlations are becoming incrgasimportant, as the amount of
satellite and radar data increases; however, it is not blearto account for such correlations
in 4D-Var. It is possible to included temporal error cortiglas in the definition of the nor-
malized observability matrix, and such a formulation malan understanding of the effect of

such correlations.

4. What is the information content of observations in 4D-Wath different dynamical
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models?

The singular value decomposition of the observability mdtas provided a useful under-
standing of how the information from observations is corebiwith the model dynamics, and
in particular to understand how the state in unobserve@nsgs reconstructed. This concept
could usefully be applied to other data assimilation protdesuch as data assimilation in the
tropics and mesoscale data assimilation.

There are two main difficulties for atmospheric data assitiwh in the tropics. The first
Is that there is a wide range of types of wave motion in thei¢ofHolton, 1992), and the
second is that there are very few wind observations in cols@ato mass observations and
therefore the mass field is needed to infer the wind field (Bz@003). It would be useful
to use the singular value decomposition to examine the nmdtion that is contained in the
observations. In particular, this technique could be usadetermine whether the mass field
can be used to successfully reconstruct the wind field, anghtterstand whether analysis
increments corresponding to different wave structureseagenerated.

An important current area of research is the assimilatigoretipitation (radar) data into
mesoscale models. One of the main problems in the assiomlafiprecipitation data is that
in many cases, the impact of the assimilation of precigitatiata only remains for the first
several hours of the forecast. This is because the modelet@type and humidity profiles
are not adjusted appropriately and therefore cannot asatim give the required precipitation.
Therefore, the question is whether it is possible to userghens of precipitation to infer the
necessary temperature and humidity fields (Jones and Mesphel 997). This is a challeng-
ing question as both nonlinearity and model error are ingoartThe SVD technique could be
applied in this context to examine the information that istemed in the precipitation obser-

vations.

5. How can better analyses be obtained when the backgroateltshs a phase error?

Current data assimilation methods blend together the wasens and the background
state. Many of the experiments in this thesis have condidie background state to have a
displacement error, and have shown that it is possible ®@athplitude of the analysis to be
reduced. Such an effect would be more noticable in a regiom stiarp gradients, such as a
front. If a front is in the wrong place in the background figlekn it is possible for the feature
to become smeared out in the analysis. It is therefore imapbtbd consider alternative data

assimilation algorithms that aim to extract the maximum ant@f useful information from
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both the observations and the background state.

A possible algorithm would be to allow for both amplitude gtthse errors, so that it is
possible to shift the background state closer to the ob8enga Such a technique could be
considered as a technique to generate flow-dependent loackberror covariance structures,

as the analysis increments would depend explicitly on tlokdpraund state.



Appendix A

Eady Model

In this thesis, the non-dimensional 2D-Eady model is usedDrvar identical twin experi-
ments where the true state is given by either the most ragidlying or decaying Eady wave
or by an interior QGPV dipole perturbation that results imimodal growth.

This appendix begins with a description of the quasi-gepsiic equations, from which
the 2D Eady model equations are derived. This is followed kescription of the non-
dimensional variables and a co-ordinate change. The emsatised for the modal and non-
modal initial conditions are then given. The appendix endb @ description of the particular
discretization of the Eady model that is used in this thesdsalso the details of the methods
used to handle observations of the interior buoyancy analtuate the SVD of the observ-

ability matrix.

A.1 Quasi-Geostrophic Equations

The quasi-geostrophic (QG) equations are an approximatidhe primitive equations and
describe the essentially geostrophic motion for mid-dialét synoptic scales. The equations are
simplified by using Cartesian co-ordinates and assumingtfieaatmosphere is shallow and
hydrostatically balanced. Frictional and diabatic efeante also neglected.

The Boussinesq approximation is used to simplify the equatiWe consider the fluctua-

172
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tions to the static state of the atmosphere such that the stde is only a function of height:

0=0,(z)+6(x,y,2,1) (A1)
p=po(z) + 1 (2,y,2,1) (A.2)
p = po(2) + p'(2,y,2,t) (A.3)

wheref denotes the potential temperatyselenotes pressuredenotes the density, andy, =
andt are the zonal, meridional and vertical co-ordinates aneb.tirtt is assumed that the
vertical motion is small in comparison to the height and thatmotion is anelastic. It is also
assumed that the inertial effects of the variations in th@dstate density can be ignored,
but the buoyancy effects cannot. The Boussinesq approximatso means that there is no
variation in the height of the tropopaudé,

The static stabilityV? of the basic state (or Brunt-Vaisala frequenéyis defined as:

dInb _ gd@o (A4)

2 _
NG =9=- =0

and it is assumed that the perturbation stratificat@'r) {s negligible.

The quasi-geostrophic equations are derived from a scallgsas of the primitive equa-
tions, based upon typical mid-latitude synoptic scaleid@ synoptic scale lengths for the
atmosphere at mid-latitudes are the horizontal velociyedé~ 10ms—!, the horizontal length
scaleL~ 1000km, the height of the tropopaugé~ 10km, the Coriolis parametef~ 10451
and the static stabilitfv>~ 10~%s72. Using such values, it can be assumed that the Rossby
number,Ro is small:

U
- <1 A5
Ro 17 < (A.5)

This is equivalent to assuming that the relative vortigitg small in comparison to the plan-

etary vorticity f. It can also be assumed that the stratification paramet&umer number),

NH\®> [(Lzp\’

whereL is the Rossby radius of deformation.

From the scale analysis (Pedlosky (1987), Holton (1992he3a(1994) and Muraki et al.

Bu is unity:
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(1999)), the thermodynamic equation reduces to:
Db+ wN?* =0 (A.7)

whereb = 40" is the buoyancyy is the gravitational constan; is the vertical velocity, and
Dy = 4 +uy5 +v,5. is the geostrophic derivative whesg andv, are the geostrophic veloc-
ities. This QG equation states that potential temperatioemnserved following dry adiabatic
motion and that as air rises, it cools via adiabatic expansio

Similarly, the vertical component of the vorticity equaticeduces to:

Dylf +6) = L2 ) (a9

wheref = f,+ By is the Coriolis parameter argg = %L; — aa—“y-" is the geostrophic relative vor-
ticity. This QG equation implies that with no vertical matiat the ground, mid-tropospheric
ascent implies that the column of air is stretched, so thatatbsolute vorticityf + &, will
increase by an amount proportional to the product of colutmaiching and the planetary vor-
ticity, f,. Note that this equation only contains a vortex stretchémmtand not a vortex tilting
(or twisting) term (Hoskins, 1997).

The QG thermodynamic equation can be combined with the Q@citgrequation, by

eliminating the vertical velocity, to give the QG potential vorticity equation:

Dyqg =0 (A.9)
where
B 1 0 (pofsb
Q—f+£g+ag<m) (A.10)

and is referred to as the QG potential vorticity (PV). Thigpét equation describes the so-
called ‘invertibility principle’ as, when suitable boungaonditions are provided, this equation
can be used to derive the primitive variables such as tempergressure and horizontal and
vertical winds. Equation A.9 states that QGPV is consereddwing horizontal, geostrophic,
adiabatic, frictionless motion.

The QGPV equation is now rewritten in terms of the geostroptrieamfunction), which

is defined as:

/

_ D
v Pofo

(A.11)
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The geostrophic velocities and buoyancy can then be writitégrms of streamfunction; from

Geostrophic balance:

O oY
(ug,vg) = (_8_3/’ %), (A.12)
and from Hydrostatic balance:
g _ 00
—Jy = == Al
b 909 o (A.13)

To summarize, the QG equations are given by:

Dyqg=0 The QG Potential Vorticity Equation (A.14)

Db+ N*w =0 The QG Thermodynamic Equation (A.15)

Thus, the fundamental dynamical variables are QGPV anchpatéemperature (buoyancy)

and these are related to streamfunction by:

1 2
q=f+ Vi + p_% (po {;’2 g—f) Definition of QGPV (A.16)
b= g—f Definition of Buoyancy (A.17)

whereV? = 88—; - g—;. Thus, the buoyancy provides suitable boundary conditionshe

elliptic equation for streamfunction.

A.2 The 2D Eady Model

The 2D Eady model (Eady, 1949) equations are now derived trenQG equations. It is
assumed that there are two rigid boundaries; one at the diemohone at a height H to represent
the tropopause. The tropopause may be modelled as a rigitdboudue to the high static
stability of the stratosphere. It is also assumed that tlsen® vertical motion at these rigid
surfaces, the densipy, and the Static stabilityv are constants and the Coriolis parametes
a constant (f-plane approximatign = 0).

The Eady model equations describe the linear evolutionmfigetions from a basic state.

The basic state is assumed to be only dependent whilst the perturbations are independent
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of y,

q=q(y) +d'(z,z21), (A.18)
b=>by) +V(z,21). (A.19)

The basic state consists of a uniform meridional tempegagwadient that is necessary for
baroclinic instability. Through thermal wind balance,stis associated with a linear vertical

zonal wind sheatr:
u= Az. (A.20)

The basic state is illustrated in the schematic diagramgn Bil. The Coriolis parameter is

>

u=Az
Cold
z
y

X

Warm

Figure A.1: Basic state of the Eady model. The meridional temperatwadignt is associated
with a linear zonal wind shear with height, through thermahevbalance. The model contains
rigid lids at both the ground and the tropopause.

a constant, sq = f. The zonal wind perturbation is zero a$ = —%—1‘;/ andv’ is assumed
to be independent of y. This allows the derivation of a lineadel of perturbations which
have no constraint on their size. That is, we do not need éatine the model about the basic
state as there is no need to neglect any small terms. Thei@gsblsasic state and perturbation

variables can be written as:

ug =u(z) +0 (A.21)
vy =04 v'(x, 2, 1) (A.22)
Y=y, 2) + ¢ (z, 2, 1). (A.23)

Using these definitions, the QG potential vorticity equaiid.14) becomes:

o 9 0\,
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which gives:
QJF2 "=0in z¢(0, H) (A.25)
at uax q = Z€e\Y, .

where from (A.16),
, 321/1, N f_282w/
7= 92 TN 92

in ze(0, H). (A.26)

This elliptic equation requires suitable boundary cowodis. These are provided by the
buoyancy from the Hydrostatic equation (A.17). Assumirgf the vertical velocityw is zero
on the upper and lower boundaries, then the QG Thermodyregmition (A.15), that advects

the buoyancy field, becomes:

o _0 yON B
(aJrua—erva—y) (b+b)=00nz=0H (A.27)
which gives: B
g 0\, kB ,0b B
(a+u%)b +v8y—00nz—0,H. (A.28)

Now, from (A.12, A.13, and A.20),

Db _ 000 (00N v o (00N, oo . o
Yoy = or oy < 82) = Oz 0z (5@) = Tar B Al (A29)
so that the Thermodynamic equation becomes:
g o\ oY B
(E +u8_x) 5 — A o onz=0,H. (A.30)

The left hand side describes the zonal advection of the teatye wave, whilst the right
hand side describes the meridional advection. This meraliadvection provides the crucial

coupling between the upper and lower waves.

A.3 Non-Dimensional Equations

New variables and a co-ordinate change are now introducedriedimensionalize the Eady
model. These are introduced for two reasons. The first resstrat the non-dimensional
variables simplify the equations by removing the constafite second reason is that the Eady
model is used in an optimization problem, and therefore diomensionalizing should improve

the conditioning of the problem (Gill et al., 1981).
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The following co-ordinate transformation is introduced:

- _fa
Vi T = In t= Nt (A.31)

H
)

AH

z =

whereLy = N—fH is the Rossby radius of deformation. The new non-dimensiarablesy’,

¢ andl’ are related to the dimensional variablésg’ andi’ by:

~/_£/ ~/_L_%~2/ l;/—ib/ 32
™ TS "l (A:32)

wherei) is the amplitude of)’.

The non-dimensional equations become:

o  _o\oY oY 1
g .0\, : 11
(8_7? + Z%) qg=0 in ze(—z, 2) (A.34)
SR _ 11
52 + 52 — 4 in ze(—i, 5) (A.35)

Although it is only the derivatives af’ that are of interest, the derivatives are found in practice
by first calculating)’. Therefore an extra equation is needed so that the problent fe well

posed. We impose that

/ V'drdz =0 (A.36)

so that the mean value of the streamfunction in the domaieris z

For simplicity, the tildes and primes will be omitted in alirther equations.

A.4 Modal and Non-Modal Initial Conditions

All the identical twin experiments in this thesis use a trtageswith initial conditions given by
either the most rapidly growing or decaying normal mode oalperturbation which leads to
non-modal rapid finite-time growth. The equations for thets¢es are now given.

The normal mode solutions can be found analytically by agsgithaty’ = 0 and substi-

tuting a solution of the form:

U(w, 2, t) = P(z)e” R (A.37)
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into the non-dimensional Eady model equations, widsgthe non-dimensional wave number
andc is the non-dimensional phase speed. It can be shown (e.tpRgd1987) that when
k > 2.4, thenc is real and so the corresponding solutions form pairs ofraéutodes; and
whenk < 2.4 thenc is imaginary, and the solutions form pairs of stationarywgng and
decaying modes. It can also be shown that the maximum noefdifonal growth or decay
ratec = +kc; of 0.31 corresponds to a non-dimensional wavenuniber 1.6.

The equations for the most rapidly growing and decaying mbmodes are then given by:

Y = e’ [cosh(kz) cos(kx) — asinh(kz) sin(kz)] (Growing Mode (A.38)
Y = 1pe” 7" [cosh(kz) cos(kz) + asinh(kz) sin(kz)] (Decaying Modé (A.39)

wherek = 1.6, 0 = 0.31 and

l—gtanhﬁ

a= h—i and o = |k¢;| > 0. (A.40)

Ed

k
§C0t 5

The initial state for non-modal growth is defined by an irie@GPV dipole perturbation

with zero values for the buoyancy on the boundaries. The Q@PMe is defined by:

q(z,2) = sf(x)g(2) (A.41)
where )
kg Loact
fl)=9q Lol Loyl (A42)
hapomlm Logol

\

with f(z) = 0 for z < —£ andz > £, L = 1000km, andk = 2,

1 2 1 2
g(z) = exp <—ﬁ(z — 3000) ) —exp (—ﬁ(z —7000) ) (A.43)

for 2 < z < 8km, andg(z) = 0 otherwise, and wittD = 1500km. The perturbation is scaled

to an appropriate size using= 107°.
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A.5 Discrete Equations

The discretization of the Eady model equations is now deedriThis particular discretization
has previously been used, for example, by Badger(1997)201ilby Fletcher (1999).
The continuous non-dimensional Eady model equations (#.3335) can be summarized

as the advection of the buoyancy on the boundaries, and Q@B iinterior:

0 0 . 11

(5 +05)a=0 e[ 5o) .
o o\, o B

(E n z%) b= onz = (A.45)

where the QGP\, and buoyancy are related to the streamfunctignby:

q= V> in ze {—% ﬂ (A.46)
b— Z_@Z) onz:i% (A.47)
V4

whereV? = 2 4 2

These equations are discretized on a domain with 40 gridpairthe horizontal and 11
vertical levels. The value af and« at the ith horizontal grid point, jth vertical level at time-
level t are denoted bym andwf,j, where the horizontal grid spacing4se, the vertical spacing
is Az and the time-step iat. j = 11 represents the upper boundary gng 1 represents the
lower boundary so that the value of the buoyancy at the itthgpint on the lower boundary is
denoted by, ; for j = 1, and similarly for the upper boundary, by; for ; = 11. The non-
dimensional grid-spacing and time-steps are choséxwas 0.1, Az = 0.1 andAt = 0.1728.
These correspond to dimensional stéys = 100km, Az = 1km and At = 4320s if the
constants are given by = 1072571, f = 1074s7!, H = 10km andA = 4 x 1073s7L,

In the majority of experiments, the basic state flow is suehtie zonal wind is zero in the
centre of the domain. However, there are some experimebapter 6 where the basic state
flow is such that the zonal wind is zero on the lower boundahys i achieved by adding 0.5
to each value of. Then, to satisfy the CFL (Courant-Friedrichs-Lewy) cdiudhi (e.g. Durran,
1999), the time step is halved fo¢ = 0.0864.

The model can be summarized as follows. Steps 2 and 3 areeddeaevery time step.
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Step 1Initial Conditions. The initial conditions are given by the QGPV in the interior:
g fori=1,...,40, j=1,...,11, t=1 (A.48)
and the buoyancy on the boundaries:

b fori=1,...,40, j = 1&11, t = 1. (A.49)

Step 2 Calculate the streamfunction. The elliptic equation (A.46) is discretized using a 5-

point star stencil:

t f—l,j ~ 21/’5,1‘ + 1/’f+1,j + f,jfl — 21/’5,1' + MJH

¢ ;= = AL (A.50)

This formulais repeated for=1,...,11andj = 1, ..., 40 and is then written in matrix

form.

From the periodic boundary conditions theh , ; = v}, ; wheni = 1 and similarly,
ir1; = Y1, wheni = 40. Whenj = 1, ¢} ; | does not exist and when= 11, ¢ ;
does not exist. However, they can be found by using the Hyaliiodbalance equation
(A.47). If this is discretized by:
@Df,jﬂ - @Z)f,jfl

thenyj ;| =, — 2420 ; for j = 1andy;, | = ¢}, | + 2Azb] ; for j = 11. The
values of; ; for j = 1&11 are then added to the right hand side of the matrix. Some of

the rows are then multiplied by to make the matrix self-adjoint.

To illustrate the matrix form clearly, we consider the momae case of a smaller
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domainwithi = 1,...,3andj = 1,..., 3. The matrix equation can be written as:
if i id|e 0 0/0 0 0 Y11 5(—deqiy +e2A20, 1)
id 3f 3d|0 e 00 0 O Yo 5(—deqay + €2A2by4)
3d 3d 3f10 0 e[ 0O 0 O Y31 5(—degs ) + e2A2b3,)
e 0 O|f d dle 0 0 V1.2 —deq 2
0 e 0|d f d| 0 e 0 oo | T | —degae
0 0 e|d d f|0 0 e P39 —deqs 2
0 0 0|e 0 0|if Ld lda U3 5(—deqig — e2Az0")
0 0 00 e 0|id Lf L a3 3(—deqz — 20207
0 0 0|00 e|lid L if s 3(—deqss — e2820%9)

(A.52)
whered = —Az? e = —Az? andf = 2(Az*+Az?) and the horizontal and vertical lines
are added for clarity. To impose the constraint that the nva&re of the streamfunction

is zero,

/ Ydxdz =0, (A.53)

then a small constantH 0.1) is added to every element of the matrix. Without this

constant, the matrix would be singular and hence ill-posed.

Thus, the initial conditions are used to form a veatfomhich contains the values 057]»,

at time levelt = ¢:

ag ; + pb;; forj=1

T = 204! forj=2,...,10 (A.54)

fori =1,...,40, wherea = —1Az*Az? and3 = —Az?Az are constant scalars. The
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streamfunction variablaﬁ;?’j are then found by solving the matrix equation:
Ay’ =1t (A.55)

where A is a square matrix containing the coefficients correspantiina five point
differencing scheme, ang’ is a vector containing the values ¢f,j for: =1,...,40,
j=1,...,11 andt = t. This matrix equation is solved using an LU factorizatiomgs

the NAG routine nagyenlin_sys (NAG).

Step 3 Advect the QGPV and buoyancy. The interior QGPVy4' and buoyancy on the upper
and lower boundaried; at timet are advected to the next time stép} 1 using the
Leapfrog (Centred Time, Centred Space) discretizatioth(thie Forward Time, Centred

Space scheme for the first time step). For the interior QGPV,

C.
(1531 = qg,j - gj(QfH,j - qg—l,j) fort =1 (A.56)
Qf,—;l = qzl - Cj(Q;—i—l,j - qg—l,j) fort = 27 s 7T —1 (A57)
wherec; = zjﬁ—fc, forj =1,...,11andi = 1,...,40, again using periodic boundary

conditions. For the buoyancy on the boundaries,

t+1 _ gt Ci oyt ¢ At t _
by =0bi;— §(bz'+1,j — by )+ 5A x< i1y — Vi) fort=1 (A.58)
_ At

(A.59)

for j = 1&11 andi = 1, ..., 40, using periodic boundary conditions.

A.6 Observing Interior Buoyancy

The observation operat®f for observations of the interior buoyancy field is now described.
The control variables are defined as the interior QGPV and buoyancy on the uppeoaret |

boundaries, and hence the interior buoyancy is not a covdr@ble. The 4D-Var experiments
in Chapter 3 consider observations of the lower boundarydmy, and as this is a control
variable, the observation operator is simply a matrix ofsoaad zeros (3.3). The 4D-Var

experiments in Chapter 6 consider observations of theiantbuoyancy and as this is not a
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control variable, the observation operator must contaimadycial equations to link the ob-
served variables to the control varibles. In practice, theeovation operator is no longer a

matrix, but a sequence of linear operations which can be sanned as:
H:x—vY>b->y. (A.60)

The first operator uses the QGPV and buoyancy in the contobbwe to calculate the corre-
sponding streamfunction fielgh using (A.55). The second operator uses the streamfunction
field v to calculate the interior buoyandyusing the Hydrostatic balance relation (A.17). This
is discretized as:

7vbz',jJrl

:——;1&Hmjzauw&¢:L“wm (A.61)

bij+s Az

so that the buoyancy field then contains the values of bugyainceight€.5, 1.5, ...,9.5 km
and also at and 10 km from the buoyancy on the boundaries. The third operatpliepa
matrix of ones and zeros to select the individual obsermdboations, for example to give
horizontal or vertical lines, to give the vector of obselvasy.

The adjointH” is simply given by the adjoints of each operator and is inrsxerder:

H . yE b Lo L x (A.62)

A.7 Calculating the SVD of the 4D-Var Observability Ma-
trix

The experiments in Chapters 5 and 6 use the singular valuemgesition of the 4D-Var ob-

servability matrix:

) H
H-= . (A.63)

HM(tn, o)

This is found using the SVD algorithm nagensvd (NAG, Golub and Van Loan, 1996), which
requires thakl is in matrix form.

The matrix formM of the discrete Eady modéH is found by applying the discrete Eady
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model equations to successive columns of the identity matri

M =MI = M(el)/\/l(eg) < -/\/l(e520) (A64)

where the vectors; are the columns of the identity matrix:

1 0 0
0 1 0

e = €y = s €590 = . (A65)
0 0 1

The linear operatav! is applied to discontinuous field, and therefore it is impotto consider
the choice of the numerical advection scheme. The Leapftbgree (A.59) is used for the
discrete Eady model and although it is suitable for smootatying functions such as the Eady
wave, it is not suitable for propagating sharp discontiegit This is illustrated in Fig. A.2(a)
where the Eady model with the Leapfrog scheme has been dgplithe initial conditions
given by a spike in the buoyancy field at the centre of the dom@he upper level spike is
advected eastwards by the flow but there is a trail of shorewaypstream of the perturbation.
This is due to wavenumber dependent phase speed errorsr&i@p and the computational

mode.

\S]
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g ©
EY 17
= o
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9] 50
& &
2 : : : —~ : : :
1000 2000 3000 4000 1000 2000 3000 4000
zonal direction (km) zonal direction (km)
(a) Leapfrog (b) Lax-Wendroff

Figure A.2: Comparison of the upper level buoyancy fields at time T+6n(®siteps) with (a) Leapfrog
(b) Lax-Wendroff numerical advection schemes in the Eadieid he initial conditions are given by a
spike in both the upper and lower buoyancy fields at 2000km with an amplitude oft on the upper
boundary and-4 on the lower boundary: = zﬁ—i = 0.864.

An alternative numerical scheme is the Lax-Wendroff schefeis scheme is derived



Appendix A. Eady Model 186

from a Taylor series expansion and can be written for the &nioy advection equation as:

[\

Cs C. At
bt = b — o (biprg = bi_y ) + o (b — iy +biy ) +

5 t L) (A.66)

—QAx( i+l — Wi-1

Do |

The modified equation approach (e.g. Le Veque, 1992, Dufr@99), can be used to show
that the Lax-Wendroff scheme is both dispersive and diffisind this means that the short
wavelengths are damped. Further, as the Lax-Wendroff seh®&@two-time level scheme, it
does not suffer from a computational mode. For these reasiomd ax-Wendroff scheme is
more successful than the Leapfrog scheme in advecting a.spils is shown in Fig. A.2(b).

The matrix formM of the Eady model is tested by integrating the models for 2&r$o
with the initial statex, given by the most unstable Eady wave.

For the Leapfrog discretization,
[Mx — M(x)]]z = 2.5 x 107" (A.67)
and for the Lax-Wendroff discretization,
[Mx — M(x)]|y = 4.3 x 1071 (A.68)

Therefore, the error is slightly smaller is the Lax-Wenéidifcretization is used. The Lax-

Wendroff scheme is used for all the SVD computations in thesis.



Appendix B

Adjoint Model

This appendix describes the adjoint model equations in botitinuous and discrete form.
The adjoint of the continuous equations can be found usirggdraye mulitpliers whilst the
adjoint of the discrete equations can be found by consigene model as a sequence of linear
operations. Itis particularly useful to consider the adfjoif the continous equations to be able

to understand the discrete adjoint equations.

B.1 Continuous Equations

The forward Eady model continuous equations can be sumetbaz:

. 11
G+ 29, =0 V2 = q in ze [—5, 5} (B.1)

1
by + zb, = 1, v, =0b onz = i§ (B.2)

and with periodic boundary conditions in the horizontal vehe = ¢(z, z,t) is the QGPV,
b= b(z, z,t) is the buoyancy, ang = ¢ (z, z, t) is the streamfunction, and using the notation
¢ =2, andVv? = 2, + &

The adjoint of the continuous equations can be found usiegctticulus of variations,
following the work by, for example, Gelfand and Fomin (196Bprray (1968), Birkett and
Nichols (1983), Xu and Nichols (1991) and Griffith and Nich¢1994). The forward model
contains both differential equation constraints and aigelzonstraints. However, all the equa-
tions are linked together and must therefore all be constdgimultaneously in the Lagrangian

functional. Further, some equations are defined over tleeiantwhilst the others are defined

187
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over the boundaries and so the Lagrangian functional mudebeed accordingly. The La-

grangian functional may be defined as:

= /T// q(q: + 2q.)drdzdt + /;{ b(by + zb, — 1, )dxdt (B.3)
/ / (V) — q)dedzdt + /7{ — b)dadt (B.4)

where§ = §(z, z,t), b = b(x, z,t), ¢ = ¥(x,z t) are Lagrange multipliers) is the rect-
angular domainI’ is the boundary surrounding the domain ands the assimilation window
length.

The Lagrange multipliet is used for both the elliptic equation and the derivativerizbu
ary condition (last two terms) as the elliptic equation ifrted over the interior of the domain
whilst the derivative equation is defined on the boundaflést is, in the third termy is de-
fined over the interior, whilst in the fourth termis defined on the boundaries. The constraint
that the mean of is zero is omitted from the Lagrangian functional as it isydhk derivatives
of ¢ that are required, and hence the forward equations arepestd without this constraint.

The first variation ofZ can be written as a function 6§, b, andd using Greens Theorem
in the Plane (or integration by parts). Then, from the Funelatal Lemma of the calculus of

variations, it can be shown that the continuous adjoint Eadgel equations are given by:

. A 11
Gr — 24z = +77Z) V2¢ =0 in ze [ 2 2:| (BS)
. - - - - 1
b, — 2b, =+ v, = —b, onz = ) (B.6)
- - - - - 1
b, — zb, = — Y, = +b, onz = +§ (B.7)

with periodic boundary conditions in the horizontal. Thaei co-ordinate- has been intro-
duced, such that. = —¢; so that the adjoint equations are propagated backwardsé ihe
derivative boundary conditions imply that the streamfiorct and adjoint streamfunction
are only unique up to an additive constant. In the forwarcaéiqus, we added the constraint
that the mean of) was zero, and by analogy with the derivation of the adjointagigns for

the discrete model (Section B.2), we also apply a similastramt in the adjoint equations so
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that the mean of is zero:

é/ Ydadz =0 é/ Ydrdz = 0. (B.8)

From the transversality conditions, the final state at ttteadithe assimilation window is zero:

11
i(z,2,T) = inze |—=, - B.
. 1
b(x,z,T)=0 onz==£5 (B.10)

and the gradients af with respect to the forward variables at the beginning oftivelow are
defined as:

oL R . 11

m = —Q(SC,Z, 0) N ze |:—§7 §:| (Bll)
oL - 1

m = —b({E,Z, 0) onz = —5 (812)
oL - 1

m = — (.CC,Z, 0) onz = +§ (Bl3)

B.2 Discrete Equations
The discrete equations for the Eady model can be summarized a
Step 1 Initial Conditions. The initial conditions are given by the QGPV in the interior:
g fori=1,...,40, j=1,...,11, t =1 (B.14)

and the buoyancy on the boundaries:

b fori=1,...,40, j = 1&11, t = 1, (B.15)

wherei is the horizontal grid pointj is the vertical level and is the time level, with

horizontal grid spacing\z, vertical level spacing\z and time spacing\t.

Step 2 Calculate the streamfunction. The initial conditions are used to form a vectbrwhich
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contains the values of ;, at time level = ¢

agp ; + pb;; forj =1

ri = 204!, forj=2,...,10 (B.16)

fori =1,...,40, wherea andj are constant scalars. The streamfunction variabjgs

are then found by solving the matrix equation:
Ayt =r! (B.17)

where A is a square matrix containing the coefficients correspantiina five point
differencing scheme, ang’ is a vector containing the values of ; fori = 1,...,40,

j=1,...,11andt = t.

Step 3 Advect the QGPV and buoyancy. The interior QGPVg' and buoyancy on the upper
and lower boundaried at timet are advected to the next time stép+ 1 using the
Leapfrog (Centred Time, Centred Space) discretizatioth(thie Forward Time, Centred

Space scheme for the first time step). For the interior QGPV,

C.
a5t =diy = 5 (@, — diy) for t = 1 (B.18)
gt =qt —elalh; — a4y fort=2,....T—1 (B.19)
wherec; = zjﬁ—;, forj =1,...,11andi = 1,...,40, again using periodic boundary

conditions. For the buoyancy on the boundaries,

Ci At
bg? = bg,j - é(ngrl,j - blz‘tfl,j> + E(lprrl,j - wf—l,j) fort =1 (B.20)

At :

for j = 1&11 andi = 1, ..., 40, using periodic boundary conditions.

The adjoint of the discrete equations may be found by consigiéhe linear model in ma-
trix form. For example, consider the discrete linear modehatrix form,M that is integrated

over one time stepx; . ; = Mx,. The adjoint of the matri®I is simply the complex conjugate
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transpose, and as all the variables are real in the followasgs, this is simply the transpose
of the matrix. This may be further simplified by considering mmodel as a sequence of linear
operationd.,,, ..., Ly:

M=L,...LL;. (B.22)

From the definition of the transpose of a matrix, the adjointled is then:
M” =LITL] LY (B.23)

Thus, the adjoint model may be considered as the exact ed\@drthe sequence of adjoint op-
erations. Such an approach is also described by Chao andyCh2®2), Navon et al. (1992),
Rosmond (1997) and Marotzke et al. (1999), where adjointzeénic and atmospheric mod-
els are derived and also by Giering and Kaminski (1996). apigroach has been used to
develop the adjoint model code for the Eady model. It is atsssfble to consider the follow-
ing equations as the discretization of the continuous éojusthat were given in the previous
section.

The adjoint model is integrated backwards in time, and staith the final conditions
¢7 = 0 andb” = 0 (and¢” = 0 andb”*! = 0). These are then advected backwards in time
to the the previous time step, using the adjoint advectiaraggns (step 3). Then the adjoint
of the streamfunction calculation is used to find the rightchaide forcing for the advection

equations (step 2). Steps 3 and 2 are then repeated for @nergtep.

Step 3 Adjoint of the advection equations. Fort = T,...,3,¢ = 1,...,40 with periodic

boundary conditions:

Q5 =at (@, — 4 y) forj=1,...,11 (B.24)
b;?j = b;?;l + (bl — b5y ) for j = 1&11 (B.25)
- At . . .
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and fort = 2,7 =1, ..., 40 with periodic boundary conditions:
e . Cj . . .
qf,jl = qij + é(qfﬂd — qffl,j) forj=1...11 (B.27)
Dt = _2ﬁ(if. i for j = 1&11. (B.29)
,] A.T i+1,5 i—1,j

Step 2 Adjoint of the streamfunction calculation. The'~! field is used to find the values of
7; ' by solving the matrix equation:

-1

ARl = g (B.30)

Note that this is the same equation as for the forward modwd.fdrward matrix equation
is solved using an LU decomposition. However, it is not neagsto find the adjoint of
the LU decomposition; instead the adjoint equatiohé = ) can be solved and in this
case A is self-adjoint. Thus, the same LU decomposition that isliseolve the matrix
equation in the forward model can be used to solve the mafatgons in the adjoint
model. Ther'~! variables are then used to update ghet andb'~! variables using the

assignment statements:

@50 = @5 + 2a(r5 ) forj=2,...,10 (B.31)
(@51 = (@)™ + (i) for j = 1&11 (B.32)
(B = (B + B! for j =1 (B.33)
(B = (B = B! for j = 11. (B.34)

where the indicesand/ — 1 denotes the vales of the variables just before and after the

execution of the assignment.

From the structure of thA matrix (A.52) and from equations (B.26) and (B.29), thes ttlear

that the boundary conditions férare given by

or ob 1
% = +% onz = +§ (B.35)
or ob 1
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Also, equations (B.31 to B.33) can be interpreted as praogithe right hand side forcing for
the advection equations. Thus, the discrete model is densiwith the continuous adjoint
equations. Note, however, that theariables in the continuous equations are equivalent to the

7 variables in the discrete equations.



Glossary of Symbols and Acronyms

4D-Var Notation

n Dimension of the state vector
m Dimension of the (generalized) observation vector
to Initial time
i Assimilation window length
x! True state at time,
x? Background state
Vi Observations at time
x* Analysis at time,
i Innovation vector at time
M Linear forward model operator in equation form
M Linear forward model in matrix form
M7 Adjoint model in matrix form
H; Observation operator at tinte
K Kalman Gain matrix
B Specified background error covariance matrix
R; Specified observation error covariance matrix at time
Pr Specified background error correlation matrix
Pr Specified observation error correlation matrix
[ Horizontal correlation length scale
el Background state errors
e’ Observation errors
o? Variance of the observational noise
o? Specified observation error variance
of Specified background state error variance
> Ratio of the background and observation error variances
J Cost function

194
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Jb Background cost function term

J° Observation cost function term

Vx,J  Gradient of the cost function with respectsp
T+0 Beginning of the assimilation window

T+6 6 hours into the assimilation window

tr Time of the initial observations

Singular Vector Decomposition Notation

Left singular vector (LSV)

s
<.

Right singular vector (RSV)

S

>

<.

Singular value
Singular vector index
Orthonormal matrix with columns given by the LSVs

Orthonormal matrix with columns given by the RSVs

Diagonal matrix with diagonal entries given by the singwaiues

o>

4D-Var observability matrix

4D-Var generalized observation vector
4D-Var generalized innovation vector
Pre-conditioned control variable

Initial time norm

H QX & <

Final time norm

Eady Model Notation

x Horizontal distance in the zonal direction
Yy Horizontal distance in the meridional direction
z Height

Quasi-Geostrophic Potential Vorticity (QGPV)
Coriolis parameter
Gravitational acceleration

Potential temperature

RS N

Geostrophic streamfunction
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N? Static stability

b ; Buoyancy at horizontal grid poirf vertical level; and time levet
u Zonal wind

v Meridional wind

X, QGPV variables of the control vector

X7 Buoyancy variables of the control vector

ag Specified background error variance for the QGPV

oz Specified background error variance for the Buoyancy
OKE Kinetic energy growth rate

Acronyms

DA Data Assimilation

NWP Numerical Weather Prediction

4D-Var  Four-Dimensional Variational Data Assimilation
3D-Var Three-Dimensional Variational Data Assimilation
FGAT First Guess at the Appropriate Time

PDF Probability Distribution Function

RRKF  Reduced Rank Kalman Filter

QGPV  Quasi-Geostrophic Potential Vorticity

SVD Singular Value Decomposition

RSV Right Singular Vector

LSV Left Singular Vector

GCV Generalized Cross Validation
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