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Abstract

Data assimilation is needed to generate an analysis, which is used as the initial conditions for

numerical weather prediction. Four-dimensional variational data assimilation (4D-Var) is the

most advanced data assimilation algorithm to be used operationally; it uses observations that

are distributed in time through the use of the model equations.

The aim of this thesis is to understand the extent to which 4D-Var can develop the struc-

tures needed for the growth and decay of baroclinic systems.Such mid-latitude storms can

cause severe damage and play a key role in the evolution of theatmospheric flow. The ap-

proach taken isolates the important mechanisms in 4D-Var byconsidering a simple model of

baroclinic instability.

Idealized case studies using the 2D Eady model consider the use of a time-sequence of

observations to reconstruct the state in unobserved regions. A novel technique using the sin-

gular value decomposition of the 4D-Var observability matrix is developed, based on methods

that are commonly used in satellite retrieval studies. It isused here to provide a new and useful

understanding of the information content of observations in 4D-Var.

It is shown that the information that is propagated to the unobserved regions is strongly

penalized by the background state and is also extremely sensitive to observational noise. This

is understood by establishing a link with the literature on Tikhonov Regularization. An analysis

increment will result in growth if the observations are given at only the end of the window, or if

a relatively large weight is given to the background state. This may result in a poor forecast if

the required analysis increments lead to decay. Two ways to maximize the benefits of 4D-Var

are identified: the initial and final observations should be far apart in time, and appropriate

values for the regularization parameters should be specified.
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‘I don’t understand you,’ said Alice. ‘It’s dreadfully confusing!’

‘That’s the effect of living backwards,’ the Queen said kindly: ‘it al-

ways makes one a little giddy at first—-’

‘Living backwards!’ Alice repeated in great astonishment.‘I never

heard of such a thing!’

‘–but there’s one great advantage in it, that one’s memory works both

ways.’

– Lewis Carroll, “Through the Looking Glass”



Chapter 1

Introduction

1.1 Motivation

Data assimilation (DA) uses observational data to generatean analysis - the best estimate of the

present state of the atmosphere. The analysis is used as the initial conditions for a numerical

weather forecast. The chaotic nature of the atmosphere means that small errors in the initial

conditions may amplify rapidly (Lorenz, 1993), and therefore the analysis needs to be as accu-

rate as possible. For this reason, DA is one of the most important parts of numerical weather

prediction (NWP).

The DA algorithm must be able to assimilate observations that are nonlinearly related to

the analysis variables, for example, satellite data. The observations have errors and a sparse

spatial distribution, so the DA algorithm must filter the noise and interpolate between the obser-

vation points, whilst ensuring that the fields are meteorologically realistic. The DA algorithm

must also be able to solve large-dimensional problems, as inan operational context there are

approximately107 unknowns. Further, the algorithm must compute the analysisquickly, so

that the forecast can be generated.

Variational DA finds the analysis by minimizing a cost function that contains two terms.

One term penalizes the squared distance from the backgroundstate (usually a forecast that is

valid at the same time as the analysis) and the second term penalizes the squared distance from

the observations. The variational formulation is suitablefor such large-dimensional problems,

and also allows the use of observations that are (weakly) nonlinearly related to the analysis

unknowns (Lorenc et al., 2000).

In three-dimensional variational DA (3D-Var), observations collected over a certain time

1



Chapter 1. Introduction 2

period are assimilated by assuming that they are all taken atthe same time. This means that

there may be up to a three hour difference between the time of an observation and the time

at which the background state is valid. 3D-FGAT (First Guessat the Appropriate Time) (Ra-

bier et al., 1998) extends 3D-Var so that the background state is evolved to the time of the

observations.

In four-dimensional variational DA (4D-Var), a whole time sequence of observations are

assimilated, by linking them together with the numerical forecast model equations. The ability

of 4D-Var to combine information from observations with theknowledge of the evolution of

the atmosphere means that it is one of the most advanced algorithms to have been used in

operational NWP (Rabier et al., 2000). 4D-Var is much more computationally expensive than

3D-Var and it is therefore important to assess whether the advantages of 4D-Var can justify the

expense.

It has been shown that 4D-Var produces better results than 3D-Var in situations of baro-

clinic growth (e.g. Rabier and Courtier, 1992, Rabier et al., 1998, Desroziers et al., 1999, Rabier

et al., 2000). Baroclinic instability is one of the dominantmechanisms for the generation of

mid-latitude depressions. These depressions can cause severe damage and it is important that

NWP centres are able to forecast them well. Thus, it is crucial that the DA algorithm correctly

develops the initial conditions needed for such storms. Thecapability of 4D-Var to develop the

correct vertical structures needed for the growth and decayof baroclinic systems is the subject

of this thesis.

This chapter begins by briefly summarizing a history of data assimilation methods, so that

we can understand why 4D-Var is known as an advanced data assimilation algorithm. Then,

the current knowledge regarding 4D-Var in the presence of baroclinic growth is summarized.

The chapter finishes by discussing issues that have not yet been researched, stating the key

questions that are addressed in this thesis, and the layout of the rest of the thesis.

1.2 History of Data Assimilation

A brief overview the history of DA and a description of current DA algorithms are now given.

More detailed overviews may be found in, for example, Daley (1991), Ghil and Malanotte-

Rizzoli (1991), Wunsch (1996) and Bouttier and Courtier (2003).

In as early as 1850, the very first synoptic charts were created. Observations were plotted

on geographical maps, and isobars and isotherms were drawn on by hand. There were very
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few observations, so the analyst would use his knowledge of aprevious synoptic chart together

with his knowledge of how weather systems evolve, to infer the position of the isolines in the

data void regions. Knowledge about the relationships between different variables could also

be applied. For example, the geostrophic balance relationship states that the wind direction is

approximately parallel to the isobars, and that the isobarsare closer together in regions where

the wind speed is stronger. These synoptic charts were the very first type of subjective analysis.

The method relied heavily upon the subjective judgement of the analyst, and as the charts were

produced by hand, the method would take a great deal of time. When numerical weather

models were created, the synoptic chart had to be transferred into a gridded data set to use as

the initial conditions. It was realized that computers would be able to generate much better

objective analyses in a shorter time. However, the underlying concepts of subjective analysis,

such as using extra knowledge about the evolution of the atmosphere and atmospheric balance,

are still used in present day objective analysis algorithms.

The first objective analysis algorithms fitted polynomials to the observations by minimiz-

ing the squared difference between the analysis and the observations (Gilchrist and Cressman,

1954). To achieve a good analysis, the spatial distance between the observations needed to

be small in comparison to the size of the weather systems analysed, but in reality there are

many data sparse areas. Therefore, it was suggested (Bergthórsson and Döös, 1955) that a

background state is used as a first guess. The background state should be the best available

approximation to the present state, before the use of the observational data. This could be,

for example, a climatology or a forecast that is valid at the same time as the observations.

This suggestion led to the iterative technique known as the Successive Corrections Method or

Cressman Analysis, where the background state was modified by the observations to produce

an analysis. To ensure that the analysis was smooth, the information from an observation was

also used to update the surrounding grid points.

The Cressman analysis is a weighted average of the background state and the observations;

however there is no direct way to specify the optimal weights. The specification of the optimal

weights is important so that, for example, a good quality background state is not deteriorated by

poor quality observations, and so that the information fromthe observations is optimally spread

to the surrounding grid points. Statistical techniques arenecessary to determine the expression

for the optimal analysis. Such optimal estimation forms thebasis of most data assimilation

algorithms that are commonly used at the present time. Thesedata assimilation algorithms

are summarized in Table 1.2. Sequential algorithms such as Optimal Interpolation and the



Chapter 1. Introduction 4

Use observations at the
same time (Simple)

Use a time sequence
of observations with the
model (Advanced)

Sequential Optimal Interpolation Kalman Filter

Variational 3D-Var 4D-Var

Table 1.1: A comparison of statistically optimal data assimilation algorithms, based on Ghil
and Malanotte-Rizzoli (1991).

Kalman Filter use the optimal estimation equations to compute the analysis explicitly, whilst

the variational algorithms such as 3D-Var and 4D-Var compute the analysis by minimizing

a cost function. The simple algorithms only use observations taken at one time level, whilst

the more advanced algorithms use an entire time-sequence ofobservations through the use of

the model dynamics. These algorithms are now discussed in detail. Only linear observation

operators and models are considered, although the algorithms can be extended to consider

nonlinear models. The notation in this section and in the rest of the thesis follows that advised

in Ide et al. (1997).

1.2.1 3D-Var and Optimal Interpolation

Suppose that the true state of the atmosphere is representedby a vectorxt of dimension n, and

that the first guess or background state is given byxb. Suppose that m observations are given

in a vectory, and are related to the true state variables through the linear observation operator

H. The background state and observations have errorsεb andεo, such that

xb = xt + εb (1.1)

y = Hxt + εo. (1.2)

The errors are assumed to be unbiased (E(εb) = E(εo) = 0), whereE(x) denotes the expec-

tation ofx, and also to have covariancesB = E(εbεb
T
), R = E(εoεoT ).

The aim of the data assimilation algorithm is to combine the background statexb and the

observationsy such that the analysisxa is as ‘close’ to the true state as possible. In current

data assimilation methods, the analysis is defined as the maximum likelihood estimate or as

the minimum variance estimate. In fact both the maximum likelihood and minimum variance

estimates result in the same analyses provided that the observations and background probability
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distribution functions (pdfs) are Gaussian. This is discussed by Lorenc (1986) and Bouttier and

Courtier (2003).

The maximum likelihood estimate (or more precisely the maximum a priori estimate) ap-

proach is based on Bayesian statistics. By assuming that thebackground state and observations

are independent, then from Bayes’ theorem, it can be shown that the analysis pdfPa(x) can be

written as:

Pa(x) ∝ Pb(x)Po(x) (1.3)

wherePb(x) andPo(x) are the background and observation pdfs. The maximum likelihood

estimate is then given by the state which maximizes the analysis probabilityPa. This can be

simplified by assuming that the pdfs are Gaussian. In particular, by letting:

Pb(x) = c1 exp

[

1

2
(x − xb)TB−1(x − xb)

]

(1.4)

Po(x) = c2 exp

[

1

2
(y −Hx)TR−1(y −Hx)

]

(1.5)

and taking the log of (1.3) then the maximum likelihood estimatexa is given by the state which

minimizes the cost function:

J(x) =
1

2

{

(x − xb)TB−1(x − xb) + (y − Hx)TR−1(y − Hx)
}

. (1.6)

The minimum variance estimate, also known as the Best LinearUnbiased Estimate (BLUE)

or the Gauss-Markov Theorem, assumes that the analysis is ofthe form of a linear combination

of the background state and observations and uses the weights that minimize the trace of the

analysis error covariance matrix. This gives the equations:

xa = xb + K(y − Hxb) (1.7)

K = BHT (HBHT + R)−1 = (B−1 + HTR−1H)−1HTR−1. (1.8)

By setting the gradient of the cost function to zero, it can beshown that the analysis that

is found by minimizing the cost function (1.6) is the same as that found by solving the BLUE

equations (1.7 and 1.8) directly. The weight matrixK specifies the optimal weights that were

not specified in the Cressman method. The analysis is given bya weighted average of the

background state and the observations. If the background errors are small compared to the
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Jo
Jb
Jo+Jb

x x 
b a y 

J 

x 

(a)xb has small errors in comparison toy
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Jb
Jo+Jb

x x 
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y 

J 

x 

(b) xb has large errors in comparison toy

Figure 1.1: Schematic diagrams of theJo andJ b parts of the 3D-Var cost function for a state
vector with only one variable.xb is the background state,y is the observation, andxa is the
analysis, which is given by the minimum ofJ b + Jo.

observations, then the analysis would be close to the background state. If the background state

errors are large compared to the observations, the analysiswould be close to the observations.

The method known as Optimal Interpolation (OI) is a sequential method that finds the

analysis by using the BLUE equations (1.7 and 1.8) directly.For the global data assimilation

problem, the covariance matrices are very large, so are difficult to store and invert. Therefore,

the optimal interpolation scheme is implemented on sub-domains of the globe (Lorenc, 1981).

Further, the equations can only deal with linear observation operators. This means that satellite

radiances can not be directly incorporated as the radiativetransfer models are nonlinear.

The method known as Three-Dimensional Variational Data Assimilation (3D-Var) finds

the analysis by minimizing the cost function (1.6) directly. In practice, the covariance matrices

do not need to be inverted, so it is possible to solve the problem globally. It is also possible

to extend the cost function to use nonlinear observation operators so that satellite data can

be included directly. The minimization of the cost functionis also a weighted, tapered, least

squares method, provided that the weight matrices are givenby the inverse error covariances

Wunsch (1996). The analysis is given by the state which minimizes the noise vectors in theL2

norm. The vector which the cost function is minimized with respect to is known as the control

vector. The control vector may not be the same as the state vector if preconditioning is applied.

The 3D-Var cost function (1.6) has two terms. The first term isknown as theJ b or back-

ground term and the second is known as theJo or observation term. These two terms are
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OBSERVATIONS

DATA
HOLE

ADVECTION

WAVE PROCESSES

Figure 1.2: Schematic diagram of the propagation of information into a data hole, based on
Fig. 1 from Thompson (1961).

illustrated in Fig. 1.1. If it is assumed that the backgroundstate has small errors (Fig. 1.1(a))

then theJ b term is narrow in comparison to theJo term, so that the minimum ofJ b + Jo is

close to the background state. However, if it is assumed thatthe background state has relatively

large errors (Fig. 1.1(b)), then the minimum ofJ b + Jo is close to the observations.

1.2.2 4D-Var and the Kalman Filter

There many regions in the atmosphere that are data sparse. For example, there is little in-

situ data over the oceans and also at upper levels. However, it is possible to combine a time

sequence of observations with a numerical forecast model toreconstruct the atmospheric state

in these data holes. This method was first proposed by Thompson (1961), and a schematic

diagram based on this is shown in Fig. 1.2. At the first time level, observations are taken,

and there are no observations in the data hole. These observations are then used in the initial

conditions for the model, and the model is integrated. The information is then propagated into

the data hole by advection or wave processes. Observations are then taken again, so that the

entire state at that time has been observed. Similarly, the data hole could be positioned so that

the state over the data hole is first advected and then observed.

Sasaki (1970) developed a variational method to combine theinformation from a time-

sequence of observations with a numerical model. The numerical model was added as a con-

straint to the minimization, through the use of Lagrange multipliers. The control variables

for the minimization were given by the model state at every time level. Such an algorithm is

too large to be solved operationally, but can be simplified using the ‘reduction of the control

variable’, as introduced by Le Dimet and Talagrand (1986). By formulating the problem as

an optimal control problem, it is possible to use only the initial conditions as the control vari-
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ables. The resulting minimization problem can be efficiently solved by using an adjoint model

(Errico, 1997) to calculate the gradient of the cost function. The method that was developed is

now known as 4D-Var as the time-sequence of observations provide a fourth dimension.

Full NWP models are nonlinear and so it is possible for the minimum of the cost function

to be non-unique. Courtier et al. (1994) extended 4D-Var to give incremental 4D-Var, where

the NWP model is linearized and a series of linear assimilation problems are solved instead.

The cost may be further reduced by running the linear models at a lower resolution or with

simplified physics. The incremental 4D-Var was first appliedto an operational model by Rabier

et al. (1998). In this thesis, only linear models are considered, and so we define the cost function

for this problem only.

In general, the cost functionJ contains a background termJ b and an observational term

Jo,

J(x0) = J b + Jo (1.9)

wherex0 denotes the model state at timet0 (the control-variable). The background term is the

same as for 3D-Var:

J b(x0) =
1

2
(x0 − xb)TB−1(x0 − xb) (1.10)

wherexb is the background state at the initial time, andB is the background error covariance

matrix. The observational term is

Jo(x0) =
1

2

N
∑

i=1

(Hixi − yi)
TR−1

i (Hixi − yi) (1.11)

whereyi is a vector of observations at timeti, Hi is the observation operator, which converts

from model space to observations space andRi is the observational error covariance matrix.

The 4D-Var problem is then to minimizeJ(x0) subject to the strong constraint that the

sequence of model states must also be a solution of the model equationsxi+1 = Mxi. A

strong constraint means that the model is assumed to be perfect. However it is possible to

formulate the problem with a weak constraint so that the perfect model assumption can be

relaxed. The 4D-Var method is illustrated in Figure 1.3. This is a constrained optimization

problem. However, by using an adjoint model, the problem canbe transformed into an uncon-

strained minimization through the use of Lagrange multipliers. This will be described in detail

in Chapter 2.

It was demonstrated that the analysis for 3D-Var can also be written as a solution of the
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Figure 1.3: Schematic diagram of the Four Dimensional Variational dataassimilation method:
minimize the squared distance between the analysis and the background state at the beginning
of the assimilation window, and the squared distance between the observations and the forecast
state throughout the assimilation window.

BLUE equations that are used in optimal interpolation. Similarly, the analysis for 4D-Var can

be written explicitly in the form of a sequential algorithm known as the Kalman Filter. This

algorithm will be discussed below. The equivalence between4D-Var and the Kalman Filter

gives a key result that the analysis at the end of a 4D-Var assimilation window is the same as

that obtained by the Kalman Filter, if the same background error covariance matrix is specified

at the beginning of the window, and the models are perfect andlinear. This can be proved by

showing that 4D-Var and the Kalman Filter both solve the Riccati equation, as discussed by

Jazwinski (1970), Ghil and Malanotte-Rizzoli (1991) and Wunsch (1996), but is perhaps more

easily proved by considering a sequence of 3D-Var analyses and propagating the background

error covariance matrix using the Kalman Filter (e.g. Lorenc, 1986, Li and Navon, 2001).

The Kalman Filter (Kalman, 1960) is a sequential assimilation algorithm, like the BLUE

equations, but the background error covariance matrix is propagated explicitly in time. The

Kalman Filter can be viewed in two stages: forecast and analysis. We denote the state covari-

ance matrix at timeti asPi, so that the error covariance at the beginning of the 4D-Var window

is P0 = B.

The Forecast step is:

x
f
i = Mxai−1

P
f
i = MPa

i−1M
T .

(1.12)
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The Analysis step is:

Ki = P
f
i H

T
i [HiP

f
i H

T
i + Ri]

−1 = [Pf
i

−1
+ HT

i R
−1
i Hi]

−1HT
i R

−1
i

xai = x
f
i + Ki[yi − Hix

f
i ]

Pa
i = [I − KiHi]P

f
i .

(1.13)

xai gives the analysis at timeti, with associated error covariancePa
i . It is not possible to

use the full Kalman Filter for the assimilation of the atmosphere as the size of the state vector

is too large. For example, the background error covariance matrix would be(107 × 107) and

therefore inverting and storing such a matrix is not possible both now and in the future. As

both computer power and memory increase in the future, it is likely that the state vector will

become even larger and so the covariance matrix will also become larger.

The equivalence between 4D-Var and the Kalman Filter allowsan understanding of the 4D-

Var algorithm. The Kalman Filter propagates the backgrounderror covariance matrix explicitly

through the assimilation window, and therefore the 4D-Var algorithm also implicitly propagates

the covariance matrix.

1.3 Baroclinic Instability

This thesis is concerned with the ability of 4D-Var to generate the correct analysis in regions

of baroclinic instability. We therefore now describe baroclinic instability, before discussing the

previous literature concerning 4D-Var and baroclinic instability.

Baroclinic instability plays a key role in the development of mid-latitude cyclones that are

seen in the atmosphere. It is an instability associated witha zonal wind shear with height,

which through thermal wind balance, depends on the meridional temperature gradient. The

instabilities grow by converting the available potential energy in the temperature gradient of the

basic state, into eddy potential and eddy kinetic energy andare an important part of the global

energy cycle (Holton, 1992). There are two approaches to examining baroclinic instability. The

first approach is to consider an eigenvalue problem. The eigenvectors of the model, also known

as normal modes, grow exponentially without changing theirspatial structure. According to

linear theory, the eigenvectors with the largest eigenvalues eventually become the dominant

structures in a forecast from random initial conditions. The second approach is to consider an
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initial-value problem. That is, to consider the non-modal (or not normal mode) growth. It is

possible for some initial perturbations to grow for limitedperiods at faster rates than normal

modes, and these perturbations change their spatial structure with time. Singular vectors of the

model give such rapid linear growth over a finite time. Both the eigenvalue and initial-value

approaches examine the linear growth of perturbations to a basic state, and both are highly

relevant for interpreting the growth of cyclones in the atmosphere. In the rest of this thesis, we

refer to normal modes of the model as modal, and any other structure as being non-modal.

1.3.1 Quasi-Geostrophic Potential Vorticity (QGPV)

Before the mechanisms for modal growth and non-modal growthare described further, we first

describe a quantity known as quasi-geostrophic potential vorticity (QGPV). It is important to

understand this quantity, as a model based on QGPV, known as the Eady model, is used in this

thesis.

QGPV,q, also known as pseudo potential vorticity (Hoskins et al., 1985, Hoskins, 1997)

may be defined in terms of the geostrophic streamfunctionψ as:

q = f + ∇2
hψ +

∂

∂z

(

f 2
o

N2

∂ψ

∂z

)

(1.14)

wheref = f0 + β(y) is the Coriolis parameter,N2 = g

θ
dθo

dz
is the Static Stability, whereθo is

the potential temperature of a hydrostatically balanced reference state such thatθ = θo(z)+ θ′,

and∇2
h = ∂2

∂x2 + ∂2

∂y2
. Equation (1.14) is an elliptic equation and is central to what is known as

the ‘Action at a Distance’ principle (Davies and Bishop, 1994). Given the QGPV and suitable

boundary conditions, it is possible to infer the corresponding streamfunction field, which can

be considered as a smoothed version of the QGPV. A change in the QGPV at a single point

would not only give a significant change in the correspondingstreamfunction at the same point

but would also give a significant change in the streamfunction field in a surrounding region.

This surrounding region is stretched in the vertical due to the coefficientf 2
o /N

2 ∼ 10−4.

QGPV can be considered as a dynamical tracer as it is conserved following adiabatic,

geostrophic flow and is important as it combines both dynamical and thermodynamical infor-

mation. This can be illustrated by considering important balance relationships in the atmo-

sphere. Geostrophic balance states that the geostrophic wind ug, vg and geostrophic relative
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Figure 1.4: Schematic diagrams of potential vorticity anomalies and their associated circula-
tions (green arrows) and temperature anomalies (W and C). (a) a negative PV anomaly and
(b) a positive PV anomaly. W and C represent Warm and Cold anomalies respectively. The
thin lines represent isentropes (constantθ), such that the potential temperature increases with
height. Based on Fig. 6 from Hoskins (1997).

vorticity ξg are related to the streamfunction by:

(ug, vg) =

(

−∂ψ
∂y
,
∂ψ

∂x

)

ξg =
∂vg
∂x

− ∂ug
∂y

= ∇2
hψ. (1.15)

Hydrostatic balance states that the potential temperatureθ′ and buoyancyb are related to the

streamfunctionψ by:

b =
g

θo
θ′ = fo

∂ψ

∂z
. (1.16)

These relationships may be combined to give the Thermal WindBalance relationship, which

states that the vertical shear of the horizontal wind is related to the horizonal temperature

gradient by:
(

∂ug
∂z

,
∂vg
∂z

)

=

(

−fo
∂b

∂y
, fo

∂b

∂x

)

. (1.17)

Using the geostrophic balance and hydrostatic balance relationships, the QGPV can also

be written as:

q = f + ξ + fo
∂θ′/∂z

dθo/dz
. (1.18)

This equation illustrates that a positive QGPV anomaly is associated with a cyclonic circula-

tion with a warm anomaly above and a cold anomaly below, and similarly a negative QGPV

anomaly is associated with an anticyclonic circulation with a cold anomaly above and a warm

anomaly below. These relationships are also illustrated bythe diagrams in Fig. 1.4.

Boundary temperature anomalies can also be described in terms of QGPV. The boundary

may be a lower boundary such as the ground or an upper boundarysuch as the tropopause. The
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Figure 1.5: Schematic Diagram of lower boundary temperature anomaliesand their associ-
ated circulations. (a) a warm anomaly and (b) a cold anomaly.Based on Fig. 6 from Hoskins
(1997).

tropopause is the interface between the troposphere, with relatively low static stability, and

the stratosphere, with relatively high static stability. The high static stability means that the

tropopause may be modelled as a rigid boundary. Bretherton (1966) showed that a temperature

distribution on a boundary is equivalent to a distribution of QGPV on a thin sheet just within the

fluid. On the lower boundary, a warm anomaly is equivalent to apositive QGPV anomaly, and

a cold anomaly is equivalent to a negative QGPV anomaly. Conversely, on the upper boundary,

a warm anomaly is equivalent to a negative QGPV anomaly, and acold anomaly is equivalent

to a positive QGPV anomaly. Thus, boundary temperature anomalies have associated circula-

tions. These are illustrated in Fig. 1.5. Consider a warm anomaly at ground. The amplitude of

the anomaly decays upwards, and therefore, from thermal wind balance, the warm anomaly is

associated with a cyclonic circulation. Similarly, a cold anomaly is associated with an anticy-

clonic circulation. Temperature anomalies at the tropopause decay downwards, and therefore

they have circulations of the opposite sign. The change in sign between the boundaries is im-

portant for baroclinic instability in the Eady model. The Charney-Stern Instability Criterion

(Charney and Stern, 1962, Holton, 1992) states that for baroclinic instability, there must be a

change in the sign of the meridional QGPV gradient in the domain. This reversal in sign may

be associated with a change in the meridional basic state QGPV gradient in the interior or with

the boundary temperature gradients which are associated with boundary QGPV gradients.

1.3.2 Modal Growth

Charney (1947) and Eady (1949) formulated mathematical models for baroclinic instability. In

this section, the baroclinic mechanism, based on the results by Charney and Eady, is described



Chapter 1. Introduction 14

C
(a) Ground (b) Tropopause

x

yy

x

W

W W

C

C W WC

(Low PV) Propagation

(High PV)

Propagation(High PV)

(Low PV)

W

Figure 1.6: Schematic diagrams illustrating the direction of propagation of Rossby waves at
the tropopause and at the ground. Each diagram is an x-y crosssection of the atmosphere at
mid-latitudes. It is warm in the south and cold at the north. The circles represent tempera-
ture anomalies on the basic state meridional temperature distribution. At the tropopause, the
warm anomaly (W) is associated with an anticyclonic circulation, and at the ground, the warm
anomaly is associated with a cyclonic circulation. The meridional advection by the induced
velocities means that the wave at the tropopause propagateswestwards relative to the flow, and
the wave at the ground propagates eastwards relative to the flow.

non-mathematically. In the Charney formulation, the beta effect (y-dependence of the Coriolis

parameter) and density decay with height were included and there was no rigid lid at the top.

However, in the Eady formulation, beta was assumed to be zero, the density was uniform, and

a lid was added to simulate the tropopause. Nevertheless, the results from the two different

formulations provide similar results. This section beginsby describing edge-wave propagation

in the atmosphere and then describing the coupling between upper and lower edge-waves,

which gives baroclinic instability.

Consider an atmosphere with a constant Coriolis parameter and with a meridional tem-

perature gradient. This gradient is associated with a zonalwind shear with height, through

thermal wind balance (1.17). The ground and the tropopause can be considered as horizontal

boundaries at which the vertical velocity is very small. If it is assumed that there is no vertical

motion at the boundaries, the basic state can support Rossbyedge-waves, as illustrated by Fig.

1.6 and discussed in Gill (1982) for example. These waves have a maximum amplitude at the

boundary, and then decay exponentially with the distance from the boundary.

The propagation of the Rossby edge-waves is now described. We first consider an edge-

wave at the ground. The amplitude of the wave decays upwards,and therefore, from thermal

wind balance, a warm anomaly is associated with a cyclonic circulation, whilst a cold anomaly

is associated with an anticyclonic circulation as illustrated in Fig. 1.6 (a). The circulations

act to move colder air to the east of the cold anomaly and warmer air to the east of the warm

anomaly, so that the entire wave propagates eastwards, relative to the flow. In contrast, consider
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Figure 1.7: Schematic Diagram of baroclinic instability. The meridional temperature gradient
is associated with a zonal wind shear with height through thermal wind balance. There is a
wave on the upper boundary (tropopause). The warm anomaly atthe tropopause is associated
with an anticyclonic circulation as marked by the red arrows. This circulation extends down to
the ground and induces a wave on the lower boundary.

an edge-wave at the tropopause, as illustrated in Fig. 1.6 (b). The amplitude of the wave

decays downwards, and so from thermal wind balance, a warm anomaly is associated with an

anticyclonic circulation and a cold anomaly is associated with a cyclonic circulation. These

circulations act so that the entire wave propagates westwards, relative to the flow.

This edge-wave propagation is in fact the same as Rossby wavepropagation, as the merid-

ional temperature gradient acts in the same manner as a positive meridional PV gradient at the

ground and a negative meridional PV gradient at the tropopause, as indicated also in Fig. 1.6. If

a parcel of air moves from a region of high PV to a region of low PV, it must generate positive

relative vorticity so that the PV of the air parcel is conserved. The circulations associated with

the relative vorticity again act to move the wave so that the wave propagates westwards at the

tropopause and eastwards at the ground. In the real atmosphere, the Coriolis parameter varies

with latitude due to the curvature of the earth. This also affects the meridional PV gradient of

the basic state, and hence also gives rise to Rossby wave behaviour.

We now consider how the upper and lower edge waves interact, as described by Davies

and Bishop (1994). Consider the situation where there is an edge wave at the tropopause as

shown in Fig. 1.7. The circulation associated with the warm temperature anomaly extends

down to the ground. This circulation induces a wave on the lower boundary. The wave on

the lower boundary also has an associated circulation (but with the opposite sign to that at
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the upper boundary), which then extends to the upper boundary and intensifies the upper level

wave. Thus, the upper and lower level edge waves are coupled together via the meridional

velocity field. This process is referred to as ‘self-development’.

From thermal wind balance, the meridional temperature gradient is also associated with a

vertical shear of the zonal wind, so that the wave at the tropopause is advected eastwards faster

than the wave at the ground. Since this is counter to the relative Rossby wave propagation

speeds, it is possible for the edge waves to become phase-locked together, so that they move

at the same speed. Thus, the two edge waves become an entire coupled wave that travels

downstream. The edge waves interact with each other so that the amplitude grows in time

whilst the spatial structure or shape is preserved. This is normal mode or eigenvector growth.

If a model is integrated from random conditions, the normal modes with large eigenvalues

will dominate the structure of the solution. The self-development mechanism relies on the fact

that temperature anomalies on the upper and lower boundaries are associated with circulations

of the opposite sign. This is necessary so that the Rossby waves propagate in the opposite

directions, and so that they can become phase-locked together.

The spatial structure of the normal mode is vital for the growth or decay of the mode. For

the growing mode, as shown in Fig. 1.8 (a), the pressure (streamfunction) field tilts westwards

with height, so that the upper level ridge is close to being directly over the maximum meridional

winds at the lower level. The effects of meridional advection and wave propagation mean that

the maximum temperature anomalies lie just to the east of thesurface low and just to the west of

the surface high so that the temperature field tilts eastwards with height. For the decaying mode,

as shown in Fig. 1.8 (b), the pressure field tilts eastwards with height, and the temperature field

tilts westwards with height. Baroclinic growth is associated with the vertical coupling between

upper and lower waves. However, this is not possible for waves at all wavelengths. Edge-

waves with short wavelengths have smaller vertical scales and do not exert a large influence

on the opposite boundary, so that baroclinic growth can not occur (Davies and Bishop, 1994).

Thus, short waves are neutral (neither grow nor decay), whilst longer waves are baroclinically

unstable. Using the Eady model, it can be shown that the wavelength of the most unstable

mode is around 4000km (James, 1994). This is similar to the cyclones that are seen in real life,

as discussed by Carlson (1994). Baroclinic instability is associated with a strong meridional

temperature gradient, or baroclinicity, of the atmosphere. This strong gradient is found at mid-

latitudes, and is more intense in the winter; hence the maximum in storm tracks are found at

mid-latitudes during the winter season.
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Figure 1.8: The most rapidly (a) growing and (b) decaying Eady waves. Thetop panels show
the streamfunction fields, with high and low regions marked,and the bottom panels show the
buoyancy fields with the warm and cold regions marked.

A real example of baroclinic growth in the atmosphere is shown in Fig. 1.9. This example

was chosen over the United States as there is a large amount ofdata, compared with regions

over the oceans. The low pressure system has developed in a region with a large temperature

gradient. The low level (850 mb) trough is located to the eastof the upper level (500 mb)

trough, illustrating the westward tilt with height that is vital for the growth of the system.

1.3.3 Non-Modal Growth

The linear models of Charney and Eady are non-normal, which means that the discrete normal

modes do not form a complete orthogonal basis. Pedlosky (1964) showed that a continuous

spectrum of waves must also be included, so that any initial perturbation can be represented. In

fact, the continuous spectrum involving delta functions inPV play an important role in the rapid

development of perturbations. This has been shown by Farrell (1982, 1984), where the growth

of perturbations is examined in the form of an initial value problem. Instead of analytically

finding the eigenvectors, the equations were integrated using different initial conditions. This

approach emphasized that it is possible for the growth rate of a perturbation to exceed the
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(a) 500 mb (b) 850 mb

Figure 1.9: 500mb and 850 mb level heights and temperature on the 12 Feb 2001 at 00Z.
Plotted station data shows the wind, temperature and dew point temperature. The solid lines
represent contours of the Geopotential Height (m), and the dashed lines represent the temper-
ature (Celcius). Note that these contours have been determined using a data display package
(McIDAS-X), and not a data assimilation algorithm. Taken from http://apollo.lsc.vsc.edu/

exponential growth of the most unstable normal mode, over a limited period of time. Farrell

(1989) extended this work, to calculate the ‘optimal perturbations’ which give the maximum

linear growth in a finite time interval. Optimal perturbations were first calculated for a full

primitive equation model by obtaining the dominant singular vectors (Buizza and Palmer, 1995,

Buizza, 1997), and are now routinely calculated for use as the initial perturbations for the

ECMWF ensemble prediction system (e.g. Buizza et al., 2000). In the rest of this thesis, we

will use ’Optimal Perturbations’ to mean the singular vectors of the model, to reduce confusion

with other singular vectors that will be introduced later on.

The structures of the optimal perturbations at the initial time are characterized by the su-

perposition of the interior PV delta functions, with a smallvertical scale. For example, Fig.

1.10 shows the QGPV and buoyancy fields for a typical perturbation which gives rapid finite-

time growth. Such a perturbation will be used in some of the experiments in this thesis, and

the details of the calculations may be found in Section 6.3 and in Appendix A. The associ-

ated streamfunction and meridional wind fields are also shown. The initial QGPV anomalies

(at T+0) are advected eastwards and westwards by the zonal shear flow. This ‘unshields’ the

QGPV located near to the middle of the domain. The meridionalwinds associated with the



Chapter 1. Introduction 19

max psi=0.018

max psi=0.044

max v=0.036

max v=0.106

2000 200020002000 40004000 4000 4000 60006000 60006000 8000 800080008000

0

0

2

2

4

4

6

6

8

8

10

10

max q  =1.136

max q  =1.132

max b  =0.115

max b  =0.096

T+24

Meridional WindStreamfunctionBuoyancyQGPV

T+0

Figure 1.10: The evolution of a perturbation which gives rapid finite-time non-modal growth.
Each panel shows a z-x cross section, with the horizontal distance and height in km. The top
panels show the initial perturbation and the bottom panels show the perturbation 24 hours
later. The QGPV,q, Buoyancy,b, Streamfunction,ψ and Meridional Windv fields are shown
at both times. The vertical axis is the height (km) and the horizontal axis is the distance in the
zonal direction (km). The basic state flow is such that the zonal wind is zero in the middle of
the domain.

interior PV produce boundary thermal anomalies, so that theperturbation evolves into a struc-

ture that resembles that of a growing normal mode. The streamfunction field has grown in

amplitude, has a westward tilt with height, and new systems are emerging to the east at upper

levels and to the west at low levels. This growth mechanism isalso described by Badger and

Hoskins (2001) and Morgan (2001), Morgan and Chien (2002).

If the true state has a small-scale interior structure, but this is not captured in the analysis, it

is possible that the forecast error will grow rapidly. Such small scale errors may be due to a poor

observational network or imperfect parameterization scheme (Beare et al., 2003). Sensitivity

tests have shown (Rabier et al., 1996), that large forecast errors can be traced back to small

analysis errors, with a strongly tilted structure. Rabier et al. (1996) state that the assimilation

system must be able to “deal with structures that are both strongly tilted and small scale (in

the horizontal and the vertical)”. The sensitivity tests used a linear assumption, but Beare

et al. (2003) used a method termed as ’PV-sensitivity mapping’, to understand the effect of

nonlinear processes. It was found that baroclinic regions near the steering level are particularly

sensitive to localized PV perturbations. Targeted observations, such as dropsondes, may be

added into these sensitive regions. Hence, it is important that the DA algorithm can use these

extra observations to correct, or add localized sharply tilted vertical structures.

It is difficult to obtain reliable estimates of the true background state errors in an opera-
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tional setting, as the true state is unknown. However, it is likely that these error structures are

important as they grow fast and may trigger large forecast errors. We should therefore ensure

that DA algorithms are able to capture these structures (Swanson et al., 2000, Hollingsworth,

2000).

In summary, the vertical structure of both modal and non-modal structures is very impor-

tant for the growth and decay of cyclones, and hence it is vital that a DA algorithm analyses

this structure correctly.

1.3.4 4D-Var in the Presence of Baroclinic Instability

We now review some of the previous studies that have shown 4D-Var to perform well in the

presence of baroclinic instability.

The ability of 4D-Var to perform well in cases of baroclinic instability was first demon-

strated by Courtier and Talagrand (1987). A total number of 5479 observations, during a 24

hour period, were assimilated by 4D-Var with no background term, using a spectral model of

the vorticity equation with 231 degrees of freedom. The observations were mostly over the

land, and in particular did not cover a region containing theAleutian depression, yet the 4D-

Var algorithm was able to combine the information from the observations with the dynamics,

to reconstruct the depression. They noted that unrealisticnoise was also generated in data poor

areas, but that this could be reduced by adding a smoothing term to the cost function.

The reconstructive ability of 4D-Var was further demonstrated in experiments by Thépaut

and Courtier (1991) where the mass field was observed and 4D-Var was used to reconstruct

the vorticity field. Rabier and Courtier (1992) examined a simple baroclinic model where the

small scales were observed, and the large scales were reconstructed. Tanguay et al. (1995)

showed that if only the large scales are observed, the assimilation window length must be large

enough so that information can be transferred to the small scales. Experiments by Thépaut et al.

(1993b) where data was excluded over an area with a strong baroclinic development show that

dynamics are able to infer the correct information in the unobserved regions. However, the

analysed systems in the excluded data areas were slightly less intense.

To understand how 4D-Var uses information from observations, Thépaut et al. (1993a)

showed that by assimilating a single observation, the analysis increment is proportional to a

column of the Kalman Filter covariance matrix that is implicitly propagated in 4D-Var. The

single observation experiments are therefore useful in understanding how 4D-Var spreads the
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(a) 3D-Var (b) 4D-Var

Figure 1.11: Comparison of x-z cross sections of 3D-Var and 4D-Var structure functions for
geopotential height, from single observation experiments. In both cases, the observation is
placed at 1000 hPa. Note that East is on the left hand side and West is on the right. (Figures 3
and 12 from Th́epaut et al. (1996)).

information from an observation to the surrounding grid points. An example of these flow-

dependent structure functions is shown in Thépaut et al. (1996). For clarity, Figs. 3 and 12

from Thépaut et al. (1996) are also shown here in Fig. 1.11. The 3D-Var structure function

(background error correlation between the observation point and surrounding grid points) is

isotropic with an equivalent barotropic structure, havingno tilt with height. The equivalent

4D-Var structure function is anisotropic and exhibits a westward tilt with height with the upper

levels showing more correlation with the lower level observation than for 3D-Var. Thépaut

et al. (1996) also showed that it is important to have a long assimilation window (within the

validity of the tangent linear model) to ensure that the dynamical structure functions are fully

developed. Westward tilting structure functions and analysis increments can also be found in

the ECMWF operational 4D-Var, as shown by Rabier et al. (1998, 2000). This westward tilt is

vital for baroclinic growth

Thus, with observations at the end of the window, the analysis increments have a vertical

structure that is required for baroclinic growth. The relationship between analysis increments

and unstable modes has been shown by Rabier et al. (1996), where the gradient of a cost

function is shown to be dominated by the most unstable components of the initial analysis error.

Pires et al. (1996) showed theoretically that future observations in a 4D-Var algorithm provide

accuracy of the unstable modes and experiments by Thépaut et al. (1996) demonstrated a strong

link between singular vectors of the tangent linear model with 4D-Var analysis increments.

In summary, 4D-Var is able to combine information from observations with the model
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dynamics. This gives two main advantages in comparison to 3D-Var. First, 4D-Var is able to

generate analysis increments with a westward tilt with height, as required for baroclinic growth.

Second, 4D-Var is able to reconstruct or infer the state in unobserved regions. Although, these

advantages have been demonstrated, there are still many questions concerning 4D-Var that

remain. These are discussed in the following section.

1.4 Current Issues

We now consider some of the important issues concerning 4D-Var at the present time. In the

future, there will be a greater emphasis on the use of satellite data and adaptive observations

rather than in-situ data. We therefore need to assess how 4D-Var will use these observations,

and whether we can expect to see a large improvement in forecast accuracy. There are also

questions concerning the specification of the assumed errors. For example, there has been

much research involved with the specification of the initialbackground error covariance ma-

trix, B. Ideally, the covariance should be flow-dependent and propagated from the previous

assimilation window. However this is not possible and so approximations are needed. In the

previous sections, we have presented 4D-Var using the modelas a strong constraint. This as-

sumes that the model is perfect, and although some methods have been suggested to account

for the model error, it is still not clear how this should be dealt with. A related problem is to

consider the nature of the background error. The backgroundstate is given by a forecast valid

at the same time as the analysis. Therefore, the background state may contain phase errors

and amplitude errors. It is therefore important to considerhow 4D-Var will behave in such a

case, and whether there are alternative methods that will deal with phase errors in a better way.

These issues are now discussed further.

1.4.1 The Global Observing System and Adaptive Observations

The Global Observing System (GOS) (WMO, 2003) is a core component of the World Weather

Watch (WWW) - the international meteorological observing system that is directed by the

World Meteorological Organisation (WMO). GOS consists of the surface and radiosonde net-

works, and the aircraft and satellite systems that are operated by member countries of the

WMO.

At the present time, there are about 13 000 land stations thatprovide surface observations
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every 3 hours. There are also about 1000 ships and 3000 mooredor drifting buoys that provide

surface observations over the ocean. It is important that observations are not only taken at

the ground, but that the vertical profile of the atmosphere isobserved. Therefore, there are

approximately 600 upper-air stations that provide radiosonde observations twice a day. Aircraft

data also provide an important addition at upper levels, mainly near the tropopause. Thus, the

in-situ observations are mostly over the land and at the surface, giving many regions with sparse

observations. For example, the southern hemisphere is particularly data sparse as it is mostly

covered by the ocean. In these regions, remote-sensing instruments on satellites make a vital

contribution. Observing system experiments by Andersson et al. (1991), Bouttier and Kelly

(2001) showed that in the southern hemisphere satellite data does indeed have a large impact

on forecast accuracy.

There are two main types of satellites: polar orbiters and geostationary satellites. Polar

orbiters, or low earth orbiting satellites, orbit at an altitude of 600-1000km from pole to pole.

The instruments, for example Advanced TIROS Operational Vertical Sounder (ATOVS), scan

sideways to give bands or swathes of observations. The instruments on these satellites provide

vertical profiles of temperature and humidity in cloud free areas. The vertical resolution of

the instrument is determined by the number of channels, or wavelengths that are measured.

Geostationary satellites, for example Meteosat, orbit around the equator and with the same rate

of rotation as the earth so that the same part of the Earth is continuously monitored. These

satellites are at a high altitude of about 36 000km, and therefore the instruments do not give

such a fine resolution as the polar-orbiting satellites. Theinstruments on the geostationary

satellites are often used to measure wind velocities in the tropics by tracking clouds and water

vapour.

In the future, it is expected that there will be fewer, but more evenly distributed radiosonde

and surface stations and satellite data is expected to take agreater role. The future polar orbiting

satellites will carry instruments, for example the Infrared Atmospheric Sounding Interferom-

eter (IASI), which measure the emitted radiation at a vast number of channels, giving a much

increased vertical resolution (1-4km compared with the present 4-10km). The new geostation-

ary satellites, for example Meteosat Second Generation (MSG), will also give an enhanced

horizontal resolution (1 km) of derived winds at more vertical levels.

It is expected that the increased vertical resolution in satellite data will particularly benefit

the analysis of regions of baroclinic instability where thevertical structure is important. It

is important to assess whether these observations will be capable of identifying the correct
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vertical structures, and in particular, to understand how these observations are used in a 4D-

Var algorithm.

In the future, adaptive or targeted observations should also provide a large contribution

to GOS. These observations can be added to particular regions of the atmosphere which are

thought to be important to be observed. For example, dropsondes may be released from air-

craft into regions which are particularly sensitive to error growth or that need to be analysed

accurately (Desroziers et al., 1999). Observations are expensive, and therefore there are re-

straints on the total number of observations. It is therefore important to place both the fixed

observing system observations and the extra adaptive observations in the optimal positions in

space and time so that the forecast errors are as small as possible. The optimal positions are

non-trivial as they depend on the true state of the atmosphere, the data assimilation scheme,

the forecast model and the definition of ‘optimal’ (Snyder, 1996, Berliner et al., 1999). Much

research has focussed on choosing the optimal positions fortargeted observations using the

concept of sensitive regions. These regions can be identified using singular vector or sensitiv-

ity vector techniques. There has been little study on the question of where observations should

be placed from the perspective of the data assimilation scheme.

1.4.2 Understanding 4D-Var

4D-Var is an expensive method in comparison to methods such as 3D-Var and FGAT (First-

Guess at the Appropriate Time, described in Rabier et al. (1998), where the background state is

evolved to the correct time). It is therefore important to understand the advantages of 4D-Var

so that the cost can be justified and to maximize the benefits.

Many of the studies that have been used to understand 4D-Var have used single observation

experiments. These have provided an understanding of the flow-dependent structure functions

and the equivalence with the Kalman Filter. However, they have not provided insight into how

the information from more than one observation interacts ina 4D-Var system. In particular,

they cannot be used to understand how a time sequence of observations is used.

The 1D-Var equations have been used for many satellite retrieval studies. These are the

same as 3D-Var, except that the state vector represents a column of the atmosphere and not

the full three dimensions. Because the dimension of this problem is much smaller than the

dimension of atmospheric data assimilation, mathematicaltechniques have been applied to

give an understanding of how the information from the satellite observations are used in the 1D-
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Var algorithm, for example Mateer (1965). These studies arecurrently useful for determining

the optimal subset of satellite channels to be used in a retrieval (Rabier et al., 2002). An

interesting question is whether some of the techniques thathave been used in this context

can be applied to 4D-Var with a view to understanding the 4D-Var algorithm further and to

choosing an optimal set of observations. For example, Fisher (2003) has developed a method

to evaluate the degrees of freedom for signal and entropy reduction in a 4D-Var system. These

numbers give an indication of the amount of useful information contained in the observations

when used in a 4D-Var system.

1.4.3 Background Error Covariance Specification

The background error covariance is generally considered tobe one of the most important parts

of a data assimilation algorithm as this matrix is responsible for the directions in which data is

spread. For example, in a region of dense noisy observations, the background error correlations

are needed to ensure that the analysis is smooth. In a region with only one observation, the

background error correlations are needed to spread the information from the observations to

the surrounding grid points. The background error covariance is also necessary to specify the

correlations between different variables. For example, ifonly the pressure field is observed,

and if geostrophic balance is incorporated into the covariance matrix, the algorithm will be able

to infer the correct wind field.

The correlations may be specified from observation minus background statistics (Hollingsworth

and Lönnberg, 1986), or from differences between forecasts and analyses verifying at the same

time, for example the NMC method, (Parrish and Derber, 1992). These methods assume that

the covariance can be separated into horizontal and vertical parts. It is possible to define the

covariance so that the vertical correlations vary with the wave number (Rabier et al., 1998), but

this still does not give flow-dependent covariances.

In theory it is possible to fully transfer information from the previous window by propa-

gating the covariance matrix with the Kalman Filter (Li and Navon, 2001). Practically, it is not

possible to evolve the whole matrix and approximations are required. The results by Thépaut

et al. (1996) showed that there is a strong link between singular vectors and the structure func-

tions, and therefore it has been suggested that it may be possible to approximate the covariance

using singular vectors (e.g. Ehrendorfer and Tribbia, 1997). Algorithms known as ‘simplified’

or ‘Reduced Rank’ Kalman Filters (RRKF), (e.g. Fisher and Andersson, 2001, Beck, 2003)
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have been proposed as feasible methods to gain some of the benefits of the Kalman Filter. In

such algorithms, only a subset of the covariance matrix (such as the parts corresponding to the

optimal perturbations of the model) is propagated in time. Methods such as the geostrophic co-

ordinate transform (Semple, 2001) have also been suggestedto generate flow-dependent error

structures. At the present time, it is not clear how the covariance matrix should be approxi-

mated and this area requires further research.

1.4.4 Model Error

In this chapter, both 4D-Var and the Kalman Filter have been presented with the model as a

strong constraint. This assumes that the model is perfect, but this is clearly not the case. It is

possible to add the model as a weak constraint, by adding extra terms to the control variable

to give an extended or augmented assimilation. These extra terms could either represent the

model forcing or the model parameters. By applying control theory or parameter estimation,

it is then possible to use a minimization algorithm to find theoptimal model variables (e.g.

Griffith, 1997, Wergen, 1992, Zou et al., 1992b, Lu and Hsieh,1997, Navon, 1997). However,

the problem is that the number of control variables needs to be relatively small and so it is not

possible to add a different model forcing at every time step.Also, it is not known what the

covariance matrix for the model errors should be. Thus, how best to incorporate model error

into 4D-Var remains an open research problem.

1.4.5 Phase Errors

The BLUE equations optimally blend together observations and a background state. However,

this may not give a good analysis in the case where there is a sharp gradient such as a front. For

example, Bennett (2002) describes the case of ocean temperatures near the Gulf stream. If the

background state is in the wrong place, then when observations are added, the sharp front may

become smeared out. For example, Lorenc (1981) considers a front that has been mispositioned

in the background state. Instead of moving the front, as a human subjective analysis would,

the optimal interpolation algorithm has smeared the front out into an extended region. This is

because the error covariances were not representative of the correct error structures.

We therefore need to consider new data assimilation methodswhich may be able to blend

together the information from observations and the background state in a better way, especially

in cases where the background state contains displacement errors.
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Hoffman et al. (1995) suggested a technique where the cost function is split into separate

terms to account for displacement errors explicitly. A variational method is then used to find

a displacement vector, which may be constant throughout thedomain, or defined spectrally as

in Hoffman and Grassotti (1996). A similar method has also been implemented by Brewster

(2002a,b), where a displacement vector is found by dividingthe grid into subvolumes and

using a ‘brute-force search method’. The translation is achieved by adding a pseudo wind to

the model equations. A second possible technique is to applythe Monge-Kantorovitch optimal

mass transfer problem (Benamou et al., 2002). In this case, avelocity field is applied to the

state so that it is rearranged to be closer to the observations, whilst the size of the velocity

vector is constrained to be small. The application of the Monge-Kantorovitch problem to data

assimilation has been briefly discussed by Douglas (2000). Athird possible technique is to

adjust the PV field so that it is more consistent with water vapour imagery. This could be

achieved manually (e.g. Swarbrick, 2001, Rφsting et al., 2001, Carroll, 1997), or through the

use of digital image warping (Alexander et al., 1998), whichuses tie points that are defined

manually. This allows the model fields to be distorted in a waythat preserves the dynamical

balance.

1.5 Key Questions Addressed

Section 1.4 discussed some of the important issues that needto be researched. We now focus

on a subset of questions that are addressed in this thesis. The overall focus of this thesis is:

To understand the extent to which 4D-Var can develop the structures needed for the growth

and decay of baroclinic systems.

The key questions are:

1. How are observations used in 4D-Var?

We aim to understand how 4D-Var uses the model dynamics to spread information from

observations to surrounding grid points. This is importantin assessing how much better

4D-Var is compared to 3D-Var. It is known that 4D-Var is able to link together informa-

tion from a time sequence of observations with the model dynamics to reconstruct the

state in unobserved regions, but this process is not well understood. A particular aspect

of this is to investigate whether some of the information content techniques that are used

in 1D-Var satellite retrievals can be extended to 4D-Var.
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2. Why has 4D-Var been shown to perform well in regions of baroclinic instability?

Many studies have shown 4D-Var to develop structures that tilt westwards with height,

necessary for baroclinic growth, and that there is a strong link between the analysis incre-

ments and singular vectors. We wish to develop this further by considering situations in

which modal growth or decay dominates, and situations wherenon-modal growth dom-

inates. With the increase in satellite data, it is importantto ask whether 4D-Var will be

able to capture the correct aspects of the vertical structure needed for baroclinic growth

and decay.

3. How can the benefits of 4D-Var be maximized?

Given that 4D-Var does give some benefits in comparison to 3D-Var, it is important to

understand how these benefits can be maximized. In particular, to understand how 4D-

Var can be designed so that it always performs well in regionsof baroclinic instability.

This includes considering what the optimal observing system would be from the perspec-

tive of the data assimilation scheme. We aim to understand where observations should

be placed so that the maximum amount of useful information can be extracted. In par-

ticular, we consider where the observations should be placed in the 4D-Var assimilation

time window. Many studies have shown that the 4D-Var window should be as long as

possible (within the validity of the tangent linear model),and that observations at the

end of the window produce flow-dependent analysis increments. However, these studies

have only considered single observations. We therefore consider the best positions for

observations at more than one time level.

1.6 Thesis Outline

To answer these questions, we consider idealized 4D-Var experiments with the Eady model.

This is the most simple model of baroclinic instability and therefore allows the important mech-

anisms to be isolated.

Chapter 2 describes the development of a 4D-Var algorithm using the Eady model. The

solution of the 4D-Var minimization is derived using linearalgebra and Lagrange multipliers,

and then the Eady model and adjoint model are described. A suitable minimization algorithm

is chosen by comparing four different algorithms, and the convergence criteria are defined. A

simple background error correlation model based on Laplacesmoothing is also developed.
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Chapter 3 discusses the results from idealized 4D-Var identical twinexperiments. The

experiments consider the case where the true state is given by either normal mode growth

or decay, the lower level wave is observed and 4D-Var is used to reconstruct the upper level

wave. These experiments are used to examine the ability of 4D-Var to reconstruct the state in

unobserved regions and also to infer the vertical structureneeded for the growth or decay of the

state. The impacts of the background state, observational noise, background error correlations

and temporal position and weights of the observations are investigated.

Chapter 4 introduces the use of the singular value decomposition (SVD) to understand

4D-Var. We first describe how the SVD has previously been usedto understand the informa-

tion content of observations in satellite retrieval studies. This is then extended to consider the

information content of observations in 4D-Var. We will showthat the 4D-Var analysis incre-

ments can usefully be written as a linear combination of the right singular vectors (RSVs) of

the observability matrix, and discuss the similarities between these RSVs and optimal pertur-

bations. The chapter finishes by discussing the computationof the SVD of the observability

matrix for the Eady model.

Chapter 5 discusses the SVD of the observability matrix that was implicitly used by the

experiments in Chapter 3. This is used to give a new interpretation of the 4D-Var analyses and

to give a further understanding of how observations are usedin 4D-Var. Finally, it is shown

that 4D-Var may be formulated as a method known as Tikhonov Regularization which is often

used to solve discrete ill-posed problems.

Chapter 6 considers more realistic experiments. The impact of background error cor-

relations, in both dense and sparse data regions, is considered from an SVD perspective by

examining the SVD of the normalized observability matrix. The ability of 4D-Var to generate

analysis increments for non-modal growth is then considered. The final experiments consider

the information content of different observing systems such as two horizontal lines and vertical

lines.

Chapter 7 concludes the work of this thesis. We return to the key questions that have been

addressed, and discuss the extent to which they have been answered. All the experimental work

in the thesis has dealt with highly idealized case studies. We therefore discuss the implication

of this thesis to operational DA. The chapter finishes by discussing the future work which

follows from this thesis.
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Development of a 4D-Var algorithm using

the Eady model

The focus of this thesis is an understanding of the extent to which 4D-Var is able to develop

the structures necessary for baroclinic growth and decay. This will be addressed using 4D-Var

identical twin experiments with the Eady model - a simple model of baroclinic instability.

Identical twin experiments involve two stages. First, the numerical model is integrated to

provide the ‘true’ atmospheric state. Then, synthetic observations of the true state are used by

the data assimilation algorithm to find the analysis, from which the forecast is generated. In

identical twin experiments, the model can be assumed to be perfect and known errors may be

added to the background state and observations. Thus, the identical twin experiments isolate

the behaviour of the data assimilation algorithm; this is not possible using real data and real

models.

The 4D-Var algorithm requires a forward model to link the observations together. In this

thesis, the 2D Eady model is used so that the behaviour of 4D-Var in the presence of baro-

clinic instability can be addressed. The Eady model is linear, although the quasi-geostrophic

equations have not been linearized. Hence we only consider linear models in the derivation

of the solution to the 4D-Var minimization. The minimum of the cost function is found using

a minimization algorithm which uses values of both the cost function and its gradient. The

gradient of the cost function with respect to the initial state is found using an adjoint model.

In this chapter, the adjoint model is described and a minimization algorithm is selected. The

background error covariance matrix plays an important rolein data assimilation, so the chapter

finishes by describing the development of a simple correlation model. We begin by deriving

30
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the equations used to minimize the constrained 4D-Var cost function. Further details of the

work in this chapter may be found in Johnson et al. (2002).

2.1 The 4D-Var algorithm

The 4D-Var algorithm was introduced in the first chapter, andcan be summarized by the fol-

lowing.

The 4D-Var analysisxa is given by the initial statex0 which minimizes the cost function:

J(x0) = J b + Jo (2.1)

=
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N
∑

i=0

(yi − Hxi)
TR−1

i (yi − Hxi) (2.2)

subject to the strong constraint thatxi also satisfies the linear model equationsxi+1 = Mxi,

givenx0, wherexi = x(ti) is the state vector at timeti, xb is the background state, and

yi = y(ti) is the vector of observations at timeti such that the observations are given in

an assimilation window of time length[t0, tN ]. H is the observation operator which converts

from state space to observation space, andB andR are the background and observation error

covariance matrices.

This is a constrained minimization, however, it can be transformed to an unconstrained

minimization. To find the minimum, the gradient of the cost function with respect to the

initial state is required. The equations that are used to calculate the gradient can be derived by

applying linear algebra to the discrete case, or perhaps more elegantly by applying the method

of Lagrange to the continuous case. Both derivations are nowapplied to the observation term

Jo. It is not necessary to consider the background termJ b at this stage as this can simply be

added to the equations for the observation term. The 4D-Var algorithm will be used for the

Eady model, which is a linear model. Therefore, only linear models are considered.

2.1.1 Derivation using Linear Algebra

The derivation using linear algebra is first given. This follows Bouttier and Courtier (2003) and

Lagarde et al. (2001). The observation term can be written as:

Jo =

N
∑

i=0

Joi (2.3)
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where the indexi is the observation time and

Joi = 1
2
(yi −Hxi)

TR−1
i (yi −Hxi)

= 1
2
(yi −HM . . .Mx0)

TR−1
i (yi − HM . . .Mx0).

(2.4)

Then the gradient ofJoi with respect to the initial conditionsx0 is given by:

∇x0
Joi = −(HM . . .M)TR−1

i (yi − HM . . .Mx0)

= −MT . . .MTHTR−1
i di

(2.5)

wheredi = (yi − Hxi) denotes the innovation vector at timeti and where the adjoint model

MT satisfies:

< Mx,y >=< x,MTy > (2.6)

where<,> is an inner product. Hence the gradient of the observation term is given by:

∇x0
Jo = −

{

HTR−1
0 d0 + MT (HTR−1

1 d1 + MT (HTR−1
2 d2 + . . .+ MTHTR−1

N dN ) . . .)
}

.

(2.7)

In 4D-Var, the initial data is used as the control variables,so the adjoint model is used to

propagate the gradient vector backwards in time (see for example, Lewis and Derber (1985)

and Errico (1997)). It is important to note that the adjoint model is in general not the same as

the inverse modelM−1 (i.e. running the forward model backwards in time).

2.1.2 Derivation using Lagrange Multipliers

The derivation using Lagrange multipliers and the calculusof variations (see for example,

Gelfand and Fomin (1963) and Forray (1968)) is now illustrated by considering the continuous

multivariable case. Similar derivations are also given by Le Dimet and Talagrand (1986),

Griffith and Nichols (1994), Griffith (1997) and Wlasak (1997).

The continuous 4D-Var problem can be stated as:

Minimize the functional
∫ tN

t0
F (x, t)dt, defined over an assimilation window[t0, tN ], tN >

t0 > 0, subject to the (strong) model constraintẋ = ∂x
∂t

= m(x, t), wherex is an n-dimensional

state vector and the timet ∈ [t0, tN ] is a scalar. F and m are scalar and vector functions
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respectively. All variables are real and are assumed to be sufficiently smooth and continuous.

Using the method of Lagrange, the Lagrangian functionalL can be constructed as:

L =

∫ tN

t0

{

F (x, t) + λT (ẋ− m(x, t))
}

dt (2.8)

=

∫ tN

t0

G(x, ẋ,λ, λ̇, t)dt (2.9)

whereλ is an n-dimensional vector of Lagrange multipliers andG = F + λT (ẋ − m) is a

scalar function. Using a Taylor series expansion and integration by parts, necessary conditions

for the first variation ofL to be zero,δL = L(x+ δx,λ+ δλ, t)−L(x,λ, t) = 0 are given by

Eulers equations:

∇λG− d

dt
∇

λ̇
G = 0 (2.10)

∇xG− d

dt
∇ẋG = 0 (2.11)

and the transversality condition:
[

δxT∇ẋG
]tN

t0
= 0. (2.12)

Equation (2.10) gives the model constraint, and equation (2.11) gives what is known as the

adjoint equation:

−λ̇j =

(

∂m

∂xj

)T

λ− ∂F

∂xj
for j = 1, . . . , n. (2.13)

The transversality condition (2.12) gives the final conditionsλ(tN ) = 0 and also implies that

∇x(t0)L = −λ(t0). That is, the gradient ofL with respect to the initial conditions is found

from the adjoint variable also at the beginning of the window. This gradient can be used by a

minimization algorithm to find the minimum.

This theory can be extended to the multivariate discrete case by constructing the La-

grangian functional:

L = Jo +
N
∑

i=0

λTi+1(xi+1 − Mxi) (2.14)

and deriving the adjoint equations (Griffith, 1997):

λN+1 = 0

λi = MTλi+1 −∇xi
Joi i = N, . . . , 0.

(2.15)
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Then the gradient ofJo at the initial time is given by

∇x0
Jo = −λ0. (2.16)

If M is the forward linear model, thenMT is theadjoint model, λ is the vector ofadjoint

variablesand∇xi
Joi = −HTR−1

i (yi−Hxi) is known as theadjoint forcing . Thus, the result

using linear algebra (2.7) gives the same result as the derivation with Lagrange multipliers

(2.16).

i+1
−

∆
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Figure 2.1: A schematic diagram illustrating the calculation of the cost functionJ and the
gradient of the cost function∇J . These are both used by a descent (or minimization) algorithm
to find the minimum.

2.1.3 Summary

To summarize, the 4D-Var algorithm is solved using a minimization algorithm. On every

iteration, the minimization algorithm computes the value of the cost function and the gradient

of the cost function using the following steps:
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1. Integrate the forward model fori =

0, . . . , N − 1, given the initial datax0

xi+1 = Mxi

2. Calculate the innovation vectors fori =

0, . . . , N

di = yi − Hxi

3. Calculate the value ofJo Jo = 1
2

∑N

i=0 dTi R
−1
i di

4. Calculate and add the value ofJ b J b = 1
2
(x0 − xb)TB−1(x0 − xb)

5. Set the adjoint variables at the final time

to zero

λN+1 = 0

6. Integrate the adjoint model backwards in

time, for i = N, . . . , 0,

λi = MTλi+1 −∇xi
Joi

using the adjoint forcings∇xi
Joi ∇xi

Joi = −HTR−1
i di

7. The gradient is then given by the negative

of the adjoint variables at the initial time

∇x0
Jo = −λ0.

8. Calculate and add the gradient ofJ b ∇J b = B−1(x0 − xb).

Some of these steps are also illustrated in the schematic diagram in Fig. 2.1.

2.2 The 2D Eady model

The 2D Eady model (Eady 1949) is a simple linear quasi-geostrophic (QG) model of baro-

clinic instability, and will form the basis for the experiments in this thesis. The qualitative

mechanisms for baroclinic instability were described in Chapter 1. In this section, the non-

dimensional equations for the Eady model are introduced. These are derived from the quasi-

geostrophic equations, as given in Appendix A. The quasi-geostrophic equations are an approx-

imation of the primitive equations for synoptic scales, which assume that the Rossby number

is small and that the Burger number is unity.

The Eady model contains rigid surfaces at the ground and at the tropopause. The basic

state is given by a zonal wind shear with height, that is associated with a uniform meridional

temperature gradient. The density, static stability and Coriolis parameter are all taken to be
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constants. The Eady model equations describe the linear evolution of the perturbations to this

basic state. Although the model is linear, the equations have not been linearized.

The non-dimensional Eady model equations are now described. The domain is infinite in

the North-South direction y, periodic in the West-East direction x, and is betweenz = −1
2

and 1
2
. The initial state is given by the interior quasi-geostrophic potential vorticity (QGPV)

perturbation,q and the perturbation buoyancy on the boundaries,b,

q(x, z, 0) = q0(x, z) in zε

[

−1

2
,
1

2

]

, xε[0, X] (2.17)

b(x, z, 0) = b0(x, z) onz = ±1

2
, xε[0, X]. (2.18)

The perturbation QGPV is defined ((1.14) and (A.35) in Appendix A) as:

q =
∂2ψ

∂x2
+
∂2ψ

∂z2
in zε

[

−1

2
,
1

2

]

, xε[0, X], (2.19)

whereψ is the perturbation geostrophic streamfunction. The boundary conditions are periodic

in the horizontal:

ψ(0, z, t) = ψ(X, z, t) in zε

[

−1

2
,
1

2

]

, xε[0, X] (2.20)

and, through Hydrostatic balance (1.16), the buoyancy fieldon the upper and lower boundaries

provides the vertical boundary conditions:

∂ψ

∂z
= b on z = ±1

2
, xε[0, X]. (2.21)

Due to the periodic boundary conditions, an extra equation is needed to ensure that the problem

for calculatingψ is well posed. Thus, the mean of the streamfunction field is arbitrarily set to

zero:

∫∫

ψdxdz = 0 in zε

[

−1

2
,
1

2

]

, xε[0, X]. (2.22)

Perturbations to the basic state are advected zonally by thebasic state flow. The QGPV
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conservation equation ((A.34) in Appendix A),

(

∂

∂t
+ z

∂

∂x

)

q = 0 in zε

[

−1

2
,
1

2

]

, xε[0, X] (2.23)

is derived from the QG thermodynamic equation and the QG vorticity equation. This states that

QGPV is conserved following the horizontal, geostrophic, adiabatic, frictionless flow (Hoskins,

1997).

The QG thermodynamic equation reduces to:

(

∂

∂t
+ z

∂

∂x

)

∂ψ

∂z
=
∂ψ

∂x
on z = ±1

2
, xε[0, X] (2.24)

by assuming that there is no vertical motion at the boundaries ((A.33) in Appendix A). This

equation describes the evolution of the Rossby-edge waves on the upper and lower boundaries.

Notice that it is the meridional wind that provides the crucial coupling between the upper and

lower waves, although this is still a 2D model.

The Eady model is discretized using 11 vertical levels for streamfunction and QGPV, with

the upper and lower level buoyancy defined on levels 1 and 11. There are 40 grid points in

the horizontal, giving 520 degrees of freedom. The advection equations are discretized using

a Leapfrog advection scheme, and the NAG routine naggen lin sys (NAG) is used to perform

an LU factorization to solve the Laplace equation. The discrete model is described in more

detail in Appendix A and has previously been used, for example, by Badger (1997), Badger

and Hoskins (2001) to investigate the nature of optimal perturbations, and also by Fletcher

(1999) to investigate advection schemes.

The simple dynamics of this model should allow a clear understanding of the mechanisms

in 4D-Var. Further, as the model is computationally cheap and has only 520 variables, it is

straight-forward to explicitly compute the singular vector calculations required later in the

thesis.

2.2.1 The Adjoint model

Section 2.1 showed that the adjoint model is used to calculate the gradient of the cost function

J with respect to the initial statex0. The adjoint model for the Eady model is now described.

There are two methods to create the numerical adjoint model of a linear model: find the

adjoint of the continuous equations and then discretize or find the adjoint of the discrete forward
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equations (Sirkes and Tziperman (1997) and Lawless (2001)). Both approaches have been

taken to derive the adjoint for the Eady model, and are brieflydescribed in Appendix B.

The adjoint of the continuous equations can be found using the Lagrange multiplier ap-

proach, as described for a general model in the previous section. Such an approach has pre-

viously been used for other simple models (e.g. Birkett and Nichols, 1983, Birkett, 1986, Xu

and Nichols, 1991, Griffith and Nichols, 1994, Griffith, 1997, Wlasak, 1997, Le Dimet et al.,

2002). All the equations must be considered simultaneously, and hence such an approach is

not suitable for the case of large meteorological models. However, it is useful for the Eady

model as it allows an understanding of the dynamics of the adjoint model. Using the notation

qx = ∂q

∂x
, the continuous forward equations are summarized by:

qt + zqx = 0 ∇2ψ = q,

∫ ∫

ψdxdz = 0 in zε

[

−1

2
,
1

2

]

(2.25)

bt + zbx = ψx ψz = b onz = −1

2
(2.26)

bt + zbx = ψx ψz = b onz = +
1

2
(2.27)

where the initial conditionsq(t = t0) andb(t = t0) are given. The continuous adjoint equations

are summarized by:

q̂τ − zq̂x = +ψ̂ ∇2ψ̂ = 0,

∫ ∫

ψ̂dxdz = 0 in zε

[

−1

2
,
1

2

]

(2.28)

b̂τ − zb̂x = +ψ̂ ψ̂z = −b̂x on z = −1

2
(2.29)

b̂τ − zb̂x = −ψ̂ ψ̂z = +b̂x on z = +
1

2
(2.30)

where the final conditionŝq(t = tn) and b̂(t = tn) are given and the equations are integrated

backwards in time. The time co-ordinateτ , whereq̂τ = −q̂t, has been introduced to make the

backwards time integration explicit. The mean values of theforward and adjoint streamfunc-

tion fields are also set to zero. Comparing the adjoint equations with the forward equations,

it can be seen that the direction of propagation has been reversed in the adjoint equations, the

derivative boundary conditions are given by the horizontalderivative of the buoyancy field and

the streamfunction is used to force both the buoyancy and theQGPV fields.

The adjoint of the discrete equations can be found by considering the linear model as a

sequence of linear operators. The adjoint of each operator can be found and then these are

linked together in the reverse order. Such an approach has been used to find the adjoint models
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of full meteorological models (e.g. Chao and Chang, 1992, Navon et al., 1992, Rosmond, 1997,

Marotzke et al., 1999) and in automatic differentiation compilers such as Giering and Kaminski

(1996). Special care needs to be taken if the forward model contains switches (Thuburn and

Haine, 2001), although this is not relevant for the Eady model and is therefore not considered

in this thesis.

To check that the adjoint model is coded correctly, the ‘NormTest’ and the ‘Gradient Test’

are used. These are already estabilished methods to test adjoint models, for example, Navon

et al. (1992), Li et al. (1994) and Rosmond (1997).

From the definition of the adjoint model (2.6), the adjoint modelMT should satisfy:

(M(tN , t0)x0)
T (M(tN , t0)x0) = xT0 (MT (t0, tN )M(tN , t0)x0) (2.31)

whereM(tN , t0) is the linear model which is integrated fromt0 to tN , andMT (t0, tN) is the

adjoint model which is integrated fromtN to t0. TheNorm test uses random initial conditions

for x0 to check whether this relation is satisfied to the accuracy ofmachine precision and was

used to check the adjoint for the Eady model. The initial conditions had random data with unit

norm, and the model was integrated for 6 hours. The difference between(Mx0)
T (Mx0) and

xT0 (MTMx0) was zero to 16 decimal places.
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Figure 2.2: Verification of the gradient calculation for the Eady model:(a) variation ofφ with
respect toα, (b) variation oflog |φ(α) − 1| with respect toα.

TheGradient test is used to test that both the cost function and adjoint model code are
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correct. From a Taylor series expansion of the cost functionJ ,

J(x0 + αδx0) = J(x0) + αδxT0 ∇J(x0) + O(α2) (2.32)

which can be rearranged to give

φ(α) =
J(x0 + αδx0) − J(x0)

αδxT0 ∇J(x0)
= 1 + O(α), (2.33)

so thatφ(α) → 1 as α → 0. However, this does not hold whenα is close to machine

zero. Thus,φ(α) − 1 should be close to zero for values ofα which are small but not too close

to machine zero. Results of this test for the Eady model are shown in Fig. 2.2, where again,

the forward model was integrated for 6 hours and random data with unit norm was used for

the vectorδx. These figures are almost identical to those in Navon et al. (1992) and Li et al.

(1994), and verify that the adjoint model, cost function andgradient of the cost function have

been coded correctly.

2.3 Choice of the Minimization Algorithm and Termination

Criteria

The 4D-Var analysis is given by the state which minimizes a quadratic cost function. There-

fore, a suitable minimization algorithm is required. On each iteration, the forward model is

used to calculateJ and the adjoint model is used to calculate∇J . This is computationally ex-

pensive, so the algorithm should ideally converge in as few iterations as possible. To give fast

convergence, the algorithm needs to make good use of the the gradient information. The choice

of the minimization algorithm will not affect the results, providing it has converged correctly.

However, the choice is important so that the 4D-Var algorithm takes a short time to converge

to the minimum.

In this section, we compare steepest descents, conjugate gradient, quasi-Newton and mem-

oryless algorithms. Before the minimization algorithms are described, we begin by understand-

ing the properties of the Hessian matrix.

Consider the 3D-Var cost function:

J(x) =
1

2
(x − xb)TB−1(x − xb) +

1

2
(y − Hx)TR−1(y −Hx). (2.34)
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The Hessian matrix ofJ is defined as the second derivative of the cost function:

A = ∇∇J = B−1 + HTR−1H. (2.35)

and is constant becauseJ is quadratic (Gill et al., 1981). By diagonalizing the Hessian matrix

(see for example, Jordan and Smith (1997)), it can be shown that the isocontours of the cost

function are ellipsoids whose principle axes are the eigenvectors of the Hessian with lengths

proportional to the reciprocals of the square roots of the corresponding eigenvalues (Gill et al.,

1981).

For example, consider the two variable quadratic functionF (x) = 1
2
xTAx− bTx, where

A is a symmetric positive definite matrix:

A =











5.5. 4.5

4.5 5.5











b =











22.5

27.5











. (2.36)

At a minimum,Ax = b, andx = (0, 5). The eigenvectors are(0.7,−0.7) and(0.7, 0.7), with

corresponding eigenvaluesλ1 = 1 andλ2 = 10. The isocontours ofF and the eigenvectors

and eigenvalues ofA are illustrated in Fig. 2.3.
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Figure 2.3: Isocontours of the quadratic functionF = 1
2
xTAx− bTx. The blue and red lines

show the directions of the eigenvectors ofA, with the corresponding lengths written at the side
of each eigenvector, where the eigenvalues ofA areλ1 = 1 andλ2 = 10.

As the ratio between the maximum and the minimum eigenvaluesincreases, the isocon-
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tours become more elliptical. If one eigenvalue becomes zero, the isocontours become parallel

and the minimum is then non-unique. Thus, a minimum of the cost function can only exist if

all the eigenvalues are real and positive, which is satisfiedif and only if the Hessian matrix is

positive definite (e.g. Atkinson, 1989).

The condition number is defined as the ratio between the maximum and the minimum

eigenvalue of the Hessian matrix. If this is large, then the problem is poorly conditioned, and

a minimization algorithm will take a long time to reach the minimum. Some minimization

algorithms, however, implicitly use information about theHessian matrix to speed up the rate

of convergence.

The minimization algorithms that are commonly used in data assimilation approximate

Newtons’ method (Navon and Legler, 1987), which is now described. Lettingxk+1 = xk+δxk,

wherek is the iteration number, a truncated Taylor series expansion of J gives:

J(xk+1) = J(xk) + (xk+1 − xk)
T∇J(xk) +

1

2
(xk+1 − xk)

T∇∇J(xk+1 − xk). (2.37)

Setting the Jacobian ofJ with respect toxk+1 to zero, thenNewtons’ methodis:

xk+1 = xk − A−1∇Jk (2.38)

whereA = ∇∇J is the Hessian ofJ , and∇Jk is the Jacobian ofJ with respect toxk. There

is no guarantee thatJ(xk+1) < J(xk) and therefore it is better to modify the method (Beale,

1988), so that on each iteration a line search is performed tofind a scalarαk > 0 which

minimizesJ(xk+1) such that

xk+1 = xk − αkA
−1∇Jk. (2.39)

In 4D-Var the Hessian matrix is unknown as onlyJ and∇J are calculated. Therefore the

Hessian matrix must be approximated.

The steepest descentmethod approximates the Hessian with an identity matrix, which

results in an equation such that a step is made in the ‘downhill’ direction on each iteration.

However, if the condition number of the Hessian matrix is large, the method is slow to con-

verge. This is sometimes known as the ‘narrow valley effect’and the algorithm is seen to

zig-zag into the minimum.

There are two main types of algorithm which give much better rates of convergence than

the steepest descents method by using information about theHessian matrix: the conjugate
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gradient method and the quasi-Newton method.

Theconjugate gradient methodconstructs a set of conjugate search directions from the

set of∇J . A pair of conjugate directionsdi anddj areA-orthogonal, (dTi Adj = 0 for i 6= j).

This means that if a co-ordinate transformation is applied so that the isocontours are spherical,

the search directions become orthogonal (Shewchuk, 1994).The use of conjugate directions

means that the conditioning of the Hessian matrix is taken into account and the directions are

conjugate to each other, so the algorithm is effectively notstepping in the same direction twice.

By using the∇J to construct the conjugate directions, it is possible to construct directions

which are conjugate to all previous directions even though only the previous search direction

needs to be stored, giving a storage ofO(3n) wheren is the dimension of the state vector

(Beale, 1972, 1988). The main problem is that with inexact line searches and rounding errors,

the directions may lose their conjugacy giving slower convergence and the algorithm may even

need to be restarted.

The second type of algorithm is theQuasi-Newton method, also known as the variable

metric method. This uses the∇J to successively update an approximation to the Hessian

matrix. The approximationAk must satisfy the quasi-Newton condition:

Ak(xk+1 − xk) = ∇Jk+1 −∇Jk (2.40)

which can be derived from (2.38) (Press et al., 1992). This method gives an estimate for the

optimal step size so that line searches are not necessary. However, it requires a storage of

O(n2). This is not feasible for operational data assimilation asn is large, but is suitable for

4D-Var with the Eady model.

It is possible to combine the conjugate gradient and quasi-Newton methods to givelimited

memory or memoryless methods. In the conjugate gradient method, search directions are

generated using the set of∇J , but in a limited memory method, the set ofA−1∇J are used

whereA−1 is approximated using a limited number of quasi-Newton updates. AsA−1 does

not need to be stored, these methods require only small storage (O(7n)).

2.3.1 Minimization Algorithm Comparison Experiments

We now use 4D-Var experiments with the Eady model to compare four different minimiza-

tion algorithms: steepest descent, conjugate gradient, quasi-Newton and memoryless quasi-
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Newton. The steepest descent algorithm uses∇Jk as the search direction and uses the largest

possible step sizeαk such thatJk+1 < Jk. The conjugate gradient algorithm, known as

A22CGM (Nash, 1990, 2003), uses a linear search to bracket a minimum to findαk. The quasi-

Newton algorithms use a BFGS (Broyden-Fletcher-Goldfarb-Shanno) update and are known as

CONMIN or algorithm 500 from TOMS (Shanno and Phua (1976, 1980) and Shanno and Phua

(2003)). The memoryless version uses two vectors to build the current approximation of the

Hessian matrix and uses Beale restarts with an inexact line search (Davidons’ cubic interpola-

tion). The algorithms have previously been used by Chao and Chang (1992) and Navon and

Legler (1987).

The 4D-Var experiment considered uses no background state,the true state is given by the

most unstable growing Eady wave (A.38) and perfect observations of both the buoyancy on the

lower boundary and the interior QGPV are provided at T+0 and T+6. This problem is well-

posed without a background state. All the minimization algorithms, except for the steepest

descent algorithm, are terminated when‖∇J‖2
2 < 5 × 10−28.

The comparison of the minimization algorithms is shown in Fig. 2.4. The steepest descent

algorithm shows an extremely slow rate of convergence. The magnitude of the gradient oscil-

lates as the algorithm zig-zags into the minimum. This is dueto the poor conditioning of the

Hessian matrix. The experiment has been run until 200 iterations, with no further change in

the rate of descent.

The conjugate gradient algorithm gives a much faster rate ofconvergence than the steepest

descents method, and reaches the minimum in 10 iterations. However, on each iteration, many

function evaluations are required. This is because the linesearch is found by bracketing a

minimum.

The quasi-Newton method also gives a much faster rate of convergence than the steepest

descents method, reaching the minimum in 10 iterations. Further, on each iteration, there are

only a few function evaluations as an estimate of the optimalstep size is provided. For this

reason, the quasi-Newton algorithm performs better than the conjugate gradient algorithm.

The memoryless algorithm gives a slower rate of convergencethan both the conjugate gra-

dient method and the quasi-Newton method, requiring 160 iterations to give the same accuracy.

This is because the Hessian is approximated with only a rank-2 matrix. It is surprising that the

combined conjugate-gradient, quasi-Newton (memoryless)algorithm has a worse performance

than the conjugate gradient method. This is perhaps due to the differences in the line search

methods or the restarts.
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(c) Quasi-Newton
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Figure 2.4: Behaviour of the cost functionJo using (a) Steepest Descent Algorithm (b) Con-
jugate Gradient Algorithm (c) Quasi-Newton Algorithm (d) Memoryless Algorithm, with in-
creasing iterations (gradient evaluations). The solid line corresponds to the cost functionJ ,
and the dotted line corresponds to the squared Euclidean norm of the gradient‖∇J‖2 with
the magnitude on the left hand axes. The circles show the number of simulations (function
evaluations) used to calculate the next step, with the magnitude on the right hand axes. This
minimization is for the case with no observations on the top boundary. Note that the axes have
different scales.
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Based on this comparison, the CONMIN quasi-Newton algorithm is chosen for all further

4D-Var experiments.

It is important to terminate the minimization algorithm once it has converged. To terminate

before convergence is reached would not give the optimal analysis, but to terminate after it has

converged would waste computer time. There are three basic ways to define the termination or

convergence criteria:

1. At a minimum,∇J = 0.

2. At a minimum, there is negligible change inJ .

3. At a minimum, there is negligible change inx.

The size of these quantities can be defined using different measures and norms. For exam-

ple, the absolute error and relative error of the gradient ofJ are defined as:

abs(∇J) = ‖∇J‖ rel(∇J) =
‖∇J‖
J

(2.41)

where‖ .‖ is a specified norm. It is hard to define a tolerance using the absolute error as

it does not take into account the value ofJ , which may vary for different minimizations. It

is also difficult to use the relative error, as this is undefined whenJ is zero. Therefore the

combination error (Gill et al., 1981), defined as:

comb(∇J) =
‖∇J‖
1 + J

. (2.42)

is chosen instead. This is a combination of the absolute and the relative errors. WhenJ is zero,

it gives the absolute error, but whenJ is large it gives a value similar to the relative error. The

maximum norm (∞-norm), defined by‖x‖∞ =
max
i |xi| is chosen to measure the size of the

vectors, as it gives an indication of the extreme values.

For the experiments in the rest of this thesis, the quasi-Newton minimization algorithm is

terminated if any one of the following convergence criteriaare satisfied:

‖∇J‖∞
1 + J

≤ τ1 (2.43)

‖xk − xk−1‖∞
1 + ‖xk‖∞

≤ τ2 (2.44)
√
Jk −

√
Jk−1

1 +
√
Jk

≤ τ3 (2.45)
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Figure 2.5: The behaviour of the cost functionJ = J b + Jo with increasing iterations (a) cost
function (solid line), squared Euclidean norm of the gradient vector (dashed line), simulations
or function evaluations (circles). (See Fig. 2.4 for further details). (b) The set of termination
criteria (2.43,2.44,2.45). The specified tolerances are shown by the thin solid lines.

whereτi are specified tolerances.J is similar to a squared Euclidean norm, therefore
√
J is

chosen so that this is similar to the Euclidean norm and should have a similar magnitude to the

other termination criteria. The cost functionJ contains a multiplicative constant; therefore, to

ensure that the termination criteria are robust, the cost functionJ and the gradient‖∇J‖ are

first scaled so that they both have a value of unity at the beginning of the minimization.

The experiments in the rest of this thesis use a background state, therefore the convergence

criteria for a minimization using a background state are examined. The 4D-Var experiment

considered uses the true state given by the most unstable Eady wave, with a background state

which has a phase error. Observations of the lower level waveare given at the beginning and the

end of a 6 hour window. The weight given to the observation term isσ−2
o = 1, and the weight

given to the background term isσ−2
b = 10−6. This experiment is described in further detail in

Chapter 3. The behaviour of the cost function and the different convergence criteria are shown

as a function of iterations in Fig. 2.5. The tolerances are chosen so that the minimization

algorithm will terminate at the point where machine precision (10−16) is reached. That is, we

would ideally wish to terminate at the point at which on the next iteration, there is a dramatic

increase in the number of function evaluations. In Fig. 2.5(a), this occurs at iteration number

32 and therefore the tolerances should be chosen so that the minimization algorithm terminates

on iteration 31. The values of the termination criteria shown in Fig. 2.5(b) show that the

measure ofJ reaches a lower value than the other termination criteria. Therefore, this is set to
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have a lower tolerance. Based on Fig. 2.5(b) and plots for similar experiments (not shown),

the tolerances are chosen as:τ1 = 8 × 10−14, τ2 = 8 × 10−14, τ3 = 2 × 10−16. If any of the

termination criteria are satisfied, the minimization algorithm is stopped. The tolerances have

been specified as relatively low values to ensure that the minimization algorithm has converged,

and so it may occasionally be the case that a large amount of unnecessary simulations (function

evalutions) are computed.

2.4 Background Error Correlations

The background error covariance matrix contains the variances and the correlations of the

background state errors. The correlations may be between grid points corresponding to a par-

ticular model variable (auto-correlations), or may be between grid points corresponding to

different model variables (cross-correlations) (Weaver and Courtier, 2001). In the Eady model,

the QGPV and buoyancy errors are assumed to be uncorrelated and therefore there are no

cross-correlations. In this section, we describe the specification of the background error auto-

correlations that will be used in further experiments.

The auto-correlations play an important role in data assimilation as they ensure that the

analysis is smooth and spread information from an observation to the surrounding grid points.

That is, the analysis algorithm filters the observational noise and then interpolates the filtered

data to the grid points. Daley (1985) and Hollingsworth (1987, 2003) illustrated the filtering

and interpolating properties of the background error covariance using an eigenvector decom-

position of the covariance matrix. The structures with small eigenvalues are damped, and the

experiments by Daley (1985) showed that these are the structures with small wavelengths. As

the small-scale structures are damped, the analysis is comparatively smooth.

The background error covariance matrixB can be written explicitly in terms of the as-

sumed background error variances and correlations as:

B = σρσ (2.46)

(see for example, Weaver and Courtier (2001) and Kalnay (2003)), whereσ is a diagonal

matrix of background error standard deviationsσ, andρ is a symmetric matrix of background

error correlation coefficients,ρ, such that the correlation coefficients−1 < ρ < 1 are related
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to the covariances by:

ρ(x, y) =
cov(x, y)

σ(x)σ(y)
where− 1 ≤ ρ ≤ 1. (2.47)

The first data assimilation methods modelled the backgrounderror covariances using

correlation functions (see for example, Julian and Thiébaux (1975), Thiébaux (1975), Daley

(1991) and Kalnay (2003)). For example, a Gaussian exponential function:

ρGaussian(x) = e−
x2

2l2 (2.48)

was used in optimal interpolation schemes (using subdomains of the globe), where theB ma-

trices were inverted explicitly. Here,x is the distance between the correlated grid points andl

is the length scale. This function was used for example, in the ECMWF optimal interpolation

scheme (Lorenc, 1981).

It is expensive to invert the background error covariance matrix, and therefore it is better

to define the inverse matrix. For example, in the the ECMWF andMet Office variational

data assimilation schemes (Courtier et al. (1998), Rabier et al. (1998), Derber and Bouttier

(1999) and Lorenc et al. (2000)), theJ b term is defined in spectral space using a a spherical-

harmonic expansion with the correlation spectra defined such that the small wavelength modes

are penalized.

A further alternative is to use a Laplace based method which is defined in grid space. For

example, Derber and Rosati (1989) used an iterative Laplacian grid point filter, Schröter et al.

(1993) used a second derivative smoothness constraint, andWeaver and Courtier (2001) de-

veloped a correlation method based on the diffusion equation. An advantage of these methods

is that they are particularly suitable for domains with fixedboundary conditions, such as the

ocean.

A simple technique to model the horizontal error correlations for the 4D-Var algorithm

using the Eady model is now developed. As matrices are computationally expensive to invert,

we define the inverse covariance matrix. The technique is also a Laplace based method, and

we illustrate how this method is in fact very similar to defining a Gaussian correlation function.

The relationship between Laplace-based correlation functions and Gaussian correlation func-

tions was also briefly described by Rodgers (2000) and Bennett (2002). The Eady model has

periodic boundary conditions in the horizontal, so the correlation model also requires periodic
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boundary conditions.

We first consider the Gaussian functionρGaussian(x), with spectral response (Fourier trans-

form) ρ̂Gaussian(k) :

ρGaussian(x) = e−
x2

2l2 ρ̂Gaussian(k) = le−
k2l2

2 (2.49)

wherel is the length scale andk is the wavenumber, as shown by for example Riley et al.

(1998). We then define an inverse covariance matrix based on Laplace smoothing, to give a

similar spectral response (or Transfer function) to the Gaussian correlation function. Following

the work by Lea (2001) and Bennett (2002) the inverse correlation matrixρ−1
Laplacewith spectral

responsêρLaplace(k) is defined as:

ρ−1
Laplace= w0I + w1(Lxx)

2 ρ̂Laplace(k) =
1

w0 + w1k4
(2.50)

whereLxx is a second derivative matrix with periodic boundary conditions, andw0 andw1

are constant scalar coefficients. Choosingw0 = 1
l
, andw1 = w0

l4

2
, thenρ̂Laplace has a similar

spectral response tôρGaussian, as shown in Fig. 2.6. In the following, the coefficientsw0 and
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Figure 2.6: A comparison of power spectra withl = 1. The dashed line represents a Gaus-

sian correlation function with the spectral responseρ̂Gaussian(k) = le
−k2l2

2 , and the solid line
represents a Laplace smoother with spectral responseρ̂Laplace(k) = l/(1 + k4l4

2
).

w1 have indeed been chosen so that the Laplace-based correlation matrix has a similar spectral

response to a Gaussian correlation function.

The similarity between Laplace-based correlations and Gaussian correlations can be made
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more clear by comparing the functions in physical grid pointspace rather than spectral space.

We consider a domain of lengthX = 200, with n = 80 grid points, and grid spacing∆x =

X/(n − 1) and compare the correlation functions associated with an observation at the10th

grid point.

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

x

A
m

pl
itu

de

Figure 2.7: A Gaussian correlation function with periodic boundary conditions and length
scalel = 20∆x. The dashed curves represent equationsf andg from equation (2.51). The
solid curve represents the sum of f and g.

The Gaussian correlation function does not account for periodic boundary conditions.

Therefore, we consider a sum of Gaussian functions:

f(i) = exp

[

−
{

(i− 10)∆x

l

}2
]

g(i) = exp

[

−
{

(i− (80 + 10))∆x

l

}2
]

(2.51)

wherei is the grid point number. These curves are shown in Fig. 2.7 with l = 20∆x. The

individual functions are not periodic, however the sum of the functions is periodic.

We now compare the Gaussian correlation function with the Laplace-based correlation.

TheρLaplacematrix is inverted using MATLAB, and the 10th column is compared with the sum

of the two correlation functions. Comparisons with length scalesl = 20∆x andl = 5∆x are

shown in Fig. 2.8 (a) and (b) respectively. There are some slight differences in the curves.

For example, withl = 20∆x, ρLaplacehas a smaller amplitude thanρGaussian, but with l = 5∆x,

ρLaplacehas a larger amplitude. Also, forl = 5∆x, ρLaplaceis sometimes negative, whilstρGaussian

is always positive. Nevertheless, the two approaches do give very similar results.

In this section, a horizontal correlation model has been developed. The inverse back-

ground error covariance matrix is modelled using a second derivative matrix. This approach
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Figure 2.8: Comparison of a column ofρLaplace (solid curves) and a sum ofρGaussianfunctions
(dashed curves), for (a)l = 20∆x and (b)l = 5∆x.

means that theB matrix does not need to be inverted, and periodic boundary conditions are

easily incorporated. Further, the method is extremely simple to code and apply to the Eady

model experiments. Whilst this technique is not a central part to this thesis, representing in-

verse covariances with differential operators is an interesting technique which may be suitable

for operational data assimilation. Such a technique is currently being developed by Qin Xu

(personal communication).

2.5 Summary

The 4D-Var algorithm, that is to be used in the identical twinexperiments in the rest of this

thesis, has been described in detail. The equations that areused to minimize the constrained

4D-Var cost function have been derived using two approaches: linear algebra and Lagrange

multipliers. In both cases, the gradient ofJ is found by integrating the adjoint model backwards

in time from final conditions of zero and adding the adjoint forcing at each timestep.

The 2D Eady model, used for the 4D-Var experiments has also been described. The model

is one of the most simple linear models of baroclinic instability. Although it contains many

approximations, this model is highly suitable as it has a small dimension and should isolate the

important mechanisms in 4D-Var. The model is derived from the quasi-geostrophic equations

and uses quasi-geostrophic potential vorticity (QGPV) andbuoyancy as the model variables.

The QGPV and buoyancy are advected by the basic state zonal wind and are linked together
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via an elliptic equation.

The continuous adjoint equations were described, with the derivation of the adjoint of the

discrete equations and the adjoint of the continuous equations outlined in Appendix B. The

discrete adjoint model has been validated using both the norm test and the gradient test.

Four minimization algorithms have been compared: steepestdescent, conjugate gradi-

ent, quasi-Newton and a memoryless combined quasi-Newton conjugate method. The quasi-

Newton minimization algorithm has been selected as the bestmethod for 4D-Var with the Eady

model, and convergence criteria based on the value ofJ , ∇J andx have been specified.

The inverse background error covariance matrix has been modelled using Laplace smooth-

ing and it has been shown that this is similar to using a Gaussian correlation function.

In the following chapter, the 4D-Var algorithm will be used to tackle the questions that

were posed in the first chapter.



Chapter 3

4D-Var Results

Previous studies have shown 4D-Var to perform well in regions of baroclinic instability in

comparison with 3D-Var, as discussed in Chapter 1. In particular, it has been shown that 4D-

Var is able to reconstruct parts of the atmospheric state that are unobserved (e.g. Courtier and

Talagrand, 1987, Thépaut and Courtier, 1991, Rabier and Courtier, 1992, Tanguay et al., 1995).

It has also been shown that 4D-Var is able to generate westward tilting analysis increments that

are necessary for baroclinic growth (e.g. Thépaut et al., 1996, Rabier et al., 1998, 2000).

Although these two properties have been demonstrated, theyare not well understood. The

purpose of this chapter is to investigate these properties using simple identical twin experiments

with the Eady model. In the experiments, the true state is given by the most rapidly growing

or decaying Eady wave. These modes grow or decay through the interaction of boundary

temperature waves. The background state contains only a displacement error and observations

are provided of the lower boundary wave only. There are no observations of the interior QGPV.

Thus, 4D-Var must use the observations of the lower boundarywave to reconstruct or infer the

correct position of the upper level wave. Due to the symmetryof the Eady model, this is

equivalent to providing observations of the upper level wave and inferring the position of the

lower level wave.

The chapter begins by describing the experimental design for the experiments in this chap-

ter. Section 3.2 investigates the ability of 4D-Var to reconstruct the upper level wave and Sec-

tion 3.3 investigates the ability to generate the correct vertical structure, for both growing and

decaying modes. The chapter ends with a concluding discussion. For simplicity, this chapter

considers the ability to reconstruct, and the ability to generate the correct vertical structures

separately. It is important to note, however, that these twoproperties are strongly linked in the

54
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following experiments.

3.1 Experiment Design

The experiments in this chapter are now described. Thetrue state initial conditionsxt are

given by the most rapidly growing or decaying Eady wave. Fromequation (A.38) in Appendix

A, the values of the non-dimensional buoyancy anomalies on the boundaries are defined as:

Growing Mode:
∂ψ′

∂z
= sinh(kz)cos(kx) − α cosh(kz) sin(kx) onz = ±1

2
(3.1)

Decaying Mode:
∂ψ′

∂z
= sinh(kz)cos(kx) + α cosh(kz) sin(kx) on z = ±1

2
(3.2)

where the non-dimensional wave number isk = 1.6,α ≈ 1.5 and the interior QGPV anomalies

q are zero. The true state is then evolved using a 6 hour integration of the Eady modelM(tN , t0)

to give an assimilation window length of 6 hours. The notation T + 0 and T + 6 define

the beginning and the end of the assimilation window respectively. It is important to use a

numerical integration of the true state rather than the analytical evolution so that model error

can be neglected.

Syntheticobservationsy0 andyN of the entire lower level buoyancy field are taken from

the evolved true state at the beginning and the end of the 6 hour window. For example, suppose

thatxq is a vector of the interior QGPV of dimension 440 andxU andxL are vectors of the

upper and lower buoyancy values respectively with dimension 40. Then, the state vector and

observation operator can be defined using:

x =



















xq

xU

xL



















H =

[

0(40×440) 0(40×40) I(40×40)

]

. (3.3)

Random noiseε0 andεN is added to the observations so thaty0 = Hxt0 + ε0 andyN =

HMxt0 + εN . The noise is defined to have a Gaussian distribution with standard deviationσ,

using an algorithm based on Press et al. (1992).

Thebackground statexb is given by the same wave as the true state but with a displace-

ment error of1
4

wavelength, which is104x = 1000km.
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The 4D-Var algorithm, described in the previous chapter, isthen used to find the analysis

xa that minimizes the cost function:

J(x0) = (x0 − xb)TB−1(x0 − xb) + (y0 − Hx0)
TR−1(y0 −Hx0)

+ (yN −HxN)TR−1(yN −HxN)

(3.4)

subject to the constraintxN = M(tN , t0)x0.

Thus, the 4D-Var algorithm must use the observations of the lower level wave, given at the

beginning and end of a 6 hour window, to move the unobserved upper level wave.

These experiments are not unrealistic, although they are extremely simple. For example,

in operational data assimilation, there are many surface observations and only a few upper

air observations. This is particularly the case over land. Further, due to the symmetry of the

model, these experiments are equivalent to the case where the upper level wave is observed

and the lower level wave is reconstructed. This may be the case with satellite data or aircraft

data where there are many observations of the upper troposphere but only a few observations

near the surface. For example, the infra-red sounding radiometers such as HIRS and IASI can

only obtain atmospheric profiles above cloud (Eyre, 2000), and current microwave sounding

radiometers such as AMSU are mainly sensitive to the upper tropospheric temperature (Bout-

tier and Kelly, 2001). Also, satellite derived winds are mostly in the upper troposphere (M.

Forsythe, Personal Communication).

3.2 Reconstruction

This section investigates how 4D-Var uses the time sequenceof observations on the lower

boundary to reconstruct the upper level wave. The true stateis given by the growing Eady

wave and so 4D-Var must use the evolution information to infer the upper level wave.

We begin by first considering perfect observations, so that the 4D-Var interpolating proper-

ties may be isolated from the filtering properties. The behaviour of the minimization algorithm

is examined to gain some insight into how the information is propagated to the unobserved

regions. The effect of varying the weight given to the background state is then examined.

Many of the previous studies did not include a background state when examining the recon-

structive properties, for example, Rabier and Courtier (1992), Tanguay et al. (1995), Thépaut
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and Courtier (1991). Therefore, it is important to investigate the effect of theJ b term on the

reconstructive properties. The effect of observational noise is finally considered. Courtier and

Talagrand (1987) found that a smoothing term was needed to reduce unrealistic small scale

noise. We therefore investigate the effect of incorporating correlations (or smoothing) into the

background error covariance matrix.

3.2.1 Behaviour of the Minimization

This section aims to understand how the upper level wave is reconstructed during the mini-

mization process, to gain some insight into how the information is propagated from the lower

boundary to the upper boundary.

We consider the case with perfect observations (ε0 = εN = 0) and assume that the

background state and observation errors are uncorrelated so that the error covariance matrices

are diagonal. We also assume that the error variancesσ2
b andσ2

o are the same for all grid points

and observations respectively. Both the true state and the background state QGPV fields are

zero, and therefore, the background state errors for QGPV are zero. Thus, we assume that a

relatively small analysis increment is added to the QGPV field. Following these assumptions,

the error covariances are defined as:

R−1 = σ−2
o I B−1 =











σ−2
b I for Buoyancy on̂z = ±1

2

105I for QGPV in− 1

2
< ẑ <

1

2

(3.5)

where the number105 is chosen as an arbitrary large number so that only small amplitude

analysis increments are added to the QGPV field. As only smallchanges are made to the

QGPV, the QGPV fields are not shown in the figures that follow.

The values ofJ and‖∇J‖2
2, during a minimization usingσ−2

b = 0.04 andσ−2
o = 1, are

shown in Fig. 3.1. There are two stages to the minimization. In the first stage, the lower

boundary is moved to the correct position. This was established by examining the state vector

on each iteration, (Johnson et al., 2002) but is not shown here. The lower boundary is observed,

so this causes a dramatic decrease in the value of the cost function. In the second stage, the

upper boundary is moved to the correct position. This has only a small effect on the value of

J , but eventually results in a dramatic reduction in the valueof ‖∇J‖2
2, as the minimum is

reached.

On the 10th iteration, it may seem that the minimization algorithm has converged, as the
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2 during the minimization process for
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b = 0.04. Note that the graphs have different
vertical scales.

value ofJ does not change significantly. However, if the minimizationalgorithm was termi-

nated after only ten iterations, the upper boundary wave would not be moved, and the recon-

structive benefits of 4D-Var would be lost. Thus, it is clear that it is vital that the minimization

algorithm is not terminated until it has satisfied the convergence criteria.

This experiment suggests that the minimization algorithm initially builds up the informa-

tion in the observed regions before inferring the state in the unobserved regions. This behaviour

suggests that the effect can be related to the conditioning of the Hessian matrix of the cost func-

tion. The minimization algorithm will initially take stepsin directions such that the gradient is

large. These directions correspond to eigenvectors of the Hessian, with large eigenvalues. This

is especially the case for the first few iterations as the Hessian matrix is initially approximated

by the identity matrix. Then the minimization algorithm will take steps in directions which

correspond to the eigenvectors with small eigenvalues, before reaching the minimum. This

argument is qualitative. However, it suggests that there isa relationship between the recon-

struction of the upper boundary and the eigenvalues of the Hessian matrix. This relationship

will be made precise in the next chapter.
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3.2.2 Effect of the Background State

With diagonal covariance matrices, the cost function can beconsidered to contain two weights:

σ−2
b andσ−2

o . If σ−2
o is relatively large, then a large weight is given to the observations but

if σ−2
b is relatively large, then a large weight is given to the background state. The impact of

different specifications ofσ−2
b on the reconstruction of the upper level wave is now examined.

Figures 3.2(a)-(b) show a 4D-Var analysis at the end of the assimilation window where

a relatively small weight is given to the background state. The 4D-Var algorithm has propa-

gated the information from the observations (circles) of the lower level wave with the model

dynamics to move the unobserved upper level wave from the background state (dashed) to the

correct position (dotted). It is crucial that the upper level wave is moved so that the forecast is

close to the truth. A method such as 3D-Var (with no vertical correlations in the background

error covariance matrix) would only move the lower level wave so that in a 3D-Var analysis the

buoyancy field would tilt westwards instead of eastwards. This would produce a forecast with

decay instead of growth. This simple experiment therefore illustrates one advantage of 4D-Var

in comparison with 3D-Var.
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Figure 3.2: 4D-Var analyses shown at the final time of a 6 hour assimilation window, with
(a)-(b) σ−2

b = 0.01 and (c)-(d)σ−2
b = 0.1. In both cases, perfect observations, shown by the

circles, are given at the beginning and the end of the window,and are given the weightσ−2
o = 1.

The true state, shown by the dotted lines, is a growing Eady wave and the background state,
shown by the dashed lines, has a displacement error. The upper panels show the buoyancy on
the upper boundary and the lower panels show the buoyancy on the lower boundary.

We now consider the same experiment, but with more weight given to the background

state. The analysis is shown in Fig. 3.2(c)-(d). The 4D-Var algorithm has moved the upper



Chapter 3. 4D-Var Results 60

level wave closer to the true state, but now the analysis has aphase error and an amplitude error.

As the upper boundary wave is now in the wrong position and hasa smaller amplitude than the

true wave, the analysis gives a smaller growth rate than the true solution. To compensate for

this, the amplitude of the lower boundary wave is too large atT+0 and too small at T+6.

Thus, the effect of the background state is to penalize the information propagated to the

unobserved regions. Although 4D-Var is still able to reconstruct the unobserved part of the

flow when theJ b term is included, if too much weight is given to the background state, these

reconstructive properties are lost. Many of the experiments in previous literature did not in-

clude theJ b term in the cost function. Thus, we can perhaps infer that if abackground term

were included in the previous studies in the literature, theresults may not have shown 4D-Var

to have been so advantageous.

3.2.3 Effect of Noise on the Observations and Background Error Corre-

lations

The effect of adding noise to the observations is now investigated. When the observations

are noisy, the 4D-Var algorithm must filter the information from the observations, as well as

reconstructing the upper level wave. The background error correlations play a key role in the

filtering of the observational noise. Therefore, the effectof smoothing as applied through the

background error correlations is also examined in this section.

The following experiments are identical to those in the previous section, except that ran-

dom noise is added to the observations and correlations are incorporated into the background

error covariance matrix. The random noise has a Gaussian distribution with a standard devia-

tion of one. The background error covariance with correlations is defined as:

B−1 =
σ−2
b

l

(

I +
l4

2
(Lxx)

2

)

for Buoyancy on̂z = −1

2
(3.6)

andB−1 is as before elsewhere.Lxx is a finite difference second derivative matrix in thex

direction andl is the correlation length scale. This form of correlation matrix was described in

detail in Chapter 2.

We first examine the effect of background error correlationswith noisy observations. An

analysis with noisy observations but no correlations is shown in Fig. 3.3 (a)-(b) with weights

σ−2
b = 0.04 andσ−2

o = 1. These weights are chosen to clearly illustrate the effect of the
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Figure 3.3: As for Fig. 3.2 but the observations now have noise added witha Gaussian
distribution of standard deviationσ = 1. The assumed background state errors have (a)-(b)
no correlations and (c)-(d) correlations with length scalel = 10∆x on the lower boundary
only. In both cases, the weight given to the observations isσ−2

o = 1 and the weight given to
the background state isσ−2

b = 0.04.

correlations. In previous experiments, a smooth analysis could be obtained from the perfect

observations. However, with noisy observations the analysis is now noisy. The same exper-

iment but with correlations included is shown in Fig. 3.3 (c)-(d). The length scale used is

l = 10∆x = 1000km. The analysis is very similar to that without correlations,except that the

lower boundary is now smooth. This simple comparison has therefore shown that the correla-

tion model, developed in the previous chapter, provides thesmoothing that is needed when the

observations are noisy. Thus, it is vital that background error correlations are included when

noisy observations are used.

In Section 3.2.2, it was shown that if the weightσ−2
b given to the background state is too

large, 4D-Var is unable to reconstruct the upper level wave correctly. These experiments are

now repeated but with both noisy observations and correlations on the lower boundary.

Variational data assimilation is based on minimum varianceestimates and Bayesian prob-

abilistic arguments. From these statistical derivations,we know that the a priori weights should

reflect the assumed size of the errors of the background stateand the observations. More specif-

ically, the weightσ−2
b should be the the reciprocal of the background state error variance, and

similarly for the observation errors.

The error variance for the observations is trivial to estimate, as the errors added to the

observations have a Gaussian distribution with a standard deviation of one. In this case, the
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statistically correct weight given to the observations isσ−2
o = 1. The error varianceσ2

b for the

background state is not so obvious. The background state errors are not taken from a Gaussian

distribution as we assume that the background state has a phase error. However, it is still

possible to calculate a ‘globally averaged’ variance of thelower boundary errors using:

variance,σ2
b =

1

40
(xb − xt)T (xb − xt) (3.7)

wherexb andxt are the background state and true state lower buoyancy fieldswith 40 grid

points. This assumes that the error characteristics of the background state are the same for

all grid points. This is a reasonable assumption since we canimagine that the wave will be

advected over all the grid points. For these experiments, wherexb has a phase error, this gives

a variance of12.48 and hence the statistically correct weight given to the background state is

σ−2
b = 0.08.
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Figure 3.4: As for Fig. 3.3 (c)-(d), but with (a)-(b)σ−2
b = 0.08 and (c)-(d)σ−2

b = 0.01. In both
cases, there are correlations on the lower boundary withl = 10∆x, the noise has a standard
deviation ofσ = 1, andσ−2

o = 1.

The analysis using the statistically correct weights is shown in Fig. 3.4(a)-(b). The upper

boundary wave has been moved closer to the true position, however there is still an amplitude

error. This is due to the effect of the weight given to the background state. The experiments

in Section 3.2.2, concerning the weight given to the background state, showed that without

noise on the observations, the upper level wave can be reconstructed if less weight is given to

the background state. However, this is not the case when noise is added to the observations.

Figure 3.4(c)-(d) shows the same experiment as Fig. 3.4(a)-(b), but with less weight given to
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the background state. A non-physical wave has been generated on the upper boundary due to

the presence of the noise on the observations.

Fig. 3.5 illustrates further the sensitivity of the unobserved regions to noise on the ob-

servations. A small weight is now given to the background state (σ−2
b = 0.004), creating an

unphysical wave on the upper boundary. If the noise on the observations is generated using a

different random seed than the noise in Fig. 3.5 (a)-(b), butwith the same variance, the upper

level wave has a different structure, as shown in Fig. 3.5 (c)-(d). Thus, the unobserved regions

are sensitive to the noise on the observations. This result was also found by Courtier and Tala-

grand (1987) and was briefly discussed by Bennett and Miller (1991) who interpreted the result

in terms of the ill-conditioning of the underlying inverse problem.
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Figure 3.5: The random noise added to the observations is generated using a different random
seed (idum): (a)-(b) idum=-3, (c)-(d) idum=-4. In both cases,σ−2

b = 0.004, σ−2
o = 1, and the

noise has a standard deviation ofσ = 1. The details are as for Fig. 3.4.

In these experiments, we have only considered correlations, or smoothing, on the lower

boundary and not the upper boundary. The unobserved upper boundary has been shown to be

sensitive to noise on the observations and so it seems sensible to suggest that the unphysical

wave on the upper boundary may perhaps be removed by applyingcorrelations also to the

upper boundary.

The experiment shown in Fig. 3.4(c)-(d) used correlations on the lower boundary with

l = 10∆x. If this is repeated, but with correlations applied to both the upper and the lower

boundary, the results look very similar to those in Fig. 3.4 (c)-(d), and are therefore not shown.

Thus, upper level correlations with a length scale ofl = 10∆x make little difference to the

analysis. This is because the unphysical upper level wave has a wavelength which is long in
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comparison with the correlation length scale.

We now consider the effect of adding correlations with a longer correlation length scale.

The experiment shown in Fig. 3.4(c)-(d) is repeated but withcorrelations usingl = 20∆x =

2000km. When the correlations are only applied to the lower boundary, as in Fig. 3.6 (a)-

(b), the lower boundary wave is much more smooth, but an unphysical wave has still been

generated on the upper boundary. When correlations are applied to both the upper and the

lower boundary, as in Fig. 3.6 (c)-(d), both the upper and thelower level wave are smooth and

are close to the truth.

Thus, it is possible to create a smooth wave by increasing thelength scale of the corre-

lations. However, the length scale in these last experiments is extremely long, and would be

unrealistic for operational data assimilation, where it isimportant to be able to resolve smaller

scale structures. Thus, we may conclude that it is importantto give enough weight to the

background state, so that unphysical solutions are not generated in the unobserved regions.
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Figure 3.6: As for Fig. 3.4, with (a)-(b) correlations are only applied to the lower boundary
wave, (c)-(d), correlations are applied to both the lower boundary and the upper boundary. In
both cases, observations have noise with a Gaussian distribution of standard deviationσ = 1.
The weights given to the observations and the background state areσ−2

o = 1 andσ−2
b = 0.01.

The correlations have a length scale ofl = 204x.

3.2.4 Signal-to-Noise Ratio

To summarize, the experiments in this section have demonstrated that it is important to specify

the weightsσ−2
b andσ−2

o correctly. That is,σ2
b should represent the size of the background

state error variance andσ2
o should represent the size of the observation error varianceso that



Chapter 3. 4D-Var Results 65

the maximum amount of information may be extracted from the observations, without con-

taminating the analysis with noise. It will be shown in a subsequent chapter that in fact, these

weights may be computed without knowing the true state.

The experiments with perfect observations showed that the background state strongly pe-

nalizes the information needed to reconstruct the state in unobserved regions. The experiments

with noisy observations showed that the background state isneeded to penalize the generation

of unphysical waves in the unobserved regions. This can be summarized by considering what

is known as the signal-to-noise ratio.

The signal-to-noise ratio is defined as the ratio of the magnitude of the signal to that of the

interference or noise. The signal may be for example, an electrical current, radio wave, or a

light ray. In our case, the signal is the true state, and the noise is the errors on the observations.

The purpose of data assimilation is to extract the signalxt from the noisy observationsy.

The signal-to-noise ratio gives an indication of how much ofthe signal can be extracted from

the noisy observations, or equivalently, how much weight should be given to the observations

relative to the background state (Eyre, 2000). If an observation has a large error in comparison

with the background state, then we would wish to give the observation a small weight. But, if

an observation has a relatively small error, then we would wish to give a large weight to the

observation. Thus, the ratioµ = σb

σo
gives an indication of the signal-to-noise ratio.

If the specified valueµ is too large and too much weight is given to the observations,then

the analysis will be noisy. However, if the specified value ofµ is too small and too much

weight is given to the background state, the maximum amount of available information in the

observations will not be extracted. Thus, the specificationof the relative weight given to the

observations,µ, is critical in extracting the maximum amount of useful information from the

observations.

3.3 Vertical Structure and Growth Rates

The results in the previous section showed that 4D-Var is able to use a time-sequence of ob-

servations on the lower boundary to reconstruct the unobserved upper level wave. However,

we did not consider the impact on the vertical structure of the system and the growth rate of

the subsequent forecast. This section investigates the ability of 4D-Var to generate the cor-

rect vertical structures needed for baroclinic growth and decay. We first examine the effect

of the background state when a decaying mode is observed, by repeating the experiments in



Chapter 3. 4D-Var Results 66

Section 3.2.2, but with the true state given by the most rapidly decaying Eady wave. The study

is then extended by investigating the effect of the assimilation window length, the temporal

position of the observations in the assimilation window andthe temporal weights given to the

observations.

3.3.1 Analysis of Decaying Modes

Many of the studies in previous literature have shown 4D-Varto perform well in cases of

baroclinic growth, and the experiments in the previous section have also shown that 4D-Var

is able to move the upper level wave so that the growing Eady wave has the correct vertical

structure. However, there has been very little research on the behaviour of 4D-Var in the

presence of baroclinic decay. It is important to understandhow 4D-Var behaves when the true

state is decaying, to fully assess the advantages and disadvantages of the data assimilation

algorithm.

The experiments in the previous section are now extended to compare the behaviour of

4D-Var when the true state is given by either a decaying mode or a growing mode. As in

Section 3.2.2, perfect observations of the lower level buoyancy are given at T+0 and T+6 and

the background state has a phase error of1000km. When a growing mode is observed, the

analyses are exactly the same as those in Section 3.2.2.

If the analysis has the correct vertical structure, the forecast will have the correct growth

rate. Therefore, we choose to measure the analysis accuracyby examining the Euclidean norm

of the streamfunction during the following forecast.

Fig. 3.7 gives the evolution of the norm of the streamfunction during the 6 hour assimila-

tion window and also the following 30 hour forecast.

Fig. 3.7 (a) gives the norm evolution when a growing mode is observed. Ifσ−2
b is small,

the forecast from the analysis (dotted line) is close to the truth (solid line). Ifσ−2
b is large, the

forecast from the analysis (dashed line) has a smaller growth rate. The forecast has the wrong

growth rate because the upper level wave in the analysis has the wrong position and amplitude,

as shown in Fig. 3.2(c), in the previous section.

Fig. 3.7 (b) shows the norm evolution when a decaying mode is observed. Ifσ−2
b is small,

the forecast from the analysis (dotted line) is again close to the truth (solid line). However, if

σ−2
b is large, the forecast from the analysis grows instead of decaying. Thus, the background

state has a greater detrimental effect when a decaying mode is observed.
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Figure 3.7: The squared Euclidean norm of the streamfunction for forecasts from 4D-Var
analyses of (a) Growing and (b) Decaying modes. In both cases, perfect observations are
given at T+0 and T+6, with weightsσ−2

o = 1. The solid lines show the forecasts from the true
state, the dashed lines show the forecasts from analyses with σ−2

b = 0.1, and the dotted lines
show the forecasts from analyses withσ−2

b = 0.01.
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Figure 3.8: The true analysis increment (xt − xb) (black, dashed) and the actual analysis
increment (xa − xb) (red, solid) from the analysis of (a)-(b) Growing and (c)-(d) Decaying
modes. In both cases, perfect observations are given at T+0 and T+6 with weightsσ−2

o = 1,
σ−2
b = 0.1.
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To compare the analysis of a decaying mode with the analysis of a growing mode, it is

useful to examine the actual analysis increments (xa−xb) compared with the required analysis

increments (xt − xb), as shown in Fig. 3.8. If the true solution is the growing mode, the true

buoyancy field increment tilts eastwards, and if the true solution is the decaying mode then the

true buoyancy field increment tilts westwards. When a growing mode is observed, the actual

analysis increment is close to the required analysis increment. However, when a decaying mode

is observed, the analysis increments are very different. The required increment tilts westwards,

yet the actual increment tilts eastwards. So, a growing analysis increment has been added to

the background state instead of a decaying analysis increment. This produces a forecast with

growth instead of decay.

Again, the signal-to noise ratioµ = σb

σo
, is an important aspect in obtaining structures with

the correct growth rates. This can be understood further by considering the schematic diagram

in Fig. 3.9. When the observations have large errors, as shown in Fig. 3.9(a), there is a large

difference between the possible growth rates of the analysis. At one extreme, the state decays

and at the other extreme, the state grows. When the observations have small errors, as shown

in Fig. 3.9 (b), both possible analysis extremes are growingand there is a small difference

between them. Thus, it is easier to infer the growth rate whenthere is a small amount of noise

on the observations. In the case of the Eady model, if the growth rate can be inferred, then the

upper boundary wave can be corrected so that the analysis gives the correct growth during the

assimilation window.

T+6 T+0 T+6

(b)(a)

T+0

Figure 3.9: Schematic diagram illustrating the effect of noise on the observations. The solid
line represents the growth of the true state and there are observations (circles) at T+0 and
T+6. The arrows represent the error bars on the observations, and the dashed lines show the
forecasts from possible analyses with the most extreme growth rates. The observations have
(a) relatively large errors, and (b) relatively small errors.
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Thus, 4D-Var is able to generate the vertical structure needed for baroclinic growth, but is

not always able to generate the structure needed for baroclinic decay. If the observations have

large errors, then a relatively large weight must be given tothe background state. This penalizes

the decaying part of the analysis increment, so that in fact,a growing analysis increment may

be added instead of a decaying analysis increment.

3.3.2 Temporal Position of the Observations

We now examine where the observations should be placed in theassimilation time window,

so that 4D-Var can generate the best vertical structures. The equivalence between the Kalman

Filter and 4D-Var means that 4D-Var implicitly evolves the background error covariance ma-

trix through the time window. It is difficult to specify the covariance at the beginning of the

window, and so it is often approximated using isotropic correlation functions which are not

flow dependent. As the covariance matrix evolves through thewindow, it becomes flow de-

pendent. Hence, it would seem that it is better to place the observations near to the end of the

assimilation window, so that the information from the observations is spread to the surround-

ing grid points in a flow-dependent way. The single observation experiments by Thépaut et al.

(1996) showed that it is indeed important to have as long an assimilation window as possi-

ble, to ensure that the baroclinic structures are fully developed. High-resolution experiments

with the ECMWF 4D-Var system have also shown a consistent improvement in analyses from

a 12-hour assimilation window compared with analyses from a6-hour assimilation window,

(Bouttier, 2001).

With this in mind, we now investigate the impact of the lengthof the assimilation window

and the temporal position of the initial observations. The important differences between the

experiments in this section and those of Thépaut et al. (1996) and Bouttier (2001) is that in

these experiments we consider sets of observations at two time levels rather than at one time

level, and the true state is known.

We consider a series of 4D-Var experiments with different temporal positions of the ob-

servations, and different assimilation window lengths. The experiments use either a 6 hour or

12 hour assimilation window. For a fair comparison between the 6 hour and 12 hour windows,

the true state is first evolved for 6 hours if a 6 hour window is used. The true state is given by

either the most rapidly growing or decaying Eady wave and thebackground state has a phase

error of 1000 km. Observations are provided of the lower level buoyancy at two time levels.
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(b) 6 hour window, Amplitude Error
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(c) 12 hour window, Phase Error
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Figure 3.10: Correlation coefficientsC and Amplitude errorsA, plotted against the time of
the initial observations (hours). The experiments use either a 6 or 12 hour window, with
two sets of observations. The initial observations are either at the beginning of the window
or somewhere in the middle of the window. The final observations are always at the end of
the window. The observations are of the lower level buoyancywave, and have noise with
a Gaussian distribution, with a standard deviation ofσ = 0.1. The weights areσ−2

o = 1,
σ−2
b = 0.04 and smoothing is applied to the lower boundary through the background error

correlations. The experiments with the initial observations at the end of the window, only have
one set of observations at the end of the window. The solid lines represent the experiments
where the true state is given by the most rapidly growing Eadywave and the dashed lines
represent the experiments where the true state is given by the most rapidly decaying Eady
wave.
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The final set of observations are always at the end of the window and the initial set are either

at the beginning of the window or at a specified time in the middle of the window. Random

noise with a Gaussian distribution withσ = 0.1 is added to the observations and smoothing

is applied to the lower level through theB matrix. The weights given to the observations are

σ−2
o = 1 andσ−2

b = 0.04.

Note that the weightσ−2
o given to the observations is smaller than the statisticallyoptimal

value. This is to ensure that the analysis is not noisy. Also note that when the initial observa-

tions are at the end of the window, there is only one set of observations and the weight given to

these is not doubled.

The correct position of the upper boundary wave is vital in determining whether the fore-

cast from the analysis will grow or decay. Therefore, to assess the analysis accuracy, we choose

to separate the phase and amplitude errors. The phase error is measured using the correlation

coefficient,C, as discussed by Lawless (2001).

The correlation coefficient,C , is defined as:

C =
cov(xa,xt)

σ(xa)σ(xt)
(3.8)

where−1 ≤ C ≤ 1. If C = 1, the analysed wave has the correct phase and ifC = −1, the

analysed wave is completely out of phase with the true wave.

The amplitude errorA, is defined as:

A = (max(xa) −min(xa)) − (max(xt) −min(xt)). (3.9)

If A = 0, the analysed wave has the correct amplitude, ifA > 0, the analysed wave has an

amplitude that is too large and ifA < 0 the amplitude is too small.

Figure 3.10 shows a summary of the experiments with different window lengths, temporal

position of the initial observations and growing and decaying true states. For example, Fig.

3.10 (a) and (b) show the correlation coefficientC and amplitude errorA of the analysed upper

level wave for assimilation experiments using a 6 hour window. The final observations are at

T+12 and the initial observations are at T+6 , T+9 or T+12. Theanalysis window is defined

from T+6 to T+12.

These plots show that when the growing mode is observed (solid lines), the phase error is

always small, and the amplitude error increases as the initial observations are moved to the end
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of the window. Thus, for the growing mode, the analysed upperlevel wave is always in the

correct position and the amplitude is the best when the initial observations are at the beginning

of the window.

Figure 3.10 (a) and (b) also show that for the decaying mode (dashed lines), the phase

error increases as the initial observations are moved to theend of the window. However, the

amplitude error decreases. Thus, for the decaying mode, with observations at the beginning

and the end of the window, the phase of the upper level wave is good although the amplitude

is poor. When the observations are only at the end of the window, the analysed upper level

wave has the correct amplitude. However it is completely outof phase with the true wave. This

is because a growing analysis increment has been added to thebackground state instead of a

decaying analysis increment, as discussed in Section 3.3.1.

These results are now compared with those of the 12 hour window experiments, by ex-

amining Fig. 3.10 (c) and (d). With observations at the beginning and the end of the 12 hour

window, both the phase error and the amplitude errors are smaller than the errors when ob-

servations are at the beginning and the end of a 6 hour window.Thus, it seems that a longer

window does give better results. However, this is not alwaysthe case when the observations

are only at the end of the window.

For a growing mode, with observations at only the end of the window, the experiments

with a 12 hour window give better results than those with a 6 hour window. In both cases, the

upper level wave has the correct phase, but the amplitude is better for the 12 hour window than

the 6 hour window. For a decaying mode, with observations at only the end of the window, the

experiments with a 12 hour window give worse results than those with a 6 hour window. The

phase error is larger and the wave now has too large an amplitude. That is, a large analysis

increment has been added to the upper level, but it is in completely the wrong position.

To summarize, these experiments have shown that it is best tohave the observations as far

apart as possible in time. This means that the observations should be placed at the beginning

and the end of a long assimilation window (within the validity of the tangent linear model).

They have also shown that with observations at only the end ofthe window, a growing analysis

increment is added to the background state. This gives the correct vertical structure if a growing

mode is observed, but not if a decaying mode is observed. In other words, if observations are

only at the end of the window, a longer assimilation window will give better results if a growing

mode is observed, but worse results if a decaying mode is observed.

To illustrate further the difference between the analysis of growing and decaying modes,
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Figure 3.11: The streamfunction norm for forecasts from 4D Var analyses of (a) Growing
and (b) Decaying modes. Observations are given at either T+0(dotted) or T+9 (dashed) and
also at the end of a 12 hour window. The observations have noise with a standard deviation
of σ = 0.1, and the weights areσ−2

o = 1, σ−2
b = 0.04. Smoothing is applied to the lower

boundary.

and the importance of specifying the observations as far apart as possible in time, we examine

the growth rate of the following forecast, as measured by thestreamfunction norm. We consider

the experiments with a 12 hour assimilation window, and compare analyses with the initial

observations at T+0 with analyses with the initial observations at T+9. The streamfunction

norm during the 12 hour assimilation window and the following 24 hour forecast is shown in

Fig. 3.11.

When the growing mode is observed (Fig. 3.11 (a)), the forecast from the analysis is closer

to the true state when the initial observations are at the beginning of the window (T+0) rather

than near to the end of the window (T+9). When the decaying mode is observed (Fig. 3.11

(b)), the forecast from the analysis is close the true state when the initial observations are at

the beginning of the window. However, when the initial observations are near to the end of the

window, a growing analysis increment is added to the background state instead of a decaying

analysis increment. This produces a forecast with growth instead of decay. Thus, to give the

correct decaying analysis increment, it is vital that the observations are at the beginning and

the end of the window rather than both near to the end of the window.
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(b)(a)

T+6T+0T+6T+0

Figure 3.12: Schematic diagram illustrating the effect of the temporal position of the observa-
tions. The solid line represents the growth of the true stateand there are observations (circles)
at two time levels. The arrows represent the error bars on theobservations, and the dashed
lines show the possible forecasts from analyses with the most extreme growth rates. The obser-
vations are at (a) T+0 and T+6, and (b) T+3 and T+6.

This can be understood by considering the schematic diagramin Fig. 3.12. The diagram

illustrates a one-variable problem with an observation (circles) at two times with associated

errors as shown by the error bars. When the observations are far apart in time, the solution

has grown a large amount during the time between the observations, relative to the noise on

the observations. Therefore, there is a small difference between the possible extreme analyses.

When the observations are close together in time, the solution has only grown a small amount

relative to the noise on the observations. Therefore, it is difficult to infer the growth rate

accurately. That is, there is a large difference between thepossible extreme analyses. At one

extreme, the forecast from the analysis will not grow, and atthe other extreme, the forecast from

analysis will grow rapidly. This diagram shows clearly thatit is important that the observations

are far apart in time, so that the growth rate can be inferred accurately. In the context of the

Eady model, the correct vertical structure of the analysis can only be obtained if the growth

rate is correct.

3.3.3 Temporal Weights Given to the Observations

The situation where the temporal position of the observations is fixed but the weight given to

the observations can be varied is now addressed. It can be considered that twice the number

of observations is equivalent to doubling the weight given to the observations. This can be

justified by considering a super-observation (Lorenc, 1981) that is a linear combination of two
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observations that are close together. Given that there is typically twice as much radiosonde data

at 00Z and 12Z than at 06Z and 18Z, the issue concerning the weight given to the observations

is important in defining a 4D-Var assimilation window.

The previous experiments showed that the analysis of a decaying wave is worse when the

observations are provided only near to the end of the window than when observations are near

to the beginning of the window. Thus, it might be expected that it may be better to give more

weight to the initial observations that the final observations.

The following experiments use a 12 hour window, with observations at T+0 and T+12.

The true state is given by either the most rapidly growing or decaying Eady wave and the

background state has a phase error as in previous experiments. The weight given to the back-

ground state is chosen asσ−2
b = 2 and the weight given to the observations are chosen as

eitherσ−2
o = 1 given to the initial observations andσ−2

o = 20 given to the final observations or

σ−2
o = 20 given to the initial observations andσ−2

o = 1 given to the final observations. These

weights are chosen so that the background state is given a relatively large weight and so that

there is a large difference between the weight given to the initial and final observations.

To assess the performance of 4D-Var in the different cases, the streamfunction norm of

the forecast from the analysis is examined. The case where the true state is given by the most

rapidly growing Eady wave is shown in Fig. 3.13(a). It can be seen that a better forecast is

achieved when more weight is given to the final time observations rather than giving more

weight to the initial time observations. When a growing waveis observed, if a large weight is

given to the initial observations, the analysis is requiredto be close to the initial observations

but not to the final observations. Hence, a large analysis increment is added but it does not need

to grow. If a large weight is given to the final observations, asmall analysis increment can be

added to the background state so that it grows to fit the final time observations. Therefore, the

analyses are better if more weight is given to the final observations.

The case where the true state is given by the most rapidly decaying Eady wave is shown in

Fig. 3.13(b). It can be seen that it is also the case that the analysis is better when more weight

is given to the final time observations. This is opposite to the expected result and the reasons

for this are not clear. The state at the final time has a smalleramplitude than at the initial time

as the state is decaying. Therefore, it is perhaps the case that an analysis increment with a

smaller amplitude is added when more weight is given to the final time observations. This will

be answered more fully in a subsequent chapter (Section 5.6).
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Figure 3.13: The streamfunction norm for forecasts from 4D Var analyses of (a) Growing and
(b) Decaying modes. The background state has a phase error and perfect observations of the
lower boundary wave are given at T+0 and T+12. The weights arespecified asσ−2

b = 2, and
σ−2
o = 20 at T+0 andσ−2

o = 1 at T+12 (dashed), andσ−2
o = 1 at T+0 andσ−2

o = 20 at T+12
(dotted). The solid line represents the true state.

3.4 Conclusions

This chapter has focussed on two properties of 4D-Var: inferring the state in unobserved re-

gions and generating the necessary vertical structures. These properties were investigated using

simple experiments where the lower level wave was observed and 4D-Var was used to infer the

position of the upper level wave. The main results are now summarized.

The behaviour of the minimization algorithm showed that theobserved regions are first

corrected, and then the unobserved regions are corrected. This hints that the information

needed to reconstruct the unobserved regions corresponds to eigenvectors of the Hessian matrix

with small eigenvalues.

The experiments with perfect observations showed that the background state strongly pe-

nalizes the information needed to reconstruct the unobserved wave. The experiments with

noisy observations showed that the reconstructed regions are sensitive to noise. Correlations

may be used to smooth the noise, however, this may not be able to remove the unphysical

waves in the unobserved regions if the correlation length scale is too small. Thus, it is impor-

tant to give a large weight to the background state in the caseof noisy observations. Together,
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the experiments with and without noise show that it is vital to specify the weight given to the

observations relative to the weight given to the backgroundstate, so that the maximal amount

of information may be extracted from the observations.

By comparing the results with growing and decaying true states, it has been shown that 4D-

Var is able to generate analysis increments with vertical structures necessary for both baroclinic

growth and decay. However, it is sometimes the case that a growing analysis increment is

added instead of a decaying analysis increment. This occursif a large weight is given to the

background state or if all the observations are near to the end of the assimilation window. Thus,

it is important that the observations are both accurate and as far apart as possible in time, so that

4D-Var is able to analyse the correct growth rate. Giving more weight to the initial observations

does not improve the analysis of decaying modes.

The experiments in this chapter have led to a number of interesting results. However, they

have not provided a full understanding of how observations are used in 4D-Var. In the next two

chapters, we aim to provide a new understanding of the 4D-Varanalyses in this chapter, using

an approach based on information content concepts, that is commonly used to solve inverse

problems such as satellite retrievals.



Chapter 4

Qualitative Information Content of

Observations in 4D-Var

Information theory or Communication theory is concerned with what is known as the infor-

mation content of a message, which is the amount of useful information contained within a

message. Information theory was first used by electrical engineers to design better telecom-

munications systems, but now has a wide variety of applications. In particular, concepts from

information theory have been applied to 1D-Var satellite retrieval studies (e.g. Mateer, 1965,

Eyre, 1990, Prunet et al., 1998, Rodgers, 2000, Rabier et al., 2002). There are many different

methods to evaluate or measure the information content of the observations. For example, in

satellite retrieval studies, it is useful to obtain a singlenumber as a quantitative measure of

the information content. However, there are many other techniques which are useful in under-

standing the information content. The singular value decomposition (SVD) is one particular

technique that can be used, as first described by Mateer (1965).

The SVD has previously been used to evaluate the informationcontent of observations

in 1D-Var retrievals. In this chapter, the method is extended to the temporal dimension to

evaluate the information content of observations in 4D-Var. This technique should allow a new

understanding of how the information from observations is combined with the model dynamics.

The chapter begins by formulating the 1D-Var/3D-Var data assimilation algorithm as an

inverse problem. We then give a review of the SVD and its use inunderstanding the information

content of observations in 3D-Var. The technique is then extended to consider the information

content of observations in 4D-Var. The technique involves the right and left singular vectors

of what is known as the observability matrix and so we go on to describe how these relate to

78
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the singular vectors or optimal perturbations that are morecommonly used in meteorology.

We also discuss how the SVD can give information about the conditioning of the problem and

hence the expected rate of convergence of the minimization.The chapter finishes by describing

the computational aspects of the SVD technique.

4.1 Data Assimilation as an Inverse Problem

Consider a simple example where the true state of the atmosphere is represented by a vectorxt

of dimension n, and that m observations are given in the vector y. Suppose that the observations

are not of the atmospheric variables, but can be related to them through a set of linear equations

so that:

y = Hxt + εo. (4.1)

whereεo is the observational error andH is the forward model. Then the best estimatexa

of the true statext must be found, such that a measure ofy − Hxa is small. This is known

as an inverse problem (Wunsch, 1996) and can be solved by formulating it as a least-squares

problem. This finds the statex which minimizes the cost function:

Jo(x) =
1

2
(Hx− y)TR−1(Hx− y). (4.2)

J. Hadamard defined a problem to be well-posed if three requirements are met: a solution

exists, the solution is unique and the solution depends continuously on the data. If any one

of these three conditions are not satisfied, the problem is ill-posed (see e.g. Kalnay, 2003). In

general, equation (4.2) is ill-posed. That is, there are often more unknowns than observations

so the solution is non-unique. Further, even if there are as many observations as unknowns, the

observations are noisy and therefore the analysis can be extremely sensitive to the noise.

For this reason more information must be provided to make theproblem well-posed. For

example, in 1D-Var/3D-Var a background term is added to the cost function so that the analysis

is given by the state which minimizes the cost function:

J(x) =
1

2

{

(x − xb)TB−1(x − xb) + (Hx− y)TR−1(Hx− y)
}

. (4.3)

Then the analysis is given by the background state in regionswhere there are no observations

and the analysis is smooth in regions of dense noisy observations. In the rest of this chapter,
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we consider diagonal covariance matrices with constant variances. However, it is possible to

extend the technique to include correlations, as will be shown in a subsequent Chapter.

As before, we letB = σ2
b I andR = σ2

oI. Then the cost function becomes:

J(x) =
1

2

{

σ−2
b (x − xb)T (x − xb) + σ−2

o (Hx− y)T (Hx− y)
}

. (4.4)

Multiplying the cost function by2σ2
o , then, 3D-Var minimizes the cost function:

J2(x) = µ2
{

(x − xb)T (x − xb)
}

+ (Hx− y)T (Hx− y) (4.5)

whereµ2 = σ2
o

σ2

b

is a parameter that determines the relative weight given to the background state

in comparison to the observations.

4.2 Information Content and the Singular Value Decompo-

sition

The least squares equations have also been used for many years to solve other inverse problems

such as deducing unknown constants in dynamic oceanography(Wunsch, 1977) and determin-

ing the vertical distribution of ozone in remote sensing (Mateer, 1965). The least squares

equations continue to be used to solve the satellite retrieval inverse problem. For example, ver-

tical temperature and humidity profiles are linked to observed radiances through the radiative

transfer equation.

It is important to understand the information content of remotely sensed observations. That

is, to understand how different observations contribute toa retrieval. By observing more radi-

ances at different wavelengths (channels), the vertical resolution of the profile can be improved.

However, there may be a point where adding further observations has a negligible effect on the

retrieved profile. Further, with the vast increase in satellite data in the future, it will not be pos-

sible to include all the available observations in retrievals. Therefore, it is necessary to select

an optimal subset of the observations such that the important information is retained ( Rodgers

(1996) and Collard (2000)).

In the case of satellite retrievals, there is a complicated relationship between the observed

variables and the retrieved variables. However, many techniques have been developed to assess

the information content of the observations. The information content determines how many
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linearly independent pieces of information are contained in a set of observations. This not only

depends on the observations, but on the algorithm in which they are used, for example on the

radiative transfer model and on the errors in the observations.

One of the methods used to examine the information content isthe singular value decom-

position (SVD). This is a matrix factorization that can be applied to any matrix, even if it is

rectangular, and has many uses such as finding the rank of a matrix, reducing the storage space

of a matrix (commonly used in image reconstruction and signal processing), extracting a sig-

nal from noisy observations using a truncated SVD and also defining the optimal perturbations

which exhibit large finite-time growth, used to generate an ensemble of forecasts in meteorol-

ogy. In this chapter we develop a technique which uses the SVDof the so-called observability

matrix in 4D-Var. But first, we discuss how the SVD may be used to examine the structure and

identify the important parts of the observation operatorH.

Following Golub and Van Loan (1996) and Strang (1986), the SVD of an(m× n) matrix

H (m rows and n columns) with rank r, can be written as the product of three matrices:

H = UΛVT (4.6)

whereΛ is a diagonal(m× n) matrix, with r positive singular valuesλj on the diagonal. The

singular values are ordered such thatλ1 > λ2 > . . . > λr > 0. The m columnsuj of U

(m × m) are also known as the left singular vectors (LSVs) and are also the eigenvectors of

HHT . The n columnsvj of V(n× n) are known as the right singular vectors (RSVs) and are

also the eigenvectors ofHTH.

The SVD can be used to identify the four fundamental subspaces known as the column

space, left null space, row space and null space. The first r RSVs form a basis for the row

space, whilst the remaining RSVs form a basis for the null space. This distinction is important,

as all the vectors in the null space satisfyHx = 0. Similarly, the first r LSVs form a basis for

the column space and the remaining LSVs form a basis for the left null space. These subspaces

are illustrated in Fig. 4.1.

Both the RSVs and LSVs form orthonormal bases, soUTU = Im and VTV = In.

Using this with equation (4.6) then we find that each right singular vector is mapped onto the

corresponding left singular vector and the magnification isgiven by the corresponding singular

value:

Hvj = λjuj. (4.7)
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Figure 4.1: Schematic Diagram illustrating the SVD of the observation operatorH. There arem = 10

observations and hence the length of the left singular vectors is 10. There aren = 7 unknown variables
and hence the length of the right singular vectors is 7. As there are more observations than there are
unknowns, a left-null space exists. In this case the observation operator does not have as many linearly
independent equations as unknowns. Therefore, one of the singular values is zero, and so a null space
also exists.

This means that the vectors in the row space (in state space) are mapped onto vectors in the

column space (in observation space). However, as the vectors in the null space have a corre-

sponding zero singular value, the null space vectors are mapped onto zero and not onto the

left-null space vectors.

It is sometimes the case that there are singular values that are non-zero but are extremely

small. In this case, an effective or numerical rank may be defined, where there is a sharp

decrease in the singular values (Golub et al., 1976). The RSVs that correspond to the small

non-zero singular values are infact important in 4D-Var, aswill be demonstrated in the next

chapter.

To illustrate how the SVD can be used to identify the important part of a matrix, matlab

has been used to produce an SVD analysis of a(320 × 200) digital image of a clown. Using

the SVD, the image matrixH can be approximated by a rank-k matrix:

Hk =
k
∑

j=1

λjujv
T
j . (4.8)

Some of the approximations are shown in Fig. 4.2. The rank-5 approximation shows the basic

large scale structure, but it appears very blurred. More detail is added with more singular



Chapter 4. Qualitative Information Content of Observations in 4D-Var 83

vectors, as shown by the rank-20 approximation. To the eye, the rank-60 approximation is very

similar to the true image. Thus, a truncated SVD can be used toretain the dominant features

of the image but discard the unnecessary small scale structures.

rank−5 rank−20

rank−60 True Image

Figure 4.2: The ’true’ image of a clown, and rank-5, rank-20 and rank-60 approximations. The true
image has rank-200.

When the SVD of the observation operator is found, the RSVs lie in state space. This

means that the RSVs are the same dimension as the state vectorand the variables in the RSVs

correspond to the variables in the state vector. Similarly,the LSVs lie in observation space.

This means that the SVD can be used to identify the structure in state space that will map onto

a particular structure that is observed.

Thus, the SVD can be used to identify which variables in the state space can be determined

by the observations. If a retrieved state has components which lie in the null space of the

observation operator, their values can not have been obtained from the measurements (Rodgers,

2000). It is obvious that a null space will exist if there are fewer observations than unknown

state variables. Even if there are more observations than unknowns, it is still possible for a null

space to exist; for example, if there are two observations ofthe same variable. A null space

may also exist if the equations linking the observations with the unknowns are not all linearly

independent, but this may not be obvious at first sight. In such a case, the SVD can be used to

identify the rank of the matrix and also the state variables that can obtain information from the

observations.
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To summarize, the SVD is a useful tool which can be used to identify the dominant or

important part of the observation operator. This allows thevariables which can be determined

from the observations to be identified. We now show this in more detail, by considering the

SVD in a 1D-Var/3D-Var algorithm.

4.3 Application to 3D-Var

The solution to minimising the least-squares problem (4.5)is now written in the form of a

singular vector decomposition. Setting the gradient of thecost function (4.5) to zero, gives the

BLUE analysis equation:

xa = xb + (µ2I + HTH)−1HTd (4.9)

whered = y−Hxb is the ‘innovation vector’. Substituting an SVD of the observation operator

H = UΛVT into the BLUE equation gives:

xa = xb + (µ2I + (UΛVT )T (UΛVT ))−1(UΛVT )Td. (4.10)

Letting z = VTx and using the orthonormal property of the RSVs,VVT = I, and of the

LSVs,UTU = I, then

(

µ2VVT + VΛ2VT
)

V(za − zb) = VΛUTd, (4.11)

and again usingVTV = I, then

xa − xb = V
(

µ2 + Λ2
)−1

ΛUTd. (4.12)

Thus, the analysis increments can be written as a linear combination of the right singular vec-

tors of the observation operatorH,

xa = xb +
r
∑

j=1

λj(u
T
j d)

µ2 + λ2
j

vj (4.13)
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whereu,v, λ andr are the LSVs, RSVs, singular values and rank ofH. With a similar notation

to Hansen (2001), this can be written as:

xa − xb =

r
∑

j=1

λ2
j

µ2 + λ2
j

uTj d

λj
vj . (4.14)

The weight given to the RSVs is partly determined by the term
uT

j d

λj
. If the the innovation

vectord is similar to the LSVuj, then the corresponding RSV is given a large weight. For

example, if they are exactly the same thenuTj d = 1. However, if the vectors are completely

orthogonal, then the RSV is given zero weight. Usually, the magnitude ofuTj d has a similar

magnitude toλj, so that the magnitude of
uT

j d

λj
is similar for different values ofλj.

The weight given to the RSVs is also determined by the termfj =
λ2

j

µ2+λ2

j

, which are known

as the Tikhonov Filter Factors (Hansen, 2001). These weights damp all the contributions to the

analysis increment which have small singular valuesλj , as:

fj =



































1 λj >> µ

1
2

λj = µ

λ2

j

µ2 λj << µ

(4.15)

These weights are illustrated in Fig. 4.3. Forµ = 0.1, the RSVs withλ > 0.1 are given a

significantly large weight, whilst the RSVs withλ < 0.1 are given much less weight. Thus, the

damping of the RSVs occurs forλ < µ. This is also discussed by Rodgers (2000).

If the observability matrix contains a null space, for example, if there are more unknowns

than observations, then some singular values will be zero. In this case there would be some

RSVs (in the null space) that do not have corresponding LSVs.If there is no background

term, then it would not matter how much weight was given to thecorresponding RSVs, as

they would have no impact on the value of the cost function. Thus, the solution would be

non-unique. Thus, the background state is essential to ensure that the solution is unique, by

providing extra information where there is no available information from the observations.

Even if the problem has full rank, there may be some singular values that are very small.

The background state also damps the RSVs that have small singular values. It will be shown

that this is important as many of these RSVs contain small scale structures corresponding to

noise. However, some of these RSVs also contain the important information needed in 4D-Var.
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Figure 4.3: The Tikhonov Filter Factorsf as a function of the singular valueλ and the relative weight
parameterµ, for singular valuesλ = 10−0.2i for i = 1, 10. The red solid line indicates the values for
λ = 10−1.

The SVD analysis of the 3D-Var scheme is well-known, and provides a useful technique

to examine the information content of, for example, observations in satellite retrievals. This

technique is now extended so that the temporal dimension in 4D-Var is included. To the best of

the authors knowledge, such an extension has not been considered in previous literature. De-

spite being a simple extension, this will allow a new understanding of the information content

of observations in 4D-Var.

4.4 Extension to 4D-Var

The 4D-Var cost function is similar to the 3D-Var cost function, except that the observations

are distributed in time and linked together by the model equations. Mathematically, 4D-Var

finds the analysisxa which minimizes the cost function:

J(x0) = σ−2
b (x0 − xb)T (x0 − xb) +

N
∑

i=0

σ−2
o (yi − Hxi)

T (yi −Hxi) (4.16)
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subject to the strong constraintxi+1 = Mxi. This can be rewritten in the form of an uncon-

strained minimization as:

J(x0) = σ−2
b (x0 − xb)T (x0 − xb)

+ σ−2
o (y0 − Hx0)

T (y0 −Hx0) + σ−2
o (y1 −HMx0)

T (y1 −HMx0)

+ · · · + σ−2
o (yN −HMNx0)

T (yN − HMNx0)

(4.17)

which, with a simple rearrangement, gives:

J(x0) = σ−2
b (x0 − xb)T (x0 − xb)

+ σ−2
o

[

(y0 − Hx0)
T . . . (yN − HMNx0)

T

]



















(y0 −Hx0)

...

(yN − HMNx0)



















(4.18)

or equivalently the analysisxa minimizes the cost function:

J2(x0) = µ2‖x0 − xb‖2
2 + ‖ŷ − Ĥx0‖2

2. (4.19)

The cost function is now written in the same form as for 3D-Var, except that the vector

of observations now includes observations distributed in time and there is a ‘new’ observation

operatorĤ and vector of observationŝy which can be written in block matrix form as:

ŷ =





























y0

y1

...

yN





























Ĥ =





























H

HM

...

HMN





























. (4.20)

The matrixĤ is known as the ‘observability matrix’ in optimal control theory, and so we will

continue to use this term in the rest of this thesis. The observability matrix is also derived in

Appendix B of Zou et al. (1992a) to show that if the rank of the observability matrix is equal



Chapter 4. Qualitative Information Content of Observations in 4D-Var 88

to the number of unknowns, then it is possible to obtain a unique analysis with no background

state.

The observability matrix can be thought of as an effective orgeneralized observation op-

erator for 4D-Var, as it acts in a similar way to the observation operator in 3D-Var. Thus, it is

possible to apply the SVD to this matrix. During the rest of this thesis, it will be shown, using

the SVD, that the observability matrix plays a key role in theunderstanding of the mechanisms

in 4D-Var.

Following a similar procedure as for 3D-Var, then the 4D-Varanalysis increments can be

written as

xa − xb =

r
∑

j=1

λ2
j

µ2 + λ2
j

uTj d̂

λj
vj (4.21)

whereuj, vj, λj andr are the LSVs, RSVs, singular values and rank of the 4D-Var observabil-

ity matrix Ĥ, andµ2 = σ2
o

σ2

b

is the weight given to the background state relative to the weight

given to the observations, and̂d = ŷ − Ĥxb is the 4D-Var generalized innovation vector.

This is a key result of this thesis. The technique allows us toidentify which components

of the state vector can be identified from the observations. That is, the RSVs indicate which

components of the analysis can be updated by the observations, for a particular model and

observing system.

The technique also allows us to assess the influence of the background state. The relative

weight given to the observations,µ2, has been separated from the RSVs. This allows easy

inference of how the analysis would change if the weights were changed. That is, we can infer

which RSVs (and therefore, which components of the state vector), would be penalized if the

weight given to the background state was increased.

4.5 Relationship between 4D-Var and Optimal Perturbations

The singular value decomposition is commonly used in meteorology to define a set of optimal

perturbations that maximize the growth, defined by suitablemetrics, in a finite-time interval

(Buizza and Palmer, 1995). They are used to locate sensitiveregions where errors are likely

to grow and therefore used to generate a set of perturbationsto use in ensemble prediction.

Optimal perturbations are the right singular vectors of thelinear forecast model and the growth

rate is proportional to the corresponding singular value. The term ‘optimal perturbation’ is

used to denote the RSVs of the model to avoid confusion with the RSVs of the observability
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matrix.

It is useful to understand how the RSVs of the observability matrix relate to the optimal

perturbations. There are clear similarities between optimal perturbations and 4D-Var when a

full set of observations are given at the end of the assimilation window as previously shown by

Rabier et al. (1996) and Thépaut et al. (1996).

Optimal perturbationsx0 are defined to maximize the ratio

growth=
‖PxN‖E

‖x0‖C

(4.22)

whereP is an operator which maps from a space of dimensionn to a smaller space (for ex-

ample, so that the perturbations identify the maximum growth within a specified region of the

atmosphere) andC andE are the initial and final time norms respectively (Barkmeijer et al.,

1998). Commonly, these norms are taken to be the total energynorm. To illustrate the rela-

tionship between optimal perturbations and the RSVs definedabove, we choose the norms to

be the observation and background error inverse covariancematrices, and that the operatorP

is the observation operatorH, so that:

growth=
< HMx0;R

−1HMx0 >

< x0;B−1x0 >
. (4.23)

UsingR = σ2
oI andB = σ2

b I, then

growth=
1

µ2

< x0; Ĥ
TĤx0 >

< x0;x0 >
(4.24)

whereĤ = HM(tN , t0), andµ = σo

σb
. Therefore, in 4D-Var, with observations at only the

end of the assimilation window, the RSVs of the observability matrix are the same as optimal

perturbations with the observation operatorH acting as the operatorP. If a large weight is

given to the background state (µ is large), then the RSVs have a large growth rate. This is

intuitive, as we can imagine that the analysis increment is such that the analysis is close to the

background state at the initial time and close to the observations at the final time.

There are also many differences between optimal perturbations and RSVs of the observ-

ability matrix. First, optimal perturbations are RSVs thatare defined at the initial time and

evolve into the LSVs which are defined at the final time. However, the RSVs ofĤ are defined

in state space and evolve into LSVs which are defined in observation space. Second, by using a
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time sequence of observations, the analysis increments areno longer projected onto the optimal

perturbations; decaying structures are also included. However, we will demonstrate in Chapter

5 that the decaying modes are penalized by the background state. Third, optimal perturbations

are usually defined with respect to metrics such as total energy, enstrophy or the analysis error

covariance, whilst the appropriate metrics for the RSVs ofĤ are the error covariance matrices

B−1 andR−1. This last fact will be made more clear in Chapter 6, when spatial correlationsof

the background state error are also included.

4.6 Rate of Convergence of the Minimization Algorithm

In the second chapter (Section 2.3), we discussed how the conditioning of the Hessian matrix

is central to understanding the convergence of the minimization algorithm. We now discuss

how the SVD of the observability matrix can be used to determine whether the Hessian matrix

is well-conditioned.

The Hessian of the cost function (4.19), is:

∇∇J2 = µ2I + ĤT Ĥ. (4.25)

Suppose the observability matrix̂H has RSVsv and associated singular valuesλ, then

these also satisfy the eigenvector relationship:

ĤT Ĥv = λ2v (4.26)

and therefore, these are related to the Hessian matrix by:

(µ2I + ĤT Ĥ)v = (µ2 + λ2)v. (4.27)

Thus the right singular vectors of the observability matrixare also the eigenvectors of the

Hessian of the cost function. This has two important consequences.

The first consequence is that the RSVs with the smallest singular values are also the di-

rections of the Hessian ellipsoid axes in which the isocontours are stretched the most. Thus,

the minimization algorithm has difficulties in finding the directions with the smallest singular

values. The minimization algorithm will first identify the RSVs with large singular values and

will then identify the RSVs with small singular values lateron.
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The second consequence is that the conditioning of the Hessian matrix is related to the

maximum and minimum singular values. That is, the conditionnumber is defined as:

cond(∇∇J) =
λ2

max + µ2

λ2
min + µ2

. (4.28)

whereλmax andλmin are the maximum and minimum singular values ofĤ. Consider the case

with a zero singular value. Then, if there was no background state (µ = 0), this would give

an infinite condition number. That is, the analysis would be non-unique. This is expected, as a

zero singular value corresponds to the observability matrix not having full-rank. If, however,

a large weight is given to the background state (µ is large), then the condition number would

no longer be infinite. This illustrates why the background state is needed to ensure that the

problem is well-posed. Even if there were no zero singular values, adding a background state

(µ2 > 0) reduces the condition number and hence improves the conditioning of the problem.

Therefore, the background state also improves the convergence rate of the minimization.

4.7 Calculating the SVD for the Eady model

In the next chapter, the SVD of the observability matrix for the 4D-Var with the Eady model is

discussed; the method used to find the SVD is now discussed. The details are described further

in Appendix A.

There are three strategies to compute the SVD of a linear operator (Toumazou, 2001). The

SVD strategy computes all the singular values and vectors ofĤ. The QR strategy computes all

the eigenvectors and eigenvalues ofĤT Ĥ, and the Lanczos method is an iterative eigensolver

which computes only the k largest singular values and associated singular vectors.

The Lanczos strategy is particularly useful for large problems as the algorithm does not

need the linear model to be in matrix form. Therefore, the Lanczos approach is commonly

taken when computing optimal perturbations of NWP models (Buizza, 1997). However, the

algorithm is not able to accurately and efficiently compute all the RSVs (P. Haas, A. Beck,

Personal Communication).

In this thesis, all the singular vectors and singular valuesare required. Therefore, the NAG

routine naggensvd (NAG), based on the SVD algorithm described by Golub and Van Loan

(1996), is used. This algorithm requires that the linear operator is in matrix form.

Considering the case with a complete set of observations of the lower level buoyancy at
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the beginning and the end of the window, we compute the SVD of:

Ĥ =











H

HM(tN , t0)











. (4.29)

To generatêH in matrix form, the Eady model also needs to be in matrix form.This is found

by applying the discrete Eady model equations to successivecolumns of the identity matrix. As

these initial conditions are discontinuous fields, the Lax-Wendroff numerical scheme is used,

as discussed in Appendix A.

4.8 Conclusions

The 4D-Var algorithm has been considered as an inverse problem that is similar in form to

3D-Var. The observation operator in the 3D-Var cost function is replaced by the 4D-Var ob-

servability matrix, which contains both the observation operator and the linear forecast model.

Writing the 4D-Var cost function in this form allows the 4D-Var analysis increments to be given

by a linear combination of the right singular vectors (RSVs)of the observability matrix. The

weight given to the RSVs is partly determined by the TikhonovFilter Factors. These factors

penalize the RSVs with small singular values in comparison to the relative weight given to the

background state.

The SVD formulation of 4D-Var has provided a number of interesting results concerning

the need for the background state, the similarities between4D-Var and optimal perturbations

and an understanding of the behaviour of the minimization algorithm.

The background state is needed to ensure that the 4D-Var inverse problem is well-posed.

First, the background state ensures that the analysis is unique. This is vital if the observability

matrix does not have full rank and hence a null space exists. Second, the background state is

needed to penalize the RSVs with small, but non-zero, singular values. It will be shown in the

next chapter that these RSVs have small scale spatial structures and hence correspond to noise.

Thus, the background state is needed to ensure that the analysis does not include unphysical

structures corresponding to the observational noise.

It was previously known that there are similarities between4D-Var and optimal perturba-

tions. The SVD formulation has provided a more precise relationship which has highlighted
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both the similarities and differences between the two. The main differences occur when the

observations are at more than one time level and also in the metrics that are used to define the

optimal perturbations.

By considering the Hessian of the cost function, it was shownthat the background state

acts to improve the conditioning of the problem and that the RSVs of the observability matrix

are also the eigenvectors of the Hessian. This implies that the minimization algorithm will

correct the directions of the RSVs with large singular values during the first few iterations.

An important consequence of the SVD formulation of 4D-Var isthat it provides a useful

tool to understand the information content of observationsin 4D-Var. This will be demonstrated

in the next chapter by discussing the SVD of the observability matrix for the Eady model.



Chapter 5

SVD Results

Results from simple 4D-Var identical twin experiments withthe Eady model were presented

in Chapter 3. The experiments investigated the ability of 4D-Var to reconstruct the state in

unobserved regions, and to generate analysis increments with the vertical structure necessary

for baroclinic growth or decay. Five main results were found: the background state penalizes

the information needed to reconstruct the state in unobserved regions; the unobserved regions

are particularly sensitive to observational noise; the background state penalizes the decaying

analysis increments; analyses are improved when the observations are moved further apart in

time; and giving more weight to the initial observations does not improve the analysis of a de-

caying mode. These results play a key role in assessing the advantages of 4D-Var, and towards

maximizing these benefits. However, the reasons for these results are not well understood. In

this chapter, the singular value decomposition (SVD) is used to provide a new understanding

of 4D-Var.

It was demonstrated in Chapter 4, that the SVD provides a useful interpretation of the

information content of observations in 4D-Var. This chapter begins with a brief review of

the SVD technique, and then the SVD computations of the 4D-Var observability matrix are

shown. These computations are used as a basis for understanding the five main results found in

Chapter 3. The structure of the matrix of right singular vectors and the singular values are used

to understand why the background state penalizes the information needed to reconstruct the

unobserved regions, the weights given to the RSVs are used tounderstand why the unobserved

regions are sensitive to noise, and the spatial structures of the RSVs are examined to understand

why the background state penalizes the decaying modes. The SVD computations are modified

so that the effect of the temporal position and weights of theobservations can also be examined.

94
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The chapter concludes by establishing a link between 4D-Varand a method known as Tikhonov

regularization. This provides a more complete understanding of the 4D-Var algorithm.

5.1 Singular Vector Technique

Following the experiments in Chapter 3, observationsy0 andyN of only the lower buoyancy,

are provided at the beginning and the end of an assimilation window [t0, tN ]. It is assumed

that there are no background error correlations so that the error covariances are diagonal with

constant variances,B = σ2
b I andR = σ2

oI.

Then, the 4D-Var cost function can be written as:

J(x0) =
1

2

{

σ−2
b ‖x0 − xb‖2

2 + σ−2
o ‖ŷ − Ĥx0‖2

2

}

(5.1)

where the generalized observation vectorŷ and the observability matrix̂H are given by:

ŷ =











y0

yN











Ĥ =











H

HM(tN , t0)











(5.2)

wherexi is the state vector at timeti, yi is the vector of observations at timeti, andM(tN , t0)

is the linear Eady model such thatxN = Mx0.

Setting the gradient ofJ with respect tox0 to zero, and using the singular value decom-

position (SVD) of the observability matrix,̂H = UΛVT , then the 4D-Var analysis increments

can be written as:

xa − xb =

r
∑

j=1

λ2
j

µ2 + λ2
j

uTj d̂

λj
vj (5.3)

whereu,v, λ andr are the left singular vectors (LSVs), right singular vectors (RSVs), singular

values and rank of the observability matrix,j is the singular vector index,̂d = ŷ − Ĥxb is the

generalized innovation vector andµ2 = σ2
o/σ

2
b is the relative weight given to the background

state in comparison to the observations.
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Figure 5.1: Singular valuesλ andV matrix of the observability matrix̂H as a function of the
singular vector index, when there are observations of the lower level buoyancy at the beginning
and the end of a 6 hour assimilation window. TheV matrix is shown as an image so that each
element corresponds to a colour, as shown by the colour bar. The very small values have been
shaded white. Each column ofV gives the RSV that corresponds to the singular values above,
and the RSVs are such that the first 40 elements contain the upper level buoyancy (B upper),
the last 40 elements contain the lower level buoyancy (B lower) and the elements in the middle
correspond to the QGPV on the 11 vertical levels.
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5.2 The Background State Penalizes Important Information

In Chapter 3, it was shown that if a large weight is given to thebackground state, the informa-

tion needed to reconstruct the state in unobserved regions is strongly penalized. The SVD of

the observability matrix is now used to illustrate why the information needed to reconstruct the

state is particularly sensitive to the relative weightµ2 given to the background state.

The singular valuesλ and theV matrix of the observability matrix̂H are shown in Fig.

5.1. There are 40 observations at two time levels, giving a total of 80 observations and hence

only 80 singular values. Although there are 80 non-zero singular values, there is a sharp-drop

in the singular value spectrum, suggesting an effective rank of 40.

TheV matrix shows two distinct regions: RSVs corresponding to large singular values

and RSVs corresponding to small singular values. The largest values of the first 40 RSVs are

on the lower boundary (B lower), whereas the largest values of the RSVs from 40 onwards are

on the upper boundary (B upper), and also on the lower boundary interior QGPV.

In both regions, there tends to be an increase in the number ofoscillations in the horizontal

in the RSVs, with increasing singular vectorj. That is, the horizontal wavelength tends to

decrease as the singular values decrease; although there are some regions where the horizontal

wavelength increases with decreasing singular values, forexample,j = 30, . . . , 40 & j =

70, . . . , 80.

The structure of theV matrix shows that the information needed to reconstruct the(ob-

served) lower level wave is mainly contained in the RSVs corresponding to large singular

values. In contrast, the information needed to reconstructthe (unobserved) upper level wave is

mainly contained in the RSVs corresponding to small singular values.

The background state penalizes the RSVs with small singularvalues (from equation (5.3)).

However, these RSVs contain the information needed to reconstruct the state in the unobserved

regions. It is therefore evident that this is the reason why the background state penalizes the

important information that is propagated from the observedregions to the unobserved regions.

We noted in Section 3.2.1 that the minimization algorithm first corrected the observed

lower boundary and then corrected the unobserved upper boundary. The relationship between

the RSVs of the observability matrix and the behaviour of theminimization was discussed

in Section 4.6. The minimization algorithm first updates thedirections with large singular

values. From Fig. 5.1 the RSVs with large singular values contain the information needed

to reconstruct the lower boundary, whereas the RSVs with small singular values contain the
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Figure 5.2: Values ofuTj d̂ whereuj are the left singular vectors and̂d is the generalized
innovation vector. The true state is given by the most unstable Eady wave and the background
state has a phase error of10∆x. Observations have (a) no noise and (b) noise with a Gaussian
distribution withσ = 1.

information needed to reconstruct the upper boundary. It isfor this reason that the minimization

algorithm first corrects the lower boundary wave and then corrects the upper boundary wave.

5.3 Unobserved Regions are Sensitive to Noise

It was shown in Chapter 3 that the unobserved regions are sensitive to the noise on the observa-

tions. If a relatively large weight is given to the observations, then an unphysical wave may be

generated in the unobserved regions. The reasons for this are now demonstrated by examining

the values ofuTj d̂ and what are known as the Picard ratio values.

The SVD ofĤ is only dependent on the position of the observations (H) and the model

(M). It is independent of the true state that is observed and theobservational noise. Thus,

although the structure of theV matrix has been examined, this does not determine which

particular RSVs give a large contribution to the analysis increment. The values ofuTj d̂ are now

used to understand how the observational data is projected onto the particular RSVs.

For comparison with the experiments in Chapter 3, we consider the true state given by the

most unstable Eady wave, and the background state with a phase error of10∆x. When there

are perfect observations, there are four values ofuTj d̂ which are relatively large, arising in two

pairs, as shown in Fig. 5.2(a). This means that RSVs1&2 and41&42 give a large contribution

to the analysis increment. When noise is added to the observations, many of the other values

of uTj d̂ become almost comparable so that more RSVs are included in the analysis increment.

These RSVs have smaller wavelengths, as shown by theV matrix in Fig. 5.1, so that the
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Figure 5.3: Values of (a) the Picard ratios and (b) the ratio between|uTj d̂| andλj. In both
cases the thick red solid line represents the values for perfect observations, and the thin solid
line represents the values for noisy observations with standard deviationσ = 1. In (a), the
case for noisy observations with standard deviationσ = 10−4 (dashed line),σ = 10−6 (dotted
line) are also shown.

analysis is closer to the noisy observations.

The values ofuTj d̂ do not directly show why the unobserved regions are the most sensitive

to the noise. Instead, it is necessary to examine the ratios
uT

j d̂

λj
, which are the weight coefficients

in equation (5.3). Since the ratios
uT

j d̂

λj
span several orders of magnitude, it is more convenient

to examine what is known as the Picard ratio, (Winkler, 1997),

log

(

|uTj d̂|
λj

)

. (5.4)

The Picard ratios for perfect observations and noisy observations are shown in Fig. 5.3 (a).

In all cases, there is a sharp increase in the Picard ratio near j=80. This is due to rounding errors

in the SVD computations, and can be ignored. For perfect observations (thick, red line), there

are two large spikes in the value of the Picard ratio, similarto the values ofuTj d̂. This clearly

highlights that only four RSVs are needed to make the correctanalysis increment. When noise

is added to the observations (thin, black lines) there is a dramatic increase in the Picard ratios

corresponding to the other RSVs, and these values increase further when the standard deviation

of the noise is increased.
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The Picard ratio values illustrate why the unobserved regions are sensitive to noise. When

there is no noise on the observations, the Picard ratio values are generally small, apart from the

two spikes. Thus, the RSVs with small scale structures are given a small weight. When noise

is added to the observations, all the Picard ratio values become large. Importantly, the values

increase with the singular vector index j. As a log scale is used, this increase is significant and

is perhaps more easily illustrated in Fig. 5.3 (b). It implies that with no background state, an

extremely large weight is given to the RSVs with extremely small singular values (j > 42).

From theV matrix, these RSVs have small scale structures and large amplitudes on the upper

boundary. Thus, the analysis increment is dominated by these RSVs causing an unphysical

wave to be generated on the unobserved upper boundary.

To summarize, the SVD analysis has shown that if a small weight is given to the back-

ground state, the RSVs with small singular values dominate the analysis increment. These

RSVs contain small scale structures in the unobserved regions. If a large weight is given to

the background state, the RSVs are strongly damped. It is forthis reason that the unobserved

regions are particularly sensitive to noise.

5.4 The Background State Penalizes the Decaying Modes

In Chapter 3, it was shown that the background state penalizes the decaying part of the analysis

increment, so that a growing analysis increment may be addedinstead of the required decay-

ing analysis increment. This is now understood by comparingthe RSVs that are needed for

growing and decaying analysis increments and by examining the vertical structure of the RSVs.

The previous section showed that with perfect observations, two pairs of RSVs are re-

quired to create the analysis increment. RSV1&2 have the same singular value, as do RSV

41&42. This is due to the symmetry of the Eady model, as discussed byPreisendorfer (1988).

The streamfunction fields for RSVs1&2 are shown in Fig. 5.4. The RSVs have exactly the

same structure except for a difference in phase. Thus, each RSV pair has a cosine and a sine

component, so that the correct horizontal position of the wave can be obtained.

Given that the RSVs form sine and cosine pairs, it is useful toassess the combined weight

given to an RSV pair. This is achieved by writing the sum of theweighted RSVs as a linear

combinationψ of sine and cosine waves, where the weights are given by the values ofuTj d̂,

ψ(x, z) = uT1 d̂ sin(x+ φ(z)) + uT2 d̂ cos(x+ φ(z)). (5.5)
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Figure 5.4: Streamfunction fields of an RSV pair: (a) RSV 1 and (b) RSV 2. Both plots use the
same contour interval.

Setting the derivative ofψ with respect tox to zero, then the maximum or minimum value of

ψ is at a distance:

xmax = tan−1

(

uT1 d̂

uT2 d̂

)

− φ(z). (5.6)

This can then be used to find the maximum amplitude ofψ:

ψmax = |ψ(xmax)|. (5.7)

It should be noted that this formula is used to find only the magnitude and not the sign of the

combined weight.

The weight given to an RSV pair is then determined by the Picard ratio for an RSV pair,

ψmax/λj. This value allows an easier interpretation than the weights given to the separate RSV

pair components. Table 5.1 shows the values ofψmax/λj for the RSV pairs when either a

growing or a decaying mode is observed, over either a 6 hour or12 hour assimilation window.

RSVs41&42 have a significantly smaller singular value than RSVs1&2 , but they also have

smaller values ofψmax. Thus, the values ofψmax/λj for the various RSV pairs are of the same

order of magnitude, allowing a fair comparison.

For a 6 hour window, when a growing mode is observed, a larger weight is given to RSVs

1&2 than RSVs41&42. However, when a decaying mode is observed, more weight is given

to RSVs41&42 than RSVs1&2. Thus, RSVs41&42 are more important when a decaying

mode is observed. These vectors have very small singular values and hence they are penalized

strongly when a large weight is given to the background state.

The difference between the weights for growing and decayingmodes is more evident for
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Figure 5.5: RSVs shown at the initial time T+0. The RSV is defined by the buoyancy and the
QGPV, but streamfunction is calculated from these fields. These RSVs give a large contribution
to the analysis increment when either the most unstable growing or decaying mode is observed,
and observations are taken of the lower boundary at the beginning and the end of a 6 hour
assimilation window. The values at the top right of each plotgive the maximum magnitudes of
the fields.
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Index j Singular Valueλj Growing
mode is
observed

Decaying
mode is
observed

6 hour window

1 & 2 1.4463 24.99 19.15

41 & 42 0.2660 20.11 21.77

12 hour window

1 & 2 1.6168 26.47 14.47

41 & 42 0.4669 19.34 25.38

Table 5.1: Values ofψmax/λj for the RSV pairs. Perfect observations of the lower level buoy-
ancy are given at the beginning and the end of either a 6 hour or12 hour window, the true state
is given by either the most rapidly growing or decaying Eady wave and the background state
has a phase error. Note that by definition,ψmax/λj ≥ 0.

a longer (12 hour) assimilation window. Thus, for a longer assimilation time, there is a more

distinct splitting between the RSVs needed to produce a growing analysis increment (RSVs

1&2) and the RSVs needed to produce a decaying analysis increment (RSVs41&42).

To understand the difference between RSVs1&2 and RSVs41&42, the vertical structures

of the RSVs are now examined. As the RSVs are in pairs, only oneRSV from each pair

is shown. Figure 5.5 shows RSV 1 and RSV 41 at the beginning of the time window. The

streamfunction field for RSV 1 is the same as that in Fig. 5.4(a). For RSV1, the magnitude

of the buoyancy on the lower boundary is much larger than thaton the upper boundary. The

streamfunction tilts westwards with height and the buoyancy field tilts eastwards with height;

these are both characteristics of growing normal modes and will therefore result in growth. In

contrast, for RSV 41, the magnitude of the buoyancy is largeron the upper boundary than the

lower boundary. The streamfunction tilts eastwards with height and the buoyancy field tilts

westwards with height; these are both characteristics of decaying normal modes. The QGPV

has relatively small but non-zero values and therefore gives little contribution to the growth

and decay in comparison to the upper and lower temperature waves.

The RSVs are defined at the beginning of the assimilation window. However, they can be

evolved to the end of the window, by integrating them with theEady model, to give evolved

RSVs, shown in Fig. 5.6. As the RSVs are not the singular vectors of the model, the evolved

RSVs are not the same as the LSVs.

For RSV 1, there is a large increase in amplitude of the upper level wave, and the maximum
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Figure 5.6: As for Fig.5.5, but now the RSVs are shown at the final time T+6.
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amplitude of the streamfunction field has also increased. The QGPV field has been sheared by

the basic state flow. The upper level wave has moved slightly westwards and the lower level

has moved slightly eastwards so that at the final time, the structure is more similar to a growing

normal mode structure.

For RSV 41, there is a reversal in the sign of the lower buoyancy wave, and again, the

upper level wave has moved slightly westwards and the QGPV field has been sheared by the

basic state flow. In contrast to RSV 1, the maximum amplitude of the streamfunction field has

decreased.

W C
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C W

W C W

W C

W CCW
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RSVs 1 & 2 RSVs 41 & 42

W

INITIAL
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FINAL
TIME

TIME

W

C

Figure 5.7: Schematic Diagram showing the evolution of the right singular vectors. The panels
on the left show the evolution of RSV 1 (large singular value)and the panels on the right
show the evolution of RSV 41 (small singular value), both at the beginning and the end of the
assimilation window. The boundary temperature anomalies are indicated by W (warm) and
C (cold), and the interior QGPV anomalies are indicated by +(positive) and -(negative). The
circles indicate the direction and magnitude of the meridional wind associated with the QGPV
anomalies in the interior and the buoyancy anomalies on the boundaries.

The schematic diagram in Fig. 5.7 summarizes the evolution mechanisms of the RSVs.

For RSVs1&2, the maximum meridional wind (horizontal derivative of streamfunction) lies

directly underneath the maximum temperature anomaly on theupper boundary. Thus the lower

level circulation intensifies the amplitude of the upper level wave. As the lower level wave has
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Figure 5.8: LSVs 1 and 41. The panels on the left show LSV 1 at T+0 and T+6, and the panels
on the right show LSV 41 at T+0 and T+6. Note that the LSVs are defined in observation space,
and hence are given by the lower level buoyancy field at the initial and the final time.

a relatively large amplitude this is a large effect. The circulation from the upper level wave also

acts to slightly intensify the amplitude of the lower level wave so that the streamfunction field

grows. The basic state zonal wind acts on the QGPV field so thatit tilts eastwards with height

at the final time. Rossby wave propagation on the upper and lower boundaries acts to move

the upper level wave westwards and the lower level wave eastwards. Thus, at the final time the

structure is similar to a growing normal mode structure. There is a smaller difference between

the amplitude of the upper and lower buoyancy waves and the streamfunction field has a larger

westward tilt with height than at the beginning of the window.

For RSVs41&42, the position of the upper level wave acts to weaken the lowerlevel

wave. As the upper level wave has a relatively large amplitude, this is a large effect. Further,

the circulation associated with the QGPV field reinforces this effect so that the wave actually

becomes zero and then starts to grow again in the opposite direction. The circulation from the

lower level wave also acts to slightly weaken the upper levelwave so that the streamfunction

field decays. Again, the structure at the final time is similarto a growing normal mode.

To understand how the observational data is projected onto the RSVs, it is of interest to

also examine the structure of the LSVs. If an LSVuj is in the same direction as the generalized

innovation vector̂d, then the corresponding RSVvj is given a large weight. The LSVs lie in

the observation space which is given by buoyancy on the lowerboundary at both the initial

and the final time. LSVs1&41 are shown in Fig. 5.8. LSV 1 has a similar structure at T+6
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to that at T+0, with a small change in the amplitude. This implies that the weights given to

RSVs1&2 are determined by the general shape and position of the observed wave. In contrast,

LSV 41 at T+6 has the opposite sign to the wave at T+0. This implies that the weights given to

RSVs41&42 are determined by the change in magnitude of the observed wave between T+0

and T+6. If LSV 41 is added to LSV 1, a decaying wave results, and if LSV 41 is subtracted

from LSV 1, a growing wave results. Thus, the LSVs with small singular values are detecting

the growth or decay of the system.

To summarize, RSVs1&2 contain the information needed to reconstruct the state in the

observed regions and to give a growing analysis increment. RSVs41&42 contain the informa-

tion needed to reconstruct the state in unobserved regions and also to give a decaying analysis

increment. In particular, they are needed to detect the growth. The growth may be small in

comparison to the amplitude of the wave and hence is harder todetect and therefore a large

weight should be given to the background state if the observations are relatively noisy. It is for

this reason that RSVs41&42 have a small singular value and thus RSVs41&42 are penalized

so that the position of the upper level wave cannot be determined.

When the assimilation window is longer, there is a more distinct splitting between the

weight given to the RSV pairs when growing and decaying modesare observed and the singular

value of the RSVs41&42 is larger. These aspects are investigated in the following section.

5.5 Observations Should be Placed Far Apart in Time

In Chapter 3, it was shown that it is best to place the observations as far apart as possible

in time. It was also shown that if observations are only at theend of the window, a longer

assimilation window will give better results if a growing mode is observed, but worse results if

a decaying mode is observed.

The reasons for this are now investigated by repeating the SVD computations but with

different temporal observing systems. We first examine the RSVs when a 12 hour assimilation

window is used with observations at T+0 and T+12, and we then examine the singular values

when the temporal position of the initial observations is changed.

Figure 5.9 shows the structures of the RSVs for a 12 hour assimilation window, with

observations of the lower level buoyancy at T+0 and T+12. Thestructures are very similar to

those for a 6 hour window (Fig. 5.5), but there are some important differences. The QGPV

field exhibits a greater tilt with height, as the longer window provides a longer time to untilt.
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Figure 5.9: As for Fig. 5.5, but for a 12 hour window.
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Also, there is a smaller difference between the amplitude ofthe wave on the upper boundary

and that on the lower boundary.

The upper level wave in RSV 1 and the lower level wave in RSV 41 are larger for a longer

assimilation window. Thus, the RSVs exhibit tilted structures that are more intense. That is, for

a longer time window, RSV 1 exhibits a more pronounced vertical structure for growth whilst

RSV 41 exhibits a more pronounced vertical structure for decay. Thus, there is a more distinct

difference in the vertical structure for the two RSV pairs.

The difference in the amplitude of the buoyancy waves on the upper and lower levels is

important for the reconstruction of the wave with the correct vertical structure. If a large weight

is given to the background state, a small weight will be givento RSVs41&42 and the analysis

increment will be dominated by RSVs1&2. The amplitude of the upper level wave is larger for

a longer time window. Thus, a larger analysis increment willbe added to the upper boundary, in

a position to give growth in the following forecast. Therefore, if a growing mode is observed at

the beginning and the end of the window, a longer assimilation window gives a better analysis.

However, if a decaying mode is observed at the beginning and the end of the window, a longer

assimilation window may give a worse analysis because although a large analysis increment is

added, the position of the upper level wave relative to the lower level wave is incorrect.

The temporal position,tI , of the initial observations is now considered by calculating the

SVD of the observability matrix:

Ĥ =











HM(tI , t0)

HM(tN , t0)











(5.8)

whereM(tI , t0) represents the integration of the linear model from the beginning of the as-

similation windowt0 to the time of the initial observationstI , andM(tN , t0) represents the

integration of the linear model fromt0 to the end of the assimilation windowtN .

For a fixed assimilation window length, the position of the initial observations has little

impact on the structure of the RSVs and so their structures are not shown. There is, however, a

dramatic change in the size of the singular values of the second pair of RSVs, as shown in Fig.

5.10.

For both a 6 hour and 12 hour window, the singular value of the second pair of RSVs

decreases as the initial set of observations is moved towards the end of the window. If the
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Figure 5.10: The singular values of the second pair of RSVs (not necessarily 41&42 ) plotted
against the time of the initial observations. The solid linerepresents the values for a 12 hour
window, and the dashed line represents the values for a 6 hourwindow. In both cases, the final
observations are given at T+12.

initial observations are at the end of the window (T+12), then the singular value is zero. In

other words, when there are only observations at the end of the window, there is only one pair

of RSVs that contribute to the analysis increment (RSVs1&2).

This diagram explains why it is better to place the observations as far apart as possible

in time. When a large weight is given to the background state,the RSVs with small singular

values are penalized. Thus, the weight given to the second pair of RSVs decreases as the

initial observations are moved to the end of the assimilation window. Alternatively, as the

initial observations are moved to the end of the window, moreweight should be given to the

observations; this can only occur if the observations become more accurate. With observations

at only the end of the window, the analysis increment is always a growing solution. Even if

the weight given to the background state is zero, it is not possible to add an analysis increment

with a decaying structure.

To summarize, a longer assimilation window produces RSVs with more vertical structure.

RSVs 1&2 have a larger amplitude on the upper boundary and RSVs41&42 have a larger

amplitude on the lower boundary. With observations at only the end of the window, RSVs1&2

alone contribute to the analysis increment. Thus, if a growing analysis increment is required, a

longer assimilation window gives better results. This is consistent with Thépaut et al. (1996),

where it was shown that the length of the assimilation periodis crucial to ensure fully developed

dynamical structure functions. However, it is for the same reason that a longer assimilation

window will give worse results if the observations are only at the end of the window and a
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decaying analysis increment is required.

If the observations are further apart in time, the singular value of the second pair of RSVs

is larger, so that the weight given to the RSVs is also larger (when considering a significant

weight given to the background state). This is consistent with the fact that it is easier to detect

the growth of the true state over a longer assimilation window: a larger singular value of the

second pair of RSVs indicates that the observations containmore useful information.

5.6 Temporal Weights Given to the Observations

In Chapter 3, it was shown that the analyses with more weight given to the final observations

were better than the analyses with more weight given to the initial observations. In particular,

it was shown that the analysis of the decaying mode is not improved by giving more weight to

the initial observations.

The SVD is now used to understand the effect of the temporal weights given to the obser-

vations. We consider a 6 hour window with observations at T+0and T+6 and with 10 times

more weight given to either the initial of the final observations. This is achieved by calculating

the SVD of:










w1H

w2HM(tN , t0)











(5.9)

with the scalar weightsw1 andw2 defined byw1 = 1, w2 = 10 to give more weight to the final

observations andw1 = 10, w2 = 1 to give more weight to the initial observations.

The structures of the RSVs of the observability matrix that give a large contribution to

the analysis increment when the most rapidly growing or decaying Eady wave is observed are

now examined. The RSVs for the case when more weight is given to the initial observations

are shown in Fig. 5.11(a) and the RSVs for the case when more weight is given to the final

observations are shown in Fig. 5.11(b). When more weight is given to the initial observations,

there is a large difference between the amplitudes of the upper and lower waves so that the in-

formation needed to reconstruct the lower level wave and theinformation needed to reconstruct

the upper level wave is clearly separated. When more weight is given to the final observations,

there is a small difference between the amplitudes of the upper and lower waves and thus there

is a stronger vertical tilt. These structures are similar tothose for a 12 hour window.

If we consider the case where a relatively large weight is given to the background state,
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Figure 5.11: The upper and lower buoyancy field for RSVs 1 and 41 of the observability matrix
for the case of a 6 hour window with observations of the lower boundary buoyancy at T+0 and
T+6. (a) The weight given to the initial observations is 10 times greater than that given to the
final observations (w1 = 10, w2 = 1), and (b) the weight given to the final observations is 10
times greater than that given to the initial observations (w1 = 1, w2 = 10).

then because RSV41&42 have small singular values, they are strongly penalized. Therefore,

the analysis increment is dominated by RSVs1&2. If an eastward tilting analysis increment

(growing) is required, then it is better to give more weight to the final time observations. If a

westward tilting analysis increment (decaying) is required, then it makes little difference as to

whether more weight is given to the initial or the final observations. In both cases, a growing

analysis increment will be added to the background state. Ifmore weight is given to the initial

observations, a large analysis increment must be added to the background state so that the

analysis increment is close to the observations at the beginning of the window. If more weight

is given to the final observations, a small amplitude analysis increment may be added to the

background state. This increment has a strong vertical tiltso that it grows rapidly during the

window so that the analysis is close to the final observations.

If a decaying analysis increment is required, giving more weight to the initial observations

does not improve the analysis. The only way to obtain an analysis increment with the required

growth rate is to give a relatively small weight to the background state so that the RSVs with

small singular values (RSVs41&42) can be included in the analysis increment.
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5.7 Tikhonov Regularization

In Chapter 4, the SVD and information content concepts that are used in 1D-Var satellite re-

trievals were extended to 4D-Var. This technique has been used in this chapter to understand

how observations are combined with the model dynamics in 4D-Var. One of the results from

this study is that the background state is needed to filter thenoisy components of the solution.

This aspect gives strong links to a method that is widely known in the mathematical literature

as Tikhonov Regularization (Aleksandrov, 1976). The method of Tikhonov Regularization is

now introduced and then a link between 4D-Var and Tikhonov Regularization is established.

Following Winkler (1997) and Hansen (2001), suppose that the true statext satisfies the

matrix equation:

Axt = bt (5.10)

and that the given datab which is used to infer the true statext has errorsε,

b = bt + ε. (5.11)

Then, the inverse problem is to find the statexa which minimizes:

‖Ax− b‖2
2. (5.12)

This is a discrete ill-posed problem if the solutionxa is sensitive to the datab. Strictly speak-
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ing, an ill-posed problem must have an infinite dimension, however certain finite dimensional

problems have similar properties to those of ill-posed problems and are known as discrete

ill-posed problems (Hansen, 1992).

Extra information about the desired solution is necessary to make the problem well con-

ditioned. In Tikhonov Regularization, this is achieved by also requiring that the 2-norm of the

solution is small. The standard form for Tikhonov Regularization is to minimize:

‖Ax− b‖2
2 + µ2‖x‖2

2 (5.13)

whereµ is the regularization parameter which controls the amount of smoothing. The solution

xµ is known to be a good approximation to the true solution provided that the exact solution

is dominated by the large singular values. That is, if the exact solution satisfies the discrete

Picard condition:

The exact coefficientsuTj b
t decay, on average, faster than the singular valuesλj.

Thus, the ratio
uT

j bt

λj
must decay, whereuj andλj are the LSVs and singular values of

the matrixA. A schematic diagram illustrating the typical behaviour ofthe values of the

Picard ratios is shown in Fig. 5.12(a). The solid line represents the exact coefficients for the

exact data,
uT

j bt

λj
. They decrease, so the discrete Picard condition is satisfied. The dashed line

represents the coefficients for noisy data,
u

T
j (bt+ε)

λj
. These values decrease to a minimum and

then increase. Thus, if the regularization parameterµ is small, the solution is dominated by the

RSVs with very small singular values. The regularization parameter should be chosen so that

these components are damped, and so that the approximation is close to the true solution.

The parameterµ controls the amount of smoothing. If too much regularization is imposed,

the solution will not fit the data well and‖Axµ−b‖2
2 will be large; but if too little regularization

is imposed, the solution will be dominated by the data errorsand‖xµ‖2
2 will be large. Thus, it

is important to specifyµ well.

The L-Curve is one method that may be used to chooseµ, and may also be used to illustrate

the fundamental foundations for Tikhonov Regularization.The L-Curve is a parametric plot

of log ‖xµ‖2 againstlog ‖Axµ − b‖2 and is known as an L-Curve due to the L shape of the

curve. The log-log scale is used so that the corner of the L-Curve is emphasized. It has been

proved (see for example, Winkler (1997) and Hansen (2001)),that if the unperturbed databt

satisfies the discrete Picard condition, the noiseε is an unbiased random vector with a diagonal

covariance matrix and‖ε‖ << ‖bt‖, the L-Curve assumes the shape shown by the schematic
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diagram in Fig. 5.12 (b). The L-Curve is always concave at theends near the axes and a

corner exists at C. Whenµ is small (region A), the solution is dominated by the effect of noise,

and hencelog ‖Axµ − b‖2
2 is small andlog ‖xµ‖2

2 is large. Whenµ is large (region B), the

solution has been over-smoothed and hencelog ‖Axµ − b‖2
2 is large andlog ‖xµ‖2

2 is small.

The appropriate value forµ therefore lies at the corner of the L shape (point C). This is known

as the L-Curve criterion.

The 4D-Var algorithm is now explicitly formulated as Tikhonov Regularization. The 4D-

Var cost function can be written as (see Section 4.4):

J(x0) = (x0 − xb)TB−1(x0 − xb) + (ŷ − Ĥx0)
TR−1(ŷ − Ĥx0). (5.14)

To account for correlations in the error covariances, letB = σ2
bρB andR = σ2

oρR, then the

cost function can be rewritten as:

J(x0) = σ−2
b ‖ρ− 1

2

B (x0 − xb)‖2
2 + σ−2

o ‖ρ− 1

2

R (Ĥx0 − ŷ)‖2
2. (5.15)

Lettingχ = ρ
− 1

2

B (x0 − xb) andd̂ = ŷ − Ĥxb, then

σ2
oJ(χ) = µ2‖χ‖2

2 + ‖ρ− 1

2

R Ĥρ
1

2

Bχ− ρ− 1

2

R d̂‖2
2 (5.16)

where again,µ2 = σ2
o

σ2

b

.

This is in the standard form for Tikhonov Regularization (5.13) whereA = ρ
− 1

2

R Ĥρ
1

2

B and

b = ρ
− 1

2

R d̂. Therefore, it is now possible to apply our understanding ofthe discrete Picard

condition and the L-Curve to 4D-Var.

The 4D-Var experiments in Section 3.2.3 (for example, Fig. 3.4) considered the true state

given by the most unstable Eady wave and a background state with a phase error. Observations

of the lower level buoyancy were given at T+0 and T+6 with noise with a Gaussian distribution

with σ = 1. Background error correlations were applied to the lower level buoyancy with

l = 10∆x. Using the known true state, the statistically optimal inverse variances wereσ−2
o = 1

andσ−2
b = 0.08. An L-Curve for this experiment is now found, to determine whether the ratio

µ2 = σ2
o/σ

2
b can be found without the knowledge of the true state. The curve is found by

repeating the 4D-Var analysis with different values forσ−2
b and withσ−2

o = 1 fixed.

The L-Curve, shown in Fig. 5.13 for this case is a parametric plot of log ‖ρ−
1

2

B (xa(µ) −
xb)‖2 and log ‖ŷ − Ĥxa(µ)‖2, or equivalently oflog

√

(σ2
bJ

b
min) and log

√

(σ2
oJ

o
min) . The
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Figure 5.13: The L-Curve: a parametric plot oflog
√

σ2
bJ

b
min = log ‖ρ− 1

2

B (xaµ − xb)‖2 and

log
√

σ2
oJ

o
min = log ‖Ĥxaµ − ŷ‖2. The values ofσ−2

b = µ2 are written by the side of each point
andσ−2

o is fixed.

value ofµ2 at the corner of the curve is 0.14; this is slightly larger than the statistically optimal

value of0.08. Thus, the L-Curve does indeed find a parameter in the correctvicinity of the

optimal value, but is perhaps slightly too large. This oversmoothing is consistent with the

results found by Hansen (2001).

The values of the Picard ratios for 4D-Var with no correlations were shown in Fig. 5.3.

The values for perfect observations show two spikes and do not decay on average with the

singular vector index. That is, the underlying true solution does not satisfy the discrete Picard

condition. It is for this reason that 4D-Var is not always able to reconstruct the unobserved

regions and that the analysis is a poor approximation to the true state. When the observations

are noisy, the RSVs with small singular values must be damped. However, in the process of

damping the unwanted RSVs, the background state also damps the important information.

The SVD computations shown in this chapter have not considered correlations; these will

be considered in the next chapter. It will be shown that the effect of the correlations is to

re-order the RSVs so that the discrete Picard condition can be satisfied.
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5.8 Conclusions

In this chapter we have used the singular value decomposition (SVD) to understand how 4D-

Var combines the information from observations with the model dynamics. For comparison

with the experiments in Chapter 3, we have examined the case where only the lower boundary

is observed and either the most rapidly growing or decaying Eady wave is observed.

The SVD of the observability matrix showed that for this case, only two pairs of RSVs are

needed to form the correct analysis increment. The first pairhave a large singular value and

are needed to reconstruct the state in the observed regions and also to give a growing analysis

increment. The second pair have a small singular value and are needed to reconstruct the state

in the unobserved regions and to give a decaying analysis increment.

The Picard ratio values for perfect observations do not decay with the singular vector

index. This means that when noise is added to the observations, and other RSVs are given a

large weight, it is impossible to damp the unwanted noisy RSVs whilst retaining the second

pair of RSVs. It is for this reason that the background state strongly penalizes the information

needed to reconstruct the state in the unobserved regions and also to give a decaying analysis

increment.

The Picard ratio values for noisy observations increase with the singular vector index.

Thus, the RSVs with extremely small singular values dominate the analysis increment if there is

no background state. However, it is these RSVs which are strongly damped by the background

state. These RSVs contain small scale structures with a large amplitude in the unobserved

region. It is for this reason that the unobserved regions areparticularly sensitive to noise on the

observations and also to the weight given to the background state.

We have shown that the choice of the regularization parameter µ is essential in generating

an analysis that has extracted the maximum amount of available information but that does not

contain unphysical structures due to noise. By relating 4D-Var to Tikhonov Regularization, we

have shown that it is possible to use the data (the observations and the background state), to

find the appropriate choice for the regularization parameter. This has been demonstrated using

the L-Curve.

If the assimilation window length is increased, the RSVs develop more vertical structure.

When the initial and final observations are close together intime of the background state is

given a large weight, the growing RSVs dominate the analysisincrement and therefore a longer

assimilation window gives better results if a growing analysis increment is required, but worse
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results if a decaying analysis increment is required.

If the initial and final observations are moved further apartin time, the singular value of

the second pair of RSVs increases. This indicates that the observations provide more useful

information when they are far apart in time.

The SVD computations have provided a new understanding of 4D-Var, and in particular the

extent to which 4D-Var can reconstruct the state unobservedregions and generate the correct

vertical structures, and also how these benefits can be maximized. However, only very simple

experiments have been examined and it is important to ask howthese results might differ for

more realistic data assimilation cases.

The section on Tikhonov Regularization (Section 5.7) showed that correlations may also

be considered by formulating the problem with a change of variable. The background error

correlations play a key role in spreading the information from observations in both dense and

sparse data regions. In all the experiments so far we have only considered the case where the

true state is given by the most rapidly growing or decaying Eady wave and where only the lower

boundary buoyancy is observed. It is therefore important toinvestigate 4D-Var for different

true states and observing systems. In particular, it is important to consider the case where the

true state exhibits non-modal growth, and to consider also vertical lines of observations, for

example given by radiosondes. These issues will be investigated in the next chapter.



Chapter 6

Extension to More Realistic Cases

The experiments in previous chapters considered the assimilation of a full horizontal line of

observations of the lower level buoyancy at two time levels,and where the true state was

given by either the most rapidly growing or decaying Eady wave. This has been useful in

understanding how 4D-Var can reconstruct the upper level wave, and does simulate a real data

case where only surface observations (or upper air) observations are used. Both the 4D-Var

analyses and the SVD computations have illustrated how 4D-Var combines the information

from observations with the model dynamics. However, the experiments were highly idealized.

The purpose of this chapter is to understand whether the previous results can be applied to

an operational 4D-Var algorithm. This is investigated by extending the experiments to more

realistic, although still idealized cases.

In operational data assimilation, the observational data contains many vertical temperature

profiles, for example, from radiosondes or satellites. Therefore, it is important to understand

how 4D-Var uses the information from vertical temperature profiles and how this compares and

contrasts with the assimilation of horizontal lines of observations. Since a vertical profile of

observations samples the vertical structure of the atmosphere, it is to be expected that 4D-Var

will be able to use this data to generate analyses with good vertical structures.

All the previous experiments in this thesis have consideredthe true states given by the

most rapidly growing or decaying Eady wave. The vertical structure of these normal modes is

vital for the vertical coupling between the upper and lower boundary waves and hence for the

growth or decay of the waves. Chapter 1 also discussed perturbations which can grow faster

than the exponential growth of normal modes. The vertical structure of these perturbations is

very different to that of the normal modes as they are characterized by interior QGPV structures

119
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with small spatial scales. Therefore, it is important to understand whether 4D-Var is able to

generate analyses with such non-modal structures. Vertical profiles sample such structures

well, and therefore it is expected that 4D-Var should be ableto extract the information to

generate analyses with structures necessary for non-modalgrowth.

Vertical temperature profiles give sparse data in the horizontal. Therefore, the interpolating

effect of background error correlations is important in such cases. The 4D-Var experiments in

Section 3.2.3 showed that correlations play an important role in creating a smooth analysis

when a full line of noisy observations is assimilated. None of the SVD experiments, however,

have considered correlations or sparse observations. Thus, it is important to investigate how

the SVD results differ when correlations are included and also when sparse observations are

assimilated.

All the experiments in this chapter consider the assimilation of observations of the interior

buoyancy field. In the first section, the technique used to handle observations of the interior

buoyancy is described and the assimilation of interior buoyancy is compared with the assimi-

lation of the lower level buoyancy. In the second section, the technique to compute the SVD

incorporating correlations is described and the filtering and interpolating effects of correlations

are investigated. In the third section, the assimilation ofobservations from a true state with

non-modal growth is compared with that from modal growth. The fourth section considers the

assimilation of observations from different observing systems. First, the experiments are ex-

tended to consider the assimilation of two horizontal linesof observations, and then to consider

the assimilation of two vertical lines of observations.

6.1 Observing Interior Buoyancy

This section describes the assimilation of observations ofthe interior buoyancy. Such obser-

vations will be used for all the experiments in the rest of this chapter. The assimilation of a

horizontal line of interior buoyancy is compared with that of a horizontal line of buoyancy on

the lower boundary, by examining the SVD of the observability matrix:

Ĥ =











H

HM











(6.1)
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whereH is the observation operator andM is the linear Eady model.

The SVD of the observability matrix gives an indication of the information that is con-

tained in the observations when they are assimilated using 4D-Var. The background state

penalizes the RSVs with small singular values. This is important in removing the noisy com-

ponents from the analysis increment, but may also remove some of the important information

that is contained in the observations.

In the Eady model, when the lower boundary buoyancy is observed, the observation op-

eratorH is simply a matrix of ones and zeros, but when the interior buoyancy is observed,

the observation operator must contain diagnostic equations which link the interior buoyancy

to the control variables (QGPV and buoyancy on the boundaries). The non-dimensional buoy-

ancy is given by the vertical derivative of the non-dimensional streamfunction field. There-

fore, the observation operator first uses the QGPV and buoyancy on the boundaries to find the

streamfunction field, and then the interior buoyancy is given by the vertical derivative of the

streamfunction field. This is described in further detail inAppendix A.

The structures of the RSVs, for the assimilation of the interior buoyancy at a height of

2.5km, are now examined. RSVs 2 and 10 are shown in Fig. 6.1. The first pair have an

eastward tilting buoyancy field with a maximum in amplitude on the lower boundary. The

second pair have a westward tilting buoyancy field with a maximum in amplitude on the upper

boundary. Although the observations are closer to the middle of the domain than in the previ-

ous experiments, there is still a distinction between the information needed to reconstruct the

boundary that is closest to the observations and the information that is needed to reconstruct

the boundary that is furthest from the observations. Also, the information to give a growing

analysis increment is found in the first RSV pair, whilst the information to give a decaying

analysis increment is found in the second RSV pair. The difference between these RSVs and

the RSVs for observations of the lower boundary is the dipolestructure in the QGPV field.

Such a structure is expected from the relationship between temperature and QGPV. A warm

buoyancy anomaly is related to a negative QGPV anomaly aboveand positive QGPV anomaly

below, as shown by the schematic diagrams in Fig. 1.4. It is expected that this structure will

enable the reconstruction of small-scale structures in QGPV that are necessary for non-modal

growth.

The effect of the height of the horizontal line of observations is now considered. The

singular values of the two RSV pairs that are necessary to form the analysis increment when the

most rapidly growing or decaying Eady wave is observed are shown in Fig. 6.2. As the height
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Figure 6.1: Right singular vectors of the observability matrix that give a large contribution
to the analysis increment for the analysis of the most rapidly growing or decaying Eady wave.
Observations of the interior buoyancy at a height of 2.5km are given at the beginning and the
end of a 6 hour window.

of the horizontal line is increased from 0.5km to 4.5km, the singular value of the first pair of

RSVs decreases. The structure of the RSVs also changes as theheight is increased (not shown).

When the observations are at 0.5km, the first pair of RSVs has arelatively large amplitude on

the lower boundary and the second pair have a relatively large amplitude on the upper boundary.

When the observations are moved higher to 4.5km, the RSVs have nearly equal amplitudes on

the upper and lower boundaries. As the height of the observations is increased even further,

the first pair of RSVs gain a larger amplitude on the upper boundary and the second pair gain a

larger amplitude on the lower boundary. Thus, the first pair of RSVs contains the information

needed to reconstruct the boundary which is closest to the observations, whilst the second pair

of RSVs contains the information needed to reconstruct the boundary which is furthest from the

observations. At all heights, the first pair of RSVs has an eastward tilting buoyancy field and

the second pair of RSVs has a westward tilting buoyancy field.Thus, the second pair of RSVs

always contains the information to give a decaying analysisincrement. When the observations

are in the middle of the domain, there is a smaller differencebetween the singular values so
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Figure 6.2: Singular values of the two pairs of RSVs that contribute to the analysis increment
when the most rapidly growing or decaying Eady wave is observed. Observations of a hori-
zontal line of the interior buoyancy are given at T+0 and T+6 and at a specified height (the
abscissa). The black dashed line shows the singular values of the first pair of RSVs and the red
solid line shows the singular values of the second pair of RSVs.

there is less distinction between the information needed toinfer the growing and decaying

parts of the analysis increment. The singular value of these‘decaying’ RSVs is always smaller

than that for the ‘growing’ RSVs, even when the observationsare in the middle of the domain.

Thus, the background state will continue to strongly penalize the decaying part of the analysis

increment.

To summarize, the SVD of the observability matrix for a horizontal line of interior buoy-

ancy observations has shown that there are still two pairs ofRSVs needed to form the analysis

increment. Therefore, the conclusions from the previous chapter can be applied to the as-

similation of interior buoyancy. That is, the first pair of RSVs with a large singular value, is

needed to reconstruct the state on the boundary closest to the observations and to give a grow-

ing analysis increment whilst the second pair of RSVs, with asmall singular value, is needed

to reconstruct the state on the boundary furthest from the observations and to give a decaying

analysis increment. As the background state penalizes the RSVs with small singular values,

this implies that the background state may penalize the information needed to reconstruct the

state on the boundary furthest from the observations and also penalize the decaying part of the

analysis increment. The structures of the RSVs show that if the horizontal line is moved from

near the lower boundary to the middle of the domain, there is less of a distinction between the

information to reconstruct the upper level wave and the information needed to reconstruct the

lower level wave. However, the singular values show that there is still a distinction between the
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information needed to reconstruct the growing and decayingparts of the analysis increment.

6.2 Background Error Correlations

The SVD experiments are now extended to understand the filtering and interpolating effects of

correlations. The section begins by rewriting the 4D-Var analysis increments in terms of the

RSVs of what will be known as the normalized observability matrix.

Consider the minimization of the 4D-Var cost function:

J(x0) = (x0 − xb)TB−1(x0 − xb) + (ŷ − Ĥx0)
TR−1(ŷ − Ĥx0) (6.2)

where the generalized observation vectorŷ and the observability matrix̂H are given by:

ŷ =











y0

yN











Ĥ =











H

HM











. (6.3)

We assume that the background state and observations have uniform error variances,σ2
b andσ2

o

so that the covariances may be split into the variance and correlation components:

B = σ2
bρB R = σ2

oρR (6.4)

whereρB andρR are the background and observation error correlations respectively. Defining

the co-ordinate transformationχ = ρ
− 1

2

B (x0−xb), then the cost-function may be written in the

standard, preconditioned form:

σ2
oJ(χ) = µ2‖χ‖2

2 + ‖ρ− 1

2

R Ĥρ
1

2

Bχ− ρ− 1

2

R d̂‖2
2 (6.5)

where the generalized innovation vector isd̂ = ŷ − Ĥxb andµ = σo/σb.

In the previous chapters, the SVD of the observability matrix Ĥ was examined. However,

by using the co-ordinate transformation, the cost functionhas now been transformed such

that the analysis increments may be written as a linear combination of the RSVs ofρ
− 1

2

R Ĥρ
1

2

B

which we will call the ‘Normalized Observability matrix’. The term normalized is used to be

consistent with the terms used in Rabier et al. (2002) where the SVD of a normalized Jacobian
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matrix (or equivalently, a normalized observation operator) is examined.

If uj , vj, λj andr now denote the LSVs, RSVs, singular values and rank of the normalized

observability matrix,ρ
− 1

2

R Ĥρ
1

2

B, then the analysis increments can be written as:

χa = ρ
− 1

2

B (xa0 − xb) =

r
∑

j=1

λ2
j

µ2 + λ2
j

uTj ρ
− 1

2

R d̂

λj
vj (6.6)

Thus, the RSVs of the normalized observability matrix determine the structure of the analysis

increments when correlations are included.

In the following, observation correlations are not considered, soρR = I. However, it is in-

teresting to note that the impact of temporal observation error correlations may be investigated

using this technique. Such correlations are highly relevant for the assimilation of satellite data,

but at the present time, it is unclear how such correlations should be treated.

The matrixĤρ
1

2

B first needs to be calculated before the SVD can be computed. Inpartic-

ular, a method is required to computeρ
1

2

B. In this thesis, the background error correlations are

defined as:

ρ−1
B = w0I + w1(Lxx)

2 (6.7)

wherew0 andw1 are positive constants depending on the correlation lengthl, andLxx is a finite

difference second derivative matrix (see equation (2.50)). There are many decompositions

which satisfyρB = CCT . Here, we choose to find the real, symmetric positive definitesquare

root ofρB using the Schur decomposition, following Higham (1984) andStrang (1986). This

derivation is simplified considerably by first noting the properties ofρ−1
B :

1. ρ−1
B is a real symmetric matrix (n× n),

2. the diagonal elements ofρ−1
B are all positive,

3. ρ−1
B is strictly diagonally dominant1.

1The matrixA is strictly diagonally dominant if and only if

|aii| >

n
∑

j=1
j 6=1

|aij | i = 1, . . . , n.

whereaij is the element ofA on the ith row and jth column.
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From these three properties, it can be shown thatρ−1
B is also symmetric positive definite2.

As ρ−1
B is symmetric positive definite, it is invertible, andρB is also symmetric positive

definite (e.g. Noble and Daniel, 1988).

Any square matrixρB may be written as a Schur decomposition (e.g. Atkinson, 1989):

ρB = VDVT (6.8)

whereV is a unitary matrix andD is an upper triangular matrix whose diagonal elements are

the eigenvalues ofρB.

As ρB is symmetric, then the eigenvalues ofρB are real and the eigenvectors form an

orthonormal basis. This means thatD is then a diagonal matrix with the eigenvalues ofρB on

the diagonal, and the eigenvectors ofρB form the orthonormal columns ofV.

AsρB is symmetric positive definite, then the eigenvalues ofρB are also all positive. Thus,

the square roots of the eigenvalues are real. This means thata real square root ofρB can be

defined as:

ρ
1

2

B = VD
1

2 VT (6.9)

whereD
1

2 is a diagonal matrix whose diagonal elements are square roots of the eigenvalues of

ρB. This may be verified by formingρ
1

2

Bρ
1

2

B = (VD
1

2VT )(VD
1

2VT ) = VDVT = ρB.

There exist both positive and negative square roots of the eigenvalues, so that there are2n

possible square roots (Higham, 1984). Here, the positive square roots are chosen so that the

unique, real and positive definite square root is

ρ
1

2

B = VD
1

2VT . (6.10)

whereD
1

2 is a diagonal matrix whose elements are the positive square roots of the eigenvalues.

The matrixρ−1
B is inverted using the NAG routine nagsym mat inv, (NAG) which com-

putes the inverse of a real symmetric matrix. The Schur decomposition ofρB is then found

using nagsym eig all, which computes all the eigenvalues and eigenvectors ofa real symmet-

ric matrix. The eigenvalues and eigenvectors are then used to computeρ
1

2

B using (6.9), which

2The matrixA is symmetric positive definite if and only if

xT Ax =
n
∑

i=1

n
∑

j=1

aijxixj > 0 ∀x 6= 0, xεR andA = AT .
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is then premultiplied bŷH.

6.2.1 Relationship to Optimal Perturbations

It was briefly mentioned in Section 4.5 that the appropriate metrics for the RSVs are the back-

ground and observation error covariances, although this was not justified. The relationship

between the RSVs and optimal perturbations are now reconsidered to show that these are in-

deed the relevant metrics.

Optimal perturbations maximize the ratio:

growth=
‖PxN‖E

‖x0‖C

(6.11)

whereP is an operator which reduces the n-dimensional vector to a vector with a smaller

dimension, andC andE are the initial and final time norms. These norms are now chosen to

be the background and observation inverse error covariances, B−1 andR−1 respectively and

the observation operatorH is used asP so that:

growth=
< HMx0;R

−1HMx0 >

< x0;B−1x0 >
. (6.12)

LettingR = σ2
oρR andB = σ2

bρB, then

growth=
1

µ2

< ρ
− 1

2

R HMx0;ρ
− 1

2

R HMx0 >

< ρ
− 1

2

B x0;ρ
− 1

2

B x0 >
. (6.13)

Using the co-ordinate transformationχ = ρ
− 1

2

B x0 then

growth=
1

µ2

< ρ
− 1

2

R HMρ
1

2

Bχ;ρ
− 1

2

R HMρ
1

2

Bχ >

< χ;χ >
. (6.14)

so that these are also the RSVs ofρ
− 1

2

R Ĥρ
1

2

B whereĤ = HM.

Thus the optimal perturbations of the modelM that are found using the operatorH and

with the metrics given by the background error correlationsat the initial time and the observa-

tion error correlations at the final time are equivalent to the RSVs of the normalized observ-

ability matrixρ
− 1

2

R Ĥρ
1

2

B.
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Figure 6.3: Singular valuesλ andV matrix of the (a) observability matrix and (b) normalized
observability matrix, when there is a full line of observations of the interior buoyancy at a
height of 0.5km, at T+0 and T+6. The correlations are appliedto every level with a length
scale ofl = 10∆x.The details are as for Fig. 5.1.
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6.2.2 Impact of Correlations on the Assimilation of Dense Observations

The 4D-Var experiments in Section 3.2.3 showed that when noisy observations are assimilated,

the background state must be given enough weight to penalizethe noise and to give a smooth

analysis. However, the background state also acts to penalize the information needed to recon-

struct the state in unobserved regions. When correlations were added in the background error

covariance matrix, it was possible to extract more of the information needed to reconstruct the

upper level wave whilst giving a smooth analysis. Thus, background error correlations act to

filter the noise from observations that have a dense spatial distribution.

The SVD computations in Section 5.3 showed that with perfectobservations of the most

rapidly growing or decaying Eady wave, two pairs of RSVs wererequired to form the analysis

increment. However, with noisy observations, many of the other RSVs, with smaller-scale

spatial structures were also given a large weight. The filtering effect of correlations is now

understood by computing the SVD of the normalized observability matrix.

The SVDs ofĤ and Ĥρ
1

2

B for the case with a horizontal line of interior buoyancy ob-

servations at a height of 0.5km are shown in Fig. 6.3. If the true state is given by the most

rapidly growing Eady wave and the background state has a phase error, then with no correla-

tions, the RSVs needed to form the analysis increment are given by RSVs1&2 and41&42.

But with correlations, the RSVs needed to form the analysis increment are given by RSVs2&3

and5&6. This is because the RSVs with small scale structures and a large amplitude on the

lower boundary are now associated with very small singular values. Thus, the effect of the

correlations is to re-order the RSVs so that the RSVs with large scales are associated with the

largest singular values. Note that the second pair of RSVs still have a small singular value;

this is important as there is no change in the observations, and hence there is also no change

in the information that can be extracted from the observation. The re-ordering of the RSVs

means that the regularization parameterµ can be chosen so that the RSVs that are needed to

reconstruct the upper level wave are given a large weight, but so that the RSVs with small scale

structures are strongly penalized by the background state.

The SVD has shown that the background error correlations actto bias the analysis incre-

ments towards the spatial structures that are expected. This is achieved by strongly penalizing

the error structures that are not expected. In this case, theunexpected structures are the RSVs

with small spatial scales. When correlations are included,these RSVs have smaller singular

values and are therefore penalized more by the background state.
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Figure 6.4: As for Fig. 6.1 but with four sparse observations at T+0 and T+6, and no correla-
tions.

6.2.3 Impact of Correlations on the Assimilation of Sparse Observations

The SVD ofĤ andĤρ
1

2

B are now used to consider the information content of sparse observa-

tions. First, the SVD of̂H for a horizontal line of only four observations at T+0 and T+6is

found. The RSV pairs which give a large contribution to the analysis increment, if the most

rapidly growing or decaying Eady wave is observed, are shownin Fig. 6.4. Again, there are

two pairs of RSVs, but their structure is vastly different tothat for a full horizontal line of ob-

servations. These RSVs have small horizontal scales with maxima and minima in the buoyancy

field at the positions of the observations. This makes it difficult to interpret the information that

is contained in the RSVs.

It is more useful to examine the RSVs ofĤρ
1

2

B so that the effect of correlations can also be

considered. These RSVs are shown in Fig. 6.5. In contrast to the RSVs ofĤ, these RSVs now

have large horizontal scales and can usefully be compared tothe RSVs for a full horizontal line

of observations. RSVs2&3 for the sparse observations (Fig. 6.5 (a)) are almost identical to

RSVs2&3 for the full line of observations (Fig. 6.1(a)). RSVs5&6 for the sparse observations

(Fig. 6.5 (b)) are also very similar to RSVs10&11 for the full line of observations (Fig. 6.1(b)),



Chapter 6. Extension to More Realistic Cases 131

1000 2000 3000 4000
0

2

4

6

8

10

zonal direction (km)

he
ig

ht
 (

km
)

QGPV, max q  =0.022246

1000 2000 3000 4000

0.5

2.5

4.5

6.5

8.5

10.0

zonal direction (km)

he
ig

ht
 (

km
)

Buoyancy, max b  =0.20672

(a) RSV 2 and 3,λ = 0.15

1000 2000 3000 4000
0

2

4

6

8

10

zonal direction (km)

he
ig

ht
 (

km
)

QGPV, max q  =0.040211

1000 2000 3000 4000

0.5

2.5

4.5

6.5

8.5

10.0

zonal direction (km)

he
ig

ht
 (

km
)

Buoyancy, max b  =0.19543

(b) RSV 5 and 6,λ = 0.03

Figure 6.5: RSVs of the normalized observability matrix, with correlations with a length scale
of l = 10∆x applied to every level. Four sparse observations are given at T+0 and T+6.

although there are still some small scales near to the lower boundary.

The similarities between the RSVs for a full line of observations and those for sparse obser-

vations mean that the results concerning the reconstruction of the unobserved regions and the

vertical structure of analysis increments are still relevant for the assimilation of sparse obser-

vations; the background state penalizes the information needed to reconstruct the unobserved

regions and also penalizes the decaying part of the analysisincrement.

There are, however, two fundamental differences between assimilating a full line of obser-

vations and assimilating sparse observations. The first difference is that the sparse observations

need to be more accurate than the full line of observations toproduce the same analysis. This is

illustrated by the difference in the magnitude of the corresponding singular values. The singu-

lar values for the sparse observations are 7 times smaller than those for a full set of observations

because the number of observations are also reduced by a factor of 10. With smaller singu-

lar values, the regularization parameterµ also needs to be smaller so that the same amount

of information can be extracted; this is equivalent to stating that the observations need to be

more accurate. The second difference is that only the large scales can be successfully recon-
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structed using sparse data. In particular, at least four independent observations per wavelength

are needed to reconstruct a wave. With only two observations, the position of the wave cannot

be inferred, and the maxima and minima of the wave are simply at the positions of the ob-

servations. This was found through 4D-Var experiments (notshown) but may be deduced by

considering polynomial interpolation. That is,m + 1 independent pieces of information are

needed to determine the parameters for a polynomial of degreem (e.g. Atkinson, 1989).

To summarize, the SVD of the normalized observability matrix Ĥρ
1

2

B has illustrated both

the filtering and interpolating effect of background error correlations. The SVD of̂Hρ
1

2

B has

also shown that the conclusions from previous experiments can be applied to the assimilation

of sparse data, provided that only the large scales need to bereconstructed and that the sparse

data is less noisy than the dense data.

6.3 Non-Modal and Modal Growth

The ability to generate the vertical structures necessary for modal and non-modal growth is

now investigated. The experiments consider a background state with both zero QGPV and zero

buoyancy and the true state given by either the most rapidly growing Eady wave, as shown

in Fig. 6.6, or by an interior QGPV dipole as shown in Fig. 6.7,which is associated with a

negative temperature anomaly which may have resulted from diabatic cooling. The equations

for the non-modal initial conditions are given in Appendix A. The Eady wave results in expo-

nential growth through the vertical coupling between the boundary waves, whereas the QGPV

dipole structure results in rapid finite-time growth through the PV-unshielding mechanism, as

discussed by Badger and Hoskins (2001). Figures 6.6(c) and 6.7(c) show the final state from

integrations with a basic state such that the zonal wind is zero on the lower boundary. These

true states will not be used until Section 6.5, but are given here for comparison.

In the following experiments, the observations are given bya full horizontal line of the

interior buoyancy at a height of 4.5km at T+0 and T+6. This line passes through the centre of

the buoyancy anomaly. The horizontal domain has been increased to 80 grid points to ensure

that the spatial extent of the perturbation to the flow is smaller than the domain length.

It will be found that there is a significant dependence on the choice of the specified back-

ground error variances. For this reason, we choose to formulate the problem as solving an

ill-posed inverse problem using Tikhonov’s method of regularization, with multiple regulariza-

tion parameters.
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Figure 6.6: Buoyancy fields for the true state for modal growth (a)T+0, (b)T+6 such that the
basic state zonal wind is zero in the centre of the domain, (c)T+6 such that the basic state
zonal wind is zero on the lower boundary. The QGPV fields are all zero and are therefore not
shown.

The 4D-Var control variablex0 contains both the interior QGPV variablesxq and the

boundary buoyancy variablesxT so thatx0 can be written as:

x0 =











xq

xT











. (6.15)

It is assumed that the background error covariance is diagonal, so that there are no auto-

correlations or cross-correlations. However, we now assume that the QGPV and buoyancy

have different background error variances. Denoting the background error variances of the

QGPV and buoyancy asσ2
q andσ2

T respectively, and the observation error variance asσ2
o then:

B =











σ2
qI 0

0 σ2
T I











R = σ2
oI. (6.16)

With xb = 0, then the 4D-Var problem can be formulated as minimizing thecost function:

J(x0) = µ2
q‖xq‖2

2 + µ2
T‖xT‖2

2 + ‖ŷ − Ĥx0‖2
2 (6.17)

whereµq = σo

σq
, µT = σo

σT
are regularization parameters. The importance of choosingthe

appropriate parametersµq andµT is now illustrated.

The case where the true state is given by the most unstable normal mode is first considered.
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Figure 6.7: As for Fig. 6.6, but for non-modal growth.

A comparison of three 4D-Var analyses with different valuesof µq andµT is shown in Fig. 6.8.

If the parameters are specified as:µ2
q = 1 andµ2

T = 10−5, then a large analysis increment is

added to the buoyancy fields (amplitude is3.5) and a small increment is added to the interior

QGPV (amplitude is10−6). This gives an analysis that is close to the true state, as shown in

Fig. 6.8 (a). In contrast, if the parameters are specified asµ2
q = 10−5 andµ2

T = 1, then a large

analysis increment is added to the interior QGPV (amplitudeis 8.5) and a small increment is

added to the buoyancy on the boundaries (amplitude is2.4), as shown in Fig. 6.8 (c), giving

a very poor analysis. The QGPV field of the analysis has a rich vertical structure, and so

the structure will grow using a PV-unshielding mechanism rather than a boundary coupling

mechanism.

The parameters chosen in these cases give two extremes. Whenthe parameters represent

the error variances well, the analysis is close to the truth.However, at the opposite extreme,

when the parameters do not represent the error variances, the analysis is far from the the true

state. The analysis shown in Fig. 6.8 (b) uses ‘climatological’ parameters which are in the

middle of these two extremes. A medium sized increment has been added to both the buoy-

ancy field and the QGPV field, giving an analysis that is also between the two extremes. Such

‘climatological’ values are representative of an operational 4D-Var algorithm, where the back-



Chapter 6. Extension to More Realistic Cases 135

2000 4000 6000 8000
0

2

4

6

8

10

zonal direction (km)

h
e
ig

h
t 
(k

m
)

Non−Dimensional QGPV, max q  =4.8293e−06

0 2000 4000 6000 8000

0.5

2.5

4.5

6.5

8.5

10.0

zonal direction (km)

h
e
ig

h
t 
(k

m
)

Non−Dimensional buoyancy, max b  =3.5236

(a)σ2

q = 1, σ2

T = 105

2000 4000 6000 8000
0

2

4

6

8

10

zonal direction (km)

h
e
ig

h
t 
(k

m
)

Non−Dimensional QGPV, max q  =4.2409

0 2000 4000 6000 8000

0.5

2.5

4.5

6.5

8.5

10.0

zonal direction (km)

h
e
ig

h
t 
(k

m
)

Non−Dimensional buoyancy, max b  =2.4331

(b) σ2

q = 2 × 103, σ2

T = 102

2000 4000 6000 8000
0

2

4

6

8

10

zonal direction (km)

h
e
ig

h
t 
(k

m
)

Non−Dimensional QGPV, max q  =8.4701

0 2000 4000 6000 8000

0.5

2.5

4.5

6.5

8.5

10.0

zonal direction (km)

h
e
ig

h
t 
(k

m
)

Non−Dimensional buoyancy, max b  =2.4466

(c) σ2

q = 105, σ2

T = 1

Figure 6.8: 4D-Var analyses shown at T+0 with the true state given by modal growth. The
upper plots show non-dimensional QGPV and the lower plots show non-dimensional buoyancy.
Perfect observations of a horizontal line of buoyancy are given at T+0 and T+6. The assumed
observation error variance isσ2

o = 1. The assumed background error variances are (a)σ2
q = 1,

σ2
T = 105, (b)σ2

q = 2 × 103, σ2
T = 102 and (c)σ2

q = 105, σ2
T = 1 .

ground error covariance is estimated using a climatology oferror statistics.

The case where the true state is given by a QGPV dipole, characteristic of non-modal

growth, is now considered. The 4D-Var analyses are repeatedwith the same parameters as

for the normal mode case. If the parameters are specified asµ2
q = 1 andµ2

T = 10−5, then

4D-Var tries to add a large analysis increment to the boundaries, so that the interior buoyancy

in the observed regions will have the correct initial amplitude. This gives an analysis that has

completely the wrong structure, as shown in Fig. 6.9 (a). Theamplitude of the buoyancy field

is 0.8, whereas the amplitude of the QGPV field is1.4 × 10−4. In contrast, if the parameters

are specified asµ2
q = 10−5 andµ2

T = 1 then a large analysis increment is correctly added to the

interior QGPV and the analysis resembles the true state, as shown in Fig. 6.9 (c). An analysis

using ‘climatological’ parameters in between the two extremes is shown in Fig. 6.9 (b). As

expected, the analysis is better when the parameters are a good representation of the actual

background error variances.

To illustrate further the detrimental effect of the ‘climatological parameters’, as used by

operational 4D-Var at the present time, the growth rates of the forecasts from the analyses
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Figure 6.9: As for Fig. 6.8, except the true state is given by non-modal growth with non-zero
interior QGPV.

are examined. The growth rates are measured using the perturbation kinetic energy norm as

defined in Badger and Hoskins (2001). The non-dimensional kinetic energy norm is defined

as:

KE =

∫∫

v′2dxdz (6.18)

wherev′ is the perturbation meridional wind, and the KE growth rate at time t, σKE(t) is

defined as:

σKE(t) =
1

2∆t
ln

(

KEt+∆t

KEt−∆t

)

(6.19)

where∆t is the time step. This measure allows a clear view of non-modal growth and also

allows a clear comparison with the work by Badger and Hoskins(2001).

The kinetic energy growth rate of the state during the 6 hour assimilation window and the

following 18 hour forecast is now examined for both modal andnon-modal growth.

When the true state is given by modal growth (Fig. 6.10 (a)), the true kinetic energy

growth rateσKE (T) is constant with time, as expected. The forecast from theanalysis with

the ‘appropriate parameters’ for the modal growth case (M) (σ2
q = 1, σ2

T = 105, andσ2
o = 1,

Fig. 6.8(a)) also has the same growth rate. However, the growth rate of the forecast from

the analysis with ‘climatological parameters’ (C) (σ2
q = 2 × 103, σ2

T = 102, andσ2
o = 1,
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Fig. 6.8(b)) is larger than that of the true state because theanalysed QGPV field has a large

amplitude and grows through the PV-unshielding mechanism.

When the true state is given by non-modal growth (Fig. 6.10 (b)), the true kinetic energy

growth rate (T) varies with time. There is a peak at 6 hours andthen it decreases to the value

of the growth rate of the most unstable normal mode. The growth rate of the forecast from

the analysis with the ‘appropriate parameters’ for the non-modal growth case (N) (σ2
q = 105,

σ2
T = 1, andσ2

o = 1, Fig. 6.9(c))) also reaches a value that exceeds the rate fornormal mode

growth, although it is never as high as the that for the true state. The growth rate of the forecast

from the analysis with ‘climatological parameters’ (C) (σ2
q = 2 × 103, σ2

T = 102, andσ2
o = 1,

Fig. 6.9(b))) is far less than that of the true state and in fact, it never reaches a value that is larger

than that of the normal mode. This is because a large proportion of the analysis increment has

been added to the boundaries and not to the interior QGPV. Thus, the analysis does not contain

the vertical structure that is needed to give the rapid growth that is seen in the true solution.

To summarize, for normal-mode growth, the best analysis andforecast are achieved when

the parameters are such that a large analysis increment is added to the boundaries; for non-

modal growth the best analysis is achieved when the parameters are such that a large analysis

increment is added to the interior. Although the backgrounderror covariances are diagonal,

4D-Var has been able to generate analysis increments for both modal and non-modal growth,
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providing that the regularization parameters are specifiedappropriately.

6.4 Two Horizontal Lines

In the final section (Section 6.5) in this chapter we will consider how 4D-Var uses the infor-

mation from vertical temperature profiles and how this compares and contrasts with the use

of horizontal lines of observations. The previous results (Chapter 3) have shown that a time-

sequence of observations in the horizontal can provide information about the vertical structure.

The question is whether vertical profiles can provide a significant increase in the amount of

useful information about the vertical structure.

As a step towards understanding the information from vertical profiles, the assimilation

of two horizontal lines at different vertical levels is considered. This should provide a strong

link with the knowledge that has already been gained from theprevious experiments. The

assimilation of two horizontal lines of observations is considered in this section.

6.4.1 4D-Var Experiments

In the following experiments, perfect observations of horizontal lines of the interior buoyancy

at two heights are given at the beginning and the end of a 6 hourwindow. The background

state is zero and the true state is given by either the most rapidly growing Eady wave or by

a QGPV dipole. For the QGPV dipole, one set of observations passes close to the centre of

the buoyancy anomaly, whilst the other set of observations samples the zero values below the

anomaly.

Analyses using the ‘climatological values’ ofσ2
q = 2× 103, σ2

T = 102 andσ2
o = 1 are first

examined. Note that these values have not been derived from aclimatology of error statistics

but were chosen for the experiments in the previous section (6.3) to represent the values used

in operational 4D-Var.

The analyses for the true state given by modal growth are shown in Fig. 6.11. Again,

as for the assimilation of a single horizontal line, the buoyancy field correctly tilts eastwards

with height, but the interior QGPV is not zero, but instead has a large amplitude. However,

the region between the two horizontal lines does have QGPV values that are relatively small.

When the horizontal lines are moved further apart (b), the region with near zero QGPV also

extends. To be able to determine whether these analyses are better than that for the assimilation
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Figure 6.11: 4D-Var analyses shown at T+0 with the true state given by modal growth. Perfect
observations of two horizontal lines of buoyancy are given at T+0 and T+6 at either (a)2.5
and 4.5 km or (b) 1.5 and 8.5km. In both cases the weights are are given by:σ2

q = 2 × 103,
σ2
T = 102, σ2

o = 1. The associated kinetic energy growth ratesσKE (10−5s−1) from the true
state (solid) and from the analyses are shown in (c).

of a single line of buoyancy, it is useful to examine the growth rate of the following forecast.

The kinetic energy growth rates for the 6 hour window, and following 18 hour forecast are

shown in Fig. 6.11 (c). When the two horizontal lines are close together (a), there is some

improvement in the analysed growth rate in comparison to theassimilation of a single line of

observations. When the two horizontal lines are further apart, there is even more improvement,

and there is little distinction between the true growth rateand the analysed growth rate.

The analyses for the true state given by non-modal growth areshown in Fig. 6.12. When

an extra horizontal line is given at 2.5km (a), there is some information indicating that the

buoyancy is zero at that height and therefore the spatial extent of the analysed buoyancy per-

turbation has been cut off below 2.5km. When the upper line ismoved higher in the domain

(b) , the structure of the analysis looks very similar, however, the minimum amplitude of the

perturbation is now higher and coincides with the position of the observations. Thus, the 4D-

Var algorithm has not been able to infer that the minimum amplitude in the perturbation lies in

between the two lines of observations, and instead the minimum in the analysis is found at the
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Figure 6.12: 4D-Var analyses shown at T+0 with the true state given by non-modal growth.
Perfect observations of two horizontal lines of buoyancy are given at T+0 and T+6 at (a) 2.5
and 4.5km, (b) 2.5 and 6.5km and (c) 1.5 and 8.5km. The weightsare given by: (a) and (b)
σ2
q = 2 × 103, σ2

T = 102, σ2
o = 1 and (c)σ2

q = 105, σ2
T = 1, σ2

o = 1. The top panels show
the QGPV fields, the middle panels show the buoyancy fields andthe bottom panels show the
associated Kinetic Energy growth ratesσKE (10−5s−1), from the truth (solid) and from the
analyses (dashed).
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positions of the observations.

Again, it is useful to examine the growth rates for the following forecasts. These are shown

in the bottom panels of Fig. 6.12. With observations at 2.5 and 4.5km, the growth rate now

reaches a value of3×105 s−1, as opposed to the value of only2.5×105 s−1 which was attained

with the assimilation of only a single line of observations.With observations at 2.5 and 5.5km,

the growth rate again peaks at3×105 s−1, but then the growth rate reduces in the last 12 hours.

In both analyses, the maximum in amplitude was found at the position of the observations.

This leads on to an investigation of whether 4D-Var is indeedable to infer the perturbation if

it lies in an unobserved region. The following experiment uses lines of observations at heights

of 2.5 and 7.5 km. These are below and above the spatial extentof the initial perturbation,

but should be able to detect the growth of the perturbation. The results from the previous

chapters showed that to be able to infer the state in unobserved regions, it is important to give

a relatively large weight to the observations in comparisonto the background state. Therefore,

the parameters are now adjusted toσ2
q = 105, σ2

T = 1 andσ2
o = 10−5. These weights are

chosen to maximize the use of the information from the observations. The analysis is shown

in Fig. 6.12(c). The perturbation has been correctly inferred by 4D-Var, with a maxima in the

buoyancy field at the correct position. The growth rate attains a maximum of3.4 × 105 s−1,

but the peak growth rate occurs at 12 hours rather than at 6 hours. This experiment has shown

that 4D-Var is able to reconstruct the interior QGPV perturbations that are necessary for rapid

finite-time growth, although a relatively large weight needs to be given to the observations.

6.4.2 SVD Experiments

To make this understanding more complete, it is necessary toexamine the RSVs that are used

to reconstruct the most unstable Eady wave. From the values of uTj d̂ there are four RSV pairs

that contribute to the analysis increment. The QGPV and buoyancy fields for these vectors

are shown in Fig. 6.13. RSVs2&3 (Fig. 6.13(a)) have an eastward tilting buoyancy field

with a maximum in amplitude on the lower boundary. These are very similar to the first pair

of RSVs for a single line of observations. RSVs6&7 (Fig. 6.13(b)) have a westward tilting

buoyancy field with a maximum in amplitude on the upper boundary. These are very similar

to the second pair of RSVs for a single line of observations. Thus the information content

of two horizontal lines of observations is very similar to the the information content of one

horizontal line. However, with two lines of observations, there are also another two pairs of



Chapter 6. Extension to More Realistic Cases 142

1000 2000 3000 4000
0

2

4

6

8

10

zonal direction (km)

he
ig

ht
 (

km
)

QGPV, max q  =0.020201

1000 2000 3000 4000

0.5

2.5

4.5

6.5

8.5

10.0

zonal direction (km)

he
ig

ht
 (

km
)

Buoyancy, max b  =0.18882

(a) RSV 2 and 3,λ = 1.2005

1000 2000 3000 4000
0

2

4

6

8

10

zonal direction (km)

he
ig

ht
 (

km
)

QGPV, max q  =0.023511

1000 2000 3000 4000

0.5

2.5

4.5

6.5

8.5

10.0

zonal direction (km)

he
ig

ht
 (

km
)

Buoyancy, max b  =0.18512

(b) RSV 6 and 7λ = 0.4652

1000 2000 3000 4000
0

2

4

6

8

10

zonal direction (km)

he
ig

ht
 (

km
)

QGPV, max q  =0.13009

1000 2000 3000 4000

0.5

2.5

4.5

6.5

8.5

10.0

zonal direction (km)

he
ig

ht
 (

km
)

Buoyancy, max b  =0.023242

(c) RSV 19 and 20,λ = 0.1257

1000 2000 3000 4000
0

2

4

6

8

10

zonal direction (km)

he
ig

ht
 (

km
)

QGPV, max q  =0.15527

1000 2000 3000 4000

0.5

2.5

4.5

6.5

8.5

10.0

zonal direction (km)

he
ig

ht
 (

km
)

Buoyancy, max b  =0.015109

(d) RSV 127 and 128λ = 0.0084

Figure 6.13: RSVs of the 4D-Var observability matrix with no correlations, with two horizontal
lines (80 observations) at the beginning and the end of a 6 hour window, when either the most
rapidly growing or decaying Eady wave is observed.
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Figure 6.14: Singular values of the four pairs of RSVs that contribute to the analysis increment
when the most rapidly growing or decaying Eady wave is observed. Observations of two hori-
zontal line of the interior buoyancy are given at T+0 and T+6.The lower line of observations
is given at 0.5km and the vertical distance between the horizontal lines is given by the abscissa.
The singular values of the first, second, third and fourth pairs of RSVs are represented by the
black, red, green and blue lines respectively.

RSVs that have very different structures. RSVs19&20 (Fig. 6.13(c)) contain a PV monopole

that is situated between the two horizontal lines, and RSVs127&128 (Fig. 6.13(d)) contain a

PV dipole that is situated between the two horizontal lines.These RSVs have extremely small

singular values and hence an extremely small weight also needs to be given to the background

state so that these RSVs may be included in the analysis increment. These RSVs are needed

to contribute to the analysis increment when the most unstable Eady wave is observed. Similar

RSVs are used for the analysis increment when the non-modal perturbation is observed.

It is surprising that although there is more information about the vertical structure of the

wave, there is still a large distinction between the growingand decaying parts of the analysis in-

crement. That is, there is a large difference in the singularvalues of RSVs2&3 and RSVs6&7.

This is possibly because the horizontal lines are close together. Therefore, we now investigate

how the singular values differ if the distance between the horizontal lines is increased. Singular

values of the four pairs of RSVs that contribute to the analysis increment when the most rapidly

growing or decaying Eady wave is observed are shown in Fig. 6.14. The lower line is given at

0.5km and the height of the upper line is varied. As the distance between the horizontal lines

increases, the singular value of the first pair of RSVs decreases whilst the singular value of the

second pair of RSVs increases. Thus, when the horizontal lines are close together, there is a

large distinction between the information for the growing and decaying modes; when the hori-
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zontal lines are far apart, there is a smaller distinction between the information for the growing

and decaying modes. However, even when the horizontal linesare as far apart as possible,

there is still a significant difference between the singularvalues of the first and second pairs of

RSVs. Thus, the decaying part of the analysis increment willalways be penalized more than

the growing part of the analysis increment, regardless of the height of the two horizontal lines.

To summarize, the 4D-Var and SVD experiments both showed that the analyses of nor-

mal modes are improved when the horizontal lines of observations are further apart. The SVD

experiments also showed that the decaying part of the analysis increment is still strongly penal-

ized by the background state even though there is more information about the vertical structure.

The 4D-Var experiments showed that if a relatively large weight is given to the background

state the maxima in the analysis is found at the position of the observations, although it is pos-

sible to use the time-evolution information to infer the state in an unobserved regions provided

that sufficiently large weight is given to the observations (the observations must be accurate

enough).

6.5 Vertical Lines

The following 3D-Var and 4D-Var experiments consider the assimilation of vertical lines of

observations of the interior buoyancy. Each vertical line contains an observation at each of the

twelve vertical levels. At a single instant in time, a vertical line of observations cannot provide

any information about the vertical tilt of the atmosphere. To gain information about the vertical

tilt, at least two vertical profiles are required. In 3D-Var,the vertical profiles need to sample

the atmosphere at different points in space, but in 4D-Var the vertical profiles may sample the

atmosphere at different points in time. Therefore, we now consider the assimilation of two

vertical lines in both 3D-Var and 4D-Var. The 3D-Var experiments assimilate two vertical

profiles given at the same time, and the 4D-Var experiments assimilate a single profile given at

both the beginning and the end of the assimilation window.

The first experiments consider the ability to generate analysis increments necessary for

modal growth and decay, whilst the final experiments consider the ability to generate analysis

increments necessary for non-modal growth.
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6.5.1 3D-Var and 4D-Var Experiments

3D-Var and 4D-Var analyses using two vertical lines are now examined. The true state is given

by the most rapidly growing Eady wave, shown in Fig. 6.6(a), and the background state is

zero. The purpose of these experiments is to determine whether 4D-Var is able to use the

model dynamics to link together the observations distributed in time and successfully infer the

vertical tilt of the state.

The assumed background error variances for the QGPV and temperature are now the same.

The weights are chosen so that a relatively large weight is given to the observations:σ−2
b =

10−2 andσ−2
o = 1. Horizontal correlations with a length scale ofl = 5∆x are applied to

both the buoyancy and the QGPV at every vertical level, so that the information from the

observations is distributed to the surrounding grid points.

A 3D-Var analysis using two vertical lines of buoyancy observations at 2000km and

3000km is shown in Fig. 6.15(a). The analysis increment has only been added to a small

region near to the observations. The size of this region is determined by the correlation length

scale. The buoyancy field tilts eastwards with height in the regions between the observations,

as required. However, the analysis does not exhibit any tiltin the regions to the east and west

of the observations because there are no further vertical profiles to link together.

The experiment is repeated but for 4D-Var with only a single vertical line of observations

at both the beginning and the end of a 6 hour assimilation window. This experiment is designed

to assess whether the model dynamics can provide the necessary information so that the correct

vertical structure can be obtained using two vertical linesthat are distributed in time instead of

space.

The 4D-Var analysis for vertical lines at 2000km is shown in Fig. 6.15(b). At 2000km, the

true vertical structure has a sharp gradient and a small amplitude. The analysis is similar, with

a cold anomaly in the upper half of the domain and a warm anomaly in the lower half. The

upper anomaly is slightly to the west of the position of the observations and the lower anomaly

is slightly to the east. These anomalies are advected by the basic state wind so that the maxima

are at 2000km at T+6.

The 4D-Var analysis for vertical lines at 3000km is shown in Fig. 6.15(c). At 3000km,

the true vertical structure has a large amplitude and is symmetrical about the middle of the

domain. It can clearly be seen that the buoyancy field of the analysis tilts eastwards with height

as required.



Chapter 6. Extension to More Realistic Cases 146

6 12 18 24

0

1

2

3

4

Time (hours)

2000 4000 6000 8000
0

2

4

6

8

10

zonal direction (km)

h
e
ig

h
t 
(k

m
)

Non−Dimensional QGPV, max q  =0.1948

0 2000 4000 6000 8000

0.5

2.5

4.5

6.5

8.5

10.0

zonal direction (km)

h
e
ig

h
t 
(k

m
)

Kinetic Energy Growth Rate

Non−Dimensional buoyancy, max b  =3.2775

(a) 3D-Var

6 12 18 24

0

1

2

3

4

Time (hours)

2000 4000 6000 8000
0

2

4

6

8

10

zonal direction (km)

h
e
ig

h
t 
(k

m
)

Non−Dimensional QGPV, max q  =0.068117

0 2000 4000 6000 8000

0.5

2.5

4.5

6.5

8.5

10.0

zonal direction (km)

h
e
ig

h
t 
(k

m
)

Kinetic Energy Growth Rate

Non−Dimensional buoyancy, max b  =1.5571

(b) 4D-Var with Observations
at 2000km

6 12 18 24

0

1

2

3

4

Time (hours)

2000 4000 6000 8000
0

2

4

6

8

10

zonal direction (km)

h
e
ig

h
t 
(k

m
)

Non−Dimensional QGPV, max q  =0.12225

0 2000 4000 6000 8000

0.5

2.5

4.5

6.5

8.5

10.0

zonal direction (km)
h
e
ig

h
t 
(k

m
)

Kinetic Energy Growth Rate

Non−Dimensional buoyancy, max b  =3.2818

(c) 4D-Var with Observations
at 3000km

Figure 6.15: Analyses where the true state is given by the most rapidly growing Eady wave,
shown at T+0. The assumed variances are given by:σ−2

o = 1, σ−2
b = 10−2, and horizontal

correlations are applied with a horizontal length scalel = 5∆x. (a) 3D-Var analysis with
two vertical lines of buoyancy observations, (b) 4D-Var analysis using a vertical line of obser-
vations at 2000km at T+0 and T+6, (c) 4D-Var analysis using a vertical line of observations
at 3000km at T+0 and T+6. The top panels show the QGPV fields, the middle panels show
the buoyancy fields and the bottom panels show the associatedKinetic Energy growth rates
σKE (10−5s−1), from the truth (solid) and from the analyses (dashed).
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To assess the performance of 4D-Var, it is necessary to examine the growth rates for the

following forecast. The associated kinetic energy growth rates are also shown in Fig. 6.15.

None of the analyses give the correct growth rate because theanalyses have localized spatial

structures. It can clearly be seen that the 4D-Var analysis with observations at 3000km gives a

growth rate that is close to that for the 3D-Var analysis. Thus, 4D-Var is able to determine the

correct vertical structure from the time-sequence of observations. However, with observations

at 2000km, the resulting growth rate is very small

The three experiments are repeated but with the true state given by the most rapidly decay-

ing Eady wave; the analyses are shown in Fig. 6.16. The 3D-Varanalysis (a) has a westward

tilting buoyancy field in the region between the observations, as required. This results in a neg-

ative growth rate during the 6 hour assimilation window but apositive growth rate for the next

18 hours. The 4D-Var analysis with observations at 2000km has a cold anomaly in the upper

half of the domain and a warm anomaly in the lower half. This results in a positive growth rate

during both the assimilation window and the following forecast. The 4D-Var analysis with ob-

servations at 3000km does give a westward tilting buoyancy field as required and this results in

a negative growth rate during the assimilation window, but is again positive during the forecast.

The experiments have shown that 4D-Var is able to use a time-sequence of vertical profiles

to infer the correct vertical structure. This is similar to 4D-Var with horizontal lines of obser-

vations, where the time-sequence was used to infer the unobserved boundaries. The difference

between the two is that with a horizontal line of observations, it is the time-evolution informa-

tion that is used to infer the unobserved regions. However, with a vertical line of observations,

it is not necessarily the same part of the state that is observed due to the horizontal advection.

Thus, the 4D-Var with observations distributed in time is very similar to 3D-Var with obser-

vations distributed in space. If we imagine advecting the position of the initial observations,

by the basic state flow, to the final time, then the vertical profiles may be thought of as being

distributed in space and hence the vertical tilt may be inferred from this.

The ability of 4D-Var to use vertical profiles to generate thecorrect vertical structure for

non-modal growth is now considered. A vertical profile samples the vertical structure of such

perturbations well, and therefore it is expected that the assimilation of vertical profiles should

give better analyses than for horizontal lines.

The analyses and growth rates shown in Fig. 6.17 illustrate that the appropriate choice of

the regularization parameters is still vital to give a good analysis. In (a), a large weight has

been given to the background state QGPV so that a relatively large analysis increment has been
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Figure 6.16: As for Fig. 6.15 but with the true state given by the most rapidly decaying Eady
wave.
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Figure 6.17: Analyses where the true state is given by non-modal growth, shown at T+0. A
vertical line of buoyancy observations is given at T+0 and T+6, and horizontal correlations are
applied with a length scale ofl = 5∆x. The assumed variances are given by (a)σ−2

q = 10−2,
σ−2
T = 10−2, σ−2

o = 1 and (b)σ−2
q = 10−4, σ−2

T = 1, σ−2
o = 1. In both cases the basic state

zonal wind is zero in the middle of the domain. The associatedkinetic energy growth rates
σKE (10−5s−1) from the true state (solid) and from the analyses are shown in(c).

added to the boundaries. Although the QGPV field contains a dipole structure, the buoyancy

field does not contain the monopole and the amplitudes are small. Thus, the associated growth

rate is very small and so the finite-time growth is missed in the forecast. The spatial extent

of the perturbation is too large in the horizontal due to the choice of the horizontal correlation

length scale.

If the weight given to the QGPV background state is reduced then the analysis (b) has

the correct structure and the growth rate achieves a maximumof nearly3.5 × 10−5s−1. The

horizontal length scale of the perturbation is now smaller as there is less weight given to the

background state QGPV.

The experiments for vertical profiles of non-modal growth are now repeated but with the

basic state such that the zonal wind is zero on the lower boundary. When the basic state flow

was zero in the middle of the domain, the observations at 2000km sampled the centre of the

buoyancy anomaly at both T+0 and T+6. When the basic state flowis zero on the lower
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(a) Observations at 2000km
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(b) Observations at 3000km
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Figure 6.18: Analyses where the true state is given by non-modal growth, shown at T+0.
Horizontal correlations are applied with a length scale ofl = 5∆x and the assumed variances
are given byσ−2

q = 10−4, σ−2
T = 1, σ−2

o = 1. A vertical line of buoyancy observations is
given at (a) 2000km at T+0 and T+6, and (b) 3000km at T+0 and T+6. In both cases the basic
state zonal wind is zero on the lower boundary. The associated kinetic energy growth rates
σKE (10−5s−1) from the true state (solid) and from the analyses are shown in(c).

boundary, the buoyancy anomaly is advected eastwards. Consequently, with observations at

2000km, the buoyancy anomaly is sampled at T+0 but not at T+6,and with observations at

3000km, the buoyancy anomaly is sampled at T+6 but not at T+0.The effect of the different

basic state on the analysis increments is now investigated.

The analysis for observations at 2000km is shown in Fig. 6.18(a). The buoyancy anomaly

and QGPV dipole have been reconstructed. The spatial extentof the buoyancy anomaly is

larger to the east of the observations than to the west. This is because the observations at T+6

sampled the state to the west of the anomaly, where the true values are zero. The growth rate in

(c) shows that the KE growth rate attains a value of nearly3× 10−3s−1. Thus, the perturbation

does give rapid growth, although this is again 6 hours later than the rapid growth of the true

state. The maximum growth rate is slightly less than that forthe basic state with zero flow in

the middle of the domain.

The analysis for observations at 3000km is shown in Fig. 6.18(b). The buoyancy anomaly
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(a) Observations at 3000 km
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(b) Observations at 2000km

Figure 6.19: Picard Ratio Values
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with the true state given by the growing Eady

wave, and a background state of zero, with a vertical line of observations at (a) 3000km and
(b) 2000km at T+0 and T+6.

has correctly been inferred to the west of the observation position. The reconstruction of the

upper QGPV anomaly is better, with a larger amplitude, than that of the lower anomaly because

the upper anomaly is advected further by the basic state. Thesurrounding regions have very

small negative values so that the mean of the QGPV field is zero. This is due to the constraint

that the mean of̂ψ is zero (2.28). The values of the KE growth rate show that the perturbation

does not give rapid finite-time growth, perhaps because the lower QGPV anomaly is small in

comparison to the upper QGPV anomaly and because the maximumamplitudes are very small.

In both the 2000km and 3000km cases, the growth rates are relatively small during the 6

hour assimilation window. This is because the maximum in thebuoyancy anomaly was only

sampled at one time, rather than at both times.

6.5.2 SVD Experiments

The SVD of the normalized observability matrix for verticallines is now examined. The results

should clearly show how the information from a vertical lineof observations is combined with

the model dynamics.

The Picard ratio (5.4):

Picard Ratio= log

∣

∣

∣

∣

∣

uTj d̂

λj

∣

∣

∣

∣

∣

(6.20)



Chapter 6. Extension to More Realistic Cases 152

was introduced in Chapter 5, whereuj andλj are the LSVs and singular values of the nor-

malized observability matrix, and̂d is the generalized innovation vector. These values may be

used to determine which RSVs contribute to the analysis increment. The Picard Ratio values,

for the most rapidly growing Eady wave with a vertical line ofobservations at either 3000km

or 2000km are shown in Fig. 6.19.

When a single horizontal line of observations at T+0 and T+6 were assimilated, two pairs

of RSVs contributed to the analysis increment. For a double line of observations at T+0 and

T+6, there were four pairs of RSVs. For a vertical line of observations, it can be seen that there

are no longer just a few RSVs that contribute to the true analysis increment; with observations

at 3000km, all 24 RSVs give a significant contribution to the analysis increment, and with

observations at 2000km, 12 RSVs give a significant contribution to the analysis increment.

Thus, there are two RSVs for each vertical level. The RSVs do not form pairs as there is only

one observation at each vertical level.

The background state strongly penalizes the RSVs with smallsingular values so that the

RSVs with large singular values will dominate the analysis increment when a relatively large

weight is given to the background state. Therefore, we examine in detail the structures of only

the first four RSVs. The QGPV, buoyancy and streamfunction fields of the first four RSVs

are shown in Fig. 6.20. The amplitudes of the QGPV fields are small in comparison to the

buoyancy fields, so that it is the buoyancy fields that dominate the structures. The values of the

buoyancy field at the position of the observations for RSV 1 are all negative. This corresponds

to a streamfunction field with negative values in the upper half and positive values in the lower

half. The streamfunction field also has a westward tilt with height.

In contrast, the values of buoyancy at the position of the observations for RSV 2 are pos-

itive in the upper half and negative in the lower half. This isassociated with an equivalent

barotropic streamfunction field.

The buoyancy fields for RSVs 3 and 4 have much smaller scale structures, making it

difficult to interpret the information that is contained in these vectors.

To understand the information that is contained in the RSVs,it is useful to examine the

difference between the values ofuTj d̂ for the growing and decaying modes. These values

emphasize the first few RSVs that have large singular values,whereas the Picard ratio values

(in Fig. 6.19) show all the RSVs that are given a large weight.As only the first four RSVs are

now being considered, the values ofuTj d̂ therefore allow a clearer comparison than the Picard

ratio values.
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Fig. 6.21(a) show the values ofuTj d̂ when the true state is given by the most rapidly

growing Eady wave, with a background state of zero, and with avertical line of buoyancy

observations at 2000km. The values show that a large contribution comes from RSVs 2 and

4. Both RSVs 2 and 4 are given negative weights when the growing wave is observed. When

this is repeated for the decaying Eady wave, a negative weight is given to RSV 2 and a positive

weight is given to RSV 4 (Fig. 6.21(b)).

This is then repeated when the observations are at 3000km. The values ofuTj d̂ show that

RSVs 1 and 3 give a large contribution to the analysis increment. When a growing mode is

observed, a negative weight is given to RSV 1 and a positive weight is given to RSV 3. When

a decaying mode is observed, negative weights are given to both RSV 1 and RSV 3.

The difference between the sign of the weights for the growing and decaying modes can

be explained by the structures of the LSVs. Fig. 6.22 shows the first four LSVs. The LSVs

are defined in observation space, so are vertical profiles at T+0 and T+6. LSVs 1 and 3 have

structures that are symmetrical about the centre of the domain, whereas LSVs 2 and 4 have

structures that are anti-symmetrical about the centre. It is for this reason that LSVs1&3 and

2&4 occur together. The first two LSVs have very similar structures at the initial and the final

time, whereas the second two LSVs change sign between the initial and final times. Thus,

the second two LSVs are needed to determine the structure needed for growth or decay. For
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Figure 6.22: The first four LSVs of the normalized observability matrix. The ordinate gives the
height(km) and the abscissa gives the amplitude. Note that the abscissae use different scales.

example, if LSV 1 and LSV 3 are added together, then a decayingstructure is obtained, but if

LSV 3 is subtracted from LSV 1, then a growing structure is obtained.

The analysis increments for non-modal growth had a very different structure to those for

modal growth. This was due to the different specification of the regularization parameters. The

SVD is now computed for the normalized observability matrix, ĤB
1

2 , whereσ−2
q = 10−4 and

σ−2
T = 1 (andσ−2

o = 1) correlations with a length scale ofl = 5∆x are also applied and

where the basic state is such that the zonal wind is zero on thelower boundary. The first four

RSVs are shown in Fig. 6.23. In Fig. 6.20, the RSVs were dominated by the buoyancy fields,

whereas now the RSVs are dominated by the QGPV fields. This illustrates again how the effect

of the covariance is to bias the analysis increments towardsthe expected structures. RSV 1 and

RSV 2 have QGPV dipoles and buoyancy monopoles. For RSV1, thebuoyancy is maximum

to the west of the observations and therefore corresponds tothe information contained in the

final time observations. For RSV 2, the buoyancy is maximum tothe east of the observations

and therefore corresponds to the information contained in the initial time observations. RSV 3

contains three QGPV anomalies and RSV contains four QGPV anomalies. Thus, the vertical

scale of the structures decrease with the singular values. This is similar to the assimilation of

horizontal lines where the horizontal spatial scales decreased with increasing singular vector

index.
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To summarize, the 4D-Var experiments for modal growth and decay have shown that 4D-

Var is able to generate analysis increments with the correctvertical structures. However, the

decaying part of the increment is strongly penalized so thatin the subsequent forecast, the

analysis increment starts to grow instead of decaying. The 4D-Var experiments also showed

that the analysis is better if the position of the observations is at the maxima and minima of the

required analysis increment. The corresponding SVD experiments showed that the first two

RSVs are needed to determine the general structure of the analysis increment whilst the second

two RSVs are needed to determine the growth or decay of the analysis increment.

The 4D-Var experiments for non-modal growth have shown that4D-Var is able to use

vertical profiles of observations to generate the correct vertical structure provided that the reg-

ularization parameters are specified appropriately. With the basic state such that the zonal flow

is zero on the lower boundary, 4D-Var is again able to infer the part of the state in the unob-

served regions. This is clearly illustrated by the SVD experiments where the first RSV contains

a maxima to the west of the position of the observations. ThisRSV corresponds to the infor-

mation obtained from the final time observations, and as it has the largest singular value so that

it is not strongly penalized by the background state.

6.6 Conclusions

This chapter has extended the idealized 4D-Var experimentsto more realistic cases by consid-

ering the effect of background error correlations, different true states and different observing

systems. In all the experiments in this chapter we have considered the assimilation of observa-

tions of the interior buoyancy field. The SVD results have shown that the results from previous

chapters can be applied to the assimilation of horizontal lines of the interior buoyancy field. It

has also been found that as the horizontal line is moved nearer to the middle of the domain,

there is less distinction between the information needed toreconstruct the upper and lower

boundaries, but still a large distinction between the growing and decaying parts.

The filtering and interpolating effect of background error auto-correlations have been un-

derstood from an SVD perspective. For dense observations, it has been found that correlations

act to bias the analysis increments towards the expected spatial structures. This is achieved by

penalizing the unexpected RSV structures with small spatial scales. For sparse observations,

the RSVs of the normalized observability matrix have similar structures to the RSVs for a full

line of observations. This means that it is possible to applythe previous conclusions to the as-
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similation of sparse data. However, to be able to retrieve the same amount of information from

sparse observations, the observations must be a great deal more accurate than the full line of

observations. Further, only the large-scale structures can be successfully reconstructed using

sparse observations.

It was shown in Chapter 5 that the specification of the appropriate value of the ratio be-

tween the observation error variance and the background error variance is vital to extract the

maximum amount of information. This ratio can be consideredas a regularization parameter in

the context of Tikhonov Regularization. This concept has now been extended to multiple regu-

larization parameters. It has been found that the correct analysis increment structures for both

modal and non-modal growth can be generated provided that the background error variances

for the QGPV and buoyancy fields are specified appropriately.If 4D-Var uses ‘climatological

values’ for these parameters, the growth rates of the subsequent forecast can be vastly different

from the truth. For example, if the required analysis increment has a vertical structure which

leads to rapid finite-time, non-modal growth, a relatively large analysis increment needs to be

added to the interior. If, however, the background error variances are specified so that a rela-

tively large analysis increment is added to the boundaries,the analysis will produce a forecast

with a very small growth rate. Thus, the appropriate specification of the regularization param-

eters, on each analysis, is vital for the analysis of extremeweather events such as mid-latitude

storms.

The 4D-Var experiments concerning the assimilation of two horizontal lines showed that

the analyses for modal growth are improved if the lines of observations are moved further

apart. The analyses for non-modal growth showed that the maximum in the analysis increment

is found at the position of the observations if a large weightis given to the background state.

It was also possible to infer the maximum in an unobserved region if more weight is given to

the observations. The corresponding SVD experiments showed that the decaying part of the

analysis increment is still strongly penalized despite theextra information about the vertical

structure. The extra horizontal line is used to provide information about the state in between the

two horizontal lines. The time-evolution information is used, for example, to infer the position

of a temperature maximum in between the two lines of temperature observations. These RSVs

have very small singular values, so a large weight must be given to the observations.

The experiments concerning the assimilation of vertical profiles showed that 4D-Var is

able to use vertical profiles to generate the correct vertical structures. The analysis increments

have structures that are extremely localized in the horizontal, however, instead of the large-
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scale structures produced by the assimilation of horizontal lines. The region surrounding the

position of the observations can still be inferred from the time-sequence of observations. The

4D-Var experiments for modal-growth showed that both growing and decaying analysis in-

crements can be generated, but the decaying part of the analysis increment is again strongly

penalized so that the forecast quite rapidly gives growth instead of decay. The corresponding

SVD experiments showed that the RSVs with large singular values are used to give the general

structure of the analysis increment and result in growth. The RSVs with small singular val-

ues are used to give the correct sign of the growth rate. This is similar to the assimilation of

horizontal lines. The 4D-Var experiments for non-modal growth showed that the appropriate

choice of the regularization parameters is still vital in obtaining a good analysis, even though

there is more information about the vertical structure. When the appropriate parameters are

specified, an analysis increment resulting in rapid finite-time growth can be obtained. When

the basic state flow is such that the perturbation is advectedthrough the position of the ob-

servations, 4D-Var is still able to infer the position of theperturbation, although if there are

fewer observations at the maximum of the perturbation, the growth rate of the analysis in-

crement is reduced significantly. The corresponding SVD experiments showed that the RSVs

with the largest singular values correspond to the information needed to infer the position of

the maxima, and the RSVs with smaller singular values correspond to the information needed

to reconstruct smaller scale structures. Thus, there is a great deal of useful information that can

be extracted from the observations, provided that the appropriate regularization parameters are

specified.

In conclusion, we have shown that the results from previous chapters can be extended

to more realistic situations. It was expected that the assimilation of vertical profiles would

give much better analyses of the vertical structure than theassimilation of a single horizontal

line. Indeed, the vertical profiles are able to generate vertical structures for both modal and

non-modal growth. If the non-modal perturbations are advected through the position of the ob-

servations by the basic state flow, 4D-Var is still able to infer the position of the maxima. With

a few, sparse, vertical profiles, the SVD with correlations has shown that the time-evolution

information in the horizontal can still be used to infer the vertical structure. However, we

have also shown that the decaying parts of the analysis increment are still strongly penalized

by the background state and that the vertical structures leading to either modal or non-modal

growth can only be achieved if the appropriate regularization parameters are chosen and if the

observations are sufficiently accurate.
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Conclusions

4D-Var is one of the most advanced data assimilation algorithms to be used in operational

numerical weather prediction, as it combines the information from the observations with the

knowledge of the atmospheric dynamics and physics. The aim of this thesis is to understand

the extent to which 4D-Var can develop the vertical structures needed for the growth and decay

of baroclinic systems.

Most of the development of 4D-Var has previously been made inthe context of the full

weather forecast problem; here, 4D-Var has been examined using idealized case studies with

the Eady model of baroclinic instability. A 4D-Var algorithm using the Eady model has been

developed. This included the development of the adjoint model, a background error correlation

model based on Laplace smoothing and a comparison of minimization algorithms.

A novel technique for examining the information content of observations in 4D-Var has

been developed. The technique is a straightforward temporal extension of methods that are

commonly used to examine the information content of observations in satellite retrievals and

is based on the singular value decomposition (SVD) of the normalized observability matrix.

The technique has enabled the gaining of a new understandingof how the information from a

time-sequence of observations is combined with the model dynamics in 4D-Var.

The majority of experiments in this thesis have considered how 4D-Var can use a time-

sequence of the lower level wave to reconstruct the positionof the upper level wave. These

experiments have provided an understanding of both the reconstruction of the state in unob-

served regions and the generation of the vertical structures needed for baroclinic growth or

decay. These experiments were extended in the Chapter 6 to more realistic cases. In particular,

the effect of correlations, different true states and different observing systems were considered.

160
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This final chapter returns to the key questions that were posed in Chapter 1, discusses how

the results from this thesis can be applied to operational NWP, and ends with a discussion of

some of the possible directions for future work.

7.1 Answers to the Key Questions

The results from this thesis are now summarized by returningto the three key questions that

were posed in Chapter 1.

1. How are observations used in 4D-Var?

A time-sequence of observations provides information about the atmospheric state in the

region that is observed; through the use of the equations forthe time-development of the sys-

tem, it also provides information about the state in unobserved regions. For example, the

experiments with horizontal lines of observations showed that 4D-Var is able to use the time-

evolution information to infer the rate of growth or decay and is hence able to infer the vertical

structure. The experiments with vertical lines of observations showed that 4D-Var is able to

link the observations together through the model advectionto infer the vertical tilt of the state

near the observations.

It was shown in Chapter 4 that the 4D-Var analysis incrementscan be written as a linear

combination of the RSVs of the 4D-Var observability matrix.This formulation was used in

Chapters 5 and 6 to examine the information content of observations in 4D-Var. By considering

the true state given by the most rapidly growing or decaying Eady wave, with either horizontal

or vertical lines of perfect observations, it was shown thatthe RSVs with large singular values

contain the information needed to infer the state in the observed regions, whilst the RSVs

with small singular values contain the information needed to infer the state in the unobserved

regions.

It was also shown that when the observations have errors, theRSVs with smaller spatial

scales are also given significantly large weights. These RSVs completely dominate the anal-

ysis increment so that unphysical structures are generatedin the unobserved regions. Thus,

the analysis is extremely sensitive to the observational noise, and for this reason, 4D-Var with

noJ b term can be considered as a discrete ill-posed inverse problem, even if there are enough

observations to define a unique solution. Such a problem may be solved using Tikhonov reg-

ularization; in 4D-Var, this is equivalent to adding the background term to the cost function.
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Thus, a link between the literature on 4D-Var and the literature on Tikhonov regularization,

which is used to solve many types of ill-posed inverse problems, has been established.

The background state acts to penalize the RSVs with small singular values and small

spatial scales that correspond to noise. This is necessary to create a smooth analysis. However,

the background state may therefore also penalize the RSVs that contain the information needed

to reconstruct the state in the unobserved regions. The weight given to the background state

in comparison to the observations determines how many RSVs are penalized. This signal-to-

noise ratio can be considered as a regularization parameter, and it is important to specify the

appropriate value so that the maximum amount of useful information can be extracted from the

observations, but that the analysis is sufficiently smooth.

The background term also provides a priori information suchas auto-correlations. Corre-

lations act to filter the observational noise in dense data regions so that the analysis is smooth.

From an SVD perspective, the correlations act to bias the analysis increments towards the ex-

pected large-scale structures, by penalizing the unexpected structures. Such correlations allow

more of the useful information to be extracted from the observations as it is possible to penalize

the noisy structures without penalizing the information needed to reconstruct the state in the

unobserved regions. Background error correlations also act to interpolate the information from

sparse observations. This means that a time-sequence of sparse observations may also be used

to reconstruct the state in the unobserved regions providedthat only the large scales need to be

reconstructed and also that the observations are sufficiently accurate.

The 4D-Var algorithm may also be considered to have multipleregularization parameters

so that the background state has different error variances for each variable. Again, from an

SVD perspective, this allows the analysis increments to be biased towards the expected struc-

tures and allows the information from the observations to beused in a better way.

2. Why has 4D-Var been shown to perform well in regions of baroclinic instability?

If observations are only given at the end of the window, then the analysis increment can

be considered as a linear combination of optimal perturbations. These structures maximize the

amount of growth during the assimilation window, so that an analysis increment with a small

amplitude is added to the background state but that the analysis is close to the observations at

the final time.

With a horizontal line of observations at only one time level, it is not possible to infer the

growth rate. Therefore, to infer the vertical structure, observations are required at two time-
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levels or more. The SVD experiments showed that with observations at both the beginning

and the end of the window, the analysis increments are a linear combination of both growing

and decaying structures. This means that both growing and decaying analysis increments can

be generated. However, the decaying vector has a small singular value and so it is strongly

penalized by the background state. Therefore, even with a time-sequence of observations,

4D-Var is likely to add a growing analysis increment.

It is for this reason that 4D-Var performs well in regions of baroclinic growth. Although

a growing analysis increment is added to the background state, it is not necessarily the cor-

rect flow-dependent structure. For example, if a decaying analysis increment is required, but a

growing analysis increment is added, then this will be completely detrimental to the forecast.

3. How can the benefits of 4D-Var be maximized?

This work has highlighted two ways to maximize the benefits of4D-Var: the initial and

final observations should be as far apart as possible in time,and the appropriate values for the

regularization parameters should be specified.

The experiments concerning the temporal position and weights given to the observations

in the assimilation window showed that the best analyses areachieved if the observations are

as far apart as possible in time and if more weight is given to the final time observations

than the initial time observations. Thus, the assimilationwindow should be designed to be

as long as possible (within the validity of the tangent linear assumption), and such that there

are many observations at both the beginning and the end of thewindow. This agrees with the

results by Thépaut et al. (1996), where it was shown that thestructure functions are more fully

developed for a longer assimilation window. However, it also implies that the observations at

the beginning of the window also play a crucial role in generating vertical structures with the

correct attributes.

The experiments also showed that the position of the observations should ideally be near

to the maxima and minima in the required analysis increments. For example, if the required

analysis increment has a structure which leads to modal growth, the observations should be

placed near to the upper and lower boundaries, but if the required analysis increment has a

structure which leads to non-modal growth, the observations should be placed in the interior.

It is possible to design the observing system so that the observations are far apart in time.

However, the true state and hence the required analysis increments are unknown. Therefore, it

is not possible to know in advance the optimal spatial positions for the observations.
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If the observational errors are larger than the amount of growth during the assimilation

window, it is not possible to infer the growth rate. Thus, a time-sequence of noisy observations

may not be able to provide any information about the growth rate. In such instances, the knowl-

edge of the model dynamics will not be able to reconstruct thestate in the unobserved regions.

Therefore, to maximize the benefits of 4D-Var, the observations need to be accurate enough

to infer the growth rate or vertical tilt. If the observations are not accurate enough to infer

such information, it is doubtful that 4D-Var would be significantly beneficial in comparison to

3D-Var. Although flow-dependent structures would be generated, they would not necessarily

have the correct attributes.

To maximize the amount of useful information that is extracted from the observations, it is

important to choose the appropriate value for the regularization parameterµ2, which is the ratio

between the observation error variance and the background error variance. It may seem from

the BLUE equations (1.7 and 1.8), that the error covariance matrices need to be known a priori.

However, the discussion in this thesis has shown that the observations and the background state

can be used to specify the appropriate value forµ. This was illustrated using a technique known

as the L-Curve, which is commonly used in problems involvingTikhonov Regularization.

Not only is it important to specify the ratio between theJ b and theJo terms, but also to

specify multiple regularization parameters. For example,the background error variances may

be different for different variables in different geographical regions and at different times. As

the parameters differ for each analysis, they must be re-specifed on each analysis cycle. The

specification of such parameters is particularly importantfor the analysis of extreme weather

events such as mid-latitude storms and can be considered as atechnique to generate flow-

dependent analysis increments.

7.2 Implications for Operational NWP

The experiments in this thesis are highly idealized, in comparison to operational data assimila-

tion. The Eady model is extremely simple in comparison to full NWP models and in particular

only a linear (although not linearized), perfect model withsimple true states has been consid-

ered. Nevertheless, the understanding of how the information from observations is combined

with the model dynamics can be applied to understand the processes in operational 4D-Var.

The benefits of 4D-Var in comparison to 3D-Var, the implications for an algorithm known as

the reduced rank Kalman Filter, and techniques to maximize the benefits of 4D-Var are now
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discussed.

It is important to assess the benefits of 4D-Var, given that 4D-Var is significantly more

expensive than 3D-Var (Rabier et al., 1998), and that 4D-Varrequires a great deal of time

to develop the tangent linear and adjoint models. Previous studies (Rabier et al., 2000) have

shown that 4D-Var has a clear advantage over 3D-Var in regions of rapid cyclogenesis. Such

benefits have been attributed to the dynamical evolution of the covariance matrix (e.g. Thépaut

et al., 1993a). The work in this thesis has also shown that with observations at only the end

of the window, the vertical structure of the analysis increments are more fully developed and

lead to a faster growth rate. However this is not necessarilybetter if the required analysis

increment is decaying. Observations at the beginning of theassimilation window are also

needed so that 4D-Var is able to infer the growth rate. We haveshown that 4D-Var is able to

use a time-sequence of observations to infer the state in unobserved regions, and to infer the

growth rate during the assimilation window. It is these two abilities that give 4D-Var clear

advantages in comparison to 3D-Var. Thus, the dynamical evolution of the covariance matrix

is not necessarily the only reason for the benefits of 4D-Var.This has important implications

for the development of data assimilation algorithms such assimplified Kalman Filters and

Ensemble Kalman Filters.

Experiments with the Reduced Rank Kalman Filter (RRKF) haveshown that the RRKF

has an entirely neutral impact on the analysis quality (e.g.Fisher and Andersson, 2001, Beck,

2003). The reasons for the neutral impact are not understood, but the work from this thesis may

aid towards an understanding. 4D-Var is likely to add a growing analysis increment even if a

decaying analysis increment is required, and hence 4D-Var already handles the growing struc-

tures well. This is therefore perhaps the reason why evolving the covariances corresponding to

the growing structures has little impact on 4D-Var. Furtherresearch is required to investigate

whether this is indeed the case.

This work has highlighted that the benefits of 4D-Var are not only due to the propagation

of the covariance matrix, but to the use of time-evolution information. The time-evolution

information that is contained in the observations plays an important role in ensuring that the

analysis leads to a good forecast. The dramatic increase in the number of observations in the

future should also give more time-evolution information. Hence, it should be expected that the

benefits of 4D-Var will become more apparent in the future.

It is vital that the maximum amount of useful information contained in the observations is

extracted. This thesis has identified two ways to maximize the amount of information that is
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extracted: to use observations that are placed far apart in time, and to choose the appropriate

regularization parameters.

Previous research concerning targeted observations has mainly considered where the sen-

sitive atmospheric regions are, but here we have consideredwhere the observations should be

placed in both space and time so that the data assimilation algorithm can extract the maximum

amount of useful information. Previous studies have shown that it is important to place ob-

servations at the end of a long assimilation window. The workin this thesis has highlighted

that the observations at the beginning of the assimilation window also play an important role,

particularly for the accuracy of the following forecast. For operational data assimilation, it is

likely that it is still the case that the initial observations are important, although the observa-

tions in the middle of the window may also be important in the case of, for example, non-modal

growth. Therefore, the observing system and assimilation window should be designed with this

in mind.

The specification of the multiple regularization parameters has been shown to play a vital

role in extracting the information contained in the observations. This has previously been

considered (e.g. Wahba and Wendelberger, 1980, Dee, 1995, Desroziers and Ivanov, 2001),

but has not been implemented in an operational data assimilation scheme, although online

covariance estimation is currently being developed in the HIRLAM (High Resolution Limited

Area Modelling) variational data assimilation system (M. Lindskog, personal communication).

The work in this thesis has illustrated that the specification of such parameters is vital to exploit

the benefits of 4D-Var and therefore further research is needed to identify a robust and feasible

method to calculate the appropriate values. This is discussed further in the next section.

7.3 Future Development

Having begun to answer the questions which were posed in Chapter 1, we now consider how

this work may be extended.

1. How can better analyses of the decaying modes be obtained?

One of the main conclusions from this thesis is that the decaying part of the analysis in-

crement is strongly penalized by the background state. The reason for this is that the control

variables are defined at the beginning of the window. This is aresult of the reduction of the size

of the problem using the ‘reduction of the control variable’(Le Dimet and Talagrand, 1986). If
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the control variables were at the end of the window, then the growing structures would be pe-

nalized instead (Pires et al., 1996). Thus, to eliminate thedistinction between the growing and

decaying modes, it would be necessary to reformulate the 4D-Var problem so that the control

variables are given by the state vector at every time level, or at least by the state at both the

beginning and the end of the time window. For example, the model may be added as a weak

constraint and an elliptic problem (rather than a hyperbolic problem) solved (Sasaki, 1970).

Such an approach is currently being considered by Juckes (2003a,b).

2. What technique should be used to calculate the regularization parameters?

This work has also shown that it is important to specify the appropriate values for the reg-

ularization parameters, which are the ratios of the error variances. In particular, the estimation

of multiple parameters is particularly important for the analysis of extreme weather events.

Although the true state is unknown, it is possible to obtain the appropriate values for these

parameters from the data (the background state and the observations). This was demonstrated

with the L-Curve for a single parameterµ in Chapter 5. It is possible to extend the L-Curve

framework to an L-hypersurface to consider multiple parameters (Belge et al., 2002). This

has not been addressed in this thesis, but illustrates that it is possible to obtain the appropri-

ate values for multiple regularization parameters, from the data. Both the 4D-Var and SVD

experiments showed that the specified background error correlations act to bias the analysis

increments towards the expected structures. One question that follows from this is whether it is

possible to use the data to specify the appropriate values for correlation length scales. Again,

this has not been addressed in this thesis, but is consideredby Wahba and Wendelberger (1980).

An important question that has not been addressed is how the appropriate values should

be calculated. There have been a number of suggestions for the calculation of such parameters

and these are now briefly outlined.

The L-Curve (Hansen, 2001), described in Chapter 5, is calculated by repeating the 4D-

Var analysis many times with different parameters. This is costly for large problems, and is

therefore not appropriate for operational data assimilation. Wahba and Wendelberger (1980)

suggested the use of a method known as Generalized Cross-Validation (GCV). This uses the

criteria that a good choice for the regularization parameters is the ability to predict the value of

the field where the observational data are withheld and calculates the appropriate parameter by

minimizing a GCV function. Dee (1995) suggested a method based on the assumption that the

covariance matrix of the innovation vectors has a Gaussian distribution. The parameter, based
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on this maximum-likelihood concept, is also found by minimizing a function.

Both the GCV and the maximum-likelihood techniques requirethe evaluation of the trace

of large matrices. Therefore, the minimization of the functions is non-trivial. Dee (1995)

used a simple descent algorithm, with no gradient evaluation, to find the minimum, but a more

sophisticated algorithm would be required if many parameters needed to be estimated. To

reduce the computational cost, the problem would need to be divided into sub-domains. A

more sophisticated approach is to estimate upper and lower bounds of the functions using

randomized trace estimation, Gauss quadrature and Lanczosbidiagonalization. Golub and von

Matt (1996) describe such an approach, and also illustrate how the minimum of the GCV

function may be found. Fisher (2003) has also used such a method to calculate the degrees of

freedom in the ECMWF 4D-Var system.

An alternative method to estimate the parameters is to use iterative tuning. Talagrand

(1998) showed that if the background and observation error statistics have been specified cor-

rectly, the value of the cost function at the minimum should be equal to the number of ob-

servations (see also, Rodgers (2000)). Based on this concept, Desroziers and Ivanov (2001)

suggested an iterative technique to tune covariance parameters so that the correct value of the

cost function is attained. They showed that it is possible touse such a technique to tune the

observation errors in a 3D-Var global analysis.

It is not clear which approach would be most suitable for the purposes of data assimilation.

Therefore, future work is needed to identify a method to calculate the appropriate values that

is robust, and possible to use within a global 4D-Var scheme.

The analyses using different regularization parameters had very different structures and

resulted in very different forecasts. Therefore an alternative possibility is not to tune the pa-

rameters, but to repeat the analysis using different parameters to generate an ensemble of initial

conditions that are consistent with the background state, the observations and the model. This

is perhaps an important application as ensemble forecasting is likely to become increasingly

important in the future.

3. What is the effect of model error, nonlinearity, verticalcorrelations, cross-correlations

and temporal observation correlations?

This thesis has not considered the effect of model error, nonlinearity, vertical correlations,

cross-correlations and temporal observations correlations; these are all important issues for

operational data assimilation.
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There are a number of issues concerning the model error. If the model is wrong but model

error is not taken into account in the data assimilation algorithm, then it is likely that the state

at the end of the assimilation window has larger errors than at the beginning of the window,

and hence it may be the case that the initial observations areeven more important than the final

observations. A second issue is that the model may propagatethe wrong information into the

unobserved regions and hence the benefits of 4D-Var may be lost. The third issue is to consider

the case when model bias or model parameters are estimated bythe data assimilation algorithm

as well as the initial conditions. Then, it would be interesting to extend the information content

concepts to understand whether the observations contain enough information to estimate the

model errors.

Only a linear model has been considered in this study, therefore it is important to extend

the studies to understand the effect of nonlinear models. The 4D-Var problem with a non-linear

model is solved as a sequence of linear problems in incremental 4D-Var. The singular vectors

will depend on the linearization state, which may change throughout the window, and will

also change on each outer loop. Therefore, the particular questions to answer are: how do the

singular vectors of the observability matrix depend on the linearization state, and how is the

information from the observations used to change the linearization state?

This thesis has only considered the effect of horizontal background error correlations and

not vertical correlations. In the Eady model, the elliptic QGPV equation provided some vertical

correlations so it was not necessary to apply vertical correlations. However it would be of

particular interest to understand the effect of vertical correlations on the assimilation of growing

and decaying modes, where the vertical structure is important for the growth rate.

Cross-correlations between different variables are an important part of data assimilation to

ensure that analysis fields are balanced. They also allow unobserved model fields to be inferred.

The SVD approach may aid the understanding of the impact of such cross-correlations in a 4D-

Var algorithm.

Temporal observation correlations are becoming increasingly important, as the amount of

satellite and radar data increases; however, it is not clearhow to account for such correlations

in 4D-Var. It is possible to included temporal error correlations in the definition of the nor-

malized observability matrix, and such a formulation may aid an understanding of the effect of

such correlations.

4. What is the information content of observations in 4D-Varwith different dynamical



Chapter 7. Conclusions 170

models?

The singular value decomposition of the observability matrix has provided a useful under-

standing of how the information from observations is combined with the model dynamics, and

in particular to understand how the state in unobserved regions is reconstructed. This concept

could usefully be applied to other data assimilation problems such as data assimilation in the

tropics and mesoscale data assimilation.

There are two main difficulties for atmospheric data assimilation in the tropics. The first

is that there is a wide range of types of wave motion in the tropics (Holton, 1992), and the

second is that there are very few wind observations in comparison to mass observations and

therefore the mass field is needed to infer the wind field (Brzovic, 2003). It would be useful

to use the singular value decomposition to examine the information that is contained in the

observations. In particular, this technique could be used to determine whether the mass field

can be used to successfully reconstruct the wind field, and tounderstand whether analysis

increments corresponding to different wave structures canbe generated.

An important current area of research is the assimilation ofprecipitation (radar) data into

mesoscale models. One of the main problems in the assimilation of precipitation data is that

in many cases, the impact of the assimilation of precipitation data only remains for the first

several hours of the forecast. This is because the model temperature and humidity profiles

are not adjusted appropriately and therefore cannot continue to give the required precipitation.

Therefore, the question is whether it is possible to use observations of precipitation to infer the

necessary temperature and humidity fields (Jones and Macpherson, 1997). This is a challeng-

ing question as both nonlinearity and model error are important. The SVD technique could be

applied in this context to examine the information that is contained in the precipitation obser-

vations.

5. How can better analyses be obtained when the background state has a phase error?

Current data assimilation methods blend together the observations and the background

state. Many of the experiments in this thesis have considered the background state to have a

displacement error, and have shown that it is possible for the amplitude of the analysis to be

reduced. Such an effect would be more noticable in a region with sharp gradients, such as a

front. If a front is in the wrong place in the background field,then it is possible for the feature

to become smeared out in the analysis. It is therefore important to consider alternative data

assimilation algorithms that aim to extract the maximum amount of useful information from
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both the observations and the background state.

A possible algorithm would be to allow for both amplitude andphase errors, so that it is

possible to shift the background state closer to the observations. Such a technique could be

considered as a technique to generate flow-dependent background error covariance structures,

as the analysis increments would depend explicitly on the background state.



Appendix A

Eady Model

In this thesis, the non-dimensional 2D-Eady model is used in4D-Var identical twin experi-

ments where the true state is given by either the most rapidlygrowing or decaying Eady wave

or by an interior QGPV dipole perturbation that results in non-modal growth.

This appendix begins with a description of the quasi-geostrophic equations, from which

the 2D Eady model equations are derived. This is followed by adescription of the non-

dimensional variables and a co-ordinate change. The equations used for the modal and non-

modal initial conditions are then given. The appendix ends with a description of the particular

discretization of the Eady model that is used in this thesis and also the details of the methods

used to handle observations of the interior buoyancy and to calculate the SVD of the observ-

ability matrix.

A.1 Quasi-Geostrophic Equations

The quasi-geostrophic (QG) equations are an approximationto the primitive equations and

describe the essentially geostrophic motion for mid-latitude synoptic scales. The equations are

simplified by using Cartesian co-ordinates and assuming that the atmosphere is shallow and

hydrostatically balanced. Frictional and diabatic effects are also neglected.

The Boussinesq approximation is used to simplify the equations. We consider the fluctua-

172
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tions to the static state of the atmosphere such that the basic state is only a function of height:

θ = θo(z) + θ′(x, y, z, t) (A.1)

p = po(z) + p′(x, y, z, t) (A.2)

ρ = ρo(z) + ρ′(x, y, z, t) (A.3)

whereθ denotes the potential temperature,p denotes pressure,ρ denotes the density, andx, y, z

and t are the zonal, meridional and vertical co-ordinates and time. It is assumed that the

vertical motion is small in comparison to the height and thatthe motion is anelastic. It is also

assumed that the inertial effects of the variations in the basic state density can be ignored,

but the buoyancy effects cannot. The Boussinesq approximation also means that there is no

variation in the height of the tropopause,H.

The static stabilityN2 of the basic state (or Brunt-Väisälä frequencyN) is defined as:

N2(z) = g
d lnθ

dz
=
g

θ

dθo
dz

(A.4)

and it is assumed that the perturbation stratification (dθ′

dz
) is negligible.

The quasi-geostrophic equations are derived from a scale analysis of the primitive equa-

tions, based upon typical mid-latitude synoptic scales. Typical synoptic scale lengths for the

atmosphere at mid-latitudes are the horizontal velocity scaleU∼ 10ms−1, the horizontal length

scaleL∼ 1000km, the height of the tropopauseH∼ 10km, the Coriolis parameterf∼ 10−4s−1

and the static stabilityN2∼ 10−4s−2. Using such values, it can be assumed that the Rossby

number,Ro is small:

Ro =
U

fL
� 1. (A.5)

This is equivalent to assuming that the relative vorticityξ is small in comparison to the plan-

etary vorticityf . It can also be assumed that the stratification parameter (orBurger number),

Bu is unity:

Bu =

(

NH

fL

)2

=

(

LR
L

)2

= 1 (A.6)

whereLR is the Rossby radius of deformation.

From the scale analysis (Pedlosky (1987), Holton (1992), James (1994) and Muraki et al.
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(1999)), the thermodynamic equation reduces to:

Dgb+ wN2 = 0 (A.7)

whereb = g

θ̄
θ′ is the buoyancy,g is the gravitational constant,w is the vertical velocity, and

Dg = ∂
∂t

+ug
∂
∂x

+vg
∂
∂y

is the geostrophic derivative whereug andvg are the geostrophic veloc-

ities. This QG equation states that potential temperature is conserved following dry adiabatic

motion and that as air rises, it cools via adiabatic expansion.

Similarly, the vertical component of the vorticity equation reduces to:

Dg(f + ξg) =
fo
ρo

∂

∂z
(ρow) (A.8)

wheref = fo+βy is the Coriolis parameter andξg = ∂vg

∂x
− ∂ug

∂y
is the geostrophic relative vor-

ticity. This QG equation implies that with no vertical motion at the ground, mid-tropospheric

ascent implies that the column of air is stretched, so that the absolute vorticityf + ξg will

increase by an amount proportional to the product of column stretching and the planetary vor-

ticity, fo. Note that this equation only contains a vortex stretching term and not a vortex tilting

(or twisting) term (Hoskins, 1997).

The QG thermodynamic equation can be combined with the QG vorticity equation, by

eliminating the vertical velocityw, to give the QG potential vorticity equation:

Dgq = 0 (A.9)

where

q = f + ξg +
1

ρo

∂

∂z

(

ρofob

N2

)

(A.10)

and is referred to as the QG potential vorticity (PV). This elliptic equation describes the so-

called ‘invertibility principle’ as, when suitable boundary conditions are provided, this equation

can be used to derive the primitive variables such as temperature, pressure and horizontal and

vertical winds. Equation A.9 states that QGPV is conserved following horizontal, geostrophic,

adiabatic, frictionless motion.

The QGPV equation is now rewritten in terms of the geostrophic streamfunctionψ, which

is defined as:

ψ =
p′

ρofo
. (A.11)
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The geostrophic velocities and buoyancy can then be writtenin terms of streamfunction; from

Geostrophic balance:

(ug, vg) = (−∂ψ
∂y
,
∂ψ

∂x
), (A.12)

and from Hydrostatic balance:

b =
g

θo
θ′ = f

∂ψ

∂z
. (A.13)

To summarize, the QG equations are given by:

Dgq = 0 The QG Potential Vorticity Equation, (A.14)

Dgb+N2w = 0 The QG Thermodynamic Equation. (A.15)

Thus, the fundamental dynamical variables are QGPV and potential temperature (buoyancy)

and these are related to streamfunction by:

q = f + ∇2
hψ +

1

ρo

∂

∂z

(

ρo
f 2
o

N2

∂ψ

∂z

)

Definition of QGPV, (A.16)

b = f
∂ψ

∂z
Definition of Buoyancy. (A.17)

where∇2
h = ∂2

∂x2 + ∂2

∂z2
. Thus, the buoyancy provides suitable boundary conditionsfor the

elliptic equation for streamfunction.

A.2 The 2D Eady Model

The 2D Eady model (Eady, 1949) equations are now derived fromthe QG equations. It is

assumed that there are two rigid boundaries; one at the ground and one at a height H to represent

the tropopause. The tropopause may be modelled as a rigid boundary due to the high static

stability of the stratosphere. It is also assumed that thereis no vertical motion at these rigid

surfaces, the densityρo and the Static stabilityN are constants and the Coriolis parameterf is

a constant (f-plane approximation,β = 0).

The Eady model equations describe the linear evolution of perturbations from a basic state.

The basic state is assumed to be only dependent ony, whilst the perturbations are independent
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of y,

q = q̄(y) + q′(x, z, t), (A.18)

b = b̄(y) + b′(x, z, t). (A.19)

The basic state consists of a uniform meridional temperature gradient that is necessary for

baroclinic instability. Through thermal wind balance, this is associated with a linear vertical

zonal wind shear:

ū = Az. (A.20)

The basic state is illustrated in the schematic diagram in Fig. A.1. The Coriolis parameter is

Warm

Cold
u=Az

x

y

z

Figure A.1: Basic state of the Eady model. The meridional temperature gradient is associated
with a linear zonal wind shear with height, through thermal wind balance. The model contains
rigid lids at both the ground and the tropopause.

a constant, sōq = f . The zonal wind perturbation is zero asu′g = −∂ψ′

∂y
andψ′ is assumed

to be independent of y. This allows the derivation of a linearmodel of perturbations which

have no constraint on their size. That is, we do not need to linearize the model about the basic

state as there is no need to neglect any small terms. The associated basic state and perturbation

variables can be written as:

ug = ū(z) + 0 (A.21)

vg = 0 + v′(x, z, t) (A.22)

ψ = ψ̄(y, z) + ψ′(x, z, t). (A.23)

Using these definitions, the QG potential vorticity equation (A.14) becomes:

(

∂

∂t
+ ū

∂

∂x
+ v′

∂

∂y

)

(q̄ + q′) = 0 (A.24)
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which gives:
(

∂

∂t
+ ū

∂

∂x

)

q′ = 0 in zε(0, H) (A.25)

where from (A.16),

q′ =
∂2ψ′

∂x2
+
f 2

N2

∂2ψ′

∂z2
in zε(0, H). (A.26)

This elliptic equation requires suitable boundary conditions. These are provided by the

buoyancy from the Hydrostatic equation (A.17). Assuming that the vertical velocityw is zero

on the upper and lower boundaries, then the QG Thermodynamicequation (A.15), that advects

the buoyancy field, becomes:

(

∂

∂t
+ ū

∂

∂x
+ v′

∂

∂y

)

(b̄+ b′) = 0 onz = 0, H (A.27)

which gives:
(

∂

∂t
+ ū

∂

∂x

)

b′ + v′
∂b̄

∂y
= 0 on z = 0, H. (A.28)

Now, from (A.12, A.13, and A.20),

v′
∂b̄

∂y
=
∂ψ′

∂x

∂

∂y

(

f
∂ψ̄

∂z

)

=
∂ψ′

∂x

∂

∂z

(

∂ψ̄

∂y

)

f = −∂ψ
′

∂x

∂

∂z
ū(z)f = −∂ψ

′

∂x
Af (A.29)

so that the Thermodynamic equation becomes:

(

∂

∂t
+ ū

∂

∂x

)

∂ψ′

∂z
= A

∂ψ′

∂x
onz = 0, H. (A.30)

The left hand side describes the zonal advection of the temperature wave, whilst the right

hand side describes the meridional advection. This meridional advection provides the crucial

coupling between the upper and lower waves.

A.3 Non-Dimensional Equations

New variables and a co-ordinate change are now introduced tonon-dimensionalize the Eady

model. These are introduced for two reasons. The first reasonis that the non-dimensional

variables simplify the equations by removing the constants. The second reason is that the Eady

model is used in an optimization problem, and therefore non-dimensionalizing should improve

the conditioning of the problem (Gill et al., 1981).
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The following co-ordinate transformation is introduced:

z̃ =
z − H

2

H
x̃ =

x− AH
2
t

LR
t̃ =

fA

N
t (A.31)

whereLR = NH
f

is the Rossby radius of deformation. The new non-dimensional variablesψ̃′,

q̃′ andb̃′ are related to the dimensional variablesψ′, q′ andb′ by:

ψ̃′ =
ψ′

ψ0

q̃′ =
L2
R

ψ0

q′ b̃′ =
H

ψ0f
b′ (A.32)

whereψ0 is the amplitude ofψ′.

The non-dimensional equations become:

(

∂

∂t̃
+ z̃

∂

∂x̃

)

∂ψ̃′

∂z̃
=
∂ψ̃′

∂x̃
on z = ±1

2
(A.33)

(

∂

∂t̃
+ z̃

∂

∂x̃

)

q̃′ = 0 in zε(−1

2
,
1

2
) (A.34)

∂2ψ̃′

∂x2
+
∂2ψ̃′

∂z2
= q̃′ in zε(−1

2
,
1

2
). (A.35)

Although it is only the derivatives of̃ψ′ that are of interest, the derivatives are found in practice

by first calculatingψ̃′. Therefore an extra equation is needed so that the problem for ψ̂′ is well

posed. We impose that
∫ ∫

ψ̃′dxdz = 0 (A.36)

so that the mean value of the streamfunction in the domain is zero.

For simplicity, the tildes and primes will be omitted in all further equations.

A.4 Modal and Non-Modal Initial Conditions

All the identical twin experiments in this thesis use a true state with initial conditions given by

either the most rapidly growing or decaying normal mode or bya perturbation which leads to

non-modal rapid finite-time growth. The equations for thesestates are now given.

The normal mode solutions can be found analytically by assuming thatq′ = 0 and substi-

tuting a solution of the form:

ψ(x, z, t) = ψ̂(z)e−ik(x−ct) (A.37)
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into the non-dimensional Eady model equations, wherek is the non-dimensional wave number

andc is the non-dimensional phase speed. It can be shown (e.g. Pedlosky, 1987) that when

k > 2.4, thenc is real and so the corresponding solutions form pairs of neutral modes; and

whenk < 2.4 then c is imaginary, and the solutions form pairs of stationary growing and

decaying modes. It can also be shown that the maximum non-dimensional growth or decay

rateσ = ±kci of 0.31 corresponds to a non-dimensional wavenumberk = 1.6.

The equations for the most rapidly growing and decaying normal modes are then given by:

ψ = ψ0e
σt [cosh(kz) cos(kx) − α sinh(kz) sin(kx)] (Growing Mode) (A.38)

ψ = ψ0e
−σt [cosh(kz) cos(kx) + α sinh(kz) sin(kx)] (Decaying Mode) (A.39)

wherek = 1.6, σ = 0.31 and

α =

√

1 − k
2
tanh k

2
k
2
coth k

2
− 1

and σ = |kci| > 0. (A.40)

The initial state for non-modal growth is defined by an interior QGPV dipole perturbation

with zero values for the buoyancy on the boundaries. The QGPVdipole is defined by:

q(x, z) = sf(x)g(z) (A.41)

where

f(x) =



































−L
4
− x

2
+ sin(2kx)

4k
−L

2
< x < −L

4

−L
8
− cos(kx)

k
−L

4
< x < L

4

−L
4

+ x
2
− sin(2kx)

4k
L
4
< x < L

2

(A.42)

with f(x) = 0 for x < −L
2

andx > L
2
, L = 1000km, andk = 2π

L
,

g(z) = exp

(

− 1

D2
(z − 3000)2

)

− exp

(

− 1

D2
(z − 7000)2

)

(A.43)

for 2 < z < 8km, andg(z) = 0 otherwise, and withD = 1500km. The perturbation is scaled

to an appropriate size usings = 10−6.
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A.5 Discrete Equations

The discretization of the Eady model equations is now described. This particular discretization

has previously been used, for example, by Badger(1997,2001) and by Fletcher (1999).

The continuous non-dimensional Eady model equations (A.33to A.35) can be summarized

as the advection of the buoyancy on the boundaries, and QGPV in the interior:

(

∂

∂t
+ z

∂

∂x

)

q = 0 in zε

[

−1

2
,
1

2

]

(A.44)
(

∂

∂t
+ z

∂

∂x

)

b =
∂ψ

∂x
on z = ±1

2
(A.45)

where the QGPVq and buoyancyb are related to the streamfunctionψ, by:

q = ∇2ψ in zε

[

−1

2
,
1

2

]

(A.46)

b =
∂ψ

∂z
onz = ± 1

2
(A.47)

where∇2 = ∂2

∂x2 + ∂2

∂z2
.

These equations are discretized on a domain with 40 grid points in the horizontal and 11

vertical levels. The value ofq andψ at the ith horizontal grid point, jth vertical level at time-

level t are denoted byqti,j andψti,j, where the horizontal grid spacing is∆x, the vertical spacing

is ∆z and the time-step is∆t. j = 11 represents the upper boundary andj = 1 represents the

lower boundary so that the value of the buoyancy at the ith grid point on the lower boundary is

denoted bybi,j for j = 1, and similarly for the upper boundary, bybi,j for j = 11. The non-

dimensional grid-spacing and time-steps are chosen as∆x = 0.1, ∆z = 0.1 and∆t = 0.1728.

These correspond to dimensional steps∆x = 100km, ∆z = 1km and∆t = 4320s if the

constants are given byN = 10−2s−1, f = 10−4s−1,H = 10km andA = 4 × 10−3s−1.

In the majority of experiments, the basic state flow is such that the zonal wind is zero in the

centre of the domain. However, there are some experiments inChapter 6 where the basic state

flow is such that the zonal wind is zero on the lower boundary. This is achieved by adding 0.5

to each value ofz. Then, to satisfy the CFL (Courant-Friedrichs-Lewy) condition (e.g. Durran,

1999), the time step is halved to∆t = 0.0864.

The model can be summarized as follows. Steps 2 and 3 are repeated for every time step.
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Step 1 Initial Conditions. The initial conditions are given by the QGPV in the interior:

qti,j for i = 1, . . . , 40, j = 1, . . . , 11, t = 1 (A.48)

and the buoyancy on the boundaries:

bti,j for i = 1, . . . , 40, j = 1&11, t = 1. (A.49)

Step 2 Calculate the streamfunction. The elliptic equation (A.46) is discretized using a 5-

point star stencil:

qti,j =
ψti−1,j − 2ψti,j + ψti+1,j

∆x2
+
ψti,j−1 − 2ψti,j + ψti,j+1

∆z2
. (A.50)

This formula is repeated fori = 1, . . . , 11 andj = 1, . . . , 40 and is then written in matrix

form.

From the periodic boundary conditions thenψti−1,j = ψt40,j when i = 1 and similarly,

ψti+1,j = ψt1,j wheni = 40. Whenj = 1, ψti,j−1 does not exist and whenj = 11, ψti,j+1

does not exist. However, they can be found by using the Hydrostatic balance equation

(A.47). If this is discretized by:

bti,j =
ψti,j+1 − ψti,j−1

2∆z
(A.51)

thenψti,j−1 = ψti,j+1 − 2∆zbti,j for j = 1 andψti,j+1 = ψti,j−1 + 2∆zbti,j for j = 11. The

values ofbi,j for j = 1&11 are then added to the right hand side of the matrix. Some of

the rows are then multiplied by1
2

to make the matrix self-adjoint.

To illustrate the matrix form clearly, we consider the more simple case of a smaller
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domain withi = 1, . . . , 3 andj = 1, . . . , 3. The matrix equation can be written as:




























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






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

























1
2
f 1

2
d 1

2
d e 0 0 0 0 0

1
2
d 1

2
f 1

2
d 0 e 0 0 0 0

1
2
d 1

2
d 1

2
f 0 0 e 0 0 0

e 0 0 f d d e 0 0

0 e 0 d f d 0 e 0

0 0 e d d f 0 0 e

0 0 0 e 0 0 1
2
f 1

2
d 1

2
d

0 0 0 0 e 0 1
2
d 1

2
f 1

2
d

0 0 0 0 0 e 1
2
d 1

2
d 1

2
f




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



































ψ1,1

ψ2,1

ψ3,1

ψ1,2

ψ2,2

ψ3,2

ψ1,3

ψ2,3

ψ3,3






























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




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



























=


































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



























1
2
(−deq1,1 + e2∆zb1,1)

1
2
(−deq2,1 + e2∆zb2,1)

1
2
(−deq3,1 + e2∆zb3,1)

−deq1,2

−deq2,2

−deq3,2

1
2
(−deq1,3 − e2∆zb1,3)

1
2
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1
2
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
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



(A.52)

whered = −∆z2, e = −∆x2 andf = 2(∆z2+∆x2) and the horizontal and vertical lines

are added for clarity. To impose the constraint that the meanvalue of the streamfunction

is zero,
∫∫

ψdxdz = 0, (A.53)

then a small constant (= 0.1) is added to every element of the matrix. Without this

constant, the matrix would be singular and hence ill-posed.

Thus, the initial conditions are used to form a vectorrt, which contains the values ofrti,j,

at time levelt = t:

rti,j =



































αqti,j + βbti,j for j = 1

2αqti,j for j = 2, . . . , 10

αqti,j − βbti,j for j = 11

(A.54)

for i = 1, . . . , 40, whereα = −1
2
∆z2∆x2 andβ = −∆x2∆z are constant scalars. The
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streamfunction variablesψti,j are then found by solving the matrix equation:

Aψt = rt (A.55)

whereA is a square matrix containing the coefficients corresponding to a five point

differencing scheme, andψt is a vector containing the values ofψti,j for i = 1, . . . , 40,

j = 1, . . . , 11 andt = t. This matrix equation is solved using an LU factorization using

the NAG routine naggen lin sys (NAG).

Step 3 Advect the QGPV and buoyancy.The interior QGPV,qt and buoyancy on the upper

and lower boundaries,bt at time t are advected to the next time step,t + 1 using the

Leapfrog (Centred Time, Centred Space) discretization (with the Forward Time, Centred

Space scheme for the first time step). For the interior QGPV,

qt+1
i,j = qti,j −

cj
2

(qti+1,j − qti−1,j) for t = 1 (A.56)

qt+1
i,j = qt−1

i,j − cj(q
t
i+1,j − qti−1,j) for t = 2, . . . , T − 1 (A.57)

wherecj = zj
∆t
∆x

, for j = 1, . . . , 11 andi = 1, . . . , 40, again using periodic boundary

conditions. For the buoyancy on the boundaries,

bt+1
i,j = bti,j −

cj
2

(bti+1,j − bti−1,j) +
∆t

2∆x
(ψti+1,j − ψti−1,j) for t = 1 (A.58)

bt+1
i,j = bt−1

i,j − cj(b
t
i+1,j − bti−1,j) +

∆t

∆x
(ψti+1,j − ψti−1,j) for t = 2, . . . , T − 1

(A.59)

for j = 1&11 andi = 1, . . . , 40, using periodic boundary conditions.

A.6 Observing Interior Buoyancy

The observation operatorH for observationsy of the interior buoyancy field is now described.

The control variablesx are defined as the interior QGPV and buoyancy on the upper and lower

boundaries, and hence the interior buoyancy is not a controlvariable. The 4D-Var experiments

in Chapter 3 consider observations of the lower boundary buoyancy, and as this is a control

variable, the observation operator is simply a matrix of ones and zeros (3.3). The 4D-Var

experiments in Chapter 6 consider observations of the interior buoyancy and as this is not a
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control variable, the observation operator must contain dynamcial equations to link the ob-

served variables to the control varibles. In practice, the observation operator is no longer a

matrix, but a sequence of linear operations which can be summarized as:

H : x
1→ ψ

2→ b
3→ y. (A.60)

The first operator uses the QGPV and buoyancy in the control vectorx to calculate the corre-

sponding streamfunction fieldψ using (A.55). The second operator uses the streamfunction

fieldψ to calculate the interior buoyancyb using the Hydrostatic balance relation (A.17). This

is discretized as:

bi,j+ 1

2

=
ψi,j+1 − ψi,j

∆z
for j = 0, . . . , 9, i = 1, . . . , 40 (A.61)

so that the buoyancy field then contains the values of buoyancy at heights0.5, 1.5, . . . , 9.5 km

and also at0 and10 km from the buoyancy on the boundaries. The third operator applies a

matrix of ones and zeros to select the individual observation locations, for example to give

horizontal or vertical lines, to give the vector of observationsy.

The adjointHT is simply given by the adjoints of each operator and is in reverse order:

HT : y
3T

→ b
2T

→ ψ
1T

→ x. (A.62)

A.7 Calculating the SVD of the 4D-Var Observability Ma-

trix

The experiments in Chapters 5 and 6 use the singular value decomposition of the 4D-Var ob-

servability matrix:

Ĥ =











H

HM(tN , t0)











. (A.63)

This is found using the SVD algorithm naggensvd (NAG, Golub and Van Loan, 1996), which

requires that̂H is in matrix form.

The matrix formM of the discrete Eady modelM is found by applying the discrete Eady
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model equations to successive columns of the identity matrix:

M = MI = M(e1)M(e2) · · ·M(e520) (A.64)

where the vectorsei are the columns of the identity matrix:

e1 =


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
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






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


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...

0


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






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
























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0





























· · · e520 =





























0

0

...

1





























. (A.65)

The linear operatorM is applied to discontinuous field, and therefore it is important to consider

the choice of the numerical advection scheme. The Leapfrog scheme (A.59) is used for the

discrete Eady model and although it is suitable for smoothlyvarying functions such as the Eady

wave, it is not suitable for propagating sharp discontinuities. This is illustrated in Fig. A.2(a)

where the Eady model with the Leapfrog scheme has been applied to the initial conditions

given by a spike in the buoyancy field at the centre of the domain. The upper level spike is

advected eastwards by the flow but there is a trail of short waves upstream of the perturbation.

This is due to wavenumber dependent phase speed errors (dispersion) and the computational

mode.
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(b) Lax-Wendroff

Figure A.2: Comparison of the upper level buoyancy fields at time T+6 (5 timesteps) with (a) Leapfrog
(b) Lax-Wendroff numerical advection schemes in the Eady model. The initial conditions are given by a
spike in both the upper and lower buoyancy fields atx = 2000km with an amplitude of4 on the upper
boundary and−4 on the lower boundary.c = z ∆t

∆z = 0.864.

An alternative numerical scheme is the Lax-Wendroff scheme. This scheme is derived
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from a Taylor series expansion and can be written for the buoyancy advection equation as:

bt+1
i,j = bti,j −

cj
2

(bi+1,j − bti−1,j) +
c2j
2

(bti+1,j − bti,j + bti−1,j) +
∆t

2∆x
(ψti+1,j − ψti−1,j) (A.66)

The modified equation approach (e.g. Le Veque, 1992, Durran,1999), can be used to show

that the Lax-Wendroff scheme is both dispersive and diffusive and this means that the short

wavelengths are damped. Further, as the Lax-Wendroff scheme is a two-time level scheme, it

does not suffer from a computational mode. For these reasons, the Lax-Wendroff scheme is

more successful than the Leapfrog scheme in advecting a spike. This is shown in Fig. A.2(b).

The matrix formM of the Eady model is tested by integrating the models for 24 hours

with the initial statex0 given by the most unstable Eady wave.

For the Leapfrog discretization,

‖Mx −M(x)‖2 = 2.5 × 10−13 (A.67)

and for the Lax-Wendroff discretization,

‖Mx −M(x)‖2 = 4.3 × 10−14. (A.68)

Therefore, the error is slightly smaller is the Lax-Wendroff discretization is used. The Lax-

Wendroff scheme is used for all the SVD computations in this thesis.
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Adjoint Model

This appendix describes the adjoint model equations in bothcontinuous and discrete form.

The adjoint of the continuous equations can be found using Lagrange mulitpliers whilst the

adjoint of the discrete equations can be found by considering the model as a sequence of linear

operations. It is particularly useful to consider the adjoint of the continous equations to be able

to understand the discrete adjoint equations.

B.1 Continuous Equations

The forward Eady model continuous equations can be summarized as:

qt + zqx = 0 ∇2ψ = q in zε

[

−1

2
,
1

2

]

(B.1)

bt + zbx = ψx ψz = b on z = ±1

2
(B.2)

and with periodic boundary conditions in the horizontal where q = q(x, z, t) is the QGPV,

b = b(x, z, t) is the buoyancy, andψ = ψ(x, z, t) is the streamfunction, and using the notation

qt = ∂
∂t

, and∇2 = ∂2

∂x2 + ∂2

∂z2
.

The adjoint of the continuous equations can be found using the calculus of variations,

following the work by, for example, Gelfand and Fomin (1963), Forray (1968), Birkett and

Nichols (1983), Xu and Nichols (1991) and Griffith and Nichols (1994). The forward model

contains both differential equation constraints and algebraic constraints. However, all the equa-

tions are linked together and must therefore all be considered simultaneously in the Lagrangian

functional. Further, some equations are defined over the interior whilst the others are defined

187
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over the boundaries and so the Lagrangian functional must bedefined accordingly. The La-

grangian functionalL may be defined as:

L =

T
∫

0

∫∫

Ω

q̂(qt + zqx)dxdzdt+

T
∫

0

∮

Γ

b̂(bt + zbx − ψx)dxdt (B.3)

+

T
∫

0

∫∫

Ω

ψ̂(∇2ψ − q)dxdzdt+

T
∫

0

∮

Γ

ψ̂(ψz − b)dxdt (B.4)

whereq̂ = q̂(x, z, t), b̂ = b̂(x, z, t), ψ̂ = ψ̂(x, z, t) are Lagrange multipliers,Ω is the rect-

angular domain,Γ is the boundary surrounding the domain andT is the assimilation window

length.

The Lagrange multiplier̂ψ is used for both the elliptic equation and the derivative bound-

ary condition (last two terms) as the elliptic equation is defined over the interior of the domain

whilst the derivative equation is defined on the boundaries.That is, in the third term,̂ψ is de-

fined over the interior, whilst in the fourth term̂ψ is defined on the boundaries. The constraint

that the mean ofψ is zero is omitted from the Lagrangian functional as it is only the derivatives

of ψ that are required, and hence the forward equations are well-posed without this constraint.

The first variation ofL can be written as a function ofδq, δb, andδψ using Greens Theorem

in the Plane (or integration by parts). Then, from the Fundamental Lemma of the calculus of

variations, it can be shown that the continuous adjoint Eadymodel equations are given by:

q̂τ − zq̂x = +ψ̂ ∇2ψ̂ = 0 in zε

[

−1

2
,
1

2

]

(B.5)

b̂τ − zb̂x = +ψ̂ ψ̂z = −b̂x on z = −1

2
(B.6)

b̂τ − zb̂x = −ψ̂ ψ̂z = +b̂x on z = +
1

2
(B.7)

with periodic boundary conditions in the horizontal. The time co-ordinateτ has been intro-

duced, such that̂qτ = −q̂t so that the adjoint equations are propagated backwards in time. The

derivative boundary conditions imply that the streamfunction ψ and adjoint streamfunction̂ψ

are only unique up to an additive constant. In the forward equations, we added the constraint

that the mean ofψ was zero, and by analogy with the derivation of the adjoint equations for

the discrete model (Section B.2), we also apply a similar constraint in the adjoint equations so



Appendix B. Adjoint Model 189

that the mean of̂ψ is zero:

∫∫

Ω

ψdxdz = 0

∫∫

Ω

ψ̂dxdz = 0. (B.8)

From the transversality conditions, the final state at the end of the assimilation window is zero:

q̂(x, z, T ) = 0 in zε

[

−1

2
,
1

2

]

(B.9)

b̂(x, z, T ) = 0 on z = ±1

2
(B.10)

and the gradients ofL with respect to the forward variables at the beginning of thewindow are

defined as:

∂L
∂q(x, z, 0)

= −q̂(x, z, 0) in zε

[

−1

2
,
1

2

]

(B.11)

∂L
∂b(x, z, 0)

= −b̂(x, z, 0) on z = −1

2
(B.12)

∂L
∂b(x, z, 0)

= −b̂(x, z, 0) on z = +
1

2
. (B.13)

B.2 Discrete Equations

The discrete equations for the Eady model can be summarized as.

Step 1 Initial Conditions. The initial conditions are given by the QGPV in the interior:

qti,j for i = 1, . . . , 40, j = 1, . . . , 11, t = 1 (B.14)

and the buoyancy on the boundaries:

bti,j for i = 1, . . . , 40, j = 1&11, t = 1, (B.15)

wherei is the horizontal grid point,j is the vertical level andt is the time level, with

horizontal grid spacing∆x, vertical level spacing∆z and time spacing∆t.

Step 2 Calculate the streamfunction.The initial conditions are used to form a vectorrt, which
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contains the values ofrti,j, at time levelt = t:

rti,j =



































αqti,j + βbti,j for j = 1

2αqti,j for j = 2, . . . , 10

αqti,j − βbti,j for j = 11

(B.16)

for i = 1, . . . , 40, whereα andβ are constant scalars. The streamfunction variablesψti,j

are then found by solving the matrix equation:

Aψt = rt (B.17)

whereA is a square matrix containing the coefficients corresponding to a five point

differencing scheme, andψt is a vector containing the values ofψti,j for i = 1, . . . , 40,

j = 1, . . . , 11 andt = t.

Step 3 Advect the QGPV and buoyancy.The interior QGPV,qt and buoyancy on the upper

and lower boundaries,bt at time t are advected to the next time step,t + 1 using the

Leapfrog (Centred Time, Centred Space) discretization (with the Forward Time, Centred

Space scheme for the first time step). For the interior QGPV,

qt+1
i,j = qti,j −

cj
2

(qti+1,j − qti−1,j) for t = 1 (B.18)

qt+1
i,j = qt−1

i,j − cj(q
t
i+1,j − qti−1,j) for t = 2, . . . , T − 1 (B.19)

wherecj = zj
∆t
∆x

, for j = 1, . . . , 11 andi = 1, . . . , 40, again using periodic boundary

conditions. For the buoyancy on the boundaries,

bt+1
i,j = bti,j −

cj
2

(bti+1,j − bti−1,j) +
∆t

2∆x
(ψti+1,j − ψti−1,j) for t = 1 (B.20)

bt+1
i,j = bt−1

i,j − cj(b
t
i+1,j − bti−1,j) +

∆t

∆x
(ψti+1,j − ψti−1,j) for t = 2, . . . , T − 1 (B.21)

for j = 1&11 andi = 1, . . . , 40, using periodic boundary conditions.

The adjoint of the discrete equations may be found by considering the linear model in ma-

trix form. For example, consider the discrete linear model in matrix form,M that is integrated

over one time step:xt+1 = Mxt. The adjoint of the matrixM is simply the complex conjugate
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transpose, and as all the variables are real in the followingcases, this is simply the transpose

of the matrix. This may be further simplified by considering the model as a sequence of linear

operationsLn, . . . ,L1:

M = Ln . . .L2L1. (B.22)

From the definition of the transpose of a matrix, the adjoint model is then:

MT = LT
1 LT

2 . . .L
T
n . (B.23)

Thus, the adjoint model may be considered as the exact reversal of the sequence of adjoint op-

erations. Such an approach is also described by Chao and Chang (1992), Navon et al. (1992),

Rosmond (1997) and Marotzke et al. (1999), where adjoints ofoceanic and atmospheric mod-

els are derived and also by Giering and Kaminski (1996). Thisapproach has been used to

develop the adjoint model code for the Eady model. It is also possible to consider the follow-

ing equations as the discretization of the continuous equations that were given in the previous

section.

The adjoint model is integrated backwards in time, and starts with the final conditions

q̂T = 0 andb̂T = 0 (andq̂T+1 = 0 andb̂T+1 = 0). These are then advected backwards in time

to the the previous time step, using the adjoint advection equations (step 3). Then the adjoint

of the streamfunction calculation is used to find the right hand side forcing for the advection

equations (step 2). Steps 3 and 2 are then repeated for every time step.

Step 3 Adjoint of the advection equations. For t = T, . . . , 3, i = 1, . . . , 40 with periodic

boundary conditions:

q̂t−1
i,j = q̂t+1

i,j + cj(q̂
t
i+1,j − q̂ti−1,j) for j = 1, . . . , 11 (B.24)

b̂t−1
i,j = b̂t+1

i,j + cj(b̂
t
i+1,j − b̂ti−1,j) for j = 1&11 (B.25)

ψ̂t−1
i,j = −∆t

∆x
(b̂ti+1,j − b̂ti−1,j) for j = 1&11, (B.26)
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and fort = 2, i = 1, . . . , 40 with periodic boundary conditions:

q̂t−1
i,j = q̂ti,j +

cj
2

(q̂ti+1,j − q̂ti−1,j) for j = 1 . . . 11 (B.27)

b̂t−1
i,j = b̂ti,j +

cj
2

(b̂ti+1,j − b̂ti−1,j) for j = 1&11 (B.28)

ψ̂t−1
i,j = −2

∆t

∆x
(b̂ti+1,j − b̂ti−1,j) for j = 1&11. (B.29)

Step 2 Adjoint of the streamfunction calculation. Theψ̂t−1 field is used to find the values of

r̂t−1
i,j by solving the matrix equation:

Ar̂t−1 = ψ̂
t−1
. (B.30)

Note that this is the same equation as for the forward model. The forward matrix equation

is solved using an LU decomposition. However, it is not necessary to find the adjoint of

the LU decomposition; instead the adjoint equationAT r̂ = ψ̂ can be solved and in this

case,A is self-adjoint. Thus, the same LU decomposition that is used to solve the matrix

equation in the forward model can be used to solve the matrix equations in the adjoint

model. Thêrt−1 variables are then used to update theqt−1 andbt−1 variables using the

assignment statements:

(q̂t−1
i,j )l = (q̂t−1

i,j )l−1 + 2α(r̂t−1
i,j )l−1 for j = 2, . . . , 10 (B.31)

(q̂t−1
i,j )l = (q̂t−1

i,j )l−1 + α(r̂t−1
i,j )l−1 for j = 1&11 (B.32)

(b̂t−1
i,j )l = (b̂t−1

i,j )l−1 + β(r̂t−1
i,j )l−1 for j = 1 (B.33)

(b̂t−1
i,j )l = (b̂t−1

i,j )l−1 − β(r̂t−1
i,j )l−1 for j = 11. (B.34)

where the indicesl andl − 1 denotes the vales of the variables just before and after the

execution of the assignment.

From the structure of theA matrix (A.52) and from equations (B.26) and (B.29), then it is clear

that the boundary conditions forr̂ are given by

∂r̂

∂z
= +

∂b

∂x
on z = +

1

2
(B.35)

∂r̂

∂z
= − ∂b

∂x
on z = −1

2
. (B.36)
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Also, equations (B.31 to B.33) can be interpreted as providing the right hand side forcing for

the advection equations. Thus, the discrete model is consistent with the continuous adjoint

equations. Note, however, that theψ̂ variables in the continuous equations are equivalent to the

r̂ variables in the discrete equations.



Glossary of Symbols and Acronyms

4D-Var Notation

n Dimension of the state vector

m Dimension of the (generalized) observation vector

t0 Initial time

tN Assimilation window length

xti True state at timeti

xb Background state

yi Observations at timeti

xa Analysis at timet0

di Innovation vector at timeti

M Linear forward model operator in equation form

M Linear forward model in matrix form

MT Adjoint model in matrix form

Hi Observation operator at timeti

K Kalman Gain matrix

B Specified background error covariance matrix

Ri Specified observation error covariance matrix at timeti

ρB Specified background error correlation matrix

ρR Specified observation error correlation matrix

l Horizontal correlation length scale

εb Background state errors

εo Observation errors

σ2 Variance of the observational noise

σ2
o Specified observation error variance

σ2
b Specified background state error variance

µ2 Ratio of the background and observation error variances

J Cost function

194
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J b Background cost function term

Jo Observation cost function term

∇xti
J Gradient of the cost function with respect toxti

T + 0 Beginning of the assimilation window

T + 6 6 hours into the assimilation window

tI Time of the initial observations

Singular Vector Decomposition Notation

uj Left singular vector (LSV)

vj Right singular vector (RSV)

λj Singular value

j Singular vector index

U Orthonormal matrix with columns given by the LSVs

V Orthonormal matrix with columns given by the RSVs

Λ Diagonal matrix with diagonal entries given by the singularvalues

Ĥ 4D-Var observability matrix

ŷ 4D-Var generalized observation vector

d̂ 4D-Var generalized innovation vector

χ Pre-conditioned control variable

C Initial time norm

E Final time norm

Eady Model Notation

x Horizontal distance in the zonal direction

y Horizontal distance in the meridional direction

z Height

q Quasi-Geostrophic Potential Vorticity (QGPV)

f Coriolis parameter

g Gravitational acceleration

θ Potential temperature

ψ Geostrophic streamfunction
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N2 Static stability

bti,j Buoyancy at horizontal grid pointi, vertical levelj and time levelt

u Zonal wind

v Meridional wind

xq QGPV variables of the control vector

xT Buoyancy variables of the control vector

σ2
q Specified background error variance for the QGPV

σ2
T Specified background error variance for the Buoyancy

σKE Kinetic energy growth rate

Acronyms

DA Data Assimilation

NWP Numerical Weather Prediction

4D-Var Four-Dimensional Variational Data Assimilation

3D-Var Three-Dimensional Variational Data Assimilation

FGAT First Guess at the Appropriate Time

PDF Probability Distribution Function

RRKF Reduced Rank Kalman Filter

QGPV Quasi-Geostrophic Potential Vorticity

SVD Singular Value Decomposition

RSV Right Singular Vector

LSV Left Singular Vector

GCV Generalized Cross Validation
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Global observing system experiments on operational statistical retrievals of satellite sound-

ing data.Mon. Weather Rev., 119:1851–1864.

Atkinson, K. E., 1989.An Introduction to Numerical Analysis. J. Wiley and Sons, second

edition, pp. 693.

Badger, J., 1997.Mechanisms for Rapid Synoptic Development. PhD thesis, Department of

Meteorology, University of Reading.

Badger, J. and B. J. Hoskins, 2001. Simple initial value problems and mechanisms for baro-

clinic growth. J. Atmos. Sci., 58:38–49.

Barkmeijer, J., M. V. Gijzen, and F. Bouttier, 1998. Singular vectors and estimates of the

analysis-error covariance metric.Q. J. R. Meteorol. Soc., 124:1695–1713.

Beale, E. M. L., 1972. A derivation of conjugate gradients. In Lootsma, F. A., editor,Numerical

Methods for Nonlinear Optimization, chapter 4, pp. 39–43. Academic Press.

Beale, E. M. L., 1988. Multi-dimensional optimization. InIntroduction to Optimization, chap-

ter 4, pp. 25–36. Wiley.

Beare, R. J., A. J. Thorpe, and A. A. White, 2003. The predictability of extratropical cyclones:

Nonlinear sensitivity to localized potential-vorticity perturbations.Q. J. R. Meteorol. Soc.,

129:219–237.

197



References 198

Beck, M. A., 2003.Data Assimilation and Covariance Dynamics in Atmospheric Models. PhD

thesis, University of Vienna.

Belge, M., M. E. Kilmer, and E. L. Miller, 2002. Efficient determination of multiple regular-

ization parameters in a generalized L-curve framework.Inverse Problems., 18:1161–1183.

Benamou, J. D., Y. Brenier, and K. Guittet, 2002. The Monge-Kantorovitch mass transfer

and its computational fluid mechanics formulation.International Journal for Numerical

Methods in Fluids, 40:21–30.

Bennett, A. F., 2002.Inverse Modelling of the Ocean and Atmosphere. Cambridge University

Press, pp. 234.

Bennett, A. F. and R. N. Miller, 1991. Weighting initial conditions in variational assimilation

schemes.Mon. Weather Rev., 119:1098–1102.
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Hollingsworth, A. and P. Lönnberg, 1986. The statistical structure of short-range forecast errors

as determined from radiosonde data. Part I: The wind field.Tellus, 38A:111–136.

Holton, J., 1992.An Introduction to Dynamic Meteorology. Academic Press, pp. 511.

Hoskins, B. J., 1997. A potential vorticity view of synopticdevelopment.Meteorol. Appl., 4.

Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985. On the use and significance of

isentropic potential vorticity maps.Q. J. R. Meteorol. Soc., 111:877–946.

Ide, K., P. Courtier, and M. Ghil, 1997. Unified notation for data assimilation: Operational,

sequential and variational.J. Meteor. Soc. Japan, 75:181–189.

James, I. N., 1994.Introduction to Circulating Atmospheres. Cambridge University Press, pp.

422.

Jazwinski, A., 1970.Stochastic Processes and Filtering Theory. Academic Press, pp. 376.

Johnson, C., N. K. Nichols, B. J. Hoskins, S. P. Ballard, and A. S. Lawless, 2002. Four di-

mensional variational data assimilation in the presence ofidealised rapidly growing weather

systems. Numerical Analysis Report 1/02, Department of Mathematics, University of Read-

ing.



References 204

Jones, C. D. and B. Macpherson, 1997. A latent heat nudging scheme for the assimilation of

precipitation data into an operational mesoscale model.Meteorol. Appl., 4(3):269–277.

Jordan, D. W. and P. Smith, 1997.Mathematical Techniques. Oxford University Press, second

edition, pp. 788.

Juckes, M. N., 2003. Data analysis and process models: Part i: Ordinary differential equations.

Preprint for the Q. J. R. Meteorol. Soc.

Juckes, M. N., 2003. Data analysis and process models: Part ii, two dimensional linear pro-

cesses. Preprint for the Q. J. R. Meteorol. Soc.
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