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Abstract

Coral reef systems such as the Great Barrier Reef are fundamental to the food industry,
tourism revenue and coastal protection of tropical regions. Due to recent human activity,
the health of these coral reefs is under threat. It is therefore necessary to design marine
reserves in order to protect and help sustain coral populations. An understanding of the
connectivity between reefs or systems of reefs can help decide on the size and spacing of
marine reserves.

To follow the paths of coral eggs released from reefs in simple domains, a particle tracking
algorithm is developed in conjunction with a current hydrodynamic model of the Great Bar-
rier Reef. The hydrodynamic model makes use of the PNC

1 − P1 finite element formulation
which is presented. Particle positions are updated by means of the Lagrangian algorithm.

This study suggests that the construction of connectivity matrices for reef systems should
take into account both short and long range dispersal strategies by considering different
species of coral and how their mechanisms of reproduction affect the dispersal time of their
larvae.
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Introduction

The Great Barrier Reef is located in the Coral Sea, off the coast of Queensland in North
East Australia. It is composed of over 2500 individual reefs and 900 islands, stretching for
over 2600km. The circulation over the Great Barrier Reef is mainly controlled by the com-
plex topography of the continental shelf, the local wind and the shoreward South Equatorial
current in the western Coral Sea. On meeting the Great Barrier Reef, the South Equatorial
current splits at a bifurcation point into the northward flowing Coral Sea Coastal Current
and the southward flowing East Australian Current (Wolanski, 1994).
Coral reefs occupy less than a quarter of a percent of the worlds marine environment, so

(a) Image from www.gbrmpa.gov.au (b) Image from http://www.anbg.gov.au

what makes them so important? For a start, coral reefs are home to numerous different
types of marine life, including over a quarter of all known fish species - within the Great
Barrier Reef alone 1,500 species of fish and 4,000 species of mollusks have been counted
(Bryant et al. 1998). But marine life is not the only thing dependent on the coral reefs.
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Figure 1: Map of locations of threatened corals reefs and sites that show signs of promise.
Image taken from Bryant et al. (1998).

Fishing, tourism and economic resources of tropical areas are all built upon healthy coral
ecosystems. Worldwide, the food, tourism revenue, coastal protection (barrier coral reefs
protect shorelines from erosion and storm damage) and new medications that the reefs pro-
vide are worth over $375 billion each year (Bryant et al., 1998), making them one of the
most valuable ecosystems on Earth.

In 1998 an alarming report by Bryant et al. (1998) indicated that 58% of the worlds
reefs were potentially threatened by human activity - ranging from coastal development
and destructive fishing methods to overexploiting of resources, marine pollutions and runoff
from inland deforestation and farming. Figure 1 gives a map of locations of reefs around
the world and indicates those threatened and those that show signs of promise.

So what can be done to help sustain coral populations in these reefs? Part of the solu-
tion involves looking at the way corals reproduce and how different reefs rely on each other
for sustainability. Once a year, certain types of corals, and many other benthic marine or-
ganisms, release propagules that spend time in the water column before settlement. During
this period, ocean currents transport or disperse these propagules (Shanks, Grantham and

2



Figure 2: Map of locations of protected reef areas. Image taken from Bryant et al. (1998).

Carr 2003). The currents therefore control the transport of coral eggs between reefs, and
hence determine the connectivity of reef populations. So what can be gained from inves-
tigating the connectivity between reef populations? Due to the damage inflicted to coral
reefs by the various different processes described above, marine reserves must be designed
to protect coral reef populations. Bryant et al., 1998, found that at least 40 countries did
not have any marine protected areas for conserving their coral reef systems. A map of
marine protected areas is given in Figure 2. The size and spacing of these reserves is not
only critical to the sustainability of the protected populations but can also greatly influ-
ence unprotected populations outside of the reserves (Shanks et al., 2003). It is therefore
important to have an understanding of how populations of corals in reefs or islands are
being sustained. Is a reef or island self-replenishing or does it rely on the transport of coral
eggs from other reefs and islands? To what extent does a reef or island replenish other
populations? The answers to these questions can help determine how large marine reserves
are made and how far apart they should be. Understanding the connectivity between coral
reefs can help to identify which reefs or systems of reefs should be protected in order to
enhance other unprotected populations.

The purpose of this study is to develop a tool for use in conjunction with a current hy-
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drodynamic model of the Great Barrier Reef that will track the paths of particles (or coral
eggs) released from reefs. The model (provided by Emmanuel Hanert) simulates the flow
over the Great Barrier Reef, and can also be used to simulate the flow throughout other
simpler domains. Initially, a particle tracking algorithm will be built to run on a very simple
test case - the Stommel model. This model creates a still, square lake which is then subjected
to a surface wind forcing, producing a simple circulation. The model simulates the velocity
and elevation fields, and the output is read using gmsh software (see www.geuz.org/gmsh
for more information on this software).

Once the model has reached a steady state the particle tracking algorithm will be im-
plemented. In this simple domain the behaviour of particles released into the domain is
predictable, as their paths should be very similar the streamlines of the flow. Thus the
algorithm is easily verified and at this point a more complex tracking algorithm and more
exciting domains can be considered. The algorithm will be implemented and improved on
two more square domains. Both domains comprise of two solid boundaries aligned with the
y-axis and two open boundaries aligned with the x-axis. The first domain contains just two
islands and the second contains four islands.

(a) Domain containing two islands, di-
mensions: 20km×20km, min, max and
mean element size: 0.23119, 0.505531 and
0.315272km

(b) Domain containing four islands, di-
mensions: 20km×20km, min, max and
mean element size: 0.0131661, 0.451218 and
0.162645km

In the domains pictured above, a flow is induced through the island by forcing the ele-
vation on the two open boundaries. This flow is simulated by the ‘Connectivity’ test case

4
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included in the model. The results of this study are in the form of connectivity matrices
produced for each domain.
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Chapter 1

An unstructured-mesh

hydrodynamic model of the GBR

The model provided by Emmanuel Hanert is presented in [1] as a model that solves the
discretized shallow water equations (SWEs) on a fully unstructured mesh of approximately
850,000 triangular elements. The model domain covered most of the GBR from the Great
Keppel Island to the Forbes Island in the North[1]. In this study, the model will run
on the much smaller, simpler domains mentioned earlier that only contain a few islands.
This chapter will outline the main features of the model and give examples of the output
generated.

1.1 The shallow water equations and boundary conditions

1.1.1 The shallow water equations

The SWEs are comprised of the continuity equation and the horizontal momentum equa-
tions, they are presented below using the same notation as in [1]:

∂η

∂t
+
∂(Hu)
∂x

+
∂(Hv)
∂y

= 0, (1.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g

∂η

∂x
=

1
H

(
∂

∂x
(νH

∂u

∂x
) +

∂

∂y
(νH

∂u

∂y
)
)

+
τx
ρH

− g‖u‖
C2H

u,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu+ g

∂η

∂y
=

1
H

(
∂

∂x
(νH

∂v

∂x
) +

∂

∂y
(νH

∂v

∂y
)
)

+
τy
ρH

− g‖u‖
C2H

v,
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where the unknowns to be solved for are η, the sea surface elevation (positive upwards), u
and v, the horizontal velocity components. The actual water depth is H = h + η, where
h is the reference water depth below mean sea level. The Coriolis parameter, gravitational
acceleration, horizontal eddy viscosity and mean water density are f , g, ν and ρ respectively.
The wind stress at the surface of the sea is τ = (τx, τy). The bottom stress term is g

C2H
‖u‖u,

where C = H
1
6

n is the Chezy coefficient which is determined by n the Manning roughness
coefficient.

1.1.2 Boundary conditions

Alongside the above system of partial differential equations, initial and boundary conditions
must be supplied so that the problem we are solving is well posed. Along the impermeable
boundaries (islands and reefs), a zero mass flux and a tangential momentum flux propor-
tional to the mean tangential velocity is imposed:

{
un = 0,

ν ∂us
∂n + αun = 0,

where s corresponds to the direction tangential to the boundary and n corresponds to the
direction normal to the boundary - thus us and un are the horizontal components of veloc-
ity in these directions. Essentially, the first condition ensures that there is no flow through
solid boundaries, while the second takes into account the fact that the boundaries are not
smooth, so the flow along a boundary experiences a drag and is therefore slowed.

Conditions also need to be imposed on the open boundaries. For the GBR, measurements
of the sea surface elevation at some locations in the Coral Sea can be used to force the
tides and mean currents on the open boundaries[1]. Where open boundaries are present
in this study’s simpler domains, a flow is induced into the domain by forcing the eleva-
tion on these boundaries. It is noted in [1] that the influence of initial conditions becomes
negligable after some time, due to exchanges with the Coral Sea and frictional and viscous
dissipations. This also holds true in the simpler test cases presented, with exchanges with
the open boundaries rather than the Coral Sea specifically.
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1.2 Criteria for the mesh

The model is based on an unstructured mesh, and so the size and shape of the triangular
elements can be easily modified, allowing for variable resolution. The question is, where is
fine resolution needed and where is coarse resolution needed?

The processes that take place in the flow over the GBR occur over a wide range of scales
of motion, from a few metres around small reefs to regional flows over hundreds of kilome-
tres. Satelllite imagery and numerical simulations show that small-scale phenomena such
as eddies and tidal jets are mainly confined to the neighbourhood of small reefs, islands
and passages (Hamner and Hauri, 1981; Wolanski and Hamner, 1988; Wolanski et al., 1988;
Deleersnijder et al., 1992; Wolanski et al., 1996), and so have a significant effect on the
ecosytem of the GBR. It is therefore essential to simultaneously simulate all scales of mo-
tion, as small and large scale processes experience significant interactions (Wolanski et al.,
2003c). So when designing the mesh, higher resolution is required in the vicinity of islands
and reefs and lower resolution in open waters, where the scales of motion are much larger.

The resolution of the meshes for the GBR and meshes for the domains containing islands
(Figure 1.1) must therefore depend on two criteria:

• The Courant-Friedrichs-Lewy condition (CFL condition) for the gravity waves over
the whole domain must be satisfied. Essentially this means that the local mesh size
has to be equal to the square root of the water depth[1].

• The local mesh size must depend on the distance to islands and reefs in order cluster
mesh nodes in regions where small scale processes are likely to take place. The mesh
is refined even more in the vicinity of islands where eddies and tidal jets can be
expected[1].

1.3 Numerical discretization of the SWEs

An approximate solution of the SWEs under the conditions mentioned above is obtained
using the finite element method. The finite difference method is not used as it cannot handle
unstructured grids. The method used is known as the PNC

1 −P1 finite element method and
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(c) Fine mesh resolution around islands and
course mesh resolution in open waters, image
taken from [1]

(d) Fine mesh resolution around islands and open
boundaries. Images courtesey of Emmanuel Han-
ert

Figure 1.1: Model resolution

the solution is calculated using a 3rd order Adams-Bashforth time marching scheme. The
main features of these methods are described below.

1.3.1 The PNC
1 − P1 finite element formulation

Let’s remind ourselves of the equations we wish to solve:

∂η

∂t
+∇ · (Hu) = 0, (1.2)

∂u
∂t

+ u · ∇u + fk× u + g∇η =
1
H

(∇ · (νH∇u)) +
τ

ρH
− g‖u‖
C2H

u, (1.3)

where k is a unit vector in the vertical direction and ∇ is the two-dimensional gradient
operator. To use the finite element spatial discretization some notation for our domain,
elements and boundaries of elements will need to be introduced. Proceeding as in [3], the
domain (call it Ω) is first partitioned into NE disjoint open elements Ωe:

Ω̄ =
NE⋃
e=1

Ω̄e and Ωe ∩ Ωf = ∅ for e 6= f,
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where Ω̄ is the closure of Ω. Now let ∂Ωe be the boundary of each element Ωe, and let the
outward unit normal to ∂Ωe be ne. Let Γ be the collection of all the interelement boundaries
Γl = ∂Ωe ∩ ∂Ωf with e > f so that:

Γ̄ =
NΓ⋃
l=1

Γ̄l and Γl ∩ Γm = ∅ for l 6= m,

where NΓ is the number of elements in Γ. Each Γl ∈ Γ is associated with a unique normal
vector n which point from Ωe to Ωf . The finite element method uses the weak formulation
of equations (1.2) and (1.3). This form is built in such a way that the solution for the ele-
vation is continuous everywhere whereas the solution for the velocity can be discontinuous
between elements. It therefore needs constraints to impose the continuity of the velocity
between the elements. The weak form of the SWEs, obtained by taking the dot product of
equations (1.2) and (1.3) with test functions η̂ and û respectively, is as follows:

Find η(x, t) ∈ E and u(x, t) ∈ U such that

NE∑
e=1

∫
Ωe

(
∂η

∂t
η̂ −Hu · ∇η̂

)
dΩ +

NE∑
e=1

∫
∂Ωe

Hη̂u · ne dΓ = 0 ∀η̂ ∈ E, (1.4)

NE∑
e=1

∫
Ωe

(
∂u
∂t

· û− (∇ · (uû)) · u + f(k× u) · û + g∇η · û− 1
H

(∇ · (νH∇u)) · û

− τ

ρH
· û +

g‖u‖
C2H

u · û
)

dΩ +
NE∑
e=1

∫
∂Ωe

(uu · ne) · ûdΓ +
NΓ∑
l=1

∫
Γl

[u] · [a(û)]dΓ

= 0 ∀û ∈ U, (1.5)

where [s] = s|Ωe
− s|Ωf

is the jump of s on an interior edge of Γl, s|Ωe
denotes the restriction

of s on Ωe, and E and U are suitable function spaces[3] to which η̂ and û belong. The
function a satisfies the previously mentioned continuity constraint while maintaining the
weak formulation of the differential equations. The function a satisfies:

a(û) =

{
u · n(λ− 1/2)û onΩe,

u · n(λ+ 1/2)û onΩf ,

where λ ∈ [−1/2, 1/2]. The choice of λ selects the type of scheme used. A centred scheme
is obtained by choosing λ = 0 and an upwind momentum advection scheme is obtained
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by choosing λ = 1
2sign(u(x) · n(x)). Choosing the upwind parametrization that is usually

selected (Houston et al., 2000; Hanert et al., 2004), with some standard algebra (Houston
et al., 2000; Hanert et al., 2004) the weak formulations (1.4) and (1.5) can be rewritten as:

Find η(x, t) ∈ E and u(x, t) ∈ U such that

NE∑
e=1

∫
Ωe

(
∂η

∂t
η̂ −Hu · ∇η̂

)
dΩ +

NΓ∑
l=1

∫
Γl

(〈Hu · n〉 [η̂] + [Hu · n] 〈η̂〉 dΓ

= 0 ∀η̂ ∈ E, (1.6)

NE∑
e=1

∫
Ωe

(
∂u
∂t

· û− (∇ · (uû)) · u + f(k× u) · û + g∇η · û− 1
H

(∇ · (νH∇u)) · û

− τ

ρH
· û +

g‖u‖
C2H

u · û
)

dΩ +
NΓ∑
l=1

∫
Γl

〈uu · n〉λ · [û]dΓ = 0 ∀û ∈ U, (1.7)

where 〈s〉 and 〈s〉λ are the average and weighted average of s on the segment Γl respectively,
i.e.

〈s〉 =
1
2
(s|Ωe

+ s|Ωf
)

〈s〉λ = (1/2 + λ)s|Ωe
+ (1/2− λ)s|Ωf

A finite element approximation to the solution of equations (1.1) is obtained by replacing η
and u in (1.6) and (1.7) with finite element approxiations ηh and uh. These approximations
belong to finite dimensional spaces Eh ∈ E and Uh ∈ U. They are:

η ≈ ηh =
NV∑
i=1

ηiφi,

u ≈ uh =
NS∑
j=1

ujψj ,

where NV and NS represent the number of vertices and number of segments respectively, ηi

and uj represent elevation and velocity nodal values, and φi and ψj represent the elevation
and velocity shape functions associated with a particular node. The nodal values are then
computed using the Galerkin procedure, which amounts to replacing η̂ with φi and û by
(ψj , 0) and (0, ψj) in equations (1.6) and (1.7) respectively, for 1 ≤ i ≤ NV and 1 ≤ j ≤ NS
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(Hanert et al., 2005).

The next section describes the shape functions φi and ψj and certain properties of these
functions can simplify the variational form.

1.3.2 The non-conforming mixed PNC
1 − P1 finite element pair

The PNC
1 − P1 finite element pair is made up of the linear conforming (P1) and the linear

non-conforming (PNC
1 ) shape functions (see figure 1.2). In this triangulation, the nodal val-

ues for the elevation lie on the vertices of an element while the nodal values of the velocity
lie on the midpoints of the segments (see figure 1.3).

Figure 1.2: The linear conforming (left) and linear non-conforming (right) shape functions,
image taken from [3]

With this choice of shape functions, the discrete elevation field is everywhere continuous
whereas the discrete velocity field is only continuous across element boundaries at mid-
segment nodes and discontinuous everywhere else around a triangle boundary.

A major advantage of the PNC
1 shape functions is their orthogonality property (Hanert

et al., 2005): ∫
Ω
ψpψq dΩ =

Aq

3
δpq

where Aq si the area of support of ψq and δpq is the Kronecker delta. This unusual propery
increases the computational efficiency of the numerical model (Hanert et al., 2005). To
further improve the efficiency the following approximation in the variational formulation
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Figure 1.3: Position of elevation and velocity nodes on an element

(1.6) and (1.7) is performed:∫
Γl

〈
Huh · n

〉
[φi] dΓ︸ ︷︷ ︸

=0

+
∫

Γl

[Huh · n] 〈φi〉 dΓ ≈ 0. (1.8)

(Note that where previously H = h+η, in (1.8) η has been replaced with the finite element
approximation ηh giving H = h+ ηh).

The first term in (1.8) vanishes because of the continuity across the P1 shape functions
- there is no jump in the elevation shape function, i.e. [φi] = 0. The second term is
neglected in order to guarantee mass conservation at the cost of a small loss of accuracy
(Hanert et al., 2005). An approximation for the product of uh with f is also made to the
variational formulation:∫

Ωe

f(k× uh)ψj dΩ =
∫

Ωe

f

NS∑
i=1

ψiψj dΩ ≈
∫

Ωe

NS∑
i=1

fi(k× ui)ψi︸ ︷︷ ︸
(fk×u)h

ψj dΩ, (1.9)

where fi represents the value of the Coriolis parameter at a velocity node. Since f varies
smoothly throughout the domain, using the approximation given in equation (1.9) only has
a small effect on the accuracy of the solution while greatly simplifying the algebra (Hanert
et al., 2005).
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With both of these approximations the variational (or weak) formulation for the dis-
cretized equations reads:

NE∑
e=1

∫
Ω

(
∂ηh

∂t
φi −Huh · ∇φi

)
dΩ = 0 for 1 ≤ i ≤ NV , (1.10)

NE∑
e=1

∫
Ω

(
∂uh

∂t
ψj − uh∇ · (uhψj) + g∇ηhψj −

1
H

(∇ · (νH∇u)) · ψj −
τ

ρH
· ψj

+
g‖u‖
C2H

u · ψj

)
dΩ +

NΓ∑
l=1

∫
Γl

〈
uhuh · n

〉
λ
[ψj ] dΓ = 0 for 1 ≤ j ≤ NS . (1.11)

In addition to being discretized in space, the SWEs must also be discretized with rep-
sect to time. The next section briefly outlines the time integration scheme used by the
model.

1.3.3 Time integration scheme

The model uses the Adams-Bashforth 3 (AB3) time integration scheme to solve the varia-
tional form of the SWEs. The first step in this scheme entails rearranging our differential
equations (1.10) and (1.11) to the following form (for ease of notation the temporal dis-
cretizations of (1.2) and (1.3) are presented):

∂η

∂t
= Fη(η,u, t), (1.12)

∂u
∂t

= Fu(η,u, t), (1.13)

Then for a given time step ∆t = tn+1 − tn, the AB3 discretization of equations (1.12) and
(1.13) reads:

ηn+1 − ηn

∆t
=

1
12

(23Fn
η − 16Fn−1

η + 5Fn−2
η ),

un+1 − un

∆t
=

1
12

(23Fn
u − 16Fn−1

u + 5Fn−2
u ),
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where
Fn

η = −∇ · (Hun),

and

Fn
u = −un · ∇un − fk× un − g∇ηn +

1
H

(∇ · (νH∇un)) +
τ

ρH
− g‖un‖

C2H
un.

Rearranging again to leave ηn+1 and un+1 on the left hand sides of our equations gives:

ηn+1 = ηn +
∆t
12

(23Fn
η − 16Fn−1

η + 5Fn−2
η ),

un+1 = un +
∆t
12

(23Fn
u − 16Fn−1

u + 5Fn−2
u ).

As ηn and un are vectors taking values over the whole domain, we obtain the following
matrix system of linear equations:(

A 0
0 B

)(
Un+1

Hn+1

)
=

(
RU

RH

)
(1.14)

where Un+1 and Hn+1 are the values of η and u on the mesh nodes, defined as

Un+1 =

(
ui

vi

)
and Hn+1 = (ηj),

where 1 ≤ i ≤ NS and 1 ≤ j ≤ NV . The matrix A on the left hand side of equation (1.14)
is diagonal. In terms of computation efficiency this is a major advantage as it means that
we do not have to invert any large matrices or ‘lump’ any terms. The matrix B is not
diagonal, and so here the ‘lumping’ technique is required to put the off diagonal terms onto
the diagonal. With both the spatial and time discretization the elements of the matrices A
and B are:

Aij =
∑

e

∫
Ωe

ψiψj dΩ (1.15)

Bij =

(∑
e

∫
Ωe

φiφk dΩ

)
δij . (1.16)

Equation (1.16) can be interpreted as adding all of the terms
∫
Ωe
φiφk dΩ to entry Bij when

i = j.
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Chapter 2

Simulation of the transport of

water-borne larvae

Now that an understanding of a model to simulate the flow around reefs has been obtained,
the release of particles from reefs can start to be considered. The aim of this study is to
develop an algorithm that will simulate the dispersion of coral eggs (particles) produced
by coral reefs. In the simulation, these particles will be released from islands in a square
domain. The flow through this domain is produced by forcings applied to the two open
boundaries parallel to the x-axis. Once the algorithm is in place, the connectivity between
islands can then be investigated. The stages of development to implement such an algorithm
are as follows:

• Choose an advection-diffusion algorithm - will the Eulerian or Lagrangian approach
to track the coral eggs be used?

• Integration of the advection-diffusion algorithm with the model - what work must be
done before the model can be built?

• Testing of the advection-diffusion algorithm - the algorithm must first be tested and
validated on a simple case to ensure that it works.

• Implementation of the model on the domains of interest - on the domains containing
two and four islands.

This chapter goes into detail about each of these stages and gives the results of the simple
Stommel test case.
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2.1 Choosing an advection-diffusion algorithm

2.1.1 Eulerian or Lagrangian?

The tracking of a group or cluster of particles in a flow could be done by either:

• considering a group of particles as a passive tracer and monitor its concentration c

(Eulerian formulation), or

• following each particle individually and, given its velocity, update its position at each
time step (Lagrangian formulation).

In a 2-D approach, the concentration c of a passive tracer is governed by the Eulerian
equation

∂(hc)
∂t

= −∇ · (uhc− hk∇c) (2.1)

where t, h(> 0) and k(> 0) denote time, water depth and the horizontal diffusivity re-
spectively ([6]), and u is the depth averaged velocity. According to [6], accurate numerical
simulations of (2.1) are not easy to obtain due to difficulty in finding accurate Eulerian
discretizations of the advective operator −∇ · (uhc). Thus the Lagrangian algorithm is of-
ten used to predict the fate of water-borne propagules near coral reefs, for example sewage,
coral eggs and larvae, plankton, fish and crown-of-thorn starfish (Sammarco & Andrews
1988, 1989, Wolanski et al., 1989, 1997, Black et al. 1990, 1991, Dight et al. 1990, Oliver
et al. 1992, Black 1993), [6]. For this reason, this study will use the Lagrangian approach.
The Lagrangian algorithm, as given in [6], reads:
At time tn = n∆t (n = 1, 2, 3, ...), where ∆t is a suitable time increment, the position
xn = (xn, yn) of a water-borne propagule is updated by:

xn+1 = xn + v∆t+
Rn√
r

√
2k∆t (2.2)

where the velocity v is set to u, Rn is a vector of zero mean random numbers with variance
r and k is the horizontal diffusivity. It is believed that the concentration of particles, which
may be calculated from their postions, tends to be equivalent to the solution of the Eulerian
advection-diffusion equation (2.1)[6]. However, if h or k are not constant, i.e. they vary in
space, then this assumption becomes incorrect. The last section addresses this issue and
suggests an alternative algorithm to correct it. This study will use the Lagrangian algorithm
and test different the values for the diffusivity parameter k.
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2.2 Integration of the advection-diffusion algorithm with the

model

Before the advection-diffusion model can be written, some work needs to be done in order
to gain access to the correct values of velocity calculated by the model of the flow. The
velocity nodes are located on the element mid-segments (see Figure 1.3). This throws up
two problems: firstly, given the cartesian coordinates, the element a point lies in needs to
be found - the model does not provide a function for this; secondly, the value of the velocity
is needed at a point, not the value of the velocity on the three segments of the containing
element.

This section describes a number of methods to solve the first problem, and explains how
the PNC

1 and P1 weight functions are used to solve the second.

2.2.1 The ‘point in a triangle’ test

There are a number of ways to check if a point, call it point P , is in a triangle (or an
element!). The methods described below have been taken from [11].

A common way is to find the vectors connecting P to the vertices of the triangle and
sum the angles between those vectors. If the sum is equal to 2π then P is inside the trian-
gle, otherwise not.

This method works but is very slow. Two faster methods are the ‘same side technique’
and the even faster ‘Barycentric technique’.

The ‘same side technique’

Consider a triangle with vertices A, B and C. The lines AB, BC, and CA each split 2-
dimensional space in half, with one of those halves being entirely outside the triangle (see
Figure 2.1). For a point P to be inside the traingle ABC, it must be below AB and left of
BC and right of AC. If any one of these tests fails we stop early as we know that our point
P cannot be inside the triangle. The implementation of these tests requires a process to
determine whether or not P lies on the correct side of the line. This process is as follows:

• Assume another point Q lies outside of the triangle (Figure 2.2). Taking the cross
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Figure 2.1: Each edge of a triangle splits 2-D space in half, image from [11]

product of the vectors (B − A) and (P − A) gives a vector pointing in to the page.
Conversely, taking the cross product of (B − A) and (Q− A) gives a vector pointing
out of the page.

• Moreover, taking the cross product of (B − A) with the vector from A to any point
above the line AB results in a vector pointing out of the page, while using any point
below AB produces a vector pointing into the page. So all that is needed to distinguish
which side of a line a point lies on is the appropriate cross product.

• Now all that is needed to be done is to work out which direction the cross product
should point in. To caclulate this, a reference point that is always on one side of the
line is needed. The third vertex of the triangle will do nicely.

Figure 2.2: How do we mathematically determine which point is in the triangle? Image
from [11]

Any point P where (B−A)×(P−A) does not point in the same direction as (B−A)×(C−A)
isn’t inside the triangle. If the cross products do point in the same direction, then P needs
to be tested with the other lines as well. If the point is on the same side of AB as C and is
also on the same side of BC as A and on the same side of CA as B, then it is in the triangle.

The Barycentric technique

The Barycentric technique is another conceptually simple technique for determining whether
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a point is in a triangle or not, it requires slightly more algebra than the ‘same side technique’
but computes faster. This is the technique that will be employed in the model.

The three points of a triangle define a plane in space. Let A be the origin of this plane.
Through combinations of the vectors (B − A) and (C − A) any point in the plane can be
reached. In particular, the point P can be described as

P = A+ u(B −A) + v(C −A)

If u or v is greater than one or less than zero then the point is outside of the triangle as it
is too far from A in one of the directions ±(B−A) or ±(C −A) . Furthermore if u+ v > 1
then the point is outside of the triangle as the combination A+ u(B − A) + v(C − A) has
taken the point past edge BC. If any of these tests fail then the point cannot be in this
triangle. P is easily found given u and v, but what is needed is to find u and v given P .
The position of P is given above as one equation in two unknowns. Two equations in two
unknowns are produced as follows.

For ease of notation let (P −A) = V0, (B −A) = V1 and (C −A) = V2 so that

P −A = u(B −A) + v(C −A)

becomes
V0 = uV1 + vV2.

To get two equations in two unknowns, take the dot product of both sides with V1 and then
with V2 to give

V0 · V1 = u(V1 · V1) + v(V2 · V1)

V0 · V2 = u(V1 · V2) + v(V2 · V2).

Solving this pair of simultaneous equations gives us u and v:

u =
(V2 · V2)(V0 · V1)− (V2 · V1)(V0 · V2)
(V2 · V2)(V1 · V1 − (V2 · V1)(V1 · V2)

v =
(V1 · V1)(V0 · V2)− (V1 · V2)(V0 · V1)
(V2 · V2)(V1 · V1)− (V2 · V1)(V1 · V2)

.
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So given the vertices of an element and the position of a point P , whether or not P lies in
the element is worked out by simply calculating u and v as above and checking whether or
not u, v ∈ [0, 1] and u+ v < 1.

2.2.2 Using the P1 and PNC
1 weight functions to determine velocity at a

point

In order to use the Lagrangian algorithm it must be possible to calculate the velocity at any
point in the domain. The velocity is prescribed on the mid-segments of the elements. Now
that the element in which a point lies can be determined, the three values of velocity stored
on the element segments are accessable. Since the element size is quite large (element sizes
range from 10m to 500m) compared to the distance a particle will move in a single time
step, calculating the velocity at a point is not as simple as taking a simple average of these
three velocities. Recall that the finite element approximation to the velocity is

u(x, y, t) ≈ uh(x, y, t) =
2∑

i=0

uiψi(x, y)

where the ui are the velocities stored on the segments and ψi are the PNC
1 shape functions.

These shape functions are related to the P1 shape functions φi by

ψi(x, y) = 1− 2φi(x, y)

where the P1 shape functions are given by

φi = αix+ βiy + γi. (2.3)

Diagrams of these shape functions are given in Figures 1.2 and 2.3. So to find the velocity
at a point (x, y), the coefficients αi, βi and γi are needed. The values of φi on the nodes of
an element are known: if x0, x1 and x2 are the nodes of element p then

φi(xj) =

{
0 i 6= j

1 i = j
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Figure 2.3: Shape functions

and so for each i there are three equations in three unknowns. For example for i = 0:

φ0(x0) = 1 = α0x0 + β0y0 + γ0

φ0(x1) = 0 = α0x1 + β0y1 + γ0

φ0(x2) = 0 = α0x2 + β0y2 + γ0.

Solving these simultaneous equations, for i = 0 for example, gives:

α0 =
y1 − y2

(x0 − x2)(y1 − y2) + (x2 − x1)(y0 − y2)
,

β0 =
x2 − x1

(x0 − x2)(y1 − y2) + (x2 − x1)(y0 − y2)
,

γ0 =
x1y2 − x2y1

(x0 − x2)(y1 − y2) + (x2 − x1)(y0 − y2)
,
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α1, α2, β1, β2, γ1 and γ2 are found in the same way. A general form for αi, βi and γi can
be written using the modulo operation:

αi =
y(i+1)|3 − y(i+2)|3

(xi|3 − x(i+2)|3)(y(i+1)|3 − y(i+2)|3) + (x(i+2)|3 − x(i+1)|3)(yi|3 − y(i+2)|3)
,

βi =
x(i+2)|3 − x(i+1)|3

(xi|3 − x(i+2)|3)(y(i+1)|3 − y(i+2)|3) + (x(i+2)|3 − x(i+1)|3)(yi|3 − y(i+2)|3)
,

γi =
x(i+1)|3 ∗ y(i+2)|3 − x(i+2)|3 ∗ y(i+1)|3

(xi|3 − x(i+2)|3)(y(i+1)|3 − y(i+2)|3) + (x(i+2)|3 − x(i+1)|3)(yi|3 − y(i+2)|3)
,

where (i+ k)|3 stands for (i+ k)mod3. In this general form the φis can be calculated using
a single function that takes the position of a point (or particle) as an argument. From this
the ψis can be calculated and hence the velocity at any point in the domain.

2.2.3 Construction of the diffusion term

The Lagrangian algorithm consists of an advective and a diffusive term. So far the steps
to implmenting advective term v∆t (where v is set to u as in equation (2.1)) have been
considered. The construction of the diffusive term Rn√

r

√
2k∆t requires

• a vector Rn = (Rx, Ry) of zero mean random numbers taking values in [−1, 1],

• calculation of the variance of these random numbers

• a choice for the diffusivity parameter k.

The components of Rn are obtained using the srand and rand functions defined in the
standard C++ library. Two random numbers R1 and R2 between 0 and 200 are produced
and translated to the interval [−1, 1] using the formulae

Rx = R1/100− 1,

Ry = R2/100− 1,

giving 201 possible values for each of Rx and Ry.

The variance r of these 201 random variables, call them xk, is calculated using the standard
formula:

r =
k=200∑
k=0

(xk − x̄)2 = 0.33667.
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As for the choice of diffusivity parameter k, a range of values will be tested. The model only
allows particles to be released from a finite number of points around the islands, however
many particles can be released from each point. In order to find the best value to represent
the dispersion of coral eggs in the flows through the two and four island domains, values of
0.5, 1.0 and 2.0 (as used in [6]) up to much larger values of about 50.0m2s−1 will be tested.

2.3 Testing the advection diffusion algorithm

In order to test the advection diffusion algorithm, the model is run on the Stommel test
case. The Stommel model simulates a wind driven circulaiton in a closed lake or basin.
The domain of computation is the interval [0, L] × [0, L] where L = 106m. The physical
parameters are given in the table below and the wind field is defined by the following
expression:

τn = τ0

(
cosπy

2

0

)
,

where τ0 = 0.2Nm−2. Initially the flow and the elevation are set to zero.

Parameter Value

f0 10−4s−1

g 10m2s−1

γ 10−6s−1

ρ 1000kgm−3

h 100m

The velocity and elevation fields produced by the model for this test case are given in Figures
2.4 and 2.5. A particle released into the flow in this model should follow the streamlines of
the flow. A plot of the energy in the system against the number of time steps tells us that
the system becomes stable after about 3,000,000 time steps (see Figure 2.6). At this point
the streamlines will form a closed loop, so the particles should be circulating the domain
along the same paths over and over again. Indeed, Figure 2.7 shows that a particle released
into the domain on the first time step slowly spirals inward toward the centre while the
pathlines get closer and closer together until they are almost closed.
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Figure 2.4: Stommel elevation fields at various time steps

Figure 2.5: Stommel velocity fields at various time steps

Figure 2.6: Energy in the Stommel simulation
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Figure 2.7: A particle released into the Stommel simulation

The particles are behaving as expected and so the model can be considered as validated
and the more complicated domains can be investigated.

2.4 Tracking coral eggs from islands

To track coral eggs from the islands, six pionts roughly spaced around each island are chosen
to release coral eggs from. These points are saved in a file and loaded by the model. From
these points many coral eggs can be released.

The elevation and velocity fields for the two and four island domains for various time
steps are given in Figures 2.8 and 2.9. But for how long should the coral eggs be tracked
for? How much time should they spend in the water column before they are able to attach
to an island or reef?

Information on the dispersal distances of various water-borne propagules is given in [17].
Figure 2.11 gives these dispersal distances. The organisms of interest are the three species
of coral: Balanophyllia elegans, Acroporids and Pocilloporids. The dispersal distances alone
are evidence to suggest that these propagules may not actually leave the vicinity of the
islands in this study (the element sizes are between 10 and 500m while dispersal distances
could be less that 0.6km). Indeed, in a previous study, the Helix experiments on the Great
Barrier Reef (Sammarco et al., 1989), significant settlement of coral larvae was only seen
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Figure 2.8: Elevation and flow over the two island domain

within several hundred metres of the reef.

Frequently researchers make the simplifying assumption that propagules are dispersed pas-
sively by currents[17]. In [17] actual dispersal distances we compared with dispersal dis-
tances that different studies could have found. Figure 2.10 is taken from [17], it gives the
dispersal distance of propagules with a line showing what the dispersal distances would have
been if they were dispersing passively at a mean current speed of 10cm/s. All of the data
points but two of the species fell below the line. It was found that the current speeds in the
area where these two species were dispersing were around 30cm/s (Perna perna dispersing
in the Gulf of Mexico and Cymatium parthenopeum in the Atlantic Equatorial current)[17].
If this current speed was used to estimate the passive dispersal distance then both species
would disperse shorter distances than they would if they were dispersing passively.

Included in the plot in Figure 2.10 is the dispersal distance for the larvae of the coral
species Balanophyllia elegans (A). This type of propagule had the shortest dispersal dis-
tance compared to the theoretical passive dispersal distance. This comparison strongly
suggests that propagules released from corals are not entirely passive organisms.
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Figure 2.9: Elevation and flow over the four island domain

So if coral larvae are not completely passive and can somehow ‘swim’ toward an island
or reef, how can this be modelled?

The initial step in logic taken toward modelling this phenomenon was to consider a ra-
dius around each island and decide that once a propagule was inside that radius it could
‘see’ the island and would swim towards it. Any particle inside of that radius would be
considered to be settled on that island. Figure 2.12 shows the radii chosen for both the two
and four island domains.

The problem with this is that the particles start within these radii, and it is no use to
assume that the propagules all attach to the parent reef!

The next step was to introduce a time after which a propagule can settle on an island
- the dispersal times for Balanophyllia elegans, Acroporids and Pocilloporids would seem
good choices for this! So after a certain dispersal time, if a particle is found within a certain
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Figure 2.10: A log/log plot of propagule duration vs. dispersal distance. Taken from [17].

radius of an island, the Lagrangian algorithm is no longer implemented, and so the particle
is assumed to have settled on that island. For the remaining time steps, particles not within
a certain radius of an island are still free to move with the currents, but as soon as one
enters one of these radii the algorithm stops for that particle and it is assumed to have
settled on the island. The corresponding entry in the final connectivity matrix will refer to
the island the particle has settled on and the ‘parent island’ it was released from.

This is all very well, but Figure 2.11 gives different dispersal times for different types
of species of coral larvae. To get an idea of why it is important to model different species
of coral larvae, compare the reproductive processes of Balanophyllia elegans corals and the
Montastrea cavernosa corals:

• In Balanophyllia elegans corals the eggs are fertilized in the mother’s gastrovascular
cavity and develop to planula larvae there. The planulae larvae usually settle within
10 cm of the parent[19].

• The great star corals, Montastrea cavernosa, have separate male and female colonies.
Male cavernosa star corals discharge their sperm in gushes that resemble puffs of
smoke, while female corals release tiny spherical egg sacs[20]. The water becomes
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Figure 2.11: Table of dispersal distances for different propagules, taken from [17].
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Figure 2.12: Radii around islands inside which propagules are assumed to settle

clouded by the tiny eggs and sperm. The eggs and sperm rise from the bottom of
the water and form a thick layer on the surface. It is there that fertilization takes
place[20]. A longer dispersal time is therefore needed in order for the eggs to become
fertilized and develop into the ‘adult phase’.

Setting different ‘passive times’ will require multiple runs, so instead, why not just check
at frequent intervals (which can correspond to the ‘passive times’) where all of the particles
are, build a connectivity matrix at that timestep and then allow the particles to continue
to be transported by the flow? This way the evolution of the connectivity matrix can be
followed, with different stages corresponding to different dispersal or passive times. This is
the approach implemented by the model.
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Chapter 3

Results

3.1 Two island domain

In the Stommel test case, the system became steady after about 3,000,000 time steps when
energy became constant. In the case of the two and four island domains, the energy does
not become constant as the elevation is being forced on the two open boundaries. A plot of
the energy against the number of time steps reveals that the energy in the system oscillates:

Figure 3.1: Plot of the energy in the two island system against the time step

The particles are therefore released once the energy in the simulation starts to oscillate
over constant range (at 25000 time steps when ∆t is set to 2.0 seconds). The results are
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displayed to show the simulated dispersal times for the three types of coral larvae given in
Figure (2.11) - Pocilloporids (4 hours), Acroporids (24-72 hours) and Balanophyllia elegans
(3 days). Results are given in sets corresponding to diffusivity values 2.0, 10.0, 25.0 and
50.0 m2s−1. Plotted for each are the positions of particles and either the elevation or ve-
locity fields for corresponding time frame. The two sets of results that best represent the
behaviour for each time frame are given in this chapter, the rest can be found in Appendix
A. In order to consider the islands in this domain individually, the lower island will be
referred to as island one and the upper island will be referred to as island two.

3.1.1 Dispersal time = 4h (Pocilloporids)

Summary of results:

• for all values of the diffusivity the the particles stayed within the radii of the islands,

• as a result the connectivity matrices indicate that all propagules stayed within the
vicinity of the parent reef.

Figure 3.2 displays a table of the minimum, maximum and mean distances travelled from
the point of release by particles at increasing time steps.
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Figure 3.2: Minimum, maximum and mean distances dispersed from initial release points
for the two island domain initial four hour period

Dispersal time Diffusivity k Min. dispersal Max. dispersal Mean dispersal
(mins) (m2s−1) distance (m) distance (m) distance (m)

33 2.0 0.0025 0.6409 0.1336
66 2.0 0.0132 5.3517 1.0824
99 2.0 0.0239 13.7286 3.2116

132 2.0 0.0239 13.7286 3.2116
165 2.0 0.0364 24.238 6.5938
198 2.0 0.0284 22.7876 6.0714
33 10.0 0.0023 0.6076 0.1304
66 10.0 0.0095 5.3047 1.0872
99 10.0 0.0161 13.64 3.1884

132 10.0 0.0242 20.2072 5.3745
165 10.0 0.0359 23.9935 6.5632
198 10.0 0.0299 22.5723 6.053
33 25.0 0.0058 0.5531 0.1282
66 25.0 0.0103 4.9609 1.0177
99 25.0 0.0262 13.1328 3.0973

132 25.0 0.0317 19.5926 5.2509
165 25.0 0.0337 23.3111 6.4425
198 25.0 0.0266 22.817 6.2749
33 50.0 0.0084 0.6893 0.1245
66 50.0 0.0153 5.4901 1.1026
99 50.0 0.0169 14.4601 3.2979

132 50.0 0.0385 21.0021 5.5576
165 50.0 0.0494 25.0793 6.7454
198 50.0 0.0265 22.6349 6.0317
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3.1.2 Dispersal time = 24h - 72h (Acroporids, Balanophyllia elegans)

Summary of results:

• At low values of diffusivity the particles still stay within the radii of the islands,

• but now at higher values of diffusivity some particles start to oscillate in and out of
one of the islands.

• The two extremes are displayed, k = 2.0m2s−1 and k = 50.0m2s−1.

Minimum, maximum and mean dispersal distances are given in Figure 3.6.
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3.2 Four island domain

At this point it is necessary to consider the computational and time restraints on this study.
For the CFL condition to be satisfied for the four island domain, it is necessary to change
the time step from ∆t = 2.0s to ∆t = 0.25s, i.e. one iteration corresponds to just a quarter
of a second. As a result, the time taken for the energy to oscillate between a steady range
increases to 200,000 time steps (see Figure 3.5). The execution time for the program to reach
this point is about 44 hours. For the program to then simulate the dispersal of particles for
72 hours would require a further 1,036,800 time steps, bringing the total execution time to
about 11.5 days. This means that the time required to investigate the four island domain
runs outside of the time scale of this project. Presented are the results obtained for the first
four hours of dispersion time for k = 10.0m2s−1, along with an analysis of the connectivity
matrices returned by the program at some later time steps. The islands are referred to as
islands one to four, with island one being the far left island, island two the next one to the
right, island three the next and island four the far right.

3.2.1 Dispersal time = 4h (Pocilloporids)

Summary of results:

• A similar pattern to that seen with the two island domain occurrs, some particles
move far enough to exit the circular zones around the islands but oscillate in an out
of these zones as the dispersal time approaches four hours.

• All of the particles that ‘leave’ their islands begin at island four. These particles were
released from the North-East and South-West of this island. The rest of the particles
released from this island stay within the enclosing circle.
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3.2.2 Longer dispersal times

The four island simulation was run until the end of the time allocated for this study, the
evolution of the connectivity matrix is given below. Particles are released once the system
has reached a steady state at 200,000 time steps. The final time step is 425,000 which
corresponds to a simulation of propagules in the water column for 29.5 hours.

Initially, particles start to leave the fourth island and then after some time leave the third
island:
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Particles then begin to leave the second island and others move in and out of the third
and fourth islands:
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After 300,000 time steps particles start to return to their parent islands:
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Particles remain at their initial islands until 370,000 time steps when a few start to move
from the first island:
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Particles return to their initial islands once more, and finally a few particles leave the
fourth island again:
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Figure 3.3: Two islands, dispersal time ≈ 4 hours, diffusivity k = 2.0m2s−1
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Figure 3.4: Two islands, dispersal time ≈ 4h, diffusivity k = 10.0m2s−1
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Figure 3.5: Minimum, maximum and mean distances dispersed from initial release points
for the two island 24-72 hour period

Dispersal time Diffusivity k Min. dispersal Max. dispersal Mean dispersal
(hours) (m2s−1) distance (m) distance (m) distance (m)

24 2.0 0.0058 2.195 0.2774
32 2.0 0.0332 15.6949 3.9506
40 2.0 0.0462 14.2177 3.7792
48 2.0 0.0039 4.8538 0.547
56 2.0 0.0289 9.9643 2.6251
64 2.0 0.0513 9.8873 3.0289
72 2.0 0.0135 11.5694 1.3148
24 10.0 0.0381 2.061 0.3169
32 10.0 0.0842 15.6139 3.8381
40 10.0 0.1153 14.0795 3.7566
48 10.0 0.0663 3.3277 0.5675
56 10.0 0.1481 9.3197 2.7039
64 10.0 0.1911 8.4765 3.0071
72 10.0 0.1633 14.1498 1.9294
24 25.0 0.1631 5.9783 1.0512
32 25.0 0.43 13.7862 4.4041
40 25.0 0.3488 12.1079 4.415
48 25.0 0.2084 9.9376 1.8077
56 25.0 0.5233 7.858 3.2991
64 25.0 0.5443 37.5167 6.728
72 25.0 0.2543 22.9991 3.6855
24 50.0 0.0168 27.8431 4.0759
32 50.0 0.0868 13.2853 3.7334
40 50.0 0.1322 11.6651 3.7061
48 50.0 0.109 48.843 4.0699
56 50.0 0.077 6.3922 2.7601
64 50.0 0.3656 78.3352 8.6435
72 50.0 0.5258 20.2717 4.6574
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Figure 3.6: Two islands, dispersal time ≈ 24-72h, diffusivity k = 2.0m2s−1
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Figure 3.7: Two islands, dispersal time ≈ 24h-72h, diffusivity k = 50.0m2s−1
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Figure 3.8: Energy in the four island system
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Figure 3.9: Four islands, dispersal time ≈ 4h, diffusivity k = 10.0m2s−1
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Chapter 4

Discussion of results and

conclusions

4.1 The two island domain

4.1.1 The four hour simulation

In general, particles did not leave the vicinity of their initial islands during the four hour
simulation. This was not surprising, as, according to Figure 2.11, the coral species that has
a dispersal time of four hours, Pocilloporids, has a mean dispersal distance ≤ 0.6km. The
simulated dispersal distances turned out to be much smaller than this - none of the particles
dispersed further than 25m away from the point of release. The reason for this seems to
be that the particles started to move away from the point of release but were then carried
back by the flow. This can be seen in Figure 3.2 where the maximum and average dispersal
distances increase steadily up to 165 minutes, but decrease at 198 minutes for each value of
the diffusivity.

The connectivity matrices seem to imply that every particle settled on the parent island, i.e.
if the model was accurately simulating the dispersal of Pocilloporids larvae and if the islands
were made up entirely of Pocilloporids corals, then they would be self seeding. However, it
is important to remember that these connectivity matrices only show that the particles are
within certain radii of the islands. So although the information on the dispersal of Pocillo-
porids larvae suggests that the larvae should settle on or near the parent islands, and that
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the model is simulating this, it must be noted that the method of using radii inside which
particles are assumed to settle is purely hypothetical, and so this is of course speculation.

4.1.2 The 24-72 hour simulation

In the 24-72 hour simulation, corresponding to the dispersal times for Acroporids (24-72
hours) and Balanophyllia elegans (72 hours), whether or not particles left the vicinity of
the islands depended on value of the diffusivity k. At a value of k = 50m2s−1 particles
started to leave the lower island. However, having left the vicinity of the island they then
proceeded to return, leave again and then slowly return by the end of the 72 hour time
frame. This oscillating behaviour can also be seen for all of the other values of k in the
table given in Figure 3.6. For dispersal times up to 40 hours, the maximum and average
dispersal distances increase but then drop at 48 hours. For the remaining 24 hours the
maximum and average disperal distances rise and fall as the particles move back and forth.

So do the model simulations represent the behaviour of either Balanophyllia elegans larvae
or Acroporids larvae? The distances travelled by the particles indicate that the simulations
are closer to that of the Acroporids larvae. Of course the dispersal distances for this larvae
are only really relevant to the regions where the data was sourced from (Rib Reef, Pandora
Reef and Myrmidon Reef in the Great Barrier Reef, Australia, Sammarco and Andrews
(1989)), not necessarily the simple two island domain in this study! A further study could
simulate the dispersal of particles in the aforementioned reefs in the GBR in order to either
confirm this observation or taylor the model to accurately simulate the dispersal of Acrop-
orids larvae.

As far as simulating the dispersal of Balanophyllia elegans larvae is concerned, a more
complex algorithm would be required to simulate larvae moving just 0.1-0.5m in 72 hours.
Construction of such an algorithm would require research into how these corals reproduce
and what keeps the larvae so close to the reefs for three days.
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4.2 The four island domain

4.2.1 The four hour simulation

Results obtained for this simulation were similar to the four hour simulation in the two island
domain - the majority of the particles stayed within the zones drawn around the islands. A
few particles did leave the fourth island - between 33 minutes and 200 minutes particles on
the North-East and South-West of island four moved in and out of the perimeter.

4.2.2 Longer simulations

In the 30 hours that the particles in the four island domain were in the water column,
the general behaviour exhibited reflects that observed in all of the simulations so far - the
particles do not move far from the vicinity of the islands of their release - when they do
they tend to oscillate in and out of the circles enclosing the islands. This oscillatory motion
is probably due to the flow taking the particles out of the island zones when the elevation is
forced on one open boundary, and then pushing them back in when the elevation is forced
on the opposite open boundary when the ‘tide’ is reversed.

The island that experienced the most activity in this domain was island four. This could
have been because:

• this island is the closest to an open boundary and so experiences the greatest velocities,
or

• the perimeter drawn around this island was closer to the release points than in the
other domains and so the particles did not have to travel as far to leave the vicinity
of the island, or

• this island is the furthest from any other island and so small scale features such as
eddies in the wake of other islands do not interfere significantly with the flow around
this island.
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4.3 Summary of conclusions

Factors that could be taken into account when building a connectivity matrix for the Great
Barrier Reef could be:

• The type of coral larvae being dispersed. The species of corals with the highest
population in each island or reef could be simulated.

• The different dispersal strategies - both the long range and short range strategies
could be taken into account, this would require a model that simulates a the dispersal
of coral larvae over a long period of time (> 300h or even as far as a yearly dispersal
distance) while keeping track of species of larvae that only disperse short distances.
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Chapter 5

Further work

In addition to the suggestions made in Chapter 4, further work that could be done directly
on this project is summarised in the sections that follow.

5.1 The modified Lagrangian algorithm

In this study the Lagrangian algorithm was used to update the position of particles:

xn+1 = xn + v∆t+
Rn√
r

√
2k∆t (5.1)

This algorithm assumes a constant diffusivity k and depth h. This is not ideal for the
domains studied as the depth changes with the elevation and the bathymetry of the islands,
and the diffusivity will vary according to how far the particles are from the islands (i.e.
how far they are from the turbulent features such as eddies in the wake of islands). An
algorithm could be implemented to include varying h and k. It is noted in [6] that when
h or k is not constant the Lagrangian algorithm (5.1) tends to accumulate particles in re-
gions where h or k is small. To correct this a modified Lagrangian algorithm should be used.

The modified Lagrangian algorithm makes corrections to (5.1) so that the concentration
of particles tends toward the concentration derived from the Eulerian equation. To obtain
the modified Lagrangian algorithm, rewrite the Eulerian equation

∂(hc)
∂t

= −∇ · (uhc− hk∇c) (5.2)
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as
∂(hc)
∂t

= −∇ · [(u + kh−1∇h)hc− k∇(hc)]. (5.3)

Equation (5.3) can be conidered as an advection-diffusion equation for which the quantity
to be transported is hc, and the advection velocity is u+ kh−1∇h (Spagnol et al., 2002). If
the depth h varies in space, the equivalent particle tracking algorithm then takes the same
form as equation (5.1), with the velocity v taken as

v = u +
h

k
∇h, (5.4)

(Spagnol et al., 2002) where u is the depth averaged horizontal water velocity (returned by
the model). If the diffusivity also varies in space then the velocity v takes the form:

v = u +
h

k
∇h+∇k, (5.5)

(Spagnol et al., 2002).

5.2 Areas representing the islands

The radii drawn around each island are a very simple way of representing the islands in
this study. These circles enclose some islands more tightly than others, resulting in the
distance a particle needs to be from an island to attach varying. More complicated shapes
that closely follow the shorelines could be used in order to get a more accurate estimate of
when the particles reach the island.

5.3 A mortality rate

Not all of the coral larvae survive to attach to a reef as they are prey to other marine life.
A mortality rate to simulate this could be implemented by assigning to each propagule a
probability p that it will live (where p is between zero and one) and producing a random
number q between zero and one every n time steps. If q > p then the propagule lives
and carries on until the next n time steps are complete when another random number is
generated to decide its fate. If q < p then the propagule dies and is ommitted from the
simulation for the remaining time steps.
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5.4 Different species of Coral

The coral species mentioned in this study all have small dispersal distances and times rel-
ative to the distances and times that would be considered when thinking about designing
marine reserves. Shanks et al. (2003) mentions two evolutionary stable dispersal strate-
gies: dipsersal < 1km with propagules spending less than 100 hours in the water column,
or > 20km with propagules spending over 300 hours in the water column. Much longer
simulations could be run in order to investigate corals whose larvae travel distances over
20km.
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Appendix A

Included in this appendix are the remaining plots of particle positions for the two island
four hour and 72 hour simulations.
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Figure 5.1: Two islands, dispersal time ≈ 4h, diffusivity k = 25.0m2s−1
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Figure 5.2: Two islands, dispersal time ≈ 4h, diffusivity k = 50.0m2s−1
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Figure 5.3: Two islands, dispersal time ≈ 24-72h, diffusivity k = 10.0m2s−1
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Figure 5.4: Two islands, dispersal time ≈ 24-72h, diffusivity k = 25.0m2s−1
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