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Abstract

As a plane water-wave passes over a fixed underlying bed topography it scatters and

a reflected wave is created travelling in the opposite direction. With knowledge of the

incident wave and underlying bed topography, the reflected wave can be calculated; this

is known as forward scattering.

Taking this reflected data we have formulated the inverse scattering problem, whereby

we use this data in an iterative process working backwards in an effort to approximate

the bed topography. This has been done using both a shallow water, and mild-slope

hypothesis.

It is found that the mild-slope approximation is more accurate and reliable than

the shallow water approximation at estimating the bed profile. Moreover, it is shown

that with a small range of reflected data, R(ν), and some prior knowledge that the bed

profile is mild, the iterative inverse method with the mild-slope approximation is able

to produce an accurate representation of the underlying topography.
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Chapter 1

Introduction

As a plane water-wave passes over a fixed underlying bed topography, part of the incident

wave is reflected back and some is transmitted forward. This process is referred to as

wave scattering.

Linear Wave Scattering by Topography

The governing equations are based on the fluid dynamics of the water, that is by assum-

ing irrotation flow and using linearised boundary conditions for both the free surface

and underlying topography, where we are concerned with motion in the (x, z) plane and

consider the bed profile h = h(x). Here z is chosen to point vertically upwards and x is

a horizontal variable. This approach leads to a boundary value problem for the velocity

potential, which has been solved using separation of variables and from which we can de-

rive radiation conditions (the behaviour as |x| → ∞). From these radiation conditions,

reflection and transmission coefficients, R± and T± respectively, can be defined.

To simplify the boundary value problem an approximation to the solution can be used,

and in our case we shall use both the shallow water and mild-slope approximations. The

shallow water approximation is based on the hypothesis that the wavelength is much

greater than the quiescent depth, and the mild-slope approximation is based on the idea

that h′(x) � 1, where prime denotes differentiations with respect to x.
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CHAPTER 1. INTRODUCTION 2

Forward Wave Scattering

The forward wave scattering problem is concerned with finding the amplitude of the

reflected and transmitted waves given that we know the amplitude of the incident wave,

for any specified wave number ν = ω2/g, where ω is the wave frequency and g is the

acceleration due to gravity. In fact only the reflected wave amplitude need be found

since the reflection and transmission coefficients are connected by certain identities.

To find the reflected wave amplitude R(ν) we assume that the bed topography, h(x),

is known and then use the shallow water and mild-slope approximations to formulate

new boundary value problems (and equivalent integral equations). With the solution

to these problems and the use of an appropriate substitution, R(ν) can be evaluated

explicitly. We will be investigating the behviour of R for the different approximations,

in particular what happens as ν →∞.

Inverse Wave Scattering

The inverse wave scattering problem is simply working backwards through the forward

scattering problem, taking the reflected wave amplitude and attempting to find the

underlying topography for x ∈ (0, l), for some l > 0. For this we assume that R(ν) is

known for some ν ∈ (0,∞) and also that the depth is known at the boundaries i.e. at

x = 0 and x = l. The procedure that we then adopt is an iterative one where we use an

approximation hn(x) to h(x), and seek to improve this to attain a new approximation

hn+1(x).

The method that shall be implemented involves finding approximations to the solutions

of the boundary value problems, formulated for the forward scattering problem, placing

these in the expression for R(ν) and inverting using Fourier transforms to attempt to

find a better approximation. The iteration process is split into what we shall call ‘inner’

and ‘outer’ iterations, where the inner iteration deals with extracting a new iterate,

hn+1(x), from R(ν) using Fourier transforms, and the outer iteration uses this new

iterate to find a better approximation to the solution of the boundary value problem (or

integral equations). This process is then repeated until the approximation has converged,

hopefully to the true solution h(x).
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Testing

It is not yet known whether the iteration process for solving the inverse scattering

problem, in general, converges. For this reason we shall be testing both the inner and

outer iterations to see if they do in fact converge, and if so whether this limit is the

desired solution.

We shall also be investigating just how much of the reflected information, R(ν), we need

to be able to find a reasonable approximation since it is not practical to find R(ν) for

all ν ∈ (0,∞), but instead to approximate this by some range, (ν1, ν2) say. We will also

be testing for certain limitations of the inverse problem, i.e. what type of topography

can the shallow water and mild-slope approximations handle and still remain reasonably

accurate.



Chapter 2

Linear Wave Scattering by

Topography

Before looking into the main problem of forward and inverse wave scattering by topog-

raphy we first need to review some established work on wave scattering, as we will be

using this work as a foundation to what follows.

2.1 Equations of Velocity Potential

If we consider the three dimensional case with depth z ,where −h < z < 0 and the bed

profile h = h(x, y), then we can formulate equations for the time-independent velocity

potential φ(x, y, z). By assuming that the flow is irrotational and by using linearised

boundary conditions for the free surface of the water and bed topography, we have

∇2φ = 0 (−h < z < 0)

φz − νφ = 0 (z = 0)

φz +∇hh · ∇hφ = 0 (z = −h)

 , (2.1)

where ∇h = (∂/∂x, ∂/∂y) and ν = ω2/g with ω being the prescribed angular wave

frequency and g the acceleration due to gravity.

4



CHAPTER 2. LINEAR WAVE SCATTERING BY TOPOGRAPHY 5

However we are not concerned with the full three-dimensional problem but a simpler

case in which plane waves propagate parallel to the x-axis. This means we instead have

h = h(x) so that φ = φ(x, z) and therefore separation of variables used on (2.1) gives

φ(x, z) =
(
A0e

ikx +B0e
−ikx

)
Z0(z, h) +

∞∑
n=1

(
Aneknx +Bne−knx

)
Zn(z, h), (2.2)

on an interval where h is constant, for some constants An, Bn (n ≥ 0). Here,

Z0(z, h) = c0coshk(z + h)

Zn(z, h) = cncoskn(z + h) (n ≥ 1)

}
, (2.3)

where k denotes the positive real root of the dispersion relation

ν = ktanhkh (2.4)

and kn are the positive real roots of

ν = −kntanknh, (2.5)

arranged such that kn < kn+1 for n ≥ 1. We also have the coefficents (c0, cn) defined by

c0 = c0(h) = 2
√
k/(2kh+ sinh(2kh)),

cn = cn(h) = 2
√
kn/(2knh+ sin(2knh)), (n ≥ 1),

so that the functions Zn(z, h) (n ≥ 0) form a complete orthonormal set in the region

−h ≤ z ≤ 0. There are also radiation conditions for this scattering problem that follow

on from (2.2) and define the solution as |x| → ∞, which have the form

φ(x, z)
(
A−eik−x +B−e−ik−x

)
Z0(z, h−) x→ −∞

φ(x, z)
(
A+e−ik+x +B+eik+x

)
Z0(z, h+) x→ +∞

}
, (2.6)

where it is supposed that h(x) → h± as x → ±∞, and k± are the appropriate roots of

(2.4) with h = h± respectively.
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2.1.1 Reflection and Transmission Coefficients

It is with these radiation conditions (2.6) that we can define the reflection and trans-

mission coefficients from the scattering process that we will become more familiar with

later. This is done by first choosing the direction of the incident wave.

For a wave incident from the left only we let A+ = 0 and can define the reflection

and transmission coefficients, R− and T− respectively, by

R− = B−/A−, T− = B+/A−.

Similarly, by letting A− = 0 describing waves incident from the right only, the corre-

sponding reflection and transmission coefficients are

R+ = B+/A+, T+ = B−/A+.

Using these two sets of coefficients we can easily define the the amplitudes B± of the

outgoing waves relative to the incoming wave amplitudes A± by(
B−

B+

)
= S

(
A−

A+

)
, S =

(
R− T+

T− R+

)
, (2.7)

where S here is the scattering matrix and can provide us with a description of the

scattering process. There exist certain relationships between the scattering coefficents

that were derived by Newman (1965), namely

|R−|2 + |T+T−| = |R+|2 + |T+T−| = 1

arg(T−) = arg(T+) + 2α1π

arg(R+R−)− arg(T+T−) = α2π

 , (2.8)

where α1 is an integer and α2 is an odd integer. Another relation that has been proven

by Kreisel (1949) is the symmetry relation for reflection where |R−| = |R+|.

Using these relationships (2.8), we see that by knowing the amplitude A± of the

incident wave and the amplitude R± of the corresponding reflected wave, we can find

the amplitude T± of the transmitted wave. This is also true if we have T±, A± and want
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to find R±, therefore when performing calculations we only need concentrate on either

the reflection or transmission coefficients.

2.2 Approximations of the Equations

Here the equations (2.1) are simplified by approximating the vertical structure of the

fluid motion so as to remove the z coordinate, called ‘vertically integrated’ models.

Approximations of this type have been derived using a variational principle.

Many variational principles have been given, but the form we shall use here is based

on Porter and Staziker (1995) and also used by Porter and Chamberlain (1997).

2.2.1 Variational Approximation

Let D be a domain in the plane z = 0 with boundary C and define the functional

L(ψ) =
1

2

∫ ∫
D

(
ν(ψ2)z=0 −

∫ 0

−h

(∇ψ)2

)
dxdy.

Let δψ denote an arbitrary variation of ψ, then the corresponding first variation of L is

given by

δL =

∫ ∫
D

{
− (δψ(ψz − νψ))z=0 + (δψ(ψz +∇hh · ∇hψ))z=−h

+

∫ 0

−h

δψ∇2ψdz

}
dxdy +

∫
C

n ·
∫ 0

−h

δψ∇hψdzdc

where n is the outward normal unit vector on C. From this it follows that L is stationary

for variations δψ which vanish on C× [−h, 0] if and only if ψ = φ, where φ satisfies (2.1)

in D × [−h, 0].

An approximation to find the stationary point of L is done by restricting the choice of

ψ to a particular class of functions. Since we are interested here in ‘vertically integrated’
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approximations, the general class of functions we require can be written in the form

ψ(x, y, z) =
iω

g

M−1∑
n=0

ωn(h, z)φn(x, y) (2.9)

where the functions ωn are to be assigned. Then the respective functional, given by

L(ψ) = L(φ0, φ1, · · · , φM−1), is stationary if and only if the functions φ0, φ1, · · · , φM−1

satisfy a partial differential equation system which can be arranged into the form

M−1∑
m=0

{
∇h ·

∫ 0

−h

ωnωmdz∇hφm

+

(∫ 0

−h

(
ωn
∂ωm

∂h
− ωm

∂ωn

∂h

)
dz

)
∇hh · ∇hφm

+

(
(∇hh)

2

(
d

dh

∫ 0

−h

ωn
∂ωm

∂h
dz −

∫ 0

−h

∂ωn

∂h

∂ωm

∂h
dz

)
+

∫ 0

−h

ωn
∂2ωm

∂z2
+∇2

hh

∫ 0

−h

ωn
∂ωm

∂h
dz

+ (ωnωmz)z=−h − (ωn(ωmz − νωm))z=0

)
φm

}
= 0 (n = 0, 1, ...,M − 1). (2.10)

2.2.2 Shallow Water and Mild-Slope Approximations

We shall only be using one-term approximations, whereby the model (2.10) is used with

M = 1. The first of these, and arguably the simplest, is based on the shallow water

hypothesis that wavelength is much greater than the quiescent depth. This is achieved

by taking ω0 = 1, meaning that (2.10) becomes

∇2
hφ0 + νφ0 = 0.

This equation supposes that h is continuous, but if we temporarily allow h to be

discontinuous then we can obtain a more general result. By returning to the variational
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δL = 0 with ψ(x, y, z) = ξ(x, y) it follows that we have

∇h · h∇hξ + νξ = 0, (2.11)

which is the two-dimensional shallow water equation. We shall be using the one-

dimensional version of this equation later where instead we have ξ = ξ(x) and h = h(x).

An alternative approximation can be found by instead choosing

ω0(h, z) =
coshk(z + h)

cosh(kh)
,

where the local wavenumber k = k(h) is the corresponding solution of (2.4) with the

local depth h = h(x, y). For this choice of ω0 (2.10) now becomes

∇h · u0∇hφ0 + (u0k
2 + u1∇2

hh+ u2(∇hh)
2)φ0 = 0, (2.12)

where the coefficients are given by

u0(h) =

∫ 0

−h

ω2
0dz, u1(h) =

∫ 0

−h

ω0
∂ω0

∂h
dz,

u2(h) =
d

dh
u1(h)−

∫ 0

−h

(
∂ω0

∂h

)2

dz.

Equation (2.12) was derived by Chamberlain (1991) and is known as the modified

mild-slope equation. There are many reduced versions of the mild-slope equation that

have been derived. The long standing form is given by

∇h · u0∇hφ0 + k2u0φ0 = 0, (2.13)

which can be derived from (2.12) by deleting terms O(∇2
hh, (∇hh)

2)) since by the mild-

slope approximation we have that ∇hh/kh = O(ε), where ε � 1. Although (2.13) is

widely used we shall use the modified mild-slope equation since we would expect the

full variational approximation to be superior to a reduced form.

Equation (2.12) is an equation for the two-dimensional wave scattering problem but
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since we are only investigating a plane wave parallel to the x-axis, we shall be using the

one-dimension version of (2.12) where h = h(x) and φ0 = φ0(x).



Chapter 3

Forward Wave Scattering

In this chapter we are concerned with finding the reflection coefficient, R, as defined in

section 2.1.1. We will assume that we know the amplitude of the incident wave and also

that we know the bed topography h = h(x) for x ∈ [0, l], and that

h(x) =

{
ha x < 0,

hb x > l,
(3.1)

where ha and hb are known constants, i.e. the depth at x = 0, x = l can be measured.

We also need to choose ν = ω2/g for some range (ν1, ν2) say, and then seek to find

Figure 3.1: Graphical representation of the forward scattering problem, where R and T are the
reflection and transmission amplitudes respectively and h(x) is the quiescent depth.

R = R(ν) for all ν ∈ (ν1, ν2).

11
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The particular problem that we shall be looking at is the case when we have a plane

wave incident from the left, which is affected by the bed topography and causes both

reflection and transmission waves as shown in Figure 3.1. It is these amplitudes, R

and T that we are trying to find, and this is known as forward scattering. As shown

in section 2.1.1 we need only solve for R or T , not both since they are connected by

certain relationships (2.8). So by knowing the incident and reflection amplitudes, the

transmission amplitude can be deduced.

3.1 Shallow Water Approximation

For shallow water wave scattering we shall use the one-dimensional case of the approx-

imate equation (2.11) to (2.1), giving

(hφ′)
′
+ νφ = 0, (3.2)

where the local wave number is given by k2(x) = ν/h(x)1. We shall just look at the

simple case where ha = hb, therefore ka = kb =
√
ν/ha.

Using (2.6) as a basis, we can define the solution of φ(x) as |x| → ∞ in terms of

incident, reflection and transmission waves (as depicted in Figure 3.1). Therefore

φ(x) =

{
I
(
eikax +Re−ikax

)
x < 0,

IT eika(x−l) x > l,
(3.3)

and since h(x) is constant for x ∈ (−∞, 0)× (l,∞) we can write the radiation solution

(3.3) for x < 0 and x > l, instead of x→ −∞ and x→∞ respectively.

1This is derived from the dispersion relation (2.4) where tanhkh is approximated by kh using the
shallow water hypothesis kh � 1.
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3.1.1 Formulating the Problem

Using (3.2) and (3.3) we can formulate the boundary value problem

η′′ + k2η = 0 (0 < x < l)

η′(0) + ikaη(0) = 2ika

η′(l)− ikaη(l) = 0

 , (3.4)

where we define η = hφ′. As shown by Chamberlain (1993), (3.4) can be formulated as

the integral equation

η(x) = eikax − i

2ka

∫ l

0

eika|x−t|(k2
a − k2(t))η(t)dt,

= eikax − iν

2ka

∫ l

0

eika|x−t|ρ(t)η(t)dt, ρ(t) =
1

ha

− 1

h(t)
. (3.5)

We note here that the lower and upper integration limits of (3.5) can be changed to −∞
and ∞, since ρ(t) = 0 for t < 0, t > l.

Finally we need to rearrange the equations we have so that we can find R. To do

this we consider

η(0) = h(0)φ′(0) = ikahaI(1−R),

then, without loss of generality, we choose I = 1/ikaha giving η(0) = 1−R. Using this

fact and (3.5) implies that

R =
iν

2ka

∫ l

0

eikatρ(t)η(t)dt =
iν

2ka

∫ ∞

0

eikatρ(t)η(t)dt. (3.6)

We now have all that we need to solve the forward wave scattering process for shallow

water. The procedure that we will follow is;

• Suppose the geometry of the problem is fixed, i.e. l and h(t),

• Allow ν to vary in the chosen interval (ν1, ν2),

• For each ν, find η by solving either (3.4) or (3.5),
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• Using η we can find R = R(ν) from (3.6).

It is important to note at this point that (3.5) and (3.6) can be conveniently written

as

η(x) = eikax + (M(ρ)η)(x), R(ν) = (N(η)ρ)(ν),

where we define the operators M = M(ρ) : L2(0,∞) → L2(0,∞) and N = N(η) :

L2(0,∞) → L2(0,∞).

3.1.2 Difficulties For Large ν

Here we are concerned with knowing how R changes with ν, where we would expect that

|R| < 1 and also that |R| → 0 as ν → ∞ which can be seen in Figure 3.2. We expect

|R| < 1 because this amplitude is relative to the incident wave, and the amplitude of

the reflected wave should not be greater than that of the incident.

Figure 3.2: Plot of |R(ν)| using the shallow water approximation, where l = 5 and h(x) = 0.2 −
0.05× sin(2πx/5)

We also expect |R| to be small for large ν = ω2/g (where ω is wave frequency)

because waves with large frequencies have small wavelengths, and hence would not be
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affected by the bed topography meaning there would be little to no reflection. However

in this case, shallow water, it is not applicable to be talking about large ν since in the

dispersion relation (2.4) we have assumed that kh� 1 implying that tanhkh ≈ kh. By

taking ν to be large implies that k is large and hence this assumption is no longer valid.

Because it is not very accurate to use the shallow water approximation for large ν,

we need to use a more accurate approximation so that talking about the behaviour of

|R| as ν →∞ makes sense.

3.2 Mild-Slope Approximation

We now attempt to achieve greater accuracy by removing the restriction to shallow wa-

ter. For this we look at the modified mild slope equation (2.12) for the one-dimensional

case φ0 = φ0(x) and h = h(x), giving

(u0φ
′
0)
′ + (k2u0 + h′′u1 + (h′)2u2)φ0 = 0,

where u0,1,2 are defined as for (2.12) and k = k(h) satisfies the dispersion relation (2.4).

Following Porter (2003), we can define φ = k
√
u0φ0 so that

(k−2φ′)′ + (1 + (h′)2u0)φ = 0,

which is approximated by the new mild-slope equation

(k−2φ′)′ + φ = 0. (3.7)

As with the shallow water approximation, we are again going to take the simple case

where ha = hb and introduce an incident wave from the left with amplitude I. Hence

we may again write

φ(x) =

{
I(eikax +Re−ikax) x < 0

IT eika(x−l) x > l
, (3.8)

where coefficients R and T are related to the reflection and transmission coefficients in

(2.7).
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3.2.1 Formulating the Problem

In a similar way as for the shallow water case, using (3.7) with (3.8) we can create the

boundary problem

η′′ + k2η = 0 (0 < x < l)

η′(0) + ikaη(0) = 2ika

η′(l)− ikaη(l) = 0

 , (3.9)

where η = k−2φ′. Following Chamberlain (1993), we can create an equivalent integral

equation to (3.9) given by

η(x) = eikax − i

2ka

∫ l

0

eika|x−t|ρ(t)η(t)dt, ρ(t) = k2
a − k2(h(t)). (3.10)

To recover R, as with the shallow water case, we can consider

η(0) =
1

k2(h(0))
φ′(0) =

ika

k2
a

I(1−R) =
−1

ika

I(1−R),

and so, without loss of generality, take I = −ika so that we have η(0) = 1 − R. Using

this implies that

R =
i

2ka

∫ l

0

eikatρ(t)η(t)dt =
i

2ka

∫ ∞

0

eikatρ(t)η(t)dt, (3.11)

where we can replace the upper integration limit by ∞, since ρ(t) = 0 for t > l.

Now that we have found the governing equations, we can again define the procedure

for the forward wave scattering process by;

• Suppose the geometry of the problem is fixed, i.e. l and h(t),

• Allow ν to vary in the chosen interval (ν1, ν2),

• For each ν, find η by solving either (3.9) or (3.10),

• Using η we can find R = R(ν) from (3.11).
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For convenience later, we can write (3.10) and (3.11) as

η(x) = eikax + (P (ρ)η)(x), R(ν) = (Q(η)ρ)(ν)

respectively, where we define the integral operators P = P (ρ) : L2(0,∞) → L2(0,∞)

and Q = Q(η) : L2(0,∞) → L2(0,∞).

3.2.2 The Behaviour of R

The forward scattering problem is concerned with the behaviour of R for ν ∈ (ν1, ν2).

What we would again expect is that |R| < 1 for all ν ∈ (0,∞), since a reflected wave

should not have a greater amplitude than the incident wave. We would also expect that

|R| → 0 as ν → ∞, since waves of this type would be too small to be affected by the

bed topography, and hence not reflect.

Figure 3.3: Plot of |R(ν)| using the mild-slope approximation, where l = 5 and h(x) = 0.2− 0.05×
sin(2πx/5)

This expected behavior can be seen in Figure 3.3, but we notice that ν does not

have to be that large for |R| to be approximately equal to zero. This in fact appears to

happen for ν ≥ 11 in this particular example.
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We can analyse the behavior of |R| as ν → ∞ by looking at (3.11) and taking the

absolute value, giving

|R| =
∣∣∣∣ i2ka

∫ l

0

eikatρ(t)η(t)dt

∣∣∣∣ ≤ 1

2ka

∣∣∣∣∫ l

0

eikatρ(t)η(t)dt

∣∣∣∣ ,
≤ 1

2ka

∫ l

0

|eikatρ(t)η(t)|dt,

≤ 1

2ka

∫ l

0

|ρ(t)| · |η(t)|dt,

≤ 1

2ka

∫ l

0

|k2
a − k2(h(t))| · |η(t)|dt,

≤ ‖η‖∞
2ka

∫ l

0

|k2
a − k2(h(t))|dt, (3.12)

where ‖η‖∞ = supt∈[0,l]{|η(t)|}.

In this form, (3.12) is difficult to evaluate as ν → ∞, therefore we use Taylor’s

Theorem to attain the approximation

k2
a − k2(t) ≈ (ha − h(t))

[
2k
∂k

∂h

]
h=hθ

=
−4k3

θ(ha − h(t))

2kθhθ + sinh2kθhθ

, (3.13)

where hθ = h(θ), kθ = k(hθ) for some 0 ≤ θ ≤ t. Placing (3.13) back into (3.12) gives

|R| ≤ ‖η‖∞
2ka

∫ l

0

∣∣∣∣ 4k3
θ(ha − h(t))

2kθhθ + sinh2kθhθ

∣∣∣∣ dt,
=

2k3
θ

ka(2kθhθ + sinh2kθhθ)
‖η‖∞

∫ l

0

|ha − h(t)|dt,

≤ 2k3
θ l

ka(2kθhθ + sinh2kθhθ)
‖η‖∞‖ha − h‖∞, (3.14)

where ‖ha − h‖∞ = supt∈(0,l){|ha − h(t)|}. Using the dispersion relation (2.4) we also

find

|ν| = |kθtanhkθhθ| ≤ kθ|tanhkθhθ| ≤ kθ, (3.15)

therefore ν → ∞ implies ka → ∞. With this result and (3.14) it is readily seen that

|R| → 0 as ν → ∞. Furthermore, by looking at (3.14), we see that the leading term is
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1/sinh2kθhθ as ν →∞. Therefore we see that, for large ν

|R| ≈ e−2kθhθ . (3.16)

3.3 Implementation

There are many ways in which this problem could be implemented. For example, (3.4) or

(3.9) could be found using a boundary value problem (BVP) solver (for example bvp4c

MATLAB command). Alternatively (3.5) or (3.10) could be solved, possibly using a

numerical scheme for integral equations.

The method that has been used to attain these results is to solve the BVP systems

(3.4) and (3.9) by summing together two linearly independent solutions, η1 and η2, that

satisfy

η′′j + k2ηj = 0 (j = 1, 2)

where

η1(0) = 0, η′1(0) = 1 and η2(0) = 1, η′2(0) = 0.

Using these initial conditions we see that the Wronskian is

η1(0) · η′2(0) + η′1(0) · η2(0) 6= 0,

meaning that these are linearly independent solutions and may by summed together to

make a third solution

η(x) = C1η1(x) + C2η2(x),

where C1, C2 are constants that can be found using the boundary conditions defined in

(3.4) or (3.9) and can be shown to be

C1 = ika(2− C2), C2 =
2(ikaη

′
1(l) + k2

aη1(l))

ika(η2(l) + η′1(l)) + k2
aη1(l)− η′2(l)

.

The functions η1,2, and constants η1,2(l), η
′
1,2(l), can be found using an ordinary

differential equation solver. The solver that has been used in this case is ode45 in
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MATLAB which gives a numerical solution using Runge Kutta 4 and 5 schemes.

Figure 3.4: Plots of |R(ν)|, where l = 5 and h(x) = 0.2 − 0.05 × sin(2πx/5) with M = 100 and
M = 1000 respectively

The domain x ∈ [0, l], is divided into N equal sections using (N + 1) nodes and the

range of ν ∈ (ν1, ν2) is divided into M equal sections using (M + 1) nodes. In this case

we have set N = 100 and looked at the results of |R| with different values of M .

In Figure 3.4 we can see that with M = 100, some of the information about R has

been lost because the discretisation of (ν1, ν2) is not fine enough. Comparing this with

the M = 1000 case we see that there is a lot more data, hence more accuracy, and this

will be important later for the inverse wave scattering problem.

3.4 Extensions

The work that we have already shown so far in this chapter assumes that ha = hb,

but this is merely a simple case. So we now allow ha 6= hb and will investigate the

problem using the mild slope approximation as it has proven to be more accurate than

the shallow water approximation. Therefore we shall be using (3.7) with the dispersion

relation (2.4) and, for x < 0, x > l we have φ given by (3.8).
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We can define η = k−2φ which solves the boundary value problem

η′′ + k2η = 0 (0 < x < l)

η′(0) + ikaη(0) = 2ika

η′(l)− ikbη(l) = 0

 , (3.17)

where ka and kb are local wavenumbers found using (2.4), evaluated at h = ha and

h = hb respectively. It can be shown that (3.17) is equivalent to

η(x) =

(
ka

k∗
+

1

2

(
1− ka

k∗

)
η(0)

)
eik∗x +

1

2

(
1− kb

k∗

)
η(l)eik∗(l−x)

− i

2k∗

∫ l

0

eik∗|x−t|(k2
∗ − k2(t))η(t)dt, (3.18)

where we choose the constant k∗ > 0. By choosing k∗ = kb (3.18) becomes

η(x) =

(
ka

kb

+
1

2

(
1− ka

kb

)
η(0)

)
eikbx − i

2kb

∫ l

0

eikb|x−t|(k2
b − k2(t))η(t)dt

=

(
ka

kb

+
1

2

(
1− ka

kb

)
η(0)

)
eikbx − i

2kb

∫ ∞

0

eikb|x−t|(k2
b − k2(t))η(t)dt,(3.19)

where we can replace the upper integration limit by ∞ because h(x) = hb for x > l,

therefore k2(t) = k2
b for t > l.

As with the simpler case, we also have that η(0) = 1−R and therefore

R =
kb − ka

ka + kb

+
i

ka + kb

∫ ∞

0

eikat(k2
b − k2(t))η(t)dt. (3.20)

This is a more general expression for R, since if we allow ha = hb in (3.20) then we get

the earlier equation (3.11). Therefore we can think of (3.11) as a special case of (3.20)

where ha = hb.



Chapter 4

Inverse Wave Scattering

In this chapter we are concerned with using given information about the reflection

coefficient to approximate the bed topography, h(x) for x ∈ (0, l).

We shall assume that the reflection coefficient R = R(ν) for ν ∈ (ν1, ν2) and l are

known, and that ha, hb can be measured and so also known, as shown in Figure 4.1.

Figure 4.1: Graphical representation of the inverse scattering problem, where R and T are the
reflection and transmission amplitudes respectively and h(x), the quiescent depth, is to be found.

The procedure that we shall use to approximate h(t) in this section is an iterative

one, whereby if we have an approximation hn(t) to h(t), we seek to improve this to

hn+1(t) by using a number of the equations that we used in Chapter 3 to find R(ν). We

shall be using a scheme of, what we will later come to call, ‘inner’ and ‘outer’ iterations

22
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where the inner iterations are used to converge each hn(t), and the outer iterations are

used to get a first approximation to hn+1(t) from the converged value for hn(t).

4.1 Shallow Water Approximation

We will assume we have the simple case of ha = hb, and begin by looking at the shallow

water case and suppose that we have an approximation hn(t) to h(t). Then using the

integral equation (3.5), given by η(x) = eikax + (M(ρ)η)(x), we can define the nth

approximation to (3.5) by

ηn(x) = eikax − iν

2ka

∫ l

0

eika|x−t|ρn(t)ηn(t)dt, ρn(t) =
1

ha

− 1

hn(t)
. (4.1)

Then once we have solved this approximation for ηn we seek to solve

R(ν) =
iν

2ka

∫ l

0

eikatρn+1(t)ηn(t)dt, (4.2)

for ρn+1(t), where R(ν) is known. Then it is a simple case of finding hn+1(t) given by

hn+1(t) =
ha

1− haρn+1(t)
,

which we will be referred to as the ‘outer iteration’. The ‘inner iterations’ as mentioned

earlier are concerned with recovering ρn+1 from (4.2) and will be explained later. Before

this we must address the issue of a first approximation, h1(t), to h(t) so that the method

described can be used.

4.1.1 A First Approximation - h1(t)

To get things started, let us take the simplest choice of h0(t) = ha and then the first

iteration can be carried out explicitly. With this choice for h0 if follows from (4.1) that
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η0(x) = eikax. Therefore, using (4.2) gives

R(ν) =
iν

2ka

∫ ∞

0

e2ikatρ1(t)dt, (4.3)

which we wish to solve for ρ1(t). There are two ways that we can do this, either by

inverting a sine, or cosine Fourier transform. If we take the real part of (4.3), we get

−Re(R(ν)) =
ν

2ka

∫ ∞

0

sin(2kat)ρ1(t)dt,

which we can solve for ρ1(t) by inverting a Fourier sine transform. If we let λ = 2ka,

then inverting this gives

ρ1(t) =
−4

π

∫ ∞

0

kaRe(R(ν))

ν
sin(λt)dλ

=
−4

haπ

∫ ∞

0

Re(R(ν))

ν
sin(2

√
ν/hat)dν, (4.4)

where we have replaced dλ by dν using

dν

dλ
=

dν

dka

· dka

dλ
= kaha.

Finally, by rearranging (4.4) we can define the first iterate by

h1(t) = ha

(
1 +

4

π

∫ ∞

0

Re(R(ν))

ν
sin(2

√
ν/hat)dν

)−1

. (4.5)

Similarly by taking the imaginary part of (4.3) and inverting a Fourier cosine transform

to find ρ1(t), the first iterate is given by

h1(t) = ha

(
1− 4

π

∫ ∞

0

ImR(ν)

ν
cos(2

√
ν/hat)dν

)−1

. (4.6)

We can use either (4.5) or (4.6) to find the first approximation. However, they will

not give the same results, as shown in Figure 4.2. Although the difference between

these two solutions is very small, the best choice would be to use the inverse Fourier
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sine transform (4.5) because it has the property that ρ1(0) = 0, forcing us to have

h1(0) = ha. We do not have this property with the Fourier cosine transform and so we

may not necessarily match the first point h1(0) as accurately as possible.

Figure 4.2: h1(t) (green) as found by (4.5) and (4.6) respectively to approximate bed topography
(brown).

Expressions (4.5) and (4.6) are only practical if the integral on the right hand side

can be reasonably approximated for R(ν) where ν ∈ (ν1, ν2). This is related to the

problem as noted earlier that the shallow water equations no longer make sense when

we begin to talk about ν →∞. The effect of this shall be investigated later.

Now that we have a first iterate h1(t), we can fully define the method for subsequent

iterations.

4.1.2 Further Approximations - hn+1(t)

Finding further approximations ,hn+1(t), to h(t) requires a little more work than for

the first approximation, h1(t), because the integral equation (4.2) is harder to deal with

since we may not have that ρn = 0. The method that we shall use is to approximate

each outer iterate, ρn+1, by an inner iteration.

We begin by noting that (4.1) can be written in the operator form ηn(x) = eikax +

(M(ρn)ηn)(x), as desribed in 3.1.1. Then using hn(t), we solve (4.1) for ηn and place
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this into (4.2) giving

R(ν) =
iν

2ka

∫ l

0

eikatρn+1(t)(e
ikat + (M(ρn)ηn)(t))dt

=
iν

2ka

∫ l

0

e2ikatρn+1(t)dt+
iν

2ka

∫ l

0

eikatρn+1(t)(M(ρn)ηn)(t)dt,

which we use to motivate the ‘inner iteration’

iν

2ka

∫ l

0

e2ikatρ
(m+1)
n+1 (t)dt = R(ν)− iν

2ka

∫ l

0

eikatρ
(m)
n+1(t)(M(ρn)ηn)(t)dt (4.7)

where we choose ρ
(0)
n+1 = ρn. To recover ρ

(m+1)
n+1 from (4.7), as for the first approximation

case, we can either invert a Fourier sine or cosine transform. For ease let us define

F (m)(ν) = R(ν)− iν

2ka

∫ l

0

eikatρ
(m)
n+1(t)(M(ρn)ηn)(t)dt

so that using a Fourier sine transform gives

ρ
(m+1)
n+1 (t) = − 4

haπ

∫ ∞

0

Re(F (m)(ν))

ν
sin(2

√
ν/hat)dν. (4.8)

This is more desirable than using a Fourier cosine transform because we can see from

(4.8) that we will always have ρn+1(0) = 0, and so for each approximation n we will have

hn(0) = ha. If we suppose that some stopping criterion is met for the inner iteration

when m = M say, for some M ≥ 1, then we have ρn+1 = ρ
(M)
n+1 and hence can find

hn+1 = (h−1
a − ρn+1)

−1.

The procedure that we then use, for the inverse wave scattering problem using a

shallow water approximation, is;

• Find the first approximation, h1(t) to h(t), by using (4.5),

• For n = 1 to some stopping criterion n = N − 1 ;

– Find ηn(x) by solving (4.1),

– Set ρ
(0)
n+1 = ρn, then for m = 1 to some stopping criterion m = M − 1;
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∗ Find ρ
(m+1)
n+1 from (4.8).

– Set ρn+1 = ρ
(M)
n+1,

– Set hn+1 = (h−1
a − ρn+1)

−1.

4.2 Mild-Slope Approximation

By removing the restriction to shallow water and working with the mild-slope approx-

imation we hope to improve the accuracy of the inverse scattering problem. We will

assume the simple case where ha = hb, that we have an approximation ,hn(t), to h(t)

and are seeking an improved approximation, hn+1(t).

Using hn we can define an approximation, ηn, to the integral equation (3.10) by

ηn(x) = eikax − i

2ka

∫ l

0

eika|x−t|ρn(t)ηn(t)dt, (4.9)

where ρn(t) = k2
a − k2

n(t), and kn satisfies the dispersion relation (2.4) with h = hn(t).

Once ηn has been approximated we then solve

R(ν) =
i

2ka

∫ l

0

eikatρn+1(t)ηn(t)dt (4.10)

for ρn+1(t), and use (2.4) to obtain hn+1 = k−1
n+1tanh−1(νk−1

n+1). This procedure will later

be referred to as the outer iteration, and the inner iteration deals with extracting ρn+1

from (4.10) and will be described later. Before we can start using this iteration process,

we need to create a first approximation, h1(t), to h(t).

4.2.1 A First Approximation - h1(t)

As for the shallow water case, we can carry out the first outer iteration explicitly with

a simple choice of h0(t) = ha, so that from (4.9) we have η0(x) = eikax. It then follows

from (4.10) that

R(ν) =
i

2ka

∫ ∞

0

e2ikatρ1(t)dt. (4.11)
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Solving this equation is more complicated than for the shallow water case because ρ1(t)

depends on ν, and hence we cannot use an inverse Fourier transform directly. Instead

we can approximate any ρn(t) by

ρn(t) = k2
a − k2

n(t) ≈ (ha − hn(t))

[
2k
∂k

∂h

]
h=ha

=
−4k3

a(ha − hn(t))

2kaha + sinh(2kaha)
, (4.12)

which we can place into (4.11). Then taking the real part gives

Re(R(ν)) =
2k2

a

2kaha + sinh(2kaha)

∫ l

0

sin(2kat)(ha − h1(t))dt,

which we can invert using an inverse Fourier sine transform leading to

h1(t) = ha −
2

π

∫ ∞

0

2kaha + sinh(2kaha)

k2
a

Re(R(ν)) sin(2kat)dka

= ha −
4

π

∫ ∞

0

cosh2(kaha)

k2
a

Re(R(ν)) sin(2kat)dν, (4.13)

where the fact that 0 = k2sech2(kh) + (dν/dk)(∂k/∂h) has been used to change the

integration variable. Similarly we may take the imaginary part of (4.11) and perform a

Fourier cosine transform to give

h1(t) = ha +
4

π

∫ ∞

0

cosh2(kaha)

k2
a

Im(R(ν)) cos(2kat)dν. (4.14)

So we have two different ways of finding h1(t), but it is preferable to use (4.13)

becuase it has the property that h1(0) = ha, thereby making sure that the left hand

boundary is exact, whereas (4.14) does not have this property, so neither boundary may

be exact.

It is reasonable to assume that these integrals ((4.13) and (4.14)) exist since we

have shown earlier in Section 3.2.2 that for large ν, R(ν) ≈ e−2kaha , and so decays

exponentially as ν →∞.
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4.2.2 Further Approximations - hn+1(t)

Finding further approximations, hn+1(t), to h(t) are more complicated than for the

first approximation h1 since we may no longer have ρn(t) = 0 and so ηn is not as

simple. Firstly it is convenient to note that (4.9) can be written in operator form as

ηn(x) = eikax + (P (ρn)ηn)(x).

Using hn(t) we solve (4.9) for ηn, and placing this into (4.10) gives

R(ν) =
i

2ka

∫ l

0

eikatρn+1(t)(e
ikat + (P (ρn)ηn)(t))dt

=
i

2ka

∫ l

0

e2ikatρn+1(t)dt+
i

2ka

∫ l

0

eikatρn+1(t)(P (ρn)ηn)(t)dt,

which we use to motivate the inner iteration

i

2ka

∫ l

0

e2ikatρ
(m+1)
n+1 (t)dt = R(ν)− i

2ka

∫ l

0

eikatρ
(m)
n+1(t)(P (ρn)ηn)(t)dt. (4.15)

As before, since ρn+1 depends on ν we cannot just use an inverse Fourier transform with

the inner iterations in this form. Therefore we use the approximation (4.12) for ρn+1 in

(4.15) and rearranging gives the iterative expression∫ l

0

e2ikat(ha−h(m+1)
n+1 )(t)dt =

2kaha + sinh(2kaha)

2k2
a

iR(ν)−
∫ l

0

eikat(ha−h(m)
n+1)(P (ρn)ηn)(t)dt,

(4.16)

that we solve for h
(m+1)
n+1 . Performing an inverse Fourier sine transform on (4.16) and

rearranging gives

h
(m+1)
n+1 = ha −

4

π

∫ ∞

0

cosh2(kaha)

k2
a

Re(F (m)(ν)) sin(2kat)dν, (4.17)

where

F (m)(ν) = R(ν) +
2ik2

a

2kaha + sinh(2kaha)

∫ l

0

eikat(ha − h
(m)
n+1(t)(P (ρn)ηn)(t)dt.

If we suppose that some stopping criterion is met for the inner iteration when m = M
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say, for some M ≥ 1, then we have hn+1 = h
(M)
n+1.

A Fourier cosine transform could also be used to recover h
(m+1)
n+1 , but the sine trans-

form has the property that h
(m+1)
n+1 (0) = ha for all n and m, whereas the cosine transform

does not. This means that the left boundary condition of h(t) will always be imposed

in every approximation hn.

The procedure that we will then use, to solve the inverse water wave scattering

problem with a mild-slope approximation, is;

• Find a first approximation h1(t) using (4.13),

• For n = 1 to some stopping criterion n = N − 1;

– Using hn(t) solve (4.9) for ηn,

– Set h
(0)
n+1 = hn, then for m = 1 to some stopping criterion m = M − 1;

∗ Find h
(m+1)
n+1 from (4.17)

– Set hn+1 = h
(M)
n+1,

4.3 Implementation

To implement this problem, we have first assumed that R(ν) is known for ν ∈ (ν1, ν2).

This is then discretised into M equally spaced parts using (M + 1) nodes, so that in

our calculations we use R(ν) ≈ R(νj), where νj = ν1 + j∆ν and ∆ν = (ν2− ν1)/M . We

also discretise the domain x ∈ [0, l] into N equally spaced sections using (N + 1) nodes

and evaluate at the points xj = j∆x, where ∆x = l/N .

The next step is to solve or approximate ηn(x) from (4.1), for the shallow water

approximation, or (4.9) for a mild-slope approximation. To do this we use a numerical

scheme, the Nyström Method, which is used to solve integral equations of this type. For

the mild-slope approximation this method is given by

ηn(xj) = g(xj) +
N∑

i=0

σiK(xj, xi)ηn(xi) j = 0, · · · , N, (4.18)
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where

g(xj) = eikaxj K(xj, xi) = − i

2ka

eika|xj−xi|ρn(xi)

and σi are constants such that σ0 = σN = ∆x/2, and σi = ∆x for i = 1, · · · , N − 1.

It is clear that (4.18) represents a system an (N + 1) equations for the unknowns

ηn(xj), j = 0, · · · , N .

We introduce the vectors

η
n

=


ηn(x0)

...

ηn(xN)

 , g =


g(x0)

...

g(xN)

 ,

and the matrix

K =


K00 K01 · · · K0N

...
...

...

KN0 KN1 · · · KNN

 ,

where Kji = σiK(xj, xi). Using these we can rewrite (4.18) and rearrange to find the

solution vector, given as

η
n

= (I −K)−1g.

Once ηn(x) has been approximated, we use a simple trapezium numerical method to

estimate (4.17) in order to find h
(m+1)
n+1 . The stopping criterion that we use is to look at

the maximum difference between the (m)th and (m− 1)th iteration given by

‖h(m)
n+1 − h

(m−1)
n+1 ‖∞ = max

j=0,··· ,N
|h(m)

n+1(xj)− h
(m−1)
n+1 (xj)|,

and while this remains larger than a certain threshold, 10−16 say, we continue the inner

iteration process.

For the shallow water approximation the method is much the same, except that

K(xj, xi) is defined differently. Also the stopping method for the outer iterations is

similar to that for the inner iterations, however we do not yet know if these iterations

converge and so these iterations may never meet the stopping criterion. This problem
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will be investigated in Chapter 5.

4.4 A Possible Extension

What we have dealt with so far is the simple case where ha = hb. How can we change

the inverse iteration process used for the simple case to solve the far more likely (and

complicated) problem when ha 6= hb? We shall use the mild-slope approximation and

suppose that we know R = R(ν) for ν ∈ (0,∞). We will again be using an iterative

process so we shall also suppose that we already have an approximation, hn(t), and are

seeking an improvement, hn+1(t), to h(t).

To begin, we let kn = k(hn) be the solution to the dispersion relation (2.4) and then,

based on (3.18), we solve the forward problem

ηn(x) = γneikbx − i

2kb

∫ l

0

eikb|x−t|(k2
b − k2

n(t))ηn(t)dt, (4.19)

for ηn, where

γn =
ka

kb

+
1

2

(
1− ka

kb

)
ηn(0).

Combining (4.19) with (3.20), we aim to update our approximation to h(t) by using

R(ν) =
kb − ka

kb + ka

+
i

kb + ka

∫ ∞

0

eikbt(k2
b − k2

n+1(t))ηn(t)dt, (4.20)

so that we can extract kn+1(t). Using this we can obtain hn+1 = k−1
n+1tanh−1(νk−1

n+1),

and this will be referred to as the outer iteration. The inner iteration is concerned with

extracting kn+1 from (4.20).

Using (4.19) we can write ηn(t) = γneikbt + (ηn(t) − γneikbt), then placing this into
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(4.20) we motivate the inner iteration by

R(ν) =
kb − ka

kb + ka

+
i

kb + ka

∫ ∞

0

eikbt(k2
b − k2

n+1(t))(γneikbt + (ηn(t)− γneikbt))dt

=
kb − ka

kb + ka

+
iγn

kb + ka

∫ ∞

0

e2ikbt(k2
b − k2

n+1(t))dt

+
i

kb + ka

∫ ∞

0

eikbt(k2
b − k2

n+1(t))(ηn(t)− γneikbt)dt,

(4.21)

but we cannot invert a Fourier transform as things stand. To make progress we can

again use Taylor’s theorem to attain the estimate

k2(t) ≈ k2
b + 2(h− hb)

[
k
∂k

∂h

]
h=hb

= k2
b − 4(h− hb)

k3
b

2kbhb + sinh(2kbhb)
, (4.22)

which we can place into (4.21) and rearrange to attain∫ ∞

0

e2ikbt(h
(m+1)
n+1 − hb)dt =

2kbhb + sinh(2kbhb)

4ik3
bγn

((kb + ka)R− (kb − ka))

− γ−1
n

∫ ∞

0

eikbt(hn+1(m)− hb)(ηn(t)− γneikbt)dt

= F (m)(kb).

(4.23)

There are two ways to go from here, we can either invert a Fourier sine or cosine trans-

form and consider real and imaginary parts of (4.23), giving the two possible solutions

h
(m+1)
n+1 (t) = hb +

4

π

∫ ∞

0

Re(F (m)(kb)) cos(2kbt)dt (4.24)

= hb +
4

π

∫ ∞

0

Im(F (m)(kb)) sin(2kbt)dt, (4.25)

and these steps are referred to as the inner iteration. Suppose that some stopping

criterion is met when m = M say, then we complete the inner iteration and perform an

outer iteration by setting hn+1 = h
(M)
n+1.

We now have the question of how to attain a first approximation h1(x). One possi-

bility is to follow a similar procedure as for the simple ha = hb case, whereby we choose
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h0(x) = hb so that (4.19) simplifies to give η0(x) = γneikbx. Using this in (4.23) means

that we can find h1 directly without using any inner iterations. This method could pose

a problem since it means we are introducing a discontinuity in the solution at h(0) = ha.

An alternative possibility is to choose h0 as a straight line through the points h0(0) =

ha, h0(l) = hb. This means that the boundary values have been imposed, so there is

no discontinuity, but it also means that there is no cancellation in η0 so inner iterations

will be required to find h1.



Chapter 5

Results

In this section we are going to test certain aspects of the inverse scattering iteration

process as described in Chapter 4. We shall look at how accurate the shallow water

and mild-slope approaches are with respect to estimating each approximation to h(x),

hn(x), and we shall also test the convergence of the inner and outer iterations.

The depth profiles that we shall be using are;

• hA(x) = ha − ε sin(2πx
l

), where we shall choose ha = 0.2, ε = 0.02 and l = 5.

Figure 5.1: Depth profile hA(x).

35
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• hB(x) = ha

(
1 + 2ε

(
1−

(
((x/l)− α) · (x/l)−1+α

α(1−α)

)2
))

, where we shall choose ha =

0.2, ε = 0.05, α = 0.15 and l = 5.

Figure 5.2: Depth profile hB(x).

• hC(x) = ha (1 + ε sin(2π(x/l)4)− 0.5ε sin(2π((l − x)/l)4)), where we shall choose

ha = 0.2, ε = 0.08 and l = 5.

Figure 5.3: Depth profile hC(x).

To be able to test the procedure we have formulated to solve the inverse problem we

first need to find R(ν) for ν ∈ (ν1, ν2). We do this by setting the depth profile, h(x) for
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x ∈ (0, l), choose the range (ν1, ν2) and then solve the forward scattering problem as in

Chapter 3.

5.1 Accuracy of First Approximations h1(x)

To test the accuracy of the first approximations we shall first solve the forward problem

to find R(ν) for ν ∈ (ν1, ν2), where we shall set and fix ν1 = 0.0001 and allow ν2 to vary.

Using the R that is found we shall use the explicit equations, (4.5) for shallow water

and (4.13) for mild slope, to find a first approximation to h(x).

This has been done by firstly discretising the domain [0, l] into N equal sections, with

(N +1) nodes such that at these nodes x = xj = j∆x (j = 0, · · · , N), where ∆x = l/N .

We then also discretise the domain (ν1, ν2) into M equal sections with (M + 1) nodes,

then ∆ν = (ν2 − ν1)/M . All integrals that are then performed are done so by using

numerical schemes, namely a simple trapezium method.

We shall test the accuracy of the first approximation h1(x) by using the error norms

‖h− h1‖∞ = max
j=0,··· ,N

|h(xj)− h1(xj)|, ‖h‖∞ = max
j=0,··· ,N

|h(xj)|,

to find the relative error given by ‖h−h1‖∞
‖h‖∞ , and we shall also be finding the total error

given by

‖h− h1‖2 =

(
N∑

j=0

|h(xj)− h1(xj)|2
)1/2

.

5.1.1 Shallow Water Approximation

In this test we have used (4.5) and approximated this integral for ν ∈ (0.0001, ν2) where

we have let ν2 ∈ [0.1, 20]1. We have also set N = 100 and M = 1000, giving ∆x = l/100

but since we have allowed ν2 to vary, ∆ν is not fixed.

The results obtained from this test are displayed in Table 5.1, and show how the

1This is reasonable to assume since in (4.5) R → 0 as ν → ∞, and also because the shallow water
equations only make sense for small ν.



CHAPTER 5. RESULTS 38

error between h(x) and h1(x) varies with the range of ν, and for each bed topography

hA, hB, hC . We can see that these errors are not large, but there is still much room for

improvement.

hA hB hC

ν2
‖h−h1‖∞
‖h‖∞ ‖h− h1‖2

‖h−h1‖∞
‖h‖∞ ‖h− h1‖2

‖h−h1‖∞
‖h‖∞ ‖h− h1‖2

0.1 0.0786 0.0472 0.0677 0.0849 0.0812 0.0762
0.2 0.0386 0.0125 0.0536 0.0368 0.0635 0.0645
0.4 0.0282 0.0114 0.0395 0.0233 0.0404 0.0385
0.6 0.0195 0.0115 0.0377 0.0164 0.0353 0.0371
0.8 0.0191 0.0113 0.0359 0.0162 0.0329 0.0196
1 0.0159 0.0113 0.0364 0.0159 0.0292 0.0204
2 0.0123 0.0108 0.0323 0.016 0.0204 0.0121
4 0.0127 0.0108 0.0295 0.0168 0.0125 0.0076
6 0.0145 0.0112 0.0268 0.018 0.0093 0.0067
8 0.0159 0.0119 0.0241 0.0198 0.0093 0.0065
10 0.0186 0.013 0.0214 0.0225 0.0093 0.0064
12 0.0205 0.0143 0.0209 0.0258 0.0093 0.0064
14 0.0223 0.0156 0.0236 0.0295 0.0093 0.0065
16 0.0245 0.017 0.0259 0.0335 0.0093 0.0067
18 0.0268 0.0184 0.0286 0.0376 0.0097 0.007
20 0.0291 0.0195 0.0309 0.0416 0.0107 0.0073

Table 5.1: Error analysis of h1(x) as an approximation to h(x) using the shallow water approximation.

We notice that from these results that the smallest values, ν2 = 0.1, ν2 = 0.2 give

much larger errors, which may be because we have not included enough information

from R(ν) for the approximation to work properly. We can also notice that as ν2 is

increased, the errors begin to decrease to a point and then increase again for ν2 ≥ 10.

This could be an effect of the shallow water approximation, meaning that inaccuracies

in R(ν) for larger ν could correspond to the decrease in accuracy as shown in these

results (Table 5.1).
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5.1.2 Mild-Slope Approximation

As for the shallow water approximation, we are fixing ν1 = 0.0001 and allowing ν2 ∈
[0.1, 20], then approximating (4.13) between these limits (ν1, ν2)

2. Also, as before, we

have set N = 100 and M = 1000. Therefore we are setting ∆x = l/100 and giving a

variable ∆ν.

The results from finding the error between the first approximation, h1(x) found using

(4.13), and the actual bed topography, h(x), for different ranges of ν are shown in Table

5.2 .

hA hB hC

ν2
‖h−h1‖∞
‖h‖∞ ‖h− h1‖2

‖h−h1‖∞
‖h‖∞ ‖h− h1‖2

‖h−h1‖∞
‖h‖∞ ‖h− h1‖2

0.1 0.0464 0.0449 0.0695 0.0881 0.0812 0.0762
0.2 0.0232 0.0187 0.0386 0.0397 0.0631 0.0648
0.4 0.0136 0.0143 0.0286 0.0276 0.0390 0.0379
0.6 0.0109 0.0138 0.0236 0.0187 0.0348 0.0349
0.8 0.0100 0.0137 0.0264 0.0198 0.0315 0.0191
1 0.0095 0.0137 0.0255 0.0186 0.0292 0.0190
2 0.0105 0.0142 0.0282 0.0189 0.0181 0.0098
4 0.0114 0.0159 0.0323 0.0220 0.0102 0.0077
6 0.0123 0.0181 0.0359 0.0262 0.0088 0.0075
8 0.0136 0.0206 0.0395 0.0311 0.0093 0.0078
10 0.0150 0.0233 0.0432 0.0366 0.0088 0.0081
12 0.0164 0.0260 0.0468 0.0424 0.0097 0.0086
14 0.0177 0.0288 0.0509 0.0483 0.0097 0.0091
16 0.0191 0.0314 0.0555 0.0543 0.0102 0.0097
18 0.0205 0.0340 0.0595 0.0603 0.0111 0.0104
20 0.0218 0.0363 0.0632 0.0661 0.0111 0.0111

Table 5.2: Error analysis of h1(x) as an approximation to h(x) using the mild-slope approximation.

From these results, as for the shallow water case, we can see that for small values

of ν2 the errors are much larger which again may be due to the integral not having

enough information from R(ν) to approximate accurately. We also notice that the

approximations, h1(x), get steadily worse as ν2 is increased beyond ν2 = 6. This is not

2This is reasonable since we have shown that |R(ν)| decays exponentially as ν →∞ (Section 3.2.2).
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what we would expect as a result of the mild-slope approximation, and so a possible

reason for this problem may be that in our numerical evaluation of (4.13) we are using a

variable ∆ν. If instead we used a fixed ∆ν and a variable M we may get better accuracy,

which we shall test later.

5.2 Convergence of Iterations

Once a first approximation has been calculated, the inverse scattering process is an

iterative one but it is not yet known whether these iterations will converge to the solution

h(x). Therefore in this section we are testing the convergence of this iterative process

using (4.8) and (4.17), for shallow water and mild slope approximations respectively.

To test for inner iteration convergence we are looking at the maximum error between

the (m)th and (m− 1)th iterates given by

‖h(m)
n − h(m−1)

n ‖∞ = max
j=0,··· ,N

|h(m)
n (xj)− h(m−1)

n (xj)|,

and similarly for outer iteration convergence we are looking at the maximum error

between the (n)th and (n− 1)th iterates given by

‖hn − hn−1‖∞ = max
j=0,··· ,N

|hn(xj)− hn−1(xj)|,

where we have discretised hn(t) using (N + 1) nodes, and xj = j∆x where ∆x = l/N .

For convergence we expect this value to be very small, and decrease to zero as m and n

are increased.

We shall also be testing to see if this new approximation, hn(x), has actually con-

verged to the solution, h(x), that we are looking for, since it may converge to an entirely

wrong approximation. To test for this we shall be using the same error norms as used

to test the accuracy of the first approximation, h1(x), and we shall be comparing these

to the first approximation in order to ascertain whether this new approximation is more

accurate.
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5.2.1 Shallow Water Approximation

As for the first approximation, we have found R(ν) for ν ∈ (ν1, ν2) where we have set

ν1 = 0.0001 and allowed ν2 to vary. In each case, for numerical computation, we have

uniformly discretised ν using (M+1) nodes meaning that ∆ν = (ν2−ν1)/M is variable.

Inner Iterations

The results in Table 5.3 show that for ν2 = 0.5 the inner iteration process is indeed

converging to a limit as the number of iterations, m, is increased, for all depth profiles.

Table 5.4 also shows that for ν2 = 1 the inner iteration process is converging. However,

the convergence in this case is much slower than for ν2 = 0.5.

‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 2.73× 10−4 9.26× 10−4 1.18× 10−4

3 1.13× 10−5 6.49× 10−5 6.91× 10−7

4 8.51× 10−7 4.99× 10−6 1.09× 10−8

5 3.19× 10−8 3.69× 10−7 9.27× 10−11

10 1.75× 10−14 8.18× 10−13 0
15 0 2.78× 10−17 0

Table 5.3: Error between (m)th and (m−1)th iterate with ν2 = 0.5, using shallow water approximation.

‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 7.46× 10−4 0.006 0.0014
3 1.07× 10−4 0.0015 9.33× 10−5

4 1.72× 10−5 3.85× 10−4 3.76× 10−6

5 3.84× 10−6 1.03× 10−4 2.23× 10−7

10 1.04× 10−9 1.55× 10−7 6.82× 10−14

15 2.93× 10−13 2.29× 10−10 0

Table 5.4: Error between (m)th and (m−1)th iterate with ν2 = 1, using shallow water approximation.

Although the results in Tables 5.3 and 5.4 imply convergence of the inner iteration,

we still need to test that they are converging to h(x). If they are indeed converging to
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hA hB hC

ν2
‖h−h1‖∞
‖h‖∞

‖h−h2‖∞
‖h‖∞

‖h−h1‖∞
‖h‖∞

‖h−h2‖∞
‖h‖∞

‖h−h1‖∞
‖h‖∞

‖h−h2‖∞
‖h‖∞

0.5 0.0232 0.0295 0.0423 0.0605 0.0366 0.0533
1 0.0159 0.0550 0.0364 0.1114 0.0292 0.1257
5 0.0132 1 0.0282 1 0.0102 1.0264

Table 5.5: Comparing the relative error of h1(x) with h2(x).

hA hB hC

ν2 ‖h− h1‖2 ‖h− h2‖2 ‖h− h1‖2 ‖h− h2‖2 ‖h− h1‖2 ‖h− h2‖2

0.5 0.0124 0.0327 0.0199 0.044 0.0371 0.0535
1 0.0113 0.048 0.0159 0.0908 0.0204 0.1186
5 0.011 2.005 0.0173 2.1137 0.007 0.4691

Table 5.6: Comparing the total error of h1(x) with h2(x).

the correct solution we would expect this new approximation to be more accurate than

the previous.

In Tables 5.5 and 5.6 we have compared the accuracy of h2(x) with h1(x) in ap-

proximating h(x). We can see from the results shown that the new approximation is

less accurate than the first approximation, in fact we can see that as ν2 is increased the

errors have become very large. From this we can infer that the iteration process fails

Figure 5.4: Comparison of h1 with h2 using h = hB and ν2 = 1.
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for the shallow water approximation if we include larger values of ν, which we would

expect since the theory behind this approximation is based on the idea that ν is small

compared to the depth.

It is clear to see in Figure 5.4 that the first approximation, h1(x), is much more

accurate than the second approximation, h2(x), since the second approximation is almost

non-recognisable as being an approximation to h(x). The first approximation gives a

far more clear and accurate idea as to the shape of h(x).

Outer Iterations

Taking into consideration the fact that the shallow water approximation is far less

accurate for large values of ν2, we have restricted our investigation of convergence to

smaller values. The results shown in Table 5.7 imply that our approximation to h(x) is

converging to a solution in all cases, and it also shows that this convergence is faster for

smaller ν2.

‖hn − hn−1‖∞
ν2 n hA hB hC

0.3 3 2.95× 10−6 1.09× 10−5 3.85× 10−6

4 6.77× 10−8 4.39× 10−7 1.48× 10−8

5 6.77× 10−10 9.82× 10−9 4.04× 10−11

6 1.62× 10−11 3.54× 10−10 1.38× 10−13

7 2.28× 10−13 9.08× 10−12 5.55× 10−16

0.5 3 4.91× 10−4 0.0026 0.0012
4 2.64× 10−5 1.82× 10−4 6.28× 10−6

5 1.04× 10−6 1.37× 10−5 5.53× 10−8

6 6.45× 10−8 1.00× 10−6 3.26× 10−10

7 2.45× 10−9 7.15× 10−8 1.61× 10−12

0.7 3 0.0168 0.0949 0.0319
4 9.65× 10−4 0.0146 5.76× 10−4

5 1.20× 10−4 0.0046 1.07× 10−5

6 6.85× 10−6 4.44× 10−4 2.39× 10−7

7 8.49× 10−7 1.38× 10−4 5.21× 10−9

Table 5.7: Error between (n)th and (n− 1)th iterate using the shallow water approximation.
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Even though the iterations appear to be convergent, we cannot guarantee that what

they are converging to is the required solution. To test this we have performed similar

error analysis as with the first approximation, the results of which can be seen in Table

5.8. The results show that the approximations, hn(x), are more accurate for smaller

values of ν2 and that the errors become much larger as ν2 is increased, which is most

likely as a result of the restriction to shallow water.

hA hB hC

ν2 n ‖h−hn‖∞
‖h‖∞ ‖h− hn‖2

‖h−hn‖∞
‖h‖∞ ‖h− hn‖2

‖h−hn‖∞
‖h‖∞ ‖h− hn‖2

0.3 2 0.0295 0.0257 0.0509 0.0339 0.0533 0.0421
3 0.0314 0.0248 0.0523 0.0391 0.0557 0.0439
4 0.0305 0.0239 0.0500 0.0365 0.0552 0.0435
5 0.0305 0.024 0.0500 0.036 0.0552 0.0434
6 0.0305 0.0241 0.0505 0.0363 0.0552 0.0434
7 0.0305 0.024 0.0505 0.0363 0.0552 0.0435

0.5 2 0.0295 0.0327 0.0605 0.044 0.0533 0.0535
3 0.0418 0.0347 0.0895 0.0691 0.0566 0.0563
4 0.0373 0.0271 0.0755 0.054 0.0547 0.0448
5 0.0336 0.0263 0.0605 0.0311 0.0455 0.0423
6 0.0359 0.0289 0.0682 0.0402 0.0478 0.0475
7 0.0368 0.0285 0.0759 0.0501 0.0510 0.0471

0.7 2 0.0364 0.04 0.0805 0.0657 0.0737 0.0561
3 0.0650 0.0548 0.1641 0.1468 0.0914 0.0951
4 0.0591 0.0513 0.1232 0.1655 0.0928 0.0846
5 0.0368 0.0375 0.1245 0.1309 0.0631 0.0833
6 0.0541 0.0603 0.1736 0.2124 0.1206 0.1232
7 0.0886 0.0804 0.4027 0.408 0.1609 0.1817

Table 5.8: Error analysis of hn(x) to h(x) using the shallow water approximation.

By comparing Tables 5.8 and 5.1 we see that the first approximation h1(x) is more

accurate than the other approximations, hn(x). So for greater accuracy with the shallow

water approximation it could be argued that we should simply use the first approxima-

tion and not bother with the iterative process, but the errors in this case are still too

large.

The inaccuracy of the converged solutions can plainly be seen in Figure 5.5 where,
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even though ν2 gives the smallest errors, the converged solution is a poor approximation

to h(x). This is possibly most clear for the case when h = hC .

Figure 5.5: Converged depth profiles for hA, hB and hC respectively with ν2 = 0.3, using the shallow
water approximation.

5.2.2 Mild-Slope Approximation

As for the shallow water approximation, we have found R(ν) for ν ∈ (ν1, ν2) where we

have set ν1 = 0.0001 and allowed ν2 to vary. In each case, for numerical computation,

we have uniformly discretised ν using (M + 1) nodes meaning that ∆ν = (ν2 − ν1)/M

is variable, as earlier.

Inner Iterations

From Tables 5.9 and 5.10 we can see that the inner iterations appear to be converging

as the number of iterations, m, is increased. Also by comparing Tables 5.9 and 5.10

with 5.3 and 5.4 respectively, we note that the convergence appears to be faster for the

mild-slope approximation, and slower for the shallow water approximation. The rate of
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‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 1.68× 10−4 1.30× 10−4 2.93× 10−6

3 1.40× 10−5 8.38× 10−6 2.47× 10−8

4 8.04× 10−7 5.59× 10−7 2.73× 10−10

5 6.79× 10−8 3.96× 10−8 2.55× 10−12

10 7.82× 10−14 5.07× 10−14 0
15 2.78× 10−17 0 0

Table 5.9: Error between (m)th and (m− 1)th iterate with ν2 = 0.5, using mild-slope approximation.

‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 2.38× 10−4 2.77× 10−4 1.96× 10−5

3 2.83× 10−5 2.53× 10−5 4.67× 10−7

4 3.10× 10−6 2.99× 10−6 1.14× 10−8

5 4.01× 10−7 3.09× 10−7 2.78× 10−10

10 9.04× 10−12 5.63× 10−12 2.78× 10−17

15 1.94× 10−16 1.39× 10−16 0

Table 5.10: Error between (m)th and (m− 1)th iterate with ν2 = 1, using mild-slope approximation.

‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 2.55× 10−4 8.31× 10−4 1.13× 10−4

3 3.14× 10−5 2.08× 10−4 8.57× 10−6

4 5.77× 10−6 6.11× 10−5 9.15× 10−7

5 9.89× 10−7 1.56× 10−5 7.89× 10−8

10 9.70× 10−10 3.25× 10−8 8.73× 10−13

15 3.14× 10−12 6.50× 10−11 2.78× 10−17

Table 5.11: Error between (m)th and (m−1)th iterate with ν2 = 10, using mild-slope approximation.

convergence remains quite fast even when ν2 is increased, which can be seen in Table

5.11. This, however, was not the case in the shallow water case as a number of iterates

diverged creating very spurious results. Although these inner iterations appear to be

converging, we still need to check that they are converging to the solution, h(x), and

not to some other result (as in the shallow water approximation case).
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hA hB hC

ν2
‖h−h1‖∞
‖h‖∞

‖h−h2‖∞
‖h‖∞

‖h−h1‖∞
‖h‖∞

‖h−h2‖∞
‖h‖∞

‖h−h1‖∞
‖h‖∞

‖h−h2‖∞
‖h‖∞

0.5 0.0127 0.0118 0.0259 0.0241 0.0343 0.0348
1 0.0095 0.0114 0.0255 0.0150 0.0292 0.0311
5 0.0118 0.0127 0.0345 0.0209 0.0083 0.0097
10 0.0150 0.0150 0.0432 0.0373 0.0088 0.0083
15 0.0186 0.0191 0.0532 0.0523 0.0102 0.0102

Table 5.12: Comparing the relative error of h1(x) with h2(x).

hA hB hC

ν2 ‖h− h1‖2 ‖h− h2‖2 ‖h− h1‖2 ‖h− h2‖2 ‖h− h1‖2 ‖h− h2‖2

0.5 0.0142 0.014 0.0243 0.021 0.0363 0.0362
1 0.0137 0.0136 0.0186 0.0134 0.019 0.0182
5 0.0169 0.0168 0.024 0.019 0.0076 0.0069
10 0.0233 0.0232 0.0366 0.0333 0.0081 0.0075
15 0.0301 0.0301 0.0513 0.0491 0.0094 0.0089

Table 5.13: Comparing the total error of h1(x) with h2(x).

Tables 5.12 and 5.13 show the errors between the newly converged h2(x) and h(x),

compared with the error that arose using the first approximation. These results hint

at the idea that the new approximation is more accurate than the first, and so the

converged limit is in fact tending to the solution h(x).

Figure 5.6: Comparison of h1 with h2 using h = hB and ν2 = 1.
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This certainly appears to be the case when using h = hB since both the relative and

total errors have decreased, and comparing Figure 5.6 with Figure 5.4 it is clear to see

that the mild-slope approximation is working much accurately than the shallow water

approximation. However, it is less clear that the inner iterations are converging to h(x)

for h = hA and h = hC , since although some of the total errors may have decreased

there are some instances where the the maximum error has increased. This is not the

desired result, as we would hope to see the maximum error between hn(x) and h(x) to

tend to zero as n is increased.

Outer Iterations

As we did for the shallow water approximation, we now look at the outer iteration

process for the mild-slope approximation and attempt to find signs that these iterates

are converging and if so, to what solution. From Table 5.14 we can see that the maximum

error between the (nth) and (n− 1)th outer iteration is small and decresing to zero as n

is increased, which is a good indication that the iterations are converging. Comparing

‖hn − hn−1‖∞
ν2 n hA hB hC

1 3 4.97× 10−8 3.24× 10−8 6.26× 10−12

4 6.23× 10−9 3.35× 10−9 1.57× 10−13

5 7.38× 10−10 3.90× 10−10 3.80× 10−15

6 8.85× 10−11 4.12× 10−11 8.33× 10−17

7 1.09× 10−11 4.73× 10−12 0
5 3 2.09× 10−7 3.24× 10−6 6.16× 10−9

4 4.42× 10−8 8.92× 10−7 5.31× 10−10

5 1.19× 10−8 2.34× 10−7 4.57× 10−11

6 2.96× 10−9 6.61× 10−8 3.78× 10−12

7 8.81× 10−10 1.75× 10−8 3.31× 10−13

15 3 2.63× 10−7 2.40× 10−6 7.81× 10−9

4 6.21× 10−8 5.06× 10−7 7.20× 10−10

5 1.62× 10−8 1.52× 10−7 7.18× 10−11

6 4.21× 10−9 3.41× 10−8 6.48× 10−12

7 1.32× 10−9 9.83× 10−9 7.03× 10−13

Table 5.14: Error between (n)th and (n− 1)th iterate using mild-slope approximation.
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Tables 5.14 and 5.7 we see that the convergence in the mild-slope approximation case,

in general, is much faster and more convincing than in shallow water case. However, we

still have the same question as to whether these iterations are in fact converging to the

required solution h(x).

In Table 5.15 we can see that the errors between the approximation, hn(x), and

h(x) do not grow or oscillate as in the shallow water approximation case. We also note

that most of these errors are smaller than for the corresponding first approximation as

shown in Table 5.2, and others are not greatly larger. This was not the case for the

shallow water approximation, and so we can see that for the mild-slope approximation

the iteration process appears to improving toward the desired solution.

hA hB hC

ν2 n ‖h−hn‖∞
‖h‖∞ ‖h− hn‖2

‖h−hn‖∞
‖h‖∞ ‖h− hn‖2

‖h−hn‖∞
‖h‖∞ ‖h− hn‖2

1 2 0.0114 0.0136 0.0150 0.0134 0.0311 0.0182
3 0.0114 0.0137 0.0150 0.0137 0.0311 0.0182
4 0.0114 0.0137 0.0155 0.0138 0.0311 0.0182
5 0.0114 0.0137 0.0155 0.0138 0.0311 0.0182

5 2 0.0127 0.0168 0.0209 0.019 0.0097 0.0069
3 0.0132 0.0169 0.0182 0.019 0.0102 0.0068
4 0.0132 0.0169 0.0182 0.019 0.0102 0.0068
5 0.0132 0.0169 0.0182 0.019 0.0102 0.0068

15 2 0.0191 0.0301 0.0523 0.0491 0.0102 0.0089
3 0.0191 0.0302 0.0505 0.049 0.0102 0.0089
4 0.0191 0.0302 0.0500 0.049 0.0102 0.0089
5 0.0191 0.0302 0.0500 0.049 0.0102 0.0089

Table 5.15: Error analysis of hn(x) to h(x) using the mild-slope approximation.

The greater accuracy in the mild-slope approximation over that of the shallow water

approximation can also be seen by comparing Figure 5.7 with Figure 5.5 (and also in

further results in Appendix A). Here we see that, particularly for h = hC , the mild-slope

approximation finds the shape of h(x) far more accurately than in the shallow water

approximation.

An interesting point to note here is that in Figure 5.7 (and also in Figures A.7 and

A.8 in Appendix A) we can see that the approximations, hn(x), seem less accurate
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at points where h(x) has a local maximum or minimum. It is also possible that the

amplitudes of these curves play a part in the accuracy of the approximation, since the

turning points in h = hC , that have smaller amplitude, are better approximated than

those in h = hA or h = hB.

Figure 5.7: Converged depth profiles for hA, hB and hC respectively with ν2 = 1, using the mild-slope
approximation.

5.3 Further Testing

So far we have concerned ourselves with testing the convergence of the iterative processes

for the inverse scattering problem and found that of the two approximations used, the

mild-slope approximation gave better results. Therefore in this section we are going to

restrict our attention to the mild-slope approximation and attempt to understand how

the solution obtained behaves when the numerical accuracy of the process is increased,

and also what range of (ν1, ν2) is required to obtain a reasonable approximation to h(x).
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5.3.1 Greater Accuracy?

So far, for numerical computation, we have been discretising the domain (ν1, ν2) into

M sections using (M + 1) nodes, and let ν ≈ νj = j∆ν + ν1 for j = 0, · · · ,M , where

∆ν = (ν2 − ν1)/M . This means that in each test we have been using a variable ∆ν,

and for large ranges of (ν1, ν2) this would make the discretisation very coarse, possibly

leading to errors in the solution. Here we aim to investigate what impact this has by

instead fixing ∆ν = 0.001 and allowing M to vary.

‖h−hn‖∞
‖h‖∞

ν2 hA hB hC

1 0.0114 0.0155 0.0311
5 0.0118 0.0105 0.0097
10 0.0118 0.0091 0.0070
15 0.0118 0.0091 0.0070

Table 5.16: Relative error of converged approximation, hn(x) to h(x), using the mild-slope approxi-
mation and a fixed ∆ν.

Comparing the results found in Table 5.16 with those in Table 5.15, reveals that by

fixing ∆ν in this way does in fact improve the accuracy of the approximate solution as

ν2 is increased.

Figure 5.8: |R(ν)| for h = hA and h = hC respectively.

Also from Table 5.16 we can see that after a certain point, for each depth profile,

including a larger range for ν does not necessarily improve the accuracy of the found

solution. This means that, in a computational sense, we should be able to neglect the
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range of ν that appears not effect the accuracy. A possible way to do this is to compare

these ‘neglectable’ ranges with the reflected data R(ν) as shown in Figure 5.8. From

here we can see that these ranges correspond to very small values of |R|, and in practice

we could perhaps only use the range (ν1, ν2) such that for ν > ν2, |R(ν)| < 0.005 in this

particular case.

5.3.2 Sensitivity to Changes in (ν1, ν2)

In earlier results we have been looking at the accuracy of the approximate solution for

various ranges (ν1, ν2), but how much information from the reflection do we need to be

able to get a good idea of the bed topography?

Figure 5.9: Converged depth profiles for h = hA using the mild-slope approximation, where ν2 has
been allowed to vary.

Firstly, we have kept ν1 = 0.0001 fixed and allowed ν2 to vary, but this time for

very small values. In Figure 5.9 we can see that as ν2 is increased, the approximation

improves. We can also note that the shape of the approximations, although not very

accurate, is close to the desired solution for ν ∈ (0.0001, 0.15). This is a very small range

and it is rather surprising that the approximation is so good compared to the amount

of reflection data that it has to work with.
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Figure 5.10: Converged depth profiles for h = hB using the mild-slope approximation, where ν2 has
been allowed to vary.

Figure 5.11: Converged depth profiles for h = hC using the mild-slope approximation, where ν2 has
been allowed to vary.

This level of accuracy for small ν is not shared in each case. For example, in Figure

5.10 with h = hB, we can see that for ν ∈ (0.0001, 0.2) the converged solution gives

a very crude idea as to the topography, but not yet as accurate as for h = hA. Also

for more complicated topographies, as in Figure 5.11 with h = hC , we see that a much

larger range for ν is required, since for ν ∈ (0.0001, 0.4) the converged solution is only

just starting to take the shape of the actual solution.
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Figure 5.12: Converged depth profiles for h = hA using the mild-slope approximation, where ν1 has
been allowed to vary.

Figure 5.13: Converged depth profiles for h = hB using the mild-slope approximation, where ν1 has
been allowed to vary.

We are also interested to see how the converged approximation reacts if the smallest

values of ν are no longer included. So far we have set ν1 = 0.0001 and allowed ν2 to

vary, here we shall instead fix ν2 = 5 and allow ν1 to vary. From the results we have

already gathered, with both ν1 and ν2 small, we would expect that increasing ν1 would

only lead to a decrease in accuracy.
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From Figures 5.12, 5.13 and 5.14 we can see that this does indeed appear to be the

case and furthermore, that for ν ∈ (1, 5) the approximations are particularly poor which

is an indication that much of the necessary information is in the range (0, 1).

Figure 5.14: Converged depth profiles for h = hC using the mild-slope approximation, where ν1 has
been allowed to vary.

With this idea that the converged approximations are better for smaller choices of

ν1, we may wish to consider decresing it further than just ν1 = 0.0001.

5.3.3 The Affect of Amplitude

In the convergence results and figures, we have seen that the approximation appears to

perform less well at a stationary point in h(x) and that the accuracy of the converged

solution could depend on the amplitude of these points. To investigate this possibility

we have, without loss of generality, used h(x) = hA given by

hA(x) = ha − ε sin

(
2πx

l

)
,

where ha = 0.2 and l = 5. Previously we had set ε = 0.02, so that the amplitude of the

stationary points was a tenth of the depth, but now we shall allow this to vary.
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By making the amplitude of these stationary points larger we expect that the errors

will increase, and perhaps that the mild-slope approximation may fail to converge. In

Figure 5.15 we can see that with a greater amplitude (half of the depth), the approxi-

mation is worse. The first approximation appears to be a fair estimate, but as soon as

we begin the iterative process we see that the approximation is wildly inaccurate. Not

only have the errors grown substantially but according to the approximation, the bed

topography protrudes out of the water’s surface.

Figure 5.15: Depth profile h = hA with ε = 0.1

Conversely, by making the amplitude of stationary points smaller we get a much

more accurate approximation. This is what we would expect since the mild-slope ap-

proximation is based on the idea that the gradient is very small and to have a stationary

point of lesser amplitude means that the gradient is also less, and so the approximation

works better.



Chapter 6

Summary, Future Work &

Conclusions

Summary

In some existing literature on linear wave scattering, fundamental ideas of fluid dynamics

were used to formulate a boundary value problem for the velocity potential of the water

in the (x, z) plane. The solution to this could then be approximated, for simplicity,

by using either the shallow water hypothesis that the wavelength is much greater than

the quiescent depth, or by using the mild-slope hypothesis that the gradient of the

underlying bed topography is small. Reflection and transmission coefficients were also

defined for plane waves and had been found to rely on the amplitude of the incident

wave. Also, through the use of an identity it was shown that knowing one of these

coefficients meant the other could be recovered.

Using this theory and each approximation in turn, we were able to formulate a forward

wave scattering problem. We assumed that the bed topography was known along with

the amplitude of the incident wave and we were seeking the reflected amplitude, R(ν)

for all ν ∈ (0,∞), where ν = ω2/g (with ω being the frequency of the incident wave,

and g the acceleration due to gravity). This turned out to be fairly simple and we were

able to find an explicit expression for R(ν). We then looked at the behaviour of R as

ν → ∞ and found that for the shallow water approximation R did not tend to zero
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as was expected, which may have been due to large ν corresponding to wavelengths

smaller than the quiescent depth, going against the shallow water hypothesis. For the

mild-slope approximation however, we found that it behaved as we anticipated and

decayed exponentially.

We then moved our attention to the more interesting problem of inverse wave scattering,

where we were seeking an approximation to the bed topography h(x). We assumed

that R(ν) ν ∈ (0,∞), is known and that the depth at the boundaries of the underlying

topography, ha and hb, could be measured. The method that we adopted was an iterative

one, based on using the approximation ,hn(x), to find an improved approximation,

hn+1(x), involving inverse Fourier transforms performed on the forward expression found

for R(ν).

It was not clear that this iteration method would produce a convergent sequence, but

following tests on the iterations we found that for the mild-slope approximation the

iterates began quickly to converge, whereas this was less clear for the shallow water ap-

proximation. However, we still had the question of whether the iterates were converging

to the solution, h(x). The iterates in the shallow water approximation seemed to per-

form better for small ν, but compared the mild-slope approximation, they produced wild

inaccuracies. For this reason the mild-slope approximation was found to be preferable

and so we restricted our attention to it. We then found that the best approximations,

hn(x), were obtained when R(ν) was known for ν ∈ (ν1, ν2) where 0 < ν1 � 1 and ν2

was large enough and such that for ν > ν2 we have |R(ν)| < 0.005. We also found that

the curvature of the topography affected the accuracy, where turning points of greater

amplitude produced greater errors.

Future Work

In this investigation we have shown numerically that the iteration process for the inverse

scattering problem is convergent for the depth profiles tested. This does not mean that

the iteration sequence will always converge, and certainly not that they will converge

to the desired solution. For this reason we would like to find under what circumstances

these iterations converge. Instinct would lead us to believe that this would be dependent
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in some way on the norm of the integral operator in (4.9), which in turn is dependent

on h(x).

An evident problem with the inverse method is that without prior knowledge of the un-

derlying topography, we have no way of knowing how accurate any given approximation

is since the amplitude of the bed profile is not known. A possible solution to this would

be to find an approximation, Rn(ν), to R(ν) using hn(x) in (3.11) and examining the

error in this approximation. If the error is small it could be reasonable to assume that

our approximation hn(x) is accurate. This leads to the more interesting idea that the

reflection R(ν) is unique to the underlying bed topography.

Another direction for future work is to extend this problem from the one dimensional

case, as seen here, to the two dimensional problem where h = h(x, y). Since we have

numerical support that suggests the inverse problem in the one dimensional case con-

verges to the bed topography, it is possible that a similar process in two dimensions

could also work. This however would require dealing with partial differential equations

instead of ordinary differential equations and so the iterative process may become very

complicated and computationally expensive.

Conclusions

In the comparison between the shallow water and mild-slope approximations, we have

found that although the shallow water approximation is simpler to implement it is too

restrictive and so in the inverse case it broke down producing wildly erroneous results.

Surprisingly though, the first approximation, h1(x), using the shallow water approxi-

mation gave a good idea of the underlying topography in all tested cases. Therefore

if only a rough estimate of the topography is required we may simply find the first

approximation, h1(x), using (4.5).

In contrast, the mild-slope approximation delivered very accurate results for the

inverse scattering problem and moreover, we have been able to show that even with

very small ranges of ν, accurate approximations can be attained. This implies that for

better numerical computation, we can take a smaller range of ν and use a finer mesh

on it, rather than a coarser mesh on a larger range of ν. This idea is supported by the
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results in Section 5.3.1, since we have also seen that including larger values of ν may

not increase accuracy and so may be neglected. The accuracy of the approximation

however, is also dependent on the amplitude of any stationary points in the bed profile,

h(x). The smaller the amplitude, the greater the accuracy meaning that to know our

results are accurate we must already know that the gradient of the bed profile is very

mild.

Therefore with a small range of reflected data, R(ν), and some prior knowledge

that the bed profile is mild, we can use the iterative inverse method and mild-slope

approximation to find an accurate representation of the underlying topography.
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Appendix A

More Tables And Figures

A.1 Shallow Water Approximation

Inner Iteration Convergence

Following on from the results for the inner iteration convergence in Section 5.2.1, Tables

A.1, A.2 and A.3 show the error between iterations for a larger range of ν ∈ (ν1, ν2).

These results do not imply convergence to the solution.

‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 0.0678 1.8175 0.3929
3 0.1135 9.0984 0.3124
4 10.9085 68.3473 0.2286
5 27.8077 68.1714 0.1371
10 0.731 0.0186 0.2667
15 0.0015 3.67× 10−4 0.1513

Table A.1: Maximum error between the (m)th and (m − 1)th iterate with ν2 = 5, using the shallow
water approximation.
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‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 6.9635 84.6378 10.7729
3 8.9364 6.7553 10.5104
4 9.1073 0.7272 18.9734
5 1.4282 0.1739 19.2164
10 1.78× 10−5 9.26× 10−8 0.8124
15 1.38× 10−9 6.92× 10−12 2.70× 10−4

Table A.2: Maximum error between the (m)th and (m− 1)th iterate with ν2 = 10, using the shallow
water approximation.

‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 93.2334 13.445 6.4016
3 92.9916 4.1052 22.7819
4 1.1235 1.0531 22.8502
5 0.0614 0.0103 0.6481
10 5.62× 10−8 7.87× 10−9 1.46× 10−4

15 1.66× 10−14 6.56× 10−15 9.97× 10−8

Table A.3: Maximum error between the (m)th and (m− 1)th iterate with ν2 = 15, using the shallow
water approximation.

Figure A.1: Comparison of h1 with h2 using h = hA and ν2 = 1.

The results from Table 5.4 implied that for ν ∈ (0.0001, 1) the inner iteration process

converged to h2. Figure 5.4 shows this converged limit for h = hB, and in Figures A.1
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and A.2 are the converged limits for h = hA and h = hB respectively. It is also clear

from these figures that the second iterate is not converging to the solution h(t).

Figure A.2: Comparison of h1 with h2 using h = hC and ν2 = 1.

Outer Iteration Convergence

Figure A.3: Converged depth profiles for hA, hB and hC respectively with nu2 = 0.5, using the
shallow water approximation.
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Once inner iteration convergence was established we moved on to the outer iteration

convergence for the shallow water approximation, and concentrated on small values for

ν2. Following on from the results given in Section 5.2.2, Figures A.3 and A.4 show the

converged approximations to h(x) for other ranges of ν.

Figure A.4: Converged depth profiles for hA, hB and hC respectively with nu2 = 0.7, using the
shallow water approximation.
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A.2 Mild-Slope Approximation

Inner Iteration Convergence

Following on from the results for the inner iteration convergence in Section 5.2.2, Tables

A.4 and A.5 show the error between iterations for different ranges of ν ∈ (ν1, ν2). These

results help to reinforce the implication that inner iterations are converging using the

mild-slope approximation. As was noted in Section 5.2.2 the convergence for the mild-

‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 2.43× 10−4 6.50× 10−4 1.14× 10−4

3 2.97× 10−5 2.00× 10−4 9.00× 10−6

4 5.39× 10−6 4.41× 10−5 7.98× 10−7

5 8.77× 10−7 1.31× 10−5 6.69× 10−8

10 8.81× 10−10 1.86× 10−8 2.91× 10−13

15 1.93× 10−12 3.24× 10−11 2.78× 10−17

Table A.4: Maximum error between the (m)th and (m−1)th iterate with ν2 = 5, using the mild-slope
approximation.

‖h(m)
2 − h

(m−1)
2 ‖∞

m hA hB hC

2 2.68× 10−4 7.39× 10−4 1.13× 10−4

3 3.34× 10−5 1.39× 10−4 7.79× 10−6

4 6.21× 10−6 4.01× 10−5 7.95× 10−7

5 1.12× 10−6 5.07× 10−6 6.53× 10−8

10 1.19× 10−9 1.05× 10−8 6.00× 10−13

15 4.26× 10−12 1.16× 10−11 2.78× 10−17

Table A.5: Maximum error between the (m)th and (m−1)th iterate with ν2 = 15, using the mild-slope
approximation.

slope approximation appears to faster than for the shallow water approximation. This

is quite evident by comparing Tables A.4 and A.5 with Tables A.1, A.2 and A.3 as the

errors for the mild-slope approximation are smaller and decrease faster as m is increased.

It is also evident, by simply comparing Figures A.5 and A.6 with Figures A.1 and A.2,

that the mild-slope approximation produces far more accurate second iterates, h2(x),
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than the shallow water approximation.

Figure A.5: Comparison of h1 with h2 using h = hA and ν2 = 1.

Figure A.6: Comparison of h1 with h2 using h = hC and ν2 = 1.

Outer Iteration Convergence

We have already seen that the inner iteration process is more accurate for the mild-slope

approximation and so, as we may expect, is the outer iteration process. This has been

shown by looking at errors in Section 5.2.2 but is very clear to see by comparing Figures

A.7 and A.8 with Figures A.3 and A.4.
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Figure A.7: Converged depth profiles for hA, hB and hC respectively with ν2 = 5, using the mild-slope
approximation.

Figure A.8: Converged depth profiles for hA, hB and hC respectively with ν2 = 15, using the mild-
slope approximation.
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